tcp_input.c revision 1.103 1 /* $NetBSD: tcp_input.c,v 1.103 2000/02/12 17:19:34 thorpej Exp $ */
2
3 /*
4 %%% portions-copyright-nrl-95
5 Portions of this software are Copyright 1995-1998 by Randall Atkinson,
6 Ronald Lee, Daniel McDonald, Bao Phan, and Chris Winters. All Rights
7 Reserved. All rights under this copyright have been assigned to the US
8 Naval Research Laboratory (NRL). The NRL Copyright Notice and License
9 Agreement Version 1.1 (January 17, 1995) applies to these portions of the
10 software.
11 You should have received a copy of the license with this software. If you
12 didn't get a copy, you may request one from <license (at) ipv6.nrl.navy.mil>.
13
14 */
15
16 /*
17 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
18 * All rights reserved.
19 *
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
23 * 1. Redistributions of source code must retain the above copyright
24 * notice, this list of conditions and the following disclaimer.
25 * 2. Redistributions in binary form must reproduce the above copyright
26 * notice, this list of conditions and the following disclaimer in the
27 * documentation and/or other materials provided with the distribution.
28 * 3. Neither the name of the project nor the names of its contributors
29 * may be used to endorse or promote products derived from this software
30 * without specific prior written permission.
31 *
32 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
33 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
36 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42 * SUCH DAMAGE.
43 */
44
45 /*-
46 * Copyright (c) 1997, 1998, 1999 The NetBSD Foundation, Inc.
47 * All rights reserved.
48 *
49 * This code is derived from software contributed to The NetBSD Foundation
50 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
51 * Facility, NASA Ames Research Center.
52 *
53 * Redistribution and use in source and binary forms, with or without
54 * modification, are permitted provided that the following conditions
55 * are met:
56 * 1. Redistributions of source code must retain the above copyright
57 * notice, this list of conditions and the following disclaimer.
58 * 2. Redistributions in binary form must reproduce the above copyright
59 * notice, this list of conditions and the following disclaimer in the
60 * documentation and/or other materials provided with the distribution.
61 * 3. All advertising materials mentioning features or use of this software
62 * must display the following acknowledgement:
63 * This product includes software developed by the NetBSD
64 * Foundation, Inc. and its contributors.
65 * 4. Neither the name of The NetBSD Foundation nor the names of its
66 * contributors may be used to endorse or promote products derived
67 * from this software without specific prior written permission.
68 *
69 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
70 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
71 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
72 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
73 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
74 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
75 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
76 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
77 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
78 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
79 * POSSIBILITY OF SUCH DAMAGE.
80 */
81
82 /*
83 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
84 * The Regents of the University of California. All rights reserved.
85 *
86 * Redistribution and use in source and binary forms, with or without
87 * modification, are permitted provided that the following conditions
88 * are met:
89 * 1. Redistributions of source code must retain the above copyright
90 * notice, this list of conditions and the following disclaimer.
91 * 2. Redistributions in binary form must reproduce the above copyright
92 * notice, this list of conditions and the following disclaimer in the
93 * documentation and/or other materials provided with the distribution.
94 * 3. All advertising materials mentioning features or use of this software
95 * must display the following acknowledgement:
96 * This product includes software developed by the University of
97 * California, Berkeley and its contributors.
98 * 4. Neither the name of the University nor the names of its contributors
99 * may be used to endorse or promote products derived from this software
100 * without specific prior written permission.
101 *
102 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
103 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
104 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
105 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
106 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
107 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
108 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
109 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
110 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
111 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
112 * SUCH DAMAGE.
113 *
114 * @(#)tcp_input.c 8.12 (Berkeley) 5/24/95
115 */
116
117 /*
118 * TODO list for SYN cache stuff:
119 *
120 * Find room for a "state" field, which is needed to keep a
121 * compressed state for TIME_WAIT TCBs. It's been noted already
122 * that this is fairly important for very high-volume web and
123 * mail servers, which use a large number of short-lived
124 * connections.
125 */
126
127 #include "opt_inet.h"
128 #include "opt_ipsec.h"
129
130 #include <sys/param.h>
131 #include <sys/systm.h>
132 #include <sys/malloc.h>
133 #include <sys/mbuf.h>
134 #include <sys/protosw.h>
135 #include <sys/socket.h>
136 #include <sys/socketvar.h>
137 #include <sys/errno.h>
138 #include <sys/syslog.h>
139 #include <sys/pool.h>
140 #include <sys/domain.h>
141
142 #include <net/if.h>
143 #include <net/route.h>
144 #include <net/if_types.h>
145
146 #include <netinet/in.h>
147 #include <netinet/in_systm.h>
148 #include <netinet/ip.h>
149 #include <netinet/in_pcb.h>
150 #include <netinet/ip_var.h>
151
152 #ifdef INET6
153 #ifndef INET
154 #include <netinet/in.h>
155 #endif
156 #include <netinet/ip6.h>
157 #include <netinet6/in6_pcb.h>
158 #include <netinet6/ip6_var.h>
159 #include <netinet6/in6_var.h>
160 #include <netinet/icmp6.h>
161 #include <netinet6/nd6.h>
162 #endif
163
164 #ifdef PULLDOWN_TEST
165 #ifndef INET6
166 /* always need ip6.h for IP6_EXTHDR_GET */
167 #include <netinet/ip6.h>
168 #endif
169 #endif
170
171 #include <netinet/tcp.h>
172 #include <netinet/tcp_fsm.h>
173 #include <netinet/tcp_seq.h>
174 #include <netinet/tcp_timer.h>
175 #include <netinet/tcp_var.h>
176 #include <netinet/tcpip.h>
177 #include <netinet/tcp_debug.h>
178
179 #include <machine/stdarg.h>
180
181 #ifdef IPSEC
182 #include <netinet6/ipsec.h>
183 #include <netkey/key.h>
184 #include <netkey/key_debug.h>
185 #endif /*IPSEC*/
186 #ifdef INET6
187 #include "faith.h"
188 #endif
189
190 int tcprexmtthresh = 3;
191 int tcp_log_refused;
192
193 #define TCP_PAWS_IDLE (24 * 24 * 60 * 60 * PR_SLOWHZ)
194
195 /* for modulo comparisons of timestamps */
196 #define TSTMP_LT(a,b) ((int)((a)-(b)) < 0)
197 #define TSTMP_GEQ(a,b) ((int)((a)-(b)) >= 0)
198
199 /*
200 * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
201 */
202 #ifdef INET6
203 #define ND6_HINT(tp) \
204 do { \
205 if (tp && tp->t_in6pcb && tp->t_family == AF_INET6 \
206 && tp->t_in6pcb->in6p_route.ro_rt) { \
207 nd6_nud_hint(tp->t_in6pcb->in6p_route.ro_rt, NULL); \
208 } \
209 } while (0)
210 #else
211 #define ND6_HINT(tp)
212 #endif
213
214 /*
215 * Macro to compute ACK transmission behavior. Delay the ACK unless
216 * we have already delayed an ACK (must send an ACK every two segments).
217 * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
218 * option is enabled.
219 */
220 #define TCP_SETUP_ACK(tp, th) \
221 do { \
222 if ((tp)->t_flags & TF_DELACK || \
223 (tcp_ack_on_push && (th)->th_flags & TH_PUSH)) \
224 tp->t_flags |= TF_ACKNOW; \
225 else \
226 TCP_SET_DELACK(tp); \
227 } while (0)
228
229 /*
230 * Convert TCP protocol fields to host order for easier processing.
231 */
232 #define TCP_FIELDS_TO_HOST(th) \
233 do { \
234 NTOHL((th)->th_seq); \
235 NTOHL((th)->th_ack); \
236 NTOHS((th)->th_win); \
237 NTOHS((th)->th_urp); \
238 } while (0)
239
240 int
241 tcp_reass(tp, th, m, tlen)
242 register struct tcpcb *tp;
243 register struct tcphdr *th;
244 struct mbuf *m;
245 int *tlen;
246 {
247 register struct ipqent *p, *q, *nq, *tiqe = NULL;
248 struct socket *so = NULL;
249 int pkt_flags;
250 tcp_seq pkt_seq;
251 unsigned pkt_len;
252 u_long rcvpartdupbyte = 0;
253 u_long rcvoobyte;
254
255 if (tp->t_inpcb)
256 so = tp->t_inpcb->inp_socket;
257 #ifdef INET6
258 else if (tp->t_in6pcb)
259 so = tp->t_in6pcb->in6p_socket;
260 #endif
261
262 TCP_REASS_LOCK_CHECK(tp);
263
264 /*
265 * Call with th==0 after become established to
266 * force pre-ESTABLISHED data up to user socket.
267 */
268 if (th == 0)
269 goto present;
270
271 rcvoobyte = *tlen;
272 /*
273 * Copy these to local variables because the tcpiphdr
274 * gets munged while we are collapsing mbufs.
275 */
276 pkt_seq = th->th_seq;
277 pkt_len = *tlen;
278 pkt_flags = th->th_flags;
279 /*
280 * Find a segment which begins after this one does.
281 */
282 for (p = NULL, q = tp->segq.lh_first; q != NULL; q = nq) {
283 nq = q->ipqe_q.le_next;
284 /*
285 * If the received segment is just right after this
286 * fragment, merge the two together and then check
287 * for further overlaps.
288 */
289 if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
290 #ifdef TCPREASS_DEBUG
291 printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
292 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
293 q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
294 #endif
295 pkt_len += q->ipqe_len;
296 pkt_flags |= q->ipqe_flags;
297 pkt_seq = q->ipqe_seq;
298 m_cat(q->ipqe_m, m);
299 m = q->ipqe_m;
300 goto free_ipqe;
301 }
302 /*
303 * If the received segment is completely past this
304 * fragment, we need to go the next fragment.
305 */
306 if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
307 p = q;
308 continue;
309 }
310 /*
311 * If the fragment is past the received segment,
312 * it (or any following) can't be concatenated.
313 */
314 if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len))
315 break;
316 /*
317 * We've received all the data in this segment before.
318 * mark it as a duplicate and return.
319 */
320 if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
321 SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
322 tcpstat.tcps_rcvduppack++;
323 tcpstat.tcps_rcvdupbyte += pkt_len;
324 m_freem(m);
325 if (tiqe != NULL)
326 pool_put(&ipqent_pool, tiqe);
327 return (0);
328 }
329 /*
330 * Received segment completely overlaps this fragment
331 * so we drop the fragment (this keeps the temporal
332 * ordering of segments correct).
