ip_reass.c revision 1.3 1 /* $NetBSD: ip_reass.c,v 1.3 2010/08/25 00:05:14 rmind Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1988, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 * @(#)ip_input.c 8.2 (Berkeley) 1/4/94
32 */
33
34 /*
35 * IP reassembly.
36 *
37 * Additive-Increase/Multiplicative-Decrease (AIMD) strategy for IP
38 * reassembly queue buffer managment.
39 *
40 * We keep a count of total IP fragments (NB: not fragmented packets),
41 * awaiting reassembly (ip_nfrags) and a limit (ip_maxfrags) on fragments.
42 * If ip_nfrags exceeds ip_maxfrags the limit, we drop half the total
43 * fragments in reassembly queues. This AIMD policy avoids repeatedly
44 * deleting single packets under heavy fragmentation load (e.g., from lossy
45 * NFS peers).
46 */
47
48 #include <sys/cdefs.h>
49 __KERNEL_RCSID(0, "$NetBSD: ip_reass.c,v 1.3 2010/08/25 00:05:14 rmind Exp $");
50
51 #include <sys/param.h>
52 #include <sys/types.h>
53
54 #include <sys/malloc.h>
55 #include <sys/mbuf.h>
56 #include <sys/domain.h>
57 #include <sys/protosw.h>
58 #include <sys/pool.h>
59 #include <sys/queue.h>
60 #include <sys/sysctl.h>
61 #include <sys/systm.h>
62
63 #include <net/if.h>
64 #include <net/route.h>
65
66 #include <netinet/in.h>
67 #include <netinet/in_systm.h>
68 #include <netinet/ip.h>
69 #include <netinet/in_pcb.h>
70 #include <netinet/ip_var.h>
71 #include <netinet/in_proto.h>
72 #include <netinet/ip_private.h>
73 #include <netinet/in_var.h>
74
75 /*
76 * IP reassembly queue structures. Each fragment being reassembled is
77 * attached to one of these structures. They are timed out after TTL
78 * drops to 0, and may also be reclaimed if memory becomes tight.
79 */
80
81 typedef struct ipfr_qent {
82 TAILQ_ENTRY(ipfr_qent) ipqe_q;
83 struct ip * ipqe_ip;
84 struct mbuf * ipqe_m;
85 bool ipqe_mff;
86 } ipfr_qent_t;
87
88 typedef struct ipfr_queue {
89 LIST_ENTRY(ipfr_queue) ipq_q; /* to other reass headers */
90 TAILQ_HEAD(, ipfr_qent) ipq_fragq; /* queue of fragment entries */
91 uint8_t ipq_ttl; /* time for reass q to live */
92 uint8_t ipq_p; /* protocol of this fragment */
93 uint16_t ipq_id; /* sequence id for reassembly */
94 struct in_addr ipq_src;
95 struct in_addr ipq_dst;
96 uint16_t ipq_nfrags; /* frags in this queue entry */
97 uint8_t ipq_tos; /* TOS of this fragment */
98 } ipfr_queue_t;
99
100 /*
101 * Hash table of IP reassembly queues.
102 */
103 #define IPREASS_HASH_SHIFT 6
104 #define IPREASS_HASH_SIZE (1 << IPREASS_HASH_SHIFT)
105 #define IPREASS_HASH_MASK (IPREASS_HASH_SIZE - 1)
106 #define IPREASS_HASH(x, y) \
107 (((((x) & 0xf) | ((((x) >> 8) & 0xf) << 4)) ^ (y)) & IPREASS_HASH_MASK)
108
109 static LIST_HEAD(, ipfr_queue) ip_frags[IPREASS_HASH_SIZE];
110 static struct pool ipqent_pool;
111 static int ipq_locked;
112
113 /* Number of packets in reassembly queue and total number of fragments. */
114 static int ip_nfragpackets;
115 static int ip_nfrags;
116
117 /* Limits on packet and fragments. */
118 static int ip_maxfragpackets;
119 static int ip_maxfrags;
120
121 /*
122 * Cached copy of nmbclusters. If nbclusters is different, recalculate
123 * IP parameters derived from nmbclusters.
124 */
125 static int ip_nmbclusters;
126
127 /*
128 * IP reassembly TTL machinery for multiplicative drop.
