ip_reass.c revision 1.3 1 1.3 rmind /* $NetBSD: ip_reass.c,v 1.3 2010/08/25 00:05:14 rmind Exp $ */
2 1.1 rmind
3 1.1 rmind /*
4 1.1 rmind * Copyright (c) 1982, 1986, 1988, 1993
5 1.1 rmind * The Regents of the University of California. All rights reserved.
6 1.1 rmind *
7 1.1 rmind * Redistribution and use in source and binary forms, with or without
8 1.1 rmind * modification, are permitted provided that the following conditions
9 1.1 rmind * are met:
10 1.1 rmind * 1. Redistributions of source code must retain the above copyright
11 1.1 rmind * notice, this list of conditions and the following disclaimer.
12 1.1 rmind * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 rmind * notice, this list of conditions and the following disclaimer in the
14 1.1 rmind * documentation and/or other materials provided with the distribution.
15 1.1 rmind * 3. Neither the name of the University nor the names of its contributors
16 1.1 rmind * may be used to endorse or promote products derived from this software
17 1.1 rmind * without specific prior written permission.
18 1.1 rmind *
19 1.1 rmind * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 1.1 rmind * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 1.1 rmind * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 1.1 rmind * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 1.1 rmind * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 1.1 rmind * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 1.1 rmind * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 1.1 rmind * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 1.1 rmind * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 1.1 rmind * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 1.1 rmind * SUCH DAMAGE.
30 1.1 rmind *
31 1.1 rmind * @(#)ip_input.c 8.2 (Berkeley) 1/4/94
32 1.1 rmind */
33 1.1 rmind
34 1.1 rmind /*
35 1.1 rmind * IP reassembly.
36 1.1 rmind *
37 1.1 rmind * Additive-Increase/Multiplicative-Decrease (AIMD) strategy for IP
38 1.1 rmind * reassembly queue buffer managment.
39 1.1 rmind *
40 1.1 rmind * We keep a count of total IP fragments (NB: not fragmented packets),
41 1.1 rmind * awaiting reassembly (ip_nfrags) and a limit (ip_maxfrags) on fragments.
42 1.1 rmind * If ip_nfrags exceeds ip_maxfrags the limit, we drop half the total
43 1.1 rmind * fragments in reassembly queues. This AIMD policy avoids repeatedly
44 1.1 rmind * deleting single packets under heavy fragmentation load (e.g., from lossy
45 1.1 rmind * NFS peers).
46 1.1 rmind */
47 1.1 rmind
48 1.1 rmind #include <sys/cdefs.h>
49 1.3 rmind __KERNEL_RCSID(0, "$NetBSD: ip_reass.c,v 1.3 2010/08/25 00:05:14 rmind Exp $");
50 1.1 rmind
51 1.1 rmind #include <sys/param.h>
52 1.2 rmind #include <sys/types.h>
53 1.1 rmind
54 1.1 rmind #include <sys/malloc.h>
55 1.1 rmind #include <sys/mbuf.h>
56 1.1 rmind #include <sys/domain.h>
57 1.1 rmind #include <sys/protosw.h>
58 1.1 rmind #include <sys/pool.h>
59 1.2 rmind #include <sys/queue.h>
60 1.1 rmind #include <sys/sysctl.h>
61 1.2 rmind #include <sys/systm.h>
62 1.1 rmind
63 1.1 rmind #include <net/if.h>
64 1.1 rmind #include <net/route.h>
65 1.1 rmind
66 1.1 rmind #include <netinet/in.h>
67 1.1 rmind #include <netinet/in_systm.h>
68 1.1 rmind #include <netinet/ip.h>
69 1.1 rmind #include <netinet/in_pcb.h>
70 1.2 rmind #include <netinet/ip_var.h>
71 1.1 rmind #include <netinet/in_proto.h>
72 1.1 rmind #include <netinet/ip_private.h>
73 1.1 rmind #include <netinet/in_var.h>
74 1.1 rmind
75 1.1 rmind /*
76 1.3 rmind * IP reassembly queue structures. Each fragment being reassembled is
77 1.3 rmind * attached to one of these structures. They are timed out after TTL
78 1.3 rmind * drops to 0, and may also be reclaimed if memory becomes tight.
