ip_reass.c revision 1.14 1 1.14 maxv /* $NetBSD: ip_reass.c,v 1.14 2018/03/09 11:57:38 maxv Exp $ */
2 1.1 rmind
3 1.1 rmind /*
4 1.1 rmind * Copyright (c) 1982, 1986, 1988, 1993
5 1.1 rmind * The Regents of the University of California. All rights reserved.
6 1.1 rmind *
7 1.1 rmind * Redistribution and use in source and binary forms, with or without
8 1.1 rmind * modification, are permitted provided that the following conditions
9 1.1 rmind * are met:
10 1.1 rmind * 1. Redistributions of source code must retain the above copyright
11 1.1 rmind * notice, this list of conditions and the following disclaimer.
12 1.1 rmind * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 rmind * notice, this list of conditions and the following disclaimer in the
14 1.1 rmind * documentation and/or other materials provided with the distribution.
15 1.1 rmind * 3. Neither the name of the University nor the names of its contributors
16 1.1 rmind * may be used to endorse or promote products derived from this software
17 1.1 rmind * without specific prior written permission.
18 1.1 rmind *
19 1.1 rmind * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 1.1 rmind * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 1.1 rmind * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 1.1 rmind * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 1.1 rmind * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 1.1 rmind * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 1.1 rmind * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 1.1 rmind * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 1.1 rmind * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 1.1 rmind * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 1.1 rmind * SUCH DAMAGE.
30 1.1 rmind *
31 1.1 rmind * @(#)ip_input.c 8.2 (Berkeley) 1/4/94
32 1.1 rmind */
33 1.1 rmind
34 1.1 rmind /*
35 1.1 rmind * IP reassembly.
36 1.1 rmind *
37 1.1 rmind * Additive-Increase/Multiplicative-Decrease (AIMD) strategy for IP
38 1.1 rmind * reassembly queue buffer managment.
39 1.1 rmind *
40 1.1 rmind * We keep a count of total IP fragments (NB: not fragmented packets),
41 1.1 rmind * awaiting reassembly (ip_nfrags) and a limit (ip_maxfrags) on fragments.
42 1.1 rmind * If ip_nfrags exceeds ip_maxfrags the limit, we drop half the total
43 1.1 rmind * fragments in reassembly queues. This AIMD policy avoids repeatedly
44 1.1 rmind * deleting single packets under heavy fragmentation load (e.g., from lossy
45 1.1 rmind * NFS peers).
46 1.1 rmind */
47 1.1 rmind
48 1.1 rmind #include <sys/cdefs.h>
49 1.14 maxv __KERNEL_RCSID(0, "$NetBSD: ip_reass.c,v 1.14 2018/03/09 11:57:38 maxv Exp $");
50 1.1 rmind
51 1.1 rmind #include <sys/param.h>
52 1.2 rmind #include <sys/types.h>
53 1.1 rmind
54 1.1 rmind #include <sys/malloc.h>
55 1.1 rmind #include <sys/mbuf.h>
56 1.4 rmind #include <sys/mutex.h>
57 1.1 rmind #include <sys/pool.h>
58 1.2 rmind #include <sys/queue.h>
59 1.1 rmind #include <sys/sysctl.h>
60 1.2 rmind #include <sys/systm.h>
61 1.1 rmind
62 1.1 rmind #include <net/if.h>
63 1.1 rmind
64 1.1 rmind #include <netinet/in.h>
65 1.1 rmind #include <netinet/in_systm.h>
66 1.1 rmind #include <netinet/ip.h>
67 1.1 rmind #include <netinet/in_pcb.h>
68 1.2 rmind #include <netinet/ip_var.h>
69 1.1 rmind #include <netinet/ip_private.h>
70 1.1 rmind #include <netinet/in_var.h>
71 1.1 rmind
72 1.1 rmind /*
73 1.3 rmind * IP reassembly queue structures. Each fragment being reassembled is
74 1.3 rmind * attached to one of these structures. They are timed out after TTL
75 1.3 rmind * drops to 0, and may also be reclaimed if memory becomes tight.
