Home | History | Annotate | Line # | Download | only in netinet
ip_reass.c revision 1.13
      1 /*	$NetBSD: ip_reass.c,v 1.13 2018/02/08 10:03:52 maxv Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1988, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the University nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  *
     31  *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
     32  */
     33 
     34 /*
     35  * IP reassembly.
     36  *
     37  * Additive-Increase/Multiplicative-Decrease (AIMD) strategy for IP
     38  * reassembly queue buffer managment.
     39  *
     40  * We keep a count of total IP fragments (NB: not fragmented packets),
     41  * awaiting reassembly (ip_nfrags) and a limit (ip_maxfrags) on fragments.
     42  * If ip_nfrags exceeds ip_maxfrags the limit, we drop half the total
     43  * fragments in reassembly queues.  This AIMD policy avoids repeatedly
     44  * deleting single packets under heavy fragmentation load (e.g., from lossy
     45  * NFS peers).
     46  */
     47 
     48 #include <sys/cdefs.h>
     49 __KERNEL_RCSID(0, "$NetBSD: ip_reass.c,v 1.13 2018/02/08 10:03:52 maxv Exp $");
     50 
     51 #include <sys/param.h>
     52 #include <sys/types.h>
     53 
     54 #include <sys/malloc.h>
     55 #include <sys/mbuf.h>
     56 #include <sys/mutex.h>
     57 #include <sys/pool.h>
     58 #include <sys/queue.h>
     59 #include <sys/sysctl.h>
     60 #include <sys/systm.h>
     61 
     62 #include <net/if.h>
     63 
     64 #include <netinet/in.h>
     65 #include <netinet/in_systm.h>
     66 #include <netinet/ip.h>
     67 #include <netinet/in_pcb.h>
     68 #include <netinet/ip_var.h>
     69 #include <netinet/ip_private.h>
     70 #include <netinet/in_var.h>
     71 
     72 /*
     73  * IP reassembly queue structures.  Each fragment being reassembled is
     74  * attached to one of these structures.  They are timed out after TTL
     75  * drops to 0, and may also be reclaimed if memory becomes tight.
     76  */
     77 
     78 typedef struct ipfr_qent {
     79 	TAILQ_ENTRY(ipfr_qent)	ipqe_q;
     80 	struct ip *		ipqe_ip;
     81 	struct mbuf *		ipqe_m;
     82 	bool			ipqe_mff;
     83 } ipfr_qent_t;
     84 
     85 TAILQ_HEAD(ipfr_qent_head, ipfr_qent);
     86 
     87 typedef struct ipfr_queue {
     88 	LIST_ENTRY(ipfr_queue)	ipq_q;		/* to other reass headers */
     89 	struct ipfr_qent_head	ipq_fragq;	/* queue of fragment entries */
     90 	uint8_t			ipq_ttl;	/* time for reass q to live */
     91 	uint8_t			ipq_p;		/* protocol of this fragment */
     92 	uint16_t		ipq_id;		/* sequence id for reassembly */
     93 	struct in_addr		ipq_src;
     94 	struct in_addr		ipq_dst;
     95 	uint16_t		ipq_nfrags;	/* frags in this queue entry */
     96 	uint8_t 		ipq_tos;	/* TOS of this fragment */
     97 } ipfr_queue_t;
     98 
     99 /*
    100  * Hash table of IP reassembly queues.
    101  */
    102 #define	IPREASS_HASH_SHIFT	6
    103 #define	IPREASS_HASH_SIZE	(1 << IPREASS_HASH_SHIFT)
    104 #define	IPREASS_HASH_MASK	(IPREASS_HASH_SIZE - 1)
    105 #define	IPREASS_HASH(x, y) \
    106 	(((((x) & 0xf) | ((((x) >> 8) & 0xf) << 4)) ^ (y)) & IPREASS_HASH_MASK)
    107 
    108 static LIST_HEAD(, ipfr_queue)	ip_frags[IPREASS_HASH_SIZE];
    109 static pool_cache_t	ipfren_cache;
    110 static kmutex_t		ipfr_lock;
    111 
    112 /* Number of packets in reassembly queue and total number of fragments. */
    113 static int		ip_nfragpackets;
    114 static int		ip_nfrags;
    115 
    116 /* Limits on packet and fragments. */
    117 static int		ip_maxfragpackets;
    118 static int		ip_maxfrags;
    119 
    120 /*
    121  * Cached copy of nmbclusters.  If nbclusters is different, recalculate
    122  * IP parameters derived from nmbclusters.
