tcp_input.c revision 1.101 1 /* $NetBSD: tcp_input.c,v 1.101 1999/12/22 04:03:02 itojun Exp $ */
2
3 /*
4 %%% portions-copyright-nrl-95
5 Portions of this software are Copyright 1995-1998 by Randall Atkinson,
6 Ronald Lee, Daniel McDonald, Bao Phan, and Chris Winters. All Rights
7 Reserved. All rights under this copyright have been assigned to the US
8 Naval Research Laboratory (NRL). The NRL Copyright Notice and License
9 Agreement Version 1.1 (January 17, 1995) applies to these portions of the
10 software.
11 You should have received a copy of the license with this software. If you
12 didn't get a copy, you may request one from <license (at) ipv6.nrl.navy.mil>.
13
14 */
15
16 /*
17 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
18 * All rights reserved.
19 *
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
23 * 1. Redistributions of source code must retain the above copyright
24 * notice, this list of conditions and the following disclaimer.
25 * 2. Redistributions in binary form must reproduce the above copyright
26 * notice, this list of conditions and the following disclaimer in the
27 * documentation and/or other materials provided with the distribution.
28 * 3. Neither the name of the project nor the names of its contributors
29 * may be used to endorse or promote products derived from this software
30 * without specific prior written permission.
31 *
32 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
33 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
36 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42 * SUCH DAMAGE.
43 */
44
45 /*-
46 * Copyright (c) 1997, 1998, 1999 The NetBSD Foundation, Inc.
47 * All rights reserved.
48 *
49 * This code is derived from software contributed to The NetBSD Foundation
50 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
51 * Facility, NASA Ames Research Center.
52 *
53 * Redistribution and use in source and binary forms, with or without
54 * modification, are permitted provided that the following conditions
55 * are met:
56 * 1. Redistributions of source code must retain the above copyright
57 * notice, this list of conditions and the following disclaimer.
58 * 2. Redistributions in binary form must reproduce the above copyright
59 * notice, this list of conditions and the following disclaimer in the
60 * documentation and/or other materials provided with the distribution.
61 * 3. All advertising materials mentioning features or use of this software
62 * must display the following acknowledgement:
63 * This product includes software developed by the NetBSD
64 * Foundation, Inc. and its contributors.
65 * 4. Neither the name of The NetBSD Foundation nor the names of its
66 * contributors may be used to endorse or promote products derived
67 * from this software without specific prior written permission.
68 *
69 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
70 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
71 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
72 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
73 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
74 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
75 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
76 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
77 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
78 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
79 * POSSIBILITY OF SUCH DAMAGE.
80 */
81
82 /*
83 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
84 * The Regents of the University of California. All rights reserved.
85 *
86 * Redistribution and use in source and binary forms, with or without
87 * modification, are permitted provided that the following conditions
88 * are met:
89 * 1. Redistributions of source code must retain the above copyright
90 * notice, this list of conditions and the following disclaimer.
91 * 2. Redistributions in binary form must reproduce the above copyright
92 * notice, this list of conditions and the following disclaimer in the
93 * documentation and/or other materials provided with the distribution.
94 * 3. All advertising materials mentioning features or use of this software
95 * must display the following acknowledgement:
96 * This product includes software developed by the University of
97 * California, Berkeley and its contributors.
98 * 4. Neither the name of the University nor the names of its contributors
99 * may be used to endorse or promote products derived from this software
100 * without specific prior written permission.
101 *
102 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
103 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
104 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
105 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
106 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
107 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
108 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
109 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
110 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
111 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
112 * SUCH DAMAGE.
113 *
114 * @(#)tcp_input.c 8.12 (Berkeley) 5/24/95
115 */
116
117 /*
118 * TODO list for SYN cache stuff:
119 *
120 * Find room for a "state" field, which is needed to keep a
121 * compressed state for TIME_WAIT TCBs. It's been noted already
122 * that this is fairly important for very high-volume web and
123 * mail servers, which use a large number of short-lived
124 * connections.
125 */
126
127 #include "opt_inet.h"
128 #include "opt_ipsec.h"
129
130 #include <sys/param.h>
131 #include <sys/systm.h>
132 #include <sys/malloc.h>
133 #include <sys/mbuf.h>
134 #include <sys/protosw.h>
135 #include <sys/socket.h>
136 #include <sys/socketvar.h>
137 #include <sys/errno.h>
138 #include <sys/syslog.h>
139 #include <sys/pool.h>
140 #include <sys/domain.h>
141
142 #include <net/if.h>
143 #include <net/route.h>
144 #include <net/if_types.h>
145
146 #include <netinet/in.h>
147 #include <netinet/in_systm.h>
148 #include <netinet/ip.h>
149 #include <netinet/in_pcb.h>
150 #include <netinet/ip_var.h>
151
152 #ifdef INET6
153 #ifndef INET
154 #include <netinet/in.h>
155 #endif
156 #include <netinet/ip6.h>
157 #include <netinet6/in6_pcb.h>
158 #include <netinet6/ip6_var.h>
159 #include <netinet6/in6_var.h>
160 #include <netinet/icmp6.h>
161 #include <netinet6/nd6.h>
162 #endif
163
164 #ifdef PULLDOWN_TEST
165 #ifndef INET6
166 /* always need ip6.h for IP6_EXTHDR_GET */
167 #include <netinet/ip6.h>
168 #endif
169 #endif
170
171 #include <netinet/tcp.h>
172 #include <netinet/tcp_fsm.h>
173 #include <netinet/tcp_seq.h>
174 #include <netinet/tcp_timer.h>
175 #include <netinet/tcp_var.h>
176 #include <netinet/tcpip.h>
177 #include <netinet/tcp_debug.h>
178
179 #include <machine/stdarg.h>
180
181 #ifdef IPSEC
182 #include <netinet6/ipsec.h>
183 #include <netkey/key.h>
184 #include <netkey/key_debug.h>
185 #endif /*IPSEC*/
186 #ifdef INET6
187 #include "faith.h"
188 #endif
189
190 int tcprexmtthresh = 3;
191 int tcp_log_refused;
192
193 #define TCP_PAWS_IDLE (24 * 24 * 60 * 60 * PR_SLOWHZ)
194
195 /* for modulo comparisons of timestamps */
196 #define TSTMP_LT(a,b) ((int)((a)-(b)) < 0)
197 #define TSTMP_GEQ(a,b) ((int)((a)-(b)) >= 0)
198
199 /*
200 * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
201 */
202 #ifdef INET6
203 #define ND6_HINT(tp) \
204 do { \
205 if (tp && tp->t_in6pcb && tp->t_family == AF_INET6 \
206 && tp->t_in6pcb->in6p_route.ro_rt) { \
207 nd6_nud_hint(tp->t_in6pcb->in6p_route.ro_rt, NULL); \
208 } \
209 } while (0)
210 #else
211 #define ND6_HINT(tp)
212 #endif
213
214 /*
215 * Macro to compute ACK transmission behavior. Delay the ACK unless
216 * we have already delayed an ACK (must send an ACK every two segments).
217 * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
218 * option is enabled.
219 */
220 #define TCP_SETUP_ACK(tp, th) \
221 do { \
222 if ((tp)->t_flags & TF_DELACK || \
223 (tcp_ack_on_push && (th)->th_flags & TH_PUSH)) \
224 tp->t_flags |= TF_ACKNOW; \
225 else \
226 TCP_SET_DELACK(tp); \
227 } while (0)
228
229 int
230 tcp_reass(tp, th, m, tlen)
231 register struct tcpcb *tp;
232 register struct tcphdr *th;
233 struct mbuf *m;
234 int *tlen;
235 {
236 register struct ipqent *p, *q, *nq, *tiqe = NULL;
237 struct socket *so = NULL;
238 int pkt_flags;
239 tcp_seq pkt_seq;
240 unsigned pkt_len;
241 u_long rcvpartdupbyte = 0;
242 u_long rcvoobyte;
243
244 if (tp->t_inpcb)
245 so = tp->t_inpcb->inp_socket;
246 #ifdef INET6
247 else if (tp->t_in6pcb)
248 so = tp->t_in6pcb->in6p_socket;
249 #endif
250
251 TCP_REASS_LOCK_CHECK(tp);
252
253 /*
254 * Call with th==0 after become established to
255 * force pre-ESTABLISHED data up to user socket.
256 */
257 if (th == 0)
258 goto present;
259
260 rcvoobyte = *tlen;
261 /*
262 * Copy these to local variables because the tcpiphdr
263 * gets munged while we are collapsing mbufs.
264 */
265 pkt_seq = th->th_seq;
266 pkt_len = *tlen;
267 pkt_flags = th->th_flags;
268 /*
269 * Find a segment which begins after this one does.
270 */
271 for (p = NULL, q = tp->segq.lh_first; q != NULL; q = nq) {
272 nq = q->ipqe_q.le_next;
273 /*
274 * If the received segment is just right after this
275 * fragment, merge the two together and then check
276 * for further overlaps.
277 */
278 if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
279 #ifdef TCPREASS_DEBUG
280 printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
281 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
282 q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
283 #endif
284 pkt_len += q->ipqe_len;
285 pkt_flags |= q->ipqe_flags;
286 pkt_seq = q->ipqe_seq;
287 m_cat(q->ipqe_m, m);
288 m = q->ipqe_m;
289 goto free_ipqe;
290 }
291 /*
292 * If the received segment is completely past this
293 * fragment, we need to go the next fragment.
294 */
295 if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
296 p = q;
297 continue;
298 }
299 /*
300 * If the fragment is past the received segment,
301 * it (or any following) can't be concatenated.
302 */
303 if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len))
304 break;
305 /*
306 * We've received all the data in this segment before.
307 * mark it as a duplicate and return.
308 */
309 if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
310 SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
311 tcpstat.tcps_rcvduppack++;
312 tcpstat.tcps_rcvdupbyte += pkt_len;
313 m_freem(m);
314 if (tiqe != NULL)
315 pool_put(&ipqent_pool, tiqe);
316 return (0);
317 }
318 /*
319 * Received segment completely overlaps this fragment
320 * so we drop the fragment (this keeps the temporal
321 * ordering of segments correct).
322 */
323 if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
324 SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
325 rcvpartdupbyte += q->ipqe_len;
326 m_freem(q->ipqe_m);
327 goto free_ipqe;
328 }
329 /*
330 * RX'ed segment extends past the end of the
331 * fragment. Drop the overlapping bytes. Then
332 * merge the fragment and segment then treat as
333 * a longer received packet.
334 */
335 if (SEQ_LT(q->ipqe_seq, pkt_seq)
336 && SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
337 int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
338 #ifdef TCPREASS_DEBUG
339 printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
340 tp, overlap,
341 pkt_seq, pkt_seq + pkt_len, pkt_len);
342 #endif
343 m_adj(m, overlap);
344 rcvpartdupbyte += overlap;
345 m_cat(q->ipqe_m, m);
346 m = q->ipqe_m;
347 pkt_seq = q->ipqe_seq;
348 pkt_len += q->ipqe_len - overlap;
349 rcvoobyte -= overlap;
350 goto free_ipqe;
351 }
352 /*
353 * RX'ed segment extends past the front of the
354 * fragment. Drop the overlapping bytes on the
355 * received packet. The packet will then be
356 * contatentated with this fragment a bit later.
357 */
358 if (SEQ_GT(q->ipqe_seq, pkt_seq)
359 && SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len)) {
360 int overlap = pkt_seq + pkt_len - q->ipqe_seq;
361 #ifdef TCPREASS_DEBUG
362 printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
363 tp, overlap,
364 pkt_seq, pkt_seq + pkt_len, pkt_len);
365 #endif
366 m_adj(m, -overlap);
367 pkt_len -= overlap;
368 rcvpartdupbyte += overlap;
369 rcvoobyte -= overlap;
370 }
371 /*
372 * If the received segment immediates precedes this
373 * fragment then tack the fragment onto this segment
374 * and reinsert the data.
375 */
376 if (q->ipqe_seq == pkt_seq + pkt_len) {
377 #ifdef TCPREASS_DEBUG
378 printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
379 tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
380 pkt_seq, pkt_seq + pkt_len, pkt_len);
381 #endif
382 pkt_len += q->ipqe_len;
383 pkt_flags |= q->ipqe_flags;
384 m_cat(m, q->ipqe_m);
385 LIST_REMOVE(q, ipqe_q);
386 LIST_REMOVE(q, ipqe_timeq);
387 if (tiqe == NULL) {
388 tiqe = q;
389 } else {
390 pool_put(&ipqent_pool, q);
391 }
392 break;
393 }
394 /*
395 * If the fragment is before the segment, remember it.
396 * When this loop is terminated, p will contain the
397 * pointer to fragment that is right before the received
398 * segment.
399 */
400 if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
401 p = q;
402
403 continue;
404
405 /*
406 * This is a common operation. It also will allow
407 * to save doing a malloc/free in most instances.
408 */
409 free_ipqe:
410 LIST_REMOVE(q, ipqe_q);
411 LIST_REMOVE(q, ipqe_timeq);
412 if (tiqe == NULL) {
413 tiqe = q;
414 } else {
415 pool_put(&ipqent_pool, q);
416 }
417 }
418
419 /*
420 * Allocate a new queue entry since the received segment did not
421 * collapse onto any other out-of-order block; thus we are allocating
422 * a new block. If it had collapsed, tiqe would not be NULL and
423 * we would be reusing it.
424 * XXX If we can't, just drop the packet. XXX
425 */
426 if (tiqe == NULL) {
427 tiqe = pool_get(&ipqent_pool, PR_NOWAIT);
428 if (tiqe == NULL) {
429 tcpstat.tcps_rcvmemdrop++;
430 m_freem(m);
431 return (0);
432 }
433 }
434
435 /*
436 * Update the counters.
437 */
438 tcpstat.tcps_rcvoopack++;
439 tcpstat.tcps_rcvoobyte += rcvoobyte;
440 if (rcvpartdupbyte) {
441 tcpstat.tcps_rcvpartduppack++;
442 tcpstat.tcps_rcvpartdupbyte += rcvpartdupbyte;
443 }
444
445 /*
446 * Insert the new fragment queue entry into both queues.
447 */
448 tiqe->ipqe_m = m;
449 tiqe->ipqe_seq = pkt_seq;
450 tiqe->ipqe_len = pkt_len;
451 tiqe->ipqe_flags = pkt_flags;
452 if (p == NULL) {
453 LIST_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
454 #ifdef TCPREASS_DEBUG
455 if (tiqe->ipqe_seq != tp->rcv_nxt)
456 printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
457 tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
458 #endif
459 } else {
460 LIST_INSERT_AFTER(p, tiqe, ipqe_q);
461 #ifdef TCPREASS_DEBUG
462 printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
463 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
464 p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
465 #endif
466 }
467
468 LIST_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
469
470 present:
471 /*
472 * Present data to user, advancing rcv_nxt through
473 * completed sequence space.
