ip_reass.c revision 1.14 1 /* $NetBSD: ip_reass.c,v 1.14 2018/03/09 11:57:38 maxv Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1988, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 * @(#)ip_input.c 8.2 (Berkeley) 1/4/94
32 */
33
34 /*
35 * IP reassembly.
36 *
37 * Additive-Increase/Multiplicative-Decrease (AIMD) strategy for IP
38 * reassembly queue buffer managment.
39 *
40 * We keep a count of total IP fragments (NB: not fragmented packets),
41 * awaiting reassembly (ip_nfrags) and a limit (ip_maxfrags) on fragments.
42 * If ip_nfrags exceeds ip_maxfrags the limit, we drop half the total
43 * fragments in reassembly queues. This AIMD policy avoids repeatedly
44 * deleting single packets under heavy fragmentation load (e.g., from lossy
45 * NFS peers).
46 */
47
48 #include <sys/cdefs.h>
49 __KERNEL_RCSID(0, "$NetBSD: ip_reass.c,v 1.14 2018/03/09 11:57:38 maxv Exp $");
50
51 #include <sys/param.h>
52 #include <sys/types.h>
53
54 #include <sys/malloc.h>
55 #include <sys/mbuf.h>
56 #include <sys/mutex.h>
57 #include <sys/pool.h>
58 #include <sys/queue.h>
59 #include <sys/sysctl.h>
60 #include <sys/systm.h>
61
62 #include <net/if.h>
63
64 #include <netinet/in.h>
65 #include <netinet/in_systm.h>
66 #include <netinet/ip.h>
67 #include <netinet/in_pcb.h>
68 #include <netinet/ip_var.h>
69 #include <netinet/ip_private.h>
70 #include <netinet/in_var.h>
71
72 /*
73 * IP reassembly queue structures. Each fragment being reassembled is
74 * attached to one of these structures. They are timed out after TTL
75 * drops to 0, and may also be reclaimed if memory becomes tight.
76 */
77
78 typedef struct ipfr_qent {
79 TAILQ_ENTRY(ipfr_qent) ipqe_q;
80 struct ip * ipqe_ip;
81 struct mbuf * ipqe_m;
82 bool ipqe_mff;
83 } ipfr_qent_t;
84
85 TAILQ_HEAD(ipfr_qent_head, ipfr_qent);
86
87 typedef struct ipfr_queue {
88 LIST_ENTRY(ipfr_queue) ipq_q; /* to other reass headers */
89 struct ipfr_qent_head ipq_fragq; /* queue of fragment entries */
90 uint8_t ipq_ttl; /* time for reass q to live */
91 uint8_t ipq_p; /* protocol of this fragment */
92 uint16_t ipq_id; /* sequence id for reassembly */
93 struct in_addr ipq_src;
94 struct in_addr ipq_dst;
95 uint16_t ipq_nfrags; /* frags in this queue entry */
96 uint8_t ipq_tos; /* TOS of this fragment */
97 } ipfr_queue_t;
98
99 /*
100 * Hash table of IP reassembly queues.
101 */
102 #define IPREASS_HASH_SHIFT 6
103 #define IPREASS_HASH_SIZE (1 << IPREASS_HASH_SHIFT)
104 #define IPREASS_HASH_MASK (IPREASS_HASH_SIZE - 1)
105 #define IPREASS_HASH(x, y) \
106 (((((x) & 0xf) | ((((x) >> 8) & 0xf) << 4)) ^ (y)) & IPREASS_HASH_MASK)
107
108 static LIST_HEAD(, ipfr_queue) ip_frags[IPREASS_HASH_SIZE];
109 static pool_cache_t ipfren_cache;
110 static kmutex_t ipfr_lock;
111
112 /* Number of packets in reassembly queue and total number of fragments. */
113 static int ip_nfragpackets;
114 static int ip_nfrags;
115
116 /* Limits on packet and fragments. */
117 static int ip_maxfragpackets;
118 static int ip_maxfrags;
119
120 /*
121 * Cached copy of nmbclusters. If nbclusters is different, recalculate
122 * IP parameters derived from nmbclusters.
123 */
124 static int ip_nmbclusters;
125
126 /*
127 * IP reassembly TTL machinery for multiplicative drop.
