Home | History | Annotate | Line # | Download | only in netinet
sctp_structs.h revision 1.3
      1  1.1      rjs /*	$KAME: sctp_structs.h,v 1.13 2005/03/06 16:04:18 itojun Exp $	*/
      2  1.3  msaitoh /*	$NetBSD: sctp_structs.h,v 1.3 2023/06/24 05:35:00 msaitoh Exp $ */
      3  1.1      rjs 
      4  1.1      rjs #ifndef __SCTP_STRUCTS_H__
      5  1.1      rjs #define __SCTP_STRUCTS_H__
      6  1.1      rjs 
      7  1.1      rjs /*
      8  1.1      rjs  * Copyright (c) 2001, 2002, 2003, 2004 Cisco Systems, Inc.
      9  1.1      rjs  * All rights reserved.
     10  1.1      rjs  *
     11  1.1      rjs  * Redistribution and use in source and binary forms, with or without
     12  1.1      rjs  * modification, are permitted provided that the following conditions
     13  1.1      rjs  * are met:
     14  1.1      rjs  * 1. Redistributions of source code must retain the above copyright
     15  1.1      rjs  *    notice, this list of conditions and the following disclaimer.
     16  1.1      rjs  * 2. Redistributions in binary form must reproduce the above copyright
     17  1.1      rjs  *    notice, this list of conditions and the following disclaimer in the
     18  1.1      rjs  *    documentation and/or other materials provided with the distribution.
     19  1.1      rjs  * 3. All advertising materials mentioning features or use of this software
     20  1.1      rjs  *    must display the following acknowledgement:
     21  1.1      rjs  *      This product includes software developed by Cisco Systems, Inc.
     22  1.1      rjs  * 4. Neither the name of the project nor the names of its contributors
     23  1.1      rjs  *    may be used to endorse or promote products derived from this software
     24  1.1      rjs  *    without specific prior written permission.
     25  1.1      rjs  *
     26  1.1      rjs  * THIS SOFTWARE IS PROVIDED BY CISCO SYSTEMS AND CONTRIBUTORS ``AS IS'' AND
     27  1.1      rjs  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     28  1.1      rjs  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     29  1.1      rjs  * ARE DISCLAIMED.  IN NO EVENT SHALL CISCO SYSTEMS OR CONTRIBUTORS BE LIABLE
     30  1.1      rjs  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     31  1.1      rjs  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     32  1.1      rjs  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     33  1.1      rjs  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     34  1.1      rjs  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     35  1.1      rjs  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     36  1.1      rjs  * SUCH DAMAGE.
     37  1.1      rjs  */
     38  1.1      rjs #include <sys/queue.h>
     39  1.1      rjs 
     40  1.1      rjs #include <sys/callout.h>
     41  1.1      rjs 
     42  1.1      rjs #ifdef IPSEC
     43  1.2      rjs #include <netipsec/ipsec.h>
     44  1.2      rjs #include <netipsec/key.h>
     45  1.1      rjs #endif
     46  1.1      rjs 
     47  1.1      rjs #include <netinet/sctp_header.h>
     48  1.1      rjs #include <netinet/sctp_uio.h>
     49  1.1      rjs 
     50  1.1      rjs struct sctp_timer {
     51  1.1      rjs 	struct callout timer;
     52  1.1      rjs 	int type;
     53  1.1      rjs 	/*
     54  1.1      rjs 	 * Depending on the timer type these will be setup and cast with
     55  1.1      rjs 	 * the appropriate entity.
     56  1.1      rjs 	 */
     57  1.1      rjs 	void *ep;
     58  1.1      rjs 	void *tcb;
     59  1.1      rjs 	void *net;
     60  1.1      rjs };
     61  1.1      rjs 
     62  1.1      rjs /*
     63  1.1      rjs  * This is the information we track on each interface that we know about	* from the distant end.
     64  1.1      rjs  */
     65  1.1      rjs TAILQ_HEAD(sctpnetlisthead, sctp_nets);
     66  1.1      rjs 
     67  1.1      rjs /*
     68  1.1      rjs  * Users of the iterator need to malloc a iterator with a call to
     69  1.1      rjs  * sctp_initiate_iterator(func, pcb_flags, asoc_state, void-ptr-arg, u_int32_t,
     70  1.1      rjs  *                        u_int32-arg, end_func, inp);
     71  1.1      rjs  *
     72  1.1      rjs  * Use the following two defines if you don't care what pcb flags are on the
     73  1.1      rjs  * EP and/or you don't care what state the association is in.
     74  1.1      rjs  *
     75  1.1      rjs  * Note that if you specify an INP as the last argument then ONLY each
     76  1.1      rjs  * association of that single INP will be executed upon. Note that the
     77  1.1      rjs  * pcb flags STILL apply so if the inp you specify has different pcb_flags
     78  1.1      rjs  * then what you put in pcb_flags nothing will happen. use SCTP_PCB_ANY_FLAGS
     79  1.1      rjs  * to assure the inp you specify gets treated.