79 1.3 rmind */
80 1.3 rmind
81 1.3 rmind typedef struct ipfr_qent {
82 1.3 rmind TAILQ_ENTRY(ipfr_qent) ipqe_q;
83 1.3 rmind struct ip * ipqe_ip;
84 1.3 rmind struct mbuf * ipqe_m;
85 1.3 rmind bool ipqe_mff;
86 1.3 rmind } ipfr_qent_t;
87 1.3 rmind
88 1.3 rmind typedef struct ipfr_queue {
89 1.3 rmind LIST_ENTRY(ipfr_queue) ipq_q; /* to other reass headers */
90 1.3 rmind TAILQ_HEAD(, ipfr_qent) ipq_fragq; /* queue of fragment entries */
91 1.3 rmind uint8_t ipq_ttl; /* time for reass q to live */
92 1.3 rmind uint8_t ipq_p; /* protocol of this fragment */
93 1.3 rmind uint16_t ipq_id; /* sequence id for reassembly */
94 1.3 rmind struct in_addr ipq_src;
95 1.3 rmind struct in_addr ipq_dst;
96 1.3 rmind uint16_t ipq_nfrags; /* frags in this queue entry */
97 1.3 rmind uint8_t ipq_tos; /* TOS of this fragment */
98 1.3 rmind } ipfr_queue_t;
99 1.3 rmind
100 1.3 rmind /*
101 1.3 rmind * Hash table of IP reassembly queues.
102 1.1 rmind */
103 1.1 rmind #define IPREASS_HASH_SHIFT 6
104 1.1 rmind #define IPREASS_HASH_SIZE (1 << IPREASS_HASH_SHIFT)
105 1.1 rmind #define IPREASS_HASH_MASK (IPREASS_HASH_SIZE - 1)
106 1.1 rmind #define IPREASS_HASH(x, y) \
107 1.1 rmind (((((x) & 0xf) | ((((x) >> 8) & 0xf) << 4)) ^ (y)) & IPREASS_HASH_MASK)
108 1.1 rmind
109 1.3 rmind static LIST_HEAD(, ipfr_queue) ip_frags[IPREASS_HASH_SIZE];
110 1.3 rmind static struct pool ipqent_pool;
111 1.3 rmind static int ipq_locked;
112 1.1 rmind
113 1.3 rmind /* Number of packets in reassembly queue and total number of fragments. */
114 1.3 rmind static int ip_nfragpackets;
115 1.3 rmind static int ip_nfrags;
116 1.1 rmind
117 1.3 rmind /* Limits on packet and fragments. */
118 1.3 rmind static int ip_maxfragpackets;
119 1.3 rmind static int ip_maxfrags;
120 1.1 rmind
121 1.1 rmind /*
122 1.3 rmind * Cached copy of nmbclusters. If nbclusters is different, recalculate
123 1.3 rmind * IP parameters derived from nmbclusters.
124 1.2 rmind */
125 1.3 rmind static int ip_nmbclusters;
126 1.1 rmind
127 1.1 rmind /*
128 1.1 rmind * IP reassembly TTL machinery for multiplicative drop.
129 1.1 rmind */
130 1.3 rmind static u_int fragttl_histo[IPFRAGTTL + 1];
131 1.1 rmind
132 1.3 rmind void sysctl_ip_reass_setup(void);
133 1.3 rmind static void ip_nmbclusters_changed(void);
134 1.2 rmind
135 1.3 rmind static struct mbuf * ip_reass(ipfr_qent_t *, ipfr_queue_t *, u_int);
136 1.2 rmind static u_int ip_reass_ttl_decr(u_int ticks);
137 1.2 rmind static void ip_reass_drophalf(void);
138 1.3 rmind static void ip_freef(ipfr_queue_t *);
139 1.1 rmind
140 1.1 rmind /*
141 1.1 rmind * ip_reass_init:
142 1.1 rmind *
143 1.1 rmind * Initialization of IP reassembly mechanism.
144 1.1 rmind */
145 1.1 rmind void
146 1.1 rmind ip_reass_init(void)
147 1.1 rmind {
148 1.1 rmind int i;
149 1.1 rmind
150 1.3 rmind pool_init(&ipqent_pool, sizeof(ipfr_qent_t), 0, 0, 0, "ipqepl",
151 1.1 rmind NULL, IPL_VM);
152 1.1 rmind
153 1.1 rmind for (i = 0; i < IPREASS_HASH_SIZE; i++) {
154 1.3 rmind LIST_INIT(&ip_frags[i]);
155 1.1 rmind }
156 1.1 rmind ip_maxfragpackets = 200;
157 1.1 rmind ip_maxfrags = 0;
158 1.1 rmind ip_nmbclusters_changed();
159 1.1 rmind
160 1.1 rmind sysctl_ip_reass_setup();
161 1.1 rmind }
162 1.1 rmind
163 1.1 rmind static struct sysctllog *ip_reass_sysctllog;
164 1.1 rmind
165 1.1 rmind void
166 1.1 rmind sysctl_ip_reass_setup(void)
167 1.1 rmind {
168 1.1 rmind
169 1.1 rmind sysctl_createv(&ip_reass_sysctllog, 0, NULL, NULL,
170 1.1 rmind CTLFLAG_PERMANENT,
171 1.1 rmind CTLTYPE_NODE, "net", NULL,