128 */
129 static u_int fragttl_histo[IPFRAGTTL + 1];
130
131 static struct sysctllog *ip_reass_sysctllog;
132
133 void sysctl_ip_reass_setup(void);
134 static void ip_nmbclusters_changed(void);
135
136 static struct mbuf * ip_reass(ipfr_qent_t *, ipfr_queue_t *, u_int);
137 static u_int ip_reass_ttl_decr(u_int ticks);
138 static void ip_reass_drophalf(void);
139 static void ip_freef(ipfr_queue_t *);
140
141 /*
142 * ip_reass_init:
143 *
144 * Initialization of IP reassembly mechanism.
145 */
146 void
147 ip_reass_init(void)
148 {
149 int i;
150
151 ipfren_cache = pool_cache_init(sizeof(ipfr_qent_t), coherency_unit,
152 0, 0, "ipfrenpl", NULL, IPL_NET, NULL, NULL, NULL);
153 mutex_init(&ipfr_lock, MUTEX_DEFAULT, IPL_VM);
154
155 for (i = 0; i < IPREASS_HASH_SIZE; i++) {
156 LIST_INIT(&ip_frags[i]);
157 }
158 ip_maxfragpackets = 200;
159 ip_maxfrags = 0;
160 ip_nmbclusters_changed();
161
162 sysctl_ip_reass_setup();
163 }
164
165 void
166 sysctl_ip_reass_setup(void)
167 {
168
169 sysctl_createv(&ip_reass_sysctllog, 0, NULL, NULL,
170 CTLFLAG_PERMANENT,
171 CTLTYPE_NODE, "inet",
172 SYSCTL_DESCR("PF_INET related settings"),
173 NULL, 0, NULL, 0,
174 CTL_NET, PF_INET, CTL_EOL);
175 sysctl_createv(&ip_reass_sysctllog, 0, NULL, NULL,
176 CTLFLAG_PERMANENT,
177 CTLTYPE_NODE, "ip",
178 SYSCTL_DESCR("IPv4 related settings"),
179 NULL, 0, NULL, 0,
180 CTL_NET, PF_INET, IPPROTO_IP, CTL_EOL);
181
182 sysctl_createv(&ip_reass_sysctllog, 0, NULL, NULL,
183 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
184 CTLTYPE_INT, "maxfragpackets",
185 SYSCTL_DESCR("Maximum number of fragments to retain for "
186 "possible reassembly"),
187 NULL, 0, &ip_maxfragpackets, 0,
188 CTL_NET, PF_INET, IPPROTO_IP, IPCTL_MAXFRAGPACKETS, CTL_EOL);
189 }
190
191 #define CHECK_NMBCLUSTER_PARAMS() \
192 do { \
193 if (__predict_false(ip_nmbclusters != nmbclusters)) \
194 ip_nmbclusters_changed(); \
195 } while (/*CONSTCOND*/0)
196
197 /*
198 * Compute IP limits derived from the value of nmbclusters.
199 */
200 static void
201 ip_nmbclusters_changed(void)
202 {
203 ip_maxfrags = nmbclusters / 4;
204 ip_nmbclusters = nmbclusters;
205 }
206
207 /*
208 * ip_reass:
209 *
210 * Take incoming datagram fragment and try to reassemble it into whole
211 * datagram. If a chain for reassembly of this datagram already exists,
212 * then it is given as 'fp'; otherwise have to make a chain.
213 */
214 struct mbuf *
215 ip_reass(ipfr_qent_t *ipqe, ipfr_queue_t *fp, const u_int hash)
216 {
217 struct ip *ip = ipqe->ipqe_ip, *qip;
218 const int hlen = ip->ip_hl << 2;
219 struct mbuf *m = ipqe->ipqe_m, *t;
220 ipfr_qent_t *nq, *p, *q;
221 int i, next;
222
223 KASSERT(mutex_owned(&ipfr_lock));
224
225 /*
226 * Presence of header sizes in mbufs would confuse code below.