    123  */
    124 static int		ip_nmbclusters;
    125 
    126 /*
    127  * IP reassembly TTL machinery for multiplicative drop.
    128  */
    129 static u_int		fragttl_histo[IPFRAGTTL + 1];
    130 
    131 static struct sysctllog *ip_reass_sysctllog;
    132 
    133 void			sysctl_ip_reass_setup(void);
    134 static void		ip_nmbclusters_changed(void);
    135 
    136 static struct mbuf *	ip_reass(ipfr_qent_t *, ipfr_queue_t *, u_int);
    137 static u_int		ip_reass_ttl_decr(u_int ticks);
    138 static void		ip_reass_drophalf(void);
    139 static void		ip_freef(ipfr_queue_t *);
    140 
    141 /*
    142  * ip_reass_init:
    143  *
    144  *	Initialization of IP reassembly mechanism.
    145  */
    146 void
    147 ip_reass_init(void)
    148 {
    149 	int i;
    150 
    151 	ipfren_cache = pool_cache_init(sizeof(ipfr_qent_t), coherency_unit,
    152 	    0, 0, "ipfrenpl", NULL, IPL_NET, NULL, NULL, NULL);
    153 	mutex_init(&ipfr_lock, MUTEX_DEFAULT, IPL_VM);
    154 
    155 	for (i = 0; i < IPREASS_HASH_SIZE; i++) {
    156 		LIST_INIT(&ip_frags[i]);
    157 	}
    158 	ip_maxfragpackets = 200;
    159 	ip_maxfrags = 0;
    160 	ip_nmbclusters_changed();
    161 
    162 	sysctl_ip_reass_setup();
    163 }
    164 
    165 void
    166 sysctl_ip_reass_setup(void)
    167 {
    168 
    169 	sysctl_createv(&ip_reass_sysctllog, 0, NULL, NULL,
    170 		CTLFLAG_PERMANENT,
    171 		CTLTYPE_NODE, "inet",
    172 		SYSCTL_DESCR("PF_INET related settings"),
    173 		NULL, 0, NULL, 0,
    174 		CTL_NET, PF_INET, CTL_EOL);
    175 	sysctl_createv(&ip_reass_sysctllog, 0, NULL, NULL,
    176 		CTLFLAG_PERMANENT,
    177 		CTLTYPE_NODE, "ip",
    178 		SYSCTL_DESCR("IPv4 related settings"),
    179 		NULL, 0, NULL, 0,
    180 		CTL_NET, PF_INET, IPPROTO_IP, CTL_EOL);
    181 
    182 	sysctl_createv(&ip_reass_sysctllog, 0, NULL, NULL,
    183 		CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    184 		CTLTYPE_INT, "maxfragpackets",
    185 		SYSCTL_DESCR("Maximum number of fragments to retain for "
    186 			     "possible reassembly"),
    187 		NULL, 0, &ip_maxfragpackets, 0,
    188 		CTL_NET, PF_INET, IPPROTO_IP, IPCTL_MAXFRAGPACKETS, CTL_EOL);
    189 }
    190 
    191 #define CHECK_NMBCLUSTER_PARAMS()				\
    192 do {								\
    193 	if (__predict_false(ip_nmbclusters != nmbclusters))	\
    194 		ip_nmbclusters_changed();			\
    195 } while (/*CONSTCOND*/0)
    196 
    197 /*
    198  * Compute IP limits derived from the value of nmbclusters.
