1 1.1 rjs /* $KAME: sctp_pcb.h,v 1.21 2005/07/16 01:18:47 suz Exp $ */ 2 1.8 andvar /* $NetBSD: sctp_pcb.h,v 1.8 2023/06/02 08:51:48 andvar Exp $ */ 3 1.1 rjs 4 1.1 rjs #ifndef __SCTP_PCB_H__ 5 1.1 rjs #define __SCTP_PCB_H__ 6 1.1 rjs 7 1.1 rjs /* 8 1.1 rjs * Copyright (c) 2001, 2002, 2003, 2004 Cisco Systems, Inc. 9 1.1 rjs * All rights reserved. 10 1.1 rjs * 11 1.1 rjs * Redistribution and use in source and binary forms, with or without 12 1.1 rjs * modification, are permitted provided that the following conditions 13 1.1 rjs * are met: 14 1.1 rjs * 1. Redistributions of source code must retain the above copyright 15 1.1 rjs * notice, this list of conditions and the following disclaimer. 16 1.1 rjs * 2. Redistributions in binary form must reproduce the above copyright 17 1.1 rjs * notice, this list of conditions and the following disclaimer in the 18 1.1 rjs * documentation and/or other materials provided with the distribution. 19 1.1 rjs * 3. All advertising materials mentioning features or use of this software 20 1.1 rjs * must display the following acknowledgement: 21 1.1 rjs * This product includes software developed by Cisco Systems, Inc. 22 1.1 rjs * 4. Neither the name of the project nor the names of its contributors 23 1.1 rjs * may be used to endorse or promote products derived from this software 24 1.1 rjs * without specific prior written permission. 25 1.1 rjs * 26 1.1 rjs * THIS SOFTWARE IS PROVIDED BY CISCO SYSTEMS AND CONTRIBUTORS ``AS IS'' AND 27 1.1 rjs * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 1.1 rjs * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 1.1 rjs * ARE DISCLAIMED. IN NO EVENT SHALL CISCO SYSTEMS OR CONTRIBUTORS BE LIABLE 30 1.1 rjs * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 1.1 rjs * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 1.1 rjs * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 1.1 rjs * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 1.1 rjs * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 1.1 rjs * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 1.1 rjs * SUCH DAMAGE. 37 1.1 rjs */ 38 1.1 rjs 39 1.1 rjs /* 40 1.1 rjs * We must have V6 so the size of the proto can be calculated. Otherwise 41 1.1 rjs * we would not allocate enough for Net/Open BSD :-< 42 1.1 rjs */ 43 1.1 rjs #include <net/if.h> 44 1.6 ozaki #include <netinet/in_pcb.h> 45 1.1 rjs #include <netinet/ip6.h> 46 1.1 rjs #include <netinet6/ip6_var.h> 47 1.1 rjs #include <netinet6/ip6protosw.h> 48 1.1 rjs #include <netinet6/in6_var.h> 49 1.1 rjs #include <netinet6/in6_pcb.h> 50 1.1 rjs 51 1.1 rjs #include <netinet/sctp.h> 52 1.1 rjs #include <netinet/sctp_constants.h> 53 1.1 rjs 54 1.1 rjs LIST_HEAD(sctppcbhead, sctp_inpcb); 55 1.1 rjs LIST_HEAD(sctpasochead, sctp_tcb); 56 1.1 rjs TAILQ_HEAD(sctpsocketq, sctp_socket_q_list); 57 1.1 rjs LIST_HEAD(sctpladdr, sctp_laddr); 58 1.1 rjs LIST_HEAD(sctpvtaghead, sctp_tagblock); 59 1.1 rjs 60 1.1 rjs #include <netinet/sctp_structs.h> 61 1.1 rjs #include <netinet/sctp_uio.h> 62 1.1 rjs 63 1.1 rjs /* 64 1.1 rjs * PCB flags 65 1.1 rjs */ 66 1.1 rjs #define SCTP_PCB_FLAGS_UDPTYPE 0x00000001 67 1.1 rjs #define SCTP_PCB_FLAGS_TCPTYPE 0x00000002 68 1.1 rjs #define SCTP_PCB_FLAGS_BOUNDALL 0x00000004 69 1.1 rjs #define SCTP_PCB_FLAGS_ACCEPTING 0x00000008 70 1.1 rjs #define SCTP_PCB_FLAGS_UNBOUND 0x00000010 71 1.1 rjs #define SCTP_PCB_FLAGS_DO_ASCONF 0x00000020 72 1.1 rjs #define SCTP_PCB_FLAGS_AUTO_ASCONF 0x00000040 73 1.1 rjs /* socket options */ 74 1.1 rjs #define SCTP_PCB_FLAGS_NODELAY 0x00000100 75 1.1 rjs #define SCTP_PCB_FLAGS_AUTOCLOSE 0x00000200 76 1.1 rjs #define SCTP_PCB_FLAGS_RECVDATAIOEVNT 0x00000400 77 1.1 rjs #define SCTP_PCB_FLAGS_RECVASSOCEVNT 0x00000800 78 1.1 rjs #define SCTP_PCB_FLAGS_RECVPADDREVNT 0x00001000 79 1.1 rjs #define SCTP_PCB_FLAGS_RECVPEERERR 0x00002000 80 1.1 rjs #define SCTP_PCB_FLAGS_RECVSENDFAILEVNT 0x00004000 81 1.1 rjs #define SCTP_PCB_FLAGS_RECVSHUTDOWNEVNT 0x00008000 82 1.1 rjs #define SCTP_PCB_FLAGS_ADAPTIONEVNT 0x00010000 83 1.1 rjs #define SCTP_PCB_FLAGS_PDAPIEVNT 0x00020000 84 1.1 rjs #define SCTP_PCB_FLAGS_STREAM_RESETEVNT 0x00040000 85 1.1 rjs #define