333 */
334 if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
335 SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
336 rcvpartdupbyte += q->ipqe_len;
337 m_freem(q->ipqe_m);
338 goto free_ipqe;
339 }
340 /*
341 * RX'ed segment extends past the end of the
342 * fragment. Drop the overlapping bytes. Then
343 * merge the fragment and segment then treat as
344 * a longer received packet.
345 */
346 if (SEQ_LT(q->ipqe_seq, pkt_seq)
347 && SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
348 int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
349 #ifdef TCPREASS_DEBUG
350 printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
351 tp, overlap,
352 pkt_seq, pkt_seq + pkt_len, pkt_len);
353 #endif
354 m_adj(m, overlap);
355 rcvpartdupbyte += overlap;
356 m_cat(q->ipqe_m, m);
357 m = q->ipqe_m;
358 pkt_seq = q->ipqe_seq;
359 pkt_len += q->ipqe_len - overlap;
360 rcvoobyte -= overlap;
361 goto free_ipqe;
362 }
363 /*
364 * RX'ed segment extends past the front of the
365 * fragment. Drop the overlapping bytes on the
366 * received packet. The packet will then be
367 * contatentated with this fragment a bit later.
368 */
369 if (SEQ_GT(q->ipqe_seq, pkt_seq)
370 && SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len)) {
371 int overlap = pkt_seq + pkt_len - q->ipqe_seq;
372 #ifdef TCPREASS_DEBUG
373 printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
374 tp, overlap,
375 pkt_seq, pkt_seq + pkt_len, pkt_len);
376 #endif
377 m_adj(m, -overlap);
378 pkt_len -= overlap;
379 rcvpartdupbyte += overlap;
380 rcvoobyte -= overlap;
381 }
382 /*
383 * If the received segment immediates precedes this
384 * fragment then tack the fragment onto this segment
385 * and reinsert the data.
386 */
387 if (q->ipqe_seq == pkt_seq + pkt_len) {
388 #ifdef TCPREASS_DEBUG
389 printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
390 tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
391 pkt_seq, pkt_seq + pkt_len, pkt_len);
392 #endif
393 pkt_len += q->ipqe_len;
394 pkt_flags |= q->ipqe_flags;
395 m_cat(m, q->ipqe_m);
396 LIST_REMOVE(q, ipqe_q);
397 LIST_REMOVE(q, ipqe_timeq);
398 if (tiqe == NULL) {
399 tiqe = q;
400 } else {
401 pool_put(&ipqent_pool, q);
402 }
403 break;
404 }
405 /*
406 * If the fragment is before the segment, remember it.
407 * When this loop is terminated, p will contain the
408 * pointer to fragment that is right before the received
409 * segment.
410 */
411 if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
412 p = q;
413
414 continue;
415
416 /*
417 * This is a common operation. It also will allow
418 * to save doing a malloc/free in most instances.
419 */
420 free_ipqe:
421 LIST_REMOVE(q, ipqe_q);
422 LIST_REMOVE(q, ipqe_timeq);
423 if (tiqe == NULL) {
424 tiqe = q;
425 } else {
426 pool_put(&ipqent_pool, q);
427 }
428 }
429
430 /*
431 * Allocate a new queue entry since the received segment did not
432 * collapse onto any other out-of-order block; thus we are allocating
433 * a new block. If it had collapsed, tiqe would not be NULL and
434 * we would be reusing it.
435 * XXX If we can't, just drop the packet. XXX
436 */
437 if (tiqe == NULL) {
438 tiqe = pool_get(&ipqent_pool, PR_NOWAIT);
439 if (tiqe == NULL) {
440 tcpstat.tcps_rcvmemdrop++;
441 m_freem(m);
442 return (0);
443 }
444 }
445
446 /*
447 * Update the counters.
448 */
449 tcpstat.tcps_rcvoopack++;
450 tcpstat.tcps_rcvoobyte += rcvoobyte;
451 if (rcvpartdupbyte) {
452 tcpstat.tcps_rcvpartduppack++;
453 tcpstat.tcps_rcvpartdupbyte += rcvpartdupbyte;
454 }
455
456 /*
457 * Insert the new fragment queue entry into both queues.
458 */
459 tiqe->ipqe_m = m;
460 tiqe->ipqe_seq = pkt_seq;
461 tiqe->ipqe_len = pkt_len;
462 tiqe->ipqe_flags = pkt_flags;
463 if (p == NULL) {
464 LIST_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
465 #ifdef TCPREASS_DEBUG
466 if (tiqe->ipqe_seq != tp->rcv_nxt)
467 printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
468 tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
469 #endif
470 } else {
471 LIST_INSERT_AFTER(p, tiqe, ipqe_q);
472 #ifdef TCPREASS_DEBUG
473 printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
474 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
475 p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
476 #endif
477 }
478
479 LIST_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
480
481 present:
482 /*
483 * Present data to user, advancing rcv_nxt through
484 * completed sequence space.
485 */
486 if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
487 return (0);
488 q = tp->segq.lh_first;
489 if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
490 return (0);
491 if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
492 return (0);
493
494 tp->rcv_nxt += q->ipqe_len;
495 pkt_flags = q->ipqe_flags & TH_FIN;
496 ND6_HINT(tp);
497
498 LIST_REMOVE(q, ipqe_q);
499 LIST_REMOVE(q, ipqe_timeq);
500 if (so->so_state & SS_CANTRCVMORE)
501 m_freem(q->ipqe_m);
502 else
503 sbappend(&so->so_rcv, q->ipqe_m);
504 pool_put(&ipqent_pool, q);
505 sorwakeup(so);
506 return (pkt_flags);
507 }
508
509 #if defined(INET6) && !defined(TCP6)
510 int
511 tcp6_input(mp, offp, proto)
512 struct mbuf **mp;
513 int *offp, proto;
514 {
515 struct mbuf *m = *mp;
516
517 #if defined(NFAITH) && 0 < NFAITH
518 if (m->m_pkthdr.rcvif) {
519 if (m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
520 /* XXX send icmp6 host/port unreach? */
521 m_freem(m);
522 return IPPROTO_DONE;
523 }
524 }
525 #endif
526
527 /*
528 * draft-itojun-ipv6-tcp-to-anycast
529 * better place to put this in?
530 */
531 if (m->m_flags & M_ANYCAST6) {
532 struct ip6_hdr *ip6;
533 if (m->m_len < sizeof(struct ip6_hdr)) {
534 if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
535 tcpstat.tcps_rcvshort++;
536 return IPPROTO_DONE;
537 }
538 }
539 ip6 = mtod(m, struct ip6_hdr *);
540 icmp6_error(m, ICMP6_DST_UNREACH,
541 ICMP6_DST_UNREACH_ADDR,
542 (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
543 return IPPROTO_DONE;
544 }
545
546 tcp_input(m, *offp, proto);
547 return IPPROTO_DONE;
548 }
549 #endif
550
551 /*
552 * TCP input routine, follows pages 65-76 of the
553 * protocol specification dated September, 1981 very closely.
554 */
555 void
556 #if __STDC__
557 tcp_input(struct mbuf *m, ...)
558 #else
559 tcp_input(m, va_alist)
560 register struct mbuf *m;
561 #endif
562 {
563 int proto;
564 register struct tcphdr *th;
565 struct ip *ip;
566 register struct inpcb *inp;
567 #ifdef INET6
568 struct ip6_hdr *ip6;
569 register struct in6pcb *in6p;
570 #endif
571 caddr_t optp = NULL;
572 int optlen = 0;
573 int len, tlen, toff, hdroptlen = 0;
574 register struct tcpcb *tp = 0;
575 register int tiflags;
576 struct socket *so = NULL;
577 int todrop, acked, ourfinisacked, needoutput = 0;
578 short ostate = 0;
579 int iss = 0;
580 u_long tiwin;
581 struct tcp_opt_info opti;
582 int off, iphlen;
583 va_list ap;
584 int af; /* af on the wire */
585 struct mbuf *tcp_saveti = NULL;
586
587 va_start(ap, m);
588 toff = va_arg(ap, int);
589 proto = va_arg(ap, int);
590 va_end(ap);
591
592 tcpstat.tcps_rcvtotal++;
593
594 bzero(&opti, sizeof(opti));
595 opti.ts_present = 0;
596 opti.maxseg = 0;
597
598 /*
599 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
600 *
601 * TCP is, by definition, unicast, so we reject all
602 * multicast outright.
603 *
604 * Note, there are additional src/dst address checks in
605 * the AF-specific code below.
606 */
607 if (m->m_flags & (M_BCAST|M_MCAST)) {
608 /* XXX stat */
609 goto drop;
610 }
611 #ifdef INET6
612 if (m->m_flags & M_ANYCAST6) {
613 /* XXX stat */
614 goto drop;
615 }
616 #endif
617
618 /*
619 * Get IP and TCP header together in first mbuf.
620 * Note: IP leaves IP header in first mbuf.
621 */
622 ip = mtod(m, struct ip *);
623 #ifdef INET6
624 ip6 = NULL;
625 #endif
626 switch (ip->ip_v) {
627 case 4:
628 af = AF_INET;
629 iphlen = sizeof(struct ip);
630 #ifndef PULLDOWN_TEST
631 /* would like to get rid of this... */
632 if (toff > sizeof (struct ip)) {
633 ip_stripoptions(m, (struct mbuf *)0);
634 toff = sizeof(struct ip);
635 }
636 if (m->m_len < toff + sizeof (struct tcphdr)) {
637 if ((m = m_pullup(m, toff + sizeof (struct tcphdr))) == 0) {
638 tcpstat.tcps_rcvshort++;
639 return;
640 }
641 }
642 ip = mtod(m, struct ip *);
643 th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
644 #else
645 ip = mtod(m, struct ip *);
646 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
647 sizeof(struct tcphdr));
648 if (th == NULL) {
649 tcpstat.tcps_rcvshort++;
650 return;
651 }
652 #endif
653
654 /*
655 * Make sure destination address is not multicast.
656 * Source address checked in ip_input().
