tcp_congctl.c revision 1.23 1 1.23 skrll /* $NetBSD: tcp_congctl.c,v 1.23 2017/01/02 09:29:38 skrll Exp $ */
2 1.1 rpaulo
3 1.1 rpaulo /*-
4 1.1 rpaulo * Copyright (c) 1997, 1998, 1999, 2001, 2005, 2006 The NetBSD Foundation, Inc.
5 1.1 rpaulo * All rights reserved.
6 1.1 rpaulo *
7 1.1 rpaulo * This code is derived from software contributed to The NetBSD Foundation
8 1.1 rpaulo * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
9 1.1 rpaulo * Facility, NASA Ames Research Center.
10 1.1 rpaulo * This code is derived from software contributed to The NetBSD Foundation
11 1.1 rpaulo * by Charles M. Hannum.
12 1.1 rpaulo * This code is derived from software contributed to The NetBSD Foundation
13 1.1 rpaulo * by Rui Paulo.
14 1.1 rpaulo *
15 1.1 rpaulo * Redistribution and use in source and binary forms, with or without
16 1.1 rpaulo * modification, are permitted provided that the following conditions
17 1.1 rpaulo * are met:
18 1.1 rpaulo * 1. Redistributions of source code must retain the above copyright
19 1.1 rpaulo * notice, this list of conditions and the following disclaimer.
20 1.1 rpaulo * 2. Redistributions in binary form must reproduce the above copyright
21 1.1 rpaulo * notice, this list of conditions and the following disclaimer in the
22 1.1 rpaulo * documentation and/or other materials provided with the distribution.
23 1.1 rpaulo *
24 1.1 rpaulo * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25 1.1 rpaulo * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 1.1 rpaulo * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 1.1 rpaulo * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28 1.1 rpaulo * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 1.1 rpaulo * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 1.1 rpaulo * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 1.1 rpaulo * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 1.1 rpaulo * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 1.1 rpaulo * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 1.1 rpaulo * POSSIBILITY OF SUCH DAMAGE.
35 1.1 rpaulo */
36 1.1 rpaulo
37 1.1 rpaulo /*
38 1.1 rpaulo * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
39 1.1 rpaulo * All rights reserved.
40 1.1 rpaulo *
41 1.1 rpaulo * Redistribution and use in source and binary forms, with or without
42 1.1 rpaulo * modification, are permitted provided that the following conditions
43 1.1 rpaulo * are met:
44 1.1 rpaulo * 1. Redistributions of source code must retain the above copyright
45 1.1 rpaulo * notice, this list of conditions and the following disclaimer.
46 1.1 rpaulo * 2. Redistributions in binary form must reproduce the above copyright
47 1.1 rpaulo * notice, this list of conditions and the following disclaimer in the
48 1.1 rpaulo * documentation and/or other materials provided with the distribution.
49 1.1 rpaulo * 3. Neither the name of the project nor the names of its contributors
50 1.1 rpaulo * may be used to endorse or promote products derived from this software
51 1.1 rpaulo * without specific prior written permission.
52 1.1 rpaulo *
53 1.1 rpaulo * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
54 1.1 rpaulo * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 1.1 rpaulo * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 1.1 rpaulo * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
57 1.1 rpaulo * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 1.1 rpaulo * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 1.1 rpaulo * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 1.1 rpaulo * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 1.1 rpaulo * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 1.1 rpaulo * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 1.1 rpaulo * SUCH DAMAGE.
64 1.1 rpaulo */
65 1.1 rpaulo
66 1.1 rpaulo /*
67 1.1 rpaulo * @(#)COPYRIGHT 1.1 (NRL) 17 January 1995
68 1.1 rpaulo *
69 1.1 rpaulo * NRL grants permission for redistribution and use in source and binary
70 1.1 rpaulo * forms, with or without modification, of the software and documentation
71 1.1 rpaulo * created at NRL provided that the following conditions are met:
72 1.1 rpaulo *
73 1.1 rpaulo * 1. Redistributions of source code must retain the above copyright
74 1.1 rpaulo * notice, this list of conditions and the following disclaimer.
75 1.1 rpaulo * 2. Redistributions in binary form must reproduce the above copyright
76 1.1 rpaulo * notice, this list of conditions and the following disclaimer in the
77 1.1 rpaulo * documentation and/or other materials provided with the distribution.
78 1.1 rpaulo * 3. All advertising materials mentioning features or use of this software
79 1.1 rpaulo * must display the following acknowledgements:
80 1.1 rpaulo * This product includes software developed by the University of
81 1.1 rpaulo * California, Berkeley and its contributors.
82 1.1 rpaulo * This product includes software developed at the Information
83 1.1 rpaulo * Technology Division, US Naval Research Laboratory.
84 1.1 rpaulo * 4. Neither the name of the NRL nor the names of its contributors
85 1.1 rpaulo * may be used to endorse or promote products derived from this software
86 1.1 rpaulo * without specific prior written permission.
87 1.1 rpaulo *
88 1.1 rpaulo * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
89 1.1 rpaulo * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
90 1.1 rpaulo * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
91 1.1 rpaulo * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NRL OR
92 1.1 rpaulo * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
93 1.1 rpaulo * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
94 1.1 rpaulo * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
95 1.1 rpaulo * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
96 1.1 rpaulo * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
97 1.1 rpaulo * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
98 1.1 rpaulo * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
99 1.1 rpaulo *
100 1.1 rpaulo * The views and conclusions contained in the software and documentation
101 1.1 rpaulo * are those of the authors and should not be interpreted as representing
102 1.1 rpaulo * official policies, either expressed or implied, of the US Naval
103 1.1 rpaulo * Research Laboratory (NRL).
104 1.1 rpaulo */
105 1.1 rpaulo
106 1.1 rpaulo /*
107 1.1 rpaulo * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
108 1.1 rpaulo * The Regents of the University of California. All rights reserved.
109 1.1 rpaulo *
110 1.1 rpaulo * Redistribution and use in source and binary forms, with or without
111 1.1 rpaulo * modification, are permitted provided that the following conditions
112 1.1 rpaulo * are met:
113 1.1 rpaulo * 1. Redistributions of source code must retain the above copyright
114 1.1 rpaulo * notice, this list of conditions and the following disclaimer.
115 1.1 rpaulo * 2. Redistributions in binary form must reproduce the above copyright
116 1.1 rpaulo * notice, this list of conditions and the following disclaimer in the
117 1.1 rpaulo * documentation and/or other materials provided with the distribution.
118 1.1 rpaulo * 3. Neither the name of the University nor the names of its contributors
119 1.1 rpaulo * may be used to endorse or promote products derived from this software
120 1.1 rpaulo * without specific prior written permission.
121 1.1 rpaulo *
122 1.1 rpaulo * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
123 1.1 rpaulo * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
124 1.1 rpaulo * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
125 1.1 rpaulo * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
126 1.1 rpaulo * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
127 1.1 rpaulo * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
128 1.1 rpaulo * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
129 1.1 rpaulo * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
130 1.1 rpaulo * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
131 1.1 rpaulo * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
132 1.1 rpaulo * SUCH DAMAGE.
