Home | History | Annotate | Line # | Download | only in netinet
ip_reass.c revision 1.13.2.3
      1 /*	$NetBSD: ip_reass.c,v 1.13.2.3 2018/05/21 04:36:16 pgoyette Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1988, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the University nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  *
     31  *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
     32  */
     33 
     34 /*
     35  * IP reassembly.
     36  *
     37  * Additive-Increase/Multiplicative-Decrease (AIMD) strategy for IP
     38  * reassembly queue buffer managment.
     39  *
     40  * We keep a count of total IP fragments (NB: not fragmented packets),
     41  * awaiting reassembly (ip_nfrags) and a limit (ip_maxfrags) on fragments.
     42  * If ip_nfrags exceeds ip_maxfrags the limit, we drop half the total
     43  * fragments in reassembly queues.  This AIMD policy avoids repeatedly
     44  * deleting single packets under heavy fragmentation load (e.g., from lossy
     45  * NFS peers).
     46  */
     47 
     48 #include <sys/cdefs.h>
     49 __KERNEL_RCSID(0, "$NetBSD: ip_reass.c,v 1.13.2.3 2018/05/21 04:36:16 pgoyette Exp $");
     50 
     51 #include <sys/param.h>
     52 #include <sys/types.h>
     53 
     54 #include <sys/malloc.h>
     55 #include <sys/mbuf.h>
     56 #include <sys/mutex.h>
     57 #include <sys/pool.h>
     58 #include <sys/queue.h>
     59 #include <sys/sysctl.h>
     60 #include <sys/systm.h>
     61 
     62 #include <net/if.h>
     63 
     64 #include <netinet/in.h>
     65 #include <netinet/in_systm.h>
     66 #include <netinet/ip.h>
     67 #include <netinet/in_pcb.h>
     68 #include <netinet/ip_var.h>
     69 #include <netinet/ip_private.h>
     70 #include <netinet/in_var.h>
     71 
     72 /*
     73  * IP reassembly queue structures.  Each fragment being reassembled is
     74  * attached to one of these structures.  They are timed out after TTL
     75  * drops to 0, and may also be reclaimed if memory becomes tight.
     76  */
     77 
     78 typedef struct ipfr_qent {
     79 	TAILQ_ENTRY(ipfr_qent)	ipqe_q;
     80 	struct ip *		ipqe_ip;
     81 	struct mbuf *		ipqe_m;
     82 	bool			ipqe_mff;
     83 } ipfr_qent_t;
     84 
     85 TAILQ_HEAD(ipfr_qent_head, ipfr_qent);
     86 
     87 typedef struct ipfr_queue {
     88 	LIST_ENTRY(ipfr_queue)	ipq_q;		/* to other reass headers */
     89 	struct ipfr_qent_head	ipq_fragq;	/* queue of fragment entries */
     90 	uint8_t			ipq_ttl;	/* time for reass q to live */
     91 	uint8_t			ipq_p;		/* protocol of this fragment */
     92 	uint16_t		ipq_id;		/* sequence id for reassembly */
     93 	struct in_addr		ipq_src;
     94 	struct in_addr		ipq_dst;
     95 	uint16_t		ipq_nfrags;	/* frags in this queue entry */
     96 	uint8_t			ipq_tos;	/* TOS of this fragment */
     97 	int			ipq_ipsec;	/* IPsec flags */
     98 } ipfr_queue_t;
     99 
    100 /*
    101  * Hash table of IP reassembly queues.
    102  */
    103 #define	IPREASS_HASH_SHIFT	6
    104 #define	IPREASS_HASH_SIZE	(1 << IPREASS_HASH_SHIFT)
    105 #define	IPREASS_HASH_MASK	(IPREASS_HASH_SIZE - 1)
    106 #define	IPREASS_HASH(x, y) \
    107 	(((((x) & 0xf) | ((((x) >> 8) & 0xf) << 4)) ^ (y)) & IPREASS_HASH_MASK)
    108 
    109 static LIST_HEAD(, ipfr_queue)	ip_frags[IPREASS_HASH_SIZE];
    110 static pool_cache_t	ipfren_cache;
    111 static kmutex_t		ipfr_lock;
    112 
    113 /* Number of packets in reassembly queue and total number of fragments. */
    114 static int		ip_nfragpackets;
    115 static int		ip_nfrags;
    116 
    117 /* Limits on packet and fragments. */
    118 static int		ip_maxfragpackets;
    119 static int		ip_maxfrags;
    120 
    121 /*
    122  * Cached copy of nmbclusters.  If nbclusters is different, recalculate
    123  * IP parameters derived from nmbclusters.
