ip_reass.c revision 1.9.4.1 1 /* $NetBSD: ip_reass.c,v 1.9.4.1 2018/04/05 11:48:13 martin Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1988, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 * @(#)ip_input.c 8.2 (Berkeley) 1/4/94
32 */
33
34 /*
35 * IP reassembly.
36 *
37 * Additive-Increase/Multiplicative-Decrease (AIMD) strategy for IP
38 * reassembly queue buffer managment.
39 *
40 * We keep a count of total IP fragments (NB: not fragmented packets),
41 * awaiting reassembly (ip_nfrags) and a limit (ip_maxfrags) on fragments.
42 * If ip_nfrags exceeds ip_maxfrags the limit, we drop half the total
43 * fragments in reassembly queues. This AIMD policy avoids repeatedly
44 * deleting single packets under heavy fragmentation load (e.g., from lossy
45 * NFS peers).
46 */
47
48 #include <sys/cdefs.h>
49 __KERNEL_RCSID(0, "$NetBSD: ip_reass.c,v 1.9.4.1 2018/04/05 11:48:13 martin Exp $");
50
51 #include <sys/param.h>
52 #include <sys/types.h>
53
54 #include <sys/malloc.h>
55 #include <sys/mbuf.h>
56 #include <sys/mutex.h>
57 #include <sys/domain.h>
58 #include <sys/protosw.h>
59 #include <sys/pool.h>
60 #include <sys/queue.h>
61 #include <sys/sysctl.h>
62 #include <sys/systm.h>
63
64 #include <net/if.h>
65 #include <net/route.h>
66
67 #include <netinet/in.h>
68 #include <netinet/in_systm.h>
69 #include <netinet/ip.h>
70 #include <netinet/in_pcb.h>
71 #include <netinet/ip_var.h>
72 #include <netinet/in_proto.h>
73 #include <netinet/ip_private.h>
74 #include <netinet/in_var.h>
75
76 /*
77 * IP reassembly queue structures. Each fragment being reassembled is
78 * attached to one of these structures. They are timed out after TTL
79 * drops to 0, and may also be reclaimed if memory becomes tight.
80 */
81
82 typedef struct ipfr_qent {
83 TAILQ_ENTRY(ipfr_qent) ipqe_q;
84 struct ip * ipqe_ip;
85 struct mbuf * ipqe_m;
86 bool ipqe_mff;
87 } ipfr_qent_t;
88
89 TAILQ_HEAD(ipfr_qent_head, ipfr_qent);
90
91 typedef struct ipfr_queue {
92 LIST_ENTRY(ipfr_queue) ipq_q; /* to other reass headers */
93 struct ipfr_qent_head ipq_fragq; /* queue of fragment entries */
94 uint8_t ipq_ttl; /* time for reass q to live */
95 uint8_t ipq_p; /* protocol of this fragment */
96 uint16_t ipq_id; /* sequence id for reassembly */
97 struct in_addr ipq_src;
98 struct in_addr ipq_dst;
99 uint16_t ipq_nfrags; /* frags in this queue entry */
100 uint8_t ipq_tos; /* TOS of this fragment */
101 } ipfr_queue_t;
102
103 /*
104 * Hash table of IP reassembly queues.
105 */
106 #define IPREASS_HASH_SHIFT 6
107 #define IPREASS_HASH_SIZE (1 << IPREASS_HASH_SHIFT)
108 #define IPREASS_HASH_MASK (IPREASS_HASH_SIZE - 1)
109 #define IPREASS_HASH(x, y) \
110 (((((x) & 0xf) | ((((x) >> 8) & 0xf) << 4)) ^ (y)) & IPREASS_HASH_MASK)
111
112 static LIST_HEAD(, ipfr_queue) ip_frags[IPREASS_HASH_SIZE];
113 static pool_cache_t ipfren_cache;
114 static kmutex_t ipfr_lock;
115
116 /* Number of packets in reassembly queue and total number of fragments. */
117 static int ip_nfragpackets;
118 static int ip_nfrags;
119
120 /* Limits on packet and fragments. */
121 static int ip_maxfragpackets;
122 static int ip_maxfrags;
123
124 /*
125 * Cached copy of nmbclusters. If nbclusters is different, recalculate
126 * IP parameters derived from nmbclusters.
