ip_reass.c revision 1.4 1 1.4 rmind /* $NetBSD: ip_reass.c,v 1.4 2010/10/03 19:44:47 rmind Exp $ */
2 1.1 rmind
3 1.1 rmind /*
4 1.1 rmind * Copyright (c) 1982, 1986, 1988, 1993
5 1.1 rmind * The Regents of the University of California. All rights reserved.
6 1.1 rmind *
7 1.1 rmind * Redistribution and use in source and binary forms, with or without
8 1.1 rmind * modification, are permitted provided that the following conditions
9 1.1 rmind * are met:
10 1.1 rmind * 1. Redistributions of source code must retain the above copyright
11 1.1 rmind * notice, this list of conditions and the following disclaimer.
12 1.1 rmind * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 rmind * notice, this list of conditions and the following disclaimer in the
14 1.1 rmind * documentation and/or other materials provided with the distribution.
15 1.1 rmind * 3. Neither the name of the University nor the names of its contributors
16 1.1 rmind * may be used to endorse or promote products derived from this software
17 1.1 rmind * without specific prior written permission.
18 1.1 rmind *
19 1.1 rmind * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 1.1 rmind * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 1.1 rmind * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 1.1 rmind * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 1.1 rmind * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 1.1 rmind * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 1.1 rmind * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 1.1 rmind * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 1.1 rmind * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 1.1 rmind * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 1.1 rmind * SUCH DAMAGE.
30 1.1 rmind *
31 1.1 rmind * @(#)ip_input.c 8.2 (Berkeley) 1/4/94
32 1.1 rmind */
33 1.1 rmind
34 1.1 rmind /*
35 1.1 rmind * IP reassembly.
36 1.1 rmind *
37 1.1 rmind * Additive-Increase/Multiplicative-Decrease (AIMD) strategy for IP
38 1.1 rmind * reassembly queue buffer managment.
39 1.1 rmind *
40 1.1 rmind * We keep a count of total IP fragments (NB: not fragmented packets),
41 1.1 rmind * awaiting reassembly (ip_nfrags) and a limit (ip_maxfrags) on fragments.
42 1.1 rmind * If ip_nfrags exceeds ip_maxfrags the limit, we drop half the total
43 1.1 rmind * fragments in reassembly queues. This AIMD policy avoids repeatedly
44 1.1 rmind * deleting single packets under heavy fragmentation load (e.g., from lossy
45 1.1 rmind * NFS peers).
46 1.1 rmind */
47 1.1 rmind
48 1.1 rmind #include <sys/cdefs.h>
49 1.4 rmind __KERNEL_RCSID(0, "$NetBSD: ip_reass.c,v 1.4 2010/10/03 19:44:47 rmind Exp $");
50 1.1 rmind
51 1.1 rmind #include <sys/param.h>
52 1.2 rmind #include <sys/types.h>
53 1.1 rmind
54 1.1 rmind #include <sys/malloc.h>
55 1.1 rmind #include <sys/mbuf.h>
56 1.4 rmind #include <sys/mutex.h>
57 1.1 rmind #include <sys/domain.h>
58 1.1 rmind #include <sys/protosw.h>
59 1.1 rmind #include <sys/pool.h>
60 1.2 rmind #include <sys/queue.h>
61 1.1 rmind #include <sys/sysctl.h>
62 1.2 rmind #include <sys/systm.h>
63 1.1 rmind
64 1.1 rmind #include <net/if.h>
65 1.1 rmind #include <net/route.h>
66 1.1 rmind
67 1.1 rmind #include <netinet/in.h>
68 1.1 rmind #include <netinet/in_systm.h>
69 1.1 rmind #include <netinet/ip.h>
70 1.1 rmind #include <netinet/in_pcb.h>
71 1.2 rmind #include <netinet/ip_var.h>
72 1.1 rmind #include <netinet/in_proto.h>
73 1.1 rmind #include <netinet/ip_private.h>
74 1.1 rmind #include <netinet/in_var.h>
75 1.1 rmind
76 1.1 rmind /*
77 1.3 rmind * IP reassembly queue structures. Each fragment being reassembled is
78 1.3 rmind * attached to one of these structures. They are timed out after TTL
79 1.3 rmind * drops to 0, and may also be reclaimed if memory becomes tight.
