1 1.1 rjs /* $KAME: sctp_structs.h,v 1.13 2005/03/06 16:04:18 itojun Exp $ */ 2 1.4 andvar /* $NetBSD: sctp_structs.h,v 1.4 2023/08/10 06:44:12 andvar Exp $ */ 3 1.1 rjs 4 1.1 rjs #ifndef __SCTP_STRUCTS_H__ 5 1.1 rjs #define __SCTP_STRUCTS_H__ 6 1.1 rjs 7 1.1 rjs /* 8 1.1 rjs * Copyright (c) 2001, 2002, 2003, 2004 Cisco Systems, Inc. 9 1.1 rjs * All rights reserved. 10 1.1 rjs * 11 1.1 rjs * Redistribution and use in source and binary forms, with or without 12 1.1 rjs * modification, are permitted provided that the following conditions 13 1.1 rjs * are met: 14 1.1 rjs * 1. Redistributions of source code must retain the above copyright 15 1.1 rjs * notice, this list of conditions and the following disclaimer. 16 1.1 rjs * 2. Redistributions in binary form must reproduce the above copyright 17 1.1 rjs * notice, this list of conditions and the following disclaimer in the 18 1.1 rjs * documentation and/or other materials provided with the distribution. 19 1.1 rjs * 3. All advertising materials mentioning features or use of this software 20 1.1 rjs * must display the following acknowledgement: 21 1.1 rjs * This product includes software developed by Cisco Systems, Inc. 22 1.1 rjs * 4. Neither the name of the project nor the names of its contributors 23 1.1 rjs * may be used to endorse or promote products derived from this software 24 1.1 rjs * without specific prior written permission. 25 1.1 rjs * 26 1.1 rjs * THIS SOFTWARE IS PROVIDED BY CISCO SYSTEMS AND CONTRIBUTORS ``AS IS'' AND 27 1.1 rjs * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 1.1 rjs * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 1.1 rjs * ARE DISCLAIMED. IN NO EVENT SHALL CISCO SYSTEMS OR CONTRIBUTORS BE LIABLE 30 1.1 rjs * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 1.1 rjs * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 1.1 rjs * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 1.1 rjs * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 1.1 rjs * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 1.1 rjs * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 1.1 rjs * SUCH DAMAGE. 37 1.1 rjs */ 38 1.1 rjs #include <sys/queue.h> 39 1.1 rjs 40 1.1 rjs #include <sys/callout.h> 41 1.1 rjs 42 1.1 rjs #ifdef IPSEC 43 1.2 rjs #include <netipsec/ipsec.h> 44 1.2 rjs #include <netipsec/key.h> 45 1.1 rjs #endif 46 1.1 rjs 47 1.1 rjs #include <netinet/sctp_header.h> 48 1.1 rjs #include <netinet/sctp_uio.h> 49 1.1 rjs 50 1.1 rjs struct sctp_timer { 51 1.1 rjs struct callout timer; 52 1.1 rjs int type; 53 1.1 rjs /* 54 1.1 rjs * Depending on the timer type these will be setup and cast with 55 1.1 rjs * the appropriate entity. 56 1.1 rjs */ 57 1.1 rjs void *ep; 58 1.1 rjs void *tcb; 59 1.1 rjs void *net; 60 1.1 rjs }; 61 1.1 rjs 62 1.1 rjs /* 63 1.1 rjs * This is the information we track on each interface that we know about * from the distant end. 64 1.1 rjs */ 65 1.1 rjs TAILQ_HEAD(sctpnetlisthead, sctp_nets); 66 1.1 rjs 67 1.1 rjs /* 68 1.1 rjs * Users of the iterator need to malloc a iterator with a call to 69 1.1 rjs * sctp_initiate_iterator(func, pcb_flags, asoc_state, void-ptr-arg, u_int32_t, 70 1.1 rjs * u_int32-arg, end_func, inp); 71 1.1 rjs * 72 1.1 rjs * Use the following two defines if you don't care what pcb flags are on the 73 1.1 rjs * EP and/or you don't care what state the association is in. 74 1.1 rjs * 75 1.1 rjs * Note that if you specify an INP as the last argument then ONLY each 76 1.1 rjs * association of that single INP will be executed upon. Note that the 77 1.1 rjs * pcb flags STILL apply so if the inp you specify has different pcb_flags 78 1.1 rjs * then what you put in pcb_flags nothing will happen. use SCTP_PCB_ANY_FLAGS 79 1.1 rjs * to assure the inp you specify gets treated. 