SCTP_PCB_FLAGS_NO_FRAGMENT 0x00080000 86 1.1 rjs /* TCP model support */ 87 1.1 rjs #define SCTP_PCB_FLAGS_CONNECTED 0x00100000 88 1.1 rjs #define SCTP_PCB_FLAGS_IN_TCPPOOL 0x00200000 89 1.1 rjs #define SCTP_PCB_FLAGS_DONT_WAKE 0x00400000 90 1.1 rjs #define SCTP_PCB_FLAGS_WAKEOUTPUT 0x00800000 91 1.1 rjs #define SCTP_PCB_FLAGS_WAKEINPUT 0x01000000 92 1.1 rjs #define SCTP_PCB_FLAGS_BOUND_V6 0x02000000 93 1.1 rjs #define SCTP_PCB_FLAGS_NEEDS_MAPPED_V4 0x04000000 94 1.1 rjs #define SCTP_PCB_FLAGS_BLOCKING_IO 0x08000000 95 1.1 rjs #define SCTP_PCB_FLAGS_SOCKET_GONE 0x10000000 96 1.1 rjs #define SCTP_PCB_FLAGS_SOCKET_ALLGONE 0x20000000 97 1.1 rjs 98 1.1 rjs /* flags to copy to new PCB */ 99 1.1 rjs #define SCTP_PCB_COPY_FLAGS 0x0707ff64 100 1.1 rjs 101 1.1 rjs #define SCTP_PCBHASH_ALLADDR(port, mask) (port & mask) 102 1.1 rjs #define SCTP_PCBHASH_ASOC(tag, mask) (tag & mask) 103 1.1 rjs 104 1.1 rjs struct sctp_laddr { 105 1.1 rjs LIST_ENTRY(sctp_laddr) sctp_nxt_addr; /* next in list */ 106 1.1 rjs struct ifaddr *ifa; 107 1.1 rjs }; 108 1.1 rjs 109 1.1 rjs struct sctp_timewait { 110 1.1 rjs uint32_t tv_sec_at_expire; /* the seconds from boot to expire */ 111 1.1 rjs uint32_t v_tag; /* the vtag that can not be reused */ 112 1.1 rjs }; 113 1.1 rjs 114 1.1 rjs struct sctp_tagblock { 115 1.1 rjs LIST_ENTRY(sctp_tagblock) sctp_nxt_tagblock; 116 1.1 rjs struct sctp_timewait vtag_block[SCTP_NUMBER_IN_VTAG_BLOCK]; 117 1.1 rjs }; 118 1.1 rjs 119 1.1 rjs struct sctp_epinfo { 120 1.1 rjs struct sctpasochead *sctp_asochash; 121 1.1 rjs u_long hashasocmark; 122 1.1 rjs 123 1.1 rjs struct sctppcbhead *sctp_ephash; 124 1.1 rjs u_long hashmark; 125 1.1 rjs 126 1.1 rjs /* 127 1.1 rjs * The TCP model represents a substantial overhead in that we get 128 1.1 rjs * an additional hash table to keep explicit connections in. The 129 1.1 rjs * listening TCP endpoint will exist in the usual ephash above and 130 1.1 rjs * accept only INIT's. It will be incapable of sending off an INIT. 131 1.1 rjs * When a dg arrives we must look in the normal ephash. If we find 132 1.1 rjs * a TCP endpoint that will tell us to go to the specific endpoint 133 1.1 rjs * hash and re-hash to find the right assoc/socket. If we find a 134 1.1 rjs * UDP model socket we then must complete the lookup. If this fails, 135 1.1 rjs * i.e. no association can be found then we must continue to see if 136 1.1 rjs * a sctp_peeloff()'d socket is in the tcpephash (a spun off socket 137 1.1 rjs * acts like a TCP model connected socket). 138 1.1 rjs */ 139 1.1 rjs struct sctppcbhead *sctp_tcpephash; 140 1.1 rjs u_long hashtcpmark; 141 1.1 rjs uint32_t hashtblsize; 142 1.1 rjs 143 1.1 rjs struct sctppcbhead listhead; 144 1.1 rjs 145 1.1 rjs struct sctpiterators iteratorhead; 146 1.1 rjs 147 1.1 rjs /* ep zone info */ 148 1.1 rjs #if defined(__FreeBSD__) || defined(__APPLE__) 149 1.1 rjs #if __FreeBSD_version >= 500000 150 1.1 rjs struct uma_zone *ipi_zone_ep; 151 1.1 rjs struct uma_zone *ipi_zone_asoc; 152 1.1 rjs struct uma_zone *ipi_zone_laddr; 153 1.1 rjs struct uma_zone *ipi_zone_net; 154 1.1 rjs struct uma_zone *ipi_zone_chunk; 155 1.1 rjs struct uma_zone *ipi_zone_sockq; 156 1.1 rjs #else 157 1.1 rjs struct vm_zone *ipi_zone_ep; 158 1.1 rjs struct vm_zone *ipi_zone_asoc; 159 1.1 rjs struct vm_zone *ipi_zone_laddr; 160 1.1 rjs struct vm_zone *ipi_zone_net; 161 1.1 rjs struct vm_zone *ipi_zone_chunk; 162 1.1 rjs struct vm_zone *ipi_zone_sockq; 163 1.1 rjs #endif 164 1.1 rjs #endif 165 1.1 rjs #if defined(__NetBSD__) || defined(__OpenBSD__) 166 1.1 rjs struct pool ipi_zone_ep; 167 1.1 rjs struct pool ipi_zone_asoc; 168 1.1 rjs struct pool ipi_zone_laddr; 169 1.1 rjs struct pool ipi_zone_net; 170 1.1 rjs struct pool ipi_zone_chunk; 171 1.1 rjs struct pool ipi_zone_sockq; 172 1.1 rjs struct pool ipi_zone_hash; 173 1.1 rjs #endif 174 1.1 rjs 175 1.1 rjs #if defined(__FreeBSD__) && __FreeBSD_version >= 503000 176 1.1 rjs struct mtx ipi_ep_mtx; 177 1.1 rjs struct mtx it_mtx; 178 1.1 rjs #elif 0 /* defined(__NetBSD__) */ 179 1.1 rjs krwlock_t ipi_ep_mtx; 180 1.1 rjs kmutex_t it_mtx; 181 1.1 rjs #endif 182 1.1 rjs u_int ipi_count_ep; 183 1.1 rjs u_quad_t