474 */
475 if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
476 return (0);
477 q = tp->segq.lh_first;
478 if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
479 return (0);
480 if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
481 return (0);
482
483 tp->rcv_nxt += q->ipqe_len;
484 pkt_flags = q->ipqe_flags & TH_FIN;
485 ND6_HINT(tp);
486
487 LIST_REMOVE(q, ipqe_q);
488 LIST_REMOVE(q, ipqe_timeq);
489 if (so->so_state & SS_CANTRCVMORE)
490 m_freem(q->ipqe_m);
491 else
492 sbappend(&so->so_rcv, q->ipqe_m);
493 pool_put(&ipqent_pool, q);
494 sorwakeup(so);
495 return (pkt_flags);
496 }
497
498 #if defined(INET6) && !defined(TCP6)
499 int
500 tcp6_input(mp, offp, proto)
501 struct mbuf **mp;
502 int *offp, proto;
503 {
504 struct mbuf *m = *mp;
505
506 #if defined(NFAITH) && 0 < NFAITH
507 if (m->m_pkthdr.rcvif) {
508 if (m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
509 /* XXX send icmp6 host/port unreach? */
510 m_freem(m);
511 return IPPROTO_DONE;
512 }
513 }
514 #endif
515
516 /*
517 * draft-itojun-ipv6-tcp-to-anycast
518 * better place to put this in?
519 */
520 if (m->m_flags & M_ANYCAST6) {
521 struct ip6_hdr *ip6;
522 if (m->m_len < sizeof(struct ip6_hdr)) {
523 if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
524 tcpstat.tcps_rcvshort++;
525 return IPPROTO_DONE;
526 }
527 }
528 ip6 = mtod(m, struct ip6_hdr *);
529 icmp6_error(m, ICMP6_DST_UNREACH,
530 ICMP6_DST_UNREACH_ADDR,
531 (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
532 return IPPROTO_DONE;
533 }
534
535 tcp_input(m, *offp, proto);
536 return IPPROTO_DONE;
537 }
538 #endif
539
540 /*
541 * TCP input routine, follows pages 65-76 of the
542 * protocol specification dated September, 1981 very closely.
543 */
544 void
545 #if __STDC__
546 tcp_input(struct mbuf *m, ...)
547 #else
548 tcp_input(m, va_alist)
549 register struct mbuf *m;
550 #endif
551 {
552 int proto;
553 register struct tcphdr *th;
554 struct ip *ip;
555 register struct inpcb *inp;
556 #ifdef INET6
557 struct ip6_hdr *ip6;
558 register struct in6pcb *in6p;
559 #endif
560 caddr_t optp = NULL;
561 int optlen = 0;
562 int len, tlen, toff, hdroptlen = 0;
563 register struct tcpcb *tp = 0;
564 register int tiflags;
565 struct socket *so = NULL;
566 int todrop, acked, ourfinisacked, needoutput = 0;
567 short ostate = 0;
568 int iss = 0;
569 u_long tiwin;
570 struct tcp_opt_info opti;
571 int off, iphlen;
572 va_list ap;
573 int af; /* af on the wire */
574 struct mbuf *tcp_saveti = NULL;
575
576 va_start(ap, m);
577 toff = va_arg(ap, int);
578 proto = va_arg(ap, int);
579 va_end(ap);
580
581 tcpstat.tcps_rcvtotal++;
582
583 bzero(&opti, sizeof(opti));
584 opti.ts_present = 0;
585 opti.maxseg = 0;
586
587 /*
588 * Get IP and TCP header together in first mbuf.
589 * Note: IP leaves IP header in first mbuf.
590 */
591 ip = mtod(m, struct ip *);
592 #ifdef INET6
593 ip6 = NULL;
594 #endif
595 switch (ip->ip_v) {
596 case 4:
597 af = AF_INET;
598 iphlen = sizeof(struct ip);
599 #ifndef PULLDOWN_TEST
600 /* would like to get rid of this... */
601 if (toff > sizeof (struct ip)) {
602 ip_stripoptions(m, (struct mbuf *)0);
603 toff = sizeof(struct ip);
604 }
605 if (m->m_len < toff + sizeof (struct tcphdr)) {
606 if ((m = m_pullup(m, toff + sizeof (struct tcphdr))) == 0) {
607 tcpstat.tcps_rcvshort++;
608 return;
609 }
610 }
611 ip = mtod(m, struct ip *);
612 th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
613 #else
614 ip = mtod(m, struct ip *);
615 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
616 sizeof(struct tcphdr));
617 if (th == NULL) {
618 tcpstat.tcps_rcvshort++;
619 return;
620 }
621 #endif
622
623 /*
624 * Checksum extended TCP header and data.
625 */
626 len = ip->ip_len;
627 tlen = len - toff;
628 #ifndef PULLDOWN_TEST
629 {
630 struct ipovly *ipov;
631 ipov = (struct ipovly *)ip;
632 bzero(ipov->ih_x1, sizeof ipov->ih_x1);
633 ipov->ih_len = htons(tlen);
634 }
635 if (in_cksum(m, len) != 0) {
636 tcpstat.tcps_rcvbadsum++;
637 goto drop;
638 }
639 #else
640 if (in4_cksum(m, IPPROTO_TCP, toff, tlen) != 0) {
641 tcpstat.tcps_rcvbadsum++;
642 goto drop;
643 }
644 #endif
645 break;
646 #ifdef INET6
647 case 6:
648 ip = NULL;
649 iphlen = sizeof(struct ip6_hdr);
650 af = AF_INET6;
651 #ifndef PULLDOWN_TEST
652 if (m->m_len < toff + sizeof(struct tcphdr)) {
653 m = m_pullup(m, toff + sizeof(struct tcphdr)); /*XXX*/
654 if (m == NULL) {
655 tcpstat.tcps_rcvshort++;
656 return;
657 }
658 }
659 ip6 = mtod(m, struct ip6_hdr *);
660 th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
661 #else
662 ip6 = mtod(m, struct ip6_hdr *);
663 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
664 sizeof(struct tcphdr));
665 if (th == NULL) {
666 tcpstat.tcps_rcvshort++;
667 return;
668 }
669 #endif
670
671 /* Be proactive about malicious use of IPv4 mapped address */
672 if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
673 IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
674 /* XXX stat */
675 goto drop;
676 }
677
678 /*
679 * Checksum extended TCP header and data.
680 */
681 len = m->m_pkthdr.len;
682 tlen = len - toff;
683 if (in6_cksum(m, IPPROTO_TCP, toff, tlen)) {
684 tcpstat.tcps_rcvbadsum++;
685 goto drop;
686 }
687 break;
688 #endif
689 default:
690 m_freem(m);
691 return;
692 }
693
694 /*
695 * Check that TCP offset makes sense,
696 * pull out TCP options and adjust length. XXX
697 */
698 off = th->th_off << 2;
699 if (off < sizeof (struct tcphdr) || off > tlen) {
700 tcpstat.tcps_rcvbadoff++;
701 goto drop;
702 }
703 tlen -= off;
704
705 /*
706 * tcp_input() has been modified to use tlen to mean the TCP data
707 * length throughout the function. Other functions can use
708 * m->m_pkthdr.len as the basis for calculating the TCP data length.
709 * rja
710 */
711
712 if (off > sizeof (struct tcphdr)) {
713 #ifndef PULLDOWN_TEST
714 if (m->m_len < toff + off) {
715 if ((m = m_pullup(m, toff + off)) == 0) {
716 tcpstat.tcps_rcvshort++;
717 return;
718 }
719 switch (af) {
720 case AF_INET:
721 ip = mtod(m, struct ip *);
722 break;
723 #ifdef INET6
724 case AF_INET6:
725 ip6 = mtod(m, struct ip6_hdr *);
726 break;
727 #endif
728 }
729 th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
730 }
731 #else
732 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
733 if (th == NULL) {
734 tcpstat.tcps_rcvshort++;
735 return;
736 }
737 /*
738 * NOTE: ip/ip6 will not be affected by m_pulldown()
739 * (as they're before toff) and we don't need to update those.
740 */
741 #endif
742 optlen = off - sizeof (struct tcphdr);
743 optp = ((caddr_t)th) + sizeof(struct tcphdr);
744 /*
745 * Do quick retrieval of timestamp options ("options
746 * prediction?"). If timestamp is the only option and it's
747 * formatted as recommended in RFC 1323 appendix A, we
748 * quickly get the values now and not bother calling
749 * tcp_dooptions(), etc.
750 */
751 if ((optlen == TCPOLEN_TSTAMP_APPA ||
752 (optlen > TCPOLEN_TSTAMP_APPA &&
753 optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
754 *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
755 (th->th_flags & TH_SYN) == 0) {
756 opti.ts_present = 1;
757 opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
758 opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
759 optp = NULL; /* we've parsed the options */
760 }
761 }
762 tiflags = th->th_flags;
763
764 /*
765 * Convert TCP protocol specific fields to host format.
766 */
767 NTOHL(th->th_seq);
768 NTOHL(th->th_ack);
769 NTOHS(th->th_win);
770 NTOHS(th->th_urp);
771
772 /*
773 * Locate pcb for segment.
774 */
775 findpcb:
776 inp = NULL;
777 #ifdef INET6
778 in6p = NULL;
779 #endif
780 switch (af) {
781 case AF_INET:
782 inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
783 ip->ip_dst, th->th_dport);
784 if (inp == 0) {
785 ++tcpstat.tcps_pcbhashmiss;
786 inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
787 }
788 #if defined(INET6) && !defined(TCP6)
789 if (inp == 0) {
790 struct in6_addr s, d;
791
792 /* mapped addr case */
793 bzero(&s, sizeof(s));
794 s.s6_addr16[5] = htons(0xffff);
795 bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
796 bzero(&d, sizeof(d));
797 d.s6_addr16[5] = htons(0xffff);
798 bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
799 in6p = in6_pcblookup_connect(&tcb6, &s, th->th_sport,
800 &d, th->th_dport, 0);
801 if (in6p == 0) {
802 ++tcpstat.tcps_pcbhashmiss;
803 in6p = in6_pcblookup_bind(&tcb6, &d,
804 th->th_dport, 0);
805 }
806 }
807 #endif
808 #ifndef INET6
809 if (inp == 0)
810 #else
811 if (inp == 0 && in6p == 0)
812 #endif
813 {
814 ++tcpstat.tcps_noport;
815 if (tcp_log_refused && (tiflags & TH_SYN)) {
816 #ifndef INET6
817 char src[4*sizeof "123"];
818 char dst[4*sizeof "123"];
819 #else
820 char src[INET6_ADDRSTRLEN];
821 char dst[INET6_ADDRSTRLEN];
822 #endif
823 if (ip) {
824 strcpy(src, inet_ntoa(ip->ip_src));
825 strcpy(dst, inet_ntoa(ip->ip_dst));
826 }
827 #ifdef INET6
828 else if (ip6) {
829 strcpy(src, ip6_sprintf(&ip6->ip6_src));
830 strcpy(dst, ip6_sprintf(&ip6->ip6_dst));
831 }
832 #endif
833 else {
834 strcpy(src, "(unknown)");
835 strcpy(dst, "(unknown)");
836 }
837 log(LOG_INFO,
838 "Connection attempt to TCP %s:%d from %s:%d\n",
839 dst, ntohs(th->th_dport),
840 src, ntohs(th->th_sport));
841 }
842 goto dropwithreset;
843 }
844 #ifdef IPSEC
845 if (inp && ipsec4_in_reject(m, inp)) {
846 ipsecstat.in_polvio++;
847 goto drop;
848 }
849 #ifdef INET6
850 else if (in6p && ipsec4_in_reject_so(m, in6p->in6p_socket)) {
851 ipsecstat.in_polvio++;
852 goto drop;
853 }
854 #endif
855 #endif /*IPSEC*/
856 break;
857 #if defined(INET6) && !defined(TCP6)
858 case AF_INET6:
859 {
860 int faith;
861
862 #if defined(NFAITH) && NFAITH > 0
863 if (m->m_pkthdr.rcvif
864 && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
865 faith = 1;
866 } else
867 faith = 0;
868 #else
869 faith = 0;
870 #endif
871 in6p = in6_pcblookup_connect(&tcb6, &ip6->ip6_src, th->th_sport,
872 &ip6->ip6_dst, th->th_dport, faith);
873 if (in6p == NULL) {
874 ++tcpstat.tcps_pcbhashmiss;
875 in6p = in6_pcblookup_bind(&tcb6, &ip6->ip6_dst,
876 th->th_dport, faith);
877 }
878 if (in6p == NULL) {
879 ++tcpstat.tcps_noport;
880 goto dropwithreset;
881 }
882 #ifdef IPSEC
883 if (ipsec6_in_reject(m, in6p)) {
884 ipsec6stat.in_polvio++;
885 goto drop;
886 }
887 #endif /*IPSEC*/
888 break;
889 }
890 #endif
891 }
892
893 /*
894 * If the state is CLOSED (i.e., TCB does not exist) then
895 * all data in the incoming segment is discarded.
896 * If the TCB exists but is in CLOSED state, it is embryonic,
897 * but should either do a listen or a connect soon.
898 */
899 tp = NULL;
900 so = NULL;
901 if (inp) {
902 tp = intotcpcb(inp);
903 so = inp->inp_socket;
904 }
905 #ifdef INET6
906 else if (in6p) {
907 tp = in6totcpcb(in6p);
908 so = in6p->in6p_socket;
909 }
910 #endif
911 if (tp == 0) {
912 goto dropwithreset;
913 }
914 if (tp->t_state == TCPS_CLOSED)
915 goto drop;
916
917 /* Unscale the window into a 32-bit value. */
918 if ((tiflags & TH_SYN) == 0)
919 tiwin = th->th_win << tp->snd_scale;
920 else
921 tiwin = th->th_win;
922
923 #ifdef INET6
924 /* save packet options if user wanted */
925 if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
926 if (in6p->in6p_options) {
927 m_freem(in6p->in6p_options);
928 in6p->in6p_options = 0;
929 }
930 ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
931 }
932 #endif
933
934 if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
935 union syn_cache_sa src;
936 union syn_cache_sa dst;
937
938 bzero(&src, sizeof(src));
939 bzero(&dst, sizeof(dst));
940 switch (af) {
941 case AF_INET:
942 src.sin.sin_len = sizeof(struct sockaddr_in);
943 src.sin.sin_family = AF_INET;
944 src.sin.sin_addr = ip->ip_src;
945 src.sin.sin_port = th->th_sport;
946
947 dst.sin.sin_len = sizeof(struct sockaddr_in);
948 dst.sin.sin_family = AF_INET;
949 dst.sin.sin_addr = ip->ip_dst;
950 dst.sin.sin_port = th->th_dport;
951 break;
952 #ifdef INET6
953 case AF_INET6:
954 src.sin6.sin6_len = sizeof(struct sockaddr_in6);
955 src.sin6.sin6_family = AF_INET6;
956 src.sin6.sin6_addr = ip6->ip6_src;
957 src.sin6.sin6_port = th->th_sport;
958
959 dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
960 dst.sin6.sin6_family = AF_INET6;
961 dst.sin6.sin6_addr = ip6->ip6_dst;
962 dst.sin6.sin6_port = th->th_dport;
963 break;
964 #endif /* INET6 */
965 default:
966 goto badsyn; /*sanity*/
967 }
968
969 if (so->so_options & SO_DEBUG) {
970 ostate = tp->t_state;
971 tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
972 if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
973 m_freem(tcp_saveti);
974 tcp_saveti = NULL;
975 } else {
976 tcp_saveti->m_len += sizeof(struct tcphdr);
977 bcopy(th, mtod(tcp_saveti, caddr_t) + iphlen,
978 sizeof(struct tcphdr));
979 }
980 if (tcp_saveti) {
981 /*
982 * need to recover version # field, which was
983 * overwritten on ip_cksum computation.