172 1.1 rmind NULL, 0, NULL, 0,
173 1.1 rmind CTL_NET, CTL_EOL);
174 1.1 rmind sysctl_createv(&ip_reass_sysctllog, 0, NULL, NULL,
175 1.1 rmind CTLFLAG_PERMANENT,
176 1.1 rmind CTLTYPE_NODE, "inet",
177 1.1 rmind SYSCTL_DESCR("PF_INET related settings"),
178 1.1 rmind NULL, 0, NULL, 0,
179 1.1 rmind CTL_NET, PF_INET, CTL_EOL);
180 1.1 rmind sysctl_createv(&ip_reass_sysctllog, 0, NULL, NULL,
181 1.1 rmind CTLFLAG_PERMANENT,
182 1.1 rmind CTLTYPE_NODE, "ip",
183 1.1 rmind SYSCTL_DESCR("IPv4 related settings"),
184 1.1 rmind NULL, 0, NULL, 0,
185 1.1 rmind CTL_NET, PF_INET, IPPROTO_IP, CTL_EOL);
186 1.1 rmind
187 1.1 rmind sysctl_createv(&ip_reass_sysctllog, 0, NULL, NULL,
188 1.1 rmind CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
189 1.1 rmind CTLTYPE_INT, "maxfragpackets",
190 1.1 rmind SYSCTL_DESCR("Maximum number of fragments to retain for "
191 1.1 rmind "possible reassembly"),
192 1.1 rmind NULL, 0, &ip_maxfragpackets, 0,
193 1.1 rmind CTL_NET, PF_INET, IPPROTO_IP, IPCTL_MAXFRAGPACKETS, CTL_EOL);
194 1.1 rmind }
195 1.1 rmind
196 1.1 rmind #define CHECK_NMBCLUSTER_PARAMS() \
197 1.1 rmind do { \
198 1.1 rmind if (__predict_false(ip_nmbclusters != nmbclusters)) \
199 1.1 rmind ip_nmbclusters_changed(); \
200 1.1 rmind } while (/*CONSTCOND*/0)
201 1.1 rmind
202 1.1 rmind /*
203 1.1 rmind * Compute IP limits derived from the value of nmbclusters.
204 1.1 rmind */
205 1.1 rmind static void
206 1.1 rmind ip_nmbclusters_changed(void)
207 1.1 rmind {
208 1.1 rmind ip_maxfrags = nmbclusters / 4;
209 1.1 rmind ip_nmbclusters = nmbclusters;
210 1.1 rmind }
211 1.1 rmind
212 1.1 rmind static inline int ipq_lock_try(void);
213 1.1 rmind static inline void ipq_unlock(void);
214 1.1 rmind
215 1.1 rmind static inline int
216 1.1 rmind ipq_lock_try(void)
217 1.1 rmind {
218 1.1 rmind int s;
219 1.1 rmind
220 1.1 rmind /*
221 1.1 rmind * Use splvm() -- we're blocking things that would cause
222 1.1 rmind * mbuf allocation.
223 1.1 rmind */
224 1.1 rmind s = splvm();
225 1.1 rmind if (ipq_locked) {
226 1.1 rmind splx(s);
227 1.1 rmind return (0);
228 1.1 rmind }
229 1.1 rmind ipq_locked = 1;
230 1.1 rmind splx(s);
231 1.1 rmind return (1);
232 1.1 rmind }
233 1.1 rmind
234 1.1 rmind static inline void
235 1.1 rmind ipq_unlock(void)
236 1.1 rmind {
237 1.1 rmind int s;
238 1.1 rmind
239 1.1 rmind s = splvm();
240 1.1 rmind ipq_locked = 0;
241 1.1 rmind splx(s);
242 1.1 rmind }
243 1.1 rmind
244 1.1 rmind #ifdef DIAGNOSTIC
245 1.1 rmind #define IPQ_LOCK() \
246 1.1 rmind do { \
247 1.1 rmind if (ipq_lock_try() == 0) { \
248 1.1 rmind printf("%s:%d: ipq already locked\n", __FILE__, __LINE__); \
249 1.1 rmind panic("ipq_lock"); \
250 1.1 rmind } \
251 1.1 rmind } while (/*CONSTCOND*/ 0)
252 1.1 rmind #define IPQ_LOCK_CHECK() \
253 1.1 rmind do { \
254 1.1 rmind if (ipq_locked == 0) { \
255 1.1 rmind printf("%s:%d: ipq lock not held\n", __FILE__, __LINE__); \
256 1.1 rmind panic("ipq lock check"); \
257 1.1 rmind } \
258 1.1 rmind } while (/*CONSTCOND*/ 0)
259 1.1 rmind #else
260 1.1 rmind #define IPQ_LOCK() (void) ipq_lock_try()
261 1.1 rmind #define IPQ_LOCK_CHECK() /* nothing */
262 1.1 rmind #endif
263 1.1 rmind
264 1.1 rmind #define IPQ_UNLOCK() ipq_unlock()
265 1.1 rmind
266 1.1 rmind /*
267 1.1 rmind * ip_reass:
268 1.1 rmind *
269 1.1 rmind * Take incoming datagram fragment and try to reassemble it into whole
270 1.1 rmind * datagram. If a chain for reassembly of this datagram already exists,
271 1.1 rmind * then it is given as 'fp'; otherwise have to make a chain.
