tcp_congctl.c revision 1.24 1 1.24 maxv /* $NetBSD: tcp_congctl.c,v 1.24 2018/03/29 07:46:43 maxv Exp $ */
2 1.1 rpaulo
3 1.1 rpaulo /*-
4 1.1 rpaulo * Copyright (c) 1997, 1998, 1999, 2001, 2005, 2006 The NetBSD Foundation, Inc.
5 1.1 rpaulo * All rights reserved.
6 1.1 rpaulo *
7 1.1 rpaulo * This code is derived from software contributed to The NetBSD Foundation
8 1.1 rpaulo * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
9 1.1 rpaulo * Facility, NASA Ames Research Center.
10 1.1 rpaulo * This code is derived from software contributed to The NetBSD Foundation
11 1.1 rpaulo * by Charles M. Hannum.
12 1.1 rpaulo * This code is derived from software contributed to The NetBSD Foundation
13 1.1 rpaulo * by Rui Paulo.
14 1.1 rpaulo *
15 1.1 rpaulo * Redistribution and use in source and binary forms, with or without
16 1.1 rpaulo * modification, are permitted provided that the following conditions
17 1.1 rpaulo * are met:
18 1.1 rpaulo * 1. Redistributions of source code must retain the above copyright
19 1.1 rpaulo * notice, this list of conditions and the following disclaimer.
20 1.1 rpaulo * 2. Redistributions in binary form must reproduce the above copyright
21 1.1 rpaulo * notice, this list of conditions and the following disclaimer in the
22 1.1 rpaulo * documentation and/or other materials provided with the distribution.
23 1.1 rpaulo *
24 1.1 rpaulo * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25 1.1 rpaulo * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 1.1 rpaulo * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 1.1 rpaulo * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28 1.1 rpaulo * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 1.1 rpaulo * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 1.1 rpaulo * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 1.1 rpaulo * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 1.1 rpaulo * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 1.1 rpaulo * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 1.1 rpaulo * POSSIBILITY OF SUCH DAMAGE.
35 1.1 rpaulo */
36 1.1 rpaulo
37 1.1 rpaulo /*
38 1.1 rpaulo * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
39 1.1 rpaulo * All rights reserved.
40 1.1 rpaulo *
41 1.1 rpaulo * Redistribution and use in source and binary forms, with or without
42 1.1 rpaulo * modification, are permitted provided that the following conditions
43 1.1 rpaulo * are met:
44 1.1 rpaulo * 1. Redistributions of source code must retain the above copyright
45 1.1 rpaulo * notice, this list of conditions and the following disclaimer.
46 1.1 rpaulo * 2. Redistributions in binary form must reproduce the above copyright
47 1.1 rpaulo * notice, this list of conditions and the following disclaimer in the
48 1.1 rpaulo * documentation and/or other materials provided with the distribution.
49 1.1 rpaulo * 3. Neither the name of the project nor the names of its contributors
50 1.1 rpaulo * may be used to endorse or promote products derived from this software
51 1.1 rpaulo * without specific prior written permission.
52 1.1 rpaulo *
53 1.1 rpaulo * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
54 1.1 rpaulo * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 1.1 rpaulo * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 1.1 rpaulo * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
57 1.1 rpaulo * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 1.1 rpaulo * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 1.1 rpaulo * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 1.1 rpaulo * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 1.1 rpaulo * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 1.1 rpaulo * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 1.1 rpaulo * SUCH DAMAGE.
64 1.1 rpaulo */
65 1.1 rpaulo
66 1.1 rpaulo /*
67 1.1 rpaulo * @(#)COPYRIGHT 1.1 (NRL) 17 January 1995
68 1.1 rpaulo *
69 1.1 rpaulo * NRL grants permission for redistribution and use in source and binary
70 1.1 rpaulo * forms, with or without modification, of the software and documentation
71 1.1 rpaulo * created at NRL provided that the following conditions are met:
72 1.1 rpaulo *
73 1.1 rpaulo * 1. Redistributions of source code must retain the above copyright
74 1.1 rpaulo * notice, this list of conditions and the following disclaimer.
75 1.1 rpaulo * 2. Redistributions in binary form must reproduce the above copyright
76 1.1 rpaulo * notice, this list of conditions and the following disclaimer in the
77 1.1 rpaulo * documentation and/or other materials provided with the distribution.
78 1.1 rpaulo * 3. All advertising materials mentioning features or use of this software
79 1.1 rpaulo * must display the following acknowledgements:
80 1.1 rpaulo * This product includes software developed by the University of
81 1.1 rpaulo * California, Berkeley and its contributors.
82 1.1 rpaulo * This product includes software developed at the Information
83 1.1 rpaulo * Technology Division, US Naval Research Laboratory.
84 1.1 rpaulo * 4. Neither the name of the NRL nor the names of its contributors
85 1.1 rpaulo * may be used to endorse or promote products derived from this software
86 1.1 rpaulo * without specific prior written permission.
87 1.1 rpaulo *
88 1.1 rpaulo * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
89 1.1 rpaulo * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
90 1.1 rpaulo * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
91 1.1 rpaulo * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NRL OR
92 1.1 rpaulo * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
93 1.1 rpaulo * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
94 1.1 rpaulo * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
95 1.1 rpaulo * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
96 1.1 rpaulo * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
97 1.1 rpaulo * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
98 1.1 rpaulo * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
99 1.1 rpaulo *
100 1.1 rpaulo * The views and conclusions contained in the software and documentation
101 1.1 rpaulo * are those of the authors and should not be interpreted as representing
102 1.1 rpaulo * official policies, either expressed or implied, of the US Naval
103 1.1 rpaulo * Research Laboratory (NRL).
104 1.1 rpaulo */
105 1.1 rpaulo
106 1.1 rpaulo /*
107 1.1 rpaulo * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
108 1.1 rpaulo * The Regents of the University of California. All rights reserved.
109 1.1 rpaulo *
110 1.1 rpaulo * Redistribution and use in source and binary forms, with or without
111 1.1 rpaulo * modification, are permitted provided that the following conditions
112 1.1 rpaulo * are met:
113 1.1 rpaulo * 1. Redistributions of source code must retain the above copyright
114 1.1 rpaulo * notice, this list of conditions and the following disclaimer.
115 1.1 rpaulo * 2. Redistributions in binary form must reproduce the above copyright
116 1.1 rpaulo * notice, this list of conditions and the following disclaimer in the
117 1.1 rpaulo * documentation and/or other materials provided with the distribution.
118 1.1 rpaulo * 3. Neither the name of the University nor the names of its contributors
119 1.1 rpaulo * may be used to endorse or promote products derived from this software
120 1.1 rpaulo * without specific prior written permission.
121 1.1 rpaulo *
122 1.1 rpaulo * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
123 1.1 rpaulo * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
124 1.1 rpaulo * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
125 1.1 rpaulo * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
126 1.1 rpaulo * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
127 1.1 rpaulo * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
128 1.1 rpaulo * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
129 1.1 rpaulo * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
130 1.1 rpaulo * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
131 1.1 rpaulo * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
132 1.1 rpaulo * SUCH DAMAGE.