984 */
985 struct ip *sip;
986 sip = mtod(tcp_saveti, struct ip *);
987 switch (af) {
988 case AF_INET:
989 sip->ip_v = 4;
990 break;
991 #ifdef INET6
992 case AF_INET6:
993 sip->ip_v = 6;
994 break;
995 #endif
996 }
997 }
998 }
999 if (so->so_options & SO_ACCEPTCONN) {
1000 if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1001 if (tiflags & TH_RST) {
1002 syn_cache_reset(&src.sa, &dst.sa, th);
1003 } else if ((tiflags & (TH_ACK|TH_SYN)) ==
1004 (TH_ACK|TH_SYN)) {
1005 /*
1006 * Received a SYN,ACK. This should
1007 * never happen while we are in
1008 * LISTEN. Send an RST.
1009 */
1010 goto badsyn;
1011 } else if (tiflags & TH_ACK) {
1012 so = syn_cache_get(&src.sa, &dst.sa,
1013 th, toff, tlen, so, m);
1014 if (so == NULL) {
1015 /*
1016 * We don't have a SYN for
1017 * this ACK; send an RST.
1018 */
1019 goto badsyn;
1020 } else if (so ==
1021 (struct socket *)(-1)) {
1022 /*
1023 * We were unable to create
1024 * the connection. If the
1025 * 3-way handshake was
1026 * completed, and RST has
1027 * been sent to the peer.
1028 * Since the mbuf might be
1029 * in use for the reply,
1030 * do not free it.
1031 */
1032 m = NULL;
1033 } else {
1034 /*
1035 * We have created a
1036 * full-blown connection.
1037 */
1038 tp = NULL;
1039 inp = NULL;
1040 #ifdef INET6
1041 in6p = NULL;
1042 #endif
1043 switch (so->so_proto->pr_domain->dom_family) {
1044 case AF_INET:
1045 inp = sotoinpcb(so);
1046 tp = intotcpcb(inp);
1047 break;
1048 #ifdef INET6
1049 case AF_INET6:
1050 in6p = sotoin6pcb(so);
1051 tp = in6totcpcb(in6p);
1052 break;
1053 #endif
1054 }
1055 if (tp == NULL)
1056 goto badsyn; /*XXX*/
1057 tiwin <<= tp->snd_scale;
1058 goto after_listen;
1059 }
1060 } else {
1061 /*
1062 * None of RST, SYN or ACK was set.
1063 * This is an invalid packet for a
1064 * TCB in LISTEN state. Send a RST.
1065 */
1066 goto badsyn;
1067 }
1068 } else {
1069 /*
1070 * Received a SYN.
1071 */
1072
1073 /*
1074 * LISTEN socket received a SYN
1075 * from itself? This can't possibly
1076 * be valid; drop the packet.
1077 */
1078 if (th->th_sport == th->th_dport) {
1079 int i;
1080
1081 switch (af) {
1082 case AF_INET:
1083 i = in_hosteq(ip->ip_src, ip->ip_dst);
1084 break;
1085 #ifdef INET6
1086 case AF_INET6:
1087 i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
1088 break;
1089 #endif
1090 default:
1091 i = 1;
1092 }
1093 if (i) {
1094 tcpstat.tcps_badsyn++;
1095 goto drop;
1096 }
1097 }
1098
1099 /*
1100 * SYN looks ok; create compressed TCP
1101 * state for it.
1102 */
1103 if (so->so_qlen <= so->so_qlimit &&
1104 syn_cache_add(&src.sa, &dst.sa, th, tlen,
1105 so, m, optp, optlen, &opti))
1106 m = NULL;
1107 }
1108 goto drop;
1109 }
1110 }
1111
1112 after_listen:
1113 #ifdef DIAGNOSTIC
1114 /*
1115 * Should not happen now that all embryonic connections
1116 * are handled with compressed state.
1117 */
1118 if (tp->t_state == TCPS_LISTEN)
1119 panic("tcp_input: TCPS_LISTEN");
1120 #endif
1121
1122 /*
1123 * Segment received on connection.
1124 * Reset idle time and keep-alive timer.
1125 */
1126 tp->t_idle = 0;
1127 if (TCPS_HAVEESTABLISHED(tp->t_state))
1128 TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1129
1130 /*
1131 * Process options.
1132 */
1133 if (optp)
1134 tcp_dooptions(tp, optp, optlen, th, &opti);
1135
1136 /*
1137 * Header prediction: check for the two common cases
1138 * of a uni-directional data xfer. If the packet has
1139 * no control flags, is in-sequence, the window didn't
1140 * change and we're not retransmitting, it's a
1141 * candidate. If the length is zero and the ack moved
1142 * forward, we're the sender side of the xfer. Just
1143 * free the data acked & wake any higher level process
1144 * that was blocked waiting for space. If the length
1145 * is non-zero and the ack didn't move, we're the
1146 * receiver side. If we're getting packets in-order
1147 * (the reassembly queue is empty), add the data to
1148 * the socket buffer and note that we need a delayed ack.
1149 */
1150 if (tp->t_state == TCPS_ESTABLISHED &&
1151 (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1152 (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
1153 th->th_seq == tp->rcv_nxt &&
1154 tiwin && tiwin == tp->snd_wnd &&
1155 tp->snd_nxt == tp->snd_max) {
1156
1157 /*
1158 * If last ACK falls within this segment's sequence numbers,
1159 * record the timestamp.
1160 */
1161 if (opti.ts_present &&
1162 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1163 SEQ_LT(tp->last_ack_sent, th->th_seq + tlen)) {
1164 tp->ts_recent_age = tcp_now;
1165 tp->ts_recent = opti.ts_val;
1166 }
1167
1168 if (tlen == 0) {
1169 if (SEQ_GT(th->th_ack, tp->snd_una) &&
1170 SEQ_LEQ(th->th_ack, tp->snd_max) &&
1171 tp->snd_cwnd >= tp->snd_wnd &&
1172 tp->t_dupacks < tcprexmtthresh) {
1173 /*
1174 * this is a pure ack for outstanding data.
1175 */
1176 ++tcpstat.tcps_predack;
1177 if (opti.ts_present && opti.ts_ecr)
1178 tcp_xmit_timer(tp,
1179 tcp_now - opti.ts_ecr + 1);
1180 else if (tp->t_rtt &&
1181 SEQ_GT(th->th_ack, tp->t_rtseq))
1182 tcp_xmit_timer(tp, tp->t_rtt);
1183 acked = th->th_ack - tp->snd_una;
1184 tcpstat.tcps_rcvackpack++;
1185 tcpstat.tcps_rcvackbyte += acked;
1186 ND6_HINT(tp);
1187 sbdrop(&so->so_snd, acked);
1188 /*
1189 * We want snd_recover to track snd_una to
1190 * avoid sequence wraparound problems for
1191 * very large transfers.
1192 */
1193 tp->snd_una = tp->snd_recover = th->th_ack;
1194 m_freem(m);
1195
1196 /*
1197 * If all outstanding data are acked, stop
1198 * retransmit timer, otherwise restart timer
1199 * using current (possibly backed-off) value.
1200 * If process is waiting for space,
1201 * wakeup/selwakeup/signal. If data
1202 * are ready to send, let tcp_output
1203 * decide between more output or persist.
1204 */
1205 if (tp->snd_una == tp->snd_max)
1206 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1207 else if (TCP_TIMER_ISARMED(tp,
1208 TCPT_PERSIST) == 0)
1209 TCP_TIMER_ARM(tp, TCPT_REXMT,
1210 tp->t_rxtcur);
1211
1212 sowwakeup(so);
1213 if (so->so_snd.sb_cc)
1214 (void) tcp_output(tp);
1215 if (tcp_saveti)
1216 m_freem(tcp_saveti);
1217 return;
1218 }
1219 } else if (th->th_ack == tp->snd_una &&
1220 tp->segq.lh_first == NULL &&
1221 tlen <= sbspace(&so->so_rcv)) {
1222 /*
1223 * this is a pure, in-sequence data packet
1224 * with nothing on the reassembly queue and
1225 * we have enough buffer space to take it.
1226 */
1227 ++tcpstat.tcps_preddat;
1228 tp->rcv_nxt += tlen;
1229 tcpstat.tcps_rcvpack++;
1230 tcpstat.tcps_rcvbyte += tlen;
1231 ND6_HINT(tp);
1232 /*
1233 * Drop TCP, IP headers and TCP options then add data
1234 * to socket buffer.
1235 */
1236 m_adj(m, toff + off);
1237 sbappend(&so->so_rcv, m);
1238 sorwakeup(so);
1239 TCP_SETUP_ACK(tp, th);
1240 if (tp->t_flags & TF_ACKNOW)
1241 (void) tcp_output(tp);
1242 if (tcp_saveti)
1243 m_freem(tcp_saveti);
1244 return;
1245 }
1246 }
1247
1248 /*
1249 * Compute mbuf offset to TCP data segment.
1250 */
1251 hdroptlen = toff + off;
1252
1253 /*
1254 * Calculate amount of space in receive window,
1255 * and then do TCP input processing.
1256 * Receive window is amount of space in rcv queue,
1257 * but not less than advertised window.
1258 */
1259 { int win;
1260
1261 win = sbspace(&so->so_rcv);
1262 if (win < 0)
1263 win = 0;
1264 tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1265 }
1266
1267 switch (tp->t_state) {
1268
1269 /*
1270 * If the state is SYN_SENT:
1271 * if seg contains an ACK, but not for our SYN, drop the input.
1272 * if seg contains a RST, then drop the connection.
1273 * if seg does not contain SYN, then drop it.
1274 * Otherwise this is an acceptable SYN segment
1275 * initialize tp->rcv_nxt and tp->irs
1276 * if seg contains ack then advance tp->snd_una
1277 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1278 * arrange for segment to be acked (eventually)
1279 * continue processing rest of data/controls, beginning with URG
1280 */
1281 case TCPS_SYN_SENT:
1282 if ((tiflags & TH_ACK) &&
1283 (SEQ_LEQ(th->th_ack, tp->iss) ||
1284 SEQ_GT(th->th_ack, tp->snd_max)))
1285 goto dropwithreset;
1286 if (tiflags & TH_RST) {
1287 if (tiflags & TH_ACK)
1288 tp = tcp_drop(tp, ECONNREFUSED);
1289 goto drop;
1290 }
1291 if ((tiflags & TH_SYN) == 0)
1292 goto drop;
1293 if (tiflags & TH_ACK) {
1294 tp->snd_una = tp->snd_recover = th->th_ack;
1295 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1296 tp->snd_nxt = tp->snd_una;
1297 }
1298 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1299 tp->irs = th->th_seq;
1300 tcp_rcvseqinit(tp);
1301 tp->t_flags |= TF_ACKNOW;
1302 tcp_mss_from_peer(tp, opti.maxseg);
1303
1304 /*
1305 * Initialize the initial congestion window. If we
1306 * had to retransmit the SYN, we must initialize cwnd
1307 * to 1 segment (i.e. the Loss Window).
1308 */
1309 if (tp->t_flags & TF_SYN_REXMT)
1310 tp->snd_cwnd = tp->t_peermss;
1311 else
1312 tp->snd_cwnd = TCP_INITIAL_WINDOW(tcp_init_win,
1313 tp->t_peermss);
1314
1315 tcp_rmx_rtt(tp);
1316 if (tiflags & TH_ACK && SEQ_GT(tp->snd_una, tp->iss)) {
1317 tcpstat.tcps_connects++;
1318 soisconnected(so);
1319 tcp_established(tp);
1320 /* Do window scaling on this connection? */
1321 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1322 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1323 tp->snd_scale = tp->requested_s_scale;
1324 tp->rcv_scale = tp->request_r_scale;
1325 }
1326 TCP_REASS_LOCK(tp);
1327 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1328 TCP_REASS_UNLOCK(tp);
1329 /*
1330 * if we didn't have to retransmit the SYN,
1331 * use its rtt as our initial srtt & rtt var.
1332 */
1333 if (tp->t_rtt)
1334 tcp_xmit_timer(tp, tp->t_rtt);
1335 } else
1336 tp->t_state = TCPS_SYN_RECEIVED;
1337
1338 /*
1339 * Advance th->th_seq to correspond to first data byte.
1340 * If data, trim to stay within window,
1341 * dropping FIN if necessary.
1342 */
1343 th->th_seq++;
1344 if (tlen > tp->rcv_wnd) {
1345 todrop = tlen - tp->rcv_wnd;
1346 m_adj(m, -todrop);
1347 tlen = tp->rcv_wnd;
1348 tiflags &= ~TH_FIN;
1349 tcpstat.tcps_rcvpackafterwin++;
1350 tcpstat.tcps_rcvbyteafterwin += todrop;
1351 }
1352 tp->snd_wl1 = th->th_seq - 1;
1353 tp->rcv_up = th->th_seq;
1354 goto step6;
1355
1356 /*
1357 * If the state is SYN_RECEIVED:
1358 * If seg contains an ACK, but not for our SYN, drop the input
1359 * and generate an RST. See page 36, rfc793
1360 */
1361 case TCPS_SYN_RECEIVED:
1362 if ((tiflags & TH_ACK) &&
1363 (SEQ_LEQ(th->th_ack, tp->iss) ||
1364 SEQ_GT(th->th_ack, tp->snd_max)))
1365 goto dropwithreset;
1366 break;
1367 }
1368
1369 /*
1370 * States other than LISTEN or SYN_SENT.
1371 * First check timestamp, if present.
1372 * Then check that at least some bytes of segment are within
1373 * receive window. If segment begins before rcv_nxt,
1374 * drop leading data (and SYN); if nothing left, just ack.
1375 *
1376 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1377 * and it's less than ts_recent, drop it.
1378 */
1379 if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
1380 TSTMP_LT(opti.ts_val, tp->ts_recent)) {
1381
1382 /* Check to see if ts_recent is over 24 days old. */
1383 if ((int)(tcp_now - tp->ts_recent_age) > TCP_PAWS_IDLE) {
1384 /*
1385 * Invalidate ts_recent. If this segment updates
1386 * ts_recent, the age will be reset later and ts_recent
1387 * will get a valid value. If it does not, setting
1388 * ts_recent to zero will at least satisfy the
1389 * requirement that zero be placed in the timestamp
1390 * echo reply when ts_recent isn't valid. The
1391 * age isn't reset until we get a valid ts_recent
1392 * because we don't want out-of-order segments to be
1393 * dropped when ts_recent is old.