ipi_gencnt_ep; 184 1.1 rjs 185 1.1 rjs /* assoc/tcb zone info */ 186 1.1 rjs u_int ipi_count_asoc; 187 1.1 rjs u_quad_t ipi_gencnt_asoc; 188 1.1 rjs 189 1.1 rjs /* local addrlist zone info */ 190 1.1 rjs u_int ipi_count_laddr; 191 1.1 rjs u_quad_t ipi_gencnt_laddr; 192 1.1 rjs 193 1.1 rjs /* remote addrlist zone info */ 194 1.1 rjs u_int ipi_count_raddr; 195 1.1 rjs u_quad_t ipi_gencnt_raddr; 196 1.1 rjs 197 1.1 rjs /* chunk structure list for output */ 198 1.1 rjs u_int ipi_count_chunk; 199 1.1 rjs u_quad_t ipi_gencnt_chunk; 200 1.1 rjs 201 1.1 rjs /* socket queue zone info */ 202 1.1 rjs u_int ipi_count_sockq; 203 1.1 rjs u_quad_t ipi_gencnt_sockq; 204 1.1 rjs 205 1.1 rjs struct sctpvtaghead vtag_timewait[SCTP_STACK_VTAG_HASH_SIZE]; 206 1.1 rjs 207 1.1 rjs #ifdef _SCTP_NEEDS_CALLOUT_ 208 1.1 rjs struct calloutlist callqueue; 209 1.1 rjs #endif /* _SCTP_NEEDS_CALLOUT_ */ 210 1.1 rjs 211 1.1 rjs uint32_t mbuf_track; 212 1.1 rjs 213 1.1 rjs /* for port allocations */ 214 1.1 rjs uint16_t lastport; 215 1.1 rjs uint16_t lastlow; 216 1.1 rjs uint16_t lasthi; 217 1.1 rjs 218 1.1 rjs }; 219 1.1 rjs 220 1.1 rjs extern uint32_t sctp_pegs[SCTP_NUMBER_OF_PEGS]; 221 1.1 rjs /* 222 1.1 rjs * Here we have all the relevant information for each SCTP entity created. 223 1.1 rjs * We will need to modify this as approprate. We also need to figure out 224 1.1 rjs * how to access /dev/random. 225 1.1 rjs */ 226 1.1 rjs struct sctp_pcb { 227 1.1 rjs unsigned int time_of_secret_change; /* number of seconds from timeval.tv_sec */ 228 1.1 rjs uint32_t secret_key[SCTP_HOW_MANY_SECRETS][SCTP_NUMBER_OF_SECRETS]; 229 1.1 rjs unsigned int size_of_a_cookie; 230 1.1 rjs 231 1.1 rjs unsigned int sctp_timeoutticks[SCTP_NUM_TMRS]; 232 1.1 rjs unsigned int sctp_minrto; 233 1.1 rjs unsigned int sctp_maxrto; 234 1.1 rjs unsigned int initial_rto; 235 1.1 rjs 236 1.1 rjs int initial_init_rto_max; 237 1.1 rjs 238 1.1 rjs uint32_t sctp_sws_sender; 239 1.1 rjs uint32_t sctp_sws_receiver; 240 1.1 rjs 241 1.1 rjs /* various thresholds */ 242 1.1 rjs /* Max times I will init at a guy */ 243 1.1 rjs uint16_t max_init_times; 244 1.1 rjs 245 1.1 rjs /* Max times I will send before we consider someone dead */ 246 1.1 rjs uint16_t max_send_times; 247 1.1 rjs 248 1.1 rjs uint16_t def_net_failure; 249 1.1 rjs 250 1.1 rjs /* number of streams to pre-open on a association */ 251 1.1 rjs uint16_t pre_open_stream_count; 252 1.1 rjs uint16_t max_open_streams_intome; 253 1.1 rjs 254 1.1 rjs /* 255 1.1 rjs * This timer is kept running per endpoint. When it fires it 256 1.1 rjs * will change the secret key. The default is once a hour 257 1.1 rjs */ 258 1.1 rjs struct sctp_timer signature_change; 259 1.1 rjs int def_cookie_life; 260 1.1 rjs /* defaults to 0 */ 261 1.1 rjs int auto_close_time; 262 1.1 rjs uint32_t initial_sequence_debug; 263 1.1 rjs uint32_t adaption_layer_indicator; 264 1.1 rjs uint8_t max_burst; 265 1.1 rjs char current_secret_number; 266 1.1 rjs char last_secret_number; 267 1.1 rjs }; 268 1.1 rjs 269 1.1 rjs #ifndef SCTP_ALIGNMENT 270 1.1 rjs #define SCTP_ALIGNMENT 32 271 1.1 rjs #endif 272 1.1 rjs 273 1.1 rjs #ifndef SCTP_ALIGNM1 274 1.1 rjs #define SCTP_ALIGNM1 (SCTP_ALIGNMENT-1) 275 1.1 rjs #endif 276 1.1 rjs 277 1.1 rjs #define sctp_lport ip_inp.inp.inp_lport 278 1.1 rjs 279 1.1 rjs struct sctp_socket_q_list { 280 1.1 rjs struct sctp_tcb *tcb; 281 1.1 rjs TAILQ_ENTRY(sctp_socket_q_list) next_sq; 282 1.1 rjs }; 283 1.1 rjs 284 1.1 rjs struct sctp_inpcb { 285 1.1 rjs /* 286 1.1 rjs * put an inpcb in front of it all, kind of a waste but we need 287 1.4 andvar * to for compatibility with all the other stuff. 