133 1.1 rpaulo *
134 1.1 rpaulo * @(#)tcp_input.c 8.12 (Berkeley) 5/24/95
135 1.1 rpaulo */
136 1.1 rpaulo
137 1.1 rpaulo #include <sys/cdefs.h>
138 1.23 skrll __KERNEL_RCSID(0, "$NetBSD: tcp_congctl.c,v 1.23 2017/01/02 09:29:38 skrll Exp $");
139 1.1 rpaulo
140 1.20 pooka #ifdef _KERNEL_OPT
141 1.1 rpaulo #include "opt_inet.h"
142 1.1 rpaulo #include "opt_tcp_debug.h"
143 1.1 rpaulo #include "opt_tcp_congctl.h"
144 1.20 pooka #endif
145 1.1 rpaulo
146 1.1 rpaulo #include <sys/param.h>
147 1.1 rpaulo #include <sys/systm.h>
148 1.1 rpaulo #include <sys/malloc.h>
149 1.1 rpaulo #include <sys/mbuf.h>
150 1.1 rpaulo #include <sys/protosw.h>
151 1.1 rpaulo #include <sys/socket.h>
152 1.1 rpaulo #include <sys/socketvar.h>
153 1.1 rpaulo #include <sys/errno.h>
154 1.1 rpaulo #include <sys/syslog.h>
155 1.1 rpaulo #include <sys/pool.h>
156 1.1 rpaulo #include <sys/domain.h>
157 1.1 rpaulo #include <sys/kernel.h>
158 1.13 xtraeme #include <sys/mutex.h>
159 1.1 rpaulo
160 1.1 rpaulo #include <net/if.h>
161 1.1 rpaulo
162 1.1 rpaulo #include <netinet/in.h>
163 1.1 rpaulo #include <netinet/in_systm.h>
164 1.1 rpaulo #include <netinet/ip.h>
165 1.1 rpaulo #include <netinet/in_pcb.h>
166 1.1 rpaulo #include <netinet/in_var.h>
167 1.1 rpaulo #include <netinet/ip_var.h>
168 1.1 rpaulo
169 1.1 rpaulo #ifdef INET6
170 1.1 rpaulo #ifndef INET
171 1.1 rpaulo #include <netinet/in.h>
172 1.1 rpaulo #endif
173 1.1 rpaulo #include <netinet/ip6.h>
174 1.1 rpaulo #include <netinet6/ip6_var.h>
175 1.1 rpaulo #include <netinet6/in6_pcb.h>
176 1.1 rpaulo #include <netinet6/ip6_var.h>
177 1.1 rpaulo #include <netinet6/in6_var.h>
178 1.1 rpaulo #include <netinet/icmp6.h>
179 1.1 rpaulo #endif
180 1.1 rpaulo
181 1.1 rpaulo #include <netinet/tcp.h>
182 1.1 rpaulo #include <netinet/tcp_fsm.h>
183 1.1 rpaulo #include <netinet/tcp_seq.h>
184 1.1 rpaulo #include <netinet/tcp_timer.h>
185 1.1 rpaulo #include <netinet/tcp_var.h>
186 1.1 rpaulo #include <netinet/tcpip.h>
187 1.1 rpaulo #include <netinet/tcp_congctl.h>
188 1.1 rpaulo #ifdef TCP_DEBUG
189 1.1 rpaulo #include <netinet/tcp_debug.h>
190 1.1 rpaulo #endif
191 1.1 rpaulo
192 1.1 rpaulo /*
193 1.1 rpaulo * TODO:
194 1.1 rpaulo * consider separating the actual implementations in another file.
195 1.1 rpaulo */
196 1.1 rpaulo
197 1.18 kefren static void tcp_common_congestion_exp(struct tcpcb *, int, int);
198 1.18 kefren
199 1.18 kefren static int tcp_reno_do_fast_retransmit(struct tcpcb *, const struct tcphdr *);
200 1.11 yamt static int tcp_reno_fast_retransmit(struct tcpcb *, const struct tcphdr *);
201 1.1 rpaulo static void tcp_reno_slow_retransmit(struct tcpcb *);
202 1.11 yamt static void tcp_reno_fast_retransmit_newack(struct tcpcb *,
203 1.11 yamt const struct tcphdr *);
204 1.11 yamt static void tcp_reno_newack(struct tcpcb *, const struct tcphdr *);
205 1.6 rpaulo static void tcp_reno_congestion_exp(struct tcpcb *tp);
206 1.1 rpaulo
207 1.11 yamt static int tcp_newreno_fast_retransmit(struct tcpcb *, const struct tcphdr *);
208 1.1 rpaulo static void tcp_newreno_fast_retransmit_newack(struct tcpcb *,
209 1.11 yamt const struct tcphdr *);
210 1.11 yamt static void tcp_newreno_newack(struct tcpcb *, const struct tcphdr *);
211 1.1 rpaulo
212 1.18 kefren static int tcp_cubic_fast_retransmit(struct tcpcb *, const struct tcphdr *);
213 1.18 kefren static void tcp_cubic_slow_retransmit(struct tcpcb *tp);
214 1.18 kefren static void tcp_cubic_newack(struct tcpcb *, const struct tcphdr *);
215 1.18 kefren static void tcp_cubic_congestion_exp(struct tcpcb *);
216 1.1 rpaulo
217 1.1 rpaulo static void tcp_congctl_fillnames(void);
218 1.1 rpaulo
219 1.1 rpaulo extern int tcprexmtthresh;
220 1.1 rpaulo
221 1.1 rpaulo MALLOC_DEFINE(M_TCPCONGCTL, "tcpcongctl", "TCP congestion control structures");
222 1.1 rpaulo
223 1.14 matt /* currently selected global congestion control */
224 1.14 matt char tcp_congctl_global_name[TCPCC_MAXLEN];
225 1.14 matt
226 1.14 matt /* available global congestion control algorithms */
227 1.14 matt char tcp_congctl_avail[10 * TCPCC_MAXLEN];
228 1.14 matt
229 1.1 rpaulo /*
230 1.1 rpaulo * Used to list the available congestion control algorithms.