76 1.3 rmind */
77 1.3 rmind
78 1.3 rmind typedef struct ipfr_qent {
79 1.3 rmind TAILQ_ENTRY(ipfr_qent) ipqe_q;
80 1.3 rmind struct ip * ipqe_ip;
81 1.3 rmind struct mbuf * ipqe_m;
82 1.3 rmind bool ipqe_mff;
83 1.3 rmind } ipfr_qent_t;
84 1.3 rmind
85 1.7 rmind TAILQ_HEAD(ipfr_qent_head, ipfr_qent);
86 1.7 rmind
87 1.3 rmind typedef struct ipfr_queue {
88 1.3 rmind LIST_ENTRY(ipfr_queue) ipq_q; /* to other reass headers */
89 1.7 rmind struct ipfr_qent_head ipq_fragq; /* queue of fragment entries */
90 1.3 rmind uint8_t ipq_ttl; /* time for reass q to live */
91 1.3 rmind uint8_t ipq_p; /* protocol of this fragment */
92 1.3 rmind uint16_t ipq_id; /* sequence id for reassembly */
93 1.3 rmind struct in_addr ipq_src;
94 1.3 rmind struct in_addr ipq_dst;
95 1.3 rmind uint16_t ipq_nfrags; /* frags in this queue entry */
96 1.3 rmind uint8_t ipq_tos; /* TOS of this fragment */
97 1.3 rmind } ipfr_queue_t;
98 1.3 rmind
99 1.3 rmind /*
100 1.3 rmind * Hash table of IP reassembly queues.
101 1.1 rmind */
102 1.1 rmind #define IPREASS_HASH_SHIFT 6
103 1.1 rmind #define IPREASS_HASH_SIZE (1 << IPREASS_HASH_SHIFT)
104 1.1 rmind #define IPREASS_HASH_MASK (IPREASS_HASH_SIZE - 1)
105 1.1 rmind #define IPREASS_HASH(x, y) \
106 1.1 rmind (((((x) & 0xf) | ((((x) >> 8) & 0xf) << 4)) ^ (y)) & IPREASS_HASH_MASK)
107 1.1 rmind
108 1.3 rmind static LIST_HEAD(, ipfr_queue) ip_frags[IPREASS_HASH_SIZE];
109 1.4 rmind static pool_cache_t ipfren_cache;
110 1.4 rmind static kmutex_t ipfr_lock;
111 1.1 rmind
112 1.3 rmind /* Number of packets in reassembly queue and total number of fragments. */
113 1.3 rmind static int ip_nfragpackets;
114 1.3 rmind static int ip_nfrags;
115 1.1 rmind
116 1.3 rmind /* Limits on packet and fragments. */
117 1.3 rmind static int ip_maxfragpackets;
118 1.3 rmind static int ip_maxfrags;
119 1.1 rmind
120 1.1 rmind /*
121 1.3 rmind * Cached copy of nmbclusters. If nbclusters is different, recalculate
122 1.3 rmind * IP parameters derived from nmbclusters.
123 1.2 rmind */
124 1.3 rmind static int ip_nmbclusters;
125 1.1 rmind
126 1.1 rmind /*
127 1.1 rmind * IP reassembly TTL machinery for multiplicative drop.
128 1.1 rmind */
129 1.3 rmind static u_int fragttl_histo[IPFRAGTTL + 1];
130 1.1 rmind
131 1.4 rmind static struct sysctllog *ip_reass_sysctllog;
132 1.4 rmind
133 1.3 rmind void sysctl_ip_reass_setup(void);
134 1.3 rmind static void ip_nmbclusters_changed(void);
135 1.2 rmind
136 1.3 rmind static struct mbuf * ip_reass(ipfr_qent_t *, ipfr_queue_t *, u_int);
137 1.2 rmind static u_int ip_reass_ttl_decr(u_int ticks);
138 1.2 rmind static void ip_reass_drophalf(void);
139 1.3 rmind static void ip_freef(ipfr_queue_t *);
140 1.1 rmind
141 1.1 rmind /*
142 1.1 rmind * ip_reass_init:
143 1.1 rmind *
144 1.1 rmind * Initialization of IP reassembly mechanism.