80 1.1 rjs */ 81 1.1 rjs #define SCTP_PCB_ANY_FLAGS 0x00000000 82 1.1 rjs #define SCTP_ASOC_ANY_STATE 0x00000000 83 1.1 rjs 84 1.1 rjs typedef void (*asoc_func)(struct sctp_inpcb *, struct sctp_tcb *, void *ptr, 85 1.1 rjs u_int32_t val); 86 1.1 rjs typedef void (*end_func)(void *ptr, u_int32_t val); 87 1.1 rjs 88 1.1 rjs #define SCTP_ITERATOR_DO_ALL_INP 0x00000001 89 1.1 rjs #define SCTP_ITERATOR_DO_SINGLE_INP 0x00000002 90 1.1 rjs 91 1.1 rjs struct sctp_iterator { 92 1.1 rjs LIST_ENTRY(sctp_iterator) sctp_nxt_itr; 93 1.1 rjs struct sctp_timer tmr; 94 1.1 rjs struct sctp_inpcb *inp; /* ep */ 95 1.1 rjs struct sctp_tcb *stcb; /* assoc */ 96 1.1 rjs asoc_func function_toapply; 97 1.1 rjs end_func function_atend; 98 1.1 rjs void *pointer; /* pointer for apply func to use */ 99 1.1 rjs u_int32_t val; /* value for apply func to use */ 100 1.1 rjs u_int32_t pcb_flags; 101 1.1 rjs u_int32_t asoc_state; 102 1.1 rjs u_int32_t iterator_flags; 103 1.1 rjs }; 104 1.1 rjs 105 1.1 rjs LIST_HEAD(sctpiterators, sctp_iterator); 106 1.1 rjs 107 1.1 rjs struct sctp_copy_all { 108 1.1 rjs struct sctp_inpcb *inp; /* ep */ 109 1.1 rjs struct mbuf *m; 110 1.1 rjs struct sctp_sndrcvinfo sndrcv; 111 1.1 rjs int sndlen; 112 1.1 rjs int cnt_sent; 113 1.1 rjs int cnt_failed; 114 1.1 rjs }; 115 1.1 rjs 116 1.1 rjs union sctp_sockstore { 117 1.1 rjs #ifdef AF_INET 118 1.1 rjs struct sockaddr_in sin; 119 1.1 rjs #endif 120 1.1 rjs #ifdef AF_INET6 121 1.1 rjs struct sockaddr_in6 sin6; 122 1.1 rjs #endif 123 1.1 rjs struct sockaddr sa; 124 1.1 rjs }; 125 1.1 rjs 126 1.1 rjs struct sctp_nets { 127 1.1 rjs TAILQ_ENTRY(sctp_nets) sctp_next; /* next link */ 128 1.1 rjs 129 1.1 rjs /* Things on the top half may be able to be split 130 1.1 rjs * into a common structure shared by all. 131 1.1 rjs */ 132 1.1 rjs struct sctp_timer pmtu_timer; 133 1.1 rjs 134 1.1 rjs /* 135 1.1 rjs * The following two in combination equate to a route entry for 136 1.1 rjs * v6 or v4. 137 1.1 rjs */ 138 1.1 rjs #if 0 139 1.1 rjs struct sctp_route { 140 1.1 rjs struct rtentry *ro_rt; 141 1.1 rjs union sctp_sockstore _l_addr; /* remote peer addr */ 142 1.1 rjs union sctp_sockstore _s_addr; /* our selected src addr */ 143 1.1 rjs } ro; 144 1.1 rjs #endif 145 1.1 rjs struct route ro; 146 1.1 rjs /* union sctp_sockstore _l_addr; */ 147 1.1 rjs union sctp_sockstore _s_addr; 148 1.1 rjs /* mtu discovered so far */ 149 1.1 rjs u_int32_t mtu; 150 1.1 rjs u_int32_t ssthresh; /* not sure about this one for split */ 151 1.1 rjs 152 1.1 rjs /* smoothed average things for RTT and RTO itself */ 153 1.1 rjs int lastsa; 154 1.1 rjs int lastsv; 155 1.1 rjs unsigned int RTO; 156 1.1 rjs 157 1.1 rjs /* This is used for SHUTDOWN/SHUTDOWN-ACK/SEND or INIT timers */ 158 1.1 rjs struct sctp_timer rxt_timer; 159 1.1 rjs 160 1.1 rjs /* last time in seconds I sent to it */ 161 1.1 rjs struct timeval last_sent_time; 162 1.1 rjs int ref_count; 163 1.1 rjs 164 1.1 rjs /* Congestion stats per destination */ 165 1.1 rjs /* 