288 1.1 rjs */ 289 1.1 rjs union { 290 1.1 rjs struct inpcb inp; 291 1.7 ozaki char align[(sizeof(struct in6pcb) + SCTP_ALIGNM1) & 292 1.1 rjs ~SCTP_ALIGNM1]; 293 1.1 rjs } ip_inp; 294 1.1 rjs LIST_ENTRY(sctp_inpcb) sctp_list; /* lists all endpoints */ 295 1.1 rjs /* hash of all endpoints for model */ 296 1.1 rjs LIST_ENTRY(sctp_inpcb) sctp_hash; 297 1.1 rjs 298 1.1 rjs /* count of local addresses bound, 0 if bound all */ 299 1.1 rjs int laddr_count; 300 1.1 rjs /* list of addrs in use by the EP */ 301 1.1 rjs struct sctpladdr sctp_addr_list; 302 1.1 rjs /* used for source address selection rotation */ 303 1.1 rjs struct sctp_laddr *next_addr_touse; 304 1.1 rjs struct ifnet *next_ifn_touse; 305 1.1 rjs /* back pointer to our socket */ 306 1.1 rjs struct socket *sctp_socket; 307 1.1 rjs uint32_t sctp_flags; /* flag set */ 308 1.1 rjs struct sctp_pcb sctp_ep; /* SCTP ep data */ 309 1.1 rjs /* head of the hash of all associations */ 310 1.1 rjs struct sctpasochead *sctp_tcbhash; 311 1.1 rjs u_long sctp_hashmark; 312 1.1 rjs /* head of the list of all associations */ 313 1.1 rjs struct sctpasochead sctp_asoc_list; 314 1.1 rjs /* queue of TCB's waiting to stuff data up the socket */ 315 1.1 rjs struct sctpsocketq sctp_queue_list; 316 1.1 rjs void *sctp_tcb_at_block; 317 1.1 rjs struct sctp_iterator *inp_starting_point_for_iterator; 318 1.1 rjs int error_on_block; 319 1.1 rjs uint32_t sctp_frag_point; 320 1.1 rjs uint32_t sctp_vtag_first; 321 1.1 rjs struct mbuf *pkt, *pkt_last, *sb_last_mpkt; 322 1.1 rjs struct mbuf *control; 323 1.1 rjs #if !(defined(__FreeBSD__) || defined(__APPLE__)) 324 1.1 rjs #ifndef INP_IPV6 325 1.1 rjs #define INP_IPV6 0x1 326 1.1 rjs #endif 327 1.1 rjs #ifndef INP_IPV4 328 1.1 rjs #define INP_IPV4 0x2 329 1.1 rjs #endif 330 1.1 rjs u_char inp_vflag; 331 1.1 rjs u_char inp_ip_ttl; 332 1.1 rjs u_char inp_ip_tos; 333 1.1 rjs u_char inp_ip_resv; 334 1.1 rjs #endif 335 1.1 rjs #if defined(__FreeBSD__) && __FreeBSD_version >= 503000 336 1.1 rjs struct mtx inp_mtx; 337 1.1 rjs struct mtx inp_create_mtx; 338 1.1 rjs u_int32_t refcount; 339 1.1 rjs #elif defined(__NetBSD__) 340 1.1 rjs kmutex_t inp_mtx; 341 1.1 rjs kmutex_t inp_create_mtx; 342 1.1 rjs u_int32_t refcount; 343 1.1 rjs #endif 344 1.1 rjs }; 345 1.1 rjs 346 1.1 rjs struct sctp_tcb { 347 1.1 rjs struct socket *sctp_socket; /* back pointer to socket */ 348 1.1 rjs struct sctp_inpcb *sctp_ep; /* back pointer to ep */ 349 1.1 rjs LIST_ENTRY(sctp_tcb) sctp_tcbhash; /* next link in hash table */ 350 1.1 rjs LIST_ENTRY(sctp_tcb) sctp_tcblist; /* list of all of the TCB's */ 351 1.1 rjs LIST_ENTRY(sctp_tcb) sctp_asocs; 352 1.1 rjs struct sctp_association asoc; 353 1.1 rjs uint16_t rport; /* remote port in network format */ 354 1.1 rjs uint16_t resv; 355 1.1 rjs #if defined(__FreeBSD__) && __FreeBSD_version >= 503000 356 1.1 rjs struct mtx tcb_mtx; 357 1.1 rjs #elif defined(__NetBSD__) 358 1.1 rjs kmutex_t tcb_mtx; 359 1.1 rjs #endif 360 1.1 rjs }; 361 1.1 rjs 362 1.1 rjs #if defined(__FreeBSD__) && __FreeBSD_version >= 503000 363 1.1 rjs 364 1.1 rjs /* General locking concepts: 365 1.1 rjs * The goal of our locking is to of course provide 366 1.1 rjs * consistency and yet minimize overhead. We will 367 1.1 rjs * attempt to use non-recursive locks which are supposed 368 1.1 rjs * to be quite inexpensive. Now in order to do this the goal 369 1.1 rjs * is that most functions are not aware of locking. Once we 370 1.1 rjs * have a TCB we lock it and unlock when we are through. This 371 1.1 rjs * means that the TCB lock is kind-of a "global" lock when 372 1.1 rjs * working on an association. Caution must be used when 373 1.1 rjs * asserting a TCB_LOCK since if we recurse we deadlock. 374 1.1 rjs * 375 1.1 rjs * Most other locks (INP and INFO) attempt to localize 376 1.1 rjs * the locking i.e. we try to contain the lock and 377 1.1 rjs * unlock within the function that needs to lock it. This 378 1.8 andvar * sometimes mean we do extra locks and unlocks and lose 379 1.5 andvar * a bit of efficiency, but if the performance statements about 380 1.1 rjs * non-recursive locks are true this should not be a problem. 381 1.1 rjs * One issue that arises with this only lock when needed 382 1.1 rjs * is that if an implicit association setup is done we 383 1.1 rjs * have a problem. If at the time I lookup an association 384 1.1 rjs * I have NULL in the tcb return, by the time I call to 385 1.1 rjs * create the association some other processor could 386 1.1 rjs * have created it. This is what the CREATE lock on 387 1.1 rjs * the endpoint. Places where we will be implicitly 388 1.1 rjs * creating the association OR just creating an association 389 1.1 rjs * (the connect call) will assert the CREATE_INP lock. This 390 1.1 rjs * will assure us that during all the lookup of INP and INFO 391 1.1 rjs * if another creator is also locking/looking up we can 392 1.1 rjs * gate the two to synchronize. So the CREATE_INP lock is 393 1.1 rjs * also another one we must use extreme caution in locking 394 1.1 rjs * to make sure we don't hit a re-entrancy issue. 