145 1.1 rmind */
146 1.1 rmind void
147 1.1 rmind ip_reass_init(void)
148 1.1 rmind {
149 1.1 rmind int i;
150 1.1 rmind
151 1.4 rmind ipfren_cache = pool_cache_init(sizeof(ipfr_qent_t), coherency_unit,
152 1.4 rmind 0, 0, "ipfrenpl", NULL, IPL_NET, NULL, NULL, NULL);
153 1.6 yamt mutex_init(&ipfr_lock, MUTEX_DEFAULT, IPL_VM);
154 1.1 rmind
155 1.1 rmind for (i = 0; i < IPREASS_HASH_SIZE; i++) {
156 1.3 rmind LIST_INIT(&ip_frags[i]);
157 1.1 rmind }
158 1.1 rmind ip_maxfragpackets = 200;
159 1.1 rmind ip_maxfrags = 0;
160 1.1 rmind ip_nmbclusters_changed();
161 1.1 rmind
162 1.1 rmind sysctl_ip_reass_setup();
163 1.1 rmind }
164 1.1 rmind
165 1.1 rmind void
166 1.1 rmind sysctl_ip_reass_setup(void)
167 1.1 rmind {
168 1.1 rmind
169 1.1 rmind sysctl_createv(&ip_reass_sysctllog, 0, NULL, NULL,
170 1.1 rmind CTLFLAG_PERMANENT,
171 1.1 rmind CTLTYPE_NODE, "inet",
172 1.1 rmind SYSCTL_DESCR("PF_INET related settings"),
173 1.1 rmind NULL, 0, NULL, 0,
174 1.1 rmind CTL_NET, PF_INET, CTL_EOL);
175 1.1 rmind sysctl_createv(&ip_reass_sysctllog, 0, NULL, NULL,
176 1.1 rmind CTLFLAG_PERMANENT,
177 1.1 rmind CTLTYPE_NODE, "ip",
178 1.1 rmind SYSCTL_DESCR("IPv4 related settings"),
179 1.1 rmind NULL, 0, NULL, 0,
180 1.1 rmind CTL_NET, PF_INET, IPPROTO_IP, CTL_EOL);
181 1.1 rmind
182 1.1 rmind sysctl_createv(&ip_reass_sysctllog, 0, NULL, NULL,
183 1.1 rmind CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
184 1.1 rmind CTLTYPE_INT, "maxfragpackets",
185 1.1 rmind SYSCTL_DESCR("Maximum number of fragments to retain for "
186 1.1 rmind "possible reassembly"),
187 1.1 rmind NULL, 0, &ip_maxfragpackets, 0,
188 1.1 rmind CTL_NET, PF_INET, IPPROTO_IP, IPCTL_MAXFRAGPACKETS, CTL_EOL);
189 1.1 rmind }
190 1.1 rmind
191 1.1 rmind #define CHECK_NMBCLUSTER_PARAMS() \
192 1.1 rmind do { \
193 1.1 rmind if (__predict_false(ip_nmbclusters != nmbclusters)) \
194 1.1 rmind ip_nmbclusters_changed(); \
195 1.1 rmind } while (/*CONSTCOND*/0)
196 1.1 rmind
197 1.1 rmind /*
198 1.1 rmind * Compute IP limits derived from the value of nmbclusters.
199 1.1 rmind */
200 1.1 rmind static void
201 1.1 rmind ip_nmbclusters_changed(void)
202 1.1 rmind {
203 1.1 rmind ip_maxfrags = nmbclusters / 4;
204 1.1 rmind ip_nmbclusters = nmbclusters;
205 1.1 rmind }
206 1.1 rmind
207 1.1 rmind /*
208 1.1 rmind * ip_reass:
209 1.1 rmind *
210 1.1 rmind * Take incoming datagram fragment and try to reassemble it into whole
211 1.1 rmind * datagram. If a chain for reassembly of this datagram already exists,
212 1.1 rmind * then it is given as 'fp'; otherwise have to make a chain.
213 1.1 rmind */
214 1.1 rmind struct mbuf *
215 1.3 rmind ip_reass(ipfr_qent_t *ipqe, ipfr_queue_t *fp, const u_int hash)
216 1.1 rmind {
217 1.7 rmind struct ip *ip = ipqe->ipqe_ip, *qip;
218 1.7 rmind const int hlen = ip->ip_hl << 2;
219 1.1 rmind struct mbuf *m = ipqe->ipqe_m, *t;
220 1.3 rmind ipfr_qent_t *nq, *p, *q;
221 1.4 rmind int i, next;
222 1.1 rmind
223 1.4 rmind KASSERT(mutex_owned(&ipfr_lock));
224 1.1 rmind
225 1.1 rmind /*
226 1.1 rmind * Presence of header sizes in mbufs would confuse code below.
227 1.1 rmind */
228 1.1 rmind m->m_data += hlen;
229 1.1 rmind m->m_len -= hlen;
230 1.1 rmind
231 1.1 rmind #ifdef notyet
232 1.1 rmind /* Make sure fragment limit is up-to-date. */
233 1.1 rmind CHECK_NMBCLUSTER_PARAMS();
234 1.1 rmind
235 1.1 rmind /* If we have too many fragments, drop the older half. */
236 1.1 rmind if (ip_nfrags >= ip_maxfrags) {
237 1.1 rmind ip_reass_drophalf(void);
238 1.1 rmind }
239 1.1 rmind #endif
240 1.1 rmind
241 1.1 rmind /*
242 1.1 rmind * We are about to add a fragment; increment frag count.
243 1.1 rmind */
244 1.1 rmind ip_nfrags++;
245 1.1 rmind
246 1.1 rmind /*
247 1.1 rmind * If first fragment to arrive, create a reassembly queue.
248 1.1 rmind */
249 1.1 rmind if (fp == NULL) {
250 1.1 rmind /*
251 1.1 rmind * Enforce upper bound on number of fragmented packets
252 1.1 rmind * for which we attempt reassembly: a) if maxfrag is 0,
253 1.1 rmind * never accept fragments b) if maxfrag is -1, accept
254 1.1 rmind * all fragments without limitation.