657 */
658 if (IN_MULTICAST(ip->ip_dst.s_addr)) {
659 /* XXX stat */
660 goto drop;
661 }
662
663 /* We do the checksum after PCB lookup... */
664 len = ip->ip_len;
665 tlen = len - toff;
666 break;
667 #ifdef INET6
668 case 6:
669 ip = NULL;
670 iphlen = sizeof(struct ip6_hdr);
671 af = AF_INET6;
672 #ifndef PULLDOWN_TEST
673 if (m->m_len < toff + sizeof(struct tcphdr)) {
674 m = m_pullup(m, toff + sizeof(struct tcphdr)); /*XXX*/
675 if (m == NULL) {
676 tcpstat.tcps_rcvshort++;
677 return;
678 }
679 }
680 ip6 = mtod(m, struct ip6_hdr *);
681 th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
682 #else
683 ip6 = mtod(m, struct ip6_hdr *);
684 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
685 sizeof(struct tcphdr));
686 if (th == NULL) {
687 tcpstat.tcps_rcvshort++;
688 return;
689 }
690 #endif
691
692 /* Be proactive about malicious use of IPv4 mapped address */
693 if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
694 IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
695 /* XXX stat */
696 goto drop;
697 }
698
699 /*
700 * Make sure destination address is not multicast.
701 * Source address checked in ip6_input().
702 */
703 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
704 /* XXX stat */
705 goto drop;
706 }
707
708 /* We do the checksum after PCB lookup... */
709 len = m->m_pkthdr.len;
710 tlen = len - toff;
711 break;
712 #endif
713 default:
714 m_freem(m);
715 return;
716 }
717
718 /*
719 * Check that TCP offset makes sense,
720 * pull out TCP options and adjust length. XXX
721 */
722 off = th->th_off << 2;
723 if (off < sizeof (struct tcphdr) || off > tlen) {
724 tcpstat.tcps_rcvbadoff++;
725 goto drop;
726 }
727 tlen -= off;
728
729 /*
730 * tcp_input() has been modified to use tlen to mean the TCP data
731 * length throughout the function. Other functions can use
732 * m->m_pkthdr.len as the basis for calculating the TCP data length.
733 * rja
734 */
735
736 if (off > sizeof (struct tcphdr)) {
737 #ifndef PULLDOWN_TEST
738 if (m->m_len < toff + off) {
739 if ((m = m_pullup(m, toff + off)) == 0) {
740 tcpstat.tcps_rcvshort++;
741 return;
742 }
743 switch (af) {
744 case AF_INET:
745 ip = mtod(m, struct ip *);
746 break;
747 #ifdef INET6
748 case AF_INET6:
749 ip6 = mtod(m, struct ip6_hdr *);
750 break;
751 #endif
752 }
753 th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
754 }
755 #else
756 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
757 if (th == NULL) {
758 tcpstat.tcps_rcvshort++;
759 return;
760 }
761 /*
762 * NOTE: ip/ip6 will not be affected by m_pulldown()
763 * (as they're before toff) and we don't need to update those.
764 */
765 #endif
766 optlen = off - sizeof (struct tcphdr);
767 optp = ((caddr_t)th) + sizeof(struct tcphdr);
768 /*
769 * Do quick retrieval of timestamp options ("options
770 * prediction?"). If timestamp is the only option and it's
771 * formatted as recommended in RFC 1323 appendix A, we
772 * quickly get the values now and not bother calling
773 * tcp_dooptions(), etc.
774 */
775 if ((optlen == TCPOLEN_TSTAMP_APPA ||
776 (optlen > TCPOLEN_TSTAMP_APPA &&
777 optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
778 *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
779 (th->th_flags & TH_SYN) == 0) {
780 opti.ts_present = 1;
781 opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
782 opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
783 optp = NULL; /* we've parsed the options */
784 }
785 }
786 tiflags = th->th_flags;
787
788 /*
789 * Locate pcb for segment.
790 */
791 findpcb:
792 inp = NULL;
793 #ifdef INET6
794 in6p = NULL;
795 #endif
796 switch (af) {
797 case AF_INET:
798 inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
799 ip->ip_dst, th->th_dport);
800 if (inp == 0) {
801 ++tcpstat.tcps_pcbhashmiss;
802 inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
803 }
804 #if defined(INET6) && !defined(TCP6)
805 if (inp == 0) {
806 struct in6_addr s, d;
807
808 /* mapped addr case */
809 bzero(&s, sizeof(s));
810 s.s6_addr16[5] = htons(0xffff);
811 bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
812 bzero(&d, sizeof(d));
813 d.s6_addr16[5] = htons(0xffff);
814 bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
815 in6p = in6_pcblookup_connect(&tcb6, &s, th->th_sport,
816 &d, th->th_dport, 0);
817 if (in6p == 0) {
818 ++tcpstat.tcps_pcbhashmiss;
819 in6p = in6_pcblookup_bind(&tcb6, &d,
820 th->th_dport, 0);
821 }
822 }
823 #endif
824 #ifndef INET6
825 if (inp == 0)
826 #else
827 if (inp == 0 && in6p == 0)
828 #endif
829 {
830 ++tcpstat.tcps_noport;
831 if (tcp_log_refused && (tiflags & TH_SYN)) {
832 #ifndef INET6
833 char src[4*sizeof "123"];
834 char dst[4*sizeof "123"];
835 #else
836 char src[INET6_ADDRSTRLEN];
837 char dst[INET6_ADDRSTRLEN];
838 #endif
839 if (ip) {
840 strcpy(src, inet_ntoa(ip->ip_src));
841 strcpy(dst, inet_ntoa(ip->ip_dst));
842 }
843 #ifdef INET6
844 else if (ip6) {
845 strcpy(src, ip6_sprintf(&ip6->ip6_src));
846 strcpy(dst, ip6_sprintf(&ip6->ip6_dst));
847 }
848 #endif
849 else {
850 strcpy(src, "(unknown)");
851 strcpy(dst, "(unknown)");
852 }
853 log(LOG_INFO,
854 "Connection attempt to TCP %s:%d from %s:%d\n",
855 dst, ntohs(th->th_dport),
856 src, ntohs(th->th_sport));
857 }
858 TCP_FIELDS_TO_HOST(th);
859 goto dropwithreset;
860 }
861 #ifdef IPSEC
862 if (inp && ipsec4_in_reject(m, inp)) {
863 ipsecstat.in_polvio++;
864 goto drop;
865 }
866 #ifdef INET6
867 else if (in6p && ipsec4_in_reject_so(m, in6p->in6p_socket)) {
868 ipsecstat.in_polvio++;
869 goto drop;
870 }
871 #endif
872 #endif /*IPSEC*/
873 break;
874 #if defined(INET6) && !defined(TCP6)
875 case AF_INET6:
876 {
877 int faith;
878
879 #if defined(NFAITH) && NFAITH > 0
880 if (m->m_pkthdr.rcvif
881 && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
882 faith = 1;
883 } else
884 faith = 0;
885 #else
886 faith = 0;
887 #endif
888 in6p = in6_pcblookup_connect(&tcb6, &ip6->ip6_src, th->th_sport,
889 &ip6->ip6_dst, th->th_dport, faith);
890 if (in6p == NULL) {
891 ++tcpstat.tcps_pcbhashmiss;
892 in6p = in6_pcblookup_bind(&tcb6, &ip6->ip6_dst,
893 th->th_dport, faith);
894 }
895 if (in6p == NULL) {
896 ++tcpstat.tcps_noport;
897 TCP_FIELDS_TO_HOST(th);
898 goto dropwithreset;
899 }
900 #ifdef IPSEC
901 if (ipsec6_in_reject(m, in6p)) {
902 ipsec6stat.in_polvio++;
903 goto drop;
904 }
905 #endif /*IPSEC*/
906 break;
907 }
908 #endif
909 }
910
911 /*
912 * If the state is CLOSED (i.e., TCB does not exist) then
913 * all data in the incoming segment is discarded.
914 * If the TCB exists but is in CLOSED state, it is embryonic,
915 * but should either do a listen or a connect soon.
916 */
917 tp = NULL;
918 so = NULL;
919 if (inp) {
920 tp = intotcpcb(inp);
921 so = inp->inp_socket;
922 }
923 #ifdef INET6
924 else if (in6p) {
925 tp = in6totcpcb(in6p);
926 so = in6p->in6p_socket;
927 }
928 #endif
929 if (tp == 0) {
930 TCP_FIELDS_TO_HOST(th);
931 goto dropwithreset;
932 }
933 if (tp->t_state == TCPS_CLOSED)
934 goto drop;
935
936 /*
937 * Checksum extended TCP header and data.
938 */
939 switch (af) {
940 case AF_INET:
941 #ifndef PULLDOWN_TEST
942 {
943 struct ipovly *ipov;
944 ipov = (struct ipovly *)ip;
945 bzero(ipov->ih_x1, sizeof ipov->ih_x1);
946 ipov->ih_len = htons(tlen + off);
947
948 if (in_cksum(m, len) != 0) {
949 tcpstat.tcps_rcvbadsum++;
950 goto drop;
951 }
952 }
953 #else
954 if (in4_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0) {
955 tcpstat.tcps_rcvbadsum++;
956 goto drop;
957 }
958 #endif
959 break;
960
961 #ifdef INET6
962 case AF_INET6:
963 if (in6_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0) {
964 tcpstat.tcps_rcvbadsum++;
965 goto drop;
966 }
967 break;
968 #endif
969 }
970
971 TCP_FIELDS_TO_HOST(th);
972
973 /* Unscale the window into a 32-bit value. */
974 if ((tiflags & TH_SYN) == 0)
975 tiwin = th->th_win << tp->snd_scale;
976 else
977 tiwin = th->th_win;
978
979 #ifdef INET6
980 /* save packet options if user wanted */
981 if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
982 if (in6p->in6p_options) {
983 m_freem(in6p->in6p_options);
984 in6p->in6p_options = 0;
985 }
986 ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
987 }
988 #endif
989
990 if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
991 union syn_cache_sa src;
992 union syn_cache_sa dst;
993
994 bzero(&src, sizeof(src));
995 bzero(&dst, sizeof(dst));
996 switch (af) {
997 case AF_INET:
998 src.sin.sin_len = sizeof(struct sockaddr_in);
999 src.sin.sin_family = AF_INET;
1000 src.sin.sin_addr = ip->ip_src;
1001 src.sin.sin_port = th->th_sport;
1002
1003 dst.sin.sin_len = sizeof(struct sockaddr_in);
1004 dst.sin.sin_family = AF_INET;
1005 dst.sin.sin_addr = ip->ip_dst;
1006 dst.sin.sin_port = th->th_dport;
1007 break;
1008 #ifdef INET6
1009 case AF_INET6:
1010 src.sin6.sin6_len = sizeof(struct sockaddr_in6);
1011 src.sin6.sin6_family = AF_INET6;
1012 src.sin6.sin6_addr = ip6->ip6_src;
1013 src.sin6.sin6_port = th->th_sport;
1014
1015 dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
1016 dst.sin6.sin6_family = AF_INET6;
1017 dst.sin6.sin6_addr = ip6->ip6_dst;
1018 dst.sin6.sin6_port = th->th_dport;
1019 break;
1020 #endif /* INET6 */
1021 default:
1022 goto badsyn; /*sanity*/
1023 }
1024
1025 if (so->so_options & SO_DEBUG) {
1026 ostate = tp->t_state;
1027 tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
1028 if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
1029 m_freem(tcp_saveti);
1030 tcp_saveti = NULL;
1031 } else {
1032 tcp_saveti->m_len += sizeof(struct tcphdr);
1033 bcopy(th, mtod(tcp_saveti, caddr_t) + iphlen,
1034 sizeof(struct tcphdr));
1035 }
1036 if (tcp_saveti) {
1037 /*
1038 * need to recover version # field, which was
1039 * overwritten on ip_cksum computation.