     80  1.1      rjs  */
     81  1.1      rjs #define SCTP_PCB_ANY_FLAGS  0x00000000
     82  1.1      rjs #define SCTP_ASOC_ANY_STATE 0x00000000
     83  1.1      rjs 
     84  1.1      rjs typedef void (*asoc_func)(struct sctp_inpcb *, struct sctp_tcb *, void *ptr,
     85  1.1      rjs 			  u_int32_t val);
     86  1.1      rjs typedef void (*end_func)(void *ptr, u_int32_t val);
     87  1.1      rjs 
     88  1.1      rjs #define SCTP_ITERATOR_DO_ALL_INP	0x00000001
     89  1.1      rjs #define SCTP_ITERATOR_DO_SINGLE_INP	0x00000002
     90  1.1      rjs 
     91  1.1      rjs struct sctp_iterator {
     92  1.1      rjs         LIST_ENTRY(sctp_iterator) sctp_nxt_itr;
     93  1.1      rjs 	struct sctp_timer tmr;
     94  1.1      rjs 	struct sctp_inpcb *inp;	/* ep */
     95  1.1      rjs 	struct sctp_tcb *stcb;	/* assoc */
     96  1.1      rjs 	asoc_func function_toapply;
     97  1.1      rjs 	end_func function_atend;
     98  1.1      rjs 	void *pointer;		/* pointer for apply func to use */
     99  1.1      rjs 	u_int32_t val;		/* value for apply func to use */
    100  1.1      rjs 	u_int32_t pcb_flags;
    101  1.1      rjs 	u_int32_t asoc_state;
    102  1.1      rjs 	u_int32_t iterator_flags;
    103  1.1      rjs };
    104  1.1      rjs 
    105  1.1      rjs LIST_HEAD(sctpiterators, sctp_iterator);
    106  1.1      rjs 
    107  1.1      rjs struct sctp_copy_all {
    108  1.1      rjs 	struct sctp_inpcb *inp;	/* ep */
    109  1.1      rjs 	struct mbuf *m;
    110  1.1      rjs 	struct sctp_sndrcvinfo sndrcv;
    111  1.1      rjs 	int sndlen;
    112  1.1      rjs 	int cnt_sent;
    113  1.1      rjs 	int cnt_failed;
    114  1.1      rjs };
    115  1.1      rjs 
    116  1.1      rjs union sctp_sockstore {
    117  1.1      rjs #ifdef AF_INET
    118  1.1      rjs 	struct sockaddr_in  sin;
    119  1.1      rjs #endif
    120  1.1      rjs #ifdef AF_INET6
    121  1.1      rjs 	struct sockaddr_in6 sin6;
    122  1.1      rjs #endif
    123  1.1      rjs 	struct sockaddr     sa;
    124  1.1      rjs };
    125  1.1      rjs 
    126  1.1      rjs struct sctp_nets {
    127  1.1      rjs 	TAILQ_ENTRY(sctp_nets) sctp_next;	/* next link */
    128  1.1      rjs 
    129  1.1      rjs         /* Things on the top half may be able to be split
    130  1.1      rjs 	 * into a common structure shared by all.
    131  1.1      rjs 	 */
    132  1.1      rjs 	struct sctp_timer pmtu_timer;
    133  1.1      rjs 
    134  1.1      rjs 	/*
    135  1.1      rjs 	 * The following two in combination equate to a route entry for
    136  1.1      rjs 	 * v6 or v4.
    137  1.1      rjs 	 */
    138  1.1      rjs #if 0
    139  1.1      rjs 	struct sctp_route {
    140  1.1      rjs 		struct rtentry *ro_rt;
    141  1.1      rjs 		union sctp_sockstore _l_addr;	/* remote peer addr */
    142  1.1      rjs 		union sctp_sockstore _s_addr;	/* our selected src addr */
    143  1.1      rjs 	} ro;
    144  1.1      rjs #endif
    145  1.1      rjs 	struct route ro;
    146  1.1      rjs 	/* union sctp_sockstore _l_addr; */
    147  1.1      rjs 	union sctp_sockstore _s_addr;
    148  1.1      rjs 	/* mtu discovered so far */
    149  1.1      rjs 	u_int32_t mtu;
    150  1.1      rjs         u_int32_t ssthresh;		/* not sure about this one for split */
    151  1.1      rjs 
    152  1.1      rjs 	/* smoothed average things for RTT and RTO itself */
    153  1.1      rjs 	int lastsa;
    154  1.1      rjs 	int lastsv;
    155  1.1      rjs 	unsigned int RTO;
    156  1.1      rjs 
    157  1.1      rjs 	/* This is used for SHUTDOWN/SHUTDOWN-ACK/SEND or INIT timers */
    158  1.1      rjs 	struct sctp_timer rxt_timer;
    159  1.1      rjs 
    160  1.1      rjs 	/* last time in seconds I sent to it */
    161  1.1      rjs 	struct timeval last_sent_time;
    162  1.1      rjs 	int ref_count;
    163  1.1      rjs 
    164  1.1      rjs 	/* Congestion stats per destination */
    165  1.1      rjs 	/*
    166  1.1      rjs 	 * flight size variables and such, sorry Vern, I could not avoid
    167  1.1      rjs 	 * this if I wanted performance :>
    168  1.1      rjs 	 */
    169  1.1      rjs 	u_int32_t flight_size;
    170  1.1      rjs 	u_int32_t cwnd; /* actual cwnd */
    171  1.1      rjs 	u_int32_t prev_cwnd; /* cwnd before any processing */
    172  1.1      rjs 	u_int32_t partial_bytes_acked; /* in CA tracks when to incr a MTU */
    173  1.1      rjs 