1394 */
1395 tp->ts_recent = 0;
1396 } else {
1397 tcpstat.tcps_rcvduppack++;
1398 tcpstat.tcps_rcvdupbyte += tlen;
1399 tcpstat.tcps_pawsdrop++;
1400 goto dropafterack;
1401 }
1402 }
1403
1404 todrop = tp->rcv_nxt - th->th_seq;
1405 if (todrop > 0) {
1406 if (tiflags & TH_SYN) {
1407 tiflags &= ~TH_SYN;
1408 th->th_seq++;
1409 if (th->th_urp > 1)
1410 th->th_urp--;
1411 else {
1412 tiflags &= ~TH_URG;
1413 th->th_urp = 0;
1414 }
1415 todrop--;
1416 }
1417 if (todrop > tlen ||
1418 (todrop == tlen && (tiflags & TH_FIN) == 0)) {
1419 /*
1420 * Any valid FIN must be to the left of the window.
1421 * At this point the FIN must be a duplicate or
1422 * out of sequence; drop it.
1423 */
1424 tiflags &= ~TH_FIN;
1425 /*
1426 * Send an ACK to resynchronize and drop any data.
1427 * But keep on processing for RST or ACK.
1428 */
1429 tp->t_flags |= TF_ACKNOW;
1430 todrop = tlen;
1431 tcpstat.tcps_rcvdupbyte += todrop;
1432 tcpstat.tcps_rcvduppack++;
1433 } else {
1434 tcpstat.tcps_rcvpartduppack++;
1435 tcpstat.tcps_rcvpartdupbyte += todrop;
1436 }
1437 hdroptlen += todrop; /*drop from head afterwards*/
1438 th->th_seq += todrop;
1439 tlen -= todrop;
1440 if (th->th_urp > todrop)
1441 th->th_urp -= todrop;
1442 else {
1443 tiflags &= ~TH_URG;
1444 th->th_urp = 0;
1445 }
1446 }
1447
1448 /*
1449 * If new data are received on a connection after the
1450 * user processes are gone, then RST the other end.
1451 */
1452 if ((so->so_state & SS_NOFDREF) &&
1453 tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1454 tp = tcp_close(tp);
1455 tcpstat.tcps_rcvafterclose++;
1456 goto dropwithreset;
1457 }
1458
1459 /*
1460 * If segment ends after window, drop trailing data
1461 * (and PUSH and FIN); if nothing left, just ACK.
1462 */
1463 todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
1464 if (todrop > 0) {
1465 tcpstat.tcps_rcvpackafterwin++;
1466 if (todrop >= tlen) {
1467 tcpstat.tcps_rcvbyteafterwin += tlen;
1468 /*
1469 * If a new connection request is received
1470 * while in TIME_WAIT, drop the old connection
1471 * and start over if the sequence numbers
1472 * are above the previous ones.
1473 */
1474 if (tiflags & TH_SYN &&
1475 tp->t_state == TCPS_TIME_WAIT &&
1476 SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1477 iss = tcp_new_iss(tp, sizeof(struct tcpcb),
1478 tp->snd_nxt);
1479 tp = tcp_close(tp);
1480 goto findpcb;
1481 }
1482 /*
1483 * If window is closed can only take segments at
1484 * window edge, and have to drop data and PUSH from
1485 * incoming segments. Continue processing, but
1486 * remember to ack. Otherwise, drop segment
1487 * and ack.
1488 */
1489 if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1490 tp->t_flags |= TF_ACKNOW;
1491 tcpstat.tcps_rcvwinprobe++;
1492 } else
1493 goto dropafterack;
1494 } else
1495 tcpstat.tcps_rcvbyteafterwin += todrop;
1496 m_adj(m, -todrop);
1497 tlen -= todrop;
1498 tiflags &= ~(TH_PUSH|TH_FIN);
1499 }
1500
1501 /*
1502 * If last ACK falls within this segment's sequence numbers,
1503 * and the timestamp is newer, record it.
1504 */
1505 if (opti.ts_present && TSTMP_GEQ(opti.ts_val, tp->ts_recent) &&
1506 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1507 SEQ_LT(tp->last_ack_sent, th->th_seq + tlen +
1508 ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
1509 tp->ts_recent_age = tcp_now;
1510 tp->ts_recent = opti.ts_val;
1511 }
1512
1513 /*
1514 * If the RST bit is set examine the state:
1515 * SYN_RECEIVED STATE:
1516 * If passive open, return to LISTEN state.
1517 * If active open, inform user that connection was refused.
1518 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
1519 * Inform user that connection was reset, and close tcb.
1520 * CLOSING, LAST_ACK, TIME_WAIT STATES
1521 * Close the tcb.
1522 */
1523 if (tiflags&TH_RST) switch (tp->t_state) {
1524
1525 case TCPS_SYN_RECEIVED:
1526 so->so_error = ECONNREFUSED;
1527 goto close;
1528
1529 case TCPS_ESTABLISHED:
1530 case TCPS_FIN_WAIT_1:
1531 case TCPS_FIN_WAIT_2:
1532 case TCPS_CLOSE_WAIT:
1533 so->so_error = ECONNRESET;
1534 close:
1535 tp->t_state = TCPS_CLOSED;
1536 tcpstat.tcps_drops++;
1537 tp = tcp_close(tp);
1538 goto drop;
1539
1540 case TCPS_CLOSING:
1541 case TCPS_LAST_ACK:
1542 case TCPS_TIME_WAIT:
1543 tp = tcp_close(tp);
1544 goto drop;
1545 }
1546
1547 /*
1548 * If a SYN is in the window, then this is an
1549 * error and we send an RST and drop the connection.
1550 */
1551 if (tiflags & TH_SYN) {
1552 tp = tcp_drop(tp, ECONNRESET);
1553 goto dropwithreset;
1554 }
1555
1556 /*
1557 * If the ACK bit is off we drop the segment and return.
1558 */
1559 if ((tiflags & TH_ACK) == 0) {
1560 if (tp->t_flags & TF_ACKNOW)
1561 goto dropafterack;
1562 else
1563 goto drop;
1564 }
1565
1566 /*
1567 * Ack processing.
1568 */
1569 switch (tp->t_state) {
1570
1571 /*
1572 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
1573 * ESTABLISHED state and continue processing, otherwise
1574 * send an RST.
1575 */
1576 case TCPS_SYN_RECEIVED:
1577 if (SEQ_GT(tp->snd_una, th->th_ack) ||
1578 SEQ_GT(th->th_ack, tp->snd_max))
1579 goto dropwithreset;
1580 tcpstat.tcps_connects++;
1581 soisconnected(so);
1582 tcp_established(tp);
1583 /* Do window scaling? */
1584 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1585 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1586 tp->snd_scale = tp->requested_s_scale;
1587 tp->rcv_scale = tp->request_r_scale;
1588 }
1589 TCP_REASS_LOCK(tp);
1590 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1591 TCP_REASS_UNLOCK(tp);
1592 tp->snd_wl1 = th->th_seq - 1;
1593 /* fall into ... */
1594
1595 /*
1596 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1597 * ACKs. If the ack is in the range
1598 * tp->snd_una < th->th_ack <= tp->snd_max
1599 * then advance tp->snd_una to th->th_ack and drop
1600 * data from the retransmission queue. If this ACK reflects
1601 * more up to date window information we update our window information.
1602 */
1603 case TCPS_ESTABLISHED:
1604 case TCPS_FIN_WAIT_1:
1605 case TCPS_FIN_WAIT_2:
1606 case TCPS_CLOSE_WAIT:
1607 case TCPS_CLOSING:
1608 case TCPS_LAST_ACK:
1609 case TCPS_TIME_WAIT:
1610
1611 if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
1612 if (tlen == 0 && tiwin == tp->snd_wnd) {
1613 tcpstat.tcps_rcvdupack++;
1614 /*
1615 * If we have outstanding data (other than
1616 * a window probe), this is a completely
1617 * duplicate ack (ie, window info didn't
1618 * change), the ack is the biggest we've
1619 * seen and we've seen exactly our rexmt
1620 * threshhold of them, assume a packet
1621 * has been dropped and retransmit it.
1622 * Kludge snd_nxt & the congestion
1623 * window so we send only this one
1624 * packet.
1625 *
1626 * We know we're losing at the current
1627 * window size so do congestion avoidance
1628 * (set ssthresh to half the current window
1629 * and pull our congestion window back to
1630 * the new ssthresh).
1631 *
1632 * Dup acks mean that packets have left the
1633 * network (they're now cached at the receiver)
1634 * so bump cwnd by the amount in the receiver
1635 * to keep a constant cwnd packets in the
1636 * network.
1637 */
1638 if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
1639 th->th_ack != tp->snd_una)
1640 tp->t_dupacks = 0;
1641 else if (++tp->t_dupacks == tcprexmtthresh) {
1642 tcp_seq onxt = tp->snd_nxt;
1643 u_int win =
1644 min(tp->snd_wnd, tp->snd_cwnd) /
1645 2 / tp->t_segsz;
1646 if (tcp_do_newreno && SEQ_LT(th->th_ack,
1647 tp->snd_recover)) {
1648 /*
1649 * False fast retransmit after
1650 * timeout. Do not cut window.
1651 */
1652 tp->snd_cwnd += tp->t_segsz;
1653 tp->t_dupacks = 0;
1654 (void) tcp_output(tp);
1655 goto drop;
1656 }
1657
1658 if (win < 2)
1659 win = 2;
1660 tp->snd_ssthresh = win * tp->t_segsz;
1661 tp->snd_recover = tp->snd_max;
1662 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1663 tp->t_rtt = 0;
1664 tp->snd_nxt = th->th_ack;
1665 tp->snd_cwnd = tp->t_segsz;
1666 (void) tcp_output(tp);
1667 tp->snd_cwnd = tp->snd_ssthresh +
1668 tp->t_segsz * tp->t_dupacks;
1669 if (SEQ_GT(onxt, tp->snd_nxt))
1670 tp->snd_nxt = onxt;
1671 goto drop;
1672 } else if (tp->t_dupacks > tcprexmtthresh) {
1673 tp->snd_cwnd += tp->t_segsz;
1674 (void) tcp_output(tp);
1675 goto drop;
1676 }
1677 } else
1678 tp->t_dupacks = 0;
1679 break;
1680 }
1681 /*
1682 * If the congestion window was inflated to account
1683 * for the other side's cached packets, retract it.
1684 */
1685 if (tcp_do_newreno == 0) {
1686 if (tp->t_dupacks >= tcprexmtthresh &&
1687 tp->snd_cwnd > tp->snd_ssthresh)
1688 tp->snd_cwnd = tp->snd_ssthresh;
1689 tp->t_dupacks = 0;
1690 } else if (tp->t_dupacks >= tcprexmtthresh &&
1691 tcp_newreno(tp, th) == 0) {
1692 tp->snd_cwnd = tp->snd_ssthresh;
1693 /*
1694 * Window inflation should have left us with approx.
1695 * snd_ssthresh outstanding data. But in case we
1696 * would be inclined to send a burst, better to do
1697 * it via the slow start mechanism.
1698 */
1699 if (SEQ_SUB(tp->snd_max, th->th_ack) < tp->snd_ssthresh)
1700 tp->snd_cwnd = SEQ_SUB(tp->snd_max, th->th_ack)
1701 + tp->t_segsz;
1702 tp->t_dupacks = 0;
1703 }
1704 if (SEQ_GT(th->th_ack, tp->snd_max)) {
1705 tcpstat.tcps_rcvacktoomuch++;
1706 goto dropafterack;
1707 }
1708 acked = th->th_ack - tp->snd_una;
1709 tcpstat.tcps_rcvackpack++;
1710 tcpstat.tcps_rcvackbyte += acked;
1711
1712 /*
1713 * If we have a timestamp reply, update smoothed
1714 * round trip time. If no timestamp is present but
1715 * transmit timer is running and timed sequence
1716 * number was acked, update smoothed round trip time.
1717 * Since we now have an rtt measurement, cancel the
1718 * timer backoff (cf., Phil Karn's retransmit alg.).
1719 * Recompute the initial retransmit timer.
1720 */
1721 if (opti.ts_present && opti.ts_ecr)
1722 tcp_xmit_timer(tp, tcp_now - opti.ts_ecr + 1);
1723 else if (tp->t_rtt && SEQ_GT(th->th_ack, tp->t_rtseq))
1724 tcp_xmit_timer(tp,tp->t_rtt);
1725
1726 /*
1727 * If all outstanding data is acked, stop retransmit
1728 * timer and remember to restart (more output or persist).
1729 * If there is more data to be acked, restart retransmit
1730 * timer, using current (possibly backed-off) value.
1731 */
1732 if (th->th_ack == tp->snd_max) {
1733 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1734 needoutput = 1;
1735 } else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
1736 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
1737 /*
1738 * When new data is acked, open the congestion window.
1739 * If the window gives us less than ssthresh packets
1740 * in flight, open exponentially (segsz per packet).
1741 * Otherwise open linearly: segsz per window
1742 * (segsz^2 / cwnd per packet), plus a constant
1743 * fraction of a packet (segsz/8) to help larger windows
1744 * open quickly enough.
1745 */
1746 {
1747 register u_int cw = tp->snd_cwnd;
1748 register u_int incr = tp->t_segsz;
1749
1750 if (cw > tp->snd_ssthresh)
1751 incr = incr * incr / cw;
1752 if (tcp_do_newreno == 0 || SEQ_GEQ(th->th_ack, tp->snd_recover))
1753 tp->snd_cwnd = min(cw + incr,
1754 TCP_MAXWIN << tp->snd_scale);
1755 }
1756 ND6_HINT(tp);
1757 if (acked > so->so_snd.sb_cc) {
1758 tp->snd_wnd -= so->so_snd.sb_cc;
1759 sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
1760 ourfinisacked = 1;
1761 } else {
1762 sbdrop(&so->so_snd, acked);
1763 tp->snd_wnd -= acked;
1764 ourfinisacked = 0;
1765 }
1766 sowwakeup(so);
1767 /*
1768 * We want snd_recover to track snd_una to
1769 * avoid sequence wraparound problems for
1770 * very large transfers.
1771 */
1772 tp->snd_una = tp->snd_recover = th->th_ack;
1773 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1774 tp->snd_nxt = tp->snd_una;
1775
1776 switch (tp->t_state) {
1777
1778 /*
1779 * In FIN_WAIT_1 STATE in addition to the processing
1780 * for the ESTABLISHED state if our FIN is now acknowledged
1781 * then enter FIN_WAIT_2.
1782 */
1783 case TCPS_FIN_WAIT_1:
1784 if (ourfinisacked) {
1785 /*
1786 * If we can't receive any more
1787 * data, then closing user can proceed.
1788 * Starting the timer is contrary to the
1789 * specification, but if we don't get a FIN
1790 * we'll hang forever.
