ip_reass.c revision 1.19 1 1.19 maxv /* $NetBSD: ip_reass.c,v 1.19 2018/09/17 06:01:36 maxv Exp $ */
2 1.1 rmind
3 1.1 rmind /*
4 1.1 rmind * Copyright (c) 1982, 1986, 1988, 1993
5 1.1 rmind * The Regents of the University of California. All rights reserved.
6 1.1 rmind *
7 1.1 rmind * Redistribution and use in source and binary forms, with or without
8 1.1 rmind * modification, are permitted provided that the following conditions
9 1.1 rmind * are met:
10 1.1 rmind * 1. Redistributions of source code must retain the above copyright
11 1.1 rmind * notice, this list of conditions and the following disclaimer.
12 1.1 rmind * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 rmind * notice, this list of conditions and the following disclaimer in the
14 1.1 rmind * documentation and/or other materials provided with the distribution.
15 1.1 rmind * 3. Neither the name of the University nor the names of its contributors
16 1.1 rmind * may be used to endorse or promote products derived from this software
17 1.1 rmind * without specific prior written permission.
18 1.1 rmind *
19 1.1 rmind * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 1.1 rmind * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 1.1 rmind * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 1.1 rmind * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 1.1 rmind * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 1.1 rmind * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 1.1 rmind * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 1.1 rmind * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 1.1 rmind * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 1.1 rmind * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 1.1 rmind * SUCH DAMAGE.
30 1.1 rmind *
31 1.1 rmind * @(#)ip_input.c 8.2 (Berkeley) 1/4/94
32 1.1 rmind */
33 1.1 rmind
34 1.1 rmind /*
35 1.1 rmind * IP reassembly.
36 1.1 rmind *
37 1.1 rmind * Additive-Increase/Multiplicative-Decrease (AIMD) strategy for IP
38 1.1 rmind * reassembly queue buffer managment.
39 1.1 rmind *
40 1.1 rmind * We keep a count of total IP fragments (NB: not fragmented packets),
41 1.1 rmind * awaiting reassembly (ip_nfrags) and a limit (ip_maxfrags) on fragments.
42 1.1 rmind * If ip_nfrags exceeds ip_maxfrags the limit, we drop half the total
43 1.1 rmind * fragments in reassembly queues. This AIMD policy avoids repeatedly
44 1.1 rmind * deleting single packets under heavy fragmentation load (e.g., from lossy
45 1.1 rmind * NFS peers).
46 1.1 rmind */
47 1.1 rmind
48 1.1 rmind #include <sys/cdefs.h>
49 1.19 maxv __KERNEL_RCSID(0, "$NetBSD: ip_reass.c,v 1.19 2018/09/17 06:01:36 maxv Exp $");
50 1.1 rmind
51 1.1 rmind #include <sys/param.h>
52 1.2 rmind #include <sys/types.h>
53 1.1 rmind
54 1.1 rmind #include <sys/malloc.h>
55 1.1 rmind #include <sys/mbuf.h>
56 1.4 rmind #include <sys/mutex.h>
57 1.1 rmind #include <sys/pool.h>
58 1.2 rmind #include <sys/queue.h>
59 1.1 rmind #include <sys/sysctl.h>
60 1.2 rmind #include <sys/systm.h>
61 1.1 rmind
62 1.1 rmind #include <net/if.h>
63 1.1 rmind
64 1.1 rmind #include <netinet/in.h>
65 1.1 rmind #include <netinet/in_systm.h>
66 1.1 rmind #include <netinet/ip.h>
67 1.1 rmind #include <netinet/in_pcb.h>
68 1.2 rmind #include <netinet/ip_var.h>
69 1.1 rmind #include <netinet/ip_private.h>
70 1.1 rmind #include <netinet/in_var.h>
71 1.1 rmind
72 1.1 rmind /*
73 1.3 rmind * IP reassembly queue structures. Each fragment being reassembled is
74 1.3 rmind * attached to one of these structures. They are timed out after TTL
75 1.3 rmind * drops to 0, and may also be reclaimed if memory becomes tight.
