ip_reass.c revision 1.4 1 /* $NetBSD: ip_reass.c,v 1.4 2010/10/03 19:44:47 rmind Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1988, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 * @(#)ip_input.c 8.2 (Berkeley) 1/4/94
32 */
33
34 /*
35 * IP reassembly.
36 *
37 * Additive-Increase/Multiplicative-Decrease (AIMD) strategy for IP
38 * reassembly queue buffer managment.
39 *
40 * We keep a count of total IP fragments (NB: not fragmented packets),
41 * awaiting reassembly (ip_nfrags) and a limit (ip_maxfrags) on fragments.
42 * If ip_nfrags exceeds ip_maxfrags the limit, we drop half the total
43 * fragments in reassembly queues. This AIMD policy avoids repeatedly
44 * deleting single packets under heavy fragmentation load (e.g., from lossy
45 * NFS peers).
46 */
47
48 #include <sys/cdefs.h>
49 __KERNEL_RCSID(0, "$NetBSD: ip_reass.c,v 1.4 2010/10/03 19:44:47 rmind Exp $");
50
51 #include <sys/param.h>
52 #include <sys/types.h>
53
54 #include <sys/malloc.h>
55 #include <sys/mbuf.h>
56 #include <sys/mutex.h>
57 #include <sys/domain.h>
58 #include <sys/protosw.h>
59 #include <sys/pool.h>
60 #include <sys/queue.h>
61 #include <sys/sysctl.h>
62 #include <sys/systm.h>
63
64 #include <net/if.h>
65 #include <net/route.h>
66
67 #include <netinet/in.h>
68 #include <netinet/in_systm.h>
69 #include <netinet/ip.h>
70 #include <netinet/in_pcb.h>
71 #include <netinet/ip_var.h>
72 #include <netinet/in_proto.h>
73 #include <netinet/ip_private.h>
74 #include <netinet/in_var.h>
75
76 /*
77 * IP reassembly queue structures. Each fragment being reassembled is
78 * attached to one of these structures. They are timed out after TTL
79 * drops to 0, and may also be reclaimed if memory becomes tight.
80 */
81
82 typedef struct ipfr_qent {
83 TAILQ_ENTRY(ipfr_qent) ipqe_q;
84 struct ip * ipqe_ip;
85 struct mbuf * ipqe_m;
86 bool ipqe_mff;
87 } ipfr_qent_t;
88
89 typedef struct ipfr_queue {
90 LIST_ENTRY(ipfr_queue) ipq_q; /* to other reass headers */
91 TAILQ_HEAD(, ipfr_qent) ipq_fragq; /* queue of fragment entries */
92 uint8_t ipq_ttl; /* time for reass q to live */
93 uint8_t ipq_p; /* protocol of this fragment */
94 uint16_t ipq_id; /* sequence id for reassembly */
95 struct in_addr ipq_src;
96 struct in_addr ipq_dst;
97 uint16_t ipq_nfrags; /* frags in this queue entry */
98 uint8_t ipq_tos; /* TOS of this fragment */
99 } ipfr_queue_t;
100
101 /*
102 * Hash table of IP reassembly queues.
103 */
104 #define IPREASS_HASH_SHIFT 6
105 #define IPREASS_HASH_SIZE (1 << IPREASS_HASH_SHIFT)
106 #define IPREASS_HASH_MASK (IPREASS_HASH_SIZE - 1)
107 #define IPREASS_HASH(x, y) \
108 (((((x) & 0xf) | ((((x) >> 8) & 0xf) << 4)) ^ (y)) & IPREASS_HASH_MASK)
109
110 static LIST_HEAD(, ipfr_queue) ip_frags[IPREASS_HASH_SIZE];
111 static pool_cache_t ipfren_cache;
112 static kmutex_t ipfr_lock;
113
114 /* Number of packets in reassembly queue and total number of fragments. */
115 static int ip_nfragpackets;
116 static int ip_nfrags;
117
118 /* Limits on packet and fragments. */
119 static int ip_maxfragpackets;
120 static int ip_maxfrags;
121
122 /*
123 * Cached copy of nmbclusters. If nbclusters is different, recalculate
124 * IP parameters derived from nmbclusters.