    124  */
    125 static int		ip_nmbclusters;
    126 
    127 /*
    128  * IP reassembly TTL machinery for multiplicative drop.
    129  */
    130 static u_int		fragttl_histo[IPFRAGTTL + 1];
    131 
    132 static struct sysctllog *ip_reass_sysctllog;
    133 
    134 void			sysctl_ip_reass_setup(void);
    135 static void		ip_nmbclusters_changed(void);
    136 
    137 static struct mbuf *	ip_reass(ipfr_qent_t *, ipfr_queue_t *, u_int);
    138 static u_int		ip_reass_ttl_decr(u_int ticks);
    139 static void		ip_reass_drophalf(void);
    140 static void		ip_freef(ipfr_queue_t *);
    141 
    142 /*
    143  * ip_reass_init:
    144  *
    145  *	Initialization of IP reassembly mechanism.
    146  */
    147 void
    148 ip_reass_init(void)
    149 {
    150 	int i;
    151 
    152 	ipfren_cache = pool_cache_init(sizeof(ipfr_qent_t), coherency_unit,
    153 	    0, 0, "ipfrenpl", NULL, IPL_NET, NULL, NULL, NULL);
    154 	mutex_init(&ipfr_lock, MUTEX_DEFAULT, IPL_VM);
    155 
    156 	for (i = 0; i < IPREASS_HASH_SIZE; i++) {
    157 		LIST_INIT(&ip_frags[i]);
    158 	}
    159 	ip_maxfragpackets = 200;
    160 	ip_maxfrags = 0;
    161 	ip_nmbclusters_changed();
    162 
    163 	sysctl_ip_reass_setup();
    164 }
    165 
    166 void
    167 sysctl_ip_reass_setup(void)
    168 {
    169 
    170 	sysctl_createv(&ip_reass_sysctllog, 0, NULL, NULL,
    171 		CTLFLAG_PERMANENT,
    172 		CTLTYPE_NODE, "inet",
    173 		SYSCTL_DESCR("PF_INET related settings"),
    174 		NULL, 0, NULL, 0,
    175 		CTL_NET, PF_INET, CTL_EOL);
    176 	sysctl_createv(&ip_reass_sysctllog, 0, NULL, NULL,
    177 		CTLFLAG_PERMANENT,
    178 		CTLTYPE_NODE, "ip",
    179 		SYSCTL_DESCR("IPv4 related settings"),
    180 		NULL, 0, NULL, 0,
    181 		CTL_NET, PF_INET, IPPROTO_IP, CTL_EOL);
    182 
    183 	sysctl_createv(&ip_reass_sysctllog, 0, NULL, NULL,
    184 		CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    185 		CTLTYPE_INT, "maxfragpackets",
    186 		SYSCTL_DESCR("Maximum number of fragments to retain for "
    187 			     "possible reassembly"),
    188 		NULL, 0, &ip_maxfragpackets, 0,
    189 		CTL_NET, PF_INET, IPPROTO_IP, IPCTL_MAXFRAGPACKETS, CTL_EOL);
    190 }
    191 
    192 #define CHECK_NMBCLUSTER_PARAMS()				\
    193 do {								\
    194 	if (__predict_false(ip_nmbclusters != nmbclusters))	\
    195 		ip_nmbclusters_changed();			\
    196 } while (/*CONSTCOND*/0)
    197 
    198 /*
    199  * Compute IP limits derived from the value of nmbclusters.
    200  */
    201 static void
    202 ip_nmbclusters_changed(void)
    203 {
    204 	ip_maxfrags = nmbclusters / 4;
    205 	ip_nmbclusters = nmbclusters;
    206 }
    207 
    208 /*
    209  * ip_reass:
    210  *
    211  *	Take incoming datagram fragment and try to reassemble it into whole
    212  *	datagram.  If a chain for reassembly of this datagram already exists,
    213  *	then it is given as 'fp'; otherwise have to make a chain.