272 1.1 rmind */
273 1.1 rmind struct mbuf *
274 1.3 rmind ip_reass(ipfr_qent_t *ipqe, ipfr_queue_t *fp, const u_int hash)
275 1.1 rmind {
276 1.1 rmind const int hlen = ipqe->ipqe_ip->ip_hl << 2;
277 1.1 rmind struct mbuf *m = ipqe->ipqe_m, *t;
278 1.3 rmind ipfr_qent_t *nq, *p, *q;
279 1.1 rmind struct ip *ip;
280 1.1 rmind int i, next, s;
281 1.1 rmind
282 1.1 rmind IPQ_LOCK_CHECK();
283 1.1 rmind
284 1.1 rmind /*
285 1.1 rmind * Presence of header sizes in mbufs would confuse code below.
286 1.1 rmind */
287 1.1 rmind m->m_data += hlen;
288 1.1 rmind m->m_len -= hlen;
289 1.1 rmind
290 1.1 rmind #ifdef notyet
291 1.1 rmind /* Make sure fragment limit is up-to-date. */
292 1.1 rmind CHECK_NMBCLUSTER_PARAMS();
293 1.1 rmind
294 1.1 rmind /* If we have too many fragments, drop the older half. */
295 1.1 rmind if (ip_nfrags >= ip_maxfrags) {
296 1.1 rmind ip_reass_drophalf(void);
297 1.1 rmind }
298 1.1 rmind #endif
299 1.1 rmind
300 1.1 rmind /*
301 1.1 rmind * We are about to add a fragment; increment frag count.
302 1.1 rmind */
303 1.1 rmind ip_nfrags++;
304 1.1 rmind
305 1.1 rmind /*
306 1.1 rmind * If first fragment to arrive, create a reassembly queue.
307 1.1 rmind */
308 1.1 rmind if (fp == NULL) {
309 1.1 rmind /*
310 1.1 rmind * Enforce upper bound on number of fragmented packets
311 1.1 rmind * for which we attempt reassembly: a) if maxfrag is 0,
312 1.1 rmind * never accept fragments b) if maxfrag is -1, accept
313 1.1 rmind * all fragments without limitation.
314 1.1 rmind */
315 1.1 rmind if (ip_maxfragpackets < 0)
316 1.1 rmind ;
317 1.1 rmind else if (ip_nfragpackets >= ip_maxfragpackets) {
318 1.1 rmind goto dropfrag;
319 1.1 rmind }
320 1.1 rmind ip_nfragpackets++;
321 1.3 rmind fp = malloc(sizeof(ipfr_queue_t), M_FTABLE, M_NOWAIT);
322 1.1 rmind if (fp == NULL) {
323 1.1 rmind goto dropfrag;
324 1.1 rmind }
325 1.3 rmind LIST_INSERT_HEAD(&ip_frags[hash], fp, ipq_q);
326 1.1 rmind fp->ipq_nfrags = 1;
327 1.1 rmind fp->ipq_ttl = IPFRAGTTL;
328 1.1 rmind fp->ipq_p = ipqe->ipqe_ip->ip_p;
329 1.1 rmind fp->ipq_id = ipqe->ipqe_ip->ip_id;
330 1.1 rmind fp->ipq_tos = ipqe->ipqe_ip->ip_tos;
331 1.1 rmind TAILQ_INIT(&fp->ipq_fragq);
332 1.1 rmind fp->ipq_src = ipqe->ipqe_ip->ip_src;
333 1.1 rmind fp->ipq_dst = ipqe->ipqe_ip->ip_dst;
334 1.1 rmind p = NULL;
335 1.1 rmind goto insert;
336 1.1 rmind } else {
337 1.1 rmind fp->ipq_nfrags++;
338 1.1 rmind }
339 1.1 rmind
340 1.1 rmind /*
341 1.1 rmind * Find a segment which begins after this one does.
342 1.1 rmind */
343 1.1 rmind for (p = NULL, q = TAILQ_FIRST(&fp->ipq_fragq); q != NULL;
344 1.1 rmind p = q, q = TAILQ_NEXT(q, ipqe_q))
345 1.1 rmind if (ntohs(q->ipqe_ip->ip_off) > ntohs(ipqe->ipqe_ip->ip_off))
346 1.1 rmind break;
347 1.1 rmind
348 1.1 rmind /*
349 1.1 rmind * If there is a preceding segment, it may provide some of our
350 1.1 rmind * data already. If so, drop the data from the incoming segment.
351 1.1 rmind * If it provides all of our data, drop us.