76 1.3 rmind */
77 1.3 rmind
78 1.3 rmind typedef struct ipfr_qent {
79 1.3 rmind TAILQ_ENTRY(ipfr_qent) ipqe_q;
80 1.3 rmind struct ip * ipqe_ip;
81 1.3 rmind struct mbuf * ipqe_m;
82 1.3 rmind bool ipqe_mff;
83 1.19 maxv uint16_t ipqe_off;
84 1.19 maxv uint16_t ipqe_len;
85 1.3 rmind } ipfr_qent_t;
86 1.3 rmind
87 1.7 rmind TAILQ_HEAD(ipfr_qent_head, ipfr_qent);
88 1.7 rmind
89 1.3 rmind typedef struct ipfr_queue {
90 1.3 rmind LIST_ENTRY(ipfr_queue) ipq_q; /* to other reass headers */
91 1.7 rmind struct ipfr_qent_head ipq_fragq; /* queue of fragment entries */
92 1.3 rmind uint8_t ipq_ttl; /* time for reass q to live */
93 1.3 rmind uint8_t ipq_p; /* protocol of this fragment */
94 1.3 rmind uint16_t ipq_id; /* sequence id for reassembly */
95 1.3 rmind struct in_addr ipq_src;
96 1.3 rmind struct in_addr ipq_dst;
97 1.3 rmind uint16_t ipq_nfrags; /* frags in this queue entry */
98 1.17 maxv uint8_t ipq_tos; /* TOS of this fragment */
99 1.17 maxv int ipq_ipsec; /* IPsec flags */
100 1.3 rmind } ipfr_queue_t;
101 1.3 rmind
102 1.3 rmind /*
103 1.3 rmind * Hash table of IP reassembly queues.
104 1.1 rmind */
105 1.1 rmind #define IPREASS_HASH_SHIFT 6
106 1.1 rmind #define IPREASS_HASH_SIZE (1 << IPREASS_HASH_SHIFT)
107 1.1 rmind #define IPREASS_HASH_MASK (IPREASS_HASH_SIZE - 1)
108 1.1 rmind #define IPREASS_HASH(x, y) \
109 1.1 rmind (((((x) & 0xf) | ((((x) >> 8) & 0xf) << 4)) ^ (y)) & IPREASS_HASH_MASK)
110 1.1 rmind
111 1.3 rmind static LIST_HEAD(, ipfr_queue) ip_frags[IPREASS_HASH_SIZE];
112 1.4 rmind static pool_cache_t ipfren_cache;
113 1.4 rmind static kmutex_t ipfr_lock;
114 1.1 rmind
115 1.3 rmind /* Number of packets in reassembly queue and total number of fragments. */
116 1.3 rmind static int ip_nfragpackets;
117 1.3 rmind static int ip_nfrags;
118 1.1 rmind
119 1.3 rmind /* Limits on packet and fragments. */
120 1.3 rmind static int ip_maxfragpackets;
121 1.3 rmind static int ip_maxfrags;
122 1.1 rmind
123 1.1 rmind /*
124 1.3 rmind * Cached copy of nmbclusters. If nbclusters is different, recalculate
125 1.3 rmind * IP parameters derived from nmbclusters.
126 1.2 rmind */
127 1.3 rmind static int ip_nmbclusters;
128 1.1 rmind
129 1.1 rmind /*
130 1.1 rmind * IP reassembly TTL machinery for multiplicative drop.
131 1.1 rmind */
132 1.3 rmind static u_int fragttl_histo[IPFRAGTTL + 1];
133 1.1 rmind
134 1.4 rmind static struct sysctllog *ip_reass_sysctllog;
135 1.4 rmind
136 1.3 rmind void sysctl_ip_reass_setup(void);
137 1.3 rmind static void ip_nmbclusters_changed(void);
138 1.2 rmind
139 1.3 rmind static struct mbuf * ip_reass(ipfr_qent_t *, ipfr_queue_t *, u_int);
140 1.2 rmind static u_int ip_reass_ttl_decr(u_int ticks);
141 1.2 rmind static void ip_reass_drophalf(void);
142 1.3 rmind static void ip_freef(ipfr_queue_t *);
143 1.1 rmind
144 1.1 rmind /*
145 1.1 rmind * ip_reass_init:
146 1.1 rmind *
147 1.1 rmind * Initialization of IP reassembly mechanism.