255 1.1 rmind */
256 1.1 rmind if (ip_maxfragpackets < 0)
257 1.1 rmind ;
258 1.1 rmind else if (ip_nfragpackets >= ip_maxfragpackets) {
259 1.1 rmind goto dropfrag;
260 1.1 rmind }
261 1.3 rmind fp = malloc(sizeof(ipfr_queue_t), M_FTABLE, M_NOWAIT);
262 1.1 rmind if (fp == NULL) {
263 1.1 rmind goto dropfrag;
264 1.1 rmind }
265 1.8 enami ip_nfragpackets++;
266 1.7 rmind TAILQ_INIT(&fp->ipq_fragq);
267 1.1 rmind fp->ipq_nfrags = 1;
268 1.1 rmind fp->ipq_ttl = IPFRAGTTL;
269 1.7 rmind fp->ipq_p = ip->ip_p;
270 1.7 rmind fp->ipq_id = ip->ip_id;
271 1.7 rmind fp->ipq_tos = ip->ip_tos;
272 1.7 rmind fp->ipq_src = ip->ip_src;
273 1.7 rmind fp->ipq_dst = ip->ip_dst;
274 1.7 rmind LIST_INSERT_HEAD(&ip_frags[hash], fp, ipq_q);
275 1.1 rmind p = NULL;
276 1.1 rmind goto insert;
277 1.1 rmind } else {
278 1.1 rmind fp->ipq_nfrags++;
279 1.1 rmind }
280 1.1 rmind
281 1.1 rmind /*
282 1.1 rmind * Find a segment which begins after this one does.
283 1.1 rmind */
284 1.7 rmind TAILQ_FOREACH(q, &fp->ipq_fragq, ipqe_q) {
285 1.7 rmind if (ntohs(q->ipqe_ip->ip_off) > ntohs(ip->ip_off))
286 1.1 rmind break;
287 1.7 rmind }
288 1.7 rmind if (q != NULL) {
289 1.7 rmind p = TAILQ_PREV(q, ipfr_qent_head, ipqe_q);
290 1.7 rmind } else {
291 1.7 rmind p = TAILQ_LAST(&fp->ipq_fragq, ipfr_qent_head);
292 1.7 rmind }
293 1.1 rmind
294 1.1 rmind /*
295 1.1 rmind * If there is a preceding segment, it may provide some of our
296 1.1 rmind * data already. If so, drop the data from the incoming segment.
297 1.1 rmind * If it provides all of our data, drop us.
298 1.1 rmind */
299 1.1 rmind if (p != NULL) {
300 1.1 rmind i = ntohs(p->ipqe_ip->ip_off) + ntohs(p->ipqe_ip->ip_len) -
301 1.7 rmind ntohs(ip->ip_off);
302 1.1 rmind if (i > 0) {
303 1.7 rmind if (i >= ntohs(ip->ip_len)) {
304 1.1 rmind goto dropfrag;
305 1.1 rmind }
306 1.1 rmind m_adj(ipqe->ipqe_m, i);
307 1.7 rmind ip->ip_off = htons(ntohs(ip->ip_off) + i);
308 1.7 rmind ip->ip_len = htons(ntohs(ip->ip_len) - i);
309 1.1 rmind }
310 1.1 rmind }
311 1.1 rmind
312 1.1 rmind /*
313 1.1 rmind * While we overlap succeeding segments trim them or, if they are
314 1.1 rmind * completely covered, dequeue them.
315 1.1 rmind */
316 1.7 rmind while (q != NULL) {
317 1.7 rmind size_t end;
318 1.7 rmind
319 1.7 rmind qip = q->ipqe_ip;
320 1.7 rmind end = ntohs(ip->ip_off) + ntohs(ip->ip_len);
321 1.7 rmind if (end <= ntohs(qip->ip_off)) {
322 1.7 rmind break;
323 1.7 rmind }
324 1.7 rmind i = end - ntohs(qip->ip_off);
325 1.7 rmind if (i < ntohs(qip->ip_len)) {
326 1.7 rmind qip->ip_len = htons(ntohs(qip->ip_len) - i);
327 1.7 rmind qip->ip_off = htons(ntohs(qip->ip_off) + i);
328 1.1 rmind m_adj(q->ipqe_m, i);
329 1.1 rmind break;
330 1.1 rmind }
331 1.1 rmind nq = TAILQ_NEXT(q, ipqe_q);
332 1.1 rmind m_freem(q->ipqe_m);
333 1.1 rmind TAILQ_REMOVE(&fp->ipq_fragq, q, ipqe_q);
334 1.4 rmind pool_cache_put(ipfren_cache, q);
335 1.1 rmind fp->ipq_nfrags--;
336 1.1 rmind ip_nfrags--;
337 1.7 rmind q = nq;
338 1.1 rmind }
339 1.1 rmind
340 1.1 rmind insert:
341 1.1 rmind /*
342 1.1 rmind * Stick new segment in its place; check for complete reassembly.