    174  1.1      rjs 	/* tracking variables to avoid the aloc/free in sack processing */
    175  1.1      rjs 	unsigned int net_ack;
    176  1.1      rjs 	unsigned int net_ack2;
    177  1.1      rjs 	/*
    178  1.1      rjs 	 * These only are valid if the primary dest_sstate holds the
    179  1.1      rjs 	 * SCTP_ADDR_SWITCH_PRIMARY flag
    180  1.1      rjs 	 */
    181  1.1      rjs 	u_int32_t next_tsn_at_change;
    182  1.1      rjs 	u_int32_t heartbeat_random1;
    183  1.1      rjs 	u_int32_t heartbeat_random2;
    184  1.1      rjs 
    185  1.1      rjs 	/* if this guy is ok or not ... status */
    186  1.1      rjs 	u_int16_t dest_state;
    187  1.1      rjs 	/* number of transmit failures to down this guy */
    188  1.1      rjs 	u_int16_t failure_threshold;
    189  1.1      rjs 	/* error stats on destination */
    190  1.1      rjs 	u_int16_t error_count;
    191  1.1      rjs 
    192  1.1      rjs 	/* Flags that probably can be combined into dest_state */
    193  1.1      rjs 	u_int8_t rto_pending;		/* is segment marked for RTO update  ** if we split?*/
    194  1.1      rjs 	u_int8_t fast_retran_ip;	/* fast retransmit in progress */
    195  1.1      rjs 	u_int8_t hb_responded;
    196  1.1      rjs 	u_int8_t cacc_saw_newack;	/* CACC algorithm flag */
    197  1.1      rjs         u_int8_t src_addr_selected;	/* if we split we move */
    198  1.1      rjs 	u_int8_t indx_of_eligible_next_to_use;
    199  1.1      rjs 	u_int8_t addr_is_local;		/* its a local address (if known) could move in split */
    200  1.1      rjs #ifdef SCTP_HIGH_SPEED
    201  1.1      rjs 	u_int8_t last_hs_used;		/* index into the last HS table entry we used */
    202  1.1      rjs #endif
    203  1.1      rjs };
    204  1.1      rjs 
    205  1.1      rjs 
    206  1.1      rjs struct sctp_data_chunkrec {
    207  1.1      rjs 	u_int32_t TSN_seq;  /* the TSN of this transmit */
    208  1.1      rjs 	u_int16_t stream_seq; /* the stream sequence number of this transmit */
    209  1.1      rjs 	u_int16_t stream_number; /* the stream number of this guy */
    210  1.1      rjs 	u_int32_t payloadtype;
    211  1.1      rjs 	u_int32_t context;	/* from send */
    212  1.1      rjs 
    213  1.1      rjs        /* ECN Nonce: Nonce Value for this chunk */
    214  1.1      rjs         u_int8_t ect_nonce;
    215  1.1      rjs 
    216  1.1      rjs 	/* part of the Highest sacked algorithm to be able to
    217  1.1      rjs 	 * stroke counts on ones that are FR'd.
    218  1.1      rjs 	 */
    219  1.1      rjs 	u_int32_t fast_retran_tsn;	/* sending_seq at the time of FR */
    220  1.1      rjs 	struct timeval timetodrop;	/* time we drop it from queue */
    221  1.1      rjs 	u_int8_t doing_fast_retransmit;
    222  1.1      rjs 	u_int8_t rcv_flags; /* flags pulled from data chunk on inbound
    223  1.1      rjs 			   * for outbound holds sending flags.
    224  1.1      rjs 			   */
    225  1.1      rjs 	u_int8_t state_flags;
    226  1.1      rjs };
    227  1.1      rjs 
    228  1.1      rjs TAILQ_HEAD(sctpchunk_listhead, sctp_tmit_chunk);
    229  1.1      rjs 
    230  1.1      rjs #define CHUNK_FLAGS_FRAGMENT_OK	0x0001
    231  1.1      rjs 
    232  1.1      rjs struct sctp_tmit_chunk {
    233  1.1      rjs 	union {
    234  1.1      rjs 		struct sctp_data_chunkrec data;
    235  1.1      rjs 		int chunk_id;
    236  1.1      rjs 	} rec;
    237  1.1      rjs 	int32_t   sent;		/* the send status */
    238  1.1      rjs 	int32_t   snd_count;			/* number of times I sent */
    239  1.1      rjs 	u_int32_t flags;		/* flags, such as FRAGMENT_OK */
    240  1.1      rjs 	u_int32_t   send_size;
    241  1.1      rjs 	u_int32_t   book_size;
    242  1.1      rjs 	u_int32_t   mbcnt;
    243  1.1      rjs 	struct sctp_association *asoc;	/* bp to asoc this belongs to */
    244  1.1      rjs 	struct timeval sent_rcv_time;	/* filled in if RTT being calculated */
    245  1.1      rjs 	struct mbuf *data;		/* pointer to mbuf chain of data */
    246  1.1      rjs 	struct sctp_nets *whoTo;
    247  1.1      rjs 	TAILQ_ENTRY(sctp_tmit_chunk) sctp_next;	/* next link */
    248  1.1      rjs 	uint8_t do_rtt;
    249  1.1      rjs };
    250  1.1      rjs 
    251  1.1      rjs 
    252  1.1      rjs /*
    253  1.1      rjs  * this struct contains info that is used to track inbound stream data
    254  1.1      rjs  * and help with ordering.