1040 */
1041 struct ip *sip;
1042 sip = mtod(tcp_saveti, struct ip *);
1043 switch (af) {
1044 case AF_INET:
1045 sip->ip_v = 4;
1046 break;
1047 #ifdef INET6
1048 case AF_INET6:
1049 sip->ip_v = 6;
1050 break;
1051 #endif
1052 }
1053 }
1054 }
1055 if (so->so_options & SO_ACCEPTCONN) {
1056 if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1057 if (tiflags & TH_RST) {
1058 syn_cache_reset(&src.sa, &dst.sa, th);
1059 } else if ((tiflags & (TH_ACK|TH_SYN)) ==
1060 (TH_ACK|TH_SYN)) {
1061 /*
1062 * Received a SYN,ACK. This should
1063 * never happen while we are in
1064 * LISTEN. Send an RST.
1065 */
1066 goto badsyn;
1067 } else if (tiflags & TH_ACK) {
1068 so = syn_cache_get(&src.sa, &dst.sa,
1069 th, toff, tlen, so, m);
1070 if (so == NULL) {
1071 /*
1072 * We don't have a SYN for
1073 * this ACK; send an RST.
1074 */
1075 goto badsyn;
1076 } else if (so ==
1077 (struct socket *)(-1)) {
1078 /*
1079 * We were unable to create
1080 * the connection. If the
1081 * 3-way handshake was
1082 * completed, and RST has
1083 * been sent to the peer.
1084 * Since the mbuf might be
1085 * in use for the reply,
1086 * do not free it.
1087 */
1088 m = NULL;
1089 } else {
1090 /*
1091 * We have created a
1092 * full-blown connection.
1093 */
1094 tp = NULL;
1095 inp = NULL;
1096 #ifdef INET6
1097 in6p = NULL;
1098 #endif
1099 switch (so->so_proto->pr_domain->dom_family) {
1100 case AF_INET:
1101 inp = sotoinpcb(so);
1102 tp = intotcpcb(inp);
1103 break;
1104 #ifdef INET6
1105 case AF_INET6:
1106 in6p = sotoin6pcb(so);
1107 tp = in6totcpcb(in6p);
1108 break;
1109 #endif
1110 }
1111 if (tp == NULL)
1112 goto badsyn; /*XXX*/
1113 tiwin <<= tp->snd_scale;
1114 goto after_listen;
1115 }
1116 } else {
1117 /*
1118 * None of RST, SYN or ACK was set.
1119 * This is an invalid packet for a
1120 * TCB in LISTEN state. Send a RST.
1121 */
1122 goto badsyn;
1123 }
1124 } else {
1125 /*
1126 * Received a SYN.
1127 */
1128
1129 /*
1130 * LISTEN socket received a SYN
1131 * from itself? This can't possibly
1132 * be valid; drop the packet.
1133 */
1134 if (th->th_sport == th->th_dport) {
1135 int i;
1136
1137 switch (af) {
1138 case AF_INET:
1139 i = in_hosteq(ip->ip_src, ip->ip_dst);
1140 break;
1141 #ifdef INET6
1142 case AF_INET6:
1143 i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
1144 break;
1145 #endif
1146 default:
1147 i = 1;
1148 }
1149 if (i) {
1150 tcpstat.tcps_badsyn++;
1151 goto drop;
1152 }
1153 }
1154
1155 /*
1156 * SYN looks ok; create compressed TCP
1157 * state for it.
1158 */
1159 if (so->so_qlen <= so->so_qlimit &&
1160 syn_cache_add(&src.sa, &dst.sa, th, tlen,
1161 so, m, optp, optlen, &opti))
1162 m = NULL;
1163 }
1164 goto drop;
1165 }
1166 }
1167
1168 after_listen:
1169 #ifdef DIAGNOSTIC
1170 /*
1171 * Should not happen now that all embryonic connections
1172 * are handled with compressed state.
1173 */
1174 if (tp->t_state == TCPS_LISTEN)
1175 panic("tcp_input: TCPS_LISTEN");
1176 #endif
1177
1178 /*
1179 * Segment received on connection.
1180 * Reset idle time and keep-alive timer.
1181 */
1182 tp->t_idle = 0;
1183 if (TCPS_HAVEESTABLISHED(tp->t_state))
1184 TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1185
1186 /*
1187 * Process options.
1188 */
1189 if (optp)
1190 tcp_dooptions(tp, optp, optlen, th, &opti);
1191
1192 /*
1193 * Header prediction: check for the two common cases
1194 * of a uni-directional data xfer. If the packet has
1195 * no control flags, is in-sequence, the window didn't
1196 * change and we're not retransmitting, it's a
1197 * candidate. If the length is zero and the ack moved
1198 * forward, we're the sender side of the xfer. Just
1199 * free the data acked & wake any higher level process
1200 * that was blocked waiting for space. If the length
1201 * is non-zero and the ack didn't move, we're the
1202 * receiver side. If we're getting packets in-order
1203 * (the reassembly queue is empty), add the data to
1204 * the socket buffer and note that we need a delayed ack.
1205 */
1206 if (tp->t_state == TCPS_ESTABLISHED &&
1207 (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1208 (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
1209 th->th_seq == tp->rcv_nxt &&
1210 tiwin && tiwin == tp->snd_wnd &&
1211 tp->snd_nxt == tp->snd_max) {
1212
1213 /*
1214 * If last ACK falls within this segment's sequence numbers,
1215 * record the timestamp.
1216 */
1217 if (opti.ts_present &&
1218 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1219 SEQ_LT(tp->last_ack_sent, th->th_seq + tlen)) {
1220 tp->ts_recent_age = tcp_now;
1221 tp->ts_recent = opti.ts_val;
1222 }
1223
1224 if (tlen == 0) {
1225 if (SEQ_GT(th->th_ack, tp->snd_una) &&
1226 SEQ_LEQ(th->th_ack, tp->snd_max) &&
1227 tp->snd_cwnd >= tp->snd_wnd &&
1228 tp->t_dupacks < tcprexmtthresh) {
1229 /*
1230 * this is a pure ack for outstanding data.
1231 */
1232 ++tcpstat.tcps_predack;
1233 if (opti.ts_present && opti.ts_ecr)
1234 tcp_xmit_timer(tp,
1235 tcp_now - opti.ts_ecr + 1);
1236 else if (tp->t_rtt &&
1237 SEQ_GT(th->th_ack, tp->t_rtseq))
1238 tcp_xmit_timer(tp, tp->t_rtt);
1239 acked = th->th_ack - tp->snd_una;
1240 tcpstat.tcps_rcvackpack++;
1241 tcpstat.tcps_rcvackbyte += acked;
1242 ND6_HINT(tp);
1243 sbdrop(&so->so_snd, acked);
1244 /*
1245 * We want snd_recover to track snd_una to
1246 * avoid sequence wraparound problems for
1247 * very large transfers.
1248 */
1249 tp->snd_una = tp->snd_recover = th->th_ack;
1250 m_freem(m);
1251
1252 /*
1253 * If all outstanding data are acked, stop
1254 * retransmit timer, otherwise restart timer
1255 * using current (possibly backed-off) value.
1256 * If process is waiting for space,
1257 * wakeup/selwakeup/signal. If data
1258 * are ready to send, let tcp_output
1259 * decide between more output or persist.
1260 */
1261 if (tp->snd_una == tp->snd_max)
1262 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1263 else if (TCP_TIMER_ISARMED(tp,
1264 TCPT_PERSIST) == 0)
1265 TCP_TIMER_ARM(tp, TCPT_REXMT,
1266 tp->t_rxtcur);
1267
1268 sowwakeup(so);
1269 if (so->so_snd.sb_cc)
1270 (void) tcp_output(tp);
1271 if (tcp_saveti)
1272 m_freem(tcp_saveti);
1273 return;
1274 }
1275 } else if (th->th_ack == tp->snd_una &&
1276 tp->segq.lh_first == NULL &&
1277 tlen <= sbspace(&so->so_rcv)) {
1278 /*
1279 * this is a pure, in-sequence data packet
1280 * with nothing on the reassembly queue and
1281 * we have enough buffer space to take it.
1282 */
1283 ++tcpstat.tcps_preddat;
1284 tp->rcv_nxt += tlen;
1285 tcpstat.tcps_rcvpack++;
1286 tcpstat.tcps_rcvbyte += tlen;
1287 ND6_HINT(tp);
1288 /*
1289 * Drop TCP, IP headers and TCP options then add data
1290 * to socket buffer.
1291 */
1292 m_adj(m, toff + off);
1293 sbappend(&so->so_rcv, m);
1294 sorwakeup(so);
1295 TCP_SETUP_ACK(tp, th);
1296 if (tp->t_flags & TF_ACKNOW)
1297 (void) tcp_output(tp);
1298 if (tcp_saveti)
1299 m_freem(tcp_saveti);
1300 return;
1301 }
1302 }
1303
1304 /*
1305 * Compute mbuf offset to TCP data segment.