    199  */
    200 static void
    201 ip_nmbclusters_changed(void)
    202 {
    203 	ip_maxfrags = nmbclusters / 4;
    204 	ip_nmbclusters = nmbclusters;
    205 }
    206 
    207 /*
    208  * ip_reass:
    209  *
    210  *	Take incoming datagram fragment and try to reassemble it into whole
    211  *	datagram.  If a chain for reassembly of this datagram already exists,
    212  *	then it is given as 'fp'; otherwise have to make a chain.
    213  */
    214 struct mbuf *
    215 ip_reass(ipfr_qent_t *ipqe, ipfr_queue_t *fp, const u_int hash)
    216 {
    217 	struct ip *ip = ipqe->ipqe_ip, *qip;
    218 	const int hlen = ip->ip_hl << 2;
    219 	struct mbuf *m = ipqe->ipqe_m, *t;
    220 	ipfr_qent_t *nq, *p, *q;
    221 	int i, next;
    222 
    223 	KASSERT(mutex_owned(&ipfr_lock));
    224 
    225 	/*
    226 	 * Presence of header sizes in mbufs would confuse code below.
    227 	 */
    228 	m->m_data += hlen;
    229 	m->m_len -= hlen;
    230 
    231 #ifdef	notyet
    232 	/* Make sure fragment limit is up-to-date. */
    233 	CHECK_NMBCLUSTER_PARAMS();
    234 
    235 	/* If we have too many fragments, drop the older half. */
    236 	if (ip_nfrags >= ip_maxfrags) {
    237 		ip_reass_drophalf(void);
    238 	}
    239 #endif
    240 
    241 	/*
    242 	 * We are about to add a fragment; increment frag count.
    243 	 */
    244 	ip_nfrags++;
    245 
    246 	/*
    247 	 * If first fragment to arrive, create a reassembly queue.
    248 	 */
    249 	if (fp == NULL) {
    250 		/*
    251 		 * Enforce upper bound on number of fragmented packets
    252 		 * for which we attempt reassembly:  a) if maxfrag is 0,
    253 		 * never accept fragments  b) if maxfrag is -1, accept
    254 		 * all fragments without limitation.
    255 		 */
    256 		if (ip_maxfragpackets < 0)
    257 			;
    258 		else if (ip_nfragpackets >= ip_maxfragpackets) {
    259 			goto dropfrag;
    260 		}
    261 		fp = malloc(sizeof(ipfr_queue_t), M_FTABLE, M_NOWAIT);
    262 		if (fp == NULL) {
    263 			goto dropfrag;
    264 		}
    265 		ip_nfragpackets++;
    266 		TAILQ_INIT(&fp->ipq_fragq);
    267 		fp->ipq_nfrags = 1;
    268 		fp->ipq_ttl = IPFRAGTTL;
    269 		fp->ipq_p = ip->ip_p;
    270 		fp->ipq_id = ip->ip_id;
    271 		fp->ipq_tos = ip->ip_tos;
    272 		fp->ipq_src = ip->ip_src;
    273 		fp->ipq_dst = ip->ip_dst;
    274 		LIST_INSERT_HEAD(&ip_frags[hash], fp, ipq_q);
    275 		p = NULL;
    276 		goto insert;
    277 	} else {
    278 		fp->ipq_nfrags++;
    279 	}
    280 
    281 	/*
    282 	 * Find a segment which begins after this one does.
    283 	 */
    284 	TAILQ_FOREACH(q, &fp->ipq_fragq, ipqe_q) {
    285 		if (ntohs(q->ipqe_ip->ip_off) > ntohs(ip->ip_off))
    286 			break;
    287 	}
    288 	if (q != NULL) {
    289 		p = TAILQ_PREV(q, ipfr_qent_head, ipqe_q);
    290 	} else {
    291 		p = TAILQ_LAST(&fp->ipq_fragq, ipfr_qent_head);
    292 	}
    293 
    294 	/*
    295 	 * If there is a preceding segment, it may provide some of our
    296 	 * data already.  If so, drop the data from the incoming segment.
    297 	 * If it provides all of our data, drop us.