    255  1.1      rjs  */
    256  1.1      rjs TAILQ_HEAD(sctpwheelunrel_listhead, sctp_stream_in);
    257  1.1      rjs struct sctp_stream_in {
    258  1.1      rjs 	struct sctpchunk_listhead inqueue;
    259  1.1      rjs 	TAILQ_ENTRY(sctp_stream_in) next_spoke;
    260  1.1      rjs 	uint16_t stream_no;
    261  1.1      rjs 	uint16_t last_sequence_delivered;	/* used for re-order */
    262  1.1      rjs };
    263  1.1      rjs 
    264  1.1      rjs /* This struct is used to track the traffic on outbound streams */
    265  1.1      rjs TAILQ_HEAD(sctpwheel_listhead, sctp_stream_out);
    266  1.1      rjs struct sctp_stream_out {
    267  1.1      rjs 	struct sctpchunk_listhead outqueue;
    268  1.1      rjs 	TAILQ_ENTRY(sctp_stream_out) next_spoke; /* next link in wheel */
    269  1.1      rjs 	uint16_t stream_no;
    270  1.1      rjs 	uint16_t next_sequence_sent; /* next one I expect to send out */
    271  1.1      rjs };
    272  1.1      rjs 
    273  1.1      rjs /* used to keep track of the addresses yet to try to add/delete */
    274  1.1      rjs TAILQ_HEAD(sctp_asconf_addrhead, sctp_asconf_addr);
    275  1.1      rjs struct sctp_asconf_addr {
    276  1.1      rjs 	TAILQ_ENTRY(sctp_asconf_addr) next;
    277  1.1      rjs 	struct sctp_asconf_addr_param ap;
    278  1.1      rjs 	struct ifaddr *ifa;	/* save the ifa for add/del ip */
    279  1.1      rjs 	uint8_t	sent;		/* has this been sent yet? */
    280  1.1      rjs };
    281  1.1      rjs 
    282  1.1      rjs 
    283  1.1      rjs /*
    284  1.1      rjs  * Here we have information about each individual association that we
    285  1.1      rjs  * track. We probably in production would be more dynamic. But for ease
    286  1.1      rjs  * of implementation we will have a fixed array that we hunt for in a
    287  1.1      rjs  * linear fashion.
    288  1.1      rjs  */
    289  1.1      rjs struct sctp_association {
    290  1.1      rjs 	/* association state */
    291  1.1      rjs 	int state;
    292  1.1      rjs 	/* queue of pending addrs to add/delete */
    293  1.1      rjs 	struct sctp_asconf_addrhead asconf_queue;
    294  1.1      rjs 	struct timeval time_entered;		/* time we entered state */
    295  1.1      rjs 	struct timeval time_last_rcvd;
    296  1.1      rjs 	struct timeval time_last_sent;
    297  1.1      rjs 	struct timeval time_last_sat_advance;
    298  1.1      rjs 	struct sctp_sndrcvinfo def_send;	/* default send parameters */
    299  1.1      rjs 
    300  1.1      rjs 	/* timers and such */
    301  1.1      rjs 	struct sctp_timer hb_timer;		/* hb timer */
    302  1.1      rjs 	struct sctp_timer dack_timer;		/* Delayed ack timer */
    303  1.1      rjs 	struct sctp_timer asconf_timer;		/* Asconf */
    304  1.1      rjs 	struct sctp_timer strreset_timer;	/* stream reset */
    305  1.1      rjs 	struct sctp_timer shut_guard_timer;	/* guard */
    306  1.1      rjs 	struct sctp_timer autoclose_timer;	/* automatic close timer */
    307  1.1      rjs 	struct sctp_timer delayed_event_timer;	/* timer for delayed events */
    308  1.1      rjs 
    309  1.1      rjs 	/* list of local addresses when add/del in progress */
    310  1.1      rjs 	struct sctpladdr sctp_local_addr_list;
    311  1.1      rjs 	struct sctpnetlisthead nets;
    312  1.1      rjs 
    313  1.1      rjs 	/* Control chunk queue */
    314  1.1      rjs 	struct sctpchunk_listhead control_send_queue;
    315  1.1      rjs 
    316  1.1      rjs 	/* Once a TSN hits the wire it is moved to the sent_queue. We
    317  1.1      rjs 	 * maintain two counts here (don't know if any but retran_cnt
    318  1.1      rjs 	 * is needed). The idea is that the sent_queue_retran_cnt
    319  1.1      rjs 	 * reflects how many chunks have been marked for retranmission
    320  1.1      rjs 	 * by either T3-rxt or FR.