133 1.1 rpaulo *
134 1.1 rpaulo * @(#)tcp_input.c 8.12 (Berkeley) 5/24/95
135 1.1 rpaulo */
136 1.1 rpaulo
137 1.1 rpaulo #include <sys/cdefs.h>
138 1.24 maxv __KERNEL_RCSID(0, "$NetBSD: tcp_congctl.c,v 1.24 2018/03/29 07:46:43 maxv Exp $");
139 1.1 rpaulo
140 1.20 pooka #ifdef _KERNEL_OPT
141 1.1 rpaulo #include "opt_inet.h"
142 1.1 rpaulo #include "opt_tcp_debug.h"
143 1.1 rpaulo #include "opt_tcp_congctl.h"
144 1.20 pooka #endif
145 1.1 rpaulo
146 1.1 rpaulo #include <sys/param.h>
147 1.1 rpaulo #include <sys/systm.h>
148 1.1 rpaulo #include <sys/malloc.h>
149 1.1 rpaulo #include <sys/mbuf.h>
150 1.1 rpaulo #include <sys/protosw.h>
151 1.1 rpaulo #include <sys/socket.h>
152 1.1 rpaulo #include <sys/socketvar.h>
153 1.1 rpaulo #include <sys/errno.h>
154 1.1 rpaulo #include <sys/syslog.h>
155 1.1 rpaulo #include <sys/pool.h>
156 1.1 rpaulo #include <sys/domain.h>
157 1.1 rpaulo #include <sys/kernel.h>
158 1.13 xtraeme #include <sys/mutex.h>
159 1.1 rpaulo
160 1.1 rpaulo #include <net/if.h>
161 1.1 rpaulo
162 1.1 rpaulo #include <netinet/in.h>
163 1.1 rpaulo #include <netinet/in_systm.h>
164 1.1 rpaulo #include <netinet/ip.h>
165 1.1 rpaulo #include <netinet/in_pcb.h>
166 1.1 rpaulo #include <netinet/in_var.h>
167 1.1 rpaulo #include <netinet/ip_var.h>
168 1.1 rpaulo
169 1.1 rpaulo #ifdef INET6
170 1.1 rpaulo #include <netinet/ip6.h>
171 1.1 rpaulo #include <netinet6/ip6_var.h>
172 1.1 rpaulo #include <netinet6/in6_pcb.h>
173 1.1 rpaulo #include <netinet6/ip6_var.h>
174 1.1 rpaulo #include <netinet6/in6_var.h>
175 1.1 rpaulo #include <netinet/icmp6.h>
176 1.1 rpaulo #endif
177 1.1 rpaulo
178 1.1 rpaulo #include <netinet/tcp.h>
179 1.1 rpaulo #include <netinet/tcp_fsm.h>
180 1.1 rpaulo #include <netinet/tcp_seq.h>
181 1.1 rpaulo #include <netinet/tcp_timer.h>
182 1.1 rpaulo #include <netinet/tcp_var.h>
183 1.1 rpaulo #include <netinet/tcpip.h>
184 1.1 rpaulo #include <netinet/tcp_congctl.h>
185 1.1 rpaulo #ifdef TCP_DEBUG
186 1.1 rpaulo #include <netinet/tcp_debug.h>
187 1.1 rpaulo #endif
188 1.1 rpaulo
189 1.1 rpaulo /*
190 1.1 rpaulo * TODO:
191 1.1 rpaulo * consider separating the actual implementations in another file.
192 1.1 rpaulo */
193 1.1 rpaulo
194 1.18 kefren static void tcp_common_congestion_exp(struct tcpcb *, int, int);
195 1.18 kefren
196 1.18 kefren static int tcp_reno_do_fast_retransmit(struct tcpcb *, const struct tcphdr *);
197 1.11 yamt static int tcp_reno_fast_retransmit(struct tcpcb *, const struct tcphdr *);
198 1.1 rpaulo static void tcp_reno_slow_retransmit(struct tcpcb *);
199 1.11 yamt static void tcp_reno_fast_retransmit_newack(struct tcpcb *,
200 1.11 yamt const struct tcphdr *);
201 1.11 yamt static void tcp_reno_newack(struct tcpcb *, const struct tcphdr *);
202 1.6 rpaulo static void tcp_reno_congestion_exp(struct tcpcb *tp);
203 1.1 rpaulo
204 1.11 yamt static int tcp_newreno_fast_retransmit(struct tcpcb *, const struct tcphdr *);
205 1.1 rpaulo static void tcp_newreno_fast_retransmit_newack(struct tcpcb *,
206 1.11 yamt const struct tcphdr *);
207 1.11 yamt static void tcp_newreno_newack(struct tcpcb *, const struct tcphdr *);
208 1.1 rpaulo
209 1.18 kefren static int tcp_cubic_fast_retransmit(struct tcpcb *, const struct tcphdr *);
210 1.18 kefren static void tcp_cubic_slow_retransmit(struct tcpcb *tp);
211 1.18 kefren static void tcp_cubic_newack(struct tcpcb *, const struct tcphdr *);
212 1.18 kefren static void tcp_cubic_congestion_exp(struct tcpcb *);
213 1.1 rpaulo
214 1.1 rpaulo static void tcp_congctl_fillnames(void);
215 1.1 rpaulo
216 1.1 rpaulo extern int tcprexmtthresh;
217 1.1 rpaulo
218 1.1 rpaulo MALLOC_DEFINE(M_TCPCONGCTL, "tcpcongctl", "TCP congestion control structures");
219 1.1 rpaulo
220 1.14 matt /* currently selected global congestion control */
221 1.14 matt char tcp_congctl_global_name[TCPCC_MAXLEN];
222 1.14 matt
223 1.14 matt /* available global congestion control algorithms */
224 1.14 matt char tcp_congctl_avail[10 * TCPCC_MAXLEN];
225 1.14 matt
226 1.1 rpaulo /*
227 1.1 rpaulo * Used to list the available congestion control algorithms.