    214  */
    215 static struct mbuf *
    216 ip_reass(ipfr_qent_t *ipqe, ipfr_queue_t *fp, const u_int hash)
    217 {
    218 	struct ip *ip = ipqe->ipqe_ip, *qip;
    219 	const int hlen = ip->ip_hl << 2;
    220 	struct mbuf *m = ipqe->ipqe_m, *t;
    221 	int ipsecflags = m->m_flags & (M_DECRYPTED|M_AUTHIPHDR);
    222 	ipfr_qent_t *nq, *p, *q;
    223 	int i, next;
    224 
    225 	KASSERT(mutex_owned(&ipfr_lock));
    226 
    227 	/*
    228 	 * Presence of header sizes in mbufs would confuse code below.
    229 	 */
    230 	m->m_data += hlen;
    231 	m->m_len -= hlen;
    232 
    233 #ifdef	notyet
    234 	/* Make sure fragment limit is up-to-date. */
    235 	CHECK_NMBCLUSTER_PARAMS();
    236 
    237 	/* If we have too many fragments, drop the older half. */
    238 	if (ip_nfrags >= ip_maxfrags) {
    239 		ip_reass_drophalf(void);
    240 	}
    241 #endif
    242 
    243 	/*
    244 	 * We are about to add a fragment; increment frag count.
    245 	 */
    246 	ip_nfrags++;
    247 
    248 	/*
    249 	 * If first fragment to arrive, create a reassembly queue.
    250 	 */
    251 	if (fp == NULL) {
    252 		/*
    253 		 * Enforce upper bound on number of fragmented packets
    254 		 * for which we attempt reassembly:  a) if maxfrag is 0,
    255 		 * never accept fragments  b) if maxfrag is -1, accept
    256 		 * all fragments without limitation.
    257 		 */
    258 		if (ip_maxfragpackets < 0)
    259 			;
    260 		else if (ip_nfragpackets >= ip_maxfragpackets) {
    261 			goto dropfrag;
    262 		}
    263 		fp = malloc(sizeof(ipfr_queue_t), M_FTABLE, M_NOWAIT);
    264 		if (fp == NULL) {
    265 			goto dropfrag;
    266 		}
    267 		ip_nfragpackets++;
    268 		TAILQ_INIT(&fp->ipq_fragq);
    269 		fp->ipq_nfrags = 1;
    270 		fp->ipq_ttl = IPFRAGTTL;
    271 		fp->ipq_p = ip->ip_p;
    272 		fp->ipq_id = ip->ip_id;
    273 		fp->ipq_tos = ip->ip_tos;
    274 		fp->ipq_ipsec = ipsecflags;
    275 		fp->ipq_src = ip->ip_src;
    276 		fp->ipq_dst = ip->ip_dst;
    277 		LIST_INSERT_HEAD(&ip_frags[hash], fp, ipq_q);
    278 		p = NULL;
    279 		goto insert;
    280 	} else {
    281 		fp->ipq_nfrags++;
    282 	}
    283 
    284 	/*
    285 	 * Find a segment which begins after this one does.
    286 	 */
    287 	TAILQ_FOREACH(q, &fp->ipq_fragq, ipqe_q) {
    288 		if (ntohs(q->ipqe_ip->ip_off) > ntohs(ip->ip_off))
    289 			break;
    290 	}
    291 	if (q != NULL) {
    292 		p = TAILQ_PREV(q, ipfr_qent_head, ipqe_q);
    293 	} else {
    294 		p = TAILQ_LAST(&fp->ipq_fragq, ipfr_qent_head);
    295 	}
    296 
    297 	/*
    298 	 * If there is a preceding segment, it may provide some of our
    299 	 * data already.  If so, drop the data from the incoming segment.
    300 	 * If it provides all of our data, drop us.