127 */
128 static int ip_nmbclusters;
129
130 /*
131 * IP reassembly TTL machinery for multiplicative drop.
132 */
133 static u_int fragttl_histo[IPFRAGTTL + 1];
134
135 static struct sysctllog *ip_reass_sysctllog;
136
137 void sysctl_ip_reass_setup(void);
138 static void ip_nmbclusters_changed(void);
139
140 static struct mbuf * ip_reass(ipfr_qent_t *, ipfr_queue_t *, u_int);
141 static u_int ip_reass_ttl_decr(u_int ticks);
142 static void ip_reass_drophalf(void);
143 static void ip_freef(ipfr_queue_t *);
144
145 /*
146 * ip_reass_init:
147 *
148 * Initialization of IP reassembly mechanism.
149 */
150 void
151 ip_reass_init(void)
152 {
153 int i;
154
155 ipfren_cache = pool_cache_init(sizeof(ipfr_qent_t), coherency_unit,
156 0, 0, "ipfrenpl", NULL, IPL_NET, NULL, NULL, NULL);
157 mutex_init(&ipfr_lock, MUTEX_DEFAULT, IPL_VM);
158
159 for (i = 0; i < IPREASS_HASH_SIZE; i++) {
160 LIST_INIT(&ip_frags[i]);
161 }
162 ip_maxfragpackets = 200;
163 ip_maxfrags = 0;
164 ip_nmbclusters_changed();
165
166 sysctl_ip_reass_setup();
167 }
168
169 void
170 sysctl_ip_reass_setup(void)
171 {
172
173 sysctl_createv(&ip_reass_sysctllog, 0, NULL, NULL,
174 CTLFLAG_PERMANENT,
175 CTLTYPE_NODE, "inet",
176 SYSCTL_DESCR("PF_INET related settings"),
177 NULL, 0, NULL, 0,
178 CTL_NET, PF_INET, CTL_EOL);
179 sysctl_createv(&ip_reass_sysctllog, 0, NULL, NULL,
180 CTLFLAG_PERMANENT,
181 CTLTYPE_NODE, "ip",
182 SYSCTL_DESCR("IPv4 related settings"),
183 NULL, 0, NULL, 0,
184 CTL_NET, PF_INET, IPPROTO_IP, CTL_EOL);
185
186 sysctl_createv(&ip_reass_sysctllog, 0, NULL, NULL,
187 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
188 CTLTYPE_INT, "maxfragpackets",
189 SYSCTL_DESCR("Maximum number of fragments to retain for "
190 "possible reassembly"),
191 NULL, 0, &ip_maxfragpackets, 0,
192 CTL_NET, PF_INET, IPPROTO_IP, IPCTL_MAXFRAGPACKETS, CTL_EOL);
193 }
194
195 #define CHECK_NMBCLUSTER_PARAMS() \
196 do { \
197 if (__predict_false(ip_nmbclusters != nmbclusters)) \
198 ip_nmbclusters_changed(); \
199 } while (/*CONSTCOND*/0)
200
201 /*
202 * Compute IP limits derived from the value of nmbclusters.
203 */
204 static void
205 ip_nmbclusters_changed(void)
206 {
207 ip_maxfrags = nmbclusters / 4;
208 ip_nmbclusters = nmbclusters;
209 }
210
211 /*
212 * ip_reass:
213 *
214 * Take incoming datagram fragment and try to reassemble it into whole
215 * datagram. If a chain for reassembly of this datagram already exists,
216 * then it is given as 'fp'; otherwise have to make a chain.
217 */
218 struct mbuf *
219 ip_reass(ipfr_qent_t *ipqe, ipfr_queue_t *fp, const u_int hash)
220 {
221 struct ip *ip = ipqe->ipqe_ip, *qip;
222 const int hlen = ip->ip_hl << 2;
223 struct mbuf *m = ipqe->ipqe_m, *t;
224 ipfr_qent_t *nq, *p, *q;
225 int i, next;
226
227 KASSERT(mutex_owned(&ipfr_lock));
228
229 /*
230 * Presence of header sizes in mbufs would confuse code below.