228 1.1 rpaulo */
229 1.14 matt TAILQ_HEAD(, tcp_congctlent) tcp_congctlhd =
230 1.14 matt TAILQ_HEAD_INITIALIZER(tcp_congctlhd);
231 1.14 matt
232 1.14 matt static struct tcp_congctlent * tcp_congctl_global;
233 1.1 rpaulo
234 1.13 xtraeme static kmutex_t tcp_congctl_mtx;
235 1.1 rpaulo
236 1.1 rpaulo void
237 1.1 rpaulo tcp_congctl_init(void)
238 1.1 rpaulo {
239 1.17 martin int r __diagused;
240 1.1 rpaulo
241 1.13 xtraeme mutex_init(&tcp_congctl_mtx, MUTEX_DEFAULT, IPL_NONE);
242 1.1 rpaulo
243 1.1 rpaulo /* Base algorithms. */
244 1.1 rpaulo r = tcp_congctl_register("reno", &tcp_reno_ctl);
245 1.1 rpaulo KASSERT(r == 0);
246 1.1 rpaulo r = tcp_congctl_register("newreno", &tcp_newreno_ctl);
247 1.1 rpaulo KASSERT(r == 0);
248 1.18 kefren r = tcp_congctl_register("cubic", &tcp_cubic_ctl);
249 1.18 kefren KASSERT(r == 0);
250 1.1 rpaulo
251 1.1 rpaulo /* NewReno is the default. */
252 1.1 rpaulo #ifndef TCP_CONGCTL_DEFAULT
253 1.1 rpaulo #define TCP_CONGCTL_DEFAULT "newreno"
254 1.1 rpaulo #endif
255 1.1 rpaulo
256 1.1 rpaulo r = tcp_congctl_select(NULL, TCP_CONGCTL_DEFAULT);
257 1.1 rpaulo KASSERT(r == 0);
258 1.1 rpaulo }
259 1.1 rpaulo
260 1.1 rpaulo /*
261 1.1 rpaulo * Register a congestion algorithm and select it if we have none.
262 1.1 rpaulo */
263 1.1 rpaulo int
264 1.14 matt tcp_congctl_register(const char *name, const struct tcp_congctl *tcc)
265 1.1 rpaulo {
266 1.1 rpaulo struct tcp_congctlent *ntcc, *tccp;
267 1.1 rpaulo
268 1.1 rpaulo TAILQ_FOREACH(tccp, &tcp_congctlhd, congctl_ent)
269 1.1 rpaulo if (!strcmp(name, tccp->congctl_name)) {
270 1.1 rpaulo /* name already registered */
271 1.1 rpaulo return EEXIST;
272 1.1 rpaulo }
273 1.1 rpaulo
274 1.14 matt ntcc = malloc(sizeof(*ntcc), M_TCPCONGCTL, M_WAITOK|M_ZERO);
275 1.1 rpaulo
276 1.1 rpaulo strlcpy(ntcc->congctl_name, name, sizeof(ntcc->congctl_name) - 1);
277 1.1 rpaulo ntcc->congctl_ctl = tcc;
278 1.1 rpaulo
279 1.1 rpaulo TAILQ_INSERT_TAIL(&tcp_congctlhd, ntcc, congctl_ent);
280 1.1 rpaulo tcp_congctl_fillnames();
281 1.1 rpaulo
282 1.1 rpaulo if (TAILQ_FIRST(&tcp_congctlhd) == ntcc)
283 1.1 rpaulo tcp_congctl_select(NULL, name);
284 1.1 rpaulo
285 1.1 rpaulo return 0;
286 1.1 rpaulo }
287 1.1 rpaulo
288 1.1 rpaulo int
289 1.1 rpaulo tcp_congctl_unregister(const char *name)
290 1.1 rpaulo {
291 1.1 rpaulo struct tcp_congctlent *tccp, *rtccp;
292 1.1 rpaulo unsigned int size;
293 1.1 rpaulo
294 1.1 rpaulo rtccp = NULL;
295 1.1 rpaulo size = 0;
296 1.1 rpaulo TAILQ_FOREACH(tccp, &tcp_congctlhd, congctl_ent) {
297 1.1 rpaulo if (!strcmp(name, tccp->congctl_name))
298 1.1 rpaulo rtccp = tccp;
299 1.1 rpaulo size++;
300 1.1 rpaulo }
301 1.1 rpaulo
302 1.1 rpaulo if (!rtccp)
303 1.1 rpaulo return ENOENT;
304 1.1 rpaulo
305 1.14 matt if (size <= 1 || tcp_congctl_global == rtccp || rtccp->congctl_refcnt)
306 1.1 rpaulo return EBUSY;
307 1.1 rpaulo
308 1.1 rpaulo TAILQ_REMOVE(&tcp_congctlhd, rtccp, congctl_ent);
309 1.1 rpaulo free(rtccp, M_TCPCONGCTL);
310 1.1 rpaulo tcp_congctl_fillnames();
311 1.1 rpaulo
312 1.1 rpaulo return 0;
313 1.1 rpaulo }
314 1.1 rpaulo
315 1.1 rpaulo /*
316 1.1 rpaulo * Select a congestion algorithm by name.
317 1.1 rpaulo */
318 1.1 rpaulo int
319 1.1 rpaulo tcp_congctl_select(struct tcpcb *tp, const char *name)
320 1.1 rpaulo {
321 1.14 matt struct tcp_congctlent *tccp, *old_tccp, *new_tccp;
322 1.14 matt bool old_found, new_found;
323 1.1 rpaulo
324 1.1 rpaulo KASSERT(name);
325 1.1 rpaulo
326 1.14 matt old_found = (tp == NULL || tp->t_congctl == NULL);
327 1.14 matt old_tccp = NULL;
328 1.14 matt new_found = false;
329 1.14 matt new_tccp = NULL;
330 1.14 matt
331 1.14 matt TAILQ_FOREACH(tccp, &tcp_congctlhd, congctl_ent) {
332 1.14 matt if (!old_found && tccp->congctl_ctl == tp->t_congctl) {
333 1.14 matt old_tccp = tccp;
334 1.14 matt old_found = true;
335 1.14 matt }
336 1.14 matt
337 1.14 matt if (!new_found && !strcmp(name, tccp->congctl_name)) {
338 1.14 matt new_tccp = tccp;
339 1.14 matt new_found = true;
340 1.14 matt }
341 1.14 matt
342 1.14 matt if (new_found && old_found) {
343 1.1 rpaulo if (tp) {
344 1.13 xtraeme mutex_enter(&tcp_congctl_mtx);
345 1.14 matt if (old_tccp)
346 1.14 matt old_tccp->congctl_refcnt--;
347 1.14 matt tp->t_congctl = new_tccp->congctl_ctl;
348 1.14 matt new_tccp->congctl_refcnt++;
349 1.13 xtraeme mutex_exit(&tcp_congctl_mtx);
350 1.1 rpaulo } else {
351 1.14 matt tcp_congctl_global = new_tccp;
352 1.1 rpaulo strlcpy(tcp_congctl_global_name,
353 1.14 matt new_tccp->congctl_name,
354 1.1 rpaulo sizeof(tcp_congctl_global_name) - 1);
355 1.1 rpaulo }
356 1.1 rpaulo return 0;
357 1.1 rpaulo }
358 1.14 matt }
359 1.14 matt
360 1.14 matt return EINVAL;
361 1.14 matt }
362 1.14 matt
363 1.14 matt void
364 1.14 matt tcp_congctl_release(struct tcpcb *tp)
365 1.14 matt {
366 1.14 matt struct tcp_congctlent *tccp;
367 1.14 matt
368 1.14 matt KASSERT(tp->t_congctl);
369 1.1 rpaulo
370 1.14 matt TAILQ_FOREACH(tccp, &tcp_congctlhd, congctl_ent) {
371 1.14 matt if (tccp->congctl_ctl == tp->t_congctl) {
372 1.14 matt tccp->congctl_refcnt--;
373 1.14 matt return;
374 1.14 matt }
375 1.14 matt }
376 1.1 rpaulo }
377 1.1 rpaulo
378 1.1 rpaulo /*
379 1.1 rpaulo * Returns the name of a congestion algorithm.