80 1.3 rmind */
81 1.3 rmind
82 1.3 rmind typedef struct ipfr_qent {
83 1.3 rmind TAILQ_ENTRY(ipfr_qent) ipqe_q;
84 1.3 rmind struct ip * ipqe_ip;
85 1.3 rmind struct mbuf * ipqe_m;
86 1.3 rmind bool ipqe_mff;
87 1.3 rmind } ipfr_qent_t;
88 1.3 rmind
89 1.3 rmind typedef struct ipfr_queue {
90 1.3 rmind LIST_ENTRY(ipfr_queue) ipq_q; /* to other reass headers */
91 1.3 rmind TAILQ_HEAD(, ipfr_qent) ipq_fragq; /* queue of fragment entries */
92 1.3 rmind uint8_t ipq_ttl; /* time for reass q to live */
93 1.3 rmind uint8_t ipq_p; /* protocol of this fragment */
94 1.3 rmind uint16_t ipq_id; /* sequence id for reassembly */
95 1.3 rmind struct in_addr ipq_src;
96 1.3 rmind struct in_addr ipq_dst;
97 1.3 rmind uint16_t ipq_nfrags; /* frags in this queue entry */
98 1.3 rmind uint8_t ipq_tos; /* TOS of this fragment */
99 1.3 rmind } ipfr_queue_t;
100 1.3 rmind
101 1.3 rmind /*
102 1.3 rmind * Hash table of IP reassembly queues.
103 1.1 rmind */
104 1.1 rmind #define IPREASS_HASH_SHIFT 6
105 1.1 rmind #define IPREASS_HASH_SIZE (1 << IPREASS_HASH_SHIFT)
106 1.1 rmind #define IPREASS_HASH_MASK (IPREASS_HASH_SIZE - 1)
107 1.1 rmind #define IPREASS_HASH(x, y) \
108 1.1 rmind (((((x) & 0xf) | ((((x) >> 8) & 0xf) << 4)) ^ (y)) & IPREASS_HASH_MASK)
109 1.1 rmind
110 1.3 rmind static LIST_HEAD(, ipfr_queue) ip_frags[IPREASS_HASH_SIZE];
111 1.4 rmind static pool_cache_t ipfren_cache;
112 1.4 rmind static kmutex_t ipfr_lock;
113 1.1 rmind
114 1.3 rmind /* Number of packets in reassembly queue and total number of fragments. */
115 1.3 rmind static int ip_nfragpackets;
116 1.3 rmind static int ip_nfrags;
117 1.1 rmind
118 1.3 rmind /* Limits on packet and fragments. */
119 1.3 rmind static int ip_maxfragpackets;
120 1.3 rmind static int ip_maxfrags;
121 1.1 rmind
122 1.1 rmind /*
123 1.3 rmind * Cached copy of nmbclusters. If nbclusters is different, recalculate
124 1.3 rmind * IP parameters derived from nmbclusters.
125 1.2 rmind */
126 1.3 rmind static int ip_nmbclusters;
127 1.1 rmind
128 1.1 rmind /*
129 1.1 rmind * IP reassembly TTL machinery for multiplicative drop.
130 1.1 rmind */
131 1.3 rmind static u_int fragttl_histo[IPFRAGTTL + 1];
132 1.1 rmind
133 1.4 rmind static struct sysctllog *ip_reass_sysctllog;
134 1.4 rmind
135 1.3 rmind void sysctl_ip_reass_setup(void);
136 1.3 rmind static void ip_nmbclusters_changed(void);
137 1.2 rmind
138 1.3 rmind static struct mbuf * ip_reass(ipfr_qent_t *, ipfr_queue_t *, u_int);
139 1.2 rmind static u_int ip_reass_ttl_decr(u_int ticks);
140 1.2 rmind static void ip_reass_drophalf(void);
141 1.3 rmind static void ip_freef(ipfr_queue_t *);
142 1.1 rmind
143 1.1 rmind /*
144 1.1 rmind * ip_reass_init:
145 1.1 rmind *
146 1.1 rmind * Initialization of IP reassembly mechanism.