148 1.1 rmind */
149 1.1 rmind void
150 1.1 rmind ip_reass_init(void)
151 1.1 rmind {
152 1.1 rmind int i;
153 1.1 rmind
154 1.4 rmind ipfren_cache = pool_cache_init(sizeof(ipfr_qent_t), coherency_unit,
155 1.4 rmind 0, 0, "ipfrenpl", NULL, IPL_NET, NULL, NULL, NULL);
156 1.6 yamt mutex_init(&ipfr_lock, MUTEX_DEFAULT, IPL_VM);
157 1.1 rmind
158 1.1 rmind for (i = 0; i < IPREASS_HASH_SIZE; i++) {
159 1.3 rmind LIST_INIT(&ip_frags[i]);
160 1.1 rmind }
161 1.1 rmind ip_maxfragpackets = 200;
162 1.1 rmind ip_maxfrags = 0;
163 1.1 rmind ip_nmbclusters_changed();
164 1.1 rmind
165 1.1 rmind sysctl_ip_reass_setup();
166 1.1 rmind }
167 1.1 rmind
168 1.1 rmind void
169 1.1 rmind sysctl_ip_reass_setup(void)
170 1.1 rmind {
171 1.1 rmind
172 1.1 rmind sysctl_createv(&ip_reass_sysctllog, 0, NULL, NULL,
173 1.1 rmind CTLFLAG_PERMANENT,
174 1.1 rmind CTLTYPE_NODE, "inet",
175 1.1 rmind SYSCTL_DESCR("PF_INET related settings"),
176 1.1 rmind NULL, 0, NULL, 0,
177 1.1 rmind CTL_NET, PF_INET, CTL_EOL);
178 1.1 rmind sysctl_createv(&ip_reass_sysctllog, 0, NULL, NULL,
179 1.1 rmind CTLFLAG_PERMANENT,
180 1.1 rmind CTLTYPE_NODE, "ip",
181 1.1 rmind SYSCTL_DESCR("IPv4 related settings"),
182 1.1 rmind NULL, 0, NULL, 0,
183 1.1 rmind CTL_NET, PF_INET, IPPROTO_IP, CTL_EOL);
184 1.1 rmind
185 1.1 rmind sysctl_createv(&ip_reass_sysctllog, 0, NULL, NULL,
186 1.1 rmind CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
187 1.1 rmind CTLTYPE_INT, "maxfragpackets",
188 1.1 rmind SYSCTL_DESCR("Maximum number of fragments to retain for "
189 1.1 rmind "possible reassembly"),
190 1.1 rmind NULL, 0, &ip_maxfragpackets, 0,
191 1.1 rmind CTL_NET, PF_INET, IPPROTO_IP, IPCTL_MAXFRAGPACKETS, CTL_EOL);
192 1.1 rmind }
193 1.1 rmind
194 1.1 rmind #define CHECK_NMBCLUSTER_PARAMS() \
195 1.1 rmind do { \
196 1.1 rmind if (__predict_false(ip_nmbclusters != nmbclusters)) \
197 1.1 rmind ip_nmbclusters_changed(); \
198 1.1 rmind } while (/*CONSTCOND*/0)
199 1.1 rmind
200 1.1 rmind /*
201 1.1 rmind * Compute IP limits derived from the value of nmbclusters.
202 1.1 rmind */
203 1.1 rmind static void
204 1.1 rmind ip_nmbclusters_changed(void)
205 1.1 rmind {
206 1.1 rmind ip_maxfrags = nmbclusters / 4;
207 1.1 rmind ip_nmbclusters = nmbclusters;
208 1.1 rmind }
209 1.1 rmind
210 1.1 rmind /*
211 1.1 rmind * ip_reass:
212 1.1 rmind *
213 1.1 rmind * Take incoming datagram fragment and try to reassemble it into whole
214 1.1 rmind * datagram. If a chain for reassembly of this datagram already exists,
215 1.1 rmind * then it is given as 'fp'; otherwise have to make a chain.
216 1.1 rmind */
217 1.15 maxv static struct mbuf *
218 1.3 rmind ip_reass(ipfr_qent_t *ipqe, ipfr_queue_t *fp, const u_int hash)
219 1.1 rmind {
220 1.19 maxv struct ip *ip = ipqe->ipqe_ip;
221 1.7 rmind const int hlen = ip->ip_hl << 2;
222 1.1 rmind struct mbuf *m = ipqe->ipqe_m, *t;
223 1.17 maxv int ipsecflags = m->m_flags & (M_DECRYPTED|M_AUTHIPHDR);
224 1.3 rmind ipfr_qent_t *nq, *p, *q;
225 1.4 rmind int i, next;
226 1.1 rmind
227 1.4 rmind KASSERT(mutex_owned(&ipfr_lock));
228 1.1 rmind
229 1.1 rmind /*
230 1.1 rmind * Presence of header sizes in mbufs would confuse code below.
231 1.1 rmind */
232 1.1 rmind m->m_data += hlen;
233 1.1 rmind m->m_len -= hlen;
234 1.1 rmind
235 1.1 rmind /*
236 1.1 rmind * We are about to add a fragment; increment frag count.
237 1.1 rmind */
238 1.1 rmind ip_nfrags++;
239 1.1 rmind
240 1.1 rmind /*
241 1.1 rmind * If first fragment to arrive, create a reassembly queue.
242 1.1 rmind */
243 1.1 rmind if (fp == NULL) {
244 1.1 rmind /*
245 1.1 rmind * Enforce upper bound on number of fragmented packets
246 1.1 rmind * for which we attempt reassembly: a) if maxfrag is 0,
247 1.1 rmind * never accept fragments b) if maxfrag is -1, accept
248 1.1 rmind * all fragments without limitation.