380 1.1 rpaulo */
381 1.1 rpaulo const char *
382 1.1 rpaulo tcp_congctl_bystruct(const struct tcp_congctl *tcc)
383 1.1 rpaulo {
384 1.1 rpaulo struct tcp_congctlent *tccp;
385 1.1 rpaulo
386 1.1 rpaulo KASSERT(tcc);
387 1.1 rpaulo
388 1.1 rpaulo TAILQ_FOREACH(tccp, &tcp_congctlhd, congctl_ent)
389 1.1 rpaulo if (tccp->congctl_ctl == tcc)
390 1.1 rpaulo return tccp->congctl_name;
391 1.1 rpaulo
392 1.1 rpaulo return NULL;
393 1.1 rpaulo }
394 1.1 rpaulo
395 1.1 rpaulo static void
396 1.1 rpaulo tcp_congctl_fillnames(void)
397 1.1 rpaulo {
398 1.1 rpaulo struct tcp_congctlent *tccp;
399 1.1 rpaulo const char *delim = " ";
400 1.1 rpaulo
401 1.1 rpaulo tcp_congctl_avail[0] = '\0';
402 1.1 rpaulo TAILQ_FOREACH(tccp, &tcp_congctlhd, congctl_ent) {
403 1.1 rpaulo strlcat(tcp_congctl_avail, tccp->congctl_name,
404 1.1 rpaulo sizeof(tcp_congctl_avail) - 1);
405 1.1 rpaulo if (TAILQ_NEXT(tccp, congctl_ent))
406 1.1 rpaulo strlcat(tcp_congctl_avail, delim,
407 1.1 rpaulo sizeof(tcp_congctl_avail) - 1);
408 1.1 rpaulo }
409 1.1 rpaulo
410 1.1 rpaulo }
411 1.1 rpaulo
412 1.1 rpaulo /* ------------------------------------------------------------------------ */
413 1.1 rpaulo
414 1.6 rpaulo /*
415 1.18 kefren * Common stuff
416 1.6 rpaulo */
417 1.18 kefren
418 1.18 kefren /* Window reduction (1-beta) for [New]Reno: 0.5 */
419 1.18 kefren #define RENO_BETAA 1
420 1.18 kefren #define RENO_BETAB 2
421 1.18 kefren /* Window reduction (1-beta) for Cubic: 0.8 */
422 1.18 kefren #define CUBIC_BETAA 4
423 1.18 kefren #define CUBIC_BETAB 5
424 1.18 kefren /* Draft Rhee Section 4.1 */
425 1.18 kefren #define CUBIC_CA 4
426 1.18 kefren #define CUBIC_CB 10
427 1.18 kefren
428 1.6 rpaulo static void
429 1.18 kefren tcp_common_congestion_exp(struct tcpcb *tp, int betaa, int betab)
430 1.1 rpaulo {
431 1.1 rpaulo u_int win;
432 1.1 rpaulo
433 1.1 rpaulo /*
434 1.18 kefren * Reduce the congestion window and the slow start threshold.
435 1.1 rpaulo */
436 1.18 kefren win = min(tp->snd_wnd, tp->snd_cwnd) * betaa / betab / tp->t_segsz;
437 1.1 rpaulo if (win < 2)
438 1.1 rpaulo win = 2;
439 1.1 rpaulo
440 1.1 rpaulo tp->snd_ssthresh = win * tp->t_segsz;
441 1.1 rpaulo tp->snd_recover = tp->snd_max;
442 1.1 rpaulo tp->snd_cwnd = tp->snd_ssthresh;
443 1.1 rpaulo
444 1.7 rpaulo /*
445 1.7 rpaulo * When using TCP ECN, notify the peer that
446 1.7 rpaulo * we reduced the cwnd.
447 1.7 rpaulo */
448 1.1 rpaulo if (TCP_ECN_ALLOWED(tp))
449 1.1 rpaulo tp->t_flags |= TF_ECN_SND_CWR;
450 1.1 rpaulo }
451 1.1 rpaulo
452 1.1 rpaulo
453 1.18 kefren /* ------------------------------------------------------------------------ */
454 1.18 kefren
455 1.18 kefren /*
456 1.18 kefren * TCP/Reno congestion control.
457 1.18 kefren */
458 1.18 kefren static void
459 1.18 kefren tcp_reno_congestion_exp(struct tcpcb *tp)
460 1.18 kefren {
461 1.18 kefren
462 1.18 kefren tcp_common_congestion_exp(tp, RENO_BETAA, RENO_BETAB);
463 1.18 kefren }
464 1.6 rpaulo
465 1.1 rpaulo static int
466 1.18 kefren tcp_reno_do_fast_retransmit(struct tcpcb *tp, const struct tcphdr *th)
467 1.1 rpaulo {
468 1.7 rpaulo /*
469 1.7 rpaulo * Dup acks mean that packets have left the
470 1.7 rpaulo * network (they're now cached at the receiver)
471 1.7 rpaulo * so bump cwnd by the amount in the receiver
472 1.7 rpaulo * to keep a constant cwnd packets in the
473 1.7 rpaulo * network.
474 1.7 rpaulo *
475 1.7 rpaulo * If we are using TCP/SACK, then enter
476 1.7 rpaulo * Fast Recovery if the receiver SACKs
477 1.7 rpaulo * data that is tcprexmtthresh * MSS
478 1.7 rpaulo * bytes past the last ACKed segment,
479 1.7 rpaulo * irrespective of the number of DupAcks.
480 1.7 rpaulo */
481 1.7 rpaulo
482 1.18 kefren tcp_seq onxt = tp->snd_nxt;
483 1.18 kefren
484 1.1 rpaulo tp->t_partialacks = 0;
485 1.1 rpaulo TCP_TIMER_DISARM(tp, TCPT_REXMT);
486 1.1 rpaulo tp->t_rtttime = 0;
487 1.1 rpaulo if (TCP_SACK_ENABLED(tp)) {
488 1.1 rpaulo tp->t_dupacks = tcprexmtthresh;
489 1.1 rpaulo tp->sack_newdata = tp->snd_nxt;
490 1.1 rpaulo tp->snd_cwnd = tp->t_segsz;
491 1.1 rpaulo (void) tcp_output(tp);
492 1.1 rpaulo return 0;
493 1.1 rpaulo }
494 1.1 rpaulo tp->snd_nxt = th->th_ack;
495 1.1 rpaulo tp->snd_cwnd = tp->t_segsz;
496 1.1 rpaulo (void) tcp_output(tp);
497 1.1 rpaulo tp->snd_cwnd = tp->snd_ssthresh + tp->t_segsz * tp->t_dupacks;
498 1.1 rpaulo if (SEQ_GT(onxt, tp->snd_nxt))
499 1.1 rpaulo tp->snd_nxt = onxt;
500 1.19 kefren
501 1.1 rpaulo return 0;
502 1.1 rpaulo }
503 1.1 rpaulo
504 1.18 kefren static int
505 1.18 kefren tcp_reno_fast_retransmit(struct tcpcb *tp, const struct tcphdr *th)
506 1.18 kefren {
507 1.18 kefren
508 1.19 kefren /*
509 1.19 kefren * We know we're losing at the current
510 1.19 kefren * window size so do congestion avoidance
511 1.19 kefren * (set ssthresh to half the current window
512 1.19 kefren * and pull our congestion window back to
513 1.19 kefren * the new ssthresh).