166 1.1 rjs * flight size variables and such, sorry Vern, I could not avoid 167 1.1 rjs * this if I wanted performance :> 168 1.1 rjs */ 169 1.1 rjs u_int32_t flight_size; 170 1.1 rjs u_int32_t cwnd; /* actual cwnd */ 171 1.1 rjs u_int32_t prev_cwnd; /* cwnd before any processing */ 172 1.1 rjs u_int32_t partial_bytes_acked; /* in CA tracks when to incr a MTU */ 173 1.1 rjs 174 1.1 rjs /* tracking variables to avoid the aloc/free in sack processing */ 175 1.1 rjs unsigned int net_ack; 176 1.1 rjs unsigned int net_ack2; 177 1.1 rjs /* 178 1.1 rjs * These only are valid if the primary dest_sstate holds the 179 1.1 rjs * SCTP_ADDR_SWITCH_PRIMARY flag 180 1.1 rjs */ 181 1.1 rjs u_int32_t next_tsn_at_change; 182 1.1 rjs u_int32_t heartbeat_random1; 183 1.1 rjs u_int32_t heartbeat_random2; 184 1.1 rjs 185 1.1 rjs /* if this guy is ok or not ... status */ 186 1.1 rjs u_int16_t dest_state; 187 1.1 rjs /* number of transmit failures to down this guy */ 188 1.1 rjs u_int16_t failure_threshold; 189 1.1 rjs /* error stats on destination */ 190 1.1 rjs u_int16_t error_count; 191 1.1 rjs 192 1.1 rjs /* Flags that probably can be combined into dest_state */ 193 1.1 rjs u_int8_t rto_pending; /* is segment marked for RTO update ** if we split?*/ 194 1.1 rjs u_int8_t fast_retran_ip; /* fast retransmit in progress */ 195 1.1 rjs u_int8_t hb_responded; 196 1.1 rjs u_int8_t cacc_saw_newack; /* CACC algorithm flag */ 197 1.1 rjs u_int8_t src_addr_selected; /* if we split we move */ 198 1.1 rjs u_int8_t indx_of_eligible_next_to_use; 199 1.1 rjs u_int8_t addr_is_local; /* its a local address (if known) could move in split */ 200 1.1 rjs #ifdef SCTP_HIGH_SPEED 201 1.1 rjs u_int8_t last_hs_used; /* index into the last HS table entry we used */ 202 1.1 rjs #endif 203 1.1 rjs }; 204 1.1 rjs 205 1.1 rjs 206 1.1 rjs struct sctp_data_chunkrec { 207 1.1 rjs u_int32_t TSN_seq; /* the TSN of this transmit */ 208 1.1 rjs u_int16_t stream_seq; /* the stream sequence number of this transmit */ 209 1.1 rjs u_int16_t stream_number; /* the stream number of this guy */ 210 1.1 rjs u_int32_t payloadtype; 211 1.1 rjs u_int32_t context; /* from send */ 212 1.1 rjs 213 1.1 rjs /* ECN Nonce: Nonce Value for this chunk */ 214 1.1 rjs u_int8_t ect_nonce; 215 1.1 rjs 216 1.1 rjs /* part of the Highest sacked algorithm to be able to 217 1.1 rjs * stroke counts on ones that are FR'd. 218 1.1 rjs */ 219 1.1 rjs u_int32_t fast_retran_tsn; /* sending_seq at the time of FR */ 220 1.1 rjs struct timeval timetodrop; /* time we drop it from queue */ 221 1.1 rjs u_int8_t doing_fast_retransmit; 222 1.1 rjs u_int8_t rcv_flags; /* flags pulled from data chunk on inbound 223 1.1 rjs * for outbound holds sending flags. 224 1.1 rjs */ 225 1.1 rjs u_int8_t state_flags; 226 1.1 rjs }; 227 1.1 rjs 228 1.1 rjs TAILQ_HEAD(sctpchunk_listhead, sctp_tmit_chunk); 229 1.1 rjs 230 1.1 rjs #define CHUNK_FLAGS_FRAGMENT_OK 0x0001 231 1.1 rjs 232 1.1 rjs struct sctp_tmit_chunk { 233 1.1 rjs union { 234 1.1 rjs struct sctp_data_chunkrec data; 235 1.1 rjs int chunk_id; 236 1.1 rjs } rec; 237 1.1 rjs int32_t sent; /* the send status */ 238 1.1 rjs int32_t snd_count; /* number of times I sent */ 239 1.1 rjs u_int32_t flags; /* flags, such as FRAGMENT_OK */ 240 1.1 rjs u_int32_t send_size; 241 1.1 rjs u_int32_t book_size; 242 1.1 rjs u_int32_t mbcnt; 243 1.1 rjs struct sctp_association *asoc; /* bp to asoc this belongs to */ 244 1.1 rjs struct timeval sent_rcv_time; /* filled in if RTT being calculated */ 245 1.1 rjs struct mbuf *data; /* pointer to mbuf chain of data */ 246 1.1 rjs struct sctp_nets *whoTo; 247 1.1 rjs TAILQ_ENTRY(sctp_tmit_chunk) sctp_next; /* next link */ 248 1.1 rjs uint8_t do_rtt; 249 1.1 rjs }; 250 1.1 rjs 251 1.1 rjs 252 1.1 rjs /* 253 1.1 rjs * this struct contains info that is used to track inbound stream data 254 1.1 rjs * and help with ordering. 