343 1.1 rmind */
344 1.1 rmind if (p == NULL) {
345 1.1 rmind TAILQ_INSERT_HEAD(&fp->ipq_fragq, ipqe, ipqe_q);
346 1.1 rmind } else {
347 1.1 rmind TAILQ_INSERT_AFTER(&fp->ipq_fragq, p, ipqe, ipqe_q);
348 1.1 rmind }
349 1.1 rmind next = 0;
350 1.7 rmind TAILQ_FOREACH(q, &fp->ipq_fragq, ipqe_q) {
351 1.7 rmind qip = q->ipqe_ip;
352 1.7 rmind if (ntohs(qip->ip_off) != next) {
353 1.4 rmind mutex_exit(&ipfr_lock);
354 1.1 rmind return NULL;
355 1.1 rmind }
356 1.7 rmind next += ntohs(qip->ip_len);
357 1.1 rmind }
358 1.7 rmind p = TAILQ_LAST(&fp->ipq_fragq, ipfr_qent_head);
359 1.1 rmind if (p->ipqe_mff) {
360 1.4 rmind mutex_exit(&ipfr_lock);
361 1.1 rmind return NULL;
362 1.1 rmind }
363 1.7 rmind
364 1.1 rmind /*
365 1.4 rmind * Reassembly is complete. Check for a bogus message size.
366 1.1 rmind */
367 1.1 rmind q = TAILQ_FIRST(&fp->ipq_fragq);
368 1.1 rmind ip = q->ipqe_ip;
369 1.1 rmind if ((next + (ip->ip_hl << 2)) > IP_MAXPACKET) {
370 1.1 rmind IP_STATINC(IP_STAT_TOOLONG);
371 1.1 rmind ip_freef(fp);
372 1.4 rmind mutex_exit(&ipfr_lock);
373 1.1 rmind return NULL;
374 1.1 rmind }
375 1.4 rmind LIST_REMOVE(fp, ipq_q);
376 1.4 rmind ip_nfrags -= fp->ipq_nfrags;
377 1.4 rmind ip_nfragpackets--;
378 1.4 rmind mutex_exit(&ipfr_lock);
379 1.4 rmind
380 1.4 rmind /* Concatenate all fragments. */
381 1.1 rmind m = q->ipqe_m;
382 1.1 rmind t = m->m_next;
383 1.1 rmind m->m_next = NULL;
384 1.1 rmind m_cat(m, t);
385 1.1 rmind nq = TAILQ_NEXT(q, ipqe_q);
386 1.4 rmind pool_cache_put(ipfren_cache, q);
387 1.4 rmind
388 1.1 rmind for (q = nq; q != NULL; q = nq) {
389 1.1 rmind t = q->ipqe_m;
390 1.1 rmind nq = TAILQ_NEXT(q, ipqe_q);
391 1.4 rmind pool_cache_put(ipfren_cache, q);
392 1.14 maxv m_pkthdr_remove(t);
393 1.1 rmind m_cat(m, t);
394 1.1 rmind }
395 1.1 rmind
396 1.1 rmind /*
397 1.1 rmind * Create header for new packet by modifying header of first
398 1.1 rmind * packet. Dequeue and discard fragment reassembly header. Make
399 1.1 rmind * header visible.
400 1.1 rmind */
401 1.2 rmind ip->ip_len = htons((ip->ip_hl << 2) + next);
402 1.1 rmind ip->ip_src = fp->ipq_src;
403 1.1 rmind ip->ip_dst = fp->ipq_dst;
404 1.5 enami free(fp, M_FTABLE);
405 1.2 rmind
406 1.1 rmind m->m_len += (ip->ip_hl << 2);
407 1.1 rmind m->m_data -= (ip->ip_hl << 2);
408 1.4 rmind
409 1.4 rmind /* Fix up mbuf. XXX This should be done elsewhere. */
410 1.14 maxv {
411 1.14 maxv KASSERT(m->m_flags & M_PKTHDR);
412 1.1 rmind int plen = 0;
413 1.1 rmind for (t = m; t; t = t->m_next) {
414 1.1 rmind plen += t->m_len;
415 1.1 rmind }
416 1.1 rmind m->m_pkthdr.len = plen;
417 1.1 rmind m->m_pkthdr.csum_flags = 0;
418 1.1 rmind }
419 1.1 rmind return m;
420 1.1 rmind
421 1.1 rmind dropfrag:
422 1.1 rmind if (fp != NULL) {
423 1.1 rmind fp->ipq_nfrags--;
424 1.1 rmind }
425 1.1 rmind ip_nfrags--;
426 1.1 rmind IP_STATINC(IP_STAT_FRAGDROPPED);
427 1.4 rmind mutex_exit(&ipfr_lock);
428 1.4 rmind
429 1.4 rmind pool_cache_put(ipfren_cache, ipqe);
430 1.1 rmind m_freem(m);
431 1.1 rmind return NULL;
432 1.1 rmind }
433 1.1 rmind
434 1.1 rmind /*
435 1.1 rmind * ip_freef:
436 1.1 rmind *
437 1.1 rmind * Free a fragment reassembly header and all associated datagrams.