231 */
232 m->m_data += hlen;
233 m->m_len -= hlen;
234
235 #ifdef notyet
236 /* Make sure fragment limit is up-to-date. */
237 CHECK_NMBCLUSTER_PARAMS();
238
239 /* If we have too many fragments, drop the older half. */
240 if (ip_nfrags >= ip_maxfrags) {
241 ip_reass_drophalf(void);
242 }
243 #endif
244
245 /*
246 * We are about to add a fragment; increment frag count.
247 */
248 ip_nfrags++;
249
250 /*
251 * If first fragment to arrive, create a reassembly queue.
252 */
253 if (fp == NULL) {
254 /*
255 * Enforce upper bound on number of fragmented packets
256 * for which we attempt reassembly: a) if maxfrag is 0,
257 * never accept fragments b) if maxfrag is -1, accept
258 * all fragments without limitation.
259 */
260 if (ip_maxfragpackets < 0)
261 ;
262 else if (ip_nfragpackets >= ip_maxfragpackets) {
263 goto dropfrag;
264 }
265 fp = malloc(sizeof(ipfr_queue_t), M_FTABLE, M_NOWAIT);
266 if (fp == NULL) {
267 goto dropfrag;
268 }
269 ip_nfragpackets++;
270 TAILQ_INIT(&fp->ipq_fragq);
271 fp->ipq_nfrags = 1;
272 fp->ipq_ttl = IPFRAGTTL;
273 fp->ipq_p = ip->ip_p;
274 fp->ipq_id = ip->ip_id;
275 fp->ipq_tos = ip->ip_tos;
276 fp->ipq_src = ip->ip_src;
277 fp->ipq_dst = ip->ip_dst;
278 LIST_INSERT_HEAD(&ip_frags[hash], fp, ipq_q);
279 p = NULL;
280 goto insert;
281 } else {
282 fp->ipq_nfrags++;
283 }
284
285 /*
286 * Find a segment which begins after this one does.
287 */
288 TAILQ_FOREACH(q, &fp->ipq_fragq, ipqe_q) {
289 if (ntohs(q->ipqe_ip->ip_off) > ntohs(ip->ip_off))
290 break;
291 }
292 if (q != NULL) {
293 p = TAILQ_PREV(q, ipfr_qent_head, ipqe_q);
294 } else {
295 p = TAILQ_LAST(&fp->ipq_fragq, ipfr_qent_head);
296 }
297
298 /*
299 * If there is a preceding segment, it may provide some of our
300 * data already. If so, drop the data from the incoming segment.
301 * If it provides all of our data, drop us.
302 */
303 if (p != NULL) {
304 i = ntohs(p->ipqe_ip->ip_off) + ntohs(p->ipqe_ip->ip_len) -
305 ntohs(ip->ip_off);
306 if (i > 0) {
307 if (i >= ntohs(ip->ip_len)) {
308 goto dropfrag;
309 }
310 m_adj(ipqe->ipqe_m, i);
311 ip->ip_off = htons(ntohs(ip->ip_off) + i);
312 ip->ip_len = htons(ntohs(ip->ip_len) - i);
313 }
314 }
315
316 /*
317 * While we overlap succeeding segments trim them or, if they are
318 * completely covered, dequeue them.
319 */
320 while (q != NULL) {
321 size_t end;
322
323 qip = q->ipqe_ip;
324 end = ntohs(ip->ip_off) + ntohs(ip->ip_len);
325 if (end <= ntohs(qip->ip_off)) {
326 break;
327 }
328 i = end - ntohs(qip->ip_off);
329 if (i < ntohs(qip->ip_len)) {
330 qip->ip_len = htons(ntohs(qip->ip_len) - i);
331 qip->ip_off = htons(ntohs(qip->ip_off) + i);
332 m_adj(q->ipqe_m, i);
333 break;
334 }
335 nq = TAILQ_NEXT(q, ipqe_q);
336 m_freem(q->ipqe_m);
337 TAILQ_REMOVE(&fp->ipq_fragq, q, ipqe_q);
338 pool_cache_put(ipfren_cache, q);
339 fp->ipq_nfrags--;
340 ip_nfrags--;
341 q = nq;
342 }
343
344 insert:
345 /*
346 * Stick new segment in its place; check for complete reassembly.