227 */
228 m->m_data += hlen;
229 m->m_len -= hlen;
230
231 #ifdef notyet
232 /* Make sure fragment limit is up-to-date. */
233 CHECK_NMBCLUSTER_PARAMS();
234
235 /* If we have too many fragments, drop the older half. */
236 if (ip_nfrags >= ip_maxfrags) {
237 ip_reass_drophalf(void);
238 }
239 #endif
240
241 /*
242 * We are about to add a fragment; increment frag count.
243 */
244 ip_nfrags++;
245
246 /*
247 * If first fragment to arrive, create a reassembly queue.
248 */
249 if (fp == NULL) {
250 /*
251 * Enforce upper bound on number of fragmented packets
252 * for which we attempt reassembly: a) if maxfrag is 0,
253 * never accept fragments b) if maxfrag is -1, accept
254 * all fragments without limitation.
255 */
256 if (ip_maxfragpackets < 0)
257 ;
258 else if (ip_nfragpackets >= ip_maxfragpackets) {
259 goto dropfrag;
260 }
261 fp = malloc(sizeof(ipfr_queue_t), M_FTABLE, M_NOWAIT);
262 if (fp == NULL) {
263 goto dropfrag;
264 }
265 ip_nfragpackets++;
266 TAILQ_INIT(&fp->ipq_fragq);
267 fp->ipq_nfrags = 1;
268 fp->ipq_ttl = IPFRAGTTL;
269 fp->ipq_p = ip->ip_p;
270 fp->ipq_id = ip->ip_id;
271 fp->ipq_tos = ip->ip_tos;
272 fp->ipq_src = ip->ip_src;
273 fp->ipq_dst = ip->ip_dst;
274 LIST_INSERT_HEAD(&ip_frags[hash], fp, ipq_q);
275 p = NULL;
276 goto insert;
277 } else {
278 fp->ipq_nfrags++;
279 }
280
281 /*
282 * Find a segment which begins after this one does.
283 */
284 TAILQ_FOREACH(q, &fp->ipq_fragq, ipqe_q) {
285 if (ntohs(q->ipqe_ip->ip_off) > ntohs(ip->ip_off))
286 break;
287 }
288 if (q != NULL) {
289 p = TAILQ_PREV(q, ipfr_qent_head, ipqe_q);
290 } else {
291 p = TAILQ_LAST(&fp->ipq_fragq, ipfr_qent_head);
292 }
293
294 /*
295 * If there is a preceding segment, it may provide some of our
296 * data already. If so, drop the data from the incoming segment.
297 * If it provides all of our data, drop us.
298 */
299 if (p != NULL) {
300 i = ntohs(p->ipqe_ip->ip_off) + ntohs(p->ipqe_ip->ip_len) -
301 ntohs(ip->ip_off);
302 if (i > 0) {
303 if (i >= ntohs(ip->ip_len)) {
304 goto dropfrag;
305 }
306 m_adj(ipqe->ipqe_m, i);
307 ip->ip_off = htons(ntohs(ip->ip_off) + i);
308 ip->ip_len = htons(ntohs(ip->ip_len) - i);
309 }
310 }
311
312 /*
313 * While we overlap succeeding segments trim them or, if they are
314 * completely covered, dequeue them.
315 */
316 while (q != NULL) {
317 size_t end;
318
319 qip = q->ipqe_ip;
320 end = ntohs(ip->ip_off) + ntohs(ip->ip_len);
321 if (end <= ntohs(qip->ip_off)) {
322 break;
323 }
324 i = end - ntohs(qip->ip_off);
325 if (i < ntohs(qip->ip_len)) {
326 qip->ip_len = htons(ntohs(qip->ip_len) - i);
327 qip->ip_off = htons(ntohs(qip->ip_off) + i);
328 m_adj(q->ipqe_m, i);
329 break;
330 }
331 nq = TAILQ_NEXT(q, ipqe_q);
332 m_freem(q->ipqe_m);
333 TAILQ_REMOVE(&fp->ipq_fragq, q, ipqe_q);
334 pool_cache_put(ipfren_cache, q);
335 fp->ipq_nfrags--;
336 ip_nfrags--;
337 q = nq;
338 }
339
340 insert:
341 /*
342 * Stick new segment in its place; check for complete reassembly.