438 1.1 rmind */
439 1.2 rmind static void
440 1.3 rmind ip_freef(ipfr_queue_t *fp)
441 1.1 rmind {
442 1.4 rmind ipfr_qent_t *q;
443 1.1 rmind
444 1.4 rmind KASSERT(mutex_owned(&ipfr_lock));
445 1.1 rmind
446 1.4 rmind LIST_REMOVE(fp, ipq_q);
447 1.4 rmind ip_nfrags -= fp->ipq_nfrags;
448 1.4 rmind ip_nfragpackets--;
449 1.4 rmind
450 1.4 rmind while ((q = TAILQ_FIRST(&fp->ipq_fragq)) != NULL) {
451 1.4 rmind TAILQ_REMOVE(&fp->ipq_fragq, q, ipqe_q);
452 1.1 rmind m_freem(q->ipqe_m);
453 1.4 rmind pool_cache_put(ipfren_cache, q);
454 1.1 rmind }
455 1.1 rmind free(fp, M_FTABLE);
456 1.1 rmind }
457 1.1 rmind
458 1.1 rmind /*
459 1.1 rmind * ip_reass_ttl_decr:
460 1.1 rmind *
461 1.1 rmind * Decrement TTL of all reasembly queue entries by `ticks'. Count
462 1.1 rmind * number of distinct fragments (as opposed to partial, fragmented
463 1.1 rmind * datagrams) inthe reassembly queue. While we traverse the entire
464 1.1 rmind * reassembly queue, compute and return the median TTL over all
465 1.1 rmind * fragments.
466 1.1 rmind */
467 1.1 rmind static u_int
468 1.1 rmind ip_reass_ttl_decr(u_int ticks)
469 1.1 rmind {
470 1.1 rmind u_int nfrags, median, dropfraction, keepfraction;
471 1.3 rmind ipfr_queue_t *fp, *nfp;
472 1.1 rmind int i;
473 1.1 rmind
474 1.1 rmind nfrags = 0;
475 1.1 rmind memset(fragttl_histo, 0, sizeof(fragttl_histo));
476 1.1 rmind
477 1.1 rmind for (i = 0; i < IPREASS_HASH_SIZE; i++) {
478 1.3 rmind for (fp = LIST_FIRST(&ip_frags[i]); fp != NULL; fp = nfp) {
479 1.1 rmind fp->ipq_ttl = ((fp->ipq_ttl <= ticks) ?
480 1.1 rmind 0 : fp->ipq_ttl - ticks);
481 1.1 rmind nfp = LIST_NEXT(fp, ipq_q);
482 1.1 rmind if (fp->ipq_ttl == 0) {
483 1.1 rmind IP_STATINC(IP_STAT_FRAGTIMEOUT);
484 1.1 rmind ip_freef(fp);
485 1.1 rmind } else {
486 1.1 rmind nfrags += fp->ipq_nfrags;
487 1.1 rmind fragttl_histo[fp->ipq_ttl] += fp->ipq_nfrags;
488 1.1 rmind }
489 1.1 rmind }
490 1.1 rmind }
491 1.1 rmind
492 1.1 rmind KASSERT(ip_nfrags == nfrags);
493 1.1 rmind
494 1.1 rmind /* Find median (or other drop fraction) in histogram. */
495 1.1 rmind dropfraction = (ip_nfrags / 2);
496 1.1 rmind keepfraction = ip_nfrags - dropfraction;
497 1.1 rmind for (i = IPFRAGTTL, median = 0; i >= 0; i--) {
498 1.1 rmind median += fragttl_histo[i];
499 1.1 rmind if (median >= keepfraction)
500 1.1 rmind break;
501 1.1 rmind }
502 1.1 rmind
503 1.1 rmind /* Return TTL of median (or other fraction). */
504 1.1 rmind return (u_int)i;
505 1.1 rmind }
506 1.1 rmind
507 1.1 rmind static void
508 1.1 rmind ip_reass_drophalf(void)
509 1.1 rmind {
510 1.1 rmind u_int median_ticks;
511 1.1 rmind
512 1.4 rmind KASSERT(mutex_owned(&ipfr_lock));
513 1.4 rmind
514 1.1 rmind /*
515 1.1 rmind * Compute median TTL of all fragments, and count frags
516 1.1 rmind * with that TTL or lower (roughly half of all fragments).