1306 */
1307 hdroptlen = toff + off;
1308
1309 /*
1310 * Calculate amount of space in receive window,
1311 * and then do TCP input processing.
1312 * Receive window is amount of space in rcv queue,
1313 * but not less than advertised window.
1314 */
1315 { int win;
1316
1317 win = sbspace(&so->so_rcv);
1318 if (win < 0)
1319 win = 0;
1320 tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1321 }
1322
1323 switch (tp->t_state) {
1324
1325 /*
1326 * If the state is SYN_SENT:
1327 * if seg contains an ACK, but not for our SYN, drop the input.
1328 * if seg contains a RST, then drop the connection.
1329 * if seg does not contain SYN, then drop it.
1330 * Otherwise this is an acceptable SYN segment
1331 * initialize tp->rcv_nxt and tp->irs
1332 * if seg contains ack then advance tp->snd_una
1333 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1334 * arrange for segment to be acked (eventually)
1335 * continue processing rest of data/controls, beginning with URG
1336 */
1337 case TCPS_SYN_SENT:
1338 if ((tiflags & TH_ACK) &&
1339 (SEQ_LEQ(th->th_ack, tp->iss) ||
1340 SEQ_GT(th->th_ack, tp->snd_max)))
1341 goto dropwithreset;
1342 if (tiflags & TH_RST) {
1343 if (tiflags & TH_ACK)
1344 tp = tcp_drop(tp, ECONNREFUSED);
1345 goto drop;
1346 }
1347 if ((tiflags & TH_SYN) == 0)
1348 goto drop;
1349 if (tiflags & TH_ACK) {
1350 tp->snd_una = tp->snd_recover = th->th_ack;
1351 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1352 tp->snd_nxt = tp->snd_una;
1353 }
1354 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1355 tp->irs = th->th_seq;
1356 tcp_rcvseqinit(tp);
1357 tp->t_flags |= TF_ACKNOW;
1358 tcp_mss_from_peer(tp, opti.maxseg);
1359
1360 /*
1361 * Initialize the initial congestion window. If we
1362 * had to retransmit the SYN, we must initialize cwnd
1363 * to 1 segment (i.e. the Loss Window).
1364 */
1365 if (tp->t_flags & TF_SYN_REXMT)
1366 tp->snd_cwnd = tp->t_peermss;
1367 else
1368 tp->snd_cwnd = TCP_INITIAL_WINDOW(tcp_init_win,
1369 tp->t_peermss);
1370
1371 tcp_rmx_rtt(tp);
1372 if (tiflags & TH_ACK && SEQ_GT(tp->snd_una, tp->iss)) {
1373 tcpstat.tcps_connects++;
1374 soisconnected(so);
1375 tcp_established(tp);
1376 /* Do window scaling on this connection? */
1377 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1378 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1379 tp->snd_scale = tp->requested_s_scale;
1380 tp->rcv_scale = tp->request_r_scale;
1381 }
1382 TCP_REASS_LOCK(tp);
1383 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1384 TCP_REASS_UNLOCK(tp);
1385 /*
1386 * if we didn't have to retransmit the SYN,
1387 * use its rtt as our initial srtt & rtt var.
1388 */
1389 if (tp->t_rtt)
1390 tcp_xmit_timer(tp, tp->t_rtt);
1391 } else
1392 tp->t_state = TCPS_SYN_RECEIVED;
1393
1394 /*
1395 * Advance th->th_seq to correspond to first data byte.
1396 * If data, trim to stay within window,
1397 * dropping FIN if necessary.
1398 */
1399 th->th_seq++;
1400 if (tlen > tp->rcv_wnd) {
1401 todrop = tlen - tp->rcv_wnd;
1402 m_adj(m, -todrop);
1403 tlen = tp->rcv_wnd;
1404 tiflags &= ~TH_FIN;
1405 tcpstat.tcps_rcvpackafterwin++;
1406 tcpstat.tcps_rcvbyteafterwin += todrop;
1407 }
1408 tp->snd_wl1 = th->th_seq - 1;
1409 tp->rcv_up = th->th_seq;
1410 goto step6;
1411
1412 /*
1413 * If the state is SYN_RECEIVED:
1414 * If seg contains an ACK, but not for our SYN, drop the input
1415 * and generate an RST. See page 36, rfc793
1416 */
1417 case TCPS_SYN_RECEIVED:
1418 if ((tiflags & TH_ACK) &&
1419 (SEQ_LEQ(th->th_ack, tp->iss) ||
1420 SEQ_GT(th->th_ack, tp->snd_max)))
1421 goto dropwithreset;
1422 break;
1423 }
1424
1425 /*
1426 * States other than LISTEN or SYN_SENT.
1427 * First check timestamp, if present.
1428 * Then check that at least some bytes of segment are within
1429 * receive window. If segment begins before rcv_nxt,
1430 * drop leading data (and SYN); if nothing left, just ack.
1431 *
1432 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1433 * and it's less than ts_recent, drop it.
1434 */
1435 if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
1436 TSTMP_LT(opti.ts_val, tp->ts_recent)) {
1437
1438 /* Check to see if ts_recent is over 24 days old. */
1439 if ((int)(tcp_now - tp->ts_recent_age) > TCP_PAWS_IDLE) {
1440 /*
1441 * Invalidate ts_recent. If this segment updates
1442 * ts_recent, the age will be reset later and ts_recent
1443 * will get a valid value. If it does not, setting
1444 * ts_recent to zero will at least satisfy the
1445 * requirement that zero be placed in the timestamp
1446 * echo reply when ts_recent isn't valid. The
1447 * age isn't reset until we get a valid ts_recent
1448 * because we don't want out-of-order segments to be
1449 * dropped when ts_recent is old.
1450 */
1451 tp->ts_recent = 0;
1452 } else {
1453 tcpstat.tcps_rcvduppack++;
1454 tcpstat.tcps_rcvdupbyte += tlen;
1455 tcpstat.tcps_pawsdrop++;
1456 goto dropafterack;
1457 }
1458 }
1459
1460 todrop = tp->rcv_nxt - th->th_seq;
1461 if (todrop > 0) {
1462 if (tiflags & TH_SYN) {
1463 tiflags &= ~TH_SYN;
1464 th->th_seq++;
1465 if (th->th_urp > 1)
1466 th->th_urp--;
1467 else {
1468 tiflags &= ~TH_URG;
1469 th->th_urp = 0;
1470 }
1471 todrop--;
1472 }
1473 if (todrop > tlen ||
1474 (todrop == tlen && (tiflags & TH_FIN) == 0)) {
1475 /*
1476 * Any valid FIN must be to the left of the window.
1477 * At this point the FIN must be a duplicate or
1478 * out of sequence; drop it.
1479 */
1480 tiflags &= ~TH_FIN;
1481 /*
1482 * Send an ACK to resynchronize and drop any data.
1483 * But keep on processing for RST or ACK.
1484 */
1485 tp->t_flags |= TF_ACKNOW;
1486 todrop = tlen;
1487 tcpstat.tcps_rcvdupbyte += todrop;
1488 tcpstat.tcps_rcvduppack++;
1489 } else {
1490 tcpstat.tcps_rcvpartduppack++;
1491 tcpstat.tcps_rcvpartdupbyte += todrop;
1492 }
1493 hdroptlen += todrop; /*drop from head afterwards*/
1494 th->th_seq += todrop;
1495 tlen -= todrop;
1496 if (th->th_urp > todrop)
1497 th->th_urp -= todrop;
1498 else {
1499 tiflags &= ~TH_URG;
1500 th->th_urp = 0;
1501 }
1502 }
1503
1504 /*
1505 * If new data are received on a connection after the
1506 * user processes are gone, then RST the other end.
1507 */
1508 if ((so->so_state & SS_NOFDREF) &&
1509 tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1510 tp = tcp_close(tp);
1511 tcpstat.tcps_rcvafterclose++;
1512 goto dropwithreset;
1513 }
1514
1515 /*
1516 * If segment ends after window, drop trailing data
1517 * (and PUSH and FIN); if nothing left, just ACK.
1518 */
1519 todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
1520 if (todrop > 0) {
1521 tcpstat.tcps_rcvpackafterwin++;
1522 if (todrop >= tlen) {
1523 tcpstat.tcps_rcvbyteafterwin += tlen;
1524 /*
1525 * If a new connection request is received
1526 * while in TIME_WAIT, drop the old connection
1527 * and start over if the sequence numbers
1528 * are above the previous ones.
1529 */
1530 if (tiflags & TH_SYN &&
1531 tp->t_state == TCPS_TIME_WAIT &&
1532 SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1533 iss = tcp_new_iss(tp, sizeof(struct tcpcb),
1534 tp->snd_nxt);
1535 tp = tcp_close(tp);
1536 goto findpcb;
1537 }
1538 /*
1539 * If window is closed can only take segments at
1540 * window edge, and have to drop data and PUSH from
1541 * incoming segments. Continue processing, but
1542 * remember to ack. Otherwise, drop segment
1543 * and ack.
1544 */
1545 if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1546 tp->t_flags |= TF_ACKNOW;
1547 tcpstat.tcps_rcvwinprobe++;
1548 } else
1549 goto dropafterack;
1550 } else
1551 tcpstat.tcps_rcvbyteafterwin += todrop;
1552 m_adj(m, -todrop);
1553 tlen -= todrop;
1554 tiflags &= ~(TH_PUSH|TH_FIN);
1555 }
1556
1557 /*
1558 * If last ACK falls within this segment's sequence numbers,
1559 * and the timestamp is newer, record it.
1560 */
1561 if (opti.ts_present && TSTMP_GEQ(opti.ts_val, tp->ts_recent) &&
1562 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1563 SEQ_LT(tp->last_ack_sent, th->th_seq + tlen +
1564 ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
1565 tp->ts_recent_age = tcp_now;
1566 tp->ts_recent = opti.ts_val;
1567 }
1568
1569 /*
1570 * If the RST bit is set examine the state:
1571 * SYN_RECEIVED STATE:
1572 * If passive open, return to LISTEN state.
1573 * If active open, inform user that connection was refused.
1574 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
1575 * Inform user that connection was reset, and close tcb.
1576 * CLOSING, LAST_ACK, TIME_WAIT STATES
1577 * Close the tcb.