231 1.1 rpaulo */
232 1.14 matt TAILQ_HEAD(, tcp_congctlent) tcp_congctlhd =
233 1.14 matt TAILQ_HEAD_INITIALIZER(tcp_congctlhd);
234 1.14 matt
235 1.14 matt static struct tcp_congctlent * tcp_congctl_global;
236 1.1 rpaulo
237 1.13 xtraeme static kmutex_t tcp_congctl_mtx;
238 1.1 rpaulo
239 1.1 rpaulo void
240 1.1 rpaulo tcp_congctl_init(void)
241 1.1 rpaulo {
242 1.17 martin int r __diagused;
243 1.1 rpaulo
244 1.13 xtraeme mutex_init(&tcp_congctl_mtx, MUTEX_DEFAULT, IPL_NONE);
245 1.1 rpaulo
246 1.1 rpaulo /* Base algorithms. */
247 1.1 rpaulo r = tcp_congctl_register("reno", &tcp_reno_ctl);
248 1.1 rpaulo KASSERT(r == 0);
249 1.1 rpaulo r = tcp_congctl_register("newreno", &tcp_newreno_ctl);
250 1.1 rpaulo KASSERT(r == 0);
251 1.18 kefren r = tcp_congctl_register("cubic", &tcp_cubic_ctl);
252 1.18 kefren KASSERT(r == 0);
253 1.1 rpaulo
254 1.1 rpaulo /* NewReno is the default. */
255 1.1 rpaulo #ifndef TCP_CONGCTL_DEFAULT
256 1.1 rpaulo #define TCP_CONGCTL_DEFAULT "newreno"
257 1.1 rpaulo #endif
258 1.1 rpaulo
259 1.1 rpaulo r = tcp_congctl_select(NULL, TCP_CONGCTL_DEFAULT);
260 1.1 rpaulo KASSERT(r == 0);
261 1.1 rpaulo }
262 1.1 rpaulo
263 1.1 rpaulo /*
264 1.1 rpaulo * Register a congestion algorithm and select it if we have none.
265 1.1 rpaulo */
266 1.1 rpaulo int
267 1.14 matt tcp_congctl_register(const char *name, const struct tcp_congctl *tcc)
268 1.1 rpaulo {
269 1.1 rpaulo struct tcp_congctlent *ntcc, *tccp;
270 1.1 rpaulo
271 1.1 rpaulo TAILQ_FOREACH(tccp, &tcp_congctlhd, congctl_ent)
272 1.1 rpaulo if (!strcmp(name, tccp->congctl_name)) {
273 1.1 rpaulo /* name already registered */
274 1.1 rpaulo return EEXIST;
275 1.1 rpaulo }
276 1.1 rpaulo
277 1.14 matt ntcc = malloc(sizeof(*ntcc), M_TCPCONGCTL, M_WAITOK|M_ZERO);
278 1.1 rpaulo
279 1.1 rpaulo strlcpy(ntcc->congctl_name, name, sizeof(ntcc->congctl_name) - 1);
280 1.1 rpaulo ntcc->congctl_ctl = tcc;
281 1.1 rpaulo
282 1.1 rpaulo TAILQ_INSERT_TAIL(&tcp_congctlhd, ntcc, congctl_ent);
283 1.1 rpaulo tcp_congctl_fillnames();
284 1.1 rpaulo
285 1.1 rpaulo if (TAILQ_FIRST(&tcp_congctlhd) == ntcc)
286 1.1 rpaulo tcp_congctl_select(NULL, name);
287 1.1 rpaulo
288 1.1 rpaulo return 0;
289 1.1 rpaulo }
290 1.1 rpaulo
291 1.1 rpaulo int
292 1.1 rpaulo tcp_congctl_unregister(const char *name)
293 1.1 rpaulo {
294 1.1 rpaulo struct tcp_congctlent *tccp, *rtccp;
295 1.1 rpaulo unsigned int size;
296 1.1 rpaulo
297 1.1 rpaulo rtccp = NULL;
298 1.1 rpaulo size = 0;
299 1.1 rpaulo TAILQ_FOREACH(tccp, &tcp_congctlhd, congctl_ent) {
300 1.1 rpaulo if (!strcmp(name, tccp->congctl_name))
301 1.1 rpaulo rtccp = tccp;
302 1.1 rpaulo size++;
303 1.1 rpaulo }
304 1.1 rpaulo
305 1.1 rpaulo if (!rtccp)
306 1.1 rpaulo return ENOENT;
307 1.1 rpaulo
308 1.14 matt if (size <= 1 || tcp_congctl_global == rtccp || rtccp->congctl_refcnt)
309 1.1 rpaulo return EBUSY;
310 1.1 rpaulo
311 1.1 rpaulo TAILQ_REMOVE(&tcp_congctlhd, rtccp, congctl_ent);
312 1.1 rpaulo free(rtccp, M_TCPCONGCTL);
313 1.1 rpaulo tcp_congctl_fillnames();
314 1.1 rpaulo
315 1.1 rpaulo return 0;
316 1.1 rpaulo }
317 1.1 rpaulo
318 1.1 rpaulo /*
319 1.1 rpaulo * Select a congestion algorithm by name.
320 1.1 rpaulo */
321 1.1 rpaulo int
322 1.1 rpaulo tcp_congctl_select(struct tcpcb *tp, const char *name)
323 1.1 rpaulo {
324 1.14 matt struct tcp_congctlent *tccp, *old_tccp, *new_tccp;
325 1.14 matt bool old_found, new_found;
326 1.1 rpaulo
327 1.1 rpaulo KASSERT(name);
328 1.1 rpaulo
329 1.14 matt old_found = (tp == NULL || tp->t_congctl == NULL);
330 1.14 matt old_tccp = NULL;
331 1.14 matt new_found = false;
332 1.14 matt new_tccp = NULL;
333 1.14 matt
334 1.14 matt TAILQ_FOREACH(tccp, &tcp_congctlhd, congctl_ent) {
335 1.14 matt if (!old_found && tccp->congctl_ctl == tp->t_congctl) {
336 1.14 matt old_tccp = tccp;
337 1.14 matt old_found = true;
338 1.14 matt }
339 1.14 matt
340 1.14 matt if (!new_found && !strcmp(name, tccp->congctl_name)) {
341 1.14 matt new_tccp = tccp;
342 1.14 matt new_found = true;
343 1.14 matt }
344 1.14 matt
345 1.14 matt if (new_found && old_found) {
346 1.1 rpaulo if (tp) {
347 1.13 xtraeme mutex_enter(&tcp_congctl_mtx);
348 1.14 matt if (old_tccp)
349 1.14 matt old_tccp->congctl_refcnt--;
350 1.14 matt tp->t_congctl = new_tccp->congctl_ctl;
351 1.14 matt new_tccp->congctl_refcnt++;
352 1.13 xtraeme mutex_exit(&tcp_congctl_mtx);
353 1.1 rpaulo } else {
354 1.14 matt tcp_congctl_global = new_tccp;
355 1.1 rpaulo strlcpy(tcp_congctl_global_name,
356 1.14 matt new_tccp->congctl_name,
357 1.1 rpaulo sizeof(tcp_congctl_global_name) - 1);
358 1.1 rpaulo }
359 1.1 rpaulo return 0;
360 1.1 rpaulo }
361 1.14 matt }
362 1.14 matt
363 1.14 matt return EINVAL;
364 1.14 matt }
365 1.14 matt
366 1.14 matt void
367 1.14 matt tcp_congctl_release(struct tcpcb *tp)
368 1.14 matt {
369 1.14 matt struct tcp_congctlent *tccp;
370 1.14 matt
371 1.14 matt KASSERT(tp->t_congctl);
372 1.1 rpaulo
373 1.14 matt TAILQ_FOREACH(tccp, &tcp_congctlhd, congctl_ent) {
374 1.14 matt if (tccp->congctl_ctl == tp->t_congctl) {
375 1.14 matt tccp->congctl_refcnt--;
376 1.14 matt return;
377 1.14 matt }
378 1.14 matt }
379 1.1 rpaulo }
380 1.1 rpaulo
381 1.1 rpaulo /*
382 1.1 rpaulo * Returns the name of a congestion algorithm.
