Home | History | Annotate | Line # | Download | only in netinet
ip_reass.c revision 1.7
      1 /*	$NetBSD: ip_reass.c,v 1.7 2010/11/05 00:21:51 rmind Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1988, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the University nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  *
     31  *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
     32  */
     33 
     34 /*
     35  * IP reassembly.
     36  *
     37  * Additive-Increase/Multiplicative-Decrease (AIMD) strategy for IP
     38  * reassembly queue buffer managment.
     39  *
     40  * We keep a count of total IP fragments (NB: not fragmented packets),
     41  * awaiting reassembly (ip_nfrags) and a limit (ip_maxfrags) on fragments.
     42  * If ip_nfrags exceeds ip_maxfrags the limit, we drop half the total
     43  * fragments in reassembly queues.  This AIMD policy avoids repeatedly
     44  * deleting single packets under heavy fragmentation load (e.g., from lossy
     45  * NFS peers).
     46  */
     47 
     48 #include <sys/cdefs.h>
     49 __KERNEL_RCSID(0, "$NetBSD: ip_reass.c,v 1.7 2010/11/05 00:21:51 rmind Exp $");
     50 
     51 #include <sys/param.h>
     52 #include <sys/types.h>
     53 
     54 #include <sys/malloc.h>
     55 #include <sys/mbuf.h>
     56 #include <sys/mutex.h>
     57 #include <sys/domain.h>
     58 #include <sys/protosw.h>
     59 #include <sys/pool.h>
     60 #include <sys/queue.h>
     61 #include <sys/sysctl.h>
     62 #include <sys/systm.h>
     63 
     64 #include <net/if.h>
     65 #include <net/route.h>
     66 
     67 #include <netinet/in.h>
     68 #include <netinet/in_systm.h>
     69 #include <netinet/ip.h>
     70 #include <netinet/in_pcb.h>
     71 #include <netinet/ip_var.h>
     72 #include <netinet/in_proto.h>
     73 #include <netinet/ip_private.h>
     74 #include <netinet/in_var.h>
     75 
     76 /*
     77  * IP reassembly queue structures.  Each fragment being reassembled is
     78  * attached to one of these structures.  They are timed out after TTL
     79  * drops to 0, and may also be reclaimed if memory becomes tight.
     80  */
     81 
     82 typedef struct ipfr_qent {
     83 	TAILQ_ENTRY(ipfr_qent)	ipqe_q;
     84 	struct ip *		ipqe_ip;
     85 	struct mbuf *		ipqe_m;
     86 	bool			ipqe_mff;
     87 } ipfr_qent_t;
     88 
     89 TAILQ_HEAD(ipfr_qent_head, ipfr_qent);
     90 
     91 typedef struct ipfr_queue {
     92 	LIST_ENTRY(ipfr_queue)	ipq_q;		/* to other reass headers */
     93 	struct ipfr_qent_head	ipq_fragq;	/* queue of fragment entries */
     94 	uint8_t			ipq_ttl;	/* time for reass q to live */
     95 	uint8_t			ipq_p;		/* protocol of this fragment */
     96 	uint16_t		ipq_id;		/* sequence id for reassembly */
     97 	struct in_addr		ipq_src;
     98 	struct in_addr		ipq_dst;
     99 	uint16_t		ipq_nfrags;	/* frags in this queue entry */
    100 	uint8_t 		ipq_tos;	/* TOS of this fragment */
    101 } ipfr_queue_t;
    102 
    103 /*
    104  * Hash table of IP reassembly queues.
    105  */
    106 #define	IPREASS_HASH_SHIFT	6
    107 #define	IPREASS_HASH_SIZE	(1 << IPREASS_HASH_SHIFT)
    108 #define	IPREASS_HASH_MASK	(IPREASS_HASH_SIZE - 1)
    109 #define	IPREASS_HASH(x, y) \
    110 	(((((x) & 0xf) | ((((x) >> 8) & 0xf) << 4)) ^ (y)) & IPREASS_HASH_MASK)
    111 
    112 static LIST_HEAD(, ipfr_queue)	ip_frags[IPREASS_HASH_SIZE];
    113 static pool_cache_t	ipfren_cache;
    114 static kmutex_t		ipfr_lock;
    115 
    116 /* Number of packets in reassembly queue and total number of fragments. */
    117 static int		ip_nfragpackets;
    118 static int		ip_nfrags;
    119 
    120 /* Limits on packet and fragments. */
    121 static int		ip_maxfragpackets;
    122 static int		ip_maxfrags;
    123 
    124 /*
    125  * Cached copy of nmbclusters.  If nbclusters is different, recalculate
    126  * IP parameters derived from nmbclusters.