347 */
348 if (p == NULL) {
349 TAILQ_INSERT_HEAD(&fp->ipq_fragq, ipqe, ipqe_q);
350 } else {
351 TAILQ_INSERT_AFTER(&fp->ipq_fragq, p, ipqe, ipqe_q);
352 }
353 next = 0;
354 TAILQ_FOREACH(q, &fp->ipq_fragq, ipqe_q) {
355 qip = q->ipqe_ip;
356 if (ntohs(qip->ip_off) != next) {
357 mutex_exit(&ipfr_lock);
358 return NULL;
359 }
360 next += ntohs(qip->ip_len);
361 }
362 p = TAILQ_LAST(&fp->ipq_fragq, ipfr_qent_head);
363 if (p->ipqe_mff) {
364 mutex_exit(&ipfr_lock);
365 return NULL;
366 }
367
368 /*
369 * Reassembly is complete. Check for a bogus message size.
370 */
371 q = TAILQ_FIRST(&fp->ipq_fragq);
372 ip = q->ipqe_ip;
373 if ((next + (ip->ip_hl << 2)) > IP_MAXPACKET) {
374 IP_STATINC(IP_STAT_TOOLONG);
375 ip_freef(fp);
376 mutex_exit(&ipfr_lock);
377 return NULL;
378 }
379 LIST_REMOVE(fp, ipq_q);
380 ip_nfrags -= fp->ipq_nfrags;
381 ip_nfragpackets--;
382 mutex_exit(&ipfr_lock);
383
384 /* Concatenate all fragments. */
385 m = q->ipqe_m;
386 t = m->m_next;
387 m->m_next = NULL;
388 m_cat(m, t);
389 nq = TAILQ_NEXT(q, ipqe_q);
390 pool_cache_put(ipfren_cache, q);
391
392 for (q = nq; q != NULL; q = nq) {
393 t = q->ipqe_m;
394 nq = TAILQ_NEXT(q, ipqe_q);
395 pool_cache_put(ipfren_cache, q);
396 m_pkthdr_remove(t);
397 m_cat(m, t);
398 }
399
400 /*
401 * Create header for new packet by modifying header of first
402 * packet. Dequeue and discard fragment reassembly header. Make
403 * header visible.
404 */
405 ip->ip_len = htons((ip->ip_hl << 2) + next);
406 ip->ip_src = fp->ipq_src;
407 ip->ip_dst = fp->ipq_dst;
408 free(fp, M_FTABLE);
409
410 m->m_len += (ip->ip_hl << 2);
411 m->m_data -= (ip->ip_hl << 2);
412
413 /* Fix up mbuf. XXX This should be done elsewhere. */
414 {
415 KASSERT(m->m_flags & M_PKTHDR);
416 int plen = 0;
417 for (t = m; t; t = t->m_next) {
418 plen += t->m_len;
419 }
420 m->m_pkthdr.len = plen;
421 m->m_pkthdr.csum_flags = 0;
422 }
423 return m;
424
425 dropfrag:
426 if (fp != NULL) {
427 fp->ipq_nfrags--;
428 }
429 ip_nfrags--;
430 IP_STATINC(IP_STAT_FRAGDROPPED);
431 mutex_exit(&ipfr_lock);
432
433 pool_cache_put(ipfren_cache, ipqe);
434 m_freem(m);
435 return NULL;
436 }
437
438 /*
439 * ip_freef:
440 *
441 * Free a fragment reassembly header and all associated datagrams.
442 */
443 static void
444 ip_freef(ipfr_queue_t *fp)
445 {
446 ipfr_qent_t *q;
447
448 KASSERT(mutex_owned(&ipfr_lock));
449
450 LIST_REMOVE(fp, ipq_q);
451 ip_nfrags -= fp->ipq_nfrags;
452 ip_nfragpackets--;
453
454 while ((q = TAILQ_FIRST(&fp->ipq_fragq)) != NULL) {
455 TAILQ_REMOVE(&fp->ipq_fragq, q, ipqe_q);
456 m_freem(q->ipqe_m);
457 pool_cache_put(ipfren_cache, q);
458 }
459 free(fp, M_FTABLE);
460 }
461
462 /*
463 * ip_reass_ttl_decr:
464 *
465 * Decrement TTL of all reasembly queue entries by `ticks'. Count
466 * number of distinct fragments (as opposed to partial, fragmented
467 * datagrams) inthe reassembly queue. While we traverse the entire
468 * reassembly queue, compute and return the median TTL over all
469 * fragments.