383 1.1 rpaulo */
384 1.1 rpaulo const char *
385 1.1 rpaulo tcp_congctl_bystruct(const struct tcp_congctl *tcc)
386 1.1 rpaulo {
387 1.1 rpaulo struct tcp_congctlent *tccp;
388 1.1 rpaulo
389 1.1 rpaulo KASSERT(tcc);
390 1.1 rpaulo
391 1.1 rpaulo TAILQ_FOREACH(tccp, &tcp_congctlhd, congctl_ent)
392 1.1 rpaulo if (tccp->congctl_ctl == tcc)
393 1.1 rpaulo return tccp->congctl_name;
394 1.1 rpaulo
395 1.1 rpaulo return NULL;
396 1.1 rpaulo }
397 1.1 rpaulo
398 1.1 rpaulo static void
399 1.1 rpaulo tcp_congctl_fillnames(void)
400 1.1 rpaulo {
401 1.1 rpaulo struct tcp_congctlent *tccp;
402 1.1 rpaulo const char *delim = " ";
403 1.1 rpaulo
404 1.1 rpaulo tcp_congctl_avail[0] = '\0';
405 1.1 rpaulo TAILQ_FOREACH(tccp, &tcp_congctlhd, congctl_ent) {
406 1.1 rpaulo strlcat(tcp_congctl_avail, tccp->congctl_name,
407 1.1 rpaulo sizeof(tcp_congctl_avail) - 1);
408 1.1 rpaulo if (TAILQ_NEXT(tccp, congctl_ent))
409 1.1 rpaulo strlcat(tcp_congctl_avail, delim,
410 1.1 rpaulo sizeof(tcp_congctl_avail) - 1);
411 1.1 rpaulo }
412 1.1 rpaulo
413 1.1 rpaulo }
414 1.1 rpaulo
415 1.1 rpaulo /* ------------------------------------------------------------------------ */
416 1.1 rpaulo
417 1.6 rpaulo /*
418 1.18 kefren * Common stuff
419 1.6 rpaulo */
420 1.18 kefren
421 1.18 kefren /* Window reduction (1-beta) for [New]Reno: 0.5 */
422 1.18 kefren #define RENO_BETAA 1
423 1.18 kefren #define RENO_BETAB 2
424 1.18 kefren /* Window reduction (1-beta) for Cubic: 0.8 */
425 1.18 kefren #define CUBIC_BETAA 4
426 1.18 kefren #define CUBIC_BETAB 5
427 1.18 kefren /* Draft Rhee Section 4.1 */
428 1.18 kefren #define CUBIC_CA 4
429 1.18 kefren #define CUBIC_CB 10
430 1.18 kefren
431 1.6 rpaulo static void
432 1.18 kefren tcp_common_congestion_exp(struct tcpcb *tp, int betaa, int betab)
433 1.1 rpaulo {
434 1.1 rpaulo u_int win;
435 1.1 rpaulo
436 1.1 rpaulo /*
437 1.18 kefren * Reduce the congestion window and the slow start threshold.
438 1.1 rpaulo */
439 1.18 kefren win = min(tp->snd_wnd, tp->snd_cwnd) * betaa / betab / tp->t_segsz;
440 1.1 rpaulo if (win < 2)
441 1.1 rpaulo win = 2;
442 1.1 rpaulo
443 1.1 rpaulo tp->snd_ssthresh = win * tp->t_segsz;
444 1.1 rpaulo tp->snd_recover = tp->snd_max;
445 1.1 rpaulo tp->snd_cwnd = tp->snd_ssthresh;
446 1.1 rpaulo
447 1.7 rpaulo /*
448 1.7 rpaulo * When using TCP ECN, notify the peer that
449 1.7 rpaulo * we reduced the cwnd.
450 1.7 rpaulo */
451 1.1 rpaulo if (TCP_ECN_ALLOWED(tp))
452 1.1 rpaulo tp->t_flags |= TF_ECN_SND_CWR;
453 1.1 rpaulo }
454 1.1 rpaulo
455 1.1 rpaulo
456 1.18 kefren /* ------------------------------------------------------------------------ */
457 1.18 kefren
458 1.18 kefren /*
459 1.18 kefren * TCP/Reno congestion control.
460 1.18 kefren */
461 1.18 kefren static void
462 1.18 kefren tcp_reno_congestion_exp(struct tcpcb *tp)
463 1.18 kefren {
464 1.18 kefren
465 1.18 kefren tcp_common_congestion_exp(tp, RENO_BETAA, RENO_BETAB);
466 1.18 kefren }
467 1.6 rpaulo
468 1.1 rpaulo static int
469 1.18 kefren tcp_reno_do_fast_retransmit(struct tcpcb *tp, const struct tcphdr *th)
470 1.1 rpaulo {
471 1.7 rpaulo /*
472 1.7 rpaulo * Dup acks mean that packets have left the
473 1.7 rpaulo * network (they're now cached at the receiver)
474 1.7 rpaulo * so bump cwnd by the amount in the receiver
475 1.7 rpaulo * to keep a constant cwnd packets in the
476 1.7 rpaulo * network.
477 1.7 rpaulo *
478 1.7 rpaulo * If we are using TCP/SACK, then enter
479 1.7 rpaulo * Fast Recovery if the receiver SACKs
480 1.7 rpaulo * data that is tcprexmtthresh * MSS
481 1.7 rpaulo * bytes past the last ACKed segment,
482 1.7 rpaulo * irrespective of the number of DupAcks.