249 1.1 rmind */
250 1.19 maxv if (ip_maxfragpackets < 0) {
251 1.19 maxv /* no limit */
252 1.19 maxv } else if (ip_nfragpackets >= ip_maxfragpackets) {
253 1.1 rmind goto dropfrag;
254 1.1 rmind }
255 1.3 rmind fp = malloc(sizeof(ipfr_queue_t), M_FTABLE, M_NOWAIT);
256 1.1 rmind if (fp == NULL) {
257 1.1 rmind goto dropfrag;
258 1.1 rmind }
259 1.8 enami ip_nfragpackets++;
260 1.7 rmind TAILQ_INIT(&fp->ipq_fragq);
261 1.1 rmind fp->ipq_nfrags = 1;
262 1.1 rmind fp->ipq_ttl = IPFRAGTTL;
263 1.7 rmind fp->ipq_p = ip->ip_p;
264 1.7 rmind fp->ipq_id = ip->ip_id;
265 1.7 rmind fp->ipq_tos = ip->ip_tos;
266 1.17 maxv fp->ipq_ipsec = ipsecflags;
267 1.7 rmind fp->ipq_src = ip->ip_src;
268 1.7 rmind fp->ipq_dst = ip->ip_dst;
269 1.7 rmind LIST_INSERT_HEAD(&ip_frags[hash], fp, ipq_q);
270 1.1 rmind p = NULL;
271 1.1 rmind goto insert;
272 1.1 rmind } else {
273 1.1 rmind fp->ipq_nfrags++;
274 1.1 rmind }
275 1.1 rmind
276 1.1 rmind /*
277 1.1 rmind * Find a segment which begins after this one does.
278 1.1 rmind */
279 1.7 rmind TAILQ_FOREACH(q, &fp->ipq_fragq, ipqe_q) {
280 1.19 maxv if (q->ipqe_off > ipqe->ipqe_off)
281 1.1 rmind break;
282 1.7 rmind }
283 1.7 rmind if (q != NULL) {
284 1.7 rmind p = TAILQ_PREV(q, ipfr_qent_head, ipqe_q);
285 1.7 rmind } else {
286 1.7 rmind p = TAILQ_LAST(&fp->ipq_fragq, ipfr_qent_head);
287 1.7 rmind }
288 1.1 rmind
289 1.1 rmind /*
290 1.1 rmind * If there is a preceding segment, it may provide some of our
291 1.1 rmind * data already. If so, drop the data from the incoming segment.
292 1.1 rmind * If it provides all of our data, drop us.
293 1.1 rmind */
294 1.1 rmind if (p != NULL) {
295 1.19 maxv i = p->ipqe_off + p->ipqe_len - ipqe->ipqe_off;
296 1.1 rmind if (i > 0) {
297 1.19 maxv if (i >= ipqe->ipqe_len) {
298 1.1 rmind goto dropfrag;
299 1.1 rmind }
300 1.1 rmind m_adj(ipqe->ipqe_m, i);
301 1.19 maxv ipqe->ipqe_off = ipqe->ipqe_off + i;
302 1.19 maxv ipqe->ipqe_len = ipqe->ipqe_len - i;
303 1.1 rmind }
304 1.1 rmind }
305 1.1 rmind
306 1.1 rmind /*
307 1.1 rmind * While we overlap succeeding segments trim them or, if they are
308 1.1 rmind * completely covered, dequeue them.
309 1.1 rmind */
310 1.7 rmind while (q != NULL) {
311 1.19 maxv i = ipqe->ipqe_off + ipqe->ipqe_len - q->ipqe_off;
312 1.19 maxv if (i <= 0) {
313 1.7 rmind break;
314 1.7 rmind }
315 1.19 maxv if (i < q->ipqe_len) {
316 1.19 maxv q->ipqe_off = q->ipqe_off + i;
317 1.19 maxv q->ipqe_len = q->ipqe_len - i;
318 1.1 rmind m_adj(q->ipqe_m, i);
319 1.1 rmind break;
320 1.1 rmind }
321 1.1 rmind nq = TAILQ_NEXT(q, ipqe_q);
322 1.1 rmind m_freem(q->ipqe_m);
323 1.1 rmind TAILQ_REMOVE(&fp->ipq_fragq, q, ipqe_q);
324 1.4 rmind pool_cache_put(ipfren_cache, q);
325 1.1 rmind fp->ipq_nfrags--;
326 1.1 rmind ip_nfrags--;
327 1.7 rmind q = nq;
328 1.1 rmind }
329 1.1 rmind
330 1.1 rmind insert:
331 1.1 rmind /*
332 1.1 rmind * Stick new segment in its place; check for complete reassembly.