352 1.1 rmind */
353 1.1 rmind if (p != NULL) {
354 1.1 rmind i = ntohs(p->ipqe_ip->ip_off) + ntohs(p->ipqe_ip->ip_len) -
355 1.1 rmind ntohs(ipqe->ipqe_ip->ip_off);
356 1.1 rmind if (i > 0) {
357 1.1 rmind if (i >= ntohs(ipqe->ipqe_ip->ip_len)) {
358 1.1 rmind goto dropfrag;
359 1.1 rmind }
360 1.1 rmind m_adj(ipqe->ipqe_m, i);
361 1.1 rmind ipqe->ipqe_ip->ip_off =
362 1.1 rmind htons(ntohs(ipqe->ipqe_ip->ip_off) + i);
363 1.1 rmind ipqe->ipqe_ip->ip_len =
364 1.1 rmind htons(ntohs(ipqe->ipqe_ip->ip_len) - i);
365 1.1 rmind }
366 1.1 rmind }
367 1.1 rmind
368 1.1 rmind /*
369 1.1 rmind * While we overlap succeeding segments trim them or, if they are
370 1.1 rmind * completely covered, dequeue them.
371 1.1 rmind */
372 1.1 rmind for (; q != NULL &&
373 1.1 rmind ntohs(ipqe->ipqe_ip->ip_off) + ntohs(ipqe->ipqe_ip->ip_len) >
374 1.1 rmind ntohs(q->ipqe_ip->ip_off); q = nq) {
375 1.1 rmind i = (ntohs(ipqe->ipqe_ip->ip_off) +
376 1.1 rmind ntohs(ipqe->ipqe_ip->ip_len)) - ntohs(q->ipqe_ip->ip_off);
377 1.1 rmind if (i < ntohs(q->ipqe_ip->ip_len)) {
378 1.1 rmind q->ipqe_ip->ip_len =
379 1.1 rmind htons(ntohs(q->ipqe_ip->ip_len) - i);
380 1.1 rmind q->ipqe_ip->ip_off =
381 1.1 rmind htons(ntohs(q->ipqe_ip->ip_off) + i);
382 1.1 rmind m_adj(q->ipqe_m, i);
383 1.1 rmind break;
384 1.1 rmind }
385 1.1 rmind nq = TAILQ_NEXT(q, ipqe_q);
386 1.1 rmind m_freem(q->ipqe_m);
387 1.1 rmind TAILQ_REMOVE(&fp->ipq_fragq, q, ipqe_q);
388 1.1 rmind s = splvm();
389 1.1 rmind pool_put(&ipqent_pool, q);
390 1.1 rmind splx(s);
391 1.1 rmind fp->ipq_nfrags--;
392 1.1 rmind ip_nfrags--;
393 1.1 rmind }
394 1.1 rmind
395 1.1 rmind insert:
396 1.1 rmind /*
397 1.1 rmind * Stick new segment in its place; check for complete reassembly.
398 1.1 rmind */
399 1.1 rmind if (p == NULL) {
400 1.1 rmind TAILQ_INSERT_HEAD(&fp->ipq_fragq, ipqe, ipqe_q);
401 1.1 rmind } else {
402 1.1 rmind TAILQ_INSERT_AFTER(&fp->ipq_fragq, p, ipqe, ipqe_q);
403 1.1 rmind }
404 1.1 rmind next = 0;
405 1.1 rmind for (p = NULL, q = TAILQ_FIRST(&fp->ipq_fragq); q != NULL;
406 1.1 rmind p = q, q = TAILQ_NEXT(q, ipqe_q)) {
407 1.1 rmind if (ntohs(q->ipqe_ip->ip_off) != next) {
408 1.1 rmind IPQ_UNLOCK();
409 1.1 rmind return NULL;
410 1.1 rmind }
411 1.1 rmind next += ntohs(q->ipqe_ip->ip_len);
412 1.1 rmind }
413 1.1 rmind if (p->ipqe_mff) {
414 1.1 rmind IPQ_UNLOCK();
415 1.1 rmind return NULL;
416 1.1 rmind }
417 1.1 rmind /*
418 1.1 rmind * Reassembly is complete. Check for a bogus message size and
419 1.1 rmind * concatenate fragments.
420 1.1 rmind */
421 1.1 rmind q = TAILQ_FIRST(&fp->ipq_fragq);
422 1.1 rmind ip = q->ipqe_ip;
423 1.1 rmind if ((next + (ip->ip_hl << 2)) > IP_MAXPACKET) {
424 1.1 rmind IP_STATINC(IP_STAT_TOOLONG);
425 1.1 rmind ip_freef(fp);
426 1.1 rmind IPQ_UNLOCK();
427 1.1 rmind return NULL;
428 1.1 rmind }
429 1.1 rmind m = q->ipqe_m;
430 1.1 rmind t = m->m_next;
431 1.1 rmind m->m_next = NULL;
432 1.1 rmind m_cat(m, t);
433 1.1 rmind nq = TAILQ_NEXT(q, ipqe_q);
434 1.1 rmind s = splvm();
435 1.1 rmind pool_put(&ipqent_pool, q);
436 1.1 rmind splx(s);
437 1.1 rmind for (q = nq; q != NULL; q = nq) {
438 1.1 rmind t = q->ipqe_m;
439 1.1 rmind nq = TAILQ_NEXT(q, ipqe_q);
440 1.1 rmind s = splvm();
441 1.1 rmind pool_put(&ipqent_pool, q);
442 1.1 rmind splx(s);
443 1.1 rmind m_cat(m, t);
444 1.1 rmind }
445 1.1 rmind ip_nfrags -= fp->ipq_nfrags;
446 1.1 rmind
447 1.1 rmind /*
448 1.1 rmind * Create header for new packet by modifying header of first
449 1.1 rmind * packet. Dequeue and discard fragment reassembly header. Make
450 1.1 rmind * header visible.