    301 	 */
    302 	if (p != NULL) {
    303 		i = ntohs(p->ipqe_ip->ip_off) + ntohs(p->ipqe_ip->ip_len) -
    304 		    ntohs(ip->ip_off);
    305 		if (i > 0) {
    306 			if (i >= ntohs(ip->ip_len)) {
    307 				goto dropfrag;
    308 			}
    309 			m_adj(ipqe->ipqe_m, i);
    310 			ip->ip_off = htons(ntohs(ip->ip_off) + i);
    311 			ip->ip_len = htons(ntohs(ip->ip_len) - i);
    312 		}
    313 	}
    314 
    315 	/*
    316 	 * While we overlap succeeding segments trim them or, if they are
    317 	 * completely covered, dequeue them.
    318 	 */
    319 	while (q != NULL) {
    320 		size_t end;
    321 
    322 		qip = q->ipqe_ip;
    323 		end = ntohs(ip->ip_off) + ntohs(ip->ip_len);
    324 		if (end <= ntohs(qip->ip_off)) {
    325 			break;
    326 		}
    327 		i = end - ntohs(qip->ip_off);
    328 		if (i < ntohs(qip->ip_len)) {
    329 			qip->ip_len = htons(ntohs(qip->ip_len) - i);
    330 			qip->ip_off = htons(ntohs(qip->ip_off) + i);
    331 			m_adj(q->ipqe_m, i);
    332 			break;
    333 		}
    334 		nq = TAILQ_NEXT(q, ipqe_q);
    335 		m_freem(q->ipqe_m);
    336 		TAILQ_REMOVE(&fp->ipq_fragq, q, ipqe_q);
    337 		pool_cache_put(ipfren_cache, q);
    338 		fp->ipq_nfrags--;
    339 		ip_nfrags--;
    340 		q = nq;
    341 	}
    342 
    343 insert:
    344 	/*
    345 	 * Stick new segment in its place; check for complete reassembly.
    346 	 */
    347 	if (p == NULL) {
    348 		TAILQ_INSERT_HEAD(&fp->ipq_fragq, ipqe, ipqe_q);
    349 	} else {
    350 		TAILQ_INSERT_AFTER(&fp->ipq_fragq, p, ipqe, ipqe_q);
    351 	}
    352 	next = 0;
    353 	TAILQ_FOREACH(q, &fp->ipq_fragq, ipqe_q) {
    354 		qip = q->ipqe_ip;
    355 		if (ntohs(qip->ip_off) != next) {
    356 			mutex_exit(&ipfr_lock);
    357 			return NULL;
    358 		}
    359 		next += ntohs(qip->ip_len);
    360 	}
    361 	p = TAILQ_LAST(&fp->ipq_fragq, ipfr_qent_head);
    362 	if (p->ipqe_mff) {
    363 		mutex_exit(&ipfr_lock);
    364 		return NULL;
    365 	}
    366 
    367 	/*
    368 	 * Reassembly is complete.  Check for a bogus message size.
    369 	 */
    370 	q = TAILQ_FIRST(&fp->ipq_fragq);
    371 	ip = q->ipqe_ip;
    372 	if ((next + (ip->ip_hl << 2)) > IP_MAXPACKET) {
    373 		IP_STATINC(IP_STAT_TOOLONG);
    374 		ip_freef(fp);
    375 		mutex_exit(&ipfr_lock);
    376 		return NULL;
    377 	}
    378 	LIST_REMOVE(fp, ipq_q);
    379 	ip_nfrags -= fp->ipq_nfrags;
    380 	ip_nfragpackets--;
    381 	mutex_exit(&ipfr_lock);
    382 
    383 	/* Concatenate all fragments. */
    384 	m = q->ipqe_m;
    385 	t = m->m_next;
    386 	m->m_next = NULL;
    387 	m_cat(m, t);
    388 	nq = TAILQ_NEXT(q, ipqe_q);
    389 	pool_cache_put(ipfren_cache, q);
    390 
    391 	for (q = nq; q != NULL; q = nq) {
    392 		t = q->ipqe_m;
    393 		nq = TAILQ_NEXT(q, ipqe_q);
    394 		pool_cache_put(ipfren_cache, q);
    395 		m_remove_pkthdr(t);
    396 		m_cat(m, t);
    397 	}
    398 
    399 	/*
    400 	 * Create header for new packet by modifying header of first
    401 	 * packet.  Dequeue and discard fragment reassembly header.  Make
    402 	 * header visible.