    298 	 */
    299 	if (p != NULL) {
    300 		i = ntohs(p->ipqe_ip->ip_off) + ntohs(p->ipqe_ip->ip_len) -
    301 		    ntohs(ip->ip_off);
    302 		if (i > 0) {
    303 			if (i >= ntohs(ip->ip_len)) {
    304 				goto dropfrag;
    305 			}
    306 			m_adj(ipqe->ipqe_m, i);
    307 			ip->ip_off = htons(ntohs(ip->ip_off) + i);
    308 			ip->ip_len = htons(ntohs(ip->ip_len) - i);
    309 		}
    310 	}
    311 
    312 	/*
    313 	 * While we overlap succeeding segments trim them or, if they are
    314 	 * completely covered, dequeue them.
    315 	 */
    316 	while (q != NULL) {
    317 		size_t end;
    318 
    319 		qip = q->ipqe_ip;
    320 		end = ntohs(ip->ip_off) + ntohs(ip->ip_len);
    321 		if (end <= ntohs(qip->ip_off)) {
    322 			break;
    323 		}
    324 		i = end - ntohs(qip->ip_off);
    325 		if (i < ntohs(qip->ip_len)) {
    326 			qip->ip_len = htons(ntohs(qip->ip_len) - i);
    327 			qip->ip_off = htons(ntohs(qip->ip_off) + i);
    328 			m_adj(q->ipqe_m, i);
    329 			break;
    330 		}
    331 		nq = TAILQ_NEXT(q, ipqe_q);
    332 		m_freem(q->ipqe_m);
    333 		TAILQ_REMOVE(&fp->ipq_fragq, q, ipqe_q);
    334 		pool_cache_put(ipfren_cache, q);
    335 		fp->ipq_nfrags--;
    336 		ip_nfrags--;
    337 		q = nq;
    338 	}
    339 
    340 insert:
    341 	/*
    342 	 * Stick new segment in its place; check for complete reassembly.
    343 	 */
    344 	if (p == NULL) {
    345 		TAILQ_INSERT_HEAD(&fp->ipq_fragq, ipqe, ipqe_q);
    346 	} else {
    347 		TAILQ_INSERT_AFTER(&fp->ipq_fragq, p, ipqe, ipqe_q);
    348 	}
    349 	next = 0;
    350 	TAILQ_FOREACH(q, &fp->ipq_fragq, ipqe_q) {
    351 		qip = q->ipqe_ip;
    352 		if (ntohs(qip->ip_off) != next) {
    353 			mutex_exit(&ipfr_lock);
    354 			return NULL;
    355 		}
    356 		next += ntohs(qip->ip_len);
    357 	}
    358 	p = TAILQ_LAST(&fp->ipq_fragq, ipfr_qent_head);
    359 	if (p->ipqe_mff) {
    360 		mutex_exit(&ipfr_lock);
    361 		return NULL;
    362 	}
    363 
    364 	/*
    365 	 * Reassembly is complete.  Check for a bogus message size.
    366 	 */
    367 	q = TAILQ_FIRST(&fp->ipq_fragq);
    368 	ip = q->ipqe_ip;
    369 	if ((next + (ip->ip_hl << 2)) > IP_MAXPACKET) {
    370 		IP_STATINC(IP_STAT_TOOLONG);
    371 		ip_freef(fp);
    372 		mutex_exit(&ipfr_lock);
    373 		return NULL;
    374 	}
    375 	LIST_REMOVE(fp, ipq_q);
    376 	ip_nfrags -= fp->ipq_nfrags;
    377 	ip_nfragpackets--;
    378 	mutex_exit(&ipfr_lock);
    379 
    380 	/* Concatenate all fragments. */
    381 	m = q->ipqe_m;
    382 	t = m->m_next;
    383 	m->m_next = NULL;
    384 	m_cat(m, t);
    385 	nq = TAILQ_NEXT(q, ipqe_q);
    386 	pool_cache_put(ipfren_cache, q);
    387 
    388 	for (q = nq; q != NULL; q = nq) {
    389 		t = q->ipqe_m;
    390 		nq = TAILQ_NEXT(q, ipqe_q);
    391 		pool_cache_put(ipfren_cache, q);
    392 		m_cat(m, t);
    393 	}
    394 
    395 	/*
    396 	 * Create header for new packet by modifying header of first
    397 	 * packet.  Dequeue and discard fragment reassembly header.  Make
    398 	 * header visible.