451 1.1 rmind */
452 1.2 rmind ip->ip_len = htons((ip->ip_hl << 2) + next);
453 1.1 rmind ip->ip_src = fp->ipq_src;
454 1.1 rmind ip->ip_dst = fp->ipq_dst;
455 1.2 rmind
456 1.1 rmind LIST_REMOVE(fp, ipq_q);
457 1.1 rmind free(fp, M_FTABLE);
458 1.1 rmind ip_nfragpackets--;
459 1.1 rmind m->m_len += (ip->ip_hl << 2);
460 1.1 rmind m->m_data -= (ip->ip_hl << 2);
461 1.1 rmind /* some debugging cruft by sklower, below, will go away soon */
462 1.1 rmind if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
463 1.1 rmind int plen = 0;
464 1.1 rmind for (t = m; t; t = t->m_next) {
465 1.1 rmind plen += t->m_len;
466 1.1 rmind }
467 1.1 rmind m->m_pkthdr.len = plen;
468 1.1 rmind m->m_pkthdr.csum_flags = 0;
469 1.1 rmind }
470 1.1 rmind IPQ_UNLOCK();
471 1.1 rmind return m;
472 1.1 rmind
473 1.1 rmind dropfrag:
474 1.1 rmind if (fp != NULL) {
475 1.1 rmind fp->ipq_nfrags--;
476 1.1 rmind }
477 1.1 rmind ip_nfrags--;
478 1.1 rmind IP_STATINC(IP_STAT_FRAGDROPPED);
479 1.1 rmind m_freem(m);
480 1.1 rmind s = splvm();
481 1.1 rmind pool_put(&ipqent_pool, ipqe);
482 1.1 rmind splx(s);
483 1.1 rmind IPQ_UNLOCK();
484 1.1 rmind return NULL;
485 1.1 rmind }
486 1.1 rmind
487 1.1 rmind /*
488 1.1 rmind * ip_freef:
489 1.1 rmind *
490 1.1 rmind * Free a fragment reassembly header and all associated datagrams.
491 1.1 rmind */
492 1.2 rmind static void
493 1.3 rmind ip_freef(ipfr_queue_t *fp)
494 1.1 rmind {
495 1.3 rmind ipfr_qent_t *q, *p;
496 1.1 rmind u_int nfrags = 0;
497 1.1 rmind int s;
498 1.1 rmind
499 1.1 rmind IPQ_LOCK_CHECK();
500 1.1 rmind
501 1.1 rmind for (q = TAILQ_FIRST(&fp->ipq_fragq); q != NULL; q = p) {
502 1.1 rmind p = TAILQ_NEXT(q, ipqe_q);
503 1.1 rmind m_freem(q->ipqe_m);
504 1.1 rmind nfrags++;
505 1.1 rmind TAILQ_REMOVE(&fp->ipq_fragq, q, ipqe_q);
506 1.1 rmind s = splvm();
507 1.1 rmind pool_put(&ipqent_pool, q);
508 1.1 rmind splx(s);
509 1.1 rmind }
510 1.1 rmind
511 1.1 rmind if (nfrags != fp->ipq_nfrags) {
512 1.1 rmind printf("ip_freef: nfrags %d != %d\n", fp->ipq_nfrags, nfrags);
513 1.1 rmind }
514 1.1 rmind ip_nfrags -= nfrags;
515 1.1 rmind LIST_REMOVE(fp, ipq_q);
516 1.1 rmind free(fp, M_FTABLE);
517 1.1 rmind ip_nfragpackets--;
518 1.1 rmind }
519 1.1 rmind
520 1.1 rmind /*
521 1.1 rmind * ip_reass_ttl_decr:
522 1.1 rmind *
523 1.1 rmind * Decrement TTL of all reasembly queue entries by `ticks'. Count
524 1.1 rmind * number of distinct fragments (as opposed to partial, fragmented
525 1.1 rmind * datagrams) inthe reassembly queue. While we traverse the entire
526 1.1 rmind * reassembly queue, compute and return the median TTL over all
527 1.1 rmind * fragments.