1791 */
1792 if (so->so_state & SS_CANTRCVMORE) {
1793 soisdisconnected(so);
1794 if (tcp_maxidle > 0)
1795 TCP_TIMER_ARM(tp, TCPT_2MSL,
1796 tcp_maxidle);
1797 }
1798 tp->t_state = TCPS_FIN_WAIT_2;
1799 }
1800 break;
1801
1802 /*
1803 * In CLOSING STATE in addition to the processing for
1804 * the ESTABLISHED state if the ACK acknowledges our FIN
1805 * then enter the TIME-WAIT state, otherwise ignore
1806 * the segment.
1807 */
1808 case TCPS_CLOSING:
1809 if (ourfinisacked) {
1810 tp->t_state = TCPS_TIME_WAIT;
1811 tcp_canceltimers(tp);
1812 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
1813 soisdisconnected(so);
1814 }
1815 break;
1816
1817 /*
1818 * In LAST_ACK, we may still be waiting for data to drain
1819 * and/or to be acked, as well as for the ack of our FIN.
1820 * If our FIN is now acknowledged, delete the TCB,
1821 * enter the closed state and return.
1822 */
1823 case TCPS_LAST_ACK:
1824 if (ourfinisacked) {
1825 tp = tcp_close(tp);
1826 goto drop;
1827 }
1828 break;
1829
1830 /*
1831 * In TIME_WAIT state the only thing that should arrive
1832 * is a retransmission of the remote FIN. Acknowledge
1833 * it and restart the finack timer.
1834 */
1835 case TCPS_TIME_WAIT:
1836 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
1837 goto dropafterack;
1838 }
1839 }
1840
1841 step6:
1842 /*
1843 * Update window information.
1844 * Don't look at window if no ACK: TAC's send garbage on first SYN.
1845 */
1846 if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
1847 (tp->snd_wl1 == th->th_seq && SEQ_LT(tp->snd_wl2, th->th_ack)) ||
1848 (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))) {
1849 /* keep track of pure window updates */
1850 if (tlen == 0 &&
1851 tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
1852 tcpstat.tcps_rcvwinupd++;
1853 tp->snd_wnd = tiwin;
1854 tp->snd_wl1 = th->th_seq;
1855 tp->snd_wl2 = th->th_ack;
1856 if (tp->snd_wnd > tp->max_sndwnd)
1857 tp->max_sndwnd = tp->snd_wnd;
1858 needoutput = 1;
1859 }
1860
1861 /*
1862 * Process segments with URG.
1863 */
1864 if ((tiflags & TH_URG) && th->th_urp &&
1865 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1866 /*
1867 * This is a kludge, but if we receive and accept
1868 * random urgent pointers, we'll crash in
1869 * soreceive. It's hard to imagine someone
1870 * actually wanting to send this much urgent data.
1871 */
1872 if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
1873 th->th_urp = 0; /* XXX */
1874 tiflags &= ~TH_URG; /* XXX */
1875 goto dodata; /* XXX */
1876 }
1877 /*
1878 * If this segment advances the known urgent pointer,
1879 * then mark the data stream. This should not happen
1880 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
1881 * a FIN has been received from the remote side.
1882 * In these states we ignore the URG.
1883 *
1884 * According to RFC961 (Assigned Protocols),
1885 * the urgent pointer points to the last octet
1886 * of urgent data. We continue, however,
1887 * to consider it to indicate the first octet
1888 * of data past the urgent section as the original
1889 * spec states (in one of two places).
1890 */
1891 if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
1892 tp->rcv_up = th->th_seq + th->th_urp;
1893 so->so_oobmark = so->so_rcv.sb_cc +
1894 (tp->rcv_up - tp->rcv_nxt) - 1;
1895 if (so->so_oobmark == 0)
1896 so->so_state |= SS_RCVATMARK;
1897 sohasoutofband(so);
1898 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
1899 }
1900 /*
1901 * Remove out of band data so doesn't get presented to user.
1902 * This can happen independent of advancing the URG pointer,
1903 * but if two URG's are pending at once, some out-of-band
1904 * data may creep in... ick.
1905 */
1906 if (th->th_urp <= (u_int16_t) tlen
1907 #ifdef SO_OOBINLINE
1908 && (so->so_options & SO_OOBINLINE) == 0
1909 #endif
1910 )
1911 tcp_pulloutofband(so, th, m, hdroptlen);
1912 } else
1913 /*
1914 * If no out of band data is expected,
1915 * pull receive urgent pointer along
1916 * with the receive window.
1917 */
1918 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
1919 tp->rcv_up = tp->rcv_nxt;
1920 dodata: /* XXX */
1921
1922 /*
1923 * Process the segment text, merging it into the TCP sequencing queue,
1924 * and arranging for acknowledgement of receipt if necessary.
1925 * This process logically involves adjusting tp->rcv_wnd as data
1926 * is presented to the user (this happens in tcp_usrreq.c,
1927 * case PRU_RCVD). If a FIN has already been received on this
1928 * connection then we just ignore the text.
1929 */
1930 if ((tlen || (tiflags & TH_FIN)) &&
1931 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1932 /*
1933 * Insert segment ti into reassembly queue of tcp with
1934 * control block tp. Return TH_FIN if reassembly now includes
1935 * a segment with FIN. The macro form does the common case
1936 * inline (segment is the next to be received on an
1937 * established connection, and the queue is empty),
1938 * avoiding linkage into and removal from the queue and
1939 * repetition of various conversions.
1940 * Set DELACK for segments received in order, but ack
1941 * immediately when segments are out of order
1942 * (so fast retransmit can work).
1943 */
1944 /* NOTE: this was TCP_REASS() macro, but used only once */
1945 TCP_REASS_LOCK(tp);
1946 if (th->th_seq == tp->rcv_nxt &&
1947 tp->segq.lh_first == NULL &&
1948 tp->t_state == TCPS_ESTABLISHED) {
1949 TCP_SETUP_ACK(tp, th);
1950 tp->rcv_nxt += tlen;
1951 tiflags = th->th_flags & TH_FIN;
1952 tcpstat.tcps_rcvpack++;
1953 tcpstat.tcps_rcvbyte += tlen;
1954 ND6_HINT(tp);
1955 m_adj(m, hdroptlen);
1956 sbappend(&(so)->so_rcv, m);
1957 sorwakeup(so);
1958 } else {
1959 m_adj(m, hdroptlen);
1960 tiflags = tcp_reass(tp, th, m, &tlen);
1961 tp->t_flags |= TF_ACKNOW;
1962 }
1963 TCP_REASS_UNLOCK(tp);
1964
1965 /*
1966 * Note the amount of data that peer has sent into
1967 * our window, in order to estimate the sender's
1968 * buffer size.
1969 */
1970 len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
1971 } else {
1972 m_freem(m);
1973 m = NULL;
1974 tiflags &= ~TH_FIN;
1975 }
1976
1977 /*
1978 * If FIN is received ACK the FIN and let the user know
1979 * that the connection is closing. Ignore a FIN received before
1980 * the connection is fully established.
1981 */
1982 if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
1983 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1984 socantrcvmore(so);
1985 tp->t_flags |= TF_ACKNOW;
1986 tp->rcv_nxt++;
1987 }
1988 switch (tp->t_state) {
1989
1990 /*
1991 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
1992 */
1993 case TCPS_ESTABLISHED:
1994 tp->t_state = TCPS_CLOSE_WAIT;
1995 break;
1996
1997 /*
1998 * If still in FIN_WAIT_1 STATE FIN has not been acked so
1999 * enter the CLOSING state.
2000 */
2001 case TCPS_FIN_WAIT_1:
2002 tp->t_state = TCPS_CLOSING;
2003 break;
2004
2005 /*
2006 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2007 * starting the time-wait timer, turning off the other
2008 * standard timers.
2009 */
2010 case TCPS_FIN_WAIT_2:
2011 tp->t_state = TCPS_TIME_WAIT;
2012 tcp_canceltimers(tp);
2013 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2014 soisdisconnected(so);
2015 break;
2016
2017 /*
2018 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2019 */
2020 case TCPS_TIME_WAIT:
2021 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2022 break;
2023 }
2024 }
2025 if (so->so_options & SO_DEBUG) {
2026 tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
2027 }
2028
2029 /*
2030 * Return any desired output.
2031 */
2032 if (needoutput || (tp->t_flags & TF_ACKNOW))
2033 (void) tcp_output(tp);
2034 if (tcp_saveti)
2035 m_freem(tcp_saveti);
2036 return;
2037
2038 badsyn:
2039 /*
2040 * Received a bad SYN. Increment counters and dropwithreset.
2041 */
2042 tcpstat.tcps_badsyn++;
2043 tp = NULL;
2044 goto dropwithreset;
2045
2046 dropafterack:
2047 /*
2048 * Generate an ACK dropping incoming segment if it occupies
2049 * sequence space, where the ACK reflects our state.
2050 */
2051 if (tiflags & TH_RST)
2052 goto drop;
2053 m_freem(m);
2054 tp->t_flags |= TF_ACKNOW;
2055 (void) tcp_output(tp);
2056 if (tcp_saveti)
2057 m_freem(tcp_saveti);
2058 return;
2059
2060 dropwithreset:
2061 /*
2062 * Generate a RST, dropping incoming segment.
2063 * Make ACK acceptable to originator of segment.
2064 * Don't bother to respond if destination was broadcast/multicast.
2065 */
2066 if ((tiflags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST))
2067 goto drop;
2068 if (ip && IN_MULTICAST(ip->ip_dst.s_addr))
2069 goto drop;
2070 #ifdef INET6
2071 if (m->m_flags & M_ANYCAST6)
2072 goto drop;
2073 else if (ip6 && IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
2074 goto drop;
2075 #endif
2076 {
2077 /*
2078 * need to recover version # field, which was overwritten on
2079 * ip_cksum computation.
2080 */
2081 struct ip *sip;
2082 sip = mtod(m, struct ip *);
2083 switch (af) {
2084 case AF_INET:
2085 sip->ip_v = 4;
2086 break;
2087 #ifdef INET6
2088 case AF_INET6:
2089 sip->ip_v = 6;
2090 break;
2091 #endif
2092 }
2093 }
2094 if (tiflags & TH_ACK)
2095 (void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
2096 else {
2097 if (tiflags & TH_SYN)
2098 tlen++;
2099 (void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
2100 TH_RST|TH_ACK);
2101 }
2102 if (tcp_saveti)
2103 m_freem(tcp_saveti);
2104 return;
2105
2106 drop:
2107 /*
2108 * Drop space held by incoming segment and return.
2109 */
2110 if (tp) {
2111 if (tp->t_inpcb)
2112 so = tp->t_inpcb->inp_socket;
2113 #ifdef INET6
2114 else if (tp->t_in6pcb)
2115 so = tp->t_in6pcb->in6p_socket;
2116 #endif
2117 else
2118 so = NULL;
2119 if (so && (so->so_options & SO_DEBUG) != 0)
2120 tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
2121 }
2122 if (tcp_saveti)
2123 m_freem(tcp_saveti);
2124 m_freem(m);
2125 return;
2126 }
2127
2128 void
2129 tcp_dooptions(tp, cp, cnt, th, oi)
2130 struct tcpcb *tp;
2131 u_char *cp;
2132 int cnt;
2133 struct tcphdr *th;
2134 struct tcp_opt_info *oi;
2135 {
2136 u_int16_t mss;
2137 int opt, optlen;
2138
2139 for (; cnt > 0; cnt -= optlen, cp += optlen) {
2140 opt = cp[0];
2141 if (opt == TCPOPT_EOL)
2142 break;
2143 if (opt == TCPOPT_NOP)
2144 optlen = 1;
2145 else {
2146 optlen = cp[1];
2147 if (optlen <= 0)
2148 break;
2149 }
2150 switch (opt) {
2151
2152 default:
2153 continue;
2154
2155 case TCPOPT_MAXSEG:
2156 if (optlen != TCPOLEN_MAXSEG)
2157 continue;
2158 if (!(th->th_flags & TH_SYN))
2159 continue;
2160 bcopy(cp + 2, &mss, sizeof(mss));
2161 oi->maxseg = ntohs(mss);
2162 break;
2163
2164 case TCPOPT_WINDOW:
2165 if (optlen != TCPOLEN_WINDOW)
2166 continue;
2167 if (!(th->th_flags & TH_SYN))
2168 continue;
2169 tp->t_flags |= TF_RCVD_SCALE;
2170 tp->requested_s_scale = cp[2];
2171 if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
2172 #if 0 /*XXX*/
2173 char *p;
2174
2175 if (ip)
2176 p = ntohl(ip->ip_src);
2177 #ifdef INET6
2178 else if (ip6)
2179 p = ip6_sprintf(&ip6->ip6_src);
2180 #endif
2181 else
2182 p = "(unknown)";
2183 log(LOG_ERR, "TCP: invalid wscale %d from %s, "
2184 "assuming %d\n",
2185 tp->requested_s_scale, p,
2186 TCP_MAX_WINSHIFT);
2187 #else
2188 log(LOG_ERR, "TCP: invalid wscale %d, "
2189 "assuming %d\n",
2190 tp->requested_s_scale,
2191 TCP_MAX_WINSHIFT);
2192 #endif
2193 tp->requested_s_scale = TCP_MAX_WINSHIFT;
2194 }
2195 break;
2196
2197 case TCPOPT_TIMESTAMP:
2198 if (optlen != TCPOLEN_TIMESTAMP)
2199 continue;
2200 oi->ts_present = 1;
2201 bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
2202 NTOHL(oi->ts_val);
2203 bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
2204 NTOHL(oi->ts_ecr);
2205
2206 /*
2207 * A timestamp received in a SYN makes
2208 * it ok to send timestamp requests and replies.
2209 */
2210 if (th->th_flags & TH_SYN) {
2211 tp->t_flags |= TF_RCVD_TSTMP;
2212 tp->ts_recent = oi->ts_val;
2213 tp->ts_recent_age = tcp_now;
2214 }
2215 break;
2216 case TCPOPT_SACK_PERMITTED:
2217 if (optlen != TCPOLEN_SACK_PERMITTED)
2218 continue;
2219 if (!(th->th_flags & TH_SYN))
2220 continue;
2221 tp->t_flags &= ~TF_CANT_TXSACK;
2222 break;
2223
2224 case TCPOPT_SACK:
2225 if (tp->t_flags & TF_IGNR_RXSACK)
2226 continue;
2227 if (optlen % 8 != 2 || optlen < 10)
2228 continue;
2229 cp += 2;
2230 optlen -= 2;
2231 for (; optlen > 0; cp -= 8, optlen -= 8) {
2232 tcp_seq lwe, rwe;
2233 bcopy((char *)cp, (char *) &lwe, sizeof(lwe));
2234 NTOHL(lwe);
2235 bcopy((char *)cp, (char *) &rwe, sizeof(rwe));
2236 NTOHL(rwe);
2237 /* tcp_mark_sacked(tp, lwe, rwe); */
2238 }
2239 break;
2240 }
2241 }
2242 }
2243
2244 /*
2245 * Pull out of band byte out of a segment so
2246 * it doesn't appear in the user's data queue.
2247 * It is still reflected in the segment length for
2248 * sequencing purposes.