483 1.7 rpaulo */
484 1.7 rpaulo
485 1.18 kefren tcp_seq onxt = tp->snd_nxt;
486 1.18 kefren
487 1.1 rpaulo tp->t_partialacks = 0;
488 1.1 rpaulo TCP_TIMER_DISARM(tp, TCPT_REXMT);
489 1.1 rpaulo tp->t_rtttime = 0;
490 1.1 rpaulo if (TCP_SACK_ENABLED(tp)) {
491 1.1 rpaulo tp->t_dupacks = tcprexmtthresh;
492 1.1 rpaulo tp->sack_newdata = tp->snd_nxt;
493 1.1 rpaulo tp->snd_cwnd = tp->t_segsz;
494 1.1 rpaulo (void) tcp_output(tp);
495 1.1 rpaulo return 0;
496 1.1 rpaulo }
497 1.1 rpaulo tp->snd_nxt = th->th_ack;
498 1.1 rpaulo tp->snd_cwnd = tp->t_segsz;
499 1.1 rpaulo (void) tcp_output(tp);
500 1.1 rpaulo tp->snd_cwnd = tp->snd_ssthresh + tp->t_segsz * tp->t_dupacks;
501 1.1 rpaulo if (SEQ_GT(onxt, tp->snd_nxt))
502 1.1 rpaulo tp->snd_nxt = onxt;
503 1.19 kefren
504 1.1 rpaulo return 0;
505 1.1 rpaulo }
506 1.1 rpaulo
507 1.18 kefren static int
508 1.18 kefren tcp_reno_fast_retransmit(struct tcpcb *tp, const struct tcphdr *th)
509 1.18 kefren {
510 1.18 kefren
511 1.19 kefren /*
512 1.19 kefren * We know we're losing at the current
513 1.19 kefren * window size so do congestion avoidance
514 1.19 kefren * (set ssthresh to half the current window
515 1.19 kefren * and pull our congestion window back to
516 1.19 kefren * the new ssthresh).
517 1.19 kefren */
518 1.19 kefren
519 1.18 kefren tcp_reno_congestion_exp(tp);
520 1.18 kefren return tcp_reno_do_fast_retransmit(tp, th);
521 1.18 kefren }
522 1.18 kefren
523 1.1 rpaulo static void
524 1.1 rpaulo tcp_reno_slow_retransmit(struct tcpcb *tp)
525 1.1 rpaulo {
526 1.1 rpaulo u_int win;
527 1.1 rpaulo
528 1.1 rpaulo /*
529 1.1 rpaulo * Close the congestion window down to one segment
530 1.1 rpaulo * (we'll open it by one segment for each ack we get).
531 1.1 rpaulo * Since we probably have a window's worth of unacked
532 1.1 rpaulo * data accumulated, this "slow start" keeps us from
533 1.1 rpaulo * dumping all that data as back-to-back packets (which
534 1.1 rpaulo * might overwhelm an intermediate gateway).
535 1.1 rpaulo *
536 1.1 rpaulo * There are two phases to the opening: Initially we
537 1.1 rpaulo * open by one mss on each ack. This makes the window
538 1.1 rpaulo * size increase exponentially with time. If the
539 1.1 rpaulo * window is larger than the path can handle, this
540 1.1 rpaulo * exponential growth results in dropped packet(s)
541 1.1 rpaulo * almost immediately. To get more time between
542 1.1 rpaulo * drops but still "push" the network to take advantage
543 1.1 rpaulo * of improving conditions, we switch from exponential
544 1.1 rpaulo * to linear window opening at some threshhold size.
545 1.1 rpaulo * For a threshhold, we use half the current window
546 1.1 rpaulo * size, truncated to a multiple of the mss.
547 1.1 rpaulo *
548 1.1 rpaulo * (the minimum cwnd that will give us exponential
549 1.1 rpaulo * growth is 2 mss. We don't allow the threshhold
550 1.1 rpaulo * to go below this.)
551 1.1 rpaulo */
552 1.1 rpaulo
553 1.1 rpaulo win = min(tp->snd_wnd, tp->snd_cwnd) / 2 / tp->t_segsz;
554 1.1 rpaulo if (win < 2)
555 1.1 rpaulo win = 2;
556 1.1 rpaulo /* Loss Window MUST be one segment. */
557 1.1 rpaulo tp->snd_cwnd = tp->t_segsz;
558 1.1 rpaulo tp->snd_ssthresh = win * tp->t_segsz;
559 1.1 rpaulo tp->t_partialacks = -1;
560 1.1 rpaulo tp->t_dupacks = 0;
561 1.8 yamt tp->t_bytes_acked = 0;
562 1.18 kefren
563 1.18 kefren if (TCP_ECN_ALLOWED(tp))
564 1.18 kefren tp->t_flags |= TF_ECN_SND_CWR;
565 1.1 rpaulo }
566 1.1 rpaulo
567 1.1 rpaulo static void
568 1.11 yamt tcp_reno_fast_retransmit_newack(struct tcpcb *tp,
569 1.12 christos const struct tcphdr *th)
570 1.1 rpaulo {
571 1.1 rpaulo if (tp->t_partialacks < 0) {
572 1.1 rpaulo /*
573 1.1 rpaulo * We were not in fast recovery. Reset the duplicate ack
574 1.1 rpaulo * counter.
575 1.1 rpaulo */
576 1.1 rpaulo tp->t_dupacks = 0;
577 1.1 rpaulo } else {
578 1.1 rpaulo /*
579 1.1 rpaulo * Clamp the congestion window to the crossover point and
580 1.1 rpaulo * exit fast recovery.
581 1.1 rpaulo */
582 1.1 rpaulo if (tp->snd_cwnd > tp->snd_ssthresh)
583 1.1 rpaulo tp->snd_cwnd = tp->snd_ssthresh;
584 1.1 rpaulo tp->t_partialacks = -1;
585 1.1 rpaulo tp->t_dupacks = 0;
586 1.8 yamt tp->t_bytes_acked = 0;
587 1.18 kefren if (TCP_SACK_ENABLED(tp) && SEQ_GT(th->th_ack, tp->snd_fack))
588 1.18 kefren tp->snd_fack = th->th_ack;
589 1.1 rpaulo }
590 1.1 rpaulo }
591 1.1 rpaulo
592 1.1 rpaulo static void
593 1.11 yamt tcp_reno_newack(struct tcpcb *tp, const struct tcphdr *th)
594 1.1 rpaulo {
595 1.1 rpaulo /*
596 1.1 rpaulo * When new data is acked, open the congestion window.
597 1.1 rpaulo */
598 1.4 rpaulo
599 1.4 rpaulo u_int cw = tp->snd_cwnd;
600 1.4 rpaulo u_int incr = tp->t_segsz;
601 1.4 rpaulo
602 1.8 yamt if (tcp_do_abc) {
603 1.8 yamt
604 1.8 yamt /*
605 1.8 yamt * RFC 3465 Appropriate Byte Counting (ABC)
606 1.8 yamt */
607 1.8 yamt
608 1.8 yamt int acked = th->th_ack - tp->snd_una;
609 1.8 yamt
610 1.8 yamt if (cw >= tp->snd_ssthresh) {
611 1.8 yamt tp->t_bytes_acked += acked;
612 1.8 yamt if (tp->t_bytes_acked >= cw) {
613 1.8 yamt /* Time to increase the window. */
614 1.8 yamt tp->t_bytes_acked -= cw;
615 1.8 yamt } else {
616 1.8 yamt /* No need to increase yet. */
617 1.8 yamt incr = 0;
618 1.8 yamt }
619 1.8 yamt } else {
620 1.8 yamt /*
621 1.8 yamt * use 2*SMSS or 1*SMSS for the "L" param,
622 1.8 yamt * depending on sysctl setting.