343 */
344 if (p == NULL) {
345 TAILQ_INSERT_HEAD(&fp->ipq_fragq, ipqe, ipqe_q);
346 } else {
347 TAILQ_INSERT_AFTER(&fp->ipq_fragq, p, ipqe, ipqe_q);
348 }
349 next = 0;
350 TAILQ_FOREACH(q, &fp->ipq_fragq, ipqe_q) {
351 qip = q->ipqe_ip;
352 if (ntohs(qip->ip_off) != next) {
353 mutex_exit(&ipfr_lock);
354 return NULL;
355 }
356 next += ntohs(qip->ip_len);
357 }
358 p = TAILQ_LAST(&fp->ipq_fragq, ipfr_qent_head);
359 if (p->ipqe_mff) {
360 mutex_exit(&ipfr_lock);
361 return NULL;
362 }
363
364 /*
365 * Reassembly is complete. Check for a bogus message size.
366 */
367 q = TAILQ_FIRST(&fp->ipq_fragq);
368 ip = q->ipqe_ip;
369 if ((next + (ip->ip_hl << 2)) > IP_MAXPACKET) {
370 IP_STATINC(IP_STAT_TOOLONG);
371 ip_freef(fp);
372 mutex_exit(&ipfr_lock);
373 return NULL;
374 }
375 LIST_REMOVE(fp, ipq_q);
376 ip_nfrags -= fp->ipq_nfrags;
377 ip_nfragpackets--;
378 mutex_exit(&ipfr_lock);
379
380 /* Concatenate all fragments. */
381 m = q->ipqe_m;
382 t = m->m_next;
383 m->m_next = NULL;
384 m_cat(m, t);
385 nq = TAILQ_NEXT(q, ipqe_q);
386 pool_cache_put(ipfren_cache, q);
387
388 for (q = nq; q != NULL; q = nq) {
389 t = q->ipqe_m;
390 nq = TAILQ_NEXT(q, ipqe_q);
391 pool_cache_put(ipfren_cache, q);
392 m_pkthdr_remove(t);
393 m_cat(m, t);
394 }
395
396 /*
397 * Create header for new packet by modifying header of first
398 * packet. Dequeue and discard fragment reassembly header. Make
399 * header visible.
400 */
401 ip->ip_len = htons((ip->ip_hl << 2) + next);
402 ip->ip_src = fp->ipq_src;
403 ip->ip_dst = fp->ipq_dst;
404 free(fp, M_FTABLE);
405
406 m->m_len += (ip->ip_hl << 2);
407 m->m_data -= (ip->ip_hl << 2);
408
409 /* Fix up mbuf. XXX This should be done elsewhere. */
410 {
411 KASSERT(m->m_flags & M_PKTHDR);
412 int plen = 0;
413 for (t = m; t; t = t->m_next) {
414 plen += t->m_len;
415 }
416 m->m_pkthdr.len = plen;
417 m->m_pkthdr.csum_flags = 0;
418 }
419 return m;
420
421 dropfrag:
422 if (fp != NULL) {
423 fp->ipq_nfrags--;
424 }
425 ip_nfrags--;
426 IP_STATINC(IP_STAT_FRAGDROPPED);
427 mutex_exit(&ipfr_lock);
428
429 pool_cache_put(ipfren_cache, ipqe);
430 m_freem(m);
431 return NULL;
432 }
433
434 /*
435 * ip_freef:
436 *
437 * Free a fragment reassembly header and all associated datagrams.
438 */
439 static void
440 ip_freef(ipfr_queue_t *fp)
441 {
442 ipfr_qent_t *q;
443
444 KASSERT(mutex_owned(&ipfr_lock));
445
446 LIST_REMOVE(fp, ipq_q);
447 ip_nfrags -= fp->ipq_nfrags;
448 ip_nfragpackets--;
449
450 while ((q = TAILQ_FIRST(&fp->ipq_fragq)) != NULL) {
451 TAILQ_REMOVE(&fp->ipq_fragq, q, ipqe_q);
452 m_freem(q->ipqe_m);
453 pool_cache_put(ipfren_cache, q);
454 }
455 free(fp, M_FTABLE);
456 }
457
458 /*
459 * ip_reass_ttl_decr:
460 *
461 * Decrement TTL of all reasembly queue entries by `ticks'. Count
462 * number of distinct fragments (as opposed to partial, fragmented
463 * datagrams) inthe reassembly queue. While we traverse the entire
464 * reassembly queue, compute and return the median TTL over all
465 * fragments.