2249 */
2250 void
2251 tcp_pulloutofband(so, th, m, off)
2252 struct socket *so;
2253 struct tcphdr *th;
2254 register struct mbuf *m;
2255 int off;
2256 {
2257 int cnt = off + th->th_urp - 1;
2258
2259 while (cnt >= 0) {
2260 if (m->m_len > cnt) {
2261 char *cp = mtod(m, caddr_t) + cnt;
2262 struct tcpcb *tp = sototcpcb(so);
2263
2264 tp->t_iobc = *cp;
2265 tp->t_oobflags |= TCPOOB_HAVEDATA;
2266 bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
2267 m->m_len--;
2268 return;
2269 }
2270 cnt -= m->m_len;
2271 m = m->m_next;
2272 if (m == 0)
2273 break;
2274 }
2275 panic("tcp_pulloutofband");
2276 }
2277
2278 /*
2279 * Collect new round-trip time estimate
2280 * and update averages and current timeout.
2281 */
2282 void
2283 tcp_xmit_timer(tp, rtt)
2284 register struct tcpcb *tp;
2285 short rtt;
2286 {
2287 register short delta;
2288 short rttmin;
2289
2290 tcpstat.tcps_rttupdated++;
2291 --rtt;
2292 if (tp->t_srtt != 0) {
2293 /*
2294 * srtt is stored as fixed point with 3 bits after the
2295 * binary point (i.e., scaled by 8). The following magic
2296 * is equivalent to the smoothing algorithm in rfc793 with
2297 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2298 * point). Adjust rtt to origin 0.
2299 */
2300 delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
2301 if ((tp->t_srtt += delta) <= 0)
2302 tp->t_srtt = 1 << 2;
2303 /*
2304 * We accumulate a smoothed rtt variance (actually, a
2305 * smoothed mean difference), then set the retransmit
2306 * timer to smoothed rtt + 4 times the smoothed variance.
2307 * rttvar is stored as fixed point with 2 bits after the
2308 * binary point (scaled by 4). The following is
2309 * equivalent to rfc793 smoothing with an alpha of .75
2310 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces
2311 * rfc793's wired-in beta.
2312 */
2313 if (delta < 0)
2314 delta = -delta;
2315 delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
2316 if ((tp->t_rttvar += delta) <= 0)
2317 tp->t_rttvar = 1 << 2;
2318 } else {
2319 /*
2320 * No rtt measurement yet - use the unsmoothed rtt.
2321 * Set the variance to half the rtt (so our first
2322 * retransmit happens at 3*rtt).
2323 */
2324 tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
2325 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
2326 }
2327 tp->t_rtt = 0;
2328 tp->t_rxtshift = 0;
2329
2330 /*
2331 * the retransmit should happen at rtt + 4 * rttvar.
2332 * Because of the way we do the smoothing, srtt and rttvar
2333 * will each average +1/2 tick of bias. When we compute
2334 * the retransmit timer, we want 1/2 tick of rounding and
2335 * 1 extra tick because of +-1/2 tick uncertainty in the
2336 * firing of the timer. The bias will give us exactly the
2337 * 1.5 tick we need. But, because the bias is
2338 * statistical, we have to test that we don't drop below
2339 * the minimum feasible timer (which is 2 ticks).
2340 */
2341 if (tp->t_rttmin > rtt + 2)
2342 rttmin = tp->t_rttmin;
2343 else
2344 rttmin = rtt + 2;
2345 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp), rttmin, TCPTV_REXMTMAX);
2346
2347 /*
2348 * We received an ack for a packet that wasn't retransmitted;
2349 * it is probably safe to discard any error indications we've
2350 * received recently. This isn't quite right, but close enough
2351 * for now (a route might have failed after we sent a segment,
2352 * and the return path might not be symmetrical).
2353 */
2354 tp->t_softerror = 0;
2355 }
2356
2357 /*
2358 * Checks for partial ack. If partial ack arrives, force the retransmission
2359 * of the next unacknowledged segment, do not clear tp->t_dupacks, and return
2360 * 1. By setting snd_nxt to th_ack, this forces retransmission timer to
2361 * be started again. If the ack advances at least to tp->snd_recover, return 0.
2362 */
2363 int
2364 tcp_newreno(tp, th)
2365 struct tcpcb *tp;
2366 struct tcphdr *th;
2367 {
2368 tcp_seq onxt = tp->snd_nxt;
2369 u_long ocwnd = tp->snd_cwnd;
2370
2371 if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2372 /*
2373 * snd_una has not yet been updated and the socket's send
2374 * buffer has not yet drained off the ACK'd data, so we
2375 * have to leave snd_una as it was to get the correct data
2376 * offset in tcp_output().
2377 */
2378 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2379 tp->t_rtt = 0;
2380 tp->snd_nxt = th->th_ack;
2381 /*
2382 * Set snd_cwnd to one segment beyond ACK'd offset. snd_una
2383 * is not yet updated when we're called.
2384 */
2385 tp->snd_cwnd = tp->t_segsz + (th->th_ack - tp->snd_una);
2386 (void) tcp_output(tp);
2387 tp->snd_cwnd = ocwnd;
2388 if (SEQ_GT(onxt, tp->snd_nxt))
2389 tp->snd_nxt = onxt;
2390 /*
2391 * Partial window deflation. Relies on fact that tp->snd_una
2392 * not updated yet.
2393 */
2394 tp->snd_cwnd -= (th->th_ack - tp->snd_una - tp->t_segsz);
2395 return 1;
2396 }
2397 return 0;
2398 }
2399
2400
2401 /*
2402 * TCP compressed state engine. Currently used to hold compressed
2403 * state for SYN_RECEIVED.
2404 */
2405
2406 u_long syn_cache_count;
2407 u_int32_t syn_hash1, syn_hash2;
2408
2409 #define SYN_HASH(sa, sp, dp) \
2410 ((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
2411 ((u_int32_t)(sp)))^syn_hash2)))
2412 #ifndef INET6
2413 #define SYN_HASHALL(hash, src, dst) \
2414 do { \
2415 hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
2416 ((struct sockaddr_in *)(src))->sin_port, \
2417 ((struct sockaddr_in *)(dst))->sin_port); \
2418 } while (0)
2419 #else
2420 #define SYN_HASH6(sa, sp, dp) \
2421 ((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
2422 (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
2423 & 0x7fffffff)
2424
2425 #define SYN_HASHALL(hash, src, dst) \
2426 do { \
2427 switch ((src)->sa_family) { \
2428 case AF_INET: \
2429 hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
2430 ((struct sockaddr_in *)(src))->sin_port, \
2431 ((struct sockaddr_in *)(dst))->sin_port); \
2432 break; \
2433 case AF_INET6: \
2434 hash = SYN_HASH6(&((struct sockaddr_in6 *)(src))->sin6_addr, \
2435 ((struct sockaddr_in6 *)(src))->sin6_port, \
2436 ((struct sockaddr_in6 *)(dst))->sin6_port); \
2437 break; \
2438 default: \
2439 hash = 0; \
2440 } \
2441 } while (0)
2442 #endif /* INET6 */
2443
2444 #define SYN_CACHE_RM(sc) \
2445 do { \
2446 LIST_REMOVE((sc), sc_bucketq); \
2447 (sc)->sc_tp = NULL; \
2448 LIST_REMOVE((sc), sc_tpq); \
2449 tcp_syn_cache[(sc)->sc_bucketidx].sch_length--; \
2450 TAILQ_REMOVE(&tcp_syn_cache_timeq[(sc)->sc_rxtshift], (sc), sc_timeq); \
2451 syn_cache_count--; \
2452 } while (0)
2453
2454 #define SYN_CACHE_PUT(sc) \
2455 do { \
2456 if ((sc)->sc_ipopts) \
2457 (void) m_free((sc)->sc_ipopts); \
2458 if ((sc)->sc_route4.ro_rt != NULL) \
2459 RTFREE((sc)->sc_route4.ro_rt); \
2460 pool_put(&syn_cache_pool, (sc)); \
2461 } while (0)
2462
2463 struct pool syn_cache_pool;
2464
2465 /*
2466 * We don't estimate RTT with SYNs, so each packet starts with the default
2467 * RTT and each timer queue has a fixed timeout value. This allows us to
2468 * optimize the timer queues somewhat.
2469 */
2470 #define SYN_CACHE_TIMER_ARM(sc) \
2471 do { \
2472 TCPT_RANGESET((sc)->sc_rxtcur, \
2473 TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN, \
2474 TCPTV_REXMTMAX); \
2475 PRT_SLOW_ARM((sc)->sc_rexmt, (sc)->sc_rxtcur); \
2476 } while (0)
2477
2478 TAILQ_HEAD(, syn_cache) tcp_syn_cache_timeq[TCP_MAXRXTSHIFT + 1];
2479
2480 void
2481 syn_cache_init()
2482 {
2483 int i;
2484
2485 /* Initialize the hash buckets. */
2486 for (i = 0; i < tcp_syn_cache_size; i++)
2487 LIST_INIT(&tcp_syn_cache[i].sch_bucket);
2488
2489 /* Initialize the timer queues. */
2490 for (i = 0; i <= TCP_MAXRXTSHIFT; i++)
2491 TAILQ_INIT(&tcp_syn_cache_timeq[i]);
2492
2493 /* Initialize the syn cache pool. */
2494 pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
2495 "synpl", 0, NULL, NULL, M_PCB);
2496 }
2497
2498 void
2499 syn_cache_insert(sc, tp)
2500 struct syn_cache *sc;
2501 struct tcpcb *tp;
2502 {
2503 struct syn_cache_head *scp;
2504 struct syn_cache *sc2;
2505 int s, i;
2506
2507 /*
2508 * If there are no entries in the hash table, reinitialize
2509 * the hash secrets.
2510 */
2511 if (syn_cache_count == 0) {
2512 struct timeval tv;
2513 microtime(&tv);
2514 syn_hash1 = random() ^ (u_long)≻
2515 syn_hash2 = random() ^ tv.tv_usec;
2516 }
2517
2518 SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
2519 sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
2520 scp = &tcp_syn_cache[sc->sc_bucketidx];
2521
2522 /*
2523 * Make sure that we don't overflow the per-bucket
2524 * limit or the total cache size limit.
2525 */
2526 s = splsoftnet();
2527 if (scp->sch_length >= tcp_syn_bucket_limit) {
2528 tcpstat.tcps_sc_bucketoverflow++;
2529 /*
2530 * The bucket is full. Toss the oldest element in the
2531 * bucket. This will be the entry with our bucket
2532 * index closest to the front of the timer queue with
2533 * the largest timeout value.
2534 *
2535 * Note: This timer queue traversal may be expensive, so
2536 * we hope that this doesn't happen very often. It is
2537 * much more likely that we'll overflow the entire
2538 * cache, which is much easier to handle; see below.
2539 */
2540 for (i = TCP_MAXRXTSHIFT; i >= 0; i--) {
2541 for (sc2 = TAILQ_FIRST(&tcp_syn_cache_timeq[i]);
2542 sc2 != NULL;
2543 sc2 = TAILQ_NEXT(sc2, sc_timeq)) {
2544 if (sc2->sc_bucketidx == sc->sc_bucketidx) {
2545 SYN_CACHE_RM(sc2);
2546 SYN_CACHE_PUT(sc2);
2547 goto insert; /* 2 level break */
2548 }
2549 }
2550 }
2551 #ifdef DIAGNOSTIC
2552 /*
2553 * This should never happen; we should always find an
2554 * entry in our bucket.
2555 */
2556 panic("syn_cache_insert: bucketoverflow: impossible");
2557 #endif
2558 } else if (syn_cache_count >= tcp_syn_cache_limit) {
2559 tcpstat.tcps_sc_overflowed++;
2560 /*
2561 * The cache is full. Toss the oldest entry in the
2562 * entire cache. This is the front entry in the
2563 * first non-empty timer queue with the largest
2564 * timeout value.
2565 */
2566 for (i = TCP_MAXRXTSHIFT; i >= 0; i--) {
2567 sc2 = TAILQ_FIRST(&tcp_syn_cache_timeq[i]);
2568 if (sc2 == NULL)
2569 continue;
2570 SYN_CACHE_RM(sc2);
2571 SYN_CACHE_PUT(sc2);
2572 goto insert; /* symmetry with above */
2573 }
2574 #ifdef DIAGNOSTIC
2575 /*
2576 * This should never happen; we should always find an
2577 * entry in the cache.
2578 */
2579 panic("syn_cache_insert: cache overflow: impossible");
2580 #endif
2581 }
2582
2583 insert:
2584 /*
2585 * Initialize the entry's timer.
2586 */
2587 sc->sc_rxttot = 0;
2588 sc->sc_rxtshift = 0;
2589 SYN_CACHE_TIMER_ARM(sc);
2590 TAILQ_INSERT_TAIL(&tcp_syn_cache_timeq[sc->sc_rxtshift], sc, sc_timeq);
2591
2592 /* Link it from tcpcb entry */
2593 LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
2594
2595 /* Put it into the bucket. */
2596 LIST_INSERT_HEAD(&scp->sch_bucket, sc, sc_bucketq);
2597 scp->sch_length++;
2598 syn_cache_count++;
2599
2600 tcpstat.tcps_sc_added++;
2601 splx(s);
2602 }
2603
2604 /*
2605 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
2606 * If we have retransmitted an entry the maximum number of times, expire
2607 * that entry.
2608 */
2609 void
2610 syn_cache_timer()
2611 {
2612 struct syn_cache *sc, *nsc;
2613 int i, s;
2614
2615 s = splsoftnet();
2616
2617 /*
2618 * First, get all the entries that need to be retransmitted, or
2619 * must be expired due to exceeding the initial keepalive time.
2620 */
2621 for (i = 0; i < TCP_MAXRXTSHIFT; i++) {
2622 for (sc = TAILQ_FIRST(&tcp_syn_cache_timeq[i]);
2623 sc != NULL && PRT_SLOW_ISEXPIRED(sc->sc_rexmt);
2624 sc = nsc) {
2625 nsc = TAILQ_NEXT(sc, sc_timeq);
2626
2627 /*
2628 * Compute the total amount of time this entry has
2629 * been on a queue. If this entry has been on longer
2630 * than the keep alive timer would allow, expire it.
2631 */
2632 sc->sc_rxttot += sc->sc_rxtcur;
2633 if (sc->sc_rxttot >= TCPTV_KEEP_INIT) {
2634 tcpstat.tcps_sc_timed_out++;
2635 SYN_CACHE_RM(sc);
2636 SYN_CACHE_PUT(sc);
2637 continue;
2638 }
2639
2640 tcpstat.tcps_sc_retransmitted++;
2641 (void) syn_cache_respond(sc, NULL);
2642
2643 /* Advance this entry onto the next timer queue. */
2644 TAILQ_REMOVE(&tcp_syn_cache_timeq[i], sc, sc_timeq);
2645 sc->sc_rxtshift = i + 1;
2646 SYN_CACHE_TIMER_ARM(sc);
2647 TAILQ_INSERT_TAIL(&tcp_syn_cache_timeq[sc->sc_rxtshift],
2648 sc, sc_timeq);
2649 }
2650 }
2651
2652 /*
2653 * Now get all the entries that are expired due to too many
2654 * retransmissions.