255 1.1 rjs */ 256 1.1 rjs TAILQ_HEAD(sctpwheelunrel_listhead, sctp_stream_in); 257 1.1 rjs struct sctp_stream_in { 258 1.1 rjs struct sctpchunk_listhead inqueue; 259 1.1 rjs TAILQ_ENTRY(sctp_stream_in) next_spoke; 260 1.1 rjs uint16_t stream_no; 261 1.1 rjs uint16_t last_sequence_delivered; /* used for re-order */ 262 1.1 rjs }; 263 1.1 rjs 264 1.1 rjs /* This struct is used to track the traffic on outbound streams */ 265 1.1 rjs TAILQ_HEAD(sctpwheel_listhead, sctp_stream_out); 266 1.1 rjs struct sctp_stream_out { 267 1.1 rjs struct sctpchunk_listhead outqueue; 268 1.1 rjs TAILQ_ENTRY(sctp_stream_out) next_spoke; /* next link in wheel */ 269 1.1 rjs uint16_t stream_no; 270 1.1 rjs uint16_t next_sequence_sent; /* next one I expect to send out */ 271 1.1 rjs }; 272 1.1 rjs 273 1.1 rjs /* used to keep track of the addresses yet to try to add/delete */ 274 1.1 rjs TAILQ_HEAD(sctp_asconf_addrhead, sctp_asconf_addr); 275 1.1 rjs struct sctp_asconf_addr { 276 1.1 rjs TAILQ_ENTRY(sctp_asconf_addr) next; 277 1.1 rjs struct sctp_asconf_addr_param ap; 278 1.1 rjs struct ifaddr *ifa; /* save the ifa for add/del ip */ 279 1.1 rjs uint8_t sent; /* has this been sent yet? */ 280 1.1 rjs }; 281 1.1 rjs 282 1.1 rjs 283 1.1 rjs /* 284 1.1 rjs * Here we have information about each individual association that we 285 1.1 rjs * track. We probably in production would be more dynamic. But for ease 286 1.1 rjs * of implementation we will have a fixed array that we hunt for in a 287 1.1 rjs * linear fashion. 288 1.1 rjs */ 289 1.1 rjs struct sctp_association { 290 1.1 rjs /* association state */ 291 1.1 rjs int state; 292 1.1 rjs /* queue of pending addrs to add/delete */ 293 1.1 rjs struct sctp_asconf_addrhead asconf_queue; 294 1.1 rjs struct timeval time_entered; /* time we entered state */ 295 1.1 rjs struct timeval time_last_rcvd; 296 1.1 rjs struct timeval time_last_sent; 297 1.1 rjs struct timeval time_last_sat_advance; 298 1.1 rjs struct sctp_sndrcvinfo def_send; /* default send parameters */ 299 1.1 rjs 300 1.1 rjs /* timers and such */ 301 1.1 rjs struct sctp_timer hb_timer; /* hb timer */ 302 1.1 rjs struct sctp_timer dack_timer; /* Delayed ack timer */ 303 1.1 rjs struct sctp_timer asconf_timer; /* Asconf */ 304 1.1 rjs struct sctp_timer strreset_timer; /* stream reset */ 305 1.1 rjs struct sctp_timer shut_guard_timer; /* guard */ 306 1.1 rjs struct sctp_timer autoclose_timer; /* automatic close timer */ 307 1.1 rjs struct sctp_timer delayed_event_timer; /* timer for delayed events */ 308 1.1 rjs 309 1.1 rjs /* list of local addresses when add/del in progress */ 310 1.1 rjs struct sctpladdr sctp_local_addr_list; 311 1.1 rjs struct sctpnetlisthead nets; 312 1.1 rjs 313 1.1 rjs /* Control chunk queue */ 314 1.1 rjs struct sctpchunk_listhead control_send_queue; 315 1.1 rjs 316 1.1 rjs /* Once a TSN hits the wire it is moved to the sent_queue. We 317 1.1 rjs * maintain two counts here (don't know if any but retran_cnt 318 1.1 rjs * is needed). The idea is that the sent_queue_retran_cnt 319 1.1 rjs * reflects how many chunks have been marked for retranmission 320 1.1 rjs * by either T3-rxt or FR. 321 1.1 rjs */ 322 1.1 rjs struct sctpchunk_listhead sent_queue; 323 1.1 rjs struct sctpchunk_listhead send_queue; 324 1.1 rjs 325 1.1 rjs 326 1.1 rjs /* re-assembly queue for fragmented chunks on the inbound path */ 327 1.1 rjs struct sctpchunk_listhead reasmqueue; 328 1.1 rjs 329 1.1 rjs /* 330 1.1 rjs * this queue is used when we reach a condition that we can NOT 331 1.1 rjs * put data into the socket buffer. We track the size of this 332 1.1 rjs * queue and set our rwnd to the space in the socket minus also 333 1.1 rjs * the size_on_delivery_queue. 334 1.1 rjs */ 335 1.1 rjs struct sctpchunk_listhead delivery_queue; 336 1.1 rjs 337 1.1 rjs struct sctpwheel_listhead out_wheel; 338 1.1 rjs 339 1.1 rjs /* If an iterator is looking at me, this is it */ 340 1.1 rjs struct sctp_iterator *stcb_starting_point_for_iterator; 341 1.1 rjs 342 1.1 rjs /* ASCONF destination address last sent to */ 343 1.1 rjs struct sctp_nets *asconf_last_sent_to; 344 1.1 rjs 345 1.1 rjs /* ASCONF save the last ASCONF-ACK so we can resend it if necessary */ 346 1.1 rjs struct mbuf *last_asconf_ack_sent; 347 1.1 rjs 348 1.1 rjs /* 349 1.1 rjs * if Source Address Selection happening, this will rotate through 350 1.1 rjs * the link list. 351 1.1 rjs */ 352 1.1 rjs struct sctp_laddr *last_used_address; 353 1.1 rjs 354 1.1 rjs /* stream arrays */ 355 1.1 rjs struct sctp_stream_in *strmin; 356 1.1 rjs struct sctp_stream_out *strmout; 357 1.1 rjs u_int8_t *mapping_array; 358 1.1 rjs /* primary destination to use */ 359 1.1 rjs struct sctp_nets *primary_destination; 360 1.1 rjs 361 1.1 rjs /* last place I got a data chunk from */ 362 1.1 rjs struct sctp_nets *last_data_chunk_from; 363 1.1 rjs /* last place I got a control from */ 364 1.1 rjs struct sctp_nets *last_control_chunk_from; 365 1.1 rjs 366 1.1 rjs /* circular looking for output selection */ 367 1.1 rjs struct sctp_stream_out *last_out_stream; 368 1.1 rjs 369 1.1 rjs /* wait to the point the cum-ack passes 370 1.1 rjs * pending_reply->sr_resp.reset_at_tsn. 371 1.1 rjs */ 372 1.1 rjs struct sctp_stream_reset_response *pending_reply; 373 1.1 rjs struct sctpchunk_listhead pending_reply_queue; 374 1.1 rjs 375 1.1 rjs u_int32_t cookie_preserve_req; 376 1.1 rjs /* ASCONF next seq I am sending out, inits at init-tsn */ 377 1.1 rjs uint32_t asconf_seq_out; 378 1.1 rjs /* ASCONF last received ASCONF from peer, starts at peer's TSN-1 */ 379 1.1 rjs uint32_t asconf_seq_in; 380 1.1 rjs 381 1.1 rjs /* next seq I am sending in str reset messages */ 382 1.1 rjs uint32_t str_reset_seq_out; 383 1.1 rjs 384 1.1 rjs /* next seq I am expecting in str reset messages */ 385 1.1 rjs uint32_t str_reset_seq_in; 386 1.1 rjs u_int32_t str_reset_sending_seq; 387 1.1 rjs 388 1.1 rjs /* various verification tag information */ 389 1.1 rjs u_int32_t my_vtag; /* 390 1.1 rjs * The tag to be used. if assoc is 391 1.1 rjs * re-initited by remote end, and 392 1.1 rjs * I have unlocked this will be 393 1.3 msaitoh * regenerated to a new random value. 