    321  1.1      rjs 	 */
    322  1.1      rjs 	struct sctpchunk_listhead sent_queue;
    323  1.1      rjs 	struct sctpchunk_listhead send_queue;
    324  1.1      rjs 
    325  1.1      rjs 
    326  1.1      rjs 	/* re-assembly queue for fragmented chunks on the inbound path */
    327  1.1      rjs 	struct sctpchunk_listhead reasmqueue;
    328  1.1      rjs 
    329  1.1      rjs 	/*
    330  1.1      rjs 	 * this queue is used when we reach a condition that we can NOT
    331  1.1      rjs 	 * put data into the socket buffer. We track the size of this
    332  1.1      rjs 	 * queue and set our rwnd to the space in the socket minus also
    333  1.1      rjs 	 * the size_on_delivery_queue.
    334  1.1      rjs 	 */
    335  1.1      rjs 	struct sctpchunk_listhead delivery_queue;
    336  1.1      rjs 
    337  1.1      rjs 	struct sctpwheel_listhead out_wheel;
    338  1.1      rjs 
    339  1.1      rjs 	/* If an iterator is looking at me, this is it */
    340  1.1      rjs 	struct sctp_iterator *stcb_starting_point_for_iterator;
    341  1.1      rjs 
    342  1.1      rjs 	/* ASCONF destination address last sent to */
    343  1.1      rjs 	struct sctp_nets *asconf_last_sent_to;
    344  1.1      rjs 
    345  1.1      rjs 	/* ASCONF save the last ASCONF-ACK so we can resend it if necessary */
    346  1.1      rjs 	struct mbuf *last_asconf_ack_sent;
    347  1.1      rjs 
    348  1.1      rjs 	/*
    349  1.1      rjs 	 * if Source Address Selection happening, this will rotate through
    350  1.1      rjs 	 * the link list.
    351  1.1      rjs 	 */
    352  1.1      rjs 	struct sctp_laddr *last_used_address;
    353  1.1      rjs 
    354  1.1      rjs 	/* stream arrays */
    355  1.1      rjs         struct sctp_stream_in  *strmin;
    356  1.1      rjs 	struct sctp_stream_out *strmout;
    357  1.1      rjs 	u_int8_t *mapping_array;
    358  1.1      rjs 	/* primary destination to use */
    359  1.1      rjs 	struct sctp_nets *primary_destination;
    360  1.1      rjs 
    361  1.1      rjs 	/* last place I got a data chunk from */
    362  1.1      rjs 	struct sctp_nets *last_data_chunk_from;
    363  1.1      rjs 	/* last place I got a control from */
    364  1.1      rjs 	struct sctp_nets *last_control_chunk_from;
    365  1.1      rjs 
    366  1.1      rjs 	/* circular looking for output selection */
    367  1.1      rjs 	struct sctp_stream_out *last_out_stream;
    368  1.1      rjs 
    369  1.1      rjs 	/* wait to the point the cum-ack passes
    370  1.1      rjs 	 * pending_reply->sr_resp.reset_at_tsn.
    371  1.1      rjs 	 */
    372  1.1      rjs 	struct sctp_stream_reset_response *pending_reply;
    373  1.1      rjs 	struct sctpchunk_listhead pending_reply_queue;
    374  1.1      rjs 
    375  1.1      rjs 	u_int32_t cookie_preserve_req;
    376  1.1      rjs 	/* ASCONF next seq I am sending out, inits at init-tsn */
    377  1.1      rjs 	uint32_t asconf_seq_out;
    378  1.1      rjs 	/* ASCONF last received ASCONF from peer, starts at peer's TSN-1 */
    379  1.1      rjs 	uint32_t asconf_seq_in;
    380  1.1      rjs 
    381  1.1      rjs 	/* next seq I am sending in str reset messages */
    382  1.1      rjs 	uint32_t str_reset_seq_out;
    383  1.1      rjs 
    384  1.1      rjs 	/* next seq I am expecting in str reset messages */
    385  1.1      rjs 	uint32_t str_reset_seq_in;
    386  1.1      rjs 	u_int32_t str_reset_sending_seq;
    387  1.1      rjs 
    388  1.1      rjs 	/* various verification tag information */
    389  1.1      rjs 	u_int32_t my_vtag;	/*
    390  1.1      rjs 				 * The tag to be used. if assoc is
    391  1.1      rjs 				 * re-initited by remote end, and
    392  1.1      rjs 				 * I have unlocked this will be
    393  1.3  msaitoh 				 * regenerated to a new random value.
    394  1.1      rjs 				 */
    395  1.1      rjs 	u_int32_t peer_vtag;	/* The peers last tag */
    396  1.1      rjs 
    397  1.1      rjs 	u_int32_t my_vtag_nonce;
    398  1.1      rjs 	u_int32_t peer_vtag_nonce;
    399  1.1      rjs 
    400  1.1      rjs 
    401  1.1      rjs 	/* This is the SCTP fragmentation threshold */
    402  1.1      rjs 	u_int32_t smallest_mtu;
    403  1.1      rjs 
    404  1.1      rjs 	/*
    405  1.1      rjs 	 * Special hook for Fast retransmit, allows us to track the highest
    406  1.1      rjs 	 * TSN that is NEW in this SACK if gap ack blocks are present.