    399 	 */
    400 	ip->ip_len = htons((ip->ip_hl << 2) + next);
    401 	ip->ip_src = fp->ipq_src;
    402 	ip->ip_dst = fp->ipq_dst;
    403 	free(fp, M_FTABLE);
    404 
    405 	m->m_len += (ip->ip_hl << 2);
    406 	m->m_data -= (ip->ip_hl << 2);
    407 
    408 	/* Fix up mbuf.  XXX This should be done elsewhere. */
    409 	if (m->m_flags & M_PKTHDR) {
    410 		int plen = 0;
    411 		for (t = m; t; t = t->m_next) {
    412 			plen += t->m_len;
    413 		}
    414 		m->m_pkthdr.len = plen;
    415 		m->m_pkthdr.csum_flags = 0;
    416 	}
    417 	return m;
    418 
    419 dropfrag:
    420 	if (fp != NULL) {
    421 		fp->ipq_nfrags--;
    422 	}
    423 	ip_nfrags--;
    424 	IP_STATINC(IP_STAT_FRAGDROPPED);
    425 	mutex_exit(&ipfr_lock);
    426 
    427 	pool_cache_put(ipfren_cache, ipqe);
    428 	m_freem(m);
    429 	return NULL;
    430 }
    431 
    432 /*
    433  * ip_freef:
    434  *
    435  *	Free a fragment reassembly header and all associated datagrams.
    436  */
    437 static void
    438 ip_freef(ipfr_queue_t *fp)
    439 {
    440 	ipfr_qent_t *q;
    441 
    442 	KASSERT(mutex_owned(&ipfr_lock));
    443 
    444 	LIST_REMOVE(fp, ipq_q);
    445 	ip_nfrags -= fp->ipq_nfrags;
    446 	ip_nfragpackets--;
    447 
    448 	while ((q = TAILQ_FIRST(&fp->ipq_fragq)) != NULL) {
    449 		TAILQ_REMOVE(&fp->ipq_fragq, q, ipqe_q);
    450 		m_freem(q->ipqe_m);
    451 		pool_cache_put(ipfren_cache, q);
    452 	}
    453 	free(fp, M_FTABLE);
    454 }
    455 
    456 /*
    457  * ip_reass_ttl_decr:
    458  *
    459  *	Decrement TTL of all reasembly queue entries by `ticks'.  Count
    460  *	number of distinct fragments (as opposed to partial, fragmented
    461  *	datagrams) inthe reassembly queue.  While we  traverse the entire
    462  *	reassembly queue, compute and return the median TTL over all
    463  *	fragments.
    464  */
    465 static u_int
    466 ip_reass_ttl_decr(u_int ticks)
    467 {
    468 	u_int nfrags, median, dropfraction, keepfraction;
    469 	ipfr_queue_t *fp, *nfp;
    470 	int i;
    471 
    472 	nfrags = 0;
    473 	memset(fragttl_histo, 0, sizeof(fragttl_histo));
    474 
    475 	for (i = 0; i < IPREASS_HASH_SIZE; i++) {
    476 		for (fp = LIST_FIRST(&ip_frags[i]); fp != NULL; fp = nfp) {
    477 			fp->ipq_ttl = ((fp->ipq_ttl <= ticks) ?