470 */
471 static u_int
472 ip_reass_ttl_decr(u_int ticks)
473 {
474 u_int nfrags, median, dropfraction, keepfraction;
475 ipfr_queue_t *fp, *nfp;
476 int i;
477
478 nfrags = 0;
479 memset(fragttl_histo, 0, sizeof(fragttl_histo));
480
481 for (i = 0; i < IPREASS_HASH_SIZE; i++) {
482 for (fp = LIST_FIRST(&ip_frags[i]); fp != NULL; fp = nfp) {
483 fp->ipq_ttl = ((fp->ipq_ttl <= ticks) ?
484 0 : fp->ipq_ttl - ticks);
485 nfp = LIST_NEXT(fp, ipq_q);
486 if (fp->ipq_ttl == 0) {
487 IP_STATINC(IP_STAT_FRAGTIMEOUT);
488 ip_freef(fp);
489 } else {
490 nfrags += fp->ipq_nfrags;
491 fragttl_histo[fp->ipq_ttl] += fp->ipq_nfrags;
492 }
493 }
494 }
495
496 KASSERT(ip_nfrags == nfrags);
497
498 /* Find median (or other drop fraction) in histogram. */
499 dropfraction = (ip_nfrags / 2);
500 keepfraction = ip_nfrags - dropfraction;
501 for (i = IPFRAGTTL, median = 0; i >= 0; i--) {
502 median += fragttl_histo[i];
503 if (median >= keepfraction)
504 break;
505 }
506
507 /* Return TTL of median (or other fraction). */
508 return (u_int)i;
509 }
510
511 static void
512 ip_reass_drophalf(void)
513 {
514 u_int median_ticks;
515
516 KASSERT(mutex_owned(&ipfr_lock));
517
518 /*
519 * Compute median TTL of all fragments, and count frags
520 * with that TTL or lower (roughly half of all fragments).
521 */
522 median_ticks = ip_reass_ttl_decr(0);
523
524 /* Drop half. */
525 median_ticks = ip_reass_ttl_decr(median_ticks);
526 }
527
528 /*
529 * ip_reass_drain: drain off all datagram fragments. Do not acquire
530 * softnet_lock as can be called from hardware interrupt context.
531 */
532 void
533 ip_reass_drain(void)
534 {
535
536 /*
537 * We may be called from a device's interrupt context. If
538 * the ipq is already busy, just bail out now.
539 */
540 if (mutex_tryenter(&ipfr_lock)) {
541 /*
542 * Drop half the total fragments now. If more mbufs are
543 * needed, we will be called again soon.
544 */
545 ip_reass_drophalf();
546 mutex_exit(&ipfr_lock);
547 }
548 }
549
550 /*
551 * ip_reass_slowtimo:
552 *
553 * If a timer expires on a reassembly queue, discard it.
554 */
555 void
556 ip_reass_slowtimo(void)
557 {
558 static u_int dropscanidx = 0;
559 u_int i, median_ttl;
560
561 mutex_enter(&ipfr_lock);
562
563 /* Age TTL of all fragments by 1 tick .*/
564 median_ttl = ip_reass_ttl_decr(1);
565
566 /* Make sure fragment limit is up-to-date. */
567 CHECK_NMBCLUSTER_PARAMS();
568
569 /* If we have too many fragments, drop the older half. */
570 if (ip_nfrags > ip_maxfrags) {
571 ip_reass_ttl_decr(median_ttl);
572 }
573
574 /*
575 * If we are over the maximum number of fragmented packets (due to
576 * the limit being lowered), drain off enough to get down to the
577 * new limit. Start draining from the reassembly hashqueue most
578 * recently drained.