125 */
126 static int ip_nmbclusters;
127
128 /*
129 * IP reassembly TTL machinery for multiplicative drop.
130 */
131 static u_int fragttl_histo[IPFRAGTTL + 1];
132
133 static struct sysctllog *ip_reass_sysctllog;
134
135 void sysctl_ip_reass_setup(void);
136 static void ip_nmbclusters_changed(void);
137
138 static struct mbuf * ip_reass(ipfr_qent_t *, ipfr_queue_t *, u_int);
139 static u_int ip_reass_ttl_decr(u_int ticks);
140 static void ip_reass_drophalf(void);
141 static void ip_freef(ipfr_queue_t *);
142
143 /*
144 * ip_reass_init:
145 *
146 * Initialization of IP reassembly mechanism.
147 */
148 void
149 ip_reass_init(void)
150 {
151 int i;
152
153 ipfren_cache = pool_cache_init(sizeof(ipfr_qent_t), coherency_unit,
154 0, 0, "ipfrenpl", NULL, IPL_NET, NULL, NULL, NULL);
155 mutex_init(&ipfr_lock, MUTEX_DEFAULT, IPL_SOFTNET);
156
157 for (i = 0; i < IPREASS_HASH_SIZE; i++) {
158 LIST_INIT(&ip_frags[i]);
159 }
160 ip_maxfragpackets = 200;
161 ip_maxfrags = 0;
162 ip_nmbclusters_changed();
163
164 sysctl_ip_reass_setup();
165 }
166
167 void
168 sysctl_ip_reass_setup(void)
169 {
170
171 sysctl_createv(&ip_reass_sysctllog, 0, NULL, NULL,
172 CTLFLAG_PERMANENT,
173 CTLTYPE_NODE, "net", NULL,
174 NULL, 0, NULL, 0,
175 CTL_NET, CTL_EOL);
176 sysctl_createv(&ip_reass_sysctllog, 0, NULL, NULL,
177 CTLFLAG_PERMANENT,
178 CTLTYPE_NODE, "inet",
179 SYSCTL_DESCR("PF_INET related settings"),
180 NULL, 0, NULL, 0,
181 CTL_NET, PF_INET, CTL_EOL);
182 sysctl_createv(&ip_reass_sysctllog, 0, NULL, NULL,
183 CTLFLAG_PERMANENT,
184 CTLTYPE_NODE, "ip",
185 SYSCTL_DESCR("IPv4 related settings"),
186 NULL, 0, NULL, 0,
187 CTL_NET, PF_INET, IPPROTO_IP, CTL_EOL);
188
189 sysctl_createv(&ip_reass_sysctllog, 0, NULL, NULL,
190 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
191 CTLTYPE_INT, "maxfragpackets",
192 SYSCTL_DESCR("Maximum number of fragments to retain for "
193 "possible reassembly"),
194 NULL, 0, &ip_maxfragpackets, 0,
195 CTL_NET, PF_INET, IPPROTO_IP, IPCTL_MAXFRAGPACKETS, CTL_EOL);
196 }
197
198 #define CHECK_NMBCLUSTER_PARAMS() \
199 do { \
200 if (__predict_false(ip_nmbclusters != nmbclusters)) \
201 ip_nmbclusters_changed(); \
202 } while (/*CONSTCOND*/0)
203
204 /*
205 * Compute IP limits derived from the value of nmbclusters.
206 */
207 static void
208 ip_nmbclusters_changed(void)
209 {
210 ip_maxfrags = nmbclusters / 4;
211 ip_nmbclusters = nmbclusters;
212 }
213
214 /*
215 * ip_reass:
216 *
217 * Take incoming datagram fragment and try to reassemble it into whole
218 * datagram. If a chain for reassembly of this datagram already exists,
219 * then it is given as 'fp'; otherwise have to make a chain.