    407  1.1      rjs 	 */
    408  1.1      rjs 	u_int32_t this_sack_highest_gap;
    409  1.1      rjs 
    410  1.1      rjs 	/*
    411  1.1      rjs 	 * The highest consecutive TSN that has been acked by peer on my
    412  1.1      rjs 	 * sends
    413  1.1      rjs 	 */
    414  1.1      rjs 	u_int32_t last_acked_seq;
    415  1.1      rjs 
    416  1.1      rjs 	/* The next TSN that I will use in sending. */
    417  1.1      rjs 	u_int32_t sending_seq;
    418  1.1      rjs 
    419  1.1      rjs 	/* Original seq number I used ??questionable to keep?? */
    420  1.1      rjs 	u_int32_t init_seq_number;
    421  1.1      rjs 
    422  1.1      rjs 	/*
    423  1.1      rjs 	 * We use this value to know if FR's are allowed, i.e. did the
    424  1.1      rjs 	 * cum-ack pass this point or equal it so FR's are now allowed.
    425  1.1      rjs 	 */
    426  1.1      rjs 	u_int32_t t3timeout_highest_marked;
    427  1.1      rjs 
    428  1.1      rjs 	/* The Advanced Peer Ack Point, as required by the PR-SCTP */
    429  1.1      rjs 	/* (A1 in Section 4.2) */
    430  1.1      rjs 	u_int32_t advanced_peer_ack_point;
    431  1.1      rjs 
    432  1.1      rjs 	/*
    433  1.1      rjs 	 * The highest consequetive TSN at the bottom of the mapping
    434  1.1      rjs 	 * array (for his sends).
    435  1.1      rjs 	 */
    436  1.1      rjs 	u_int32_t cumulative_tsn;
    437  1.1      rjs 	/*
    438  1.1      rjs 	 * Used to track the mapping array and its offset bits. This
    439  1.1      rjs 	 * MAY be lower then cumulative_tsn.
    440  1.1      rjs 	 */
    441  1.1      rjs 	u_int32_t mapping_array_base_tsn;
    442  1.1      rjs 	/*
    443  1.1      rjs 	 * used to track highest TSN we have received and is listed in
    444  1.1      rjs 	 * the mapping array.
    445  1.1      rjs 	 */
    446  1.1      rjs 	u_int32_t highest_tsn_inside_map;
    447  1.1      rjs 
    448  1.1      rjs 	u_int32_t last_echo_tsn;
    449  1.1      rjs 	u_int32_t last_cwr_tsn;
    450  1.1      rjs 	u_int32_t fast_recovery_tsn;
    451  1.1      rjs 	u_int32_t sat_t3_recovery_tsn;
    452  1.1      rjs 
    453  1.1      rjs 	u_int32_t tsn_last_delivered;
    454  1.1      rjs 
    455  1.1      rjs 	/*
    456  1.1      rjs 	 * window state information and smallest MTU that I use to bound
    457  1.1      rjs 	 * segmentation
    458  1.1      rjs 	 */
    459  1.1      rjs 	u_int32_t peers_rwnd;
    460  1.1      rjs 	u_int32_t my_rwnd;
    461  1.1      rjs 	u_int32_t my_last_reported_rwnd;
    462  1.1      rjs 	u_int32_t my_rwnd_control_len;
    463  1.1      rjs 
    464  1.1      rjs 	u_int32_t total_output_queue_size;
    465  1.1      rjs 	u_int32_t total_output_mbuf_queue_size;
    466  1.1      rjs 
    467  1.1      rjs 	/* 32 bit nonce stuff */
    468  1.1      rjs 	u_int32_t nonce_resync_tsn;
    469  1.1      rjs 	u_int32_t nonce_wait_tsn;
    470  1.1      rjs 
    471  1.1      rjs 	int ctrl_queue_cnt; /* could be removed  REM */
    472  1.1      rjs 	/*
    473  1.1      rjs 	 * All outbound datagrams queue into this list from the
    474  1.1      rjs 	 * individual stream queue. Here they get assigned a TSN
    475  1.1      rjs 	 * and then await sending. The stream seq comes when it
    476  1.1      rjs 	 * is first put in the individual str queue
    477  1.1      rjs 	 */
    478  1.1      rjs 	unsigned int stream_queue_cnt;
    479  1.1      rjs 	unsigned int send_queue_cnt;
    480  1.1      rjs 	unsigned int sent_queue_cnt;
    481  1.1      rjs 	unsigned int sent_queue_cnt_removeable;
    482  1.1      rjs 	/*
    483  1.1      rjs 	 * Number on sent queue that are marked for retran until this
    484  1.1      rjs 	 * value is 0 we only send one packet of retran'ed data.