394 1.1 rjs */ 395 1.1 rjs u_int32_t peer_vtag; /* The peers last tag */ 396 1.1 rjs 397 1.1 rjs u_int32_t my_vtag_nonce; 398 1.1 rjs u_int32_t peer_vtag_nonce; 399 1.1 rjs 400 1.1 rjs 401 1.1 rjs /* This is the SCTP fragmentation threshold */ 402 1.1 rjs u_int32_t smallest_mtu; 403 1.1 rjs 404 1.1 rjs /* 405 1.1 rjs * Special hook for Fast retransmit, allows us to track the highest 406 1.1 rjs * TSN that is NEW in this SACK if gap ack blocks are present. 407 1.1 rjs */ 408 1.1 rjs u_int32_t this_sack_highest_gap; 409 1.1 rjs 410 1.1 rjs /* 411 1.1 rjs * The highest consecutive TSN that has been acked by peer on my 412 1.1 rjs * sends 413 1.1 rjs */ 414 1.1 rjs u_int32_t last_acked_seq; 415 1.1 rjs 416 1.1 rjs /* The next TSN that I will use in sending. */ 417 1.1 rjs u_int32_t sending_seq; 418 1.1 rjs 419 1.1 rjs /* Original seq number I used ??questionable to keep?? */ 420 1.1 rjs u_int32_t init_seq_number; 421 1.1 rjs 422 1.1 rjs /* 423 1.1 rjs * We use this value to know if FR's are allowed, i.e. did the 424 1.1 rjs * cum-ack pass this point or equal it so FR's are now allowed. 425 1.1 rjs */ 426 1.1 rjs u_int32_t t3timeout_highest_marked; 427 1.1 rjs 428 1.1 rjs /* The Advanced Peer Ack Point, as required by the PR-SCTP */ 429 1.1 rjs /* (A1 in Section 4.2) */ 430 1.1 rjs u_int32_t advanced_peer_ack_point; 431 1.1 rjs 432 1.1 rjs /* 433 1.1 rjs * The highest consequetive TSN at the bottom of the mapping 434 1.1 rjs * array (for his sends). 435 1.1 rjs */ 436 1.1 rjs u_int32_t cumulative_tsn; 437 1.1 rjs /* 438 1.1 rjs * Used to track the mapping array and its offset bits. This 439 1.1 rjs * MAY be lower then cumulative_tsn. 440 1.1 rjs */ 441 1.1 rjs u_int32_t mapping_array_base_tsn; 442 1.1 rjs /* 443 1.1 rjs * used to track highest TSN we have received and is listed in 444 1.1 rjs * the mapping array. 445 1.1 rjs */ 446 1.1 rjs u_int32_t highest_tsn_inside_map; 447 1.1 rjs 448 1.1 rjs u_int32_t last_echo_tsn; 449 1.1 rjs u_int32_t last_cwr_tsn; 450 1.1 rjs u_int32_t fast_recovery_tsn; 451 1.1 rjs u_int32_t sat_t3_recovery_tsn; 452 1.1 rjs 453 1.1 rjs u_int32_t tsn_last_delivered; 454 1.1 rjs 455 1.1 rjs /* 456 1.1 rjs * window state information and smallest MTU that I use to bound 457 1.1 rjs * segmentation 458 1.1 rjs */ 459 1.1 rjs u_int32_t peers_rwnd; 460 1.1 rjs u_int32_t my_rwnd; 461 1.1 rjs u_int32_t my_last_reported_rwnd; 462 1.1 rjs u_int32_t my_rwnd_control_len; 463 1.1 rjs 464 1.1 rjs u_int32_t total_output_queue_size; 465 1.1 rjs u_int32_t total_output_mbuf_queue_size; 466 1.1 rjs 467 1.1 rjs /* 32 bit nonce stuff */ 468 1.1 rjs u_int32_t nonce_resync_tsn; 469 1.1 rjs u_int32_t nonce_wait_tsn; 470 1.1 rjs 471 1.1 rjs int ctrl_queue_cnt; /* could be removed REM */ 472 1.1 rjs /* 473 1.1 rjs * All outbound datagrams queue into this list from the 474 1.1 rjs * individual stream queue. Here they get assigned a TSN 475 1.1 rjs * and then await sending. The stream seq comes when it 476 1.1 rjs * is first put in the individual str queue 477 1.1 rjs */ 478 1.1 rjs unsigned int stream_queue_cnt; 479 1.1 rjs unsigned int send_queue_cnt; 480 1.1 rjs unsigned int sent_queue_cnt; 481 1.1 rjs unsigned int sent_queue_cnt_removeable; 482 1.1 rjs /* 483 1.1 rjs * Number on sent queue that are marked for retran until this 484 1.1 rjs * value is 0 we only send one packet of retran'ed data. 485 1.1 rjs */ 486 1.1 rjs unsigned int sent_queue_retran_cnt; 487 1.1 rjs 488 1.1 rjs unsigned int size_on_reasm_queue; 489 1.1 rjs unsigned int cnt_on_reasm_queue; 