333 1.1 rmind */
334 1.1 rmind if (p == NULL) {
335 1.1 rmind TAILQ_INSERT_HEAD(&fp->ipq_fragq, ipqe, ipqe_q);
336 1.1 rmind } else {
337 1.1 rmind TAILQ_INSERT_AFTER(&fp->ipq_fragq, p, ipqe, ipqe_q);
338 1.1 rmind }
339 1.1 rmind next = 0;
340 1.7 rmind TAILQ_FOREACH(q, &fp->ipq_fragq, ipqe_q) {
341 1.19 maxv if (q->ipqe_off != next) {
342 1.4 rmind mutex_exit(&ipfr_lock);
343 1.1 rmind return NULL;
344 1.1 rmind }
345 1.19 maxv next += q->ipqe_len;
346 1.1 rmind }
347 1.7 rmind p = TAILQ_LAST(&fp->ipq_fragq, ipfr_qent_head);
348 1.1 rmind if (p->ipqe_mff) {
349 1.4 rmind mutex_exit(&ipfr_lock);
350 1.1 rmind return NULL;
351 1.1 rmind }
352 1.7 rmind
353 1.1 rmind /*
354 1.4 rmind * Reassembly is complete. Check for a bogus message size.
355 1.1 rmind */
356 1.1 rmind q = TAILQ_FIRST(&fp->ipq_fragq);
357 1.1 rmind ip = q->ipqe_ip;
358 1.1 rmind if ((next + (ip->ip_hl << 2)) > IP_MAXPACKET) {
359 1.1 rmind IP_STATINC(IP_STAT_TOOLONG);
360 1.1 rmind ip_freef(fp);
361 1.4 rmind mutex_exit(&ipfr_lock);
362 1.1 rmind return NULL;
363 1.1 rmind }
364 1.4 rmind LIST_REMOVE(fp, ipq_q);
365 1.4 rmind ip_nfrags -= fp->ipq_nfrags;
366 1.4 rmind ip_nfragpackets--;
367 1.4 rmind mutex_exit(&ipfr_lock);
368 1.4 rmind
369 1.4 rmind /* Concatenate all fragments. */
370 1.1 rmind m = q->ipqe_m;
371 1.1 rmind t = m->m_next;
372 1.1 rmind m->m_next = NULL;
373 1.1 rmind m_cat(m, t);
374 1.1 rmind nq = TAILQ_NEXT(q, ipqe_q);
375 1.4 rmind pool_cache_put(ipfren_cache, q);
376 1.4 rmind
377 1.1 rmind for (q = nq; q != NULL; q = nq) {
378 1.1 rmind t = q->ipqe_m;
379 1.1 rmind nq = TAILQ_NEXT(q, ipqe_q);
380 1.4 rmind pool_cache_put(ipfren_cache, q);
381 1.16 maxv m_remove_pkthdr(t);
382 1.1 rmind m_cat(m, t);
383 1.1 rmind }
384 1.1 rmind
385 1.1 rmind /*
386 1.1 rmind * Create header for new packet by modifying header of first
387 1.1 rmind * packet. Dequeue and discard fragment reassembly header. Make
388 1.1 rmind * header visible.
389 1.1 rmind */
390 1.2 rmind ip->ip_len = htons((ip->ip_hl << 2) + next);
391 1.1 rmind ip->ip_src = fp->ipq_src;
392 1.1 rmind ip->ip_dst = fp->ipq_dst;
393 1.5 enami free(fp, M_FTABLE);
394 1.2 rmind
395 1.1 rmind m->m_len += (ip->ip_hl << 2);
396 1.1 rmind m->m_data -= (ip->ip_hl << 2);
397 1.4 rmind
398 1.4 rmind /* Fix up mbuf. XXX This should be done elsewhere. */
399 1.14 maxv {
400 1.14 maxv KASSERT(m->m_flags & M_PKTHDR);
401 1.1 rmind int plen = 0;
402 1.1 rmind for (t = m; t; t = t->m_next) {
403 1.1 rmind plen += t->m_len;
404 1.1 rmind }
405 1.1 rmind m->m_pkthdr.len = plen;
406 1.1 rmind m->m_pkthdr.csum_flags = 0;
407 1.1 rmind }
408 1.1 rmind return m;
409 1.1 rmind
410 1.1 rmind dropfrag:
411 1.1 rmind if (fp != NULL) {
412 1.1 rmind fp->ipq_nfrags--;
413 1.1 rmind }
414 1.1 rmind ip_nfrags--;
415 1.1 rmind IP_STATINC(IP_STAT_FRAGDROPPED);
416 1.4 rmind mutex_exit(&ipfr_lock);
417 1.4 rmind
418 1.4 rmind pool_cache_put(ipfren_cache, ipqe);
419 1.1 rmind m_freem(m);
420 1.1 rmind return NULL;
421 1.1 rmind }
422 1.1 rmind
423 1.1 rmind /*
424 1.1 rmind * ip_freef:
425 1.1 rmind *
426 1.1 rmind * Free a fragment reassembly header and all associated datagrams.