    403 	 */
    404 	ip->ip_len = htons((ip->ip_hl << 2) + next);
    405 	ip->ip_src = fp->ipq_src;
    406 	ip->ip_dst = fp->ipq_dst;
    407 	free(fp, M_FTABLE);
    408 
    409 	m->m_len += (ip->ip_hl << 2);
    410 	m->m_data -= (ip->ip_hl << 2);
    411 
    412 	/* Fix up mbuf.  XXX This should be done elsewhere. */
    413 	{
    414 		KASSERT(m->m_flags & M_PKTHDR);
    415 		int plen = 0;
    416 		for (t = m; t; t = t->m_next) {
    417 			plen += t->m_len;
    418 		}
    419 		m->m_pkthdr.len = plen;
    420 		m->m_pkthdr.csum_flags = 0;
    421 	}
    422 	return m;
    423 
    424 dropfrag:
    425 	if (fp != NULL) {
    426 		fp->ipq_nfrags--;
    427 	}
    428 	ip_nfrags--;
    429 	IP_STATINC(IP_STAT_FRAGDROPPED);
    430 	mutex_exit(&ipfr_lock);
    431 
    432 	pool_cache_put(ipfren_cache, ipqe);
    433 	m_freem(m);
    434 	return NULL;
    435 }
    436 
    437 /*
    438  * ip_freef:
    439  *
    440  *	Free a fragment reassembly header and all associated datagrams.
    441  */
    442 static void
    443 ip_freef(ipfr_queue_t *fp)
    444 {
    445 	ipfr_qent_t *q;
    446 
    447 	KASSERT(mutex_owned(&ipfr_lock));
    448 
    449 	LIST_REMOVE(fp, ipq_q);
    450 	ip_nfrags -= fp->ipq_nfrags;
    451 	ip_nfragpackets--;
    452 
    453 	while ((q = TAILQ_FIRST(&fp->ipq_fragq)) != NULL) {
    454 		TAILQ_REMOVE(&fp->ipq_fragq, q, ipqe_q);
    455 		m_freem(q->ipqe_m);
    456 		pool_cache_put(ipfren_cache, q);
    457 	}
    458 	free(fp, M_FTABLE);
    459 }
    460 
    461 /*
    462  * ip_reass_ttl_decr:
    463  *
    464  *	Decrement TTL of all reasembly queue entries by `ticks'.  Count
    465  *	number of distinct fragments (as opposed to partial, fragmented
    466  *	datagrams) inthe reassembly queue.  While we  traverse the entire
    467  *	reassembly queue, compute and return the median TTL over all
    468  *	fragments.
    469  */
    470 static u_int
    471 ip_reass_ttl_decr(u_int ticks)
    472 {
    473 	u_int nfrags, median, dropfraction, keepfraction;
    474 	ipfr_queue_t *fp, *nfp;
    475 	int i;
    476 
    477 	nfrags = 0;
    478 	memset(fragttl_histo, 0, sizeof(fragttl_histo));
    479 
    480 	for (i = 0; i < IPREASS_HASH_SIZE; i++) {
    481 		for (fp = LIST_FIRST(&ip_frags[i]); fp != NULL; fp = nfp) {
    482 			fp->ipq_ttl = ((fp->ipq_ttl <= ticks) ?
    483 			    0 : fp->ipq_ttl - ticks);
    484 			nfp = LIST_NEXT(fp, ipq_q);
    485 			if (fp->ipq_ttl == 0) {
    486 				IP_STATINC(IP_STAT_FRAGTIMEOUT);
    487 				ip_freef(fp);
    488 			} else {
    489 				nfrags += fp->ipq_nfrags;
    490 				fragttl_histo[fp->ipq_ttl] += fp->ipq_nfrags;
    491 			}
    492 		}
    493 	}
    494 
    495 	KASSERT(ip_nfrags == nfrags);
    496 
    497 	/* Find median (or other drop fraction) in histogram. */
    498 	dropfraction = (ip_nfrags / 2);
    499 	keepfraction = ip_nfrags - dropfraction;
    500 	for (i = IPFRAGTTL, median = 0; i >= 0; i--) {
    501 		median += fragttl_histo[i];
    502 		if (median >= keepfraction)
    503 			break;
    504 	}
    505 
    506 	/* Return TTL of median (or other fraction). */
    507 	return (u_int)i;
    508 }
    509 
    510 static void
    511 ip_reass_drophalf(void)
    512 {
    513 	u_int median_ticks;
    514 
    515 	KASSERT(mutex_owned(&ipfr_lock));
    516 
    517 	/*
    518 	 * Compute median TTL of all fragments, and count frags
    519 	 * with that TTL or lower (roughly half of all fragments).