623 1.8 yamt *
624 1.8 yamt * (See RFC 3465 2.3 Choosing the Limit)
625 1.8 yamt */
626 1.8 yamt u_int abc_lim;
627 1.8 yamt
628 1.9 yamt abc_lim = (tcp_abc_aggressive == 0 ||
629 1.9 yamt tp->snd_nxt != tp->snd_max) ? incr : incr * 2;
630 1.8 yamt incr = min(acked, abc_lim);
631 1.8 yamt }
632 1.8 yamt } else {
633 1.8 yamt
634 1.8 yamt /*
635 1.8 yamt * If the window gives us less than ssthresh packets
636 1.8 yamt * in flight, open exponentially (segsz per packet).
637 1.8 yamt * Otherwise open linearly: segsz per window
638 1.8 yamt * (segsz^2 / cwnd per packet).
639 1.8 yamt */
640 1.8 yamt
641 1.8 yamt if (cw >= tp->snd_ssthresh) {
642 1.8 yamt incr = incr * incr / cw;
643 1.8 yamt }
644 1.8 yamt }
645 1.4 rpaulo
646 1.4 rpaulo tp->snd_cwnd = min(cw + incr, TCP_MAXWIN << tp->snd_scale);
647 1.1 rpaulo }
648 1.1 rpaulo
649 1.14 matt const struct tcp_congctl tcp_reno_ctl = {
650 1.1 rpaulo .fast_retransmit = tcp_reno_fast_retransmit,
651 1.1 rpaulo .slow_retransmit = tcp_reno_slow_retransmit,
652 1.1 rpaulo .fast_retransmit_newack = tcp_reno_fast_retransmit_newack,
653 1.1 rpaulo .newack = tcp_reno_newack,
654 1.6 rpaulo .cong_exp = tcp_reno_congestion_exp,
655 1.1 rpaulo };
656 1.1 rpaulo
657 1.1 rpaulo /*
658 1.1 rpaulo * TCP/NewReno Congestion control.
659 1.1 rpaulo */
660 1.1 rpaulo static int
661 1.11 yamt tcp_newreno_fast_retransmit(struct tcpcb *tp, const struct tcphdr *th)
662 1.1 rpaulo {
663 1.16 yamt
664 1.1 rpaulo if (SEQ_LT(th->th_ack, tp->snd_high)) {
665 1.1 rpaulo /*
666 1.1 rpaulo * False fast retransmit after timeout.
667 1.1 rpaulo * Do not enter fast recovery
668 1.1 rpaulo */
669 1.1 rpaulo tp->t_dupacks = 0;
670 1.1 rpaulo return 1;
671 1.1 rpaulo }
672 1.16 yamt /*
673 1.16 yamt * Fast retransmit is same as reno.
674 1.16 yamt */
675 1.16 yamt return tcp_reno_fast_retransmit(tp, th);
676 1.1 rpaulo }
677 1.1 rpaulo
678 1.1 rpaulo /*
679 1.1 rpaulo * Implement the NewReno response to a new ack, checking for partial acks in
680 1.1 rpaulo * fast recovery.
681 1.1 rpaulo */
682 1.1 rpaulo static void
683 1.11 yamt tcp_newreno_fast_retransmit_newack(struct tcpcb *tp, const struct tcphdr *th)
684 1.1 rpaulo {
685 1.1 rpaulo if (tp->t_partialacks < 0) {
686 1.1 rpaulo /*
687 1.1 rpaulo * We were not in fast recovery. Reset the duplicate ack
688 1.1 rpaulo * counter.
689 1.1 rpaulo */
690 1.1 rpaulo tp->t_dupacks = 0;
691 1.1 rpaulo } else if (SEQ_LT(th->th_ack, tp->snd_recover)) {
692 1.1 rpaulo /*
693 1.1 rpaulo * This is a partial ack. Retransmit the first unacknowledged
694 1.1 rpaulo * segment and deflate the congestion window by the amount of
695 1.1 rpaulo * acknowledged data. Do not exit fast recovery.
696 1.1 rpaulo */
697 1.1 rpaulo tcp_seq onxt = tp->snd_nxt;
698 1.1 rpaulo u_long ocwnd = tp->snd_cwnd;
699 1.18 kefren int sack_num_segs = 1, sack_bytes_rxmt = 0;
700 1.1 rpaulo
701 1.1 rpaulo /*
702 1.1 rpaulo * snd_una has not yet been updated and the socket's send
703 1.1 rpaulo * buffer has not yet drained off the ACK'd data, so we
704 1.1 rpaulo * have to leave snd_una as it was to get the correct data
705 1.1 rpaulo * offset in tcp_output().
706 1.1 rpaulo */
707 1.18 kefren tp->t_partialacks++;
708 1.18 kefren TCP_TIMER_DISARM(tp, TCPT_REXMT);
709 1.1 rpaulo tp->t_rtttime = 0;
710 1.18 kefren
711 1.18 kefren if (TCP_SACK_ENABLED(tp)) {
712 1.18 kefren /*
713 1.18 kefren * Partial ack handling within a sack recovery episode.
714 1.18 kefren * Keeping this very simple for now. When a partial ack
715 1.18 kefren * is received, force snd_cwnd to a value that will
716 1.18 kefren * allow the sender to transmit no more than 2 segments.
717 1.18 kefren * If necessary, a fancier scheme can be adopted at a
718 1.18 kefren * later point, but for now, the goal is to prevent the
719 1.18 kefren * sender from bursting a large amount of data in the
720 1.18 kefren * midst of sack recovery.
721 1.18 kefren */
722 1.18 kefren
723 1.18 kefren /*
724 1.18 kefren * send one or 2 segments based on how much
725 1.18 kefren * new data was acked
726 1.18 kefren */
727 1.18 kefren if (((th->th_ack - tp->snd_una) / tp->t_segsz) > 2)
728 1.18 kefren sack_num_segs = 2;
729 1.18 kefren (void)tcp_sack_output(tp, &sack_bytes_rxmt);
730 1.18 kefren tp->snd_cwnd = sack_bytes_rxmt +
731 1.18 kefren (tp->snd_nxt - tp->sack_newdata) +
732 1.18 kefren sack_num_segs * tp->t_segsz;
733 1.18 kefren tp->t_flags |= TF_ACKNOW;
734 1.18 kefren (void) tcp_output(tp);
735 1.18 kefren } else {
736 1.23 skrll tp->snd_nxt = th->th_ack;
737 1.18 kefren /*
738 1.18 kefren * Set snd_cwnd to one segment beyond ACK'd offset
739 1.18 kefren * snd_una is not yet updated when we're called
740 1.18 kefren */
741 1.18 kefren tp->snd_cwnd = tp->t_segsz + (th->th_ack - tp->snd_una);
742 1.18 kefren (void) tcp_output(tp);
743 1.18 kefren tp->snd_cwnd = ocwnd;
744 1.18 kefren if (SEQ_GT(onxt, tp->snd_nxt))
745 1.18 kefren tp->snd_nxt = onxt;
746 1.18 kefren /*
747 1.18 kefren * Partial window deflation. Relies on fact that
748 1.18 kefren * tp->snd_una not updated yet.