129 */
130 static u_int fragttl_histo[IPFRAGTTL + 1];
131
132 void sysctl_ip_reass_setup(void);
133 static void ip_nmbclusters_changed(void);
134
135 static struct mbuf * ip_reass(ipfr_qent_t *, ipfr_queue_t *, u_int);
136 static u_int ip_reass_ttl_decr(u_int ticks);
137 static void ip_reass_drophalf(void);
138 static void ip_freef(ipfr_queue_t *);
139
140 /*
141 * ip_reass_init:
142 *
143 * Initialization of IP reassembly mechanism.
144 */
145 void
146 ip_reass_init(void)
147 {
148 int i;
149
150 pool_init(&ipqent_pool, sizeof(ipfr_qent_t), 0, 0, 0, "ipqepl",
151 NULL, IPL_VM);
152
153 for (i = 0; i < IPREASS_HASH_SIZE; i++) {
154 LIST_INIT(&ip_frags[i]);
155 }
156 ip_maxfragpackets = 200;
157 ip_maxfrags = 0;
158 ip_nmbclusters_changed();
159
160 sysctl_ip_reass_setup();
161 }
162
163 static struct sysctllog *ip_reass_sysctllog;
164
165 void
166 sysctl_ip_reass_setup(void)
167 {
168
169 sysctl_createv(&ip_reass_sysctllog, 0, NULL, NULL,
170 CTLFLAG_PERMANENT,
171 CTLTYPE_NODE, "net", NULL,
172 NULL, 0, NULL, 0,
173 CTL_NET, CTL_EOL);
174 sysctl_createv(&ip_reass_sysctllog, 0, NULL, NULL,
175 CTLFLAG_PERMANENT,
176 CTLTYPE_NODE, "inet",
177 SYSCTL_DESCR("PF_INET related settings"),
178 NULL, 0, NULL, 0,
179 CTL_NET, PF_INET, CTL_EOL);
180 sysctl_createv(&ip_reass_sysctllog, 0, NULL, NULL,
181 CTLFLAG_PERMANENT,
182 CTLTYPE_NODE, "ip",
183 SYSCTL_DESCR("IPv4 related settings"),
184 NULL, 0, NULL, 0,
185 CTL_NET, PF_INET, IPPROTO_IP, CTL_EOL);
186
187 sysctl_createv(&ip_reass_sysctllog, 0, NULL, NULL,
188 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
189 CTLTYPE_INT, "maxfragpackets",
190 SYSCTL_DESCR("Maximum number of fragments to retain for "
191 "possible reassembly"),
192 NULL, 0, &ip_maxfragpackets, 0,
193 CTL_NET, PF_INET, IPPROTO_IP, IPCTL_MAXFRAGPACKETS, CTL_EOL);
194 }
195
196 #define CHECK_NMBCLUSTER_PARAMS() \
197 do { \
198 if (__predict_false(ip_nmbclusters != nmbclusters)) \
199 ip_nmbclusters_changed(); \
200 } while (/*CONSTCOND*/0)
201
202 /*
203 * Compute IP limits derived from the value of nmbclusters.
204 */
205 static void
206 ip_nmbclusters_changed(void)
207 {
208 ip_maxfrags = nmbclusters / 4;
209 ip_nmbclusters = nmbclusters;
210 }
211
212 static inline int ipq_lock_try(void);
213 static inline void ipq_unlock(void);
214
215 static inline int
216 ipq_lock_try(void)
217 {
218 int s;
219
220 /*
221 * Use splvm() -- we're blocking things that would cause
222 * mbuf allocation.
223 */
224 s = splvm();
225 if (ipq_locked) {
226 splx(s);
227 return (0);
228 }
229 ipq_locked = 1;
230 splx(s);
231 return (1);
232 }
233
234 static inline void
235 ipq_unlock(void)
236 {
237 int s;
238
239 s = splvm();
240 ipq_locked = 0;
241 splx(s);
242 }
243
244 #ifdef DIAGNOSTIC
245 #define IPQ_LOCK() \
246 do { \
247 if (ipq_lock_try() == 0) { \
248 printf("%s:%d: ipq already locked\n", __FILE__, __LINE__); \
249 panic("ipq_lock"); \
250 } \
251 } while (/*CONSTCOND*/ 0)
252 #define IPQ_LOCK_CHECK() \
253 do { \
254 if (ipq_locked == 0) { \
255 printf("%s:%d: ipq lock not held\n", __FILE__, __LINE__); \
256 panic("ipq lock check"); \
257 } \
258 } while (/*CONSTCOND*/ 0)
259 #else
260 #define IPQ_LOCK() (void) ipq_lock_try()
261 #define IPQ_LOCK_CHECK() /* nothing */
262 #endif
263
264 #define IPQ_UNLOCK() ipq_unlock()
265
266 /*
267 * ip_reass:
268 *
269 * Take incoming datagram fragment and try to reassemble it into whole
270 * datagram. If a chain for reassembly of this datagram already exists,
271 * then it is given as 'fp'; otherwise have to make a chain.