    520 	 */
    521 	median_ticks = ip_reass_ttl_decr(0);
    522 
    523 	/* Drop half. */
    524 	median_ticks = ip_reass_ttl_decr(median_ticks);
    525 }
    526 
    527 /*
    528  * ip_reass_drain: drain off all datagram fragments.  Do not acquire
    529  * softnet_lock as can be called from hardware interrupt context.
    530  */
    531 void
    532 ip_reass_drain(void)
    533 {
    534 
    535 	/*
    536 	 * We may be called from a device's interrupt context.  If
    537 	 * the ipq is already busy, just bail out now.
    538 	 */
    539 	if (mutex_tryenter(&ipfr_lock)) {
    540 		/*
    541 		 * Drop half the total fragments now. If more mbufs are
    542 		 * needed, we will be called again soon.
    543 		 */
    544 		ip_reass_drophalf();
    545 		mutex_exit(&ipfr_lock);
    546 	}
    547 }
    548 
    549 /*
    550  * ip_reass_slowtimo:
    551  *
    552  *	If a timer expires on a reassembly queue, discard it.
    553  */
    554 void
    555 ip_reass_slowtimo(void)
    556 {
    557 	static u_int dropscanidx = 0;
    558 	u_int i, median_ttl;
    559 
    560 	mutex_enter(&ipfr_lock);
    561 
    562 	/* Age TTL of all fragments by 1 tick .*/
    563 	median_ttl = ip_reass_ttl_decr(1);
    564 
    565 	/* Make sure fragment limit is up-to-date. */
    566 	CHECK_NMBCLUSTER_PARAMS();
    567 
    568 	/* If we have too many fragments, drop the older half. */
    569 	if (ip_nfrags > ip_maxfrags) {
    570 		ip_reass_ttl_decr(median_ttl);
    571 	}
    572 
    573 	/*
    574 	 * If we are over the maximum number of fragmented packets (due to
    575 	 * the limit being lowered), drain off enough to get down to the
    576 	 * new limit.  Start draining from the reassembly hashqueue most
    577 	 * recently drained.
    578 	 */
    579 	if (ip_maxfragpackets < 0)
    580 		;
    581 	else {
    582 		int wrapped = 0;
    583 
    584 		i = dropscanidx;
    585 		while (ip_nfragpackets > ip_maxfragpackets && wrapped == 0) {
    586 			while (LIST_FIRST(&ip_frags[i]) != NULL) {
    587 				ip_freef(LIST_FIRST(&ip_frags[i]));
    588 			}
    589 			if (++i >= IPREASS_HASH_SIZE) {
    590 				i = 0;
    591 			}
    592 			/*
    593 			 * Do not scan forever even if fragment counters are
    594 			 * wrong: stop after scanning entire reassembly queue.
    595 			 */
    596 			if (i == dropscanidx) {
    597 				wrapped = 1;
    598 			}
    599 		}
    600 		dropscanidx = i;
    601 	}
    602 	mutex_exit(&ipfr_lock);
    603 }
    604 
    605 /*
    606  * ip_reass_packet: generic routine to perform IP reassembly.
    607  *
    608  * => Passed fragment should have IP_MF flag and/or offset set.
    609  * => Fragment should not have other than IP_MF flags set.
    610  *
    611  * => Returns 0 on success or error otherwise.
    612  * => On complete, m0 represents a constructed final packet.