514 1.19 kefren */
515 1.19 kefren
516 1.18 kefren tcp_reno_congestion_exp(tp);
517 1.18 kefren return tcp_reno_do_fast_retransmit(tp, th);
518 1.18 kefren }
519 1.18 kefren
520 1.1 rpaulo static void
521 1.1 rpaulo tcp_reno_slow_retransmit(struct tcpcb *tp)
522 1.1 rpaulo {
523 1.1 rpaulo u_int win;
524 1.1 rpaulo
525 1.1 rpaulo /*
526 1.1 rpaulo * Close the congestion window down to one segment
527 1.1 rpaulo * (we'll open it by one segment for each ack we get).
528 1.1 rpaulo * Since we probably have a window's worth of unacked
529 1.1 rpaulo * data accumulated, this "slow start" keeps us from
530 1.1 rpaulo * dumping all that data as back-to-back packets (which
531 1.1 rpaulo * might overwhelm an intermediate gateway).
532 1.1 rpaulo *
533 1.1 rpaulo * There are two phases to the opening: Initially we
534 1.1 rpaulo * open by one mss on each ack. This makes the window
535 1.1 rpaulo * size increase exponentially with time. If the
536 1.1 rpaulo * window is larger than the path can handle, this
537 1.1 rpaulo * exponential growth results in dropped packet(s)
538 1.1 rpaulo * almost immediately. To get more time between
539 1.1 rpaulo * drops but still "push" the network to take advantage
540 1.1 rpaulo * of improving conditions, we switch from exponential
541 1.1 rpaulo * to linear window opening at some threshhold size.
542 1.1 rpaulo * For a threshhold, we use half the current window
543 1.1 rpaulo * size, truncated to a multiple of the mss.
544 1.1 rpaulo *
545 1.1 rpaulo * (the minimum cwnd that will give us exponential
546 1.1 rpaulo * growth is 2 mss. We don't allow the threshhold
547 1.1 rpaulo * to go below this.)
548 1.1 rpaulo */
549 1.1 rpaulo
550 1.1 rpaulo win = min(tp->snd_wnd, tp->snd_cwnd) / 2 / tp->t_segsz;
551 1.1 rpaulo if (win < 2)
552 1.1 rpaulo win = 2;
553 1.1 rpaulo /* Loss Window MUST be one segment. */
554 1.1 rpaulo tp->snd_cwnd = tp->t_segsz;
555 1.1 rpaulo tp->snd_ssthresh = win * tp->t_segsz;
556 1.1 rpaulo tp->t_partialacks = -1;
557 1.1 rpaulo tp->t_dupacks = 0;
558 1.8 yamt tp->t_bytes_acked = 0;
559 1.18 kefren
560 1.18 kefren if (TCP_ECN_ALLOWED(tp))
561 1.18 kefren tp->t_flags |= TF_ECN_SND_CWR;
562 1.1 rpaulo }
563 1.1 rpaulo
564 1.1 rpaulo static void
565 1.11 yamt tcp_reno_fast_retransmit_newack(struct tcpcb *tp,
566 1.12 christos const struct tcphdr *th)
567 1.1 rpaulo {
568 1.1 rpaulo if (tp->t_partialacks < 0) {
569 1.1 rpaulo /*
570 1.1 rpaulo * We were not in fast recovery. Reset the duplicate ack
571 1.1 rpaulo * counter.
572 1.1 rpaulo */
573 1.1 rpaulo tp->t_dupacks = 0;
574 1.1 rpaulo } else {
575 1.1 rpaulo /*
576 1.1 rpaulo * Clamp the congestion window to the crossover point and
577 1.1 rpaulo * exit fast recovery.
578 1.1 rpaulo */
579 1.1 rpaulo if (tp->snd_cwnd > tp->snd_ssthresh)
580 1.1 rpaulo tp->snd_cwnd = tp->snd_ssthresh;
581 1.1 rpaulo tp->t_partialacks = -1;
582 1.1 rpaulo tp->t_dupacks = 0;
583 1.8 yamt tp->t_bytes_acked = 0;
584 1.18 kefren if (TCP_SACK_ENABLED(tp) && SEQ_GT(th->th_ack, tp->snd_fack))
585 1.18 kefren tp->snd_fack = th->th_ack;
586 1.1 rpaulo }
587 1.1 rpaulo }
588 1.1 rpaulo
589 1.1 rpaulo static void
590 1.11 yamt tcp_reno_newack(struct tcpcb *tp, const struct tcphdr *th)
591 1.1 rpaulo {
592 1.1 rpaulo /*
593 1.1 rpaulo * When new data is acked, open the congestion window.
594 1.1 rpaulo */
595 1.4 rpaulo
596 1.4 rpaulo u_int cw = tp->snd_cwnd;
597 1.4 rpaulo u_int incr = tp->t_segsz;
598 1.4 rpaulo
599 1.8 yamt if (tcp_do_abc) {
600 1.8 yamt
601 1.8 yamt /*
602 1.8 yamt * RFC 3465 Appropriate Byte Counting (ABC)
603 1.8 yamt */
604 1.8 yamt
605 1.8 yamt int acked = th->th_ack - tp->snd_una;
606 1.8 yamt
607 1.8 yamt if (cw >= tp->snd_ssthresh) {
608 1.8 yamt tp->t_bytes_acked += acked;
609 1.8 yamt if (tp->t_bytes_acked >= cw) {
610 1.8 yamt /* Time to increase the window. */
611 1.8 yamt tp->t_bytes_acked -= cw;
612 1.8 yamt } else {
613 1.8 yamt /* No need to increase yet. */
614 1.8 yamt incr = 0;
615 1.8 yamt }
616 1.8 yamt } else {
617 1.8 yamt /*
618 1.8 yamt * use 2*SMSS or 1*SMSS for the "L" param,
619 1.8 yamt * depending on sysctl setting.