272 */
273 struct mbuf *
274 ip_reass(ipfr_qent_t *ipqe, ipfr_queue_t *fp, const u_int hash)
275 {
276 const int hlen = ipqe->ipqe_ip->ip_hl << 2;
277 struct mbuf *m = ipqe->ipqe_m, *t;
278 ipfr_qent_t *nq, *p, *q;
279 struct ip *ip;
280 int i, next, s;
281
282 IPQ_LOCK_CHECK();
283
284 /*
285 * Presence of header sizes in mbufs would confuse code below.
286 */
287 m->m_data += hlen;
288 m->m_len -= hlen;
289
290 #ifdef notyet
291 /* Make sure fragment limit is up-to-date. */
292 CHECK_NMBCLUSTER_PARAMS();
293
294 /* If we have too many fragments, drop the older half. */
295 if (ip_nfrags >= ip_maxfrags) {
296 ip_reass_drophalf(void);
297 }
298 #endif
299
300 /*
301 * We are about to add a fragment; increment frag count.
302 */
303 ip_nfrags++;
304
305 /*
306 * If first fragment to arrive, create a reassembly queue.
307 */
308 if (fp == NULL) {
309 /*
310 * Enforce upper bound on number of fragmented packets
311 * for which we attempt reassembly: a) if maxfrag is 0,
312 * never accept fragments b) if maxfrag is -1, accept
313 * all fragments without limitation.
314 */
315 if (ip_maxfragpackets < 0)
316 ;
317 else if (ip_nfragpackets >= ip_maxfragpackets) {
318 goto dropfrag;
319 }
320 ip_nfragpackets++;
321 fp = malloc(sizeof(ipfr_queue_t), M_FTABLE, M_NOWAIT);
322 if (fp == NULL) {
323 goto dropfrag;
324 }
325 LIST_INSERT_HEAD(&ip_frags[hash], fp, ipq_q);
326 fp->ipq_nfrags = 1;
327 fp->ipq_ttl = IPFRAGTTL;
328 fp->ipq_p = ipqe->ipqe_ip->ip_p;
329 fp->ipq_id = ipqe->ipqe_ip->ip_id;
330 fp->ipq_tos = ipqe->ipqe_ip->ip_tos;
331 TAILQ_INIT(&fp->ipq_fragq);
332 fp->ipq_src = ipqe->ipqe_ip->ip_src;
333 fp->ipq_dst = ipqe->ipqe_ip->ip_dst;
334 p = NULL;
335 goto insert;
336 } else {
337 fp->ipq_nfrags++;
338 }
339
340 /*
341 * Find a segment which begins after this one does.
342 */
343 for (p = NULL, q = TAILQ_FIRST(&fp->ipq_fragq); q != NULL;
344 p = q, q = TAILQ_NEXT(q, ipqe_q))
345 if (ntohs(q->ipqe_ip->ip_off) > ntohs(ipqe->ipqe_ip->ip_off))
346 break;
347
348 /*
349 * If there is a preceding segment, it may provide some of our
350 * data already. If so, drop the data from the incoming segment.
351 * If it provides all of our data, drop us.
352 */
353 if (p != NULL) {
354 i = ntohs(p->ipqe_ip->ip_off) + ntohs(p->ipqe_ip->ip_len) -
355 ntohs(ipqe->ipqe_ip->ip_off);
356 if (i > 0) {
357 if (i >= ntohs(ipqe->ipqe_ip->ip_len)) {
358 goto dropfrag;
359 }
360 m_adj(ipqe->ipqe_m, i);
361 ipqe->ipqe_ip->ip_off =
362 htons(ntohs(ipqe->ipqe_ip->ip_off) + i);
363 ipqe->ipqe_ip->ip_len =
364 htons(ntohs(ipqe->ipqe_ip->ip_len) - i);
365 }
366 }
367
368 /*
369 * While we overlap succeeding segments trim them or, if they are
370 * completely covered, dequeue them.