    613  */
    614 int
    615 ip_reass_packet(struct mbuf **m0, struct ip *ip)
    616 {
    617 	const int hlen = ip->ip_hl << 2;
    618 	const int len = ntohs(ip->ip_len);
    619 	struct mbuf *m = *m0;
    620 	int ipsecflags = m->m_flags & (M_DECRYPTED|M_AUTHIPHDR);
    621 	ipfr_queue_t *fp;
    622 	ipfr_qent_t *ipqe;
    623 	u_int hash, off, flen;
    624 	bool mff;
    625 
    626 	/*
    627 	 * Prevent TCP blind data attacks by not allowing non-initial
    628 	 * fragments to start at less than 68 bytes (minimal fragment
    629 	 * size) and making sure the first fragment is at least 68
    630 	 * bytes.
    631 	 */
    632 	off = (ntohs(ip->ip_off) & IP_OFFMASK) << 3;
    633 	if ((off > 0 ? off + hlen : len) < IP_MINFRAGSIZE - 1) {
    634 		IP_STATINC(IP_STAT_BADFRAGS);
    635 		return EINVAL;
    636 	}
    637 
    638 	if (off + len > IP_MAXPACKET) {
    639 		IP_STATINC(IP_STAT_TOOLONG);
    640 		return EINVAL;
    641 	}
    642 
    643 	/*
    644 	 * Fragment length and MF flag.  Make sure that fragments have
    645 	 * a data length which is non-zero and multiple of 8 bytes.
    646 	 */
    647 	flen = ntohs(ip->ip_len) - hlen;
    648 	mff = (ip->ip_off & htons(IP_MF)) != 0;
    649 	if (mff && (flen == 0 || (flen & 0x7) != 0)) {
    650 		IP_STATINC(IP_STAT_BADFRAGS);
    651 		return EINVAL;
    652 	}
    653 
    654 	/*
    655 	 * Adjust total IP length to not reflect header and convert
    656 	 * offset of this to bytes.  XXX: clobbers struct ip.
    657 	 */
    658 	ip->ip_len = htons(flen);
    659 	ip->ip_off = htons(off);
    660 
    661 	/* Look for queue of fragments of this datagram. */
    662 	mutex_enter(&ipfr_lock);
    663 	hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
    664 	LIST_FOREACH(fp, &ip_frags[hash], ipq_q) {
    665 		if (ip->ip_id != fp->ipq_id)
    666 			continue;
    667 		if (!in_hosteq(ip->ip_src, fp->ipq_src))
    668 			continue;
    669 		if (!in_hosteq(ip->ip_dst, fp->ipq_dst))
    670 			continue;
    671 		if (ip->ip_p != fp->ipq_p)
    672 			continue;
    673 		break;
    674 	}
    675 
    676 	if (fp) {
    677 		/* All fragments must have the same IPsec flags. */
    678 		if (fp->ipq_ipsec != ipsecflags) {
    679 			IP_STATINC(IP_STAT_BADFRAGS);
    680 			mutex_exit(&ipfr_lock);
    681 			return EINVAL;
    682 		}
    683 
    684 		/* Make sure that TOS matches previous fragments. */
    685 		if (fp->ipq_tos != ip->ip_tos) {
    686 			IP_STATINC(IP_STAT_BADFRAGS);
    687 			mutex_exit(&ipfr_lock);
    688 			return EINVAL;
    689 		}
    690 	}
    691 
    692 	/*
    693 	 * Create new entry and attempt to reassembly.
    694 	 */
    695 	IP_STATINC(IP_STAT_FRAGMENTS);
    696 	ipqe = pool_cache_get(ipfren_cache, PR_NOWAIT);
    697 	if (ipqe == NULL) {
    698 		IP_STATINC(IP_STAT_RCVMEMDROP);
    699 		mutex_exit(&ipfr_lock);
    700 		return ENOMEM;
    701 	}
    702 	ipqe->ipqe_mff = mff;
    703 	ipqe->ipqe_m = m;
    704 	ipqe->ipqe_ip = ip;
    705 
    706 	*m0 = ip_reass(ipqe, fp, hash);
    707 	if (*m0) {
    708 		/* Note that finally reassembled. */
    709 		IP_STATINC(IP_STAT_REASSEMBLED);
    710 	}
    711 	return 0;
    712 }
    713