147 1.1 rmind */
148 1.1 rmind void
149 1.1 rmind ip_reass_init(void)
150 1.1 rmind {
151 1.1 rmind int i;
152 1.1 rmind
153 1.4 rmind ipfren_cache = pool_cache_init(sizeof(ipfr_qent_t), coherency_unit,
154 1.4 rmind 0, 0, "ipfrenpl", NULL, IPL_NET, NULL, NULL, NULL);
155 1.4 rmind mutex_init(&ipfr_lock, MUTEX_DEFAULT, IPL_SOFTNET);
156 1.1 rmind
157 1.1 rmind for (i = 0; i < IPREASS_HASH_SIZE; i++) {
158 1.3 rmind LIST_INIT(&ip_frags[i]);
159 1.1 rmind }
160 1.1 rmind ip_maxfragpackets = 200;
161 1.1 rmind ip_maxfrags = 0;
162 1.1 rmind ip_nmbclusters_changed();
163 1.1 rmind
164 1.1 rmind sysctl_ip_reass_setup();
165 1.1 rmind }
166 1.1 rmind
167 1.1 rmind void
168 1.1 rmind sysctl_ip_reass_setup(void)
169 1.1 rmind {
170 1.1 rmind
171 1.1 rmind sysctl_createv(&ip_reass_sysctllog, 0, NULL, NULL,
172 1.1 rmind CTLFLAG_PERMANENT,
173 1.1 rmind CTLTYPE_NODE, "net", NULL,
174 1.1 rmind NULL, 0, NULL, 0,
175 1.1 rmind CTL_NET, CTL_EOL);
176 1.1 rmind sysctl_createv(&ip_reass_sysctllog, 0, NULL, NULL,
177 1.1 rmind CTLFLAG_PERMANENT,
178 1.1 rmind CTLTYPE_NODE, "inet",
179 1.1 rmind SYSCTL_DESCR("PF_INET related settings"),
180 1.1 rmind NULL, 0, NULL, 0,
181 1.1 rmind CTL_NET, PF_INET, CTL_EOL);
182 1.1 rmind sysctl_createv(&ip_reass_sysctllog, 0, NULL, NULL,
183 1.1 rmind CTLFLAG_PERMANENT,
184 1.1 rmind CTLTYPE_NODE, "ip",
185 1.1 rmind SYSCTL_DESCR("IPv4 related settings"),
186 1.1 rmind NULL, 0, NULL, 0,
187 1.1 rmind CTL_NET, PF_INET, IPPROTO_IP, CTL_EOL);
188 1.1 rmind
189 1.1 rmind sysctl_createv(&ip_reass_sysctllog, 0, NULL, NULL,
190 1.1 rmind CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
191 1.1 rmind CTLTYPE_INT, "maxfragpackets",
192 1.1 rmind SYSCTL_DESCR("Maximum number of fragments to retain for "
193 1.1 rmind "possible reassembly"),
194 1.1 rmind NULL, 0, &ip_maxfragpackets, 0,
195 1.1 rmind CTL_NET, PF_INET, IPPROTO_IP, IPCTL_MAXFRAGPACKETS, CTL_EOL);
196 1.1 rmind }
197 1.1 rmind
198 1.1 rmind #define CHECK_NMBCLUSTER_PARAMS() \
199 1.1 rmind do { \
200 1.1 rmind if (__predict_false(ip_nmbclusters != nmbclusters)) \
201 1.1 rmind ip_nmbclusters_changed(); \
202 1.1 rmind } while (/*CONSTCOND*/0)
203 1.1 rmind
204 1.1 rmind /*
205 1.1 rmind * Compute IP limits derived from the value of nmbclusters.
206 1.1 rmind */
207 1.1 rmind static void
208 1.1 rmind ip_nmbclusters_changed(void)
209 1.1 rmind {
210 1.1 rmind ip_maxfrags = nmbclusters / 4;
211 1.1 rmind ip_nmbclusters = nmbclusters;
212 1.1 rmind }
213 1.1 rmind
214 1.1 rmind /*
215 1.1 rmind * ip_reass:
216 1.1 rmind *
217 1.1 rmind * Take incoming datagram fragment and try to reassemble it into whole
218 1.1 rmind * datagram. If a chain for reassembly of this datagram already exists,
219 1.1 rmind * then it is given as 'fp'; otherwise have to make a chain.
220 1.1 rmind */
221 1.1 rmind struct mbuf *
222 1.3 rmind ip_reass(ipfr_qent_t *ipqe, ipfr_queue_t *fp, const u_int hash)
223 1.1 rmind {
224 1.1 rmind const int hlen = ipqe->ipqe_ip->ip_hl << 2;
225 1.1 rmind struct mbuf *m = ipqe->ipqe_m, *t;
226 1.3 rmind ipfr_qent_t *nq, *p, *q;
227 1.1 rmind struct ip *ip;
228 1.4 rmind int i, next;
229 1.1 rmind
230 1.4 rmind KASSERT(mutex_owned(&ipfr_lock));
231 1.1 rmind
232 1.1 rmind /*
233 1.1 rmind * Presence of header sizes in mbufs would confuse code below.