    127  */
    128 static int		ip_nmbclusters;
    129 
    130 /*
    131  * IP reassembly TTL machinery for multiplicative drop.
    132  */
    133 static u_int		fragttl_histo[IPFRAGTTL + 1];
    134 
    135 static struct sysctllog *ip_reass_sysctllog;
    136 
    137 void			sysctl_ip_reass_setup(void);
    138 static void		ip_nmbclusters_changed(void);
    139 
    140 static struct mbuf *	ip_reass(ipfr_qent_t *, ipfr_queue_t *, u_int);
    141 static u_int		ip_reass_ttl_decr(u_int ticks);
    142 static void		ip_reass_drophalf(void);
    143 static void		ip_freef(ipfr_queue_t *);
    144 
    145 /*
    146  * ip_reass_init:
    147  *
    148  *	Initialization of IP reassembly mechanism.
    149  */
    150 void
    151 ip_reass_init(void)
    152 {
    153 	int i;
    154 
    155 	ipfren_cache = pool_cache_init(sizeof(ipfr_qent_t), coherency_unit,
    156 	    0, 0, "ipfrenpl", NULL, IPL_NET, NULL, NULL, NULL);
    157 	mutex_init(&ipfr_lock, MUTEX_DEFAULT, IPL_VM);
    158 
    159 	for (i = 0; i < IPREASS_HASH_SIZE; i++) {
    160 		LIST_INIT(&ip_frags[i]);
    161 	}
    162 	ip_maxfragpackets = 200;
    163 	ip_maxfrags = 0;
    164 	ip_nmbclusters_changed();
    165 
    166 	sysctl_ip_reass_setup();
    167 }
    168 
    169 void
    170 sysctl_ip_reass_setup(void)
    171 {
    172 
    173 	sysctl_createv(&ip_reass_sysctllog, 0, NULL, NULL,
    174 		CTLFLAG_PERMANENT,
    175 		CTLTYPE_NODE, "net", NULL,
    176 		NULL, 0, NULL, 0,
    177 		CTL_NET, CTL_EOL);
    178 	sysctl_createv(&ip_reass_sysctllog, 0, NULL, NULL,
    179 		CTLFLAG_PERMANENT,
    180 		CTLTYPE_NODE, "inet",
    181 		SYSCTL_DESCR("PF_INET related settings"),
    182 		NULL, 0, NULL, 0,
    183 		CTL_NET, PF_INET, CTL_EOL);
    184 	sysctl_createv(&ip_reass_sysctllog, 0, NULL, NULL,
    185 		CTLFLAG_PERMANENT,
    186 		CTLTYPE_NODE, "ip",
    187 		SYSCTL_DESCR("IPv4 related settings"),
    188 		NULL, 0, NULL, 0,
    189 		CTL_NET, PF_INET, IPPROTO_IP, CTL_EOL);
    190 
    191 	sysctl_createv(&ip_reass_sysctllog, 0, NULL, NULL,
    192 		CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    193 		CTLTYPE_INT, "maxfragpackets",
    194 		SYSCTL_DESCR("Maximum number of fragments to retain for "
    195 			     "possible reassembly"),
    196 		NULL, 0, &ip_maxfragpackets, 0,
    197 		CTL_NET, PF_INET, IPPROTO_IP, IPCTL_MAXFRAGPACKETS, CTL_EOL);
    198 }
    199 
    200 #define CHECK_NMBCLUSTER_PARAMS()				\
    201 do {								\
    202 	if (__predict_false(ip_nmbclusters != nmbclusters))	\
    203 		ip_nmbclusters_changed();			\
    204 } while (/*CONSTCOND*/0)
    205 
    206 /*
    207  * Compute IP limits derived from the value of nmbclusters.