749 1.18 kefren */
750 1.18 kefren tp->snd_cwnd -= (th->th_ack - tp->snd_una -
751 1.18 kefren tp->t_segsz);
752 1.18 kefren }
753 1.1 rpaulo } else {
754 1.1 rpaulo /*
755 1.1 rpaulo * Complete ack. Inflate the congestion window to ssthresh
756 1.1 rpaulo * and exit fast recovery.
757 1.1 rpaulo *
758 1.1 rpaulo * Window inflation should have left us with approx.
759 1.1 rpaulo * snd_ssthresh outstanding data. But in case we
760 1.1 rpaulo * would be inclined to send a burst, better to do
761 1.1 rpaulo * it via the slow start mechanism.
762 1.1 rpaulo */
763 1.1 rpaulo if (SEQ_SUB(tp->snd_max, th->th_ack) < tp->snd_ssthresh)
764 1.1 rpaulo tp->snd_cwnd = SEQ_SUB(tp->snd_max, th->th_ack)
765 1.1 rpaulo + tp->t_segsz;
766 1.1 rpaulo else
767 1.1 rpaulo tp->snd_cwnd = tp->snd_ssthresh;
768 1.1 rpaulo tp->t_partialacks = -1;
769 1.1 rpaulo tp->t_dupacks = 0;
770 1.8 yamt tp->t_bytes_acked = 0;
771 1.18 kefren if (TCP_SACK_ENABLED(tp) && SEQ_GT(th->th_ack, tp->snd_fack))
772 1.18 kefren tp->snd_fack = th->th_ack;
773 1.1 rpaulo }
774 1.1 rpaulo }
775 1.1 rpaulo
776 1.1 rpaulo static void
777 1.11 yamt tcp_newreno_newack(struct tcpcb *tp, const struct tcphdr *th)
778 1.1 rpaulo {
779 1.1 rpaulo /*
780 1.4 rpaulo * If we are still in fast recovery (meaning we are using
781 1.4 rpaulo * NewReno and we have only received partial acks), do not
782 1.4 rpaulo * inflate the window yet.
783 1.1 rpaulo */
784 1.4 rpaulo if (tp->t_partialacks < 0)
785 1.4 rpaulo tcp_reno_newack(tp, th);
786 1.1 rpaulo }
787 1.1 rpaulo
788 1.1 rpaulo
789 1.14 matt const struct tcp_congctl tcp_newreno_ctl = {
790 1.1 rpaulo .fast_retransmit = tcp_newreno_fast_retransmit,
791 1.1 rpaulo .slow_retransmit = tcp_reno_slow_retransmit,
792 1.1 rpaulo .fast_retransmit_newack = tcp_newreno_fast_retransmit_newack,
793 1.1 rpaulo .newack = tcp_newreno_newack,
794 1.6 rpaulo .cong_exp = tcp_reno_congestion_exp,
795 1.1 rpaulo };
796 1.1 rpaulo
797 1.18 kefren /*
798 1.18 kefren * CUBIC - http://tools.ietf.org/html/draft-rhee-tcpm-cubic-02
799 1.18 kefren */
800 1.18 kefren
801 1.18 kefren /* Cubic prototypes */
802 1.18 kefren static void tcp_cubic_update_ctime(struct tcpcb *tp);
803 1.18 kefren static uint32_t tcp_cubic_diff_ctime(struct tcpcb *);
804 1.18 kefren static uint32_t tcp_cubic_cbrt(uint32_t);
805 1.19 kefren static ulong tcp_cubic_getW(struct tcpcb *, uint32_t, uint32_t);
806 1.18 kefren
807 1.18 kefren /* Cubic TIME functions - XXX I don't like using timevals and microuptime */
808 1.18 kefren /*
809 1.18 kefren * Set congestion timer to now
810 1.18 kefren */
811 1.18 kefren static void
812 1.18 kefren tcp_cubic_update_ctime(struct tcpcb *tp)
813 1.18 kefren {
814 1.18 kefren struct timeval now_timeval;
815 1.18 kefren
816 1.18 kefren getmicrouptime(&now_timeval);
817 1.18 kefren tp->snd_cubic_ctime = now_timeval.tv_sec * 1000 +
818 1.18 kefren now_timeval.tv_usec / 1000;
819 1.18 kefren }
820 1.18 kefren
821 1.18 kefren /*
822 1.18 kefren * miliseconds from last congestion
823 1.18 kefren */
824 1.18 kefren static uint32_t
825 1.18 kefren tcp_cubic_diff_ctime(struct tcpcb *tp)
826 1.18 kefren {
827 1.18 kefren struct timeval now_timeval;
828 1.18 kefren
829 1.18 kefren getmicrouptime(&now_timeval);
830 1.18 kefren return now_timeval.tv_sec * 1000 + now_timeval.tv_usec / 1000 -
831 1.18 kefren tp->snd_cubic_ctime;
832 1.18 kefren }
833 1.1 rpaulo
834 1.18 kefren /*
835 1.18 kefren * Approximate cubic root
836 1.18 kefren */
837 1.18 kefren #define CBRT_ROUNDS 30
838 1.18 kefren static uint32_t
839 1.18 kefren tcp_cubic_cbrt(uint32_t v)
840 1.18 kefren {
841 1.18 kefren int i, rounds = CBRT_ROUNDS;
842 1.18 kefren uint64_t x = v / 3;
843 1.18 kefren
844 1.18 kefren /* We fail to calculate correct for small numbers */
845 1.18 kefren if (v == 0)
846 1.18 kefren return 0;
847 1.18 kefren else if (v < 4)
848 1.18 kefren return 1;
849 1.18 kefren
850 1.18 kefren /*
851 1.18 kefren * largest x that 2*x^3+3*x fits 64bit
852 1.18 kefren * Avoid overflow for a time cost
853 1.18 kefren */
854 1.18 kefren if (x > 2097151)
855 1.18 kefren rounds += 10;
856 1.18 kefren
857 1.18 kefren for (i = 0; i < rounds; i++)
858 1.18 kefren if (rounds == CBRT_ROUNDS)
859 1.18 kefren x = (v + 2 * x * x * x) / (3 * x * x);
860 1.18 kefren else
861 1.18 kefren /* Avoid overflow */
862 1.18 kefren x = v / (3 * x * x) + 2 * x / 3;
863 1.18 kefren
864 1.18 kefren return (uint32_t)x;
865 1.18 kefren }
866 1.18 kefren
867 1.19 kefren /* Draft Rhee Section 3.1 - get W(t+rtt) - Eq. 1 */
868 1.19 kefren static ulong
869 1.19 kefren tcp_cubic_getW(struct tcpcb *tp, uint32_t ms_elapsed, uint32_t rtt)
870 1.18 kefren {