1578 */
1579 if (tiflags&TH_RST) switch (tp->t_state) {
1580
1581 case TCPS_SYN_RECEIVED:
1582 so->so_error = ECONNREFUSED;
1583 goto close;
1584
1585 case TCPS_ESTABLISHED:
1586 case TCPS_FIN_WAIT_1:
1587 case TCPS_FIN_WAIT_2:
1588 case TCPS_CLOSE_WAIT:
1589 so->so_error = ECONNRESET;
1590 close:
1591 tp->t_state = TCPS_CLOSED;
1592 tcpstat.tcps_drops++;
1593 tp = tcp_close(tp);
1594 goto drop;
1595
1596 case TCPS_CLOSING:
1597 case TCPS_LAST_ACK:
1598 case TCPS_TIME_WAIT:
1599 tp = tcp_close(tp);
1600 goto drop;
1601 }
1602
1603 /*
1604 * If a SYN is in the window, then this is an
1605 * error and we send an RST and drop the connection.
1606 */
1607 if (tiflags & TH_SYN) {
1608 tp = tcp_drop(tp, ECONNRESET);
1609 goto dropwithreset;
1610 }
1611
1612 /*
1613 * If the ACK bit is off we drop the segment and return.
1614 */
1615 if ((tiflags & TH_ACK) == 0) {
1616 if (tp->t_flags & TF_ACKNOW)
1617 goto dropafterack;
1618 else
1619 goto drop;
1620 }
1621
1622 /*
1623 * Ack processing.
1624 */
1625 switch (tp->t_state) {
1626
1627 /*
1628 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
1629 * ESTABLISHED state and continue processing, otherwise
1630 * send an RST.
1631 */
1632 case TCPS_SYN_RECEIVED:
1633 if (SEQ_GT(tp->snd_una, th->th_ack) ||
1634 SEQ_GT(th->th_ack, tp->snd_max))
1635 goto dropwithreset;
1636 tcpstat.tcps_connects++;
1637 soisconnected(so);
1638 tcp_established(tp);
1639 /* Do window scaling? */
1640 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1641 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1642 tp->snd_scale = tp->requested_s_scale;
1643 tp->rcv_scale = tp->request_r_scale;
1644 }
1645 TCP_REASS_LOCK(tp);
1646 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1647 TCP_REASS_UNLOCK(tp);
1648 tp->snd_wl1 = th->th_seq - 1;
1649 /* fall into ... */
1650
1651 /*
1652 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1653 * ACKs. If the ack is in the range
1654 * tp->snd_una < th->th_ack <= tp->snd_max
1655 * then advance tp->snd_una to th->th_ack and drop
1656 * data from the retransmission queue. If this ACK reflects
1657 * more up to date window information we update our window information.
1658 */
1659 case TCPS_ESTABLISHED:
1660 case TCPS_FIN_WAIT_1:
1661 case TCPS_FIN_WAIT_2:
1662 case TCPS_CLOSE_WAIT:
1663 case TCPS_CLOSING:
1664 case TCPS_LAST_ACK:
1665 case TCPS_TIME_WAIT:
1666
1667 if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
1668 if (tlen == 0 && tiwin == tp->snd_wnd) {
1669 tcpstat.tcps_rcvdupack++;
1670 /*
1671 * If we have outstanding data (other than
1672 * a window probe), this is a completely
1673 * duplicate ack (ie, window info didn't
1674 * change), the ack is the biggest we've
1675 * seen and we've seen exactly our rexmt
1676 * threshhold of them, assume a packet
1677 * has been dropped and retransmit it.
1678 * Kludge snd_nxt & the congestion
1679 * window so we send only this one
1680 * packet.
1681 *
1682 * We know we're losing at the current
1683 * window size so do congestion avoidance
1684 * (set ssthresh to half the current window
1685 * and pull our congestion window back to
1686 * the new ssthresh).
1687 *
1688 * Dup acks mean that packets have left the
1689 * network (they're now cached at the receiver)
1690 * so bump cwnd by the amount in the receiver
1691 * to keep a constant cwnd packets in the
1692 * network.
1693 */
1694 if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
1695 th->th_ack != tp->snd_una)
1696 tp->t_dupacks = 0;
1697 else if (++tp->t_dupacks == tcprexmtthresh) {
1698 tcp_seq onxt = tp->snd_nxt;
1699 u_int win =
1700 min(tp->snd_wnd, tp->snd_cwnd) /
1701 2 / tp->t_segsz;
1702 if (tcp_do_newreno && SEQ_LT(th->th_ack,
1703 tp->snd_recover)) {
1704 /*
1705 * False fast retransmit after
1706 * timeout. Do not cut window.
1707 */
1708 tp->snd_cwnd += tp->t_segsz;
1709 tp->t_dupacks = 0;
1710 (void) tcp_output(tp);
1711 goto drop;
1712 }
1713
1714 if (win < 2)
1715 win = 2;
1716 tp->snd_ssthresh = win * tp->t_segsz;
1717 tp->snd_recover = tp->snd_max;
1718 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1719 tp->t_rtt = 0;
1720 tp->snd_nxt = th->th_ack;
1721 tp->snd_cwnd = tp->t_segsz;
1722 (void) tcp_output(tp);
1723 tp->snd_cwnd = tp->snd_ssthresh +
1724 tp->t_segsz * tp->t_dupacks;
1725 if (SEQ_GT(onxt, tp->snd_nxt))
1726 tp->snd_nxt = onxt;
1727 goto drop;
1728 } else if (tp->t_dupacks > tcprexmtthresh) {
1729 tp->snd_cwnd += tp->t_segsz;
1730 (void) tcp_output(tp);
1731 goto drop;
1732 }
1733 } else
1734 tp->t_dupacks = 0;
1735 break;
1736 }
1737 /*
1738 * If the congestion window was inflated to account
1739 * for the other side's cached packets, retract it.
1740 */
1741 if (tcp_do_newreno == 0) {
1742 if (tp->t_dupacks >= tcprexmtthresh &&
1743 tp->snd_cwnd > tp->snd_ssthresh)
1744 tp->snd_cwnd = tp->snd_ssthresh;
1745 tp->t_dupacks = 0;
1746 } else if (tp->t_dupacks >= tcprexmtthresh &&
1747 tcp_newreno(tp, th) == 0) {
1748 tp->snd_cwnd = tp->snd_ssthresh;
1749 /*
1750 * Window inflation should have left us with approx.
1751 * snd_ssthresh outstanding data. But in case we
1752 * would be inclined to send a burst, better to do
1753 * it via the slow start mechanism.
1754 */
1755 if (SEQ_SUB(tp->snd_max, th->th_ack) < tp->snd_ssthresh)
1756 tp->snd_cwnd = SEQ_SUB(tp->snd_max, th->th_ack)
1757 + tp->t_segsz;
1758 tp->t_dupacks = 0;
1759 }
1760 if (SEQ_GT(th->th_ack, tp->snd_max)) {
1761 tcpstat.tcps_rcvacktoomuch++;
1762 goto dropafterack;
1763 }
1764 acked = th->th_ack - tp->snd_una;
1765 tcpstat.tcps_rcvackpack++;
1766 tcpstat.tcps_rcvackbyte += acked;
1767
1768 /*
1769 * If we have a timestamp reply, update smoothed
1770 * round trip time. If no timestamp is present but
1771 * transmit timer is running and timed sequence
1772 * number was acked, update smoothed round trip time.
1773 * Since we now have an rtt measurement, cancel the
1774 * timer backoff (cf., Phil Karn's retransmit alg.).
1775 * Recompute the initial retransmit timer.
1776 */
1777 if (opti.ts_present && opti.ts_ecr)
1778 tcp_xmit_timer(tp, tcp_now - opti.ts_ecr + 1);
1779 else if (tp->t_rtt && SEQ_GT(th->th_ack, tp->t_rtseq))
1780 tcp_xmit_timer(tp,tp->t_rtt);
1781
1782 /*
1783 * If all outstanding data is acked, stop retransmit
1784 * timer and remember to restart (more output or persist).
1785 * If there is more data to be acked, restart retransmit
1786 * timer, using current (possibly backed-off) value.
1787 */
1788 if (th->th_ack == tp->snd_max) {
1789 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1790 needoutput = 1;
1791 } else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
1792 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
1793 /*
1794 * When new data is acked, open the congestion window.
1795 * If the window gives us less than ssthresh packets
1796 * in flight, open exponentially (segsz per packet).
1797 * Otherwise open linearly: segsz per window
1798 * (segsz^2 / cwnd per packet), plus a constant
1799 * fraction of a packet (segsz/8) to help larger windows
1800 * open quickly enough.
1801 */
1802 {
1803 register u_int cw = tp->snd_cwnd;
1804 register u_int incr = tp->t_segsz;
1805
1806 if (cw > tp->snd_ssthresh)
1807 incr = incr * incr / cw;
1808 if (tcp_do_newreno == 0 || SEQ_GEQ(th->th_ack, tp->snd_recover))
1809 tp->snd_cwnd = min(cw + incr,
1810 TCP_MAXWIN << tp->snd_scale);
1811 }
1812 ND6_HINT(tp);
1813 if (acked > so->so_snd.sb_cc) {
1814 tp->snd_wnd -= so->so_snd.sb_cc;
1815 sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
1816 ourfinisacked = 1;
1817 } else {
1818 sbdrop(&so->so_snd, acked);
1819 tp->snd_wnd -= acked;
1820 ourfinisacked = 0;
1821 }
1822 sowwakeup(so);
1823 /*
1824 * We want snd_recover to track snd_una to
1825 * avoid sequence wraparound problems for
1826 * very large transfers.
1827 */
1828 tp->snd_una = tp->snd_recover = th->th_ack;
1829 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1830 tp->snd_nxt = tp->snd_una;
1831
1832 switch (tp->t_state) {
1833
1834 /*
1835 * In FIN_WAIT_1 STATE in addition to the processing
1836 * for the ESTABLISHED state if our FIN is now acknowledged
1837 * then enter FIN_WAIT_2.
1838 */
1839 case TCPS_FIN_WAIT_1:
1840 if (ourfinisacked) {
1841 /*
1842 * If we can't receive any more
1843 * data, then closing user can proceed.
1844 * Starting the timer is contrary to the
1845 * specification, but if we don't get a FIN
1846 * we'll hang forever.