    208  */
    209 static void
    210 ip_nmbclusters_changed(void)
    211 {
    212 	ip_maxfrags = nmbclusters / 4;
    213 	ip_nmbclusters = nmbclusters;
    214 }
    215 
    216 /*
    217  * ip_reass:
    218  *
    219  *	Take incoming datagram fragment and try to reassemble it into whole
    220  *	datagram.  If a chain for reassembly of this datagram already exists,
    221  *	then it is given as 'fp'; otherwise have to make a chain.
    222  */
    223 struct mbuf *
    224 ip_reass(ipfr_qent_t *ipqe, ipfr_queue_t *fp, const u_int hash)
    225 {
    226 	struct ip *ip = ipqe->ipqe_ip, *qip;
    227 	const int hlen = ip->ip_hl << 2;
    228 	struct mbuf *m = ipqe->ipqe_m, *t;
    229 	ipfr_qent_t *nq, *p, *q;
    230 	int i, next;
    231 
    232 	KASSERT(mutex_owned(&ipfr_lock));
    233 
    234 	/*
    235 	 * Presence of header sizes in mbufs would confuse code below.
    236 	 */
    237 	m->m_data += hlen;
    238 	m->m_len -= hlen;
    239 
    240 #ifdef	notyet
    241 	/* Make sure fragment limit is up-to-date. */
    242 	CHECK_NMBCLUSTER_PARAMS();
    243 
    244 	/* If we have too many fragments, drop the older half. */
    245 	if (ip_nfrags >= ip_maxfrags) {
    246 		ip_reass_drophalf(void);
    247 	}
    248 #endif
    249 
    250 	/*
    251 	 * We are about to add a fragment; increment frag count.
    252 	 */
    253 	ip_nfrags++;
    254 
    255 	/*
    256 	 * If first fragment to arrive, create a reassembly queue.
    257 	 */
    258 	if (fp == NULL) {
    259 		/*
    260 		 * Enforce upper bound on number of fragmented packets
    261 		 * for which we attempt reassembly:  a) if maxfrag is 0,
    262 		 * never accept fragments  b) if maxfrag is -1, accept
    263 		 * all fragments without limitation.
    264 		 */
    265 		if (ip_maxfragpackets < 0)
    266 			;
    267 		else if (ip_nfragpackets >= ip_maxfragpackets) {
    268 			goto dropfrag;
    269 		}
    270 		ip_nfragpackets++;
    271 		fp = malloc(sizeof(ipfr_queue_t), M_FTABLE, M_NOWAIT);
    272 		if (fp == NULL) {
    273 			goto dropfrag;
    274 		}
    275 		TAILQ_INIT(&fp->ipq_fragq);
    276 		fp->ipq_nfrags = 1;
    277 		fp->ipq_ttl = IPFRAGTTL;
    278 		fp->ipq_p = ip->ip_p;
    279 		fp->ipq_id = ip->ip_id;
    280 		fp->ipq_tos = ip->ip_tos;
    281 		fp->ipq_src = ip->ip_src;
    282 		fp->ipq_dst = ip->ip_dst;
    283 		LIST_INSERT_HEAD(&ip_frags[hash], fp, ipq_q);
    284 		p = NULL;
    285 		goto insert;
    286 	} else {
    287 		fp->ipq_nfrags++;
    288 	}
    289 
    290 	/*
    291 	 * Find a segment which begins after this one does.
    292 	 */
    293 	TAILQ_FOREACH(q, &fp->ipq_fragq, ipqe_q) {
    294 		if (ntohs(q->ipqe_ip->ip_off) > ntohs(ip->ip_off))
    295 			break;
    296 	}
    297 	if (q != NULL) {
    298 		p = TAILQ_PREV(q, ipfr_qent_head, ipqe_q);
    299 	} else {
    300 		p = TAILQ_LAST(&fp->ipq_fragq, ipfr_qent_head);
    301 	}
    302 
    303 	/*
    304 	 * If there is a preceding segment, it may provide some of our
    305 	 * data already.  If so, drop the data from the incoming segment.