427 1.1 rmind */
428 1.2 rmind static void
429 1.3 rmind ip_freef(ipfr_queue_t *fp)
430 1.1 rmind {
431 1.4 rmind ipfr_qent_t *q;
432 1.1 rmind
433 1.4 rmind KASSERT(mutex_owned(&ipfr_lock));
434 1.1 rmind
435 1.4 rmind LIST_REMOVE(fp, ipq_q);
436 1.4 rmind ip_nfrags -= fp->ipq_nfrags;
437 1.4 rmind ip_nfragpackets--;
438 1.4 rmind
439 1.4 rmind while ((q = TAILQ_FIRST(&fp->ipq_fragq)) != NULL) {
440 1.4 rmind TAILQ_REMOVE(&fp->ipq_fragq, q, ipqe_q);
441 1.1 rmind m_freem(q->ipqe_m);
442 1.4 rmind pool_cache_put(ipfren_cache, q);
443 1.1 rmind }
444 1.1 rmind free(fp, M_FTABLE);
445 1.1 rmind }
446 1.1 rmind
447 1.1 rmind /*
448 1.1 rmind * ip_reass_ttl_decr:
449 1.1 rmind *
450 1.1 rmind * Decrement TTL of all reasembly queue entries by `ticks'. Count
451 1.1 rmind * number of distinct fragments (as opposed to partial, fragmented
452 1.1 rmind * datagrams) inthe reassembly queue. While we traverse the entire
453 1.1 rmind * reassembly queue, compute and return the median TTL over all
454 1.1 rmind * fragments.
455 1.1 rmind */
456 1.1 rmind static u_int
457 1.1 rmind ip_reass_ttl_decr(u_int ticks)
458 1.1 rmind {
459 1.1 rmind u_int nfrags, median, dropfraction, keepfraction;
460 1.3 rmind ipfr_queue_t *fp, *nfp;
461 1.1 rmind int i;
462 1.1 rmind
463 1.1 rmind nfrags = 0;
464 1.1 rmind memset(fragttl_histo, 0, sizeof(fragttl_histo));
465 1.1 rmind
466 1.1 rmind for (i = 0; i < IPREASS_HASH_SIZE; i++) {
467 1.3 rmind for (fp = LIST_FIRST(&ip_frags[i]); fp != NULL; fp = nfp) {
468 1.1 rmind fp->ipq_ttl = ((fp->ipq_ttl <= ticks) ?
469 1.1 rmind 0 : fp->ipq_ttl - ticks);
470 1.1 rmind nfp = LIST_NEXT(fp, ipq_q);
471 1.1 rmind if (fp->ipq_ttl == 0) {
472 1.1 rmind IP_STATINC(IP_STAT_FRAGTIMEOUT);
473 1.1 rmind ip_freef(fp);
474 1.1 rmind } else {
475 1.1 rmind nfrags += fp->ipq_nfrags;
476 1.1 rmind fragttl_histo[fp->ipq_ttl] += fp->ipq_nfrags;
477 1.1 rmind }
478 1.1 rmind }
479 1.1 rmind }
480 1.1 rmind
481 1.1 rmind KASSERT(ip_nfrags == nfrags);
482 1.1 rmind
483 1.1 rmind /* Find median (or other drop fraction) in histogram. */
484 1.1 rmind dropfraction = (ip_nfrags / 2);
485 1.1 rmind keepfraction = ip_nfrags - dropfraction;
486 1.1 rmind for (i = IPFRAGTTL, median = 0; i >= 0; i--) {
487 1.1 rmind median += fragttl_histo[i];
488 1.1 rmind if (median >= keepfraction)
489 1.1 rmind break;
490 1.1 rmind }
491 1.1 rmind
492 1.1 rmind /* Return TTL of median (or other fraction). */
493 1.1 rmind return (u_int)i;
494 1.1 rmind }
495 1.1 rmind
496 1.1 rmind static void
497 1.1 rmind ip_reass_drophalf(void)
498 1.1 rmind {
499 1.1 rmind u_int median_ticks;
500 1.1 rmind
501 1.4 rmind KASSERT(mutex_owned(&ipfr_lock));
502 1.4 rmind
503 1.1 rmind /*
504 1.1 rmind * Compute median TTL of all fragments, and count frags
505 1.1 rmind * with that TTL or lower (roughly half of all fragments).
506 1.1 rmind */
507 1.1 rmind median_ticks = ip_reass_ttl_decr(0);
508 1.1 rmind
509 1.1 rmind /* Drop half. */
510 1.1 rmind median_ticks = ip_reass_ttl_decr(median_ticks);
511 1.1 rmind }
512 1.1 rmind
513 1.1 rmind /*
514 1.1 rmind * ip_reass_drain: drain off all datagram fragments. Do not acquire
515 1.1 rmind * softnet_lock as can be called from hardware interrupt context.