234 1.1 rmind */
235 1.1 rmind m->m_data += hlen;
236 1.1 rmind m->m_len -= hlen;
237 1.1 rmind
238 1.1 rmind #ifdef notyet
239 1.1 rmind /* Make sure fragment limit is up-to-date. */
240 1.1 rmind CHECK_NMBCLUSTER_PARAMS();
241 1.1 rmind
242 1.1 rmind /* If we have too many fragments, drop the older half. */
243 1.1 rmind if (ip_nfrags >= ip_maxfrags) {
244 1.1 rmind ip_reass_drophalf(void);
245 1.1 rmind }
246 1.1 rmind #endif
247 1.1 rmind
248 1.1 rmind /*
249 1.1 rmind * We are about to add a fragment; increment frag count.
250 1.1 rmind */
251 1.1 rmind ip_nfrags++;
252 1.1 rmind
253 1.1 rmind /*
254 1.1 rmind * If first fragment to arrive, create a reassembly queue.
255 1.1 rmind */
256 1.1 rmind if (fp == NULL) {
257 1.1 rmind /*
258 1.1 rmind * Enforce upper bound on number of fragmented packets
259 1.1 rmind * for which we attempt reassembly: a) if maxfrag is 0,
260 1.1 rmind * never accept fragments b) if maxfrag is -1, accept
261 1.1 rmind * all fragments without limitation.
262 1.1 rmind */
263 1.1 rmind if (ip_maxfragpackets < 0)
264 1.1 rmind ;
265 1.1 rmind else if (ip_nfragpackets >= ip_maxfragpackets) {
266 1.1 rmind goto dropfrag;
267 1.1 rmind }
268 1.1 rmind ip_nfragpackets++;
269 1.3 rmind fp = malloc(sizeof(ipfr_queue_t), M_FTABLE, M_NOWAIT);
270 1.1 rmind if (fp == NULL) {
271 1.1 rmind goto dropfrag;
272 1.1 rmind }
273 1.3 rmind LIST_INSERT_HEAD(&ip_frags[hash], fp, ipq_q);
274 1.1 rmind fp->ipq_nfrags = 1;
275 1.1 rmind fp->ipq_ttl = IPFRAGTTL;
276 1.1 rmind fp->ipq_p = ipqe->ipqe_ip->ip_p;
277 1.1 rmind fp->ipq_id = ipqe->ipqe_ip->ip_id;
278 1.1 rmind fp->ipq_tos = ipqe->ipqe_ip->ip_tos;
279 1.1 rmind TAILQ_INIT(&fp->ipq_fragq);
280 1.1 rmind fp->ipq_src = ipqe->ipqe_ip->ip_src;
281 1.1 rmind fp->ipq_dst = ipqe->ipqe_ip->ip_dst;
282 1.1 rmind p = NULL;
283 1.1 rmind goto insert;
284 1.1 rmind } else {
285 1.1 rmind fp->ipq_nfrags++;
286 1.1 rmind }
287 1.1 rmind
288 1.1 rmind /*
289 1.1 rmind * Find a segment which begins after this one does.
290 1.1 rmind */
291 1.1 rmind for (p = NULL, q = TAILQ_FIRST(&fp->ipq_fragq); q != NULL;
292 1.1 rmind p = q, q = TAILQ_NEXT(q, ipqe_q))
293 1.1 rmind if (ntohs(q->ipqe_ip->ip_off) > ntohs(ipqe->ipqe_ip->ip_off))
294 1.1 rmind break;
295 1.1 rmind
296 1.1 rmind /*
297 1.1 rmind * If there is a preceding segment, it may provide some of our
298 1.1 rmind * data already. If so, drop the data from the incoming segment.
299 1.1 rmind * If it provides all of our data, drop us.
300 1.1 rmind */
301 1.1 rmind if (p != NULL) {
302 1.1 rmind i = ntohs(p->ipqe_ip->ip_off) + ntohs(p->ipqe_ip->ip_len) -
303 1.1 rmind ntohs(ipqe->ipqe_ip->ip_off);
304 1.1 rmind if (i > 0) {
305 1.1 rmind if (i >= ntohs(ipqe->ipqe_ip->ip_len)) {
306 1.1 rmind goto dropfrag;
307 1.1 rmind }
308 1.1 rmind m_adj(ipqe->ipqe_m, i);
309 1.1 rmind ipqe->ipqe_ip->ip_off =
310 1.1 rmind htons(ntohs(ipqe->ipqe_ip->ip_off) + i);
311 1.1 rmind ipqe->ipqe_ip->ip_len =
312 1.1 rmind htons(ntohs(ipqe->ipqe_ip->ip_len) - i);
313 1.1 rmind }
314 1.1 rmind }
315 1.1 rmind
316 1.1 rmind /*
317 1.1 rmind * While we overlap succeeding segments trim them or, if they are
318 1.1 rmind * completely covered, dequeue them.