220 */
221 struct mbuf *
222 ip_reass(ipfr_qent_t *ipqe, ipfr_queue_t *fp, const u_int hash)
223 {
224 const int hlen = ipqe->ipqe_ip->ip_hl << 2;
225 struct mbuf *m = ipqe->ipqe_m, *t;
226 ipfr_qent_t *nq, *p, *q;
227 struct ip *ip;
228 int i, next;
229
230 KASSERT(mutex_owned(&ipfr_lock));
231
232 /*
233 * Presence of header sizes in mbufs would confuse code below.
234 */
235 m->m_data += hlen;
236 m->m_len -= hlen;
237
238 #ifdef notyet
239 /* Make sure fragment limit is up-to-date. */
240 CHECK_NMBCLUSTER_PARAMS();
241
242 /* If we have too many fragments, drop the older half. */
243 if (ip_nfrags >= ip_maxfrags) {
244 ip_reass_drophalf(void);
245 }
246 #endif
247
248 /*
249 * We are about to add a fragment; increment frag count.
250 */
251 ip_nfrags++;
252
253 /*
254 * If first fragment to arrive, create a reassembly queue.
255 */
256 if (fp == NULL) {
257 /*
258 * Enforce upper bound on number of fragmented packets
259 * for which we attempt reassembly: a) if maxfrag is 0,
260 * never accept fragments b) if maxfrag is -1, accept
261 * all fragments without limitation.
262 */
263 if (ip_maxfragpackets < 0)
264 ;
265 else if (ip_nfragpackets >= ip_maxfragpackets) {
266 goto dropfrag;
267 }
268 ip_nfragpackets++;
269 fp = malloc(sizeof(ipfr_queue_t), M_FTABLE, M_NOWAIT);
270 if (fp == NULL) {
271 goto dropfrag;
272 }
273 LIST_INSERT_HEAD(&ip_frags[hash], fp, ipq_q);
274 fp->ipq_nfrags = 1;
275 fp->ipq_ttl = IPFRAGTTL;
276 fp->ipq_p = ipqe->ipqe_ip->ip_p;
277 fp->ipq_id = ipqe->ipqe_ip->ip_id;
278 fp->ipq_tos = ipqe->ipqe_ip->ip_tos;
279 TAILQ_INIT(&fp->ipq_fragq);
280 fp->ipq_src = ipqe->ipqe_ip->ip_src;
281 fp->ipq_dst = ipqe->ipqe_ip->ip_dst;
282 p = NULL;
283 goto insert;
284 } else {
285 fp->ipq_nfrags++;
286 }
287
288 /*
289 * Find a segment which begins after this one does.
290 */
291 for (p = NULL, q = TAILQ_FIRST(&fp->ipq_fragq); q != NULL;
292 p = q, q = TAILQ_NEXT(q, ipqe_q))
293 if (ntohs(q->ipqe_ip->ip_off) > ntohs(ipqe->ipqe_ip->ip_off))
294 break;
295
296 /*
297 * If there is a preceding segment, it may provide some of our
298 * data already. If so, drop the data from the incoming segment.
299 * If it provides all of our data, drop us.
300 */
301 if (p != NULL) {
302 i = ntohs(p->ipqe_ip->ip_off) + ntohs(p->ipqe_ip->ip_len) -
303 ntohs(ipqe->ipqe_ip->ip_off);
304 if (i > 0) {
305 if (i >= ntohs(ipqe->ipqe_ip->ip_len)) {
306 goto dropfrag;
307 }
308 m_adj(ipqe->ipqe_m, i);
309 ipqe->ipqe_ip->ip_off =
310 htons(ntohs(ipqe->ipqe_ip->ip_off) + i);
311 ipqe->ipqe_ip->ip_len =
312 htons(ntohs(ipqe->ipqe_ip->ip_len) - i);
313 }
314 }
315
316 /*
317 * While we overlap succeeding segments trim them or, if they are
318 * completely covered, dequeue them.