1847 */
1848 if (so->so_state & SS_CANTRCVMORE) {
1849 soisdisconnected(so);
1850 if (tcp_maxidle > 0)
1851 TCP_TIMER_ARM(tp, TCPT_2MSL,
1852 tcp_maxidle);
1853 }
1854 tp->t_state = TCPS_FIN_WAIT_2;
1855 }
1856 break;
1857
1858 /*
1859 * In CLOSING STATE in addition to the processing for
1860 * the ESTABLISHED state if the ACK acknowledges our FIN
1861 * then enter the TIME-WAIT state, otherwise ignore
1862 * the segment.
1863 */
1864 case TCPS_CLOSING:
1865 if (ourfinisacked) {
1866 tp->t_state = TCPS_TIME_WAIT;
1867 tcp_canceltimers(tp);
1868 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
1869 soisdisconnected(so);
1870 }
1871 break;
1872
1873 /*
1874 * In LAST_ACK, we may still be waiting for data to drain
1875 * and/or to be acked, as well as for the ack of our FIN.
1876 * If our FIN is now acknowledged, delete the TCB,
1877 * enter the closed state and return.
1878 */
1879 case TCPS_LAST_ACK:
1880 if (ourfinisacked) {
1881 tp = tcp_close(tp);
1882 goto drop;
1883 }
1884 break;
1885
1886 /*
1887 * In TIME_WAIT state the only thing that should arrive
1888 * is a retransmission of the remote FIN. Acknowledge
1889 * it and restart the finack timer.
1890 */
1891 case TCPS_TIME_WAIT:
1892 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
1893 goto dropafterack;
1894 }
1895 }
1896
1897 step6:
1898 /*
1899 * Update window information.
1900 * Don't look at window if no ACK: TAC's send garbage on first SYN.
1901 */
1902 if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
1903 (tp->snd_wl1 == th->th_seq && SEQ_LT(tp->snd_wl2, th->th_ack)) ||
1904 (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))) {
1905 /* keep track of pure window updates */
1906 if (tlen == 0 &&
1907 tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
1908 tcpstat.tcps_rcvwinupd++;
1909 tp->snd_wnd = tiwin;
1910 tp->snd_wl1 = th->th_seq;
1911 tp->snd_wl2 = th->th_ack;
1912 if (tp->snd_wnd > tp->max_sndwnd)
1913 tp->max_sndwnd = tp->snd_wnd;
1914 needoutput = 1;
1915 }
1916
1917 /*
1918 * Process segments with URG.
1919 */
1920 if ((tiflags & TH_URG) && th->th_urp &&
1921 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1922 /*
1923 * This is a kludge, but if we receive and accept
1924 * random urgent pointers, we'll crash in
1925 * soreceive. It's hard to imagine someone
1926 * actually wanting to send this much urgent data.
1927 */
1928 if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
1929 th->th_urp = 0; /* XXX */
1930 tiflags &= ~TH_URG; /* XXX */
1931 goto dodata; /* XXX */
1932 }
1933 /*
1934 * If this segment advances the known urgent pointer,
1935 * then mark the data stream. This should not happen
1936 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
1937 * a FIN has been received from the remote side.
1938 * In these states we ignore the URG.
1939 *
1940 * According to RFC961 (Assigned Protocols),
1941 * the urgent pointer points to the last octet
1942 * of urgent data. We continue, however,
1943 * to consider it to indicate the first octet
1944 * of data past the urgent section as the original
1945 * spec states (in one of two places).
1946 */
1947 if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
1948 tp->rcv_up = th->th_seq + th->th_urp;
1949 so->so_oobmark = so->so_rcv.sb_cc +
1950 (tp->rcv_up - tp->rcv_nxt) - 1;
1951 if (so->so_oobmark == 0)
1952 so->so_state |= SS_RCVATMARK;
1953 sohasoutofband(so);
1954 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
1955 }
1956 /*
1957 * Remove out of band data so doesn't get presented to user.
1958 * This can happen independent of advancing the URG pointer,
1959 * but if two URG's are pending at once, some out-of-band
1960 * data may creep in... ick.
1961 */
1962 if (th->th_urp <= (u_int16_t) tlen
1963 #ifdef SO_OOBINLINE
1964 && (so->so_options & SO_OOBINLINE) == 0
1965 #endif
1966 )
1967 tcp_pulloutofband(so, th, m, hdroptlen);
1968 } else
1969 /*
1970 * If no out of band data is expected,
1971 * pull receive urgent pointer along
1972 * with the receive window.
1973 */
1974 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
1975 tp->rcv_up = tp->rcv_nxt;
1976 dodata: /* XXX */
1977
1978 /*
1979 * Process the segment text, merging it into the TCP sequencing queue,
1980 * and arranging for acknowledgement of receipt if necessary.
1981 * This process logically involves adjusting tp->rcv_wnd as data
1982 * is presented to the user (this happens in tcp_usrreq.c,
1983 * case PRU_RCVD). If a FIN has already been received on this
1984 * connection then we just ignore the text.
1985 */
1986 if ((tlen || (tiflags & TH_FIN)) &&
1987 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1988 /*
1989 * Insert segment ti into reassembly queue of tcp with
1990 * control block tp. Return TH_FIN if reassembly now includes
1991 * a segment with FIN. The macro form does the common case
1992 * inline (segment is the next to be received on an
1993 * established connection, and the queue is empty),
1994 * avoiding linkage into and removal from the queue and
1995 * repetition of various conversions.
1996 * Set DELACK for segments received in order, but ack
1997 * immediately when segments are out of order
1998 * (so fast retransmit can work).
1999 */
2000 /* NOTE: this was TCP_REASS() macro, but used only once */
2001 TCP_REASS_LOCK(tp);
2002 if (th->th_seq == tp->rcv_nxt &&
2003 tp->segq.lh_first == NULL &&
2004 tp->t_state == TCPS_ESTABLISHED) {
2005 TCP_SETUP_ACK(tp, th);
2006 tp->rcv_nxt += tlen;
2007 tiflags = th->th_flags & TH_FIN;
2008 tcpstat.tcps_rcvpack++;
2009 tcpstat.tcps_rcvbyte += tlen;
2010 ND6_HINT(tp);
2011 m_adj(m, hdroptlen);
2012 sbappend(&(so)->so_rcv, m);
2013 sorwakeup(so);
2014 } else {
2015 m_adj(m, hdroptlen);
2016 tiflags = tcp_reass(tp, th, m, &tlen);
2017 tp->t_flags |= TF_ACKNOW;
2018 }
2019 TCP_REASS_UNLOCK(tp);
2020
2021 /*
2022 * Note the amount of data that peer has sent into
2023 * our window, in order to estimate the sender's
2024 * buffer size.
2025 */
2026 len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2027 } else {
2028 m_freem(m);
2029 m = NULL;
2030 tiflags &= ~TH_FIN;
2031 }
2032
2033 /*
2034 * If FIN is received ACK the FIN and let the user know
2035 * that the connection is closing. Ignore a FIN received before
2036 * the connection is fully established.
2037 */
2038 if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2039 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2040 socantrcvmore(so);
2041 tp->t_flags |= TF_ACKNOW;
2042 tp->rcv_nxt++;
2043 }
2044 switch (tp->t_state) {
2045
2046 /*
2047 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2048 */
2049 case TCPS_ESTABLISHED:
2050 tp->t_state = TCPS_CLOSE_WAIT;
2051 break;
2052
2053 /*
2054 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2055 * enter the CLOSING state.
2056 */
2057 case TCPS_FIN_WAIT_1:
2058 tp->t_state = TCPS_CLOSING;
2059 break;
2060
2061 /*
2062 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2063 * starting the time-wait timer, turning off the other
2064 * standard timers.
2065 */
2066 case TCPS_FIN_WAIT_2:
2067 tp->t_state = TCPS_TIME_WAIT;
2068 tcp_canceltimers(tp);
2069 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2070 soisdisconnected(so);
2071 break;
2072
2073 /*
2074 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2075 */
2076 case TCPS_TIME_WAIT:
2077 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2078 break;
2079 }
2080 }
2081 if (so->so_options & SO_DEBUG) {
2082 tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
2083 }
2084
2085 /*
2086 * Return any desired output.
2087 */
2088 if (needoutput || (tp->t_flags & TF_ACKNOW))
2089 (void) tcp_output(tp);
2090 if (tcp_saveti)
2091 m_freem(tcp_saveti);
2092 return;
2093
2094 badsyn:
2095 /*
2096 * Received a bad SYN. Increment counters and dropwithreset.
2097 */
2098 tcpstat.tcps_badsyn++;
2099 tp = NULL;
2100 goto dropwithreset;
2101
2102 dropafterack:
2103 /*
2104 * Generate an ACK dropping incoming segment if it occupies
2105 * sequence space, where the ACK reflects our state.
2106 */
2107 if (tiflags & TH_RST)
2108 goto drop;
2109 m_freem(m);
2110 tp->t_flags |= TF_ACKNOW;
2111 (void) tcp_output(tp);
2112 if (tcp_saveti)
2113 m_freem(tcp_saveti);
2114 return;
2115
2116 dropwithreset:
2117 /*
2118 * Generate a RST, dropping incoming segment.
2119 * Make ACK acceptable to originator of segment.
2120 * Don't bother to respond if destination was broadcast/multicast.
2121 */
2122 if (tiflags & TH_RST)
2123 goto drop;
2124 {
2125 /*
2126 * need to recover version # field, which was overwritten on
2127 * ip_cksum computation.
2128 */
2129 struct ip *sip;
2130 sip = mtod(m, struct ip *);
2131 switch (af) {
2132 case AF_INET:
2133 sip->ip_v = 4;
2134 break;
2135 #ifdef INET6
2136 case AF_INET6:
2137 sip->ip_v = 6;
2138 break;
2139 #endif
2140 }
2141 }
2142 if (tiflags & TH_ACK)
2143 (void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
2144 else {
2145 if (tiflags & TH_SYN)
2146 tlen++;
2147 (void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
2148 TH_RST|TH_ACK);
2149 }
2150 if (tcp_saveti)
2151 m_freem(tcp_saveti);
2152 return;
2153
2154 drop:
2155 /*
2156 * Drop space held by incoming segment and return.