2655 */
2656 for (sc = TAILQ_FIRST(&tcp_syn_cache_timeq[TCP_MAXRXTSHIFT]);
2657 sc != NULL && PRT_SLOW_ISEXPIRED(sc->sc_rexmt);
2658 sc = nsc) {
2659 nsc = TAILQ_NEXT(sc, sc_timeq);
2660 tcpstat.tcps_sc_timed_out++;
2661 SYN_CACHE_RM(sc);
2662 SYN_CACHE_PUT(sc);
2663 }
2664 splx(s);
2665 }
2666
2667 /*
2668 * Remove syn cache created by the specified tcb entry,
2669 * because this does not make sense to keep them
2670 * (if there's no tcb entry, syn cache entry will never be used)
2671 */
2672 void
2673 syn_cache_cleanup(tp)
2674 struct tcpcb *tp;
2675 {
2676 struct syn_cache *sc, *nsc;
2677 int s;
2678
2679 s = splsoftnet();
2680
2681 for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
2682 nsc = LIST_NEXT(sc, sc_tpq);
2683
2684 #ifdef DIAGNOSTIC
2685 if (sc->sc_tp != tp)
2686 panic("invalid sc_tp in syn_cache_cleanup");
2687 #endif
2688 SYN_CACHE_RM(sc);
2689 SYN_CACHE_PUT(sc);
2690 }
2691 /* just for safety */
2692 LIST_INIT(&tp->t_sc);
2693
2694 splx(s);
2695 }
2696
2697 /*
2698 * Find an entry in the syn cache.
2699 */
2700 struct syn_cache *
2701 syn_cache_lookup(src, dst, headp)
2702 struct sockaddr *src;
2703 struct sockaddr *dst;
2704 struct syn_cache_head **headp;
2705 {
2706 struct syn_cache *sc;
2707 struct syn_cache_head *scp;
2708 u_int32_t hash;
2709 int s;
2710
2711 SYN_HASHALL(hash, src, dst);
2712
2713 scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
2714 *headp = scp;
2715 s = splsoftnet();
2716 for (sc = LIST_FIRST(&scp->sch_bucket); sc != NULL;
2717 sc = LIST_NEXT(sc, sc_bucketq)) {
2718 if (sc->sc_hash != hash)
2719 continue;
2720 if (!bcmp(&sc->sc_src, src, src->sa_len) &&
2721 !bcmp(&sc->sc_dst, dst, dst->sa_len)) {
2722 splx(s);
2723 return (sc);
2724 }
2725 }
2726 splx(s);
2727 return (NULL);
2728 }
2729
2730 /*
2731 * This function gets called when we receive an ACK for a
2732 * socket in the LISTEN state. We look up the connection
2733 * in the syn cache, and if its there, we pull it out of
2734 * the cache and turn it into a full-blown connection in
2735 * the SYN-RECEIVED state.
2736 *
2737 * The return values may not be immediately obvious, and their effects
2738 * can be subtle, so here they are:
2739 *
2740 * NULL SYN was not found in cache; caller should drop the
2741 * packet and send an RST.
2742 *
2743 * -1 We were unable to create the new connection, and are
2744 * aborting it. An ACK,RST is being sent to the peer
2745 * (unless we got screwey sequence numbners; see below),
2746 * because the 3-way handshake has been completed. Caller
2747 * should not free the mbuf, since we may be using it. If
2748 * we are not, we will free it.
2749 *
2750 * Otherwise, the return value is a pointer to the new socket
2751 * associated with the connection.
2752 */
2753 struct socket *
2754 syn_cache_get(src, dst, th, hlen, tlen, so, m)
2755 struct sockaddr *src;
2756 struct sockaddr *dst;
2757 struct tcphdr *th;
2758 unsigned int hlen, tlen;
2759 struct socket *so;
2760 struct mbuf *m;
2761 {
2762 struct syn_cache *sc;
2763 struct syn_cache_head *scp;
2764 register struct inpcb *inp = NULL;
2765 #ifdef INET6
2766 register struct in6pcb *in6p = NULL;
2767 #endif
2768 register struct tcpcb *tp = 0;
2769 struct mbuf *am;
2770 int s;
2771 struct socket *oso;
2772
2773 s = splsoftnet();
2774 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
2775 splx(s);
2776 return (NULL);
2777 }
2778
2779 /*
2780 * Verify the sequence and ack numbers. Try getting the correct
2781 * response again.
2782 */
2783 if ((th->th_ack != sc->sc_iss + 1) ||
2784 SEQ_LEQ(th->th_seq, sc->sc_irs) ||
2785 SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
2786 (void) syn_cache_respond(sc, m);
2787 splx(s);
2788 return ((struct socket *)(-1));
2789 }
2790
2791 /* Remove this cache entry */
2792 SYN_CACHE_RM(sc);
2793 splx(s);
2794
2795 /*
2796 * Ok, create the full blown connection, and set things up
2797 * as they would have been set up if we had created the
2798 * connection when the SYN arrived. If we can't create
2799 * the connection, abort it.
2800 */
2801 /*
2802 * inp still has the OLD in_pcb stuff, set the
2803 * v6-related flags on the new guy, too. This is
2804 * done particularly for the case where an AF_INET6
2805 * socket is bound only to a port, and a v4 connection
2806 * comes in on that port.
2807 * we also copy the flowinfo from the original pcb
2808 * to the new one.
2809 */
2810 {
2811 struct inpcb *parentinpcb;
2812
2813 parentinpcb = (struct inpcb *)so->so_pcb;
2814
2815 oso = so;
2816 so = sonewconn(so, SS_ISCONNECTED);
2817 if (so == NULL)
2818 goto resetandabort;
2819
2820 switch (so->so_proto->pr_domain->dom_family) {
2821 case AF_INET:
2822 inp = sotoinpcb(so);
2823 break;
2824 #ifdef INET6
2825 case AF_INET6:
2826 in6p = sotoin6pcb(so);
2827 #if 0 /*def INET6*/
2828 inp->inp_flags |= (parentinpcb->inp_flags &
2829 (INP_IPV6 | INP_IPV6_UNDEC | INP_IPV6_MAPPED));
2830 if ((inp->inp_flags & INP_IPV6) &&
2831 !(inp->inp_flags & INP_IPV6_MAPPED)) {
2832 inp->inp_ipv6.ip6_hlim = parentinpcb->inp_ipv6.ip6_hlim;
2833 inp->inp_ipv6.ip6_vfc = parentinpcb->inp_ipv6.ip6_vfc;
2834 }
2835 #endif
2836 break;
2837 #endif
2838 }
2839 }
2840 switch (src->sa_family) {
2841 case AF_INET:
2842 if (inp) {
2843 inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
2844 inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
2845 inp->inp_options = ip_srcroute();
2846 in_pcbstate(inp, INP_BOUND);
2847 if (inp->inp_options == NULL) {
2848 inp->inp_options = sc->sc_ipopts;
2849 sc->sc_ipopts = NULL;
2850 }
2851 }
2852 #ifdef INET6
2853 else if (in6p) {
2854 /* IPv4 packet to AF_INET6 socket */
2855 bzero(&in6p->in6p_laddr, sizeof(in6p->in6p_laddr));
2856 in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
2857 bcopy(&((struct sockaddr_in *)dst)->sin_addr,
2858 &in6p->in6p_laddr.s6_addr32[3],
2859 sizeof(((struct sockaddr_in *)dst)->sin_addr));
2860 in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
2861 in6totcpcb(in6p)->t_family = AF_INET;
2862 }
2863 #endif
2864 break;
2865 #ifdef INET6
2866 case AF_INET6:
2867 if (in6p) {
2868 in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
2869 in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
2870 #if 0
2871 in6p->in6p_flowinfo = ip6->ip6_flow & IPV6_FLOWINFO_MASK;
2872 /*inp->inp_options = ip6_srcroute();*/ /* soon. */
2873 #endif
2874 }
2875 break;
2876 #endif
2877 }
2878 #ifdef INET6
2879 if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
2880 struct in6pcb *oin6p = sotoin6pcb(oso);
2881 /* inherit socket options from the listening socket */
2882 in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
2883 if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
2884 m_freem(in6p->in6p_options);
2885 in6p->in6p_options = 0;
2886 }
2887 ip6_savecontrol(in6p, &in6p->in6p_options,
2888 mtod(m, struct ip6_hdr *), m);
2889 }
2890 #endif
2891
2892 #ifdef IPSEC
2893 {
2894 struct secpolicy *sp;
2895 if (inp) {
2896 sp = ipsec_copy_policy(sotoinpcb(oso)->inp_sp);
2897 if (sp) {
2898 key_freesp(inp->inp_sp);
2899 inp->inp_sp = sp;
2900 } else
2901 printf("tcp_input: could not copy policy\n");
2902 }
2903 #ifdef INET6
2904 else if (in6p) {
2905 sp = ipsec_copy_policy(sotoin6pcb(oso)->in6p_sp);
2906 if (sp) {
2907 key_freesp(in6p->in6p_sp);
2908 in6p->in6p_sp = sp;
2909 } else
2910 printf("tcp_input: could not copy policy\n");
2911 }
2912 #endif
2913 }
2914 #endif
2915
2916 /*
2917 * Give the new socket our cached route reference.
2918 */
2919 if (inp)
2920 inp->inp_route = sc->sc_route4; /* struct assignment */
2921 #ifdef INET6
2922 else
2923 in6p->in6p_route = sc->sc_route6;
2924 #endif
2925 sc->sc_route4.ro_rt = NULL;
2926
2927 am = m_get(M_DONTWAIT, MT_SONAME); /* XXX */
2928 if (am == NULL)
2929 goto resetandabort;
2930 am->m_len = src->sa_len;
2931 bcopy(src, mtod(am, caddr_t), src->sa_len);
2932 if (inp) {
2933 if (in_pcbconnect(inp, am)) {
2934 (void) m_free(am);
2935 goto resetandabort;
2936 }
2937 }
2938 #ifdef INET6
2939 else if (in6p) {
2940 if (src->sa_family == AF_INET) {
2941 /* IPv4 packet to AF_INET6 socket */
2942 struct sockaddr_in6 *sin6;
2943 sin6 = mtod(am, struct sockaddr_in6 *);
2944 am->m_len = sizeof(*sin6);
2945 bzero(sin6, sizeof(*sin6));
2946 sin6->sin6_family = AF_INET6;
2947 sin6->sin6_len = sizeof(*sin6);
2948 sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port;
2949 sin6->sin6_addr.s6_addr16[5] = htons(0xffff);
2950 bcopy(&((struct sockaddr_in *)src)->sin_addr,
2951 &sin6->sin6_addr.s6_addr32[3],
2952 sizeof(sin6->sin6_addr.s6_addr32[3]));
2953 }
2954 if (in6_pcbconnect(in6p, am)) {
2955 (void) m_free(am);
2956 goto resetandabort;
2957 }
2958 }
2959 #endif
2960 else {
2961 (void) m_free(am);
2962 goto resetandabort;
2963 }
2964 (void) m_free(am);
2965
2966 if (inp)
2967 tp = intotcpcb(inp);
2968 #ifdef INET6
2969 else if (in6p)
2970 tp = in6totcpcb(in6p);
2971 #endif
2972 else
2973 tp = NULL;
2974 if (sc->sc_request_r_scale != 15) {
2975 tp->requested_s_scale = sc->sc_requested_s_scale;
2976 tp->request_r_scale = sc->sc_request_r_scale;
2977 tp->snd_scale = sc->sc_requested_s_scale;
2978 tp->rcv_scale = sc->sc_request_r_scale;
2979 tp->t_flags |= TF_RCVD_SCALE;
2980 }
2981 if (sc->sc_flags & SCF_TIMESTAMP)
2982 tp->t_flags |= TF_RCVD_TSTMP;
2983
2984 tp->t_template = tcp_template(tp);
2985 if (tp->t_template == 0) {
2986 tp = tcp_drop(tp, ENOBUFS); /* destroys socket */
2987 so = NULL;
2988 m_freem(m);
2989 goto abort;
2990 }
2991
2992 tp->iss = sc->sc_iss;
2993 tp->irs = sc->sc_irs;
2994 tcp_sendseqinit(tp);
2995 tcp_rcvseqinit(tp);
2996 tp->t_state = TCPS_SYN_RECEIVED;
2997 TCP_TIMER_ARM(tp, TCPT_KEEP, TCPTV_KEEP_INIT);
2998 tcpstat.tcps_accepts++;
2999
3000 /* Initialize tp->t_ourmss before we deal with the peer's! */
3001 tp->t_ourmss = sc->sc_ourmaxseg;
3002 tcp_mss_from_peer(tp, sc->sc_peermaxseg);
3003
3004 /*
3005 * Initialize the initial congestion window. If we
3006 * had to retransmit the SYN,ACK, we must initialize cwnd
3007 * to 1 segment (i.e. the Loss Window).
3008 */
3009 if (sc->sc_rxtshift)
3010 tp->snd_cwnd = tp->t_peermss;
3011 else
3012 tp->snd_cwnd = TCP_INITIAL_WINDOW(tcp_init_win, tp->t_peermss);
3013
3014 tcp_rmx_rtt(tp);
3015 tp->snd_wl1 = sc->sc_irs;
3016 tp->rcv_up = sc->sc_irs + 1;
3017
3018 /*
3019 * This is what whould have happened in tcp_ouput() when
3020 * the SYN,ACK was sent.
3021 */
3022 tp->snd_up = tp->snd_una;
3023 tp->snd_max = tp->snd_nxt = tp->iss+1;
3024 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
3025 if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
3026 tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
3027 tp->last_ack_sent = tp->rcv_nxt;
3028
3029 tcpstat.tcps_sc_completed++;
3030 SYN_CACHE_PUT(sc);
3031 return (so);
3032
3033 resetandabort:
3034 (void) tcp_respond(NULL, m, m, th,
3035 th->th_seq + tlen, (tcp_seq)0, TH_RST|TH_ACK);
3036 abort:
3037 if (so != NULL)
3038 (void) soabort(so);
3039 SYN_CACHE_PUT(sc);
3040 tcpstat.tcps_sc_aborted++;
3041 return ((struct socket *)(-1));
3042 }
3043
3044 /*
3045 * This function is called when we get a RST for a
3046 * non-existant connection, so that we can see if the
3047 * connection is in the syn cache. If it is, zap it.