620 1.8 yamt *
621 1.8 yamt * (See RFC 3465 2.3 Choosing the Limit)
622 1.8 yamt */
623 1.8 yamt u_int abc_lim;
624 1.8 yamt
625 1.9 yamt abc_lim = (tcp_abc_aggressive == 0 ||
626 1.9 yamt tp->snd_nxt != tp->snd_max) ? incr : incr * 2;
627 1.8 yamt incr = min(acked, abc_lim);
628 1.8 yamt }
629 1.8 yamt } else {
630 1.8 yamt
631 1.8 yamt /*
632 1.8 yamt * If the window gives us less than ssthresh packets
633 1.8 yamt * in flight, open exponentially (segsz per packet).
634 1.8 yamt * Otherwise open linearly: segsz per window
635 1.8 yamt * (segsz^2 / cwnd per packet).
636 1.8 yamt */
637 1.8 yamt
638 1.8 yamt if (cw >= tp->snd_ssthresh) {
639 1.8 yamt incr = incr * incr / cw;
640 1.8 yamt }
641 1.8 yamt }
642 1.4 rpaulo
643 1.4 rpaulo tp->snd_cwnd = min(cw + incr, TCP_MAXWIN << tp->snd_scale);
644 1.1 rpaulo }
645 1.1 rpaulo
646 1.14 matt const struct tcp_congctl tcp_reno_ctl = {
647 1.1 rpaulo .fast_retransmit = tcp_reno_fast_retransmit,
648 1.1 rpaulo .slow_retransmit = tcp_reno_slow_retransmit,
649 1.1 rpaulo .fast_retransmit_newack = tcp_reno_fast_retransmit_newack,
650 1.1 rpaulo .newack = tcp_reno_newack,
651 1.6 rpaulo .cong_exp = tcp_reno_congestion_exp,
652 1.1 rpaulo };
653 1.1 rpaulo
654 1.1 rpaulo /*
655 1.1 rpaulo * TCP/NewReno Congestion control.
656 1.1 rpaulo */
657 1.1 rpaulo static int
658 1.11 yamt tcp_newreno_fast_retransmit(struct tcpcb *tp, const struct tcphdr *th)
659 1.1 rpaulo {
660 1.16 yamt
661 1.1 rpaulo if (SEQ_LT(th->th_ack, tp->snd_high)) {
662 1.1 rpaulo /*
663 1.1 rpaulo * False fast retransmit after timeout.
664 1.1 rpaulo * Do not enter fast recovery
665 1.1 rpaulo */
666 1.1 rpaulo tp->t_dupacks = 0;
667 1.1 rpaulo return 1;
668 1.1 rpaulo }
669 1.16 yamt /*
670 1.16 yamt * Fast retransmit is same as reno.
671 1.16 yamt */
672 1.16 yamt return tcp_reno_fast_retransmit(tp, th);
673 1.1 rpaulo }
674 1.1 rpaulo
675 1.1 rpaulo /*
676 1.1 rpaulo * Implement the NewReno response to a new ack, checking for partial acks in
677 1.1 rpaulo * fast recovery.
678 1.1 rpaulo */
679 1.1 rpaulo static void
680 1.11 yamt tcp_newreno_fast_retransmit_newack(struct tcpcb *tp, const struct tcphdr *th)
681 1.1 rpaulo {
682 1.1 rpaulo if (tp->t_partialacks < 0) {
683 1.1 rpaulo /*
684 1.1 rpaulo * We were not in fast recovery. Reset the duplicate ack
685 1.1 rpaulo * counter.
686 1.1 rpaulo */
687 1.1 rpaulo tp->t_dupacks = 0;
688 1.1 rpaulo } else if (SEQ_LT(th->th_ack, tp->snd_recover)) {
689 1.1 rpaulo /*
690 1.1 rpaulo * This is a partial ack. Retransmit the first unacknowledged
691 1.1 rpaulo * segment and deflate the congestion window by the amount of
692 1.1 rpaulo * acknowledged data. Do not exit fast recovery.
693 1.1 rpaulo */
694 1.1 rpaulo tcp_seq onxt = tp->snd_nxt;
695 1.1 rpaulo u_long ocwnd = tp->snd_cwnd;
696 1.18 kefren int sack_num_segs = 1, sack_bytes_rxmt = 0;
697 1.1 rpaulo
698 1.1 rpaulo /*
699 1.1 rpaulo * snd_una has not yet been updated and the socket's send
700 1.1 rpaulo * buffer has not yet drained off the ACK'd data, so we
701 1.1 rpaulo * have to leave snd_una as it was to get the correct data
702 1.1 rpaulo * offset in tcp_output().
703 1.1 rpaulo */
704 1.18 kefren tp->t_partialacks++;
705 1.18 kefren TCP_TIMER_DISARM(tp, TCPT_REXMT);
706 1.1 rpaulo tp->t_rtttime = 0;
707 1.18 kefren
708 1.18 kefren if (TCP_SACK_ENABLED(tp)) {
709 1.18 kefren /*
710 1.18 kefren * Partial ack handling within a sack recovery episode.
711 1.18 kefren * Keeping this very simple for now. When a partial ack
712 1.18 kefren * is received, force snd_cwnd to a value that will
713 1.18 kefren * allow the sender to transmit no more than 2 segments.
714 1.18 kefren * If necessary, a fancier scheme can be adopted at a
715 1.18 kefren * later point, but for now, the goal is to prevent the
716 1.18 kefren * sender from bursting a large amount of data in the
717 1.18 kefren * midst of sack recovery.
718 1.18 kefren */
719 1.18 kefren
720 1.18 kefren /*
721 1.18 kefren * send one or 2 segments based on how much
722 1.18 kefren * new data was acked
723 1.18 kefren */
724 1.18 kefren if (((th->th_ack - tp->snd_una) / tp->t_segsz) > 2)
725 1.18 kefren sack_num_segs = 2;
726 1.18 kefren (void)tcp_sack_output(tp, &sack_bytes_rxmt);
727 1.18 kefren tp->snd_cwnd = sack_bytes_rxmt +
728 1.18 kefren (tp->snd_nxt - tp->sack_newdata) +
729 1.18 kefren sack_num_segs * tp->t_segsz;
730 1.18 kefren tp->t_flags |= TF_ACKNOW;
731 1.18 kefren (void) tcp_output(tp);
732 1.18 kefren } else {
733 1.23 skrll tp->snd_nxt = th->th_ack;
734 1.18 kefren /*
735 1.18 kefren * Set snd_cwnd to one segment beyond ACK'd offset
736 1.18 kefren * snd_una is not yet updated when we're called
737 1.18 kefren */
738 1.18 kefren tp->snd_cwnd = tp->t_segsz + (th->th_ack - tp->snd_una);
739 1.18 kefren (void) tcp_output(tp);
740 1.18 kefren tp->snd_cwnd = ocwnd;
741 1.18 kefren if (SEQ_GT(onxt, tp->snd_nxt))
742 1.18 kefren tp->snd_nxt = onxt;
743 1.18 kefren /*
744 1.18 kefren * Partial window deflation. Relies on fact that
745 1.18 kefren * tp->snd_una not updated yet.