517 1.1 rmind */
518 1.1 rmind median_ticks = ip_reass_ttl_decr(0);
519 1.1 rmind
520 1.1 rmind /* Drop half. */
521 1.1 rmind median_ticks = ip_reass_ttl_decr(median_ticks);
522 1.1 rmind }
523 1.1 rmind
524 1.1 rmind /*
525 1.1 rmind * ip_reass_drain: drain off all datagram fragments. Do not acquire
526 1.1 rmind * softnet_lock as can be called from hardware interrupt context.
527 1.1 rmind */
528 1.1 rmind void
529 1.1 rmind ip_reass_drain(void)
530 1.1 rmind {
531 1.1 rmind
532 1.1 rmind /*
533 1.1 rmind * We may be called from a device's interrupt context. If
534 1.1 rmind * the ipq is already busy, just bail out now.
535 1.1 rmind */
536 1.4 rmind if (mutex_tryenter(&ipfr_lock)) {
537 1.1 rmind /*
538 1.1 rmind * Drop half the total fragments now. If more mbufs are
539 1.1 rmind * needed, we will be called again soon.
540 1.1 rmind */
541 1.1 rmind ip_reass_drophalf();
542 1.4 rmind mutex_exit(&ipfr_lock);
543 1.1 rmind }
544 1.1 rmind }
545 1.1 rmind
546 1.1 rmind /*
547 1.1 rmind * ip_reass_slowtimo:
548 1.1 rmind *
549 1.1 rmind * If a timer expires on a reassembly queue, discard it.
550 1.1 rmind */
551 1.1 rmind void
552 1.1 rmind ip_reass_slowtimo(void)
553 1.1 rmind {
554 1.1 rmind static u_int dropscanidx = 0;
555 1.1 rmind u_int i, median_ttl;
556 1.1 rmind
557 1.4 rmind mutex_enter(&ipfr_lock);
558 1.1 rmind
559 1.1 rmind /* Age TTL of all fragments by 1 tick .*/
560 1.1 rmind median_ttl = ip_reass_ttl_decr(1);
561 1.1 rmind
562 1.1 rmind /* Make sure fragment limit is up-to-date. */
563 1.1 rmind CHECK_NMBCLUSTER_PARAMS();
564 1.1 rmind
565 1.1 rmind /* If we have too many fragments, drop the older half. */
566 1.1 rmind if (ip_nfrags > ip_maxfrags) {
567 1.1 rmind ip_reass_ttl_decr(median_ttl);
568 1.1 rmind }
569 1.1 rmind
570 1.1 rmind /*
571 1.1 rmind * If we are over the maximum number of fragmented packets (due to
572 1.1 rmind * the limit being lowered), drain off enough to get down to the
573 1.1 rmind * new limit. Start draining from the reassembly hashqueue most
574 1.1 rmind * recently drained.
575 1.1 rmind */
576 1.1 rmind if (ip_maxfragpackets < 0)
577 1.1 rmind ;
578 1.1 rmind else {
579 1.1 rmind int wrapped = 0;
580 1.1 rmind
581 1.1 rmind i = dropscanidx;
582 1.1 rmind while (ip_nfragpackets > ip_maxfragpackets && wrapped == 0) {
583 1.3 rmind while (LIST_FIRST(&ip_frags[i]) != NULL) {
584 1.3 rmind ip_freef(LIST_FIRST(&ip_frags[i]));
585 1.1 rmind }
586 1.1 rmind if (++i >= IPREASS_HASH_SIZE) {
587 1.1 rmind i = 0;
588 1.1 rmind }
589 1.1 rmind /*
590 1.1 rmind * Do not scan forever even if fragment counters are
591 1.1 rmind * wrong: stop after scanning entire reassembly queue.
592 1.1 rmind */
593 1.1 rmind if (i == dropscanidx) {
594 1.1 rmind wrapped = 1;
595 1.1 rmind }
596 1.1 rmind }
597 1.1 rmind dropscanidx = i;
598 1.1 rmind }
599 1.4 rmind mutex_exit(&ipfr_lock);
600 1.1 rmind }
601 1.2 rmind
602 1.2 rmind /*
603 1.2 rmind * ip_reass_packet: generic routine to perform IP reassembly.
604 1.2 rmind *
605 1.2 rmind * => Passed fragment should have IP_MF flag and/or offset set.
606 1.2 rmind * => Fragment should not have other than IP_MF flags set.
607 1.2 rmind *
608 1.7 rmind * => Returns 0 on success or error otherwise.
609 1.7 rmind * => On complete, m0 represents a constructed final packet.