516 1.1 rmind */
517 1.1 rmind void
518 1.1 rmind ip_reass_drain(void)
519 1.1 rmind {
520 1.1 rmind
521 1.1 rmind /*
522 1.1 rmind * We may be called from a device's interrupt context. If
523 1.1 rmind * the ipq is already busy, just bail out now.
524 1.1 rmind */
525 1.4 rmind if (mutex_tryenter(&ipfr_lock)) {
526 1.1 rmind /*
527 1.1 rmind * Drop half the total fragments now. If more mbufs are
528 1.1 rmind * needed, we will be called again soon.
529 1.1 rmind */
530 1.1 rmind ip_reass_drophalf();
531 1.4 rmind mutex_exit(&ipfr_lock);
532 1.1 rmind }
533 1.1 rmind }
534 1.1 rmind
535 1.1 rmind /*
536 1.1 rmind * ip_reass_slowtimo:
537 1.1 rmind *
538 1.1 rmind * If a timer expires on a reassembly queue, discard it.
539 1.1 rmind */
540 1.1 rmind void
541 1.1 rmind ip_reass_slowtimo(void)
542 1.1 rmind {
543 1.1 rmind static u_int dropscanidx = 0;
544 1.1 rmind u_int i, median_ttl;
545 1.1 rmind
546 1.4 rmind mutex_enter(&ipfr_lock);
547 1.1 rmind
548 1.1 rmind /* Age TTL of all fragments by 1 tick .*/
549 1.1 rmind median_ttl = ip_reass_ttl_decr(1);
550 1.1 rmind
551 1.1 rmind /* Make sure fragment limit is up-to-date. */
552 1.1 rmind CHECK_NMBCLUSTER_PARAMS();
553 1.1 rmind
554 1.1 rmind /* If we have too many fragments, drop the older half. */
555 1.1 rmind if (ip_nfrags > ip_maxfrags) {
556 1.1 rmind ip_reass_ttl_decr(median_ttl);
557 1.1 rmind }
558 1.1 rmind
559 1.1 rmind /*
560 1.1 rmind * If we are over the maximum number of fragmented packets (due to
561 1.1 rmind * the limit being lowered), drain off enough to get down to the
562 1.1 rmind * new limit. Start draining from the reassembly hashqueue most
563 1.1 rmind * recently drained.
564 1.1 rmind */
565 1.1 rmind if (ip_maxfragpackets < 0)
566 1.1 rmind ;
567 1.1 rmind else {
568 1.1 rmind int wrapped = 0;
569 1.1 rmind
570 1.1 rmind i = dropscanidx;
571 1.1 rmind while (ip_nfragpackets > ip_maxfragpackets && wrapped == 0) {
572 1.3 rmind while (LIST_FIRST(&ip_frags[i]) != NULL) {
573 1.3 rmind ip_freef(LIST_FIRST(&ip_frags[i]));
574 1.1 rmind }
575 1.1 rmind if (++i >= IPREASS_HASH_SIZE) {
576 1.1 rmind i = 0;
577 1.1 rmind }
578 1.1 rmind /*
579 1.1 rmind * Do not scan forever even if fragment counters are
580 1.1 rmind * wrong: stop after scanning entire reassembly queue.
581 1.1 rmind */
582 1.1 rmind if (i == dropscanidx) {
583 1.1 rmind wrapped = 1;
584 1.1 rmind }
585 1.1 rmind }
586 1.1 rmind dropscanidx = i;
587 1.1 rmind }
588 1.4 rmind mutex_exit(&ipfr_lock);
589 1.1 rmind }
590 1.2 rmind
591 1.2 rmind /*
592 1.2 rmind * ip_reass_packet: generic routine to perform IP reassembly.
593 1.2 rmind *
594 1.2 rmind * => Passed fragment should have IP_MF flag and/or offset set.
595 1.2 rmind * => Fragment should not have other than IP_MF flags set.
596 1.2 rmind *
597 1.7 rmind * => Returns 0 on success or error otherwise.
598 1.7 rmind * => On complete, m0 represents a constructed final packet.
599 1.2 rmind */
600 1.2 rmind int
601 1.18 maxv ip_reass_packet(struct mbuf **m0)
602 1.2 rmind {
603 1.18 maxv struct mbuf *m = *m0;
604 1.18 maxv struct ip *ip = mtod(m, struct ip *);
605 1.7 rmind const int hlen = ip->ip_hl << 2;
606 1.7 rmind const int len = ntohs(ip->ip_len);
607 1.17 maxv int ipsecflags = m->m_flags & (M_DECRYPTED|M_AUTHIPHDR);
608 1.3 rmind ipfr_queue_t *fp;
609 1.3 rmind ipfr_qent_t *ipqe;
610 1.7 rmind u_int hash, off, flen;
611 1.7 rmind bool mff;
612 1.7 rmind
613 1.7 rmind /*
614 1.7 rmind * Prevent TCP blind data attacks by not allowing non-initial
615 1.7 rmind * fragments to start at less than 68 bytes (minimal fragment
616 1.7 rmind * size) and making sure the first fragment is at least 68
617 1.7 rmind * bytes.