746 1.18 kefren */
747 1.18 kefren tp->snd_cwnd -= (th->th_ack - tp->snd_una -
748 1.18 kefren tp->t_segsz);
749 1.18 kefren }
750 1.1 rpaulo } else {
751 1.1 rpaulo /*
752 1.1 rpaulo * Complete ack. Inflate the congestion window to ssthresh
753 1.1 rpaulo * and exit fast recovery.
754 1.1 rpaulo *
755 1.1 rpaulo * Window inflation should have left us with approx.
756 1.1 rpaulo * snd_ssthresh outstanding data. But in case we
757 1.1 rpaulo * would be inclined to send a burst, better to do
758 1.1 rpaulo * it via the slow start mechanism.
759 1.1 rpaulo */
760 1.1 rpaulo if (SEQ_SUB(tp->snd_max, th->th_ack) < tp->snd_ssthresh)
761 1.1 rpaulo tp->snd_cwnd = SEQ_SUB(tp->snd_max, th->th_ack)
762 1.1 rpaulo + tp->t_segsz;
763 1.1 rpaulo else
764 1.1 rpaulo tp->snd_cwnd = tp->snd_ssthresh;
765 1.1 rpaulo tp->t_partialacks = -1;
766 1.1 rpaulo tp->t_dupacks = 0;
767 1.8 yamt tp->t_bytes_acked = 0;
768 1.18 kefren if (TCP_SACK_ENABLED(tp) && SEQ_GT(th->th_ack, tp->snd_fack))
769 1.18 kefren tp->snd_fack = th->th_ack;
770 1.1 rpaulo }
771 1.1 rpaulo }
772 1.1 rpaulo
773 1.1 rpaulo static void
774 1.11 yamt tcp_newreno_newack(struct tcpcb *tp, const struct tcphdr *th)
775 1.1 rpaulo {
776 1.1 rpaulo /*
777 1.4 rpaulo * If we are still in fast recovery (meaning we are using
778 1.4 rpaulo * NewReno and we have only received partial acks), do not
779 1.4 rpaulo * inflate the window yet.
780 1.1 rpaulo */
781 1.4 rpaulo if (tp->t_partialacks < 0)
782 1.4 rpaulo tcp_reno_newack(tp, th);
783 1.1 rpaulo }
784 1.1 rpaulo
785 1.1 rpaulo
786 1.14 matt const struct tcp_congctl tcp_newreno_ctl = {
787 1.1 rpaulo .fast_retransmit = tcp_newreno_fast_retransmit,
788 1.1 rpaulo .slow_retransmit = tcp_reno_slow_retransmit,
789 1.1 rpaulo .fast_retransmit_newack = tcp_newreno_fast_retransmit_newack,
790 1.1 rpaulo .newack = tcp_newreno_newack,
791 1.6 rpaulo .cong_exp = tcp_reno_congestion_exp,
792 1.1 rpaulo };
793 1.1 rpaulo
794 1.18 kefren /*
795 1.18 kefren * CUBIC - http://tools.ietf.org/html/draft-rhee-tcpm-cubic-02
796 1.18 kefren */
797 1.18 kefren
798 1.18 kefren /* Cubic prototypes */
799 1.18 kefren static void tcp_cubic_update_ctime(struct tcpcb *tp);
800 1.18 kefren static uint32_t tcp_cubic_diff_ctime(struct tcpcb *);
801 1.18 kefren static uint32_t tcp_cubic_cbrt(uint32_t);
802 1.19 kefren static ulong tcp_cubic_getW(struct tcpcb *, uint32_t, uint32_t);
803 1.18 kefren
804 1.18 kefren /* Cubic TIME functions - XXX I don't like using timevals and microuptime */
805 1.18 kefren /*
806 1.18 kefren * Set congestion timer to now
807 1.18 kefren */
808 1.18 kefren static void
809 1.18 kefren tcp_cubic_update_ctime(struct tcpcb *tp)
810 1.18 kefren {
811 1.18 kefren struct timeval now_timeval;
812 1.18 kefren
813 1.18 kefren getmicrouptime(&now_timeval);
814 1.18 kefren tp->snd_cubic_ctime = now_timeval.tv_sec * 1000 +
815 1.18 kefren now_timeval.tv_usec / 1000;
816 1.18 kefren }
817 1.18 kefren
818 1.18 kefren /*
819 1.18 kefren * miliseconds from last congestion
820 1.18 kefren */
821 1.18 kefren static uint32_t
822 1.18 kefren tcp_cubic_diff_ctime(struct tcpcb *tp)
823 1.18 kefren {
824 1.18 kefren struct timeval now_timeval;
825 1.18 kefren
826 1.18 kefren getmicrouptime(&now_timeval);
827 1.18 kefren return now_timeval.tv_sec * 1000 + now_timeval.tv_usec / 1000 -
828 1.18 kefren tp->snd_cubic_ctime;
829 1.18 kefren }
830 1.1 rpaulo
831 1.18 kefren /*
832 1.18 kefren * Approximate cubic root
833 1.18 kefren */
834 1.18 kefren #define CBRT_ROUNDS 30
835 1.18 kefren static uint32_t
836 1.18 kefren tcp_cubic_cbrt(uint32_t v)
837 1.18 kefren {
838 1.18 kefren int i, rounds = CBRT_ROUNDS;
839 1.18 kefren uint64_t x = v / 3;
840 1.18 kefren
841 1.18 kefren /* We fail to calculate correct for small numbers */
842 1.18 kefren if (v == 0)
843 1.18 kefren return 0;
844 1.18 kefren else if (v < 4)
845 1.18 kefren return 1;
846 1.18 kefren
847 1.18 kefren /*
848 1.18 kefren * largest x that 2*x^3+3*x fits 64bit
849 1.18 kefren * Avoid overflow for a time cost
850 1.18 kefren */
851 1.18 kefren if (x > 2097151)
852 1.18 kefren rounds += 10;
853 1.18 kefren
854 1.18 kefren for (i = 0; i < rounds; i++)
855 1.18 kefren if (rounds == CBRT_ROUNDS)
856 1.18 kefren x = (v + 2 * x * x * x) / (3 * x * x);
857 1.18 kefren else
858 1.18 kefren /* Avoid overflow */
859 1.18 kefren x = v / (3 * x * x) + 2 * x / 3;
860 1.18 kefren
861 1.18 kefren return (uint32_t)x;
862 1.18 kefren }
863 1.18 kefren
864 1.19 kefren /* Draft Rhee Section 3.1 - get W(t+rtt) - Eq. 1 */
865 1.19 kefren static ulong
866 1.19 kefren tcp_cubic_getW(struct tcpcb *tp, uint32_t ms_elapsed, uint32_t rtt)
867 1.18 kefren {