371 */
372 for (; q != NULL &&
373 ntohs(ipqe->ipqe_ip->ip_off) + ntohs(ipqe->ipqe_ip->ip_len) >
374 ntohs(q->ipqe_ip->ip_off); q = nq) {
375 i = (ntohs(ipqe->ipqe_ip->ip_off) +
376 ntohs(ipqe->ipqe_ip->ip_len)) - ntohs(q->ipqe_ip->ip_off);
377 if (i < ntohs(q->ipqe_ip->ip_len)) {
378 q->ipqe_ip->ip_len =
379 htons(ntohs(q->ipqe_ip->ip_len) - i);
380 q->ipqe_ip->ip_off =
381 htons(ntohs(q->ipqe_ip->ip_off) + i);
382 m_adj(q->ipqe_m, i);
383 break;
384 }
385 nq = TAILQ_NEXT(q, ipqe_q);
386 m_freem(q->ipqe_m);
387 TAILQ_REMOVE(&fp->ipq_fragq, q, ipqe_q);
388 s = splvm();
389 pool_put(&ipqent_pool, q);
390 splx(s);
391 fp->ipq_nfrags--;
392 ip_nfrags--;
393 }
394
395 insert:
396 /*
397 * Stick new segment in its place; check for complete reassembly.
398 */
399 if (p == NULL) {
400 TAILQ_INSERT_HEAD(&fp->ipq_fragq, ipqe, ipqe_q);
401 } else {
402 TAILQ_INSERT_AFTER(&fp->ipq_fragq, p, ipqe, ipqe_q);
403 }
404 next = 0;
405 for (p = NULL, q = TAILQ_FIRST(&fp->ipq_fragq); q != NULL;
406 p = q, q = TAILQ_NEXT(q, ipqe_q)) {
407 if (ntohs(q->ipqe_ip->ip_off) != next) {
408 IPQ_UNLOCK();
409 return NULL;
410 }
411 next += ntohs(q->ipqe_ip->ip_len);
412 }
413 if (p->ipqe_mff) {
414 IPQ_UNLOCK();
415 return NULL;
416 }
417 /*
418 * Reassembly is complete. Check for a bogus message size and
419 * concatenate fragments.
420 */
421 q = TAILQ_FIRST(&fp->ipq_fragq);
422 ip = q->ipqe_ip;
423 if ((next + (ip->ip_hl << 2)) > IP_MAXPACKET) {
424 IP_STATINC(IP_STAT_TOOLONG);
425 ip_freef(fp);
426 IPQ_UNLOCK();
427 return NULL;
428 }
429 m = q->ipqe_m;
430 t = m->m_next;
431 m->m_next = NULL;
432 m_cat(m, t);
433 nq = TAILQ_NEXT(q, ipqe_q);
434 s = splvm();
435 pool_put(&ipqent_pool, q);
436 splx(s);
437 for (q = nq; q != NULL; q = nq) {
438 t = q->ipqe_m;
439 nq = TAILQ_NEXT(q, ipqe_q);
440 s = splvm();
441 pool_put(&ipqent_pool, q);
442 splx(s);
443 m_cat(m, t);
444 }
445 ip_nfrags -= fp->ipq_nfrags;
446
447 /*
448 * Create header for new packet by modifying header of first
449 * packet. Dequeue and discard fragment reassembly header. Make
450 * header visible.