    485  1.1      rjs 	 */
    486  1.1      rjs 	unsigned int sent_queue_retran_cnt;
    487  1.1      rjs 
    488  1.1      rjs 	unsigned int size_on_reasm_queue;
    489  1.1      rjs 	unsigned int cnt_on_reasm_queue;
    490  1.1      rjs 	/* amount of data (bytes) currently in flight (on all destinations) */
    491  1.1      rjs 	unsigned int total_flight;
    492  1.1      rjs 	/* Total book size in flight */
    493  1.1      rjs 	unsigned int total_flight_count;	/* count of chunks used with book total */
    494  1.1      rjs 	/* count of destinaton nets and list of destination nets */
    495  1.1      rjs 	unsigned int numnets;
    496  1.1      rjs 
    497  1.1      rjs 	/* Total error count on this association */
    498  1.1      rjs 	unsigned int overall_error_count;
    499  1.1      rjs 
    500  1.1      rjs 	unsigned int size_on_delivery_queue;
    501  1.1      rjs 	unsigned int cnt_on_delivery_queue;
    502  1.1      rjs 
    503  1.1      rjs 	unsigned int cnt_msg_on_sb;
    504  1.1      rjs 
    505  1.1      rjs 	/* All stream count of chunks for delivery */
    506  1.1      rjs 	unsigned int size_on_all_streams;
    507  1.1      rjs 	unsigned int cnt_on_all_streams;
    508  1.1      rjs 
    509  1.1      rjs 	/* Heart Beat delay in ticks */
    510  1.1      rjs 	unsigned int heart_beat_delay;
    511  1.1      rjs 
    512  1.1      rjs 	/* autoclose */
    513  1.1      rjs 	unsigned int sctp_autoclose_ticks;
    514  1.1      rjs 
    515  1.1      rjs 	/* how many preopen streams we have */
    516  1.1      rjs 	unsigned int pre_open_streams;
    517  1.1      rjs 
    518  1.1      rjs 	/* How many streams I support coming into me */
    519  1.1      rjs 	unsigned int max_inbound_streams;
    520  1.1      rjs 
    521  1.1      rjs 	/* the cookie life I award for any cookie, in seconds */
    522  1.1      rjs 	unsigned int cookie_life;
    523  1.1      rjs 
    524  1.1      rjs 	unsigned int numduptsns;
    525  1.1      rjs 	int dup_tsns[SCTP_MAX_DUP_TSNS];
    526  1.1      rjs 	unsigned int initial_init_rto_max;	/* initial RTO for INIT's */
    527  1.1      rjs 	unsigned int initial_rto;		/* initial send RTO */
    528  1.1      rjs 	unsigned int minrto;			/* per assoc RTO-MIN */
    529  1.1      rjs 	unsigned int maxrto;			/* per assoc RTO-MAX */
    530  1.1      rjs 	/* Being that we have no bag to collect stale cookies, and
    531  1.1      rjs 	 * that we really would not want to anyway.. we will count
    532  1.1      rjs 	 * them in this counter. We of course feed them to the
    533  1.1      rjs 	 * pigeons right away (I have always thought of pigeons
    534  1.1      rjs 	 * as flying rats).
    535  1.1      rjs 	 */
    536  1.1      rjs 	u_int16_t stale_cookie_count;
    537  1.1      rjs 
    538  1.1      rjs 	/* For the partial delivery API, if up, invoked
    539  1.1      rjs 	 * this is what last TSN I delivered
    540  1.1      rjs 	 */
    541  1.1      rjs 	u_int16_t str_of_pdapi;
    542  1.1      rjs 	u_int16_t ssn_of_pdapi;
    543  1.1      rjs 
    544  1.1      rjs 
    545  1.1      rjs 	/* counts of actual built streams. Allocation may be more however */
    546  1.1      rjs 	/* could re-arrange to optimize space here. */
    547  1.1      rjs 	u_int16_t streamincnt;
    548  1.1      rjs 	u_int16_t streamoutcnt;
    549  1.1      rjs 
    550  1.1      rjs 	/* my maximum number of retrans of INIT and SEND */
    551  1.1      rjs 	/* copied from SCTP but should be individually setable */
    552  1.1      rjs 	u_int16_t max_init_times;
    553  1.1      rjs 	u_int16_t max_send_times;
    554  1.1      rjs 
    555  1.1      rjs 	u_int16_t def_net_failure;
    556  1.1      rjs 
    557  1.1      rjs 	/*
    558  1.1      rjs 	 * lock flag: 0 is ok to send, 1+ (duals as a retran count) is
    559  1.1      rjs 	 * awaiting ACK
    560  1.1      rjs 	 */
    561  1.1      rjs 	u_int16_t asconf_sent;   /* possibly removable REM */
    562  1.1      rjs 	u_int16_t mapping_array_size;
    563  1.1      rjs 
    564  1.1      rjs 	u_int16_t chunks_on_out_queue; /* total chunks floating around */
    565  1.1      rjs 	int16_t num_send_timers_up;
    566  1.1      rjs 	/*
    567  1.1      rjs 	 * This flag indicates that we need to send the first SACK. If
    568  1.1      rjs 	 * in place it says we have NOT yet sent a SACK and need to.