490 1.1 rjs /* amount of data (bytes) currently in flight (on all destinations) */ 491 1.1 rjs unsigned int total_flight; 492 1.1 rjs /* Total book size in flight */ 493 1.1 rjs unsigned int total_flight_count; /* count of chunks used with book total */ 494 1.4 andvar /* count of destination nets and list of destination nets */ 495 1.1 rjs unsigned int numnets; 496 1.1 rjs 497 1.1 rjs /* Total error count on this association */ 498 1.1 rjs unsigned int overall_error_count; 499 1.1 rjs 500 1.1 rjs unsigned int size_on_delivery_queue; 501 1.1 rjs unsigned int cnt_on_delivery_queue; 502 1.1 rjs 503 1.1 rjs unsigned int cnt_msg_on_sb; 504 1.1 rjs 505 1.1 rjs /* All stream count of chunks for delivery */ 506 1.1 rjs unsigned int size_on_all_streams; 507 1.1 rjs unsigned int cnt_on_all_streams; 508 1.1 rjs 509 1.1 rjs /* Heart Beat delay in ticks */ 510 1.1 rjs unsigned int heart_beat_delay; 511 1.1 rjs 512 1.1 rjs /* autoclose */ 513 1.1 rjs unsigned int sctp_autoclose_ticks; 514 1.1 rjs 515 1.1 rjs /* how many preopen streams we have */ 516 1.1 rjs unsigned int pre_open_streams; 517 1.1 rjs 518 1.1 rjs /* How many streams I support coming into me */ 519 1.1 rjs unsigned int max_inbound_streams; 520 1.1 rjs 521 1.1 rjs /* the cookie life I award for any cookie, in seconds */ 522 1.1 rjs unsigned int cookie_life; 523 1.1 rjs 524 1.1 rjs unsigned int numduptsns; 525 1.1 rjs int dup_tsns[SCTP_MAX_DUP_TSNS]; 526 1.1 rjs unsigned int initial_init_rto_max; /* initial RTO for INIT's */ 527 1.1 rjs unsigned int initial_rto; /* initial send RTO */ 528 1.1 rjs unsigned int minrto; /* per assoc RTO-MIN */ 529 1.1 rjs unsigned int maxrto; /* per assoc RTO-MAX */ 530 1.1 rjs /* Being that we have no bag to collect stale cookies, and 531 1.1 rjs * that we really would not want to anyway.. we will count 532 1.1 rjs * them in this counter. We of course feed them to the 533 1.1 rjs * pigeons right away (I have always thought of pigeons 534 1.1 rjs * as flying rats). 535 1.1 rjs */ 536 1.1 rjs u_int16_t stale_cookie_count; 537 1.1 rjs 538 1.1 rjs /* For the partial delivery API, if up, invoked 539 1.1 rjs * this is what last TSN I delivered 540 1.1 rjs */ 541 1.1 rjs u_int16_t str_of_pdapi; 542 1.1 rjs u_int16_t ssn_of_pdapi; 543 1.1 rjs 544 1.1 rjs 545 1.1 rjs /* counts of actual built streams. Allocation may be more however */ 546 1.1 rjs /* could re-arrange to optimize space here. */ 547 1.1 rjs u_int16_t streamincnt; 548 1.1 rjs u_int16_t streamoutcnt; 549 1.1 rjs 550 1.1 rjs /* my maximum number of retrans of INIT and SEND */ 551 1.1 rjs /* copied from SCTP but should be individually setable */ 552 1.1 rjs u_int16_t max_init_times; 553 1.1 rjs u_int16_t max_send_times; 554 1.1 rjs 555 1.1 rjs u_int16_t def_net_failure; 556 1.1 rjs 557 1.1 rjs /* 558 1.1 rjs * lock flag: 0 is ok to send, 1+ (duals as a retran count) is 559 1.1 rjs * awaiting ACK 560 1.1 rjs */ 561 1.1 rjs u_int16_t asconf_sent; /* possibly removable REM */ 562 1.1 rjs u_int16_t mapping_array_size; 563 1.1 rjs 564 1.1 rjs u_int16_t chunks_on_out_queue; /* total chunks floating around */ 565 1.1 rjs int16_t num_send_timers_up; 566 1.1 rjs /* 567 1.1 rjs * This flag indicates that we need to send the first SACK. If 568 1.1 rjs * in place it says we have NOT yet sent a SACK and need to. 569 1.1 rjs */ 570 1.1 rjs u_int8_t first_ack_sent; 571 1.1 rjs 572 1.1 rjs /* max