466 */
467 static u_int
468 ip_reass_ttl_decr(u_int ticks)
469 {
470 u_int nfrags, median, dropfraction, keepfraction;
471 ipfr_queue_t *fp, *nfp;
472 int i;
473
474 nfrags = 0;
475 memset(fragttl_histo, 0, sizeof(fragttl_histo));
476
477 for (i = 0; i < IPREASS_HASH_SIZE; i++) {
478 for (fp = LIST_FIRST(&ip_frags[i]); fp != NULL; fp = nfp) {
479 fp->ipq_ttl = ((fp->ipq_ttl <= ticks) ?
480 0 : fp->ipq_ttl - ticks);
481 nfp = LIST_NEXT(fp, ipq_q);
482 if (fp->ipq_ttl == 0) {
483 IP_STATINC(IP_STAT_FRAGTIMEOUT);
484 ip_freef(fp);
485 } else {
486 nfrags += fp->ipq_nfrags;
487 fragttl_histo[fp->ipq_ttl] += fp->ipq_nfrags;
488 }
489 }
490 }
491
492 KASSERT(ip_nfrags == nfrags);
493
494 /* Find median (or other drop fraction) in histogram. */
495 dropfraction = (ip_nfrags / 2);
496 keepfraction = ip_nfrags - dropfraction;
497 for (i = IPFRAGTTL, median = 0; i >= 0; i--) {
498 median += fragttl_histo[i];
499 if (median >= keepfraction)
500 break;
501 }
502
503 /* Return TTL of median (or other fraction). */
504 return (u_int)i;
505 }
506
507 static void
508 ip_reass_drophalf(void)
509 {
510 u_int median_ticks;
511
512 KASSERT(mutex_owned(&ipfr_lock));
513
514 /*
515 * Compute median TTL of all fragments, and count frags
516 * with that TTL or lower (roughly half of all fragments).
517 */
518 median_ticks = ip_reass_ttl_decr(0);
519
520 /* Drop half. */
521 median_ticks = ip_reass_ttl_decr(median_ticks);
522 }
523
524 /*
525 * ip_reass_drain: drain off all datagram fragments. Do not acquire
526 * softnet_lock as can be called from hardware interrupt context.
527 */
528 void
529 ip_reass_drain(void)
530 {
531
532 /*
533 * We may be called from a device's interrupt context. If
534 * the ipq is already busy, just bail out now.
535 */
536 if (mutex_tryenter(&ipfr_lock)) {
537 /*
538 * Drop half the total fragments now. If more mbufs are
539 * needed, we will be called again soon.
540 */
541 ip_reass_drophalf();
542 mutex_exit(&ipfr_lock);
543 }
544 }
545
546 /*
547 * ip_reass_slowtimo:
548 *
549 * If a timer expires on a reassembly queue, discard it.
550 */
551 void
552 ip_reass_slowtimo(void)
553 {
554 static u_int dropscanidx = 0;
555 u_int i, median_ttl;
556
557 mutex_enter(&ipfr_lock);
558
559 /* Age TTL of all fragments by 1 tick .*/
560 median_ttl = ip_reass_ttl_decr(1);
561
562 /* Make sure fragment limit is up-to-date. */
563 CHECK_NMBCLUSTER_PARAMS();
564
565 /* If we have too many fragments, drop the older half. */
566 if (ip_nfrags > ip_maxfrags) {
567 ip_reass_ttl_decr(median_ttl);
568 }
569
570 /*
571 * If we are over the maximum number of fragmented packets (due to
572 * the limit being lowered), drain off enough to get down to the
573 * new limit. Start draining from the reassembly hashqueue most
574 * recently drained.
575 */
576 if (ip_maxfragpackets < 0)
577 ;
578 else {
579 int wrapped = 0;
580
581 i = dropscanidx;
582 while (ip_nfragpackets > ip_maxfragpackets && wrapped == 0) {
583 while (LIST_FIRST(&ip_frags[i]) != NULL) {
584 ip_freef(LIST_FIRST(&ip_frags[i]));
585 }
586 if (++i >= IPREASS_HASH_SIZE) {
587 i = 0;
588 }
589 /*
590 * Do not scan forever even if fragment counters are
591 * wrong: stop after scanning entire reassembly queue.