610 1.2 rmind */
611 1.2 rmind int
612 1.7 rmind ip_reass_packet(struct mbuf **m0, struct ip *ip)
613 1.2 rmind {
614 1.7 rmind const int hlen = ip->ip_hl << 2;
615 1.7 rmind const int len = ntohs(ip->ip_len);
616 1.7 rmind struct mbuf *m = *m0;
617 1.3 rmind ipfr_queue_t *fp;
618 1.3 rmind ipfr_qent_t *ipqe;
619 1.7 rmind u_int hash, off, flen;
620 1.7 rmind bool mff;
621 1.7 rmind
622 1.7 rmind /*
623 1.7 rmind * Prevent TCP blind data attacks by not allowing non-initial
624 1.7 rmind * fragments to start at less than 68 bytes (minimal fragment
625 1.7 rmind * size) and making sure the first fragment is at least 68
626 1.7 rmind * bytes.
627 1.7 rmind */
628 1.7 rmind off = (ntohs(ip->ip_off) & IP_OFFMASK) << 3;
629 1.7 rmind if ((off > 0 ? off + hlen : len) < IP_MINFRAGSIZE - 1) {
630 1.7 rmind IP_STATINC(IP_STAT_BADFRAGS);
631 1.7 rmind return EINVAL;
632 1.7 rmind }
633 1.7 rmind
634 1.12 maxv if (off + len > IP_MAXPACKET) {
635 1.13 maxv IP_STATINC(IP_STAT_TOOLONG);
636 1.12 maxv return EINVAL;
637 1.12 maxv }
638 1.12 maxv
639 1.7 rmind /*
640 1.7 rmind * Fragment length and MF flag. Make sure that fragments have
641 1.7 rmind * a data length which is non-zero and multiple of 8 bytes.
642 1.7 rmind */
643 1.7 rmind flen = ntohs(ip->ip_len) - hlen;
644 1.7 rmind mff = (ip->ip_off & htons(IP_MF)) != 0;
645 1.7 rmind if (mff && (flen == 0 || (flen & 0x7) != 0)) {
646 1.7 rmind IP_STATINC(IP_STAT_BADFRAGS);
647 1.7 rmind return EINVAL;
648 1.7 rmind }
649 1.7 rmind
650 1.7 rmind /*
651 1.7 rmind * Adjust total IP length to not reflect header and convert
652 1.7 rmind * offset of this to bytes. XXX: clobbers struct ip.
653 1.7 rmind */
654 1.7 rmind ip->ip_len = htons(flen);
655 1.7 rmind ip->ip_off = htons(off);
656 1.2 rmind
657 1.2 rmind /* Look for queue of fragments of this datagram. */
658 1.4 rmind mutex_enter(&ipfr_lock);
659 1.3 rmind hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
660 1.3 rmind LIST_FOREACH(fp, &ip_frags[hash], ipq_q) {
661 1.3 rmind if (ip->ip_id != fp->ipq_id)
662 1.3 rmind continue;
663 1.3 rmind if (!in_hosteq(ip->ip_src, fp->ipq_src))
664 1.3 rmind continue;
665 1.3 rmind if (!in_hosteq(ip->ip_dst, fp->ipq_dst))
666 1.3 rmind continue;
667 1.3 rmind if (ip->ip_p != fp->ipq_p)
668 1.3 rmind continue;
669 1.3 rmind break;
670 1.3 rmind }
671 1.2 rmind
672 1.2 rmind /* Make sure that TOS matches previous fragments. */
673 1.2 rmind if (fp && fp->ipq_tos != ip->ip_tos) {
674 1.2 rmind IP_STATINC(IP_STAT_BADFRAGS);
675 1.4 rmind mutex_exit(&ipfr_lock);
676 1.2 rmind return EINVAL;
677 1.2 rmind }
678 1.2 rmind
679 1.2 rmind /*
680 1.2 rmind * Create new entry and attempt to reassembly.
681 1.2 rmind */
682 1.2 rmind IP_STATINC(IP_STAT_FRAGMENTS);
683 1.4 rmind ipqe = pool_cache_get(ipfren_cache, PR_NOWAIT);
684 1.2 rmind if (ipqe == NULL) {
685 1.2 rmind IP_STATINC(IP_STAT_RCVMEMDROP);
686 1.4 rmind mutex_exit(&ipfr_lock);
687 1.2 rmind return ENOMEM;
688 1.2 rmind }
689 1.2 rmind ipqe->ipqe_mff = mff;
690 1.2 rmind ipqe->ipqe_m = m;
691 1.2 rmind ipqe->ipqe_ip = ip;
692 1.2 rmind
693 1.7 rmind *m0 = ip_reass(ipqe, fp, hash);
694 1.7 rmind if (*m0) {
695 1.7 rmind /* Note that finally reassembled. */
696 1.2 rmind IP_STATINC(IP_STAT_REASSEMBLED);
697 1.2 rmind }
698 1.2 rmind return 0;
699 1.2 rmind }
700