451 */
452 ip->ip_len = htons((ip->ip_hl << 2) + next);
453 ip->ip_src = fp->ipq_src;
454 ip->ip_dst = fp->ipq_dst;
455
456 LIST_REMOVE(fp, ipq_q);
457 free(fp, M_FTABLE);
458 ip_nfragpackets--;
459 m->m_len += (ip->ip_hl << 2);
460 m->m_data -= (ip->ip_hl << 2);
461 /* some debugging cruft by sklower, below, will go away soon */
462 if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
463 int plen = 0;
464 for (t = m; t; t = t->m_next) {
465 plen += t->m_len;
466 }
467 m->m_pkthdr.len = plen;
468 m->m_pkthdr.csum_flags = 0;
469 }
470 IPQ_UNLOCK();
471 return m;
472
473 dropfrag:
474 if (fp != NULL) {
475 fp->ipq_nfrags--;
476 }
477 ip_nfrags--;
478 IP_STATINC(IP_STAT_FRAGDROPPED);
479 m_freem(m);
480 s = splvm();
481 pool_put(&ipqent_pool, ipqe);
482 splx(s);
483 IPQ_UNLOCK();
484 return NULL;
485 }
486
487 /*
488 * ip_freef:
489 *
490 * Free a fragment reassembly header and all associated datagrams.
491 */
492 static void
493 ip_freef(ipfr_queue_t *fp)
494 {
495 ipfr_qent_t *q, *p;
496 u_int nfrags = 0;
497 int s;
498
499 IPQ_LOCK_CHECK();
500
501 for (q = TAILQ_FIRST(&fp->ipq_fragq); q != NULL; q = p) {
502 p = TAILQ_NEXT(q, ipqe_q);
503 m_freem(q->ipqe_m);
504 nfrags++;
505 TAILQ_REMOVE(&fp->ipq_fragq, q, ipqe_q);
506 s = splvm();
507 pool_put(&ipqent_pool, q);
508 splx(s);
509 }
510
511 if (nfrags != fp->ipq_nfrags) {
512 printf("ip_freef: nfrags %d != %d\n", fp->ipq_nfrags, nfrags);
513 }
514 ip_nfrags -= nfrags;
515 LIST_REMOVE(fp, ipq_q);
516 free(fp, M_FTABLE);
517 ip_nfragpackets--;
518 }
519
520 /*
521 * ip_reass_ttl_decr:
522 *
523 * Decrement TTL of all reasembly queue entries by `ticks'. Count
524 * number of distinct fragments (as opposed to partial, fragmented
525 * datagrams) inthe reassembly queue. While we traverse the entire
526 * reassembly queue, compute and return the median TTL over all
527 * fragments.
528 */
529 static u_int
530 ip_reass_ttl_decr(u_int ticks)
531 {
532 u_int nfrags, median, dropfraction, keepfraction;
533 ipfr_queue_t *fp, *nfp;
534 int i;
535
536 nfrags = 0;
537 memset(fragttl_histo, 0, sizeof(fragttl_histo));
538
539 for (i = 0; i < IPREASS_HASH_SIZE; i++) {
540 for (fp = LIST_FIRST(&ip_frags[i]); fp != NULL; fp = nfp) {
541 fp->ipq_ttl = ((fp->ipq_ttl <= ticks) ?
542 0 : fp->ipq_ttl - ticks);
543 nfp = LIST_NEXT(fp, ipq_q);
544 if (fp->ipq_ttl == 0) {
545 IP_STATINC(IP_STAT_FRAGTIMEOUT);
546 ip_freef(fp);
547 } else {
548 nfrags += fp->ipq_nfrags;
549 fragttl_histo[fp->ipq_ttl] += fp->ipq_nfrags;
550 }
551 }
552 }
553
554 KASSERT(ip_nfrags == nfrags);
555
556 /* Find median (or other drop fraction) in histogram. */
557 dropfraction = (ip_nfrags / 2);
558 keepfraction = ip_nfrags - dropfraction;
559 for (i = IPFRAGTTL, median = 0; i >= 0; i--) {
560 median += fragttl_histo[i];
561 if (median >= keepfraction)
562 break;
563 }
564
565 /* Return TTL of median (or other fraction). */
566 return (u_int)i;
567 }
568
569 static void
570 ip_reass_drophalf(void)
571 {
572 u_int median_ticks;
573
574 /*
575 * Compute median TTL of all fragments, and count frags
576 * with that TTL or lower (roughly half of all fragments).
577 */
578 median_ticks = ip_reass_ttl_decr(0);
579
580 /* Drop half. */
581 median_ticks = ip_reass_ttl_decr(median_ticks);
582 }
583
584 /*
585 * ip_reass_drain: drain off all datagram fragments. Do not acquire
586 * softnet_lock as can be called from hardware interrupt context.
587 */
588 void
589 ip_reass_drain(void)
590 {
591
592 /*
593 * We may be called from a device's interrupt context. If
594 * the ipq is already busy, just bail out now.