319 1.1 rmind */
320 1.1 rmind for (; q != NULL &&
321 1.1 rmind ntohs(ipqe->ipqe_ip->ip_off) + ntohs(ipqe->ipqe_ip->ip_len) >
322 1.1 rmind ntohs(q->ipqe_ip->ip_off); q = nq) {
323 1.1 rmind i = (ntohs(ipqe->ipqe_ip->ip_off) +
324 1.1 rmind ntohs(ipqe->ipqe_ip->ip_len)) - ntohs(q->ipqe_ip->ip_off);
325 1.1 rmind if (i < ntohs(q->ipqe_ip->ip_len)) {
326 1.1 rmind q->ipqe_ip->ip_len =
327 1.1 rmind htons(ntohs(q->ipqe_ip->ip_len) - i);
328 1.1 rmind q->ipqe_ip->ip_off =
329 1.1 rmind htons(ntohs(q->ipqe_ip->ip_off) + i);
330 1.1 rmind m_adj(q->ipqe_m, i);
331 1.1 rmind break;
332 1.1 rmind }
333 1.1 rmind nq = TAILQ_NEXT(q, ipqe_q);
334 1.1 rmind m_freem(q->ipqe_m);
335 1.1 rmind TAILQ_REMOVE(&fp->ipq_fragq, q, ipqe_q);
336 1.4 rmind pool_cache_put(ipfren_cache, q);
337 1.1 rmind fp->ipq_nfrags--;
338 1.1 rmind ip_nfrags--;
339 1.1 rmind }
340 1.1 rmind
341 1.1 rmind insert:
342 1.1 rmind /*
343 1.1 rmind * Stick new segment in its place; check for complete reassembly.
344 1.1 rmind */
345 1.1 rmind if (p == NULL) {
346 1.1 rmind TAILQ_INSERT_HEAD(&fp->ipq_fragq, ipqe, ipqe_q);
347 1.1 rmind } else {
348 1.1 rmind TAILQ_INSERT_AFTER(&fp->ipq_fragq, p, ipqe, ipqe_q);
349 1.1 rmind }
350 1.1 rmind next = 0;
351 1.1 rmind for (p = NULL, q = TAILQ_FIRST(&fp->ipq_fragq); q != NULL;
352 1.1 rmind p = q, q = TAILQ_NEXT(q, ipqe_q)) {
353 1.1 rmind if (ntohs(q->ipqe_ip->ip_off) != next) {
354 1.4 rmind mutex_exit(&ipfr_lock);
355 1.1 rmind return NULL;
356 1.1 rmind }
357 1.1 rmind next += ntohs(q->ipqe_ip->ip_len);
358 1.1 rmind }
359 1.1 rmind if (p->ipqe_mff) {
360 1.4 rmind mutex_exit(&ipfr_lock);
361 1.1 rmind return NULL;
362 1.1 rmind }
363 1.1 rmind /*
364 1.4 rmind * Reassembly is complete. Check for a bogus message size.
365 1.1 rmind */
366 1.1 rmind q = TAILQ_FIRST(&fp->ipq_fragq);
367 1.1 rmind ip = q->ipqe_ip;
368 1.1 rmind if ((next + (ip->ip_hl << 2)) > IP_MAXPACKET) {
369 1.1 rmind IP_STATINC(IP_STAT_TOOLONG);
370 1.1 rmind ip_freef(fp);
371 1.4 rmind mutex_exit(&ipfr_lock);
372 1.1 rmind return NULL;
373 1.1 rmind }
374 1.4 rmind LIST_REMOVE(fp, ipq_q);
375 1.4 rmind ip_nfrags -= fp->ipq_nfrags;
376 1.4 rmind ip_nfragpackets--;
377 1.4 rmind mutex_exit(&ipfr_lock);
378 1.4 rmind
379 1.4 rmind /* Concatenate all fragments. */
380 1.1 rmind m = q->ipqe_m;
381 1.1 rmind t = m->m_next;
382 1.1 rmind m->m_next = NULL;
383 1.1 rmind m_cat(m, t);
384 1.1 rmind nq = TAILQ_NEXT(q, ipqe_q);
385 1.4 rmind pool_cache_put(ipfren_cache, q);
386 1.4 rmind
387 1.1 rmind for (q = nq; q != NULL; q = nq) {
388 1.1 rmind t = q->ipqe_m;
389 1.1 rmind nq = TAILQ_NEXT(q, ipqe_q);
390 1.4 rmind pool_cache_put(ipfren_cache, q);
391 1.1 rmind m_cat(m, t);
392 1.1 rmind }
393 1.4 rmind free(fp, M_FTABLE);
394 1.1 rmind
395 1.1 rmind /*
396 1.1 rmind * Create header for new packet by modifying header of first
397 1.1 rmind * packet. Dequeue and discard fragment reassembly header. Make
398 1.1 rmind * header visible.