    569  1.1      rjs 	 */
    570  1.1      rjs 	u_int8_t first_ack_sent;
    571  1.1      rjs 
    572  1.1      rjs 	/* max burst after fast retransmit completes */
    573  1.1      rjs 	u_int8_t max_burst;
    574  1.1      rjs 
    575  1.1      rjs 	u_int8_t sat_network;	/* RTT is in range of sat net or greater */
    576  1.1      rjs 	u_int8_t sat_network_lockout;/* lockout code */
    577  1.1      rjs 	u_int8_t burst_limit_applied;	/* Burst limit in effect at last send? */
    578  1.1      rjs 	/* flag goes on when we are doing a partial delivery api */
    579  1.1      rjs 	u_int8_t hb_random_values[4];
    580  1.1      rjs 	u_int8_t fragmented_delivery_inprogress;
    581  1.1      rjs 	u_int8_t fragment_flags;
    582  1.1      rjs 	u_int8_t hb_ect_randombit;
    583  1.1      rjs         u_int8_t hb_random_idx;
    584  1.1      rjs 
    585  1.1      rjs 	/* ECN Nonce stuff */
    586  1.1      rjs 	u_int8_t receiver_nonce_sum; /* nonce I sum and put in my sack */
    587  1.1      rjs 	u_int8_t ecn_nonce_allowed;  /* Tells us if ECN nonce is on */
    588  1.1      rjs 	u_int8_t nonce_sum_check;    /* On off switch used during re-sync */
    589  1.1      rjs 	u_int8_t nonce_wait_for_ecne;/* flag when we expect a ECN */
    590  1.1      rjs 	u_int8_t peer_supports_ecn_nonce;
    591  1.1      rjs 
    592  1.1      rjs 	/*
    593  1.1      rjs 	 * This value, plus all other ack'd but above cum-ack is added
    594  1.1      rjs 	 * together to cross check against the bit that we have yet to
    595  1.1      rjs 	 * define (probably in the SACK).
    596  1.1      rjs 	 * When the cum-ack is updated, this sum is updated as well.
    597  1.1      rjs 	 */
    598  1.1      rjs 	u_int8_t nonce_sum_expect_base;
    599  1.1      rjs 	/* Flag to tell if ECN is allowed */
    600  1.1      rjs 	u_int8_t ecn_allowed;
    601  1.1      rjs 
    602  1.1      rjs 	/* flag to indicate if peer can do asconf */
    603  1.1      rjs 	uint8_t peer_supports_asconf;
    604  1.1      rjs 	uint8_t peer_supports_asconf_setprim; /* possibly removable REM */
    605  1.1      rjs 	/* pr-sctp support flag */
    606  1.1      rjs 	uint8_t peer_supports_prsctp;
    607  1.1      rjs 
    608  1.1      rjs 	/* stream resets are supported by the peer */
    609  1.1      rjs 	uint8_t peer_supports_strreset;
    610  1.1      rjs 
    611  1.1      rjs 	/*
    612  1.1      rjs 	 * packet drop's are supported by the peer, we don't really care
    613  1.1      rjs 	 * about this but we bookkeep it anyway.
    614  1.1      rjs 	 */
    615  1.1      rjs 	uint8_t peer_supports_pktdrop;
    616  1.1      rjs 
    617  1.1      rjs 	/* Do we allow V6/V4? */
    618  1.1      rjs 	u_int8_t ipv4_addr_legal;
    619  1.1      rjs 	u_int8_t ipv6_addr_legal;
    620  1.1      rjs 	/* Address scoping flags */
    621  1.1      rjs 	/* scope value for IPv4 */
    622  1.1      rjs 	u_int8_t ipv4_local_scope;
    623  1.1      rjs 	/* scope values for IPv6 */
    624  1.1      rjs 	u_int8_t local_scope;
    625  1.1      rjs 	u_int8_t site_scope;
    626  1.1      rjs 	/* loopback scope */
    627  1.1      rjs 	u_int8_t loopback_scope;
    628  1.1      rjs 	/* flags to handle send alternate net tracking */
    629  1.1      rjs 	u_int8_t used_alt_onsack;
    630  1.1      rjs 	u_int8_t used_alt_asconfack;
    631  1.1      rjs 	u_int8_t fast_retran_loss_recovery;
    632  1.1      rjs 	u_int8_t sat_t3_loss_recovery;
    633  1.1      rjs         u_int8_t dropped_special_cnt;
    634  1.1      rjs 	u_int8_t seen_a_sack_this_pkt;
    635  1.1      rjs 	u_int8_t stream_reset_outstanding;
    636  1.1      rjs 	u_int8_t delayed_connection;
    637  1.1      rjs 	u_int8_t ifp_had_enobuf;
    638  1.1      rjs 	u_int8_t saw_sack_with_frags;
    639  1.1      rjs 	/*
    640  1.1      rjs 	 * The mapping array is used to track out of order sequences above
    641  1.1      rjs 	 * last_acked_seq. 0 indicates packet missing 1 indicates packet
    642  1.1      rjs 	 * rec'd. We slide it up every time we raise last_acked_seq and 0
    643  1.1      rjs 	 * trailing locactions out.  If I get a TSN above the array
    644  1.1      rjs 	 * mappingArraySz, I discard the datagram and let retransmit happen.
    645  1.1      rjs 	 */
    646  1.1      rjs };
    647  1.1      rjs 
    648  1.1      rjs #endif
    649