871 1.19 kefren uint32_t K;
872 1.19 kefren long tK3;
873 1.18 kefren
874 1.19 kefren /* Section 3.1 Eq. 2 */
875 1.19 kefren K = tcp_cubic_cbrt(tp->snd_cubic_wmax / CUBIC_BETAB *
876 1.18 kefren CUBIC_CB / CUBIC_CA);
877 1.19 kefren /* (t-K)^3 - not clear why is the measure unit mattering */
878 1.19 kefren tK3 = (long)(ms_elapsed + rtt) - (long)K;
879 1.19 kefren tK3 = tK3 * tK3 * tK3;
880 1.18 kefren
881 1.19 kefren return CUBIC_CA * tK3 / CUBIC_CB + tp->snd_cubic_wmax;
882 1.18 kefren }
883 1.18 kefren
884 1.18 kefren static void
885 1.18 kefren tcp_cubic_congestion_exp(struct tcpcb *tp)
886 1.18 kefren {
887 1.18 kefren
888 1.19 kefren /*
889 1.19 kefren * Congestion - Set WMax and shrink cwnd
890 1.19 kefren */
891 1.18 kefren tcp_cubic_update_ctime(tp);
892 1.18 kefren
893 1.18 kefren /* Section 3.6 - Fast Convergence */
894 1.18 kefren if (tp->snd_cubic_wmax < tp->snd_cubic_wmax_last) {
895 1.18 kefren tp->snd_cubic_wmax_last = tp->snd_cubic_wmax;
896 1.18 kefren tp->snd_cubic_wmax = tp->snd_cubic_wmax / 2 +
897 1.18 kefren tp->snd_cubic_wmax * CUBIC_BETAA / CUBIC_BETAB / 2;
898 1.18 kefren } else {
899 1.18 kefren tp->snd_cubic_wmax_last = tp->snd_cubic_wmax;
900 1.18 kefren tp->snd_cubic_wmax = tp->snd_cwnd;
901 1.18 kefren }
902 1.19 kefren
903 1.19 kefren tp->snd_cubic_wmax = max(tp->t_segsz, tp->snd_cubic_wmax);
904 1.19 kefren
905 1.19 kefren /* Shrink CWND */
906 1.18 kefren tcp_common_congestion_exp(tp, CUBIC_BETAA, CUBIC_BETAB);
907 1.18 kefren }
908 1.18 kefren
909 1.18 kefren static int
910 1.18 kefren tcp_cubic_fast_retransmit(struct tcpcb *tp, const struct tcphdr *th)
911 1.18 kefren {
912 1.18 kefren
913 1.18 kefren if (SEQ_LT(th->th_ack, tp->snd_high)) {
914 1.18 kefren /* See newreno */
915 1.18 kefren tp->t_dupacks = 0;
916 1.18 kefren return 1;
917 1.18 kefren }
918 1.18 kefren
919 1.18 kefren /*
920 1.19 kefren * mark WMax
921 1.18 kefren */
922 1.19 kefren tcp_cubic_congestion_exp(tp);
923 1.19 kefren
924 1.19 kefren /* Do fast retransmit */
925 1.19 kefren return tcp_reno_do_fast_retransmit(tp, th);
926 1.18 kefren }
927 1.18 kefren
928 1.18 kefren static void
929 1.18 kefren tcp_cubic_newack(struct tcpcb *tp, const struct tcphdr *th)
930 1.18 kefren {
931 1.18 kefren uint32_t ms_elapsed, rtt;
932 1.18 kefren u_long w_tcp;
933 1.18 kefren
934 1.19 kefren /* Congestion avoidance and not in fast recovery and usable rtt */
935 1.19 kefren if (tp->snd_cwnd > tp->snd_ssthresh && tp->t_partialacks < 0 &&
936 1.19 kefren /*
937 1.19 kefren * t_srtt is 1/32 units of slow ticks
938 1.19 kefren * converting it in ms would be equal to
939 1.19 kefren * (t_srtt >> 5) * 1000 / PR_SLOWHZ ~= (t_srtt << 5) / PR_SLOWHZ
940 1.19 kefren */
941 1.19 kefren (rtt = (tp->t_srtt << 5) / PR_SLOWHZ) > 0) {
942 1.18 kefren ms_elapsed = tcp_cubic_diff_ctime(tp);
943 1.18 kefren
944 1.19 kefren /* Compute W_tcp(t) */
945 1.19 kefren w_tcp = tp->snd_cubic_wmax * CUBIC_BETAA / CUBIC_BETAB +
946 1.18 kefren ms_elapsed / rtt / 3;
947 1.18 kefren
948 1.18 kefren if (tp->snd_cwnd > w_tcp) {
949 1.19 kefren /* Not in TCP friendly mode */
950 1.19 kefren tp->snd_cwnd += (tcp_cubic_getW(tp, ms_elapsed, rtt) -
951 1.19 kefren tp->snd_cwnd) / tp->snd_cwnd;
952 1.18 kefren } else {
953 1.18 kefren /* friendly TCP mode */
954 1.18 kefren tp->snd_cwnd = w_tcp;
955 1.18 kefren }
956 1.18 kefren
957 1.18 kefren /* Make sure we are within limits */
958 1.18 kefren tp->snd_cwnd = max(tp->snd_cwnd, tp->t_segsz);
959 1.18 kefren tp->snd_cwnd = min(tp->snd_cwnd, TCP_MAXWIN << tp->snd_scale);
960 1.18 kefren } else {
961 1.18 kefren /* Use New Reno */
962 1.18 kefren tcp_newreno_newack(tp, th);
963 1.18 kefren }
964 1.18 kefren }
965 1.18 kefren
966 1.18 kefren static void
967 1.18 kefren tcp_cubic_slow_retransmit(struct tcpcb *tp)
968 1.18 kefren {
969 1.18 kefren
970 1.19 kefren /* Timeout - Mark new congestion */
971 1.19 kefren tcp_cubic_congestion_exp(tp);
972 1.18 kefren
973 1.19 kefren /* Loss Window MUST be one segment. */
974 1.19 kefren tp->snd_cwnd = tp->t_segsz;
975 1.19 kefren tp->t_partialacks = -1;
976 1.19 kefren tp->t_dupacks = 0;
977 1.19 kefren tp->t_bytes_acked = 0;
978 1.19 kefren
979 1.19 kefren if (TCP_ECN_ALLOWED(tp))
980 1.19 kefren tp->t_flags |= TF_ECN_SND_CWR;
981 1.18 kefren }
982 1.18 kefren
983 1.18 kefren const struct tcp_congctl tcp_cubic_ctl = {
984 1.18 kefren .fast_retransmit = tcp_cubic_fast_retransmit,
985 1.18 kefren .slow_retransmit = tcp_cubic_slow_retransmit,
986 1.18 kefren .fast_retransmit_newack = tcp_newreno_fast_retransmit_newack,
987 1.18 kefren .newack = tcp_cubic_newack,
988 1.18 kefren .cong_exp = tcp_cubic_congestion_exp,
989 1.18 kefren };
990