399 1.1 rmind */
400 1.2 rmind ip->ip_len = htons((ip->ip_hl << 2) + next);
401 1.1 rmind ip->ip_src = fp->ipq_src;
402 1.1 rmind ip->ip_dst = fp->ipq_dst;
403 1.2 rmind
404 1.1 rmind m->m_len += (ip->ip_hl << 2);
405 1.1 rmind m->m_data -= (ip->ip_hl << 2);
406 1.4 rmind
407 1.4 rmind /* Fix up mbuf. XXX This should be done elsewhere. */
408 1.4 rmind if (m->m_flags & M_PKTHDR) {
409 1.1 rmind int plen = 0;
410 1.1 rmind for (t = m; t; t = t->m_next) {
411 1.1 rmind plen += t->m_len;
412 1.1 rmind }
413 1.1 rmind m->m_pkthdr.len = plen;
414 1.1 rmind m->m_pkthdr.csum_flags = 0;
415 1.1 rmind }
416 1.1 rmind return m;
417 1.1 rmind
418 1.1 rmind dropfrag:
419 1.1 rmind if (fp != NULL) {
420 1.1 rmind fp->ipq_nfrags--;
421 1.1 rmind }
422 1.1 rmind ip_nfrags--;
423 1.1 rmind IP_STATINC(IP_STAT_FRAGDROPPED);
424 1.4 rmind mutex_exit(&ipfr_lock);
425 1.4 rmind
426 1.4 rmind pool_cache_put(ipfren_cache, ipqe);
427 1.1 rmind m_freem(m);
428 1.1 rmind return NULL;
429 1.1 rmind }
430 1.1 rmind
431 1.1 rmind /*
432 1.1 rmind * ip_freef:
433 1.1 rmind *
434 1.1 rmind * Free a fragment reassembly header and all associated datagrams.
435 1.1 rmind */
436 1.2 rmind static void
437 1.3 rmind ip_freef(ipfr_queue_t *fp)
438 1.1 rmind {
439 1.4 rmind ipfr_qent_t *q;
440 1.1 rmind
441 1.4 rmind KASSERT(mutex_owned(&ipfr_lock));
442 1.1 rmind
443 1.4 rmind LIST_REMOVE(fp, ipq_q);
444 1.4 rmind ip_nfrags -= fp->ipq_nfrags;
445 1.4 rmind ip_nfragpackets--;
446 1.4 rmind
447 1.4 rmind while ((q = TAILQ_FIRST(&fp->ipq_fragq)) != NULL) {
448 1.4 rmind TAILQ_REMOVE(&fp->ipq_fragq, q, ipqe_q);
449 1.1 rmind m_freem(q->ipqe_m);
450 1.4 rmind pool_cache_put(ipfren_cache, q);
451 1.1 rmind }
452 1.1 rmind free(fp, M_FTABLE);
453 1.1 rmind }
454 1.1 rmind
455 1.1 rmind /*
456 1.1 rmind * ip_reass_ttl_decr:
457 1.1 rmind *
458 1.1 rmind * Decrement TTL of all reasembly queue entries by `ticks'. Count
459 1.1 rmind * number of distinct fragments (as opposed to partial, fragmented
460 1.1 rmind * datagrams) inthe reassembly queue. While we traverse the entire
461 1.1 rmind * reassembly queue, compute and return the median TTL over all
462 1.1 rmind * fragments.
463 1.1 rmind */
464 1.1 rmind static u_int
465 1.1 rmind ip_reass_ttl_decr(u_int ticks)
466 1.1 rmind {
467 1.1 rmind u_int nfrags, median, dropfraction, keepfraction;
468 1.3 rmind ipfr_queue_t *fp, *nfp;
469 1.1 rmind int i;
470 1.1 rmind
471 1.1 rmind nfrags = 0;
472 1.1 rmind memset(fragttl_histo, 0, sizeof(fragttl_histo));
473 1.1 rmind
474 1.1 rmind for (i = 0; i < IPREASS_HASH_SIZE; i++) {
475 1.3 rmind for (fp = LIST_FIRST(&ip_frags[i]); fp != NULL; fp = nfp) {
476 1.1 rmind fp->ipq_ttl = ((fp->ipq_ttl <= ticks) ?