528 1.1 rmind */
529 1.1 rmind static u_int
530 1.1 rmind ip_reass_ttl_decr(u_int ticks)
531 1.1 rmind {
532 1.1 rmind u_int nfrags, median, dropfraction, keepfraction;
533 1.3 rmind ipfr_queue_t *fp, *nfp;
534 1.1 rmind int i;
535 1.1 rmind
536 1.1 rmind nfrags = 0;
537 1.1 rmind memset(fragttl_histo, 0, sizeof(fragttl_histo));
538 1.1 rmind
539 1.1 rmind for (i = 0; i < IPREASS_HASH_SIZE; i++) {
540 1.3 rmind for (fp = LIST_FIRST(&ip_frags[i]); fp != NULL; fp = nfp) {
541 1.1 rmind fp->ipq_ttl = ((fp->ipq_ttl <= ticks) ?
542 1.1 rmind 0 : fp->ipq_ttl - ticks);
543 1.1 rmind nfp = LIST_NEXT(fp, ipq_q);
544 1.1 rmind if (fp->ipq_ttl == 0) {
545 1.1 rmind IP_STATINC(IP_STAT_FRAGTIMEOUT);
546 1.1 rmind ip_freef(fp);
547 1.1 rmind } else {
548 1.1 rmind nfrags += fp->ipq_nfrags;
549 1.1 rmind fragttl_histo[fp->ipq_ttl] += fp->ipq_nfrags;
550 1.1 rmind }
551 1.1 rmind }
552 1.1 rmind }
553 1.1 rmind
554 1.1 rmind KASSERT(ip_nfrags == nfrags);
555 1.1 rmind
556 1.1 rmind /* Find median (or other drop fraction) in histogram. */
557 1.1 rmind dropfraction = (ip_nfrags / 2);
558 1.1 rmind keepfraction = ip_nfrags - dropfraction;
559 1.1 rmind for (i = IPFRAGTTL, median = 0; i >= 0; i--) {
560 1.1 rmind median += fragttl_histo[i];
561 1.1 rmind if (median >= keepfraction)
562 1.1 rmind break;
563 1.1 rmind }
564 1.1 rmind
565 1.1 rmind /* Return TTL of median (or other fraction). */
566 1.1 rmind return (u_int)i;
567 1.1 rmind }
568 1.1 rmind
569 1.1 rmind static void
570 1.1 rmind ip_reass_drophalf(void)
571 1.1 rmind {
572 1.1 rmind u_int median_ticks;
573 1.1 rmind
574 1.1 rmind /*
575 1.1 rmind * Compute median TTL of all fragments, and count frags
576 1.1 rmind * with that TTL or lower (roughly half of all fragments).
577 1.1 rmind */
578 1.1 rmind median_ticks = ip_reass_ttl_decr(0);
579 1.1 rmind
580 1.1 rmind /* Drop half. */
581 1.1 rmind median_ticks = ip_reass_ttl_decr(median_ticks);
582 1.1 rmind }
583 1.1 rmind
584 1.1 rmind /*
585 1.1 rmind * ip_reass_drain: drain off all datagram fragments. Do not acquire
586 1.1 rmind * softnet_lock as can be called from hardware interrupt context.
587 1.1 rmind */
588 1.1 rmind void
589 1.1 rmind ip_reass_drain(void)
590 1.1 rmind {
591 1.1 rmind
592 1.1 rmind /*
593 1.1 rmind * We may be called from a device's interrupt context. If
594 1.1 rmind * the ipq is already busy, just bail out now.
595 1.1 rmind */
596 1.1 rmind if (ipq_lock_try() != 0) {
597 1.1 rmind /*
598 1.1 rmind * Drop half the total fragments now. If more mbufs are
599 1.1 rmind * needed, we will be called again soon.
600 1.1 rmind */
601 1.1 rmind ip_reass_drophalf();
602 1.1 rmind IPQ_UNLOCK();
603 1.1 rmind }
604 1.1 rmind }
605 1.1 rmind
606 1.1 rmind /*
607 1.1 rmind * ip_reass_slowtimo:
608 1.1 rmind *
609 1.1 rmind * If a timer expires on a reassembly queue, discard it.
610 1.1 rmind */
611 1.1 rmind void
612 1.1 rmind ip_reass_slowtimo(void)
613 1.1 rmind {
614 1.1 rmind static u_int dropscanidx = 0;
615 1.1 rmind u_int i, median_ttl;
616 1.1 rmind
617 1.1 rmind IPQ_LOCK();
618 1.1 rmind
619 1.1 rmind /* Age TTL of all fragments by 1 tick .*/
620 1.1 rmind median_ttl = ip_reass_ttl_decr(1);
621 1.1 rmind
622 1.1 rmind /* Make sure fragment limit is up-to-date. */
623 1.1 rmind CHECK_NMBCLUSTER_PARAMS();
624 1.1 rmind
625 1.1 rmind /* If we have too many fragments, drop the older half. */
626 1.1 rmind if (ip_nfrags > ip_maxfrags) {
627 1.1 rmind ip_reass_ttl_decr(median_ttl);
628 1.1 rmind }
629 1.1 rmind
630 1.1 rmind /*
631 1.1 rmind * If we are over the maximum number of fragmented packets (due to
632 1.1 rmind * the limit being lowered), drain off enough to get down to the
633 1.1 rmind * new limit. Start draining from the reassembly hashqueue most
634 1.1 rmind * recently drained.