    306 	 * If it provides all of our data, drop us.
    307 	 */
    308 	if (p != NULL) {
    309 		i = ntohs(p->ipqe_ip->ip_off) + ntohs(p->ipqe_ip->ip_len) -
    310 		    ntohs(ip->ip_off);
    311 		if (i > 0) {
    312 			if (i >= ntohs(ip->ip_len)) {
    313 				goto dropfrag;
    314 			}
    315 			m_adj(ipqe->ipqe_m, i);
    316 			ip->ip_off = htons(ntohs(ip->ip_off) + i);
    317 			ip->ip_len = htons(ntohs(ip->ip_len) - i);
    318 		}
    319 	}
    320 
    321 	/*
    322 	 * While we overlap succeeding segments trim them or, if they are
    323 	 * completely covered, dequeue them.
    324 	 */
    325 	while (q != NULL) {
    326 		size_t end;
    327 
    328 		qip = q->ipqe_ip;
    329 		end = ntohs(ip->ip_off) + ntohs(ip->ip_len);
    330 		if (end <= ntohs(qip->ip_off)) {
    331 			break;
    332 		}
    333 		i = end - ntohs(qip->ip_off);
    334 		if (i < ntohs(qip->ip_len)) {
    335 			qip->ip_len = htons(ntohs(qip->ip_len) - i);
    336 			qip->ip_off = htons(ntohs(qip->ip_off) + i);
    337 			m_adj(q->ipqe_m, i);
    338 			break;
    339 		}
    340 		nq = TAILQ_NEXT(q, ipqe_q);
    341 		m_freem(q->ipqe_m);
    342 		TAILQ_REMOVE(&fp->ipq_fragq, q, ipqe_q);
    343 		pool_cache_put(ipfren_cache, q);
    344 		fp->ipq_nfrags--;
    345 		ip_nfrags--;
    346 		q = nq;
    347 	}
    348 
    349 insert:
    350 	/*
    351 	 * Stick new segment in its place; check for complete reassembly.
    352 	 */
    353 	if (p == NULL) {
    354 		TAILQ_INSERT_HEAD(&fp->ipq_fragq, ipqe, ipqe_q);
    355 	} else {
    356 		TAILQ_INSERT_AFTER(&fp->ipq_fragq, p, ipqe, ipqe_q);
    357 	}
    358 	next = 0;
    359 	TAILQ_FOREACH(q, &fp->ipq_fragq, ipqe_q) {
    360 		qip = q->ipqe_ip;
    361 		if (ntohs(qip->ip_off) != next) {
    362 			mutex_exit(&ipfr_lock);
    363 			return NULL;
    364 		}
    365 		next += ntohs(qip->ip_len);
    366 	}
    367 	p = TAILQ_LAST(&fp->ipq_fragq, ipfr_qent_head);
    368 	if (p->ipqe_mff) {
    369 		mutex_exit(&ipfr_lock);
    370 		return NULL;
    371 	}
    372 
    373 	/*
    374 	 * Reassembly is complete.  Check for a bogus message size.
    375 	 */
    376 	q = TAILQ_FIRST(&fp->ipq_fragq);
    377 	ip = q->ipqe_ip;
    378 	if ((next + (ip->ip_hl << 2)) > IP_MAXPACKET) {
    379 		IP_STATINC(IP_STAT_TOOLONG);
    380 		ip_freef(fp);
    381 		mutex_exit(&ipfr_lock);
    382 		return NULL;
    383 	}
    384 	LIST_REMOVE(fp, ipq_q);
    385 	ip_nfrags -= fp->ipq_nfrags;
    386 	ip_nfragpackets--;
    387 	mutex_exit(&ipfr_lock);
    388 
    389 	/* Concatenate all fragments. */
    390 	m = q->ipqe_m;
    391 	t = m->m_next;
    392 	m->m_next = NULL;
    393 	m_cat(m, t);
    394 	nq = TAILQ_NEXT(q, ipqe_q);
    395 	pool_cache_put(ipfren_cache, q);
    396 
    397 	for (q = nq; q != NULL; q = nq) {
    398 		t = q->ipqe_m;
    399 		nq = TAILQ_NEXT(q, ipqe_q);
    400 		pool_cache_put(ipfren_cache, q);
    401 		m_cat(m, t);
    402 	}
    403 
    404 	/*
    405 	 * Create header for new packet by modifying header of first
    406 	 * packet.  Dequeue and discard fragment reassembly header.  Make
    407 	 * header visible.