477 1.1 rmind 0 : fp->ipq_ttl - ticks);
478 1.1 rmind nfp = LIST_NEXT(fp, ipq_q);
479 1.1 rmind if (fp->ipq_ttl == 0) {
480 1.1 rmind IP_STATINC(IP_STAT_FRAGTIMEOUT);
481 1.1 rmind ip_freef(fp);
482 1.1 rmind } else {
483 1.1 rmind nfrags += fp->ipq_nfrags;
484 1.1 rmind fragttl_histo[fp->ipq_ttl] += fp->ipq_nfrags;
485 1.1 rmind }
486 1.1 rmind }
487 1.1 rmind }
488 1.1 rmind
489 1.1 rmind KASSERT(ip_nfrags == nfrags);
490 1.1 rmind
491 1.1 rmind /* Find median (or other drop fraction) in histogram. */
492 1.1 rmind dropfraction = (ip_nfrags / 2);
493 1.1 rmind keepfraction = ip_nfrags - dropfraction;
494 1.1 rmind for (i = IPFRAGTTL, median = 0; i >= 0; i--) {
495 1.1 rmind median += fragttl_histo[i];
496 1.1 rmind if (median >= keepfraction)
497 1.1 rmind break;
498 1.1 rmind }
499 1.1 rmind
500 1.1 rmind /* Return TTL of median (or other fraction). */
501 1.1 rmind return (u_int)i;
502 1.1 rmind }
503 1.1 rmind
504 1.1 rmind static void
505 1.1 rmind ip_reass_drophalf(void)
506 1.1 rmind {
507 1.1 rmind u_int median_ticks;
508 1.1 rmind
509 1.4 rmind KASSERT(mutex_owned(&ipfr_lock));
510 1.4 rmind
511 1.1 rmind /*
512 1.1 rmind * Compute median TTL of all fragments, and count frags
513 1.1 rmind * with that TTL or lower (roughly half of all fragments).
514 1.1 rmind */
515 1.1 rmind median_ticks = ip_reass_ttl_decr(0);
516 1.1 rmind
517 1.1 rmind /* Drop half. */
518 1.1 rmind median_ticks = ip_reass_ttl_decr(median_ticks);
519 1.1 rmind }
520 1.1 rmind
521 1.1 rmind /*
522 1.1 rmind * ip_reass_drain: drain off all datagram fragments. Do not acquire
523 1.1 rmind * softnet_lock as can be called from hardware interrupt context.
524 1.1 rmind */
525 1.1 rmind void
526 1.1 rmind ip_reass_drain(void)
527 1.1 rmind {
528 1.1 rmind
529 1.1 rmind /*
530 1.1 rmind * We may be called from a device's interrupt context. If
531 1.1 rmind * the ipq is already busy, just bail out now.
532 1.1 rmind */
533 1.4 rmind if (mutex_tryenter(&ipfr_lock)) {
534 1.1 rmind /*
535 1.1 rmind * Drop half the total fragments now. If more mbufs are
536 1.1 rmind * needed, we will be called again soon.
537 1.1 rmind */
538 1.1 rmind ip_reass_drophalf();
539 1.4 rmind mutex_exit(&ipfr_lock);
540 1.1 rmind }
541 1.1 rmind }
542 1.1 rmind
543 1.1 rmind /*
544 1.1 rmind * ip_reass_slowtimo:
545 1.1 rmind *
546 1.1 rmind * If a timer expires on a reassembly queue, discard it.
547 1.1 rmind */
548 1.1 rmind void
549 1.1 rmind ip_reass_slowtimo(void)
550 1.1 rmind {
551 1.1 rmind static u_int dropscanidx = 0;
552 1.1 rmind u_int i, median_ttl;
553 1.1 rmind
554 1.4 rmind mutex_enter(&ipfr_lock);
555 1.1 rmind
556 1.1 rmind /* Age TTL of all fragments by 1 tick .*/
557 1.1 rmind median_ttl = ip_reass_ttl_decr(1);
558 1.1 rmind
559 1.1 rmind /* Make sure fragment limit is up-to-date. */
560 1.1 rmind CHECK_NMBCLUSTER_PARAMS();
561 1.1 rmind
562 1.1 rmind /* If we have too many fragments, drop the older half. */
563 1.1 rmind if (ip_nfrags > ip_maxfrags) {
564 1.1 rmind ip_reass_ttl_decr(median_ttl);
565 1.1 rmind }
566 1.1 rmind
567 1.1 rmind /*
568 1.1 rmind * If we are over the maximum number of fragmented packets (due to
569 1.1 rmind * the limit being lowered), drain off enough to get down to the
570 1.1 rmind * new limit. Start draining from the reassembly hashqueue most
571 1.1 rmind * recently drained.