    478 			    0 : fp->ipq_ttl - ticks);
    479 			nfp = LIST_NEXT(fp, ipq_q);
    480 			if (fp->ipq_ttl == 0) {
    481 				IP_STATINC(IP_STAT_FRAGTIMEOUT);
    482 				ip_freef(fp);
    483 			} else {
    484 				nfrags += fp->ipq_nfrags;
    485 				fragttl_histo[fp->ipq_ttl] += fp->ipq_nfrags;
    486 			}
    487 		}
    488 	}
    489 
    490 	KASSERT(ip_nfrags == nfrags);
    491 
    492 	/* Find median (or other drop fraction) in histogram. */
    493 	dropfraction = (ip_nfrags / 2);
    494 	keepfraction = ip_nfrags - dropfraction;
    495 	for (i = IPFRAGTTL, median = 0; i >= 0; i--) {
    496 		median += fragttl_histo[i];
    497 		if (median >= keepfraction)
    498 			break;
    499 	}
    500 
    501 	/* Return TTL of median (or other fraction). */
    502 	return (u_int)i;
    503 }
    504 
    505 static void
    506 ip_reass_drophalf(void)
    507 {
    508 	u_int median_ticks;
    509 
    510 	KASSERT(mutex_owned(&ipfr_lock));
    511 
    512 	/*
    513 	 * Compute median TTL of all fragments, and count frags
    514 	 * with that TTL or lower (roughly half of all fragments).
    515 	 */
    516 	median_ticks = ip_reass_ttl_decr(0);
    517 
    518 	/* Drop half. */
    519 	median_ticks = ip_reass_ttl_decr(median_ticks);
    520 }
    521 
    522 /*
    523  * ip_reass_drain: drain off all datagram fragments.  Do not acquire
    524  * softnet_lock as can be called from hardware interrupt context.
    525  */
    526 void
    527 ip_reass_drain(void)
    528 {
    529 
    530 	/*
    531 	 * We may be called from a device's interrupt context.  If
    532 	 * the ipq is already busy, just bail out now.
    533 	 */
    534 	if (mutex_tryenter(&ipfr_lock)) {
    535 		/*
    536 		 * Drop half the total fragments now. If more mbufs are
    537 		 * needed, we will be called again soon.
    538 		 */
    539 		ip_reass_drophalf();
    540 		mutex_exit(&ipfr_lock);
    541 	}
    542 }
    543 
    544 /*
    545  * ip_reass_slowtimo:
    546  *
    547  *	If a timer expires on a reassembly queue, discard it.
    548  */
    549 void
    550 ip_reass_slowtimo(void)
    551 {
    552 	static u_int dropscanidx = 0;
    553 	u_int i, median_ttl;
    554 
    555 	mutex_enter(&ipfr_lock);
    556 
    557 	/* Age TTL of all fragments by 1 tick .*/
    558 	median_ttl = ip_reass_ttl_decr(1);
    559 
    560 	/* Make sure fragment limit is up-to-date. */
    561 	CHECK_NMBCLUSTER_PARAMS();
    562 
    563 	/* If we have too many fragments, drop the older half. */
    564 	if (ip_nfrags > ip_maxfrags) {
    565 		ip_reass_ttl_decr(median_ttl);
    566 	}
    567 
    568 	/*
    569 	 * If we are over the maximum number of fragmented packets (due to
    570 	 * the limit being lowered), drain off enough to get down to the
    571 	 * new limit.  Start draining from the reassembly hashqueue most
    572 	 * recently drained.
    573 	 */
    574 	if (ip_maxfragpackets < 0)
    575 		;
    576 	else {
    577 		int wrapped = 0;
    578 
    579 		i = dropscanidx;
    580 		while (ip_nfragpackets > ip_maxfragpackets && wrapped == 0) {
    581 			while (LIST_FIRST(&ip_frags[i]) != NULL) {
    582 				ip_freef(LIST_FIRST(&ip_frags[i]));
    583 			}
    584 			if (++i >= IPREASS_HASH_SIZE) {
    585 				i = 0;
    586 			}
    587 			/*
    588 			 * Do not scan forever even if fragment counters are
    589 			 * wrong: stop after scanning entire reassembly queue.
    590 			 */
    591 			if (i == dropscanidx) {
    592 				wrapped = 1;
    593 			}
    594 		}
    595 		dropscanidx = i;
    596 	}
    597 	mutex_exit(&ipfr_lock);
    598 }
    599 
    600 /*
    601  * ip_reass_packet: generic routine to perform IP reassembly.
    602  *
    603  * => Passed fragment should have IP_MF flag and/or offset set.