    408 	 */
    409 	ip->ip_len = htons((ip->ip_hl << 2) + next);
    410 	ip->ip_src = fp->ipq_src;
    411 	ip->ip_dst = fp->ipq_dst;
    412 	free(fp, M_FTABLE);
    413 
    414 	m->m_len += (ip->ip_hl << 2);
    415 	m->m_data -= (ip->ip_hl << 2);
    416 
    417 	/* Fix up mbuf.  XXX This should be done elsewhere. */
    418 	if (m->m_flags & M_PKTHDR) {
    419 		int plen = 0;
    420 		for (t = m; t; t = t->m_next) {
    421 			plen += t->m_len;
    422 		}
    423 		m->m_pkthdr.len = plen;
    424 		m->m_pkthdr.csum_flags = 0;
    425 	}
    426 	return m;
    427 
    428 dropfrag:
    429 	if (fp != NULL) {
    430 		fp->ipq_nfrags--;
    431 	}
    432 	ip_nfrags--;
    433 	IP_STATINC(IP_STAT_FRAGDROPPED);
    434 	mutex_exit(&ipfr_lock);
    435 
    436 	pool_cache_put(ipfren_cache, ipqe);
    437 	m_freem(m);
    438 	return NULL;
    439 }
    440 
    441 /*
    442  * ip_freef:
    443  *
    444  *	Free a fragment reassembly header and all associated datagrams.
    445  */
    446 static void
    447 ip_freef(ipfr_queue_t *fp)
    448 {
    449 	ipfr_qent_t *q;
    450 
    451 	KASSERT(mutex_owned(&ipfr_lock));
    452 
    453 	LIST_REMOVE(fp, ipq_q);
    454 	ip_nfrags -= fp->ipq_nfrags;
    455 	ip_nfragpackets--;
    456 
    457 	while ((q = TAILQ_FIRST(&fp->ipq_fragq)) != NULL) {
    458 		TAILQ_REMOVE(&fp->ipq_fragq, q, ipqe_q);
    459 		m_freem(q->ipqe_m);
    460 		pool_cache_put(ipfren_cache, q);
    461 	}
    462 	free(fp, M_FTABLE);
    463 }
    464 
    465 /*
    466  * ip_reass_ttl_decr:
    467  *
    468  *	Decrement TTL of all reasembly queue entries by `ticks'.  Count
    469  *	number of distinct fragments (as opposed to partial, fragmented
    470  *	datagrams) inthe reassembly queue.  While we  traverse the entire
    471  *	reassembly queue, compute and return the median TTL over all
    472  *	fragments.
    473  */
    474 static u_int
    475 ip_reass_ttl_decr(u_int ticks)
    476 {
    477 	u_int nfrags, median, dropfraction, keepfraction;
    478 	ipfr_queue_t *fp, *nfp;
    479 	int i;
    480 
    481 	nfrags = 0;
    482 	memset(fragttl_histo, 0, sizeof(fragttl_histo));
    483 
    484 	for (i = 0; i < IPREASS_HASH_SIZE; i++) {
    485 		for (fp = LIST_FIRST(&ip_frags[i]); fp != NULL; fp = nfp) {
    486 			fp->ipq_ttl = ((fp->ipq_ttl <= ticks) ?