572 1.1 rmind */
573 1.1 rmind if (ip_maxfragpackets < 0)
574 1.1 rmind ;
575 1.1 rmind else {
576 1.1 rmind int wrapped = 0;
577 1.1 rmind
578 1.1 rmind i = dropscanidx;
579 1.1 rmind while (ip_nfragpackets > ip_maxfragpackets && wrapped == 0) {
580 1.3 rmind while (LIST_FIRST(&ip_frags[i]) != NULL) {
581 1.3 rmind ip_freef(LIST_FIRST(&ip_frags[i]));
582 1.1 rmind }
583 1.1 rmind if (++i >= IPREASS_HASH_SIZE) {
584 1.1 rmind i = 0;
585 1.1 rmind }
586 1.1 rmind /*
587 1.1 rmind * Do not scan forever even if fragment counters are
588 1.1 rmind * wrong: stop after scanning entire reassembly queue.
589 1.1 rmind */
590 1.1 rmind if (i == dropscanidx) {
591 1.1 rmind wrapped = 1;
592 1.1 rmind }
593 1.1 rmind }
594 1.1 rmind dropscanidx = i;
595 1.1 rmind }
596 1.4 rmind mutex_exit(&ipfr_lock);
597 1.1 rmind }
598 1.2 rmind
599 1.2 rmind /*
600 1.2 rmind * ip_reass_packet: generic routine to perform IP reassembly.
601 1.2 rmind *
602 1.2 rmind * => Passed fragment should have IP_MF flag and/or offset set.
603 1.2 rmind * => Fragment should not have other than IP_MF flags set.
604 1.2 rmind *
605 1.2 rmind * => Returns 0 on success or error otherwise. When reassembly is complete,
606 1.2 rmind * m_final representing a constructed final packet is set.
607 1.2 rmind */
608 1.2 rmind int
609 1.2 rmind ip_reass_packet(struct mbuf *m, struct ip *ip, bool mff, struct mbuf **m_final)
610 1.2 rmind {
611 1.3 rmind ipfr_queue_t *fp;
612 1.3 rmind ipfr_qent_t *ipqe;
613 1.2 rmind u_int hash;
614 1.2 rmind
615 1.2 rmind /* Look for queue of fragments of this datagram. */
616 1.4 rmind mutex_enter(&ipfr_lock);
617 1.3 rmind hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
618 1.3 rmind LIST_FOREACH(fp, &ip_frags[hash], ipq_q) {
619 1.3 rmind if (ip->ip_id != fp->ipq_id)
620 1.3 rmind continue;
621 1.3 rmind if (!in_hosteq(ip->ip_src, fp->ipq_src))
622 1.3 rmind continue;
623 1.3 rmind if (!in_hosteq(ip->ip_dst, fp->ipq_dst))
624 1.3 rmind continue;
625 1.3 rmind if (ip->ip_p != fp->ipq_p)
626 1.3 rmind continue;
627 1.3 rmind break;
628 1.3 rmind }
629 1.2 rmind
630 1.2 rmind /* Make sure that TOS matches previous fragments. */
631 1.2 rmind if (fp && fp->ipq_tos != ip->ip_tos) {
632 1.2 rmind IP_STATINC(IP_STAT_BADFRAGS);
633 1.4 rmind mutex_exit(&ipfr_lock);
634 1.2 rmind return EINVAL;
635 1.2 rmind }
636 1.2 rmind
637 1.2 rmind /*
638 1.2 rmind * Create new entry and attempt to reassembly.
639 1.2 rmind */
640 1.2 rmind IP_STATINC(IP_STAT_FRAGMENTS);
641 1.4 rmind ipqe = pool_cache_get(ipfren_cache, PR_NOWAIT);
642 1.2 rmind if (ipqe == NULL) {
643 1.2 rmind IP_STATINC(IP_STAT_RCVMEMDROP);
644 1.4 rmind mutex_exit(&ipfr_lock);
645 1.2 rmind return ENOMEM;
646 1.2 rmind }
647 1.2 rmind ipqe->ipqe_mff = mff;
648 1.2 rmind ipqe->ipqe_m = m;
649 1.2 rmind ipqe->ipqe_ip = ip;
650 1.2 rmind
651 1.2 rmind *m_final = ip_reass(ipqe, fp, hash);
652 1.2 rmind if (*m_final) {
653 1.2 rmind /* Note if finally reassembled. */
654 1.2 rmind IP_STATINC(IP_STAT_REASSEMBLED);
655 1.2 rmind }
656 1.2 rmind return 0;
657 1.2 rmind }
658