618 1.7 rmind */
619 1.7 rmind off = (ntohs(ip->ip_off) & IP_OFFMASK) << 3;
620 1.7 rmind if ((off > 0 ? off + hlen : len) < IP_MINFRAGSIZE - 1) {
621 1.7 rmind IP_STATINC(IP_STAT_BADFRAGS);
622 1.7 rmind return EINVAL;
623 1.7 rmind }
624 1.7 rmind
625 1.12 maxv if (off + len > IP_MAXPACKET) {
626 1.13 maxv IP_STATINC(IP_STAT_TOOLONG);
627 1.12 maxv return EINVAL;
628 1.12 maxv }
629 1.12 maxv
630 1.7 rmind /*
631 1.7 rmind * Fragment length and MF flag. Make sure that fragments have
632 1.7 rmind * a data length which is non-zero and multiple of 8 bytes.
633 1.7 rmind */
634 1.7 rmind flen = ntohs(ip->ip_len) - hlen;
635 1.7 rmind mff = (ip->ip_off & htons(IP_MF)) != 0;
636 1.7 rmind if (mff && (flen == 0 || (flen & 0x7) != 0)) {
637 1.7 rmind IP_STATINC(IP_STAT_BADFRAGS);
638 1.7 rmind return EINVAL;
639 1.7 rmind }
640 1.7 rmind
641 1.2 rmind /* Look for queue of fragments of this datagram. */
642 1.4 rmind mutex_enter(&ipfr_lock);
643 1.3 rmind hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
644 1.3 rmind LIST_FOREACH(fp, &ip_frags[hash], ipq_q) {
645 1.3 rmind if (ip->ip_id != fp->ipq_id)
646 1.3 rmind continue;
647 1.3 rmind if (!in_hosteq(ip->ip_src, fp->ipq_src))
648 1.3 rmind continue;
649 1.3 rmind if (!in_hosteq(ip->ip_dst, fp->ipq_dst))
650 1.3 rmind continue;
651 1.3 rmind if (ip->ip_p != fp->ipq_p)
652 1.3 rmind continue;
653 1.3 rmind break;
654 1.3 rmind }
655 1.2 rmind
656 1.17 maxv if (fp) {
657 1.17 maxv /* All fragments must have the same IPsec flags. */
658 1.17 maxv if (fp->ipq_ipsec != ipsecflags) {
659 1.17 maxv IP_STATINC(IP_STAT_BADFRAGS);
660 1.17 maxv mutex_exit(&ipfr_lock);
661 1.17 maxv return EINVAL;
662 1.17 maxv }
663 1.17 maxv
664 1.17 maxv /* Make sure that TOS matches previous fragments. */
665 1.17 maxv if (fp->ipq_tos != ip->ip_tos) {
666 1.17 maxv IP_STATINC(IP_STAT_BADFRAGS);
667 1.17 maxv mutex_exit(&ipfr_lock);
668 1.17 maxv return EINVAL;
669 1.17 maxv }
670 1.2 rmind }
671 1.2 rmind
672 1.2 rmind /*
673 1.2 rmind * Create new entry and attempt to reassembly.
674 1.2 rmind */
675 1.2 rmind IP_STATINC(IP_STAT_FRAGMENTS);
676 1.4 rmind ipqe = pool_cache_get(ipfren_cache, PR_NOWAIT);
677 1.2 rmind if (ipqe == NULL) {
678 1.2 rmind IP_STATINC(IP_STAT_RCVMEMDROP);
679 1.4 rmind mutex_exit(&ipfr_lock);
680 1.2 rmind return ENOMEM;
681 1.2 rmind }
682 1.2 rmind ipqe->ipqe_mff = mff;
683 1.2 rmind ipqe->ipqe_m = m;
684 1.2 rmind ipqe->ipqe_ip = ip;
685 1.19 maxv ipqe->ipqe_off = off;
686 1.19 maxv ipqe->ipqe_len = flen;
687 1.2 rmind
688 1.7 rmind *m0 = ip_reass(ipqe, fp, hash);
689 1.7 rmind if (*m0) {
690 1.7 rmind /* Note that finally reassembled. */
691 1.2 rmind IP_STATINC(IP_STAT_REASSEMBLED);
692 1.2 rmind }
693 1.2 rmind return 0;
694 1.2 rmind }
695