592 */
593 if (i == dropscanidx) {
594 wrapped = 1;
595 }
596 }
597 dropscanidx = i;
598 }
599 mutex_exit(&ipfr_lock);
600 }
601
602 /*
603 * ip_reass_packet: generic routine to perform IP reassembly.
604 *
605 * => Passed fragment should have IP_MF flag and/or offset set.
606 * => Fragment should not have other than IP_MF flags set.
607 *
608 * => Returns 0 on success or error otherwise.
609 * => On complete, m0 represents a constructed final packet.
610 */
611 int
612 ip_reass_packet(struct mbuf **m0, struct ip *ip)
613 {
614 const int hlen = ip->ip_hl << 2;
615 const int len = ntohs(ip->ip_len);
616 struct mbuf *m = *m0;
617 ipfr_queue_t *fp;
618 ipfr_qent_t *ipqe;
619 u_int hash, off, flen;
620 bool mff;
621
622 /*
623 * Prevent TCP blind data attacks by not allowing non-initial
624 * fragments to start at less than 68 bytes (minimal fragment
625 * size) and making sure the first fragment is at least 68
626 * bytes.
627 */
628 off = (ntohs(ip->ip_off) & IP_OFFMASK) << 3;
629 if ((off > 0 ? off + hlen : len) < IP_MINFRAGSIZE - 1) {
630 IP_STATINC(IP_STAT_BADFRAGS);
631 return EINVAL;
632 }
633
634 if (off + len > IP_MAXPACKET) {
635 IP_STATINC(IP_STAT_TOOLONG);
636 return EINVAL;
637 }
638
639 /*
640 * Fragment length and MF flag. Make sure that fragments have
641 * a data length which is non-zero and multiple of 8 bytes.
642 */
643 flen = ntohs(ip->ip_len) - hlen;
644 mff = (ip->ip_off & htons(IP_MF)) != 0;
645 if (mff && (flen == 0 || (flen & 0x7) != 0)) {
646 IP_STATINC(IP_STAT_BADFRAGS);
647 return EINVAL;
648 }
649
650 /*
651 * Adjust total IP length to not reflect header and convert
652 * offset of this to bytes. XXX: clobbers struct ip.
653 */
654 ip->ip_len = htons(flen);
655 ip->ip_off = htons(off);
656
657 /* Look for queue of fragments of this datagram. */
658 mutex_enter(&ipfr_lock);
659 hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
660 LIST_FOREACH(fp, &ip_frags[hash], ipq_q) {
661 if (ip->ip_id != fp->ipq_id)
662 continue;
663 if (!in_hosteq(ip->ip_src, fp->ipq_src))
664 continue;
665 if (!in_hosteq(ip->ip_dst, fp->ipq_dst))
666 continue;
667 if (ip->ip_p != fp->ipq_p)
668 continue;
669 break;
670 }
671
672 /* Make sure that TOS matches previous fragments. */
673 if (fp && fp->ipq_tos != ip->ip_tos) {
674 IP_STATINC(IP_STAT_BADFRAGS);
675 mutex_exit(&ipfr_lock);
676 return EINVAL;
677 }
678
679 /*
680 * Create new entry and attempt to reassembly.
681 */
682 IP_STATINC(IP_STAT_FRAGMENTS);
683 ipqe = pool_cache_get(ipfren_cache, PR_NOWAIT);
684 if (ipqe == NULL) {
685 IP_STATINC(IP_STAT_RCVMEMDROP);
686 mutex_exit(&ipfr_lock);
687 return ENOMEM;
688 }
689 ipqe->ipqe_mff = mff;
690 ipqe->ipqe_m = m;
691 ipqe->ipqe_ip = ip;
692
693 *m0 = ip_reass(ipqe, fp, hash);
694 if (*m0) {
695 /* Note that finally reassembled. */
696 IP_STATINC(IP_STAT_REASSEMBLED);
697 }
698 return 0;
699 }
700