579 */
580 if (ip_maxfragpackets < 0)
581 ;
582 else {
583 int wrapped = 0;
584
585 i = dropscanidx;
586 while (ip_nfragpackets > ip_maxfragpackets && wrapped == 0) {
587 while (LIST_FIRST(&ip_frags[i]) != NULL) {
588 ip_freef(LIST_FIRST(&ip_frags[i]));
589 }
590 if (++i >= IPREASS_HASH_SIZE) {
591 i = 0;
592 }
593 /*
594 * Do not scan forever even if fragment counters are
595 * wrong: stop after scanning entire reassembly queue.
596 */
597 if (i == dropscanidx) {
598 wrapped = 1;
599 }
600 }
601 dropscanidx = i;
602 }
603 mutex_exit(&ipfr_lock);
604 }
605
606 /*
607 * ip_reass_packet: generic routine to perform IP reassembly.
608 *
609 * => Passed fragment should have IP_MF flag and/or offset set.
610 * => Fragment should not have other than IP_MF flags set.
611 *
612 * => Returns 0 on success or error otherwise.
613 * => On complete, m0 represents a constructed final packet.
614 */
615 int
616 ip_reass_packet(struct mbuf **m0, struct ip *ip)
617 {
618 const int hlen = ip->ip_hl << 2;
619 const int len = ntohs(ip->ip_len);
620 struct mbuf *m = *m0;
621 ipfr_queue_t *fp;
622 ipfr_qent_t *ipqe;
623 u_int hash, off, flen;
624 bool mff;
625
626 /*
627 * Prevent TCP blind data attacks by not allowing non-initial
628 * fragments to start at less than 68 bytes (minimal fragment
629 * size) and making sure the first fragment is at least 68
630 * bytes.
631 */
632 off = (ntohs(ip->ip_off) & IP_OFFMASK) << 3;
633 if ((off > 0 ? off + hlen : len) < IP_MINFRAGSIZE - 1) {
634 IP_STATINC(IP_STAT_BADFRAGS);
635 return EINVAL;
636 }
637
638 /*
639 * Fragment length and MF flag. Make sure that fragments have
640 * a data length which is non-zero and multiple of 8 bytes.
641 */
642 flen = ntohs(ip->ip_len) - hlen;
643 mff = (ip->ip_off & htons(IP_MF)) != 0;
644 if (mff && (flen == 0 || (flen & 0x7) != 0)) {
645 IP_STATINC(IP_STAT_BADFRAGS);
646 return EINVAL;
647 }
648
649 /*
650 * Adjust total IP length to not reflect header and convert
651 * offset of this to bytes. XXX: clobbers struct ip.
652 */
653 ip->ip_len = htons(flen);
654 ip->ip_off = htons(off);
655
656 /* Look for queue of fragments of this datagram. */
657 mutex_enter(&ipfr_lock);
658 hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
659 LIST_FOREACH(fp, &ip_frags[hash], ipq_q) {
660 if (ip->ip_id != fp->ipq_id)
661 continue;
662 if (!in_hosteq(ip->ip_src, fp->ipq_src))
663 continue;
664 if (!in_hosteq(ip->ip_dst, fp->ipq_dst))
665 continue;
666 if (ip->ip_p != fp->ipq_p)
667 continue;
668 break;
669 }
670
671 /* Make sure that TOS matches previous fragments. */
672 if (fp && fp->ipq_tos != ip->ip_tos) {
673 IP_STATINC(IP_STAT_BADFRAGS);
674 mutex_exit(&ipfr_lock);
675 return EINVAL;
676 }
677
678 /*
679 * Create new entry and attempt to reassembly.
680 */
681 IP_STATINC(IP_STAT_FRAGMENTS);
682 ipqe = pool_cache_get(ipfren_cache, PR_NOWAIT);
683 if (ipqe == NULL) {
684 IP_STATINC(IP_STAT_RCVMEMDROP);
685 mutex_exit(&ipfr_lock);
686 return ENOMEM;
687 }
688 ipqe->ipqe_mff = mff;
689 ipqe->ipqe_m = m;
690 ipqe->ipqe_ip = ip;
691
692 *m0 = ip_reass(ipqe, fp, hash);
693 if (*m0) {
694 /* Note that finally reassembled. */
695 IP_STATINC(IP_STAT_REASSEMBLED);
696 }
697 return 0;
698 }
699