    487 			    0 : fp->ipq_ttl - ticks);
    488 			nfp = LIST_NEXT(fp, ipq_q);
    489 			if (fp->ipq_ttl == 0) {
    490 				IP_STATINC(IP_STAT_FRAGTIMEOUT);
    491 				ip_freef(fp);
    492 			} else {
    493 				nfrags += fp->ipq_nfrags;
    494 				fragttl_histo[fp->ipq_ttl] += fp->ipq_nfrags;
    495 			}
    496 		}
    497 	}
    498 
    499 	KASSERT(ip_nfrags == nfrags);
    500 
    501 	/* Find median (or other drop fraction) in histogram. */
    502 	dropfraction = (ip_nfrags / 2);
    503 	keepfraction = ip_nfrags - dropfraction;
    504 	for (i = IPFRAGTTL, median = 0; i >= 0; i--) {
    505 		median += fragttl_histo[i];
    506 		if (median >= keepfraction)
    507 			break;
    508 	}
    509 
    510 	/* Return TTL of median (or other fraction). */
    511 	return (u_int)i;
    512 }
    513 
    514 static void
    515 ip_reass_drophalf(void)
    516 {
    517 	u_int median_ticks;
    518 
    519 	KASSERT(mutex_owned(&ipfr_lock));
    520 
    521 	/*
    522 	 * Compute median TTL of all fragments, and count frags
    523 	 * with that TTL or lower (roughly half of all fragments).
    524 	 */
    525 	median_ticks = ip_reass_ttl_decr(0);
    526 
    527 	/* Drop half. */
    528 	median_ticks = ip_reass_ttl_decr(median_ticks);
    529 }
    530 
    531 /*
    532  * ip_reass_drain: drain off all datagram fragments.  Do not acquire
    533  * softnet_lock as can be called from hardware interrupt context.
    534  */
    535 void
    536 ip_reass_drain(void)
    537 {
    538 
    539 	/*
    540 	 * We may be called from a device's interrupt context.  If
    541 	 * the ipq is already busy, just bail out now.
    542 	 */
    543 	if (mutex_tryenter(&ipfr_lock)) {
    544 		/*
    545 		 * Drop half the total fragments now. If more mbufs are
    546 		 * needed, we will be called again soon.
    547 		 */
    548 		ip_reass_drophalf();
    549 		mutex_exit(&ipfr_lock);
    550 	}
    551 }
    552 
    553 /*
    554  * ip_reass_slowtimo:
    555  *
    556  *	If a timer expires on a reassembly queue, discard it.
    557  */
    558 void
    559 ip_reass_slowtimo(void)
    560 {
    561 	static u_int dropscanidx = 0;
    562 	u_int i, median_ttl;
    563 
    564 	mutex_enter(&ipfr_lock);
    565 
    566 	/* Age TTL of all fragments by 1 tick .*/
    567 	median_ttl = ip_reass_ttl_decr(1);
    568 
    569 	/* Make sure fragment limit is up-to-date. */
    570 	CHECK_NMBCLUSTER_PARAMS();
    571 
    572 	/* If we have too many fragments, drop the older half. */
    573 	if (ip_nfrags > ip_maxfrags) {
    574 		ip_reass_ttl_decr(median_ttl);
    575 	}
    576 
    577 	/*
    578 	 * If we are over the maximum number of fragmented packets (due to
    579 	 * the limit being lowered), drain off enough to get down to the
    580 	 * new limit.  Start draining from the reassembly hashqueue most
    581 	 * recently drained.
    582 	 */
    583 	if (ip_maxfragpackets < 0)
    584 		;
    585 	else {
    586 		int wrapped = 0;
    587 
    588 		i = dropscanidx;
    589 		while (ip_nfragpackets > ip_maxfragpackets && wrapped == 0) {
    590 			while (LIST_FIRST(&ip_frags[i]) != NULL) {
    591 				ip_freef(LIST_FIRST(&ip_frags[i]));
    592 			}
    593 			if (++i >= IPREASS_HASH_SIZE) {
    594 				i = 0;
    595 			}
    596 			/*
    597 			 * Do not scan forever even if fragment counters are
    598 			 * wrong: stop after scanning entire reassembly queue.
    599 			 */
    600 			if (i == dropscanidx) {
    601 				wrapped = 1;
    602 			}
    603 		}
    604 		dropscanidx = i;
    605 	}
    606 	mutex_exit(&ipfr_lock);
    607 }
    608 
    609 /*
    610  * ip_reass_packet: generic routine to perform IP reassembly.