319 */
320 for (; q != NULL &&
321 ntohs(ipqe->ipqe_ip->ip_off) + ntohs(ipqe->ipqe_ip->ip_len) >
322 ntohs(q->ipqe_ip->ip_off); q = nq) {
323 i = (ntohs(ipqe->ipqe_ip->ip_off) +
324 ntohs(ipqe->ipqe_ip->ip_len)) - ntohs(q->ipqe_ip->ip_off);
325 if (i < ntohs(q->ipqe_ip->ip_len)) {
326 q->ipqe_ip->ip_len =
327 htons(ntohs(q->ipqe_ip->ip_len) - i);
328 q->ipqe_ip->ip_off =
329 htons(ntohs(q->ipqe_ip->ip_off) + i);
330 m_adj(q->ipqe_m, i);
331 break;
332 }
333 nq = TAILQ_NEXT(q, ipqe_q);
334 m_freem(q->ipqe_m);
335 TAILQ_REMOVE(&fp->ipq_fragq, q, ipqe_q);
336 pool_cache_put(ipfren_cache, q);
337 fp->ipq_nfrags--;
338 ip_nfrags--;
339 }
340
341 insert:
342 /*
343 * Stick new segment in its place; check for complete reassembly.
344 */
345 if (p == NULL) {
346 TAILQ_INSERT_HEAD(&fp->ipq_fragq, ipqe, ipqe_q);
347 } else {
348 TAILQ_INSERT_AFTER(&fp->ipq_fragq, p, ipqe, ipqe_q);
349 }
350 next = 0;
351 for (p = NULL, q = TAILQ_FIRST(&fp->ipq_fragq); q != NULL;
352 p = q, q = TAILQ_NEXT(q, ipqe_q)) {
353 if (ntohs(q->ipqe_ip->ip_off) != next) {
354 mutex_exit(&ipfr_lock);
355 return NULL;
356 }
357 next += ntohs(q->ipqe_ip->ip_len);
358 }
359 if (p->ipqe_mff) {
360 mutex_exit(&ipfr_lock);
361 return NULL;
362 }
363 /*
364 * Reassembly is complete. Check for a bogus message size.
365 */
366 q = TAILQ_FIRST(&fp->ipq_fragq);
367 ip = q->ipqe_ip;
368 if ((next + (ip->ip_hl << 2)) > IP_MAXPACKET) {
369 IP_STATINC(IP_STAT_TOOLONG);
370 ip_freef(fp);
371 mutex_exit(&ipfr_lock);
372 return NULL;
373 }
374 LIST_REMOVE(fp, ipq_q);
375 ip_nfrags -= fp->ipq_nfrags;
376 ip_nfragpackets--;
377 mutex_exit(&ipfr_lock);
378
379 /* Concatenate all fragments. */
380 m = q->ipqe_m;
381 t = m->m_next;
382 m->m_next = NULL;
383 m_cat(m, t);
384 nq = TAILQ_NEXT(q, ipqe_q);
385 pool_cache_put(ipfren_cache, q);
386
387 for (q = nq; q != NULL; q = nq) {
388 t = q->ipqe_m;
389 nq = TAILQ_NEXT(q, ipqe_q);
390 pool_cache_put(ipfren_cache, q);
391 m_cat(m, t);
392 }
393 free(fp, M_FTABLE);
394
395 /*
396 * Create header for new packet by modifying header of first
397 * packet. Dequeue and discard fragment reassembly header. Make
398 * header visible.
399 */
400 ip->ip_len = htons((ip->ip_hl << 2) + next);
401 ip->ip_src = fp->ipq_src;
402 ip->ip_dst = fp->ipq_dst;
403
404 m->m_len += (ip->ip_hl << 2);
405 m->m_data -= (ip->ip_hl << 2);
406
407 /* Fix up mbuf. XXX This should be done elsewhere. */
408 if (m->m_flags & M_PKTHDR) {
409 int plen = 0;
410 for (t = m; t; t = t->m_next) {
411 plen += t->m_len;
412 }
413 m->m_pkthdr.len = plen;
414 m->m_pkthdr.csum_flags = 0;
415 }
416 return m;
417
418 dropfrag:
419 if (fp != NULL) {
420 fp->ipq_nfrags--;
421 }
422 ip_nfrags--;
423 IP_STATINC(IP_STAT_FRAGDROPPED);
424 mutex_exit(&ipfr_lock);
425
426 pool_cache_put(ipfren_cache, ipqe);
427 m_freem(m);
428 return NULL;
429 }
430
431 /*
432 * ip_freef:
433 *
434 * Free a fragment reassembly header and all associated datagrams.