395 1.1 rjs * 396 1.1 rjs * For non FreeBSD 5.x and above we provide a bunch 397 1.1 rjs * of EMPTY lock macro's so we can blatantly put locks 398 1.1 rjs * everywhere and they reduce to nothing on NetBSD/OpenBSD 399 1.1 rjs * and FreeBSD 4.x 400 1.1 rjs * 401 1.1 rjs */ 402 1.1 rjs 403 1.1 rjs 404 1.1 rjs /* When working with the global SCTP lists we lock and unlock 405 1.1 rjs * the INP_INFO lock. So when we go to lookup an association 406 1.1 rjs * we will want to do a SCTP_INP_INFO_RLOCK() and then when 407 1.1 rjs * we want to add a new association to the sctppcbinfo list's 408 1.1 rjs * we will do a SCTP_INP_INFO_WLOCK(). 409 1.1 rjs */ 410 1.1 rjs 411 1.1 rjs /* 412 1.1 rjs * FIX ME, all locks right now have a 413 1.1 rjs * recursive check/panic to validate that I 414 1.1 rjs * don't have any lock recursion going on. 415 1.1 rjs */ 416 1.1 rjs 417 1.1 rjs #define SCTP_INP_INFO_LOCK_INIT() \ 418 1.1 rjs mtx_init(&sctppcbinfo.ipi_ep_mtx, "sctp", "inp_info", MTX_DEF) 419 1.1 rjs 420 1.1 rjs #ifdef xyzzy 421 1.1 rjs #define SCTP_INP_INFO_RLOCK() do { \ 422 1.1 rjs if (mtx_owned(&sctppcbinfo.ipi_ep_mtx)) \ 423 1.1 rjs panic("INP INFO Recursive Lock-R"); \ 424 1.1 rjs mtx_lock(&sctppcbinfo.ipi_ep_mtx); \ 425 1.1 rjs } while (0) 426 1.1 rjs 427 1.1 rjs #define SCTP_INP_INFO_WLOCK() do { \ 428 1.1 rjs if (mtx_owned(&sctppcbinfo.ipi_ep_mtx)) \ 429 1.1 rjs panic("INP INFO Recursive Lock-W"); \ 430 1.1 rjs mtx_lock(&sctppcbinfo.ipi_ep_mtx); \ 431 1.1 rjs } while (0) 432 1.1 rjs 433 1.1 rjs #else 434 1.1 rjs 435 1.1 rjs void SCTP_INP_INFO_RLOCK(void); 436 1.1 rjs void SCTP_INP_INFO_WLOCK(void); 437 1.1 rjs 438 1.1 rjs #endif 439 1.1 rjs 440 1.1 rjs #define SCTP_INP_INFO_RUNLOCK() mtx_unlock(&sctppcbinfo.ipi_ep_mtx) 441 1.1 rjs #define SCTP_INP_INFO_WUNLOCK() mtx_unlock(&sctppcbinfo.ipi_ep_mtx) 442 1.1 rjs 443 1.1 rjs /* The INP locks we will use for locking an SCTP endpoint, so for 444 1.1 rjs * example if we want to change something at the endpoint level for 445 1.3 riastrad * example cookie secrets we lock the INP level. 446 1.1 rjs */ 447 1.1 rjs #define SCTP_INP_LOCK_INIT(_inp) \ 448 1.1 rjs mtx_init(&(_inp)->inp_mtx, "sctp", "inp", MTX_DEF | MTX_DUPOK) 449 1.1 rjs 450 1.1 rjs #define SCTP_ASOC_CREATE_LOCK_INIT(_inp) \ 451 1.1 rjs mtx_init(&(_inp)->inp_create_mtx, "sctp", "inp_create", \ 452 1.1 rjs MTX_DEF | MTX_DUPOK) 453 1.1 rjs 454 1.1 rjs #define SCTP_INP_LOCK_DESTROY(_inp) mtx_destroy(&(_inp)->inp_mtx) 455 1.1 rjs #define SCTP_ASOC_CREATE_LOCK_DESTROY(_inp) mtx_destroy(&(_inp)->inp_create_mtx) 456 1.1 rjs 457 1.1 rjs #ifdef xyzzy 458 1.1 rjs #define SCTP_INP_RLOCK(_inp) do { \ 459 1.1 rjs struct sctp_tcb *xx_stcb; \ 460 1.1 rjs xx_stcb = LIST_FIRST(&_inp->sctp_asoc_list); \ 461 1.1 rjs if (xx_stcb) \ 462 1.1 rjs if (mtx_owned(&(xx_stcb)->tcb_mtx)) \ 463 1.1 rjs panic("I own TCB lock?"); \ 464 1.1 rjs if (mtx_owned(&(_inp)->inp_mtx)) \ 465 1.1 rjs panic("INP Recursive Lock-R"); \ 466 1.1 rjs mtx_lock(&(_inp)->inp_mtx); \ 467 1.1 rjs } while (0) 468 1.1 rjs 469 1.1 rjs #define SCTP_INP_WLOCK(_inp) do { \ 470 1.1 rjs struct sctp_tcb *xx_stcb; \ 471 1.1 rjs xx_stcb = LIST_FIRST(&_inp->sctp_asoc_list); \ 472 1.1 rjs if (xx_stcb) \ 473 1.1 rjs if (mtx_owned(&(xx_stcb)->tcb_mtx)) \ 474 1.1 rjs panic("I own TCB lock?"); \ 475 1.1 rjs if (mtx_owned(&(_inp)->inp_mtx)) \ 476 1.1 rjs panic("INP Recursive Lock-W"); \ 477 1.1 rjs mtx_lock(&(_inp)->inp_mtx); \ 478 1.1 rjs } while (0) 479 1.1 rjs 480 1.1 rjs #else 481 1.1 rjs void SCTP_INP_RLOCK(struct sctp_inpcb *); 482 1.1 rjs void SCTP_INP_WLOCK(struct sctp_inpcb *); 483 1.1 rjs 484 1.1 rjs #endif 485 1.1 rjs 486 1.1 rjs 487 1.1 rjs #define SCTP_INP_INCR_REF(_inp) _inp->refcount++ 488 1.1 rjs 489 1.1 rjs #define SCTP_INP_DECR_REF(_inp) do { \ 490 1.1 rjs if (_inp->refcount > 0) \ 491 1.1 rjs _inp->refcount--; \ 492 1.1 rjs else \ 493 1.1 rjs panic("bad inp refcount"); \ 494 1.1 rjs }while (0) 495 1.1 rjs 496 1.1 rjs #define SCTP_ASOC_CREATE_LOCK(_inp) do { \ 497 1.1 rjs if (mtx_owned(&(_inp)->inp_create_mtx)) \ 498 1.1 rjs panic("INP Recursive CREATE"); \ 499 1.1 rjs mtx_lock(&(_inp)->inp_create_mtx); \ 500 1.1 rjs } while (0) 501 1.1 rjs 502 1.1 rjs #define SCTP_INP_RUNLOCK(_inp) mtx_unlock(&(_inp)->inp_mtx) 503 1.1 rjs #define SCTP_INP_WUNLOCK(_inp) mtx_unlock(&(_inp)->inp_mtx) 504 1.1 rjs #define SCTP_ASOC_CREATE_UNLOCK(_inp) mtx_unlock(&(_inp)->inp_create_mtx) 505 1.1 rjs 506 1.1 rjs /* For the majority of things (once we have found the association) we 507 1.1 rjs * will lock the actual association mutex. This will protect all 508 1.1 rjs * the assoiciation level queues and streams and such. We will 509 1.1 rjs * need to lock the socket layer when we stuff data up into 510 1.1 rjs * the receiving sb_mb. I.e. we will need to do an extra 511 1.1 rjs * SOCKBUF_LOCK(&so->so_rcv) even though the association is 512 1.1 rjs * locked. 513 1.1 rjs */ 514 1.1 rjs 515 1.1 rjs #define SCTP_TCB_LOCK_INIT(_tcb) \ 516 1.1 rjs mutex_init(&(_tcb)->tcb_mtx, MUTEX_DEFAULT, IPL_NET) 517 1.1 rjs #define SCTP_TCB_LOCK_DESTROY(_tcb) mtx_destroy(&(_tcb)->tcb_mtx) 518 1.1 rjs #define SCTP_TCB_LOCK(_tcb) do { \ 519 1.1 rjs if (!mtx_owned(&(_tcb->sctp_ep->inp_mtx))) \ 520 1.1 rjs panic("TCB locking and no INP lock"); \ 521 1.1 rjs if (mtx_owned(&(_tcb)->tcb_mtx)) \ 522 1.1 rjs panic("TCB Lock-recursive"); \ 523 1.1 rjs mtx_lock(&(_tcb)->tcb_mtx); \ 524 1.1 rjs } while (0) 525 1.1 rjs #define SCTP_TCB_UNLOCK(_tcb) mtx_unlock(&(_tcb)->tcb_mtx) 526 1.1 rjs 527 1.1 rjs #define SCTP_ITERATOR_LOCK_INIT() \ 528 1.1 rjs mtx_init(&sctppcbinfo.it_mtx, "sctp", "iterator", MTX_DEF) 529 1.1 rjs #define SCTP_ITERATOR_LOCK() do { \ 530 1.1 rjs if (mtx_owned(&sctppcbinfo.it_mtx)) \ 531 1.1 rjs panic("Iterator Lock"); \ 532 1.1 rjs mtx_lock(&sctppcbinfo.it_mtx); \ 533 1.1 rjs } while (0) 534 1.1 rjs 535 1.1 rjs #define SCTP_ITERATOR_UNLOCK() mtx_unlock(&sctppcbinfo.it_mtx) 536 1.1 rjs #define SCTP_ITERATOR_LOCK_DESTROY() mtx_destroy(&sctppcbinfo.it_mtx) 537 1.1 rjs #elif 0 /* defined(__NetBSD__) */ 538 1.1 rjs #define SCTP_INP_INFO_LOCK_INIT() \ 539 1.1 rjs rw_init(&sctppcbinfo.ipi_ep_mtx) 540 1.1 rjs 541 1.1 rjs #define SCTP_INP_INFO_RLOCK() do { \ 542 1.1 rjs rw_enter(&sctppcbinfo.ipi_ep_mtx, RW_READER); \ 543 1.1 rjs } while (0) 544 1.1 rjs 545 1.1 rjs #define SCTP_INP_INFO_WLOCK() do { \ 546 1.1 rjs rw_enter(&sctppcbinfo.ipi_ep_mtx, RW_WRITER); \ 547 1.1 rjs } while (0) 548 1.1 rjs 549 1.1 rjs #define SCTP_INP_INFO_RUNLOCK() rw_exit(&sctppcbinfo.ipi_ep_mtx) 550 1.1 rjs #define SCTP_INP_INFO_WUNLOCK() rw_exit(&sctppcbinfo.ipi_ep_mtx) 551 1.1 rjs 552 1.1 rjs /* The INP locks we will use for locking an SCTP endpoint, so for 553 1.1 rjs * example if we want to change something at the endpoint level for 554 1.3 riastrad * example cookie secrets we lock the INP level. 555 1.1 rjs */ 556 1.1 rjs #define SCTP_INP_LOCK_INIT(_inp) \ 557 1.1 rjs mutex_init(&(_inp)->inp_mtx, MUTEX_DEFAULT, IPL_NET) 558 1.1 rjs 559 1.1 rjs #define SCTP_ASOC_CREATE_LOCK_INIT(_inp) \ 560 1.1 rjs mutex_init(&(_inp)->inp_create_mtx, MUTEX_DEFAULT, IPL_NET) 561 1.1 rjs 562 1.1 rjs #define SCTP_INP_LOCK_DESTROY(_inp) mutex_destroy(&(_inp)->inp_mtx) 563 1.1 rjs #define SCTP_ASOC_CREATE_LOCK_DESTROY(_inp) mutex_destroy(&(_inp)->inp_create_mtx) 564 1.1 rjs 565 1.1 rjs #define SCTP_INP_RLOCK(_inp) do { \ 566 1.1 rjs mutex_enter(&(_inp)->inp_mtx); \ 567 1.1 rjs } while (0) 568 1.1 rjs 569 1.1 rjs #define SCTP_INP_WLOCK(_inp) do { \ 570 1.1 rjs mutex_enter(&(_inp)->inp_mtx); \ 571 1.1 rjs } while (0) 572 1.1 rjs 573 1.1 rjs 574 1.1 rjs #define SCTP_INP_INCR_REF(_inp) atomic_add_int(&((_inp)->refcount), 1) 575 1.1 rjs 576 1.1 rjs #define SCTP_INP_DECR_REF(_inp) atomic_add_int(&((_inp)->refcount), -1) 577 1.1 rjs 578 1.1 rjs #define SCTP_ASOC_CREATE_LOCK(_inp) do { \ 579 1.1 rjs mutex_enter(&(_inp)->inp_create_mtx); \ 580 1.1 rjs } while (0) 581 1.1 rjs 582 1.1 rjs #define