635 1.1 rmind */
636 1.1 rmind if (ip_maxfragpackets < 0)
637 1.1 rmind ;
638 1.1 rmind else {
639 1.1 rmind int wrapped = 0;
640 1.1 rmind
641 1.1 rmind i = dropscanidx;
642 1.1 rmind while (ip_nfragpackets > ip_maxfragpackets && wrapped == 0) {
643 1.3 rmind while (LIST_FIRST(&ip_frags[i]) != NULL) {
644 1.3 rmind ip_freef(LIST_FIRST(&ip_frags[i]));
645 1.1 rmind }
646 1.1 rmind if (++i >= IPREASS_HASH_SIZE) {
647 1.1 rmind i = 0;
648 1.1 rmind }
649 1.1 rmind /*
650 1.1 rmind * Do not scan forever even if fragment counters are
651 1.1 rmind * wrong: stop after scanning entire reassembly queue.
652 1.1 rmind */
653 1.1 rmind if (i == dropscanidx) {
654 1.1 rmind wrapped = 1;
655 1.1 rmind }
656 1.1 rmind }
657 1.1 rmind dropscanidx = i;
658 1.1 rmind }
659 1.1 rmind IPQ_UNLOCK();
660 1.1 rmind }
661 1.2 rmind
662 1.2 rmind /*
663 1.2 rmind * ip_reass_packet: generic routine to perform IP reassembly.
664 1.2 rmind *
665 1.2 rmind * => Passed fragment should have IP_MF flag and/or offset set.
666 1.2 rmind * => Fragment should not have other than IP_MF flags set.
667 1.2 rmind *
668 1.2 rmind * => Returns 0 on success or error otherwise. When reassembly is complete,
669 1.2 rmind * m_final representing a constructed final packet is set.
670 1.2 rmind */
671 1.2 rmind int
672 1.2 rmind ip_reass_packet(struct mbuf *m, struct ip *ip, bool mff, struct mbuf **m_final)
673 1.2 rmind {
674 1.3 rmind ipfr_queue_t *fp;
675 1.3 rmind ipfr_qent_t *ipqe;
676 1.2 rmind u_int hash;
677 1.2 rmind
678 1.2 rmind /* Look for queue of fragments of this datagram. */
679 1.3 rmind IPQ_LOCK();
680 1.3 rmind hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
681 1.3 rmind LIST_FOREACH(fp, &ip_frags[hash], ipq_q) {
682 1.3 rmind if (ip->ip_id != fp->ipq_id)
683 1.3 rmind continue;
684 1.3 rmind if (!in_hosteq(ip->ip_src, fp->ipq_src))
685 1.3 rmind continue;
686 1.3 rmind if (!in_hosteq(ip->ip_dst, fp->ipq_dst))
687 1.3 rmind continue;
688 1.3 rmind if (ip->ip_p != fp->ipq_p)
689 1.3 rmind continue;
690 1.3 rmind break;
691 1.3 rmind }
692 1.2 rmind
693 1.2 rmind /* Make sure that TOS matches previous fragments. */
694 1.2 rmind if (fp && fp->ipq_tos != ip->ip_tos) {
695 1.2 rmind IP_STATINC(IP_STAT_BADFRAGS);
696 1.2 rmind IPQ_UNLOCK();
697 1.2 rmind return EINVAL;
698 1.2 rmind }
699 1.2 rmind
700 1.2 rmind /*
701 1.2 rmind * Create new entry and attempt to reassembly.
702 1.2 rmind */
703 1.2 rmind IP_STATINC(IP_STAT_FRAGMENTS);
704 1.2 rmind int s = splvm();
705 1.2 rmind ipqe = pool_get(&ipqent_pool, PR_NOWAIT);
706 1.2 rmind splx(s);
707 1.2 rmind if (ipqe == NULL) {
708 1.2 rmind IP_STATINC(IP_STAT_RCVMEMDROP);
709 1.2 rmind IPQ_UNLOCK();
710 1.2 rmind return ENOMEM;
711 1.2 rmind }
712 1.2 rmind ipqe->ipqe_mff = mff;
713 1.2 rmind ipqe->ipqe_m = m;
714 1.2 rmind ipqe->ipqe_ip = ip;
715 1.2 rmind
716 1.2 rmind *m_final = ip_reass(ipqe, fp, hash);
717 1.2 rmind if (*m_final) {
718 1.2 rmind /* Note if finally reassembled. */
719 1.2 rmind IP_STATINC(IP_STAT_REASSEMBLED);
720 1.2 rmind }
721 1.2 rmind return 0;
722 1.2 rmind }
723