868 1.19 kefren uint32_t K;
869 1.19 kefren long tK3;
870 1.18 kefren
871 1.19 kefren /* Section 3.1 Eq. 2 */
872 1.19 kefren K = tcp_cubic_cbrt(tp->snd_cubic_wmax / CUBIC_BETAB *
873 1.18 kefren CUBIC_CB / CUBIC_CA);
874 1.19 kefren /* (t-K)^3 - not clear why is the measure unit mattering */
875 1.19 kefren tK3 = (long)(ms_elapsed + rtt) - (long)K;
876 1.19 kefren tK3 = tK3 * tK3 * tK3;
877 1.18 kefren
878 1.19 kefren return CUBIC_CA * tK3 / CUBIC_CB + tp->snd_cubic_wmax;
879 1.18 kefren }
880 1.18 kefren
881 1.18 kefren static void
882 1.18 kefren tcp_cubic_congestion_exp(struct tcpcb *tp)
883 1.18 kefren {
884 1.18 kefren
885 1.19 kefren /*
886 1.19 kefren * Congestion - Set WMax and shrink cwnd
887 1.19 kefren */
888 1.18 kefren tcp_cubic_update_ctime(tp);
889 1.18 kefren
890 1.18 kefren /* Section 3.6 - Fast Convergence */
891 1.18 kefren if (tp->snd_cubic_wmax < tp->snd_cubic_wmax_last) {
892 1.18 kefren tp->snd_cubic_wmax_last = tp->snd_cubic_wmax;
893 1.18 kefren tp->snd_cubic_wmax = tp->snd_cubic_wmax / 2 +
894 1.18 kefren tp->snd_cubic_wmax * CUBIC_BETAA / CUBIC_BETAB / 2;
895 1.18 kefren } else {
896 1.18 kefren tp->snd_cubic_wmax_last = tp->snd_cubic_wmax;
897 1.18 kefren tp->snd_cubic_wmax = tp->snd_cwnd;
898 1.18 kefren }
899 1.19 kefren
900 1.19 kefren tp->snd_cubic_wmax = max(tp->t_segsz, tp->snd_cubic_wmax);
901 1.19 kefren
902 1.19 kefren /* Shrink CWND */
903 1.18 kefren tcp_common_congestion_exp(tp, CUBIC_BETAA, CUBIC_BETAB);
904 1.18 kefren }
905 1.18 kefren
906 1.18 kefren static int
907 1.18 kefren tcp_cubic_fast_retransmit(struct tcpcb *tp, const struct tcphdr *th)
908 1.18 kefren {
909 1.18 kefren
910 1.18 kefren if (SEQ_LT(th->th_ack, tp->snd_high)) {
911 1.18 kefren /* See newreno */
912 1.18 kefren tp->t_dupacks = 0;
913 1.18 kefren return 1;
914 1.18 kefren }
915 1.18 kefren
916 1.18 kefren /*
917 1.19 kefren * mark WMax
918 1.18 kefren */
919 1.19 kefren tcp_cubic_congestion_exp(tp);
920 1.19 kefren
921 1.19 kefren /* Do fast retransmit */
922 1.19 kefren return tcp_reno_do_fast_retransmit(tp, th);
923 1.18 kefren }
924 1.18 kefren
925 1.18 kefren static void
926 1.18 kefren tcp_cubic_newack(struct tcpcb *tp, const struct tcphdr *th)
927 1.18 kefren {
928 1.18 kefren uint32_t ms_elapsed, rtt;
929 1.18 kefren u_long w_tcp;
930 1.18 kefren
931 1.19 kefren /* Congestion avoidance and not in fast recovery and usable rtt */
932 1.19 kefren if (tp->snd_cwnd > tp->snd_ssthresh && tp->t_partialacks < 0 &&
933 1.19 kefren /*
934 1.19 kefren * t_srtt is 1/32 units of slow ticks
935 1.19 kefren * converting it in ms would be equal to
936 1.19 kefren * (t_srtt >> 5) * 1000 / PR_SLOWHZ ~= (t_srtt << 5) / PR_SLOWHZ
937 1.19 kefren */
938 1.19 kefren (rtt = (tp->t_srtt << 5) / PR_SLOWHZ) > 0) {
939 1.18 kefren ms_elapsed = tcp_cubic_diff_ctime(tp);
940 1.18 kefren
941 1.19 kefren /* Compute W_tcp(t) */
942 1.19 kefren w_tcp = tp->snd_cubic_wmax * CUBIC_BETAA / CUBIC_BETAB +
943 1.18 kefren ms_elapsed / rtt / 3;
944 1.18 kefren
945 1.18 kefren if (tp->snd_cwnd > w_tcp) {
946 1.19 kefren /* Not in TCP friendly mode */
947 1.19 kefren tp->snd_cwnd += (tcp_cubic_getW(tp, ms_elapsed, rtt) -
948 1.19 kefren tp->snd_cwnd) / tp->snd_cwnd;
949 1.18 kefren } else {
950 1.18 kefren /* friendly TCP mode */
951 1.18 kefren tp->snd_cwnd = w_tcp;
952 1.18 kefren }
953 1.18 kefren
954 1.18 kefren /* Make sure we are within limits */
955 1.18 kefren tp->snd_cwnd = max(tp->snd_cwnd, tp->t_segsz);
956 1.18 kefren tp->snd_cwnd = min(tp->snd_cwnd, TCP_MAXWIN << tp->snd_scale);
957 1.18 kefren } else {
958 1.18 kefren /* Use New Reno */
959 1.18 kefren tcp_newreno_newack(tp, th);
960 1.18 kefren }
961 1.18 kefren }
962 1.18 kefren
963 1.18 kefren static void
964 1.18 kefren tcp_cubic_slow_retransmit(struct tcpcb *tp)
965 1.18 kefren {
966 1.18 kefren
967 1.19 kefren /* Timeout - Mark new congestion */
968 1.19 kefren tcp_cubic_congestion_exp(tp);
969 1.18 kefren
970 1.19 kefren /* Loss Window MUST be one segment. */
971 1.19 kefren tp->snd_cwnd = tp->t_segsz;
972 1.19 kefren tp->t_partialacks = -1;
973 1.19 kefren tp->t_dupacks = 0;
974 1.19 kefren tp->t_bytes_acked = 0;
975 1.19 kefren
976 1.19 kefren if (TCP_ECN_ALLOWED(tp))
977 1.19 kefren tp->t_flags |= TF_ECN_SND_CWR;
978 1.18 kefren }
979 1.18 kefren
980 1.18 kefren const struct tcp_congctl tcp_cubic_ctl = {
981 1.18 kefren .fast_retransmit = tcp_cubic_fast_retransmit,
982 1.18 kefren .slow_retransmit = tcp_cubic_slow_retransmit,
983 1.18 kefren .fast_retransmit_newack = tcp_newreno_fast_retransmit_newack,
984 1.18 kefren .newack = tcp_cubic_newack,
985 1.18 kefren .cong_exp = tcp_cubic_congestion_exp,
986 1.18 kefren };
987