595 */
596 if (ipq_lock_try() != 0) {
597 /*
598 * Drop half the total fragments now. If more mbufs are
599 * needed, we will be called again soon.
600 */
601 ip_reass_drophalf();
602 IPQ_UNLOCK();
603 }
604 }
605
606 /*
607 * ip_reass_slowtimo:
608 *
609 * If a timer expires on a reassembly queue, discard it.
610 */
611 void
612 ip_reass_slowtimo(void)
613 {
614 static u_int dropscanidx = 0;
615 u_int i, median_ttl;
616
617 IPQ_LOCK();
618
619 /* Age TTL of all fragments by 1 tick .*/
620 median_ttl = ip_reass_ttl_decr(1);
621
622 /* Make sure fragment limit is up-to-date. */
623 CHECK_NMBCLUSTER_PARAMS();
624
625 /* If we have too many fragments, drop the older half. */
626 if (ip_nfrags > ip_maxfrags) {
627 ip_reass_ttl_decr(median_ttl);
628 }
629
630 /*
631 * If we are over the maximum number of fragmented packets (due to
632 * the limit being lowered), drain off enough to get down to the
633 * new limit. Start draining from the reassembly hashqueue most
634 * recently drained.
635 */
636 if (ip_maxfragpackets < 0)
637 ;
638 else {
639 int wrapped = 0;
640
641 i = dropscanidx;
642 while (ip_nfragpackets > ip_maxfragpackets && wrapped == 0) {
643 while (LIST_FIRST(&ip_frags[i]) != NULL) {
644 ip_freef(LIST_FIRST(&ip_frags[i]));
645 }
646 if (++i >= IPREASS_HASH_SIZE) {
647 i = 0;
648 }
649 /*
650 * Do not scan forever even if fragment counters are
651 * wrong: stop after scanning entire reassembly queue.
652 */
653 if (i == dropscanidx) {
654 wrapped = 1;
655 }
656 }
657 dropscanidx = i;
658 }
659 IPQ_UNLOCK();
660 }
661
662 /*
663 * ip_reass_packet: generic routine to perform IP reassembly.
664 *
665 * => Passed fragment should have IP_MF flag and/or offset set.
666 * => Fragment should not have other than IP_MF flags set.
667 *
668 * => Returns 0 on success or error otherwise. When reassembly is complete,
669 * m_final representing a constructed final packet is set.
670 */
671 int
672 ip_reass_packet(struct mbuf *m, struct ip *ip, bool mff, struct mbuf **m_final)
673 {
674 ipfr_queue_t *fp;
675 ipfr_qent_t *ipqe;
676 u_int hash;
677
678 /* Look for queue of fragments of this datagram. */
679 IPQ_LOCK();
680 hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
681 LIST_FOREACH(fp, &ip_frags[hash], ipq_q) {
682 if (ip->ip_id != fp->ipq_id)
683 continue;
684 if (!in_hosteq(ip->ip_src, fp->ipq_src))
685 continue;
686 if (!in_hosteq(ip->ip_dst, fp->ipq_dst))
687 continue;
688 if (ip->ip_p != fp->ipq_p)
689 continue;
690 break;
691 }
692
693 /* Make sure that TOS matches previous fragments. */
694 if (fp && fp->ipq_tos != ip->ip_tos) {
695 IP_STATINC(IP_STAT_BADFRAGS);
696 IPQ_UNLOCK();
697 return EINVAL;
698 }
699
700 /*
701 * Create new entry and attempt to reassembly.
702 */
703 IP_STATINC(IP_STAT_FRAGMENTS);
704 int s = splvm();
705 ipqe = pool_get(&ipqent_pool, PR_NOWAIT);
706 splx(s);
707 if (ipqe == NULL) {
708 IP_STATINC(IP_STAT_RCVMEMDROP);
709 IPQ_UNLOCK();
710 return ENOMEM;
711 }
712 ipqe->ipqe_mff = mff;
713 ipqe->ipqe_m = m;
714 ipqe->ipqe_ip = ip;
715
716 *m_final = ip_reass(ipqe, fp, hash);
717 if (*m_final) {
718 /* Note if finally reassembled. */
719 IP_STATINC(IP_STAT_REASSEMBLED);
720 }
721 return 0;
722 }
723