435 */
436 static void
437 ip_freef(ipfr_queue_t *fp)
438 {
439 ipfr_qent_t *q;
440
441 KASSERT(mutex_owned(&ipfr_lock));
442
443 LIST_REMOVE(fp, ipq_q);
444 ip_nfrags -= fp->ipq_nfrags;
445 ip_nfragpackets--;
446
447 while ((q = TAILQ_FIRST(&fp->ipq_fragq)) != NULL) {
448 TAILQ_REMOVE(&fp->ipq_fragq, q, ipqe_q);
449 m_freem(q->ipqe_m);
450 pool_cache_put(ipfren_cache, q);
451 }
452 free(fp, M_FTABLE);
453 }
454
455 /*
456 * ip_reass_ttl_decr:
457 *
458 * Decrement TTL of all reasembly queue entries by `ticks'. Count
459 * number of distinct fragments (as opposed to partial, fragmented
460 * datagrams) inthe reassembly queue. While we traverse the entire
461 * reassembly queue, compute and return the median TTL over all
462 * fragments.
463 */
464 static u_int
465 ip_reass_ttl_decr(u_int ticks)
466 {
467 u_int nfrags, median, dropfraction, keepfraction;
468 ipfr_queue_t *fp, *nfp;
469 int i;
470
471 nfrags = 0;
472 memset(fragttl_histo, 0, sizeof(fragttl_histo));
473
474 for (i = 0; i < IPREASS_HASH_SIZE; i++) {
475 for (fp = LIST_FIRST(&ip_frags[i]); fp != NULL; fp = nfp) {
476 fp->ipq_ttl = ((fp->ipq_ttl <= ticks) ?
477 0 : fp->ipq_ttl - ticks);
478 nfp = LIST_NEXT(fp, ipq_q);
479 if (fp->ipq_ttl == 0) {
480 IP_STATINC(IP_STAT_FRAGTIMEOUT);
481 ip_freef(fp);
482 } else {
483 nfrags += fp->ipq_nfrags;
484 fragttl_histo[fp->ipq_ttl] += fp->ipq_nfrags;
485 }
486 }
487 }
488
489 KASSERT(ip_nfrags == nfrags);
490
491 /* Find median (or other drop fraction) in histogram. */
492 dropfraction = (ip_nfrags / 2);
493 keepfraction = ip_nfrags - dropfraction;
494 for (i = IPFRAGTTL, median = 0; i >= 0; i--) {
495 median += fragttl_histo[i];
496 if (median >= keepfraction)
497 break;
498 }
499
500 /* Return TTL of median (or other fraction). */
501 return (u_int)i;
502 }
503
504 static void
505 ip_reass_drophalf(void)
506 {
507 u_int median_ticks;
508
509 KASSERT(mutex_owned(&ipfr_lock));
510
511 /*
512 * Compute median TTL of all fragments, and count frags
513 * with that TTL or lower (roughly half of all fragments).
514 */
515 median_ticks = ip_reass_ttl_decr(0);
516
517 /* Drop half. */
518 median_ticks = ip_reass_ttl_decr(median_ticks);
519 }
520
521 /*
522 * ip_reass_drain: drain off all datagram fragments. Do not acquire
523 * softnet_lock as can be called from hardware interrupt context.
524 */
525 void
526 ip_reass_drain(void)
527 {
528
529 /*
530 * We may be called from a device's interrupt context. If
531 * the ipq is already busy, just bail out now.
532 */
533 if (mutex_tryenter(&ipfr_lock)) {
534 /*
535 * Drop half the total fragments now. If more mbufs are
536 * needed, we will be called again soon.