SCTP_INP_RUNLOCK(_inp) mutex_exit(&(_inp)->inp_mtx) 583 1.1 rjs #define SCTP_INP_WUNLOCK(_inp) mutex_exit(&(_inp)->inp_mtx) 584 1.1 rjs #define SCTP_ASOC_CREATE_UNLOCK(_inp) mutex_exit(&(_inp)->inp_create_mtx) 585 1.1 rjs 586 1.1 rjs /* For the majority of things (once we have found the association) we 587 1.1 rjs * will lock the actual association mutex. This will protect all 588 1.1 rjs * the assoiciation level queues and streams and such. We will 589 1.1 rjs * need to lock the socket layer when we stuff data up into 590 1.1 rjs * the receiving sb_mb. I.e. we will need to do an extra 591 1.1 rjs * SOCKBUF_LOCK(&so->so_rcv) even though the association is 592 1.1 rjs * locked. 593 1.1 rjs */ 594 1.1 rjs 595 1.1 rjs #define SCTP_TCB_LOCK_INIT(_tcb) \ 596 1.1 rjs mutex_init(&(_tcb)->tcb_mtx, MUTEX_DEFAULT, IPL_NET) 597 1.1 rjs #define SCTP_TCB_LOCK_DESTROY(_tcb) mutex_destroy(&(_tcb)->tcb_mtx) 598 1.1 rjs #define SCTP_TCB_LOCK(_tcb) do { \ 599 1.1 rjs mutex_enter(&(_tcb)->tcb_mtx); \ 600 1.1 rjs } while (0) 601 1.1 rjs #define SCTP_TCB_UNLOCK(_tcb) mutex_exit(&(_tcb)->tcb_mtx) 602 1.1 rjs 603 1.1 rjs #define SCTP_ITERATOR_LOCK_INIT() \ 604 1.1 rjs mutex_init(&sctppcbinfo.it_mtx, MUTEX_DEFAULT, IPL_NET) 605 1.1 rjs #define SCTP_ITERATOR_LOCK() do { \ 606 1.1 rjs if (mutex_owned(&sctppcbinfo.it_mtx)) \ 607 1.1 rjs panic("Iterator Lock"); \ 608 1.1 rjs mutex_enter(&sctppcbinfo.it_mtx); \ 609 1.1 rjs } while (0) 610 1.1 rjs 611 1.1 rjs #define SCTP_ITERATOR_UNLOCK() mutex_exit(&sctppcbinfo.it_mtx) 612 1.1 rjs #define SCTP_ITERATOR_LOCK_DESTROY() mutex_destroy(&sctppcbinfo.it_mtx) 613 1.1 rjs #else 614 1.1 rjs 615 1.1 rjs /* Empty Lock declarations for all other 616 1.1 rjs * platforms pre-process away to nothing. 617 1.1 rjs */ 618 1.1 rjs 619 1.1 rjs /* Lock for INFO stuff */ 620 1.1 rjs #define SCTP_INP_INFO_LOCK_INIT() 621 1.1 rjs #define SCTP_INP_INFO_RLOCK() 622 1.1 rjs #define SCTP_INP_INFO_RLOCK() 623 1.1 rjs #define SCTP_INP_INFO_WLOCK() 624 1.1 rjs 625 1.1 rjs #define SCTP_INP_INFO_RUNLOCK() 626 1.1 rjs #define SCTP_INP_INFO_WUNLOCK() 627 1.1 rjs /* Lock for INP */ 628 1.1 rjs #define SCTP_INP_LOCK_INIT(_inp) 629 1.1 rjs #define SCTP_INP_LOCK_DESTROY(_inp) 630 1.1 rjs #define SCTP_INP_RLOCK(_inp) 631 1.1 rjs #define SCTP_INP_RUNLOCK(_inp) 632 1.1 rjs #define SCTP_INP_WLOCK(_inp) 633 1.1 rjs #define SCTP_INP_INCR_REF(_inp) 634 1.1 rjs #define SCTP_INP_DECR_REF(_inp) 635 1.1 rjs #define SCTP_INP_WUNLOCK(_inp) 636 1.1 rjs #define SCTP_ASOC_CREATE_LOCK_INIT(_inp) 637 1.1 rjs #define SCTP_ASOC_CREATE_LOCK_DESTROY(_inp) 638 1.1 rjs #define SCTP_ASOC_CREATE_LOCK(_inp) 639 1.1 rjs #define SCTP_ASOC_CREATE_UNLOCK(_inp) 640 1.1 rjs /* Lock for TCB */ 641 1.1 rjs #define SCTP_TCB_LOCK_INIT(_tcb) 642 1.1 rjs #define SCTP_TCB_LOCK_DESTROY(_tcb) 643 1.1 rjs #define SCTP_TCB_LOCK(_tcb) 644 1.1 rjs #define SCTP_TCB_UNLOCK(_tcb) 645 1.1 rjs /* iterator locks */ 646 1.1 rjs #define SCTP_ITERATOR_LOCK_INIT() 647 1.1 rjs #define SCTP_ITERATOR_LOCK() 648 1.1 rjs #define SCTP_ITERATOR_UNLOCK() 649 1.1 rjs #define SCTP_ITERATOR_LOCK_DESTROY() 650 1.1 rjs #endif 651 1.1 rjs 652 1.1 rjs #if defined(_KERNEL) 653 1.1 rjs 654 1.1 rjs extern struct sctp_epinfo sctppcbinfo; 655 1.1 rjs extern int sctp_auto_asconf; 656 1.1 rjs 657 1.1 rjs int SCTP6_ARE_ADDR_EQUAL(const struct in6_addr *a, const struct in6_addr *b); 658 1.1 rjs 659 1.1 rjs void sctp_fill_pcbinfo(struct sctp_pcbinfo *); 660 1.1 rjs 661 1.1 rjs struct sctp_nets *sctp_findnet(struct sctp_tcb *, struct sockaddr *); 662 1.1 rjs 663 1.1 rjs struct sctp_inpcb *sctp_pcb_findep(struct sockaddr *, int, int); 664 1.1 rjs 665 1.1 rjs int sctp_inpcb_bind(struct socket *, struct sockaddr *, struct lwp *); 666 1.1 rjs 667 1.1 rjs struct sctp_tcb *sctp_findassociation_addr(struct mbuf *, int, int, 668 1.1 rjs struct sctphdr *, struct sctp_chunkhdr *, struct sctp_inpcb **, 669 1.1 rjs struct sctp_nets **); 670 1.1 rjs 671 1.1 rjs struct sctp_tcb *sctp_findassociation_addr_sa(struct sockaddr *, 672 1.1 rjs struct sockaddr *, struct sctp_inpcb **, struct sctp_nets **, int); 673 1.1 rjs 674 1.1 rjs void sctp_move_pcb_and_assoc(struct sctp_inpcb *, struct sctp_inpcb *, 675 1.1 rjs struct sctp_tcb *); 676 1.1 rjs 677 1.1 rjs /* 678 1.1 rjs * For this call ep_addr, the to is the destination endpoint address 679 1.1 rjs * of the peer (relative to outbound). The from field is only used if 680 1.1 rjs * the TCP model is enabled and helps distingush amongst the subset 681 1.1 rjs * bound (non-boundall). The TCP model MAY change the actual ep field, 682 1.1 rjs * this is why it is passed. 