3048 */
3049
3050 void
3051 syn_cache_reset(src, dst, th)
3052 struct sockaddr *src;
3053 struct sockaddr *dst;
3054 struct tcphdr *th;
3055 {
3056 struct syn_cache *sc;
3057 struct syn_cache_head *scp;
3058 int s = splsoftnet();
3059
3060 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3061 splx(s);
3062 return;
3063 }
3064 if (SEQ_LT(th->th_seq, sc->sc_irs) ||
3065 SEQ_GT(th->th_seq, sc->sc_irs+1)) {
3066 splx(s);
3067 return;
3068 }
3069 SYN_CACHE_RM(sc);
3070 splx(s);
3071 tcpstat.tcps_sc_reset++;
3072 SYN_CACHE_PUT(sc);
3073 }
3074
3075 void
3076 syn_cache_unreach(src, dst, th)
3077 struct sockaddr *src;
3078 struct sockaddr *dst;
3079 struct tcphdr *th;
3080 {
3081 struct syn_cache *sc;
3082 struct syn_cache_head *scp;
3083 int s;
3084
3085 s = splsoftnet();
3086 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3087 splx(s);
3088 return;
3089 }
3090 /* If the sequence number != sc_iss, then it's a bogus ICMP msg */
3091 if (ntohl (th->th_seq) != sc->sc_iss) {
3092 splx(s);
3093 return;
3094 }
3095
3096 /*
3097 * If we've rertransmitted 3 times and this is our second error,
3098 * we remove the entry. Otherwise, we allow it to continue on.
3099 * This prevents us from incorrectly nuking an entry during a
3100 * spurious network outage.
3101 *
3102 * See tcp_notify().
3103 */
3104 if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
3105 sc->sc_flags |= SCF_UNREACH;
3106 splx(s);
3107 return;
3108 }
3109
3110 SYN_CACHE_RM(sc);
3111 splx(s);
3112 tcpstat.tcps_sc_unreach++;
3113 SYN_CACHE_PUT(sc);
3114 }
3115
3116 /*
3117 * Given a LISTEN socket and an inbound SYN request, add
3118 * this to the syn cache, and send back a segment:
3119 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
3120 * to the source.
3121 *
3122 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
3123 * Doing so would require that we hold onto the data and deliver it
3124 * to the application. However, if we are the target of a SYN-flood
3125 * DoS attack, an attacker could send data which would eventually
3126 * consume all available buffer space if it were ACKed. By not ACKing
3127 * the data, we avoid this DoS scenario.
3128 */
3129
3130 int
3131 syn_cache_add(src, dst, th, hlen, so, m, optp, optlen, oi)
3132 struct sockaddr *src;
3133 struct sockaddr *dst;
3134 struct tcphdr *th;
3135 unsigned int hlen;
3136 struct socket *so;
3137 struct mbuf *m;
3138 u_char *optp;
3139 int optlen;
3140 struct tcp_opt_info *oi;
3141 {
3142 struct tcpcb tb, *tp;
3143 long win;
3144 struct syn_cache *sc;
3145 struct syn_cache_head *scp;
3146 struct mbuf *ipopts;
3147
3148 tp = sototcpcb(so);
3149
3150 /*
3151 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
3152 * in_broadcast() should never return true on a received
3153 * packet with M_BCAST not set.
3154 */
3155 if (m->m_flags & (M_BCAST|M_MCAST))
3156 return 0;
3157 #ifdef INET6
3158 if (m->m_flags & M_ANYCAST6)
3159 return 0;
3160 #endif
3161
3162 switch (src->sa_family) {
3163 case AF_INET:
3164 if (IN_MULTICAST(((struct sockaddr_in *)src)->sin_addr.s_addr)
3165 || IN_MULTICAST(((struct sockaddr_in *)dst)->sin_addr.s_addr))
3166 return 0;
3167 break;
3168 #ifdef INET6
3169 case AF_INET6:
3170 if (IN6_IS_ADDR_MULTICAST(&((struct sockaddr_in6 *)src)->sin6_addr)
3171 || IN6_IS_ADDR_MULTICAST(&((struct sockaddr_in6 *)dst)->sin6_addr))
3172 return 0;
3173 break;
3174 #endif
3175 default:
3176 return 0;
3177 }
3178
3179 /*
3180 * Initialize some local state.
3181 */
3182 win = sbspace(&so->so_rcv);
3183 if (win > TCP_MAXWIN)
3184 win = TCP_MAXWIN;
3185
3186 if (src->sa_family == AF_INET) {
3187 /*
3188 * Remember the IP options, if any.
3189 */
3190 ipopts = ip_srcroute();
3191 } else
3192 ipopts = NULL;
3193
3194 if (optp) {
3195 tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
3196 tcp_dooptions(&tb, optp, optlen, th, oi);
3197 } else
3198 tb.t_flags = 0;
3199
3200 /*
3201 * See if we already have an entry for this connection.
3202 * If we do, resend the SYN,ACK. We do not count this
3203 * as a retransmission (XXX though maybe we should).
3204 */
3205 if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
3206 tcpstat.tcps_sc_dupesyn++;
3207 if (ipopts) {
3208 /*
3209 * If we were remembering a previous source route,
3210 * forget it and use the new one we've been given.
3211 */
3212 if (sc->sc_ipopts)
3213 (void) m_free(sc->sc_ipopts);
3214 sc->sc_ipopts = ipopts;
3215 }
3216 sc->sc_timestamp = tb.ts_recent;
3217 if (syn_cache_respond(sc, m) == 0) {
3218 tcpstat.tcps_sndacks++;
3219 tcpstat.tcps_sndtotal++;
3220 }
3221 return (1);
3222 }
3223
3224 sc = pool_get(&syn_cache_pool, PR_NOWAIT);
3225 if (sc == NULL) {
3226 if (ipopts)
3227 (void) m_free(ipopts);
3228 return (0);
3229 }
3230
3231 /*
3232 * Fill in the cache, and put the necessary IP and TCP
3233 * options into the reply.
3234 */
3235 bzero(sc, sizeof(struct syn_cache));
3236 bcopy(src, &sc->sc_src, src->sa_len);
3237 bcopy(dst, &sc->sc_dst, dst->sa_len);
3238 sc->sc_flags = 0;
3239 sc->sc_ipopts = ipopts;
3240 sc->sc_irs = th->th_seq;
3241 sc->sc_iss = tcp_new_iss(sc, sizeof(struct syn_cache), 0);
3242 sc->sc_peermaxseg = oi->maxseg;
3243 sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
3244 m->m_pkthdr.rcvif : NULL,
3245 sc->sc_src.sa.sa_family);
3246 sc->sc_win = win;
3247 sc->sc_timestamp = tb.ts_recent;
3248 if (tcp_do_rfc1323 && (tb.t_flags & TF_RCVD_TSTMP))
3249 sc->sc_flags |= SCF_TIMESTAMP;
3250 if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
3251 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
3252 sc->sc_requested_s_scale = tb.requested_s_scale;
3253 sc->sc_request_r_scale = 0;
3254 while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
3255 TCP_MAXWIN << sc->sc_request_r_scale <
3256 so->so_rcv.sb_hiwat)
3257 sc->sc_request_r_scale++;
3258 } else {
3259 sc->sc_requested_s_scale = 15;
3260 sc->sc_request_r_scale = 15;
3261 }
3262 sc->sc_tp = tp;
3263 if (syn_cache_respond(sc, m) == 0) {
3264 syn_cache_insert(sc, tp);
3265 tcpstat.tcps_sndacks++;
3266 tcpstat.tcps_sndtotal++;
3267 } else {
3268 SYN_CACHE_PUT(sc);
3269 tcpstat.tcps_sc_dropped++;
3270 }
3271 return (1);
3272 }
3273
3274 int
3275 syn_cache_respond(sc, m)
3276 struct syn_cache *sc;
3277 struct mbuf *m;
3278 {
3279 struct route *ro;
3280 struct rtentry *rt;
3281 u_int8_t *optp;
3282 int optlen, error;
3283 u_int16_t tlen;
3284 struct ip *ip = NULL;
3285 #ifdef INET6
3286 struct ip6_hdr *ip6 = NULL;
3287 #endif
3288 struct tcphdr *th;
3289 u_int hlen;
3290
3291 switch (sc->sc_src.sa.sa_family) {
3292 case AF_INET:
3293 hlen = sizeof(struct ip);
3294 ro = &sc->sc_route4;
3295 break;
3296 #ifdef INET6
3297 case AF_INET6:
3298 hlen = sizeof(struct ip6_hdr);
3299 ro = (struct route *)&sc->sc_route6;
3300 break;
3301 #endif
3302 default:
3303 if (m)
3304 m_freem(m);
3305 return EAFNOSUPPORT;
3306 }
3307
3308 /* Compute the size of the TCP options. */
3309 optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
3310 ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
3311
3312 tlen = hlen + sizeof(struct tcphdr) + optlen;
3313
3314 /*
3315 * Create the IP+TCP header from scratch. Reuse the received mbuf
3316 * if possible.
3317 */
3318 if (m != NULL) {
3319 m_freem(m->m_next);
3320 m->m_next = NULL;
3321 MRESETDATA(m);
3322 } else {
3323 MGETHDR(m, M_DONTWAIT, MT_DATA);
3324 if (m == NULL)
3325 return (ENOBUFS);
3326 }
3327
3328 /* Fixup the mbuf. */
3329 m->m_data += max_linkhdr;
3330 m->m_len = m->m_pkthdr.len = tlen;
3331 #ifdef IPSEC
3332 if (sc->sc_tp) {
3333 struct tcpcb *tp;
3334 struct socket *so;
3335
3336 tp = sc->sc_tp;
3337 if (tp->t_inpcb)
3338 so = tp->t_inpcb->inp_socket;
3339 #ifdef INET6
3340 else if (tp->t_in6pcb)
3341 so = tp->t_in6pcb->in6p_socket;
3342 #endif
3343 else
3344 so = NULL;
3345 /* use IPsec policy on listening socket, on SYN ACK */
3346 m->m_pkthdr.rcvif = (struct ifnet *)so;
3347 }
3348 #else
3349 m->m_pkthdr.rcvif = NULL;
3350 #endif
3351 memset(mtod(m, u_char *), 0, tlen);
3352
3353 switch (sc->sc_src.sa.sa_family) {
3354 case AF_INET:
3355 ip = mtod(m, struct ip *);
3356 ip->ip_dst = sc->sc_src.sin.sin_addr;
3357 ip->ip_src = sc->sc_dst.sin.sin_addr;
3358 ip->ip_p = IPPROTO_TCP;
3359 th = (struct tcphdr *)(ip + 1);
3360 th->th_dport = sc->sc_src.sin.sin_port;
3361 th->th_sport = sc->sc_dst.sin.sin_port;
3362 break;
3363 #ifdef INET6
3364 case AF_INET6:
3365 ip6 = mtod(m, struct ip6_hdr *);
3366 ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
3367 ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
3368 ip6->ip6_nxt = IPPROTO_TCP;
3369 /* ip6_plen will be updated in ip6_output() */
3370 th = (struct tcphdr *)(ip6 + 1);
3371 th->th_dport = sc->sc_src.sin6.sin6_port;
3372 th->th_sport = sc->sc_dst.sin6.sin6_port;
3373 break;
3374 #endif
3375 default:
3376 th = NULL;
3377 }
3378
3379 th->th_seq = htonl(sc->sc_iss);
3380 th->th_ack = htonl(sc->sc_irs + 1);
3381 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
3382 th->th_flags = TH_SYN|TH_ACK;
3383 th->th_win = htons(sc->sc_win);
3384 /* th_sum already 0 */
3385 /* th_urp already 0 */
3386
3387 /* Tack on the TCP options. */
3388 optp = (u_int8_t *)(th + 1);
3389 *optp++ = TCPOPT_MAXSEG;
3390 *optp++ = 4;
3391 *optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
3392 *optp++ = sc->sc_ourmaxseg & 0xff;
3393
3394 if (sc->sc_request_r_scale != 15) {
3395 *((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
3396 TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
3397 sc->sc_request_r_scale);
3398 optp += 4;
3399 }
3400
3401 if (sc->sc_flags & SCF_TIMESTAMP) {
3402 u_int32_t *lp = (u_int32_t *)(optp);
3403 /* Form timestamp option as shown in appendix A of RFC 1323. */
3404 *lp++ = htonl(TCPOPT_TSTAMP_HDR);
3405 *lp++ = htonl(tcp_now);
3406 *lp = htonl(sc->sc_timestamp);
3407 optp += TCPOLEN_TSTAMP_APPA;
3408 }
3409
3410 /* Compute the packet's checksum. */
3411 switch (sc->sc_src.sa.sa_family) {
3412 case AF_INET:
3413 ip->ip_len = htons(tlen - hlen);
3414 th->th_sum = 0;
3415 th->th_sum = in_cksum(m, tlen);
3416 break;
3417 #ifdef INET6
3418 case AF_INET6:
3419 ip6->ip6_plen = htons(tlen - hlen);
3420 th->th_sum = 0;
3421 th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
3422 break;
3423 #endif
3424 }
3425
3426 /*
3427 * Fill in some straggling IP bits. Note the stack expects
3428 * ip_len to be in host order, for convenience.
3429 */
3430 switch (sc->sc_src.sa.sa_family) {
3431 case AF_INET:
3432 ip->ip_len = tlen;
3433 ip->ip_ttl = ip_defttl;
3434 /* XXX tos? */
3435 break;
3436 #ifdef INET6
3437 case AF_INET6:
3438 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
3439 ip6->ip6_vfc |= IPV6_VERSION;
3440 ip6->ip6_plen = htons(tlen - hlen);
3441 /* ip6_hlim will be initialized afterwards */
3442 /* XXX flowlabel? */
3443 break;
3444 #endif
3445 }
3446
3447 /*
3448 * If we're doing Path MTU discovery, we need to set DF unless
3449 * the route's MTU is locked. If we don't yet know the route,
3450 * look it up now. We will copy this reference to the inpcb
3451 * when we finish creating the connection.
3452 */
3453 if ((rt = ro->ro_rt) == NULL || (rt->rt_flags & RTF_UP) == 0) {
3454 if (ro->ro_rt != NULL) {
3455 RTFREE(ro->ro_rt);
3456 ro->ro_rt = NULL;
3457 }
3458 bcopy(&sc->sc_src, &ro->ro_dst, sc->sc_src.sa.sa_len);
3459 rtalloc(ro);
3460 if ((rt = ro->ro_rt) == NULL) {
3461 m_freem(m);
3462 switch (sc->sc_src.sa.sa_family) {
3463 case AF_INET:
3464 ipstat.ips_noroute++;
3465 break;
3466 #ifdef INET6
3467 case AF_INET6:
3468 ip6stat.ip6s_noroute++;
3469 break;
3470 #endif
3471 }
3472 return (EHOSTUNREACH);
3473 }
3474 }
3475
3476 switch (sc->sc_src.sa.sa_family) {
3477 case AF_INET:
3478 if (ip_mtudisc != 0 && (rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
3479 ip->ip_off |= IP_DF;
3480
3481 /* ...and send it off! */
3482 error = ip_output(m, sc->sc_ipopts, ro, 0, NULL);
3483 break;
3484 #ifdef INET6
3485 case AF_INET6:
3486 ip6->ip6_hlim = in6_selecthlim(NULL,
3487 ro->ro_rt ? ro->ro_rt->rt_ifp : NULL);
3488
3489 error = ip6_output(m, NULL /*XXX*/, (struct route_in6 *)ro,
3490 0, NULL, NULL);
3491 break;
3492 #endif
3493 default:
3494 error = EAFNOSUPPORT;
3495 break;
3496 }
3497 return (error);
3498 }
3499