537 */
538 ip_reass_drophalf();
539 mutex_exit(&ipfr_lock);
540 }
541 }
542
543 /*
544 * ip_reass_slowtimo:
545 *
546 * If a timer expires on a reassembly queue, discard it.
547 */
548 void
549 ip_reass_slowtimo(void)
550 {
551 static u_int dropscanidx = 0;
552 u_int i, median_ttl;
553
554 mutex_enter(&ipfr_lock);
555
556 /* Age TTL of all fragments by 1 tick .*/
557 median_ttl = ip_reass_ttl_decr(1);
558
559 /* Make sure fragment limit is up-to-date. */
560 CHECK_NMBCLUSTER_PARAMS();
561
562 /* If we have too many fragments, drop the older half. */
563 if (ip_nfrags > ip_maxfrags) {
564 ip_reass_ttl_decr(median_ttl);
565 }
566
567 /*
568 * If we are over the maximum number of fragmented packets (due to
569 * the limit being lowered), drain off enough to get down to the
570 * new limit. Start draining from the reassembly hashqueue most
571 * recently drained.
572 */
573 if (ip_maxfragpackets < 0)
574 ;
575 else {
576 int wrapped = 0;
577
578 i = dropscanidx;
579 while (ip_nfragpackets > ip_maxfragpackets && wrapped == 0) {
580 while (LIST_FIRST(&ip_frags[i]) != NULL) {
581 ip_freef(LIST_FIRST(&ip_frags[i]));
582 }
583 if (++i >= IPREASS_HASH_SIZE) {
584 i = 0;
585 }
586 /*
587 * Do not scan forever even if fragment counters are
588 * wrong: stop after scanning entire reassembly queue.
589 */
590 if (i == dropscanidx) {
591 wrapped = 1;
592 }
593 }
594 dropscanidx = i;
595 }
596 mutex_exit(&ipfr_lock);
597 }
598
599 /*
600 * ip_reass_packet: generic routine to perform IP reassembly.
601 *
602 * => Passed fragment should have IP_MF flag and/or offset set.
603 * => Fragment should not have other than IP_MF flags set.
604 *
605 * => Returns 0 on success or error otherwise. When reassembly is complete,
606 * m_final representing a constructed final packet is set.
607 */
608 int
609 ip_reass_packet(struct mbuf *m, struct ip *ip, bool mff, struct mbuf **m_final)
610 {
611 ipfr_queue_t *fp;
612 ipfr_qent_t *ipqe;
613 u_int hash;
614
615 /* Look for queue of fragments of this datagram. */
616 mutex_enter(&ipfr_lock);
617 hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
618 LIST_FOREACH(fp, &ip_frags[hash], ipq_q) {
619 if (ip->ip_id != fp->ipq_id)
620 continue;
621 if (!in_hosteq(ip->ip_src, fp->ipq_src))
622 continue;
623 if (!in_hosteq(ip->ip_dst, fp->ipq_dst))
624 continue;
625 if (ip->ip_p != fp->ipq_p)
626 continue;
627 break;
628 }
629
630 /* Make sure that TOS matches previous fragments. */
631 if (fp && fp->ipq_tos != ip->ip_tos) {
632 IP_STATINC(IP_STAT_BADFRAGS);
633 mutex_exit(&ipfr_lock);
634 return EINVAL;
635 }
636
637 /*
638 * Create new entry and attempt to reassembly.
639 */
640 IP_STATINC(IP_STAT_FRAGMENTS);
641 ipqe = pool_cache_get(ipfren_cache, PR_NOWAIT);
642 if (ipqe == NULL) {
643 IP_STATINC(IP_STAT_RCVMEMDROP);
644 mutex_exit(&ipfr_lock);
645 return ENOMEM;
646 }
647 ipqe->ipqe_mff = mff;
648 ipqe->ipqe_m = m;
649 ipqe->ipqe_ip = ip;
650
651 *m_final = ip_reass(ipqe, fp, hash);
652 if (*m_final) {
653 /* Note if finally reassembled. */
654 IP_STATINC(IP_STAT_REASSEMBLED);
655 }
656 return 0;
657 }
658