683 1.1 rjs */ 684 1.1 rjs struct sctp_tcb *sctp_findassociation_ep_addr(struct sctp_inpcb **, 685 1.1 rjs struct sockaddr *, struct sctp_nets **, struct sockaddr *, struct sctp_tcb *); 686 1.1 rjs 687 1.1 rjs struct sctp_tcb *sctp_findassociation_ep_asocid(struct sctp_inpcb *, vaddr_t); 688 1.1 rjs 689 1.1 rjs struct sctp_tcb *sctp_findassociation_ep_asconf(struct mbuf *, int, int, 690 1.1 rjs struct sctphdr *, struct sctp_inpcb **, struct sctp_nets **); 691 1.1 rjs 692 1.1 rjs int sctp_inpcb_alloc(struct socket *); 693 1.1 rjs 694 1.1 rjs 695 1.1 rjs int sctp_is_address_on_local_host(struct sockaddr *addr); 696 1.1 rjs 697 1.1 rjs void sctp_inpcb_free(struct sctp_inpcb *, int); 698 1.1 rjs 699 1.1 rjs struct sctp_tcb *sctp_aloc_assoc(struct sctp_inpcb *, struct sockaddr *, 700 1.1 rjs int, int *, uint32_t); 701 1.1 rjs 702 1.1 rjs void sctp_free_assoc(struct sctp_inpcb *, struct sctp_tcb *); 703 1.1 rjs 704 1.1 rjs int sctp_add_local_addr_ep(struct sctp_inpcb *, struct ifaddr *); 705 1.1 rjs 706 1.1 rjs int sctp_insert_laddr(struct sctpladdr *, struct ifaddr *); 707 1.1 rjs 708 1.1 rjs void sctp_remove_laddr(struct sctp_laddr *); 709 1.1 rjs 710 1.1 rjs int sctp_del_local_addr_ep(struct sctp_inpcb *, struct ifaddr *); 711 1.1 rjs 712 1.1 rjs int sctp_del_local_addr_ep_sa(struct sctp_inpcb *, struct sockaddr *); 713 1.1 rjs 714 1.1 rjs int sctp_add_remote_addr(struct sctp_tcb *, struct sockaddr *, int, int); 715 1.1 rjs 716 1.1 rjs int sctp_del_remote_addr(struct sctp_tcb *, struct sockaddr *); 717 1.1 rjs 718 1.1 rjs void sctp_pcb_init(void); 719 1.1 rjs 720 1.1 rjs void sctp_free_remote_addr(struct sctp_nets *); 721 1.1 rjs 722 1.1 rjs int sctp_add_local_addr_assoc(struct sctp_tcb *, struct ifaddr *); 723 1.1 rjs 724 1.1 rjs int sctp_del_local_addr_assoc(struct sctp_tcb *, struct ifaddr *); 725 1.1 rjs 726 1.1 rjs int sctp_del_local_addr_assoc_sa(struct sctp_tcb *, struct sockaddr *); 727 1.1 rjs 728 1.1 rjs int sctp_load_addresses_from_init(struct sctp_tcb *, struct mbuf *, int, int, 729 1.1 rjs int, struct sctphdr *, struct sockaddr *); 730 1.1 rjs 731 1.1 rjs int sctp_set_primary_addr(struct sctp_tcb *, struct sockaddr *, struct sctp_nets *); 732 1.1 rjs 733 1.1 rjs int sctp_is_vtag_good(struct sctp_inpcb *, uint32_t, struct timeval *); 734 1.1 rjs 735 1.1 rjs /*void sctp_drain(void);*/ 736 1.1 rjs 737 1.1 rjs int sctp_destination_is_reachable(struct sctp_tcb *, const struct sockaddr *); 738 1.1 rjs 739 1.1 rjs int sctp_add_to_socket_q(struct sctp_inpcb *, struct sctp_tcb *); 740 1.1 rjs 741 1.1 rjs struct sctp_tcb *sctp_remove_from_socket_q(struct sctp_inpcb *); 742 1.1 rjs 743 1.1 rjs 744 1.1 rjs /* Null in last arg inpcb indicate run on ALL ep's. Specific 745 1.1 rjs * inp in last arg indicates run on ONLY assoc's of the 746 1.1 rjs * specified endpoint. 747 1.1 rjs */ 748 1.1 rjs int 749 1.1 rjs sctp_initiate_iterator(asoc_func af, uint32_t, uint32_t, void *, uint32_t, 750 1.1 rjs end_func ef, struct sctp_inpcb *); 751 1.1 rjs 752 1.2 rjs void in6_sin6_2_sin (struct sockaddr_in *, 753 1.1 rjs struct sockaddr_in6 *sin6); 754 1.1 rjs 755 1.6 ozaki #ifdef __NetBSD__ 756 1.6 ozaki #ifndef sotoin6pcb 757 1.7 ozaki #define sotoin6pcb(so) ((struct in6pcb *)((so)->so_pcb)) 758 1.6 ozaki #endif 759 1.6 ozaki #ifndef in6p_flags 760 1.7 ozaki #define in6p_flags in6p_pcb.inp_flags 761 1.6 ozaki #endif 762 1.6 ozaki #ifndef in6p_af 763 1.7 ozaki #define in6p_af in6p_pcb.inp_af 764 1.6 ozaki #endif 765 1.6 ozaki #ifndef inpcb_hdr 766 1.6 ozaki #define inpcb_hdr inpcb 767 1.6 ozaki #endif 768 1.6 ozaki #ifndef sp_inph 769 1.6 ozaki #define sp_inph sp_inp 770 1.6 ozaki #endif 771 1.6 ozaki #endif 772 1.6 ozaki 773 1.1 rjs #endif /* _KERNEL */ 774 1.1 rjs #endif /* !__SCTP_PCB_H__ */ 775