burst after fast retransmit completes */ 573 1.1 rjs u_int8_t max_burst; 574 1.1 rjs 575 1.1 rjs u_int8_t sat_network; /* RTT is in range of sat net or greater */ 576 1.1 rjs u_int8_t sat_network_lockout;/* lockout code */ 577 1.1 rjs u_int8_t burst_limit_applied; /* Burst limit in effect at last send? */ 578 1.1 rjs /* flag goes on when we are doing a partial delivery api */ 579 1.1 rjs u_int8_t hb_random_values[4]; 580 1.1 rjs u_int8_t fragmented_delivery_inprogress; 581 1.1 rjs u_int8_t fragment_flags; 582 1.1 rjs u_int8_t hb_ect_randombit; 583 1.1 rjs u_int8_t hb_random_idx; 584 1.1 rjs 585 1.1 rjs /* ECN Nonce stuff */ 586 1.1 rjs u_int8_t receiver_nonce_sum; /* nonce I sum and put in my sack */ 587 1.1 rjs u_int8_t ecn_nonce_allowed; /* Tells us if ECN nonce is on */ 588 1.1 rjs u_int8_t nonce_sum_check; /* On off switch used during re-sync */ 589 1.1 rjs u_int8_t nonce_wait_for_ecne;/* flag when we expect a ECN */ 590 1.1 rjs u_int8_t peer_supports_ecn_nonce; 591 1.1 rjs 592 1.1 rjs /* 593 1.1 rjs * This value, plus all other ack'd but above cum-ack is added 594 1.1 rjs * together to cross check against the bit that we have yet to 595 1.1 rjs * define (probably in the SACK). 596 1.1 rjs * When the cum-ack is updated, this sum is updated as well. 597 1.1 rjs */ 598 1.1 rjs u_int8_t nonce_sum_expect_base; 599 1.1 rjs /* Flag to tell if ECN is allowed */ 600 1.1 rjs u_int8_t ecn_allowed; 601 1.1 rjs 602 1.1 rjs /* flag to indicate if peer can do asconf */ 603 1.1 rjs uint8_t peer_supports_asconf; 604 1.1 rjs uint8_t peer_supports_asconf_setprim; /* possibly removable REM */ 605 1.1 rjs /* pr-sctp support flag */ 606 1.1 rjs uint8_t peer_supports_prsctp; 607 1.1 rjs 608 1.1 rjs /* stream resets are supported by the peer */ 609 1.1 rjs uint8_t peer_supports_strreset; 610 1.1 rjs 611 1.1 rjs /* 612 1.1 rjs * packet drop's are supported by the peer, we don't really care 613 1.1 rjs * about this but we bookkeep it anyway. 614 1.1 rjs */ 615 1.1 rjs uint8_t peer_supports_pktdrop; 616 1.1 rjs 617 1.1 rjs /* Do we allow V6/V4? */ 618 1.1 rjs u_int8_t ipv4_addr_legal; 619 1.1 rjs u_int8_t ipv6_addr_legal; 620 1.1 rjs /* Address scoping flags */ 621 1.1 rjs /* scope value for IPv4 */ 622 1.1 rjs u_int8_t ipv4_local_scope; 623 1.1 rjs /* scope values for IPv6 */ 624 1.1 rjs u_int8_t local_scope; 625 1.1 rjs u_int8_t site_scope; 626 1.1 rjs /* loopback scope */ 627 1.1 rjs u_int8_t loopback_scope; 628 1.1 rjs /* flags to handle send alternate net tracking */ 629 1.1 rjs u_int8_t used_alt_onsack; 630 1.1 rjs u_int8_t used_alt_asconfack; 631 1.1 rjs u_int8_t fast_retran_loss_recovery; 632 1.1 rjs u_int8_t sat_t3_loss_recovery; 633 1.1 rjs u_int8_t dropped_special_cnt; 634 1.1 rjs u_int8_t seen_a_sack_this_pkt; 635 1.1 rjs u_int8_t stream_reset_outstanding; 636 1.1 rjs u_int8_t delayed_connection; 637 1.1 rjs u_int8_t ifp_had_enobuf; 638 1.1 rjs u_int8_t saw_sack_with_frags; 639 1.1 rjs /* 640 1.1 rjs * The mapping array is used to track out of order sequences above 641 1.1 rjs * last_acked_seq. 0 indicates packet missing 1 indicates packet 642 1.1 rjs * rec'd. We slide it up every time we raise last_acked_seq and 0 643 1.1 rjs * trailing locactions out. If I get a TSN above the array 644 1.1 rjs * mappingArraySz, I discard the datagram and let retransmit happen. 645 1.1 rjs */ 646 1.1 rjs }; 647 1.1 rjs 648 1.1 rjs #endif 649