    611  *
    612  * => Passed fragment should have IP_MF flag and/or offset set.
    613  * => Fragment should not have other than IP_MF flags set.
    614  *
    615  * => Returns 0 on success or error otherwise.
    616  * => On complete, m0 represents a constructed final packet.
    617  */
    618 int
    619 ip_reass_packet(struct mbuf **m0, struct ip *ip)
    620 {
    621 	const int hlen = ip->ip_hl << 2;
    622 	const int len = ntohs(ip->ip_len);
    623 	struct mbuf *m = *m0;
    624 	ipfr_queue_t *fp;
    625 	ipfr_qent_t *ipqe;
    626 	u_int hash, off, flen;
    627 	bool mff;
    628 
    629 	/*
    630 	 * Prevent TCP blind data attacks by not allowing non-initial
    631 	 * fragments to start at less than 68 bytes (minimal fragment
    632 	 * size) and making sure the first fragment is at least 68
    633 	 * bytes.
    634 	 */
    635 	off = (ntohs(ip->ip_off) & IP_OFFMASK) << 3;
    636 	if ((off > 0 ? off + hlen : len) < IP_MINFRAGSIZE - 1) {
    637 		IP_STATINC(IP_STAT_BADFRAGS);
    638 		return EINVAL;
    639 	}
    640 
    641 	/*
    642 	 * Fragment length and MF flag.  Make sure that fragments have
    643 	 * a data length which is non-zero and multiple of 8 bytes.
    644 	 */
    645 	flen = ntohs(ip->ip_len) - hlen;
    646 	mff = (ip->ip_off & htons(IP_MF)) != 0;
    647 	if (mff && (flen == 0 || (flen & 0x7) != 0)) {
    648 		IP_STATINC(IP_STAT_BADFRAGS);
    649 		return EINVAL;
    650 	}
    651 
    652 	/*
    653 	 * Adjust total IP length to not reflect header and convert
    654 	 * offset of this to bytes.  XXX: clobbers struct ip.
    655 	 */
    656 	ip->ip_len = htons(flen);
    657 	ip->ip_off = htons(off);
    658 
    659 	/* Look for queue of fragments of this datagram. */
    660 	mutex_enter(&ipfr_lock);
    661 	hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
    662 	LIST_FOREACH(fp, &ip_frags[hash], ipq_q) {
    663 		if (ip->ip_id != fp->ipq_id)
    664 			continue;
    665 		if (!in_hosteq(ip->ip_src, fp->ipq_src))
    666 			continue;
    667 		if (!in_hosteq(ip->ip_dst, fp->ipq_dst))
    668 			continue;
    669 		if (ip->ip_p != fp->ipq_p)
    670 			continue;
    671 		break;
    672 	}
    673 
    674 	/* Make sure that TOS matches previous fragments. */
    675 	if (fp && fp->ipq_tos != ip->ip_tos) {
    676 		IP_STATINC(IP_STAT_BADFRAGS);
    677 		mutex_exit(&ipfr_lock);
    678 		return EINVAL;
    679 	}
    680 
    681 	/*
    682 	 * Create new entry and attempt to reassembly.
    683 	 */
    684 	IP_STATINC(IP_STAT_FRAGMENTS);
    685 	ipqe = pool_cache_get(ipfren_cache, PR_NOWAIT);
    686 	if (ipqe == NULL) {
    687 		IP_STATINC(IP_STAT_RCVMEMDROP);
    688 		mutex_exit(&ipfr_lock);
    689 		return ENOMEM;
    690 	}
    691 	ipqe->ipqe_mff = mff;
    692 	ipqe->ipqe_m = m;
    693 	ipqe->ipqe_ip = ip;
    694 
    695 	*m0 = ip_reass(ipqe, fp, hash);
    696 	if (*m0) {
    697 		/* Note that finally reassembled. */
    698 		IP_STATINC(IP_STAT_REASSEMBLED);
    699 	}
    700 	return 0;
    701 }
    702