    604  * => Fragment should not have other than IP_MF flags set.
    605  *
    606  * => Returns 0 on success or error otherwise.
    607  * => On complete, m0 represents a constructed final packet.
    608  */
    609 int
    610 ip_reass_packet(struct mbuf **m0, struct ip *ip)
    611 {
    612 	const int hlen = ip->ip_hl << 2;
    613 	const int len = ntohs(ip->ip_len);
    614 	struct mbuf *m = *m0;
    615 	ipfr_queue_t *fp;
    616 	ipfr_qent_t *ipqe;
    617 	u_int hash, off, flen;
    618 	bool mff;
    619 
    620 	/*
    621 	 * Prevent TCP blind data attacks by not allowing non-initial
    622 	 * fragments to start at less than 68 bytes (minimal fragment
    623 	 * size) and making sure the first fragment is at least 68
    624 	 * bytes.
    625 	 */
    626 	off = (ntohs(ip->ip_off) & IP_OFFMASK) << 3;
    627 	if ((off > 0 ? off + hlen : len) < IP_MINFRAGSIZE - 1) {
    628 		IP_STATINC(IP_STAT_BADFRAGS);
    629 		return EINVAL;
    630 	}
    631 
    632 	if (off + len > IP_MAXPACKET) {
    633 		IP_STATINC(IP_STAT_TOOLONG);
    634 		return EINVAL;
    635 	}
    636 
    637 	/*
    638 	 * Fragment length and MF flag.  Make sure that fragments have
    639 	 * a data length which is non-zero and multiple of 8 bytes.
    640 	 */
    641 	flen = ntohs(ip->ip_len) - hlen;
    642 	mff = (ip->ip_off & htons(IP_MF)) != 0;
    643 	if (mff && (flen == 0 || (flen & 0x7) != 0)) {
    644 		IP_STATINC(IP_STAT_BADFRAGS);
    645 		return EINVAL;
    646 	}
    647 
    648 	/*
    649 	 * Adjust total IP length to not reflect header and convert
    650 	 * offset of this to bytes.  XXX: clobbers struct ip.
    651 	 */
    652 	ip->ip_len = htons(flen);
    653 	ip->ip_off = htons(off);
    654 
    655 	/* Look for queue of fragments of this datagram. */
    656 	mutex_enter(&ipfr_lock);
    657 	hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
    658 	LIST_FOREACH(fp, &ip_frags[hash], ipq_q) {
    659 		if (ip->ip_id != fp->ipq_id)
    660 			continue;
    661 		if (!in_hosteq(ip->ip_src, fp->ipq_src))
    662 			continue;
    663 		if (!in_hosteq(ip->ip_dst, fp->ipq_dst))
    664 			continue;
    665 		if (ip->ip_p != fp->ipq_p)
    666 			continue;
    667 		break;
    668 	}
    669 
    670 	/* Make sure that TOS matches previous fragments. */
    671 	if (fp && fp->ipq_tos != ip->ip_tos) {
    672 		IP_STATINC(IP_STAT_BADFRAGS);
    673 		mutex_exit(&ipfr_lock);
    674 		return EINVAL;
    675 	}
    676 
    677 	/*
    678 	 * Create new entry and attempt to reassembly.
    679 	 */
    680 	IP_STATINC(IP_STAT_FRAGMENTS);
    681 	ipqe = pool_cache_get(ipfren_cache, PR_NOWAIT);
    682 	if (ipqe == NULL) {
    683 		IP_STATINC(IP_STAT_RCVMEMDROP);
    684 		mutex_exit(&ipfr_lock);
    685 		return ENOMEM;
    686 	}
    687 	ipqe->ipqe_mff = mff;
    688 	ipqe->ipqe_m = m;
    689 	ipqe->ipqe_ip = ip;
    690 
    691 	*m0 = ip_reass(ipqe, fp, hash);
    692 	if (*m0) {
    693 		/* Note that finally reassembled. */
    694 		IP_STATINC(IP_STAT_REASSEMBLED);
    695 	}
    696 	return 0;
    697 }
    698