2157 */
2158 if (tp) {
2159 if (tp->t_inpcb)
2160 so = tp->t_inpcb->inp_socket;
2161 #ifdef INET6
2162 else if (tp->t_in6pcb)
2163 so = tp->t_in6pcb->in6p_socket;
2164 #endif
2165 else
2166 so = NULL;
2167 if (so && (so->so_options & SO_DEBUG) != 0)
2168 tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
2169 }
2170 if (tcp_saveti)
2171 m_freem(tcp_saveti);
2172 m_freem(m);
2173 return;
2174 }
2175
2176 void
2177 tcp_dooptions(tp, cp, cnt, th, oi)
2178 struct tcpcb *tp;
2179 u_char *cp;
2180 int cnt;
2181 struct tcphdr *th;
2182 struct tcp_opt_info *oi;
2183 {
2184 u_int16_t mss;
2185 int opt, optlen;
2186
2187 for (; cnt > 0; cnt -= optlen, cp += optlen) {
2188 opt = cp[0];
2189 if (opt == TCPOPT_EOL)
2190 break;
2191 if (opt == TCPOPT_NOP)
2192 optlen = 1;
2193 else {
2194 optlen = cp[1];
2195 if (optlen <= 0)
2196 break;
2197 }
2198 switch (opt) {
2199
2200 default:
2201 continue;
2202
2203 case TCPOPT_MAXSEG:
2204 if (optlen != TCPOLEN_MAXSEG)
2205 continue;
2206 if (!(th->th_flags & TH_SYN))
2207 continue;
2208 bcopy(cp + 2, &mss, sizeof(mss));
2209 oi->maxseg = ntohs(mss);
2210 break;
2211
2212 case TCPOPT_WINDOW:
2213 if (optlen != TCPOLEN_WINDOW)
2214 continue;
2215 if (!(th->th_flags & TH_SYN))
2216 continue;
2217 tp->t_flags |= TF_RCVD_SCALE;
2218 tp->requested_s_scale = cp[2];
2219 if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
2220 #if 0 /*XXX*/
2221 char *p;
2222
2223 if (ip)
2224 p = ntohl(ip->ip_src);
2225 #ifdef INET6
2226 else if (ip6)
2227 p = ip6_sprintf(&ip6->ip6_src);
2228 #endif
2229 else
2230 p = "(unknown)";
2231 log(LOG_ERR, "TCP: invalid wscale %d from %s, "
2232 "assuming %d\n",
2233 tp->requested_s_scale, p,
2234 TCP_MAX_WINSHIFT);
2235 #else
2236 log(LOG_ERR, "TCP: invalid wscale %d, "
2237 "assuming %d\n",
2238 tp->requested_s_scale,
2239 TCP_MAX_WINSHIFT);
2240 #endif
2241 tp->requested_s_scale = TCP_MAX_WINSHIFT;
2242 }
2243 break;
2244
2245 case TCPOPT_TIMESTAMP:
2246 if (optlen != TCPOLEN_TIMESTAMP)
2247 continue;
2248 oi->ts_present = 1;
2249 bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
2250 NTOHL(oi->ts_val);
2251 bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
2252 NTOHL(oi->ts_ecr);
2253
2254 /*
2255 * A timestamp received in a SYN makes
2256 * it ok to send timestamp requests and replies.
2257 */
2258 if (th->th_flags & TH_SYN) {
2259 tp->t_flags |= TF_RCVD_TSTMP;
2260 tp->ts_recent = oi->ts_val;
2261 tp->ts_recent_age = tcp_now;
2262 }
2263 break;
2264 case TCPOPT_SACK_PERMITTED:
2265 if (optlen != TCPOLEN_SACK_PERMITTED)
2266 continue;
2267 if (!(th->th_flags & TH_SYN))
2268 continue;
2269 tp->t_flags &= ~TF_CANT_TXSACK;
2270 break;
2271
2272 case TCPOPT_SACK:
2273 if (tp->t_flags & TF_IGNR_RXSACK)
2274 continue;
2275 if (optlen % 8 != 2 || optlen < 10)
2276 continue;
2277 cp += 2;
2278 optlen -= 2;
2279 for (; optlen > 0; cp -= 8, optlen -= 8) {
2280 tcp_seq lwe, rwe;
2281 bcopy((char *)cp, (char *) &lwe, sizeof(lwe));
2282 NTOHL(lwe);
2283 bcopy((char *)cp, (char *) &rwe, sizeof(rwe));
2284 NTOHL(rwe);
2285 /* tcp_mark_sacked(tp, lwe, rwe); */
2286 }
2287 break;
2288 }
2289 }
2290 }
2291
2292 /*
2293 * Pull out of band byte out of a segment so
2294 * it doesn't appear in the user's data queue.
2295 * It is still reflected in the segment length for
2296 * sequencing purposes.
2297 */
2298 void
2299 tcp_pulloutofband(so, th, m, off)
2300 struct socket *so;
2301 struct tcphdr *th;
2302 register struct mbuf *m;
2303 int off;
2304 {
2305 int cnt = off + th->th_urp - 1;
2306
2307 while (cnt >= 0) {
2308 if (m->m_len > cnt) {
2309 char *cp = mtod(m, caddr_t) + cnt;
2310 struct tcpcb *tp = sototcpcb(so);
2311
2312 tp->t_iobc = *cp;
2313 tp->t_oobflags |= TCPOOB_HAVEDATA;
2314 bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
2315 m->m_len--;
2316 return;
2317 }
2318 cnt -= m->m_len;
2319 m = m->m_next;
2320 if (m == 0)
2321 break;
2322 }
2323 panic("tcp_pulloutofband");
2324 }
2325
2326 /*
2327 * Collect new round-trip time estimate
2328 * and update averages and current timeout.
2329 */
2330 void
2331 tcp_xmit_timer(tp, rtt)
2332 register struct tcpcb *tp;
2333 short rtt;
2334 {
2335 register short delta;
2336 short rttmin;
2337
2338 tcpstat.tcps_rttupdated++;
2339 --rtt;
2340 if (tp->t_srtt != 0) {
2341 /*
2342 * srtt is stored as fixed point with 3 bits after the
2343 * binary point (i.e., scaled by 8). The following magic
2344 * is equivalent to the smoothing algorithm in rfc793 with
2345 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2346 * point). Adjust rtt to origin 0.
2347 */
2348 delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
2349 if ((tp->t_srtt += delta) <= 0)
2350 tp->t_srtt = 1 << 2;
2351 /*
2352 * We accumulate a smoothed rtt variance (actually, a
2353 * smoothed mean difference), then set the retransmit
2354 * timer to smoothed rtt + 4 times the smoothed variance.
2355 * rttvar is stored as fixed point with 2 bits after the
2356 * binary point (scaled by 4). The following is
2357 * equivalent to rfc793 smoothing with an alpha of .75
2358 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces
2359 * rfc793's wired-in beta.
2360 */
2361 if (delta < 0)
2362 delta = -delta;
2363 delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
2364 if ((tp->t_rttvar += delta) <= 0)
2365 tp->t_rttvar = 1 << 2;
2366 } else {
2367 /*
2368 * No rtt measurement yet - use the unsmoothed rtt.
2369 * Set the variance to half the rtt (so our first
2370 * retransmit happens at 3*rtt).
2371 */
2372 tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
2373 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
2374 }
2375 tp->t_rtt = 0;
2376 tp->t_rxtshift = 0;
2377
2378 /*
2379 * the retransmit should happen at rtt + 4 * rttvar.
2380 * Because of the way we do the smoothing, srtt and rttvar
2381 * will each average +1/2 tick of bias. When we compute
2382 * the retransmit timer, we want 1/2 tick of rounding and
2383 * 1 extra tick because of +-1/2 tick uncertainty in the
2384 * firing of the timer. The bias will give us exactly the
2385 * 1.5 tick we need. But, because the bias is
2386 * statistical, we have to test that we don't drop below
2387 * the minimum feasible timer (which is 2 ticks).
2388 */
2389 if (tp->t_rttmin > rtt + 2)
2390 rttmin = tp->t_rttmin;
2391 else
2392 rttmin = rtt + 2;
2393 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp), rttmin, TCPTV_REXMTMAX);
2394
2395 /*
2396 * We received an ack for a packet that wasn't retransmitted;
2397 * it is probably safe to discard any error indications we've
2398 * received recently. This isn't quite right, but close enough
2399 * for now (a route might have failed after we sent a segment,
2400 * and the return path might not be symmetrical).
2401 */
2402 tp->t_softerror = 0;
2403 }
2404
2405 /*
2406 * Checks for partial ack. If partial ack arrives, force the retransmission
2407 * of the next unacknowledged segment, do not clear tp->t_dupacks, and return
2408 * 1. By setting snd_nxt to th_ack, this forces retransmission timer to
2409 * be started again. If the ack advances at least to tp->snd_recover, return 0.
2410 */
2411 int
2412 tcp_newreno(tp, th)
2413 struct tcpcb *tp;
2414 struct tcphdr *th;
2415 {
2416 tcp_seq onxt = tp->snd_nxt;
2417 u_long ocwnd = tp->snd_cwnd;
2418
2419 if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2420 /*
2421 * snd_una has not yet been updated and the socket's send
2422 * buffer has not yet drained off the ACK'd data, so we
2423 * have to leave snd_una as it was to get the correct data
2424 * offset in tcp_output().
2425 */
2426 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2427 tp->t_rtt = 0;
2428 tp->snd_nxt = th->th_ack;
2429 /*
2430 * Set snd_cwnd to one segment beyond ACK'd offset. snd_una
2431 * is not yet updated when we're called.
2432 */
2433 tp->snd_cwnd = tp->t_segsz + (th->th_ack - tp->snd_una);
2434 (void) tcp_output(tp);
2435 tp->snd_cwnd = ocwnd;
2436 if (SEQ_GT(onxt, tp->snd_nxt))
2437 tp->snd_nxt = onxt;
2438 /*
2439 * Partial window deflation. Relies on fact that tp->snd_una
2440 * not updated yet.
2441 */
2442 tp->snd_cwnd -= (th->th_ack - tp->snd_una - tp->t_segsz);
2443 return 1;
2444 }
2445 return 0;
2446 }
2447
2448
2449 /*
2450 * TCP compressed state engine. Currently used to hold compressed
2451 * state for SYN_RECEIVED.
2452 */
2453
2454 u_long syn_cache_count;
2455 u_int32_t syn_hash1, syn_hash2;
2456
2457 #define SYN_HASH(sa, sp, dp) \
2458 ((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
2459 ((u_int32_t)(sp)))^syn_hash2)))
2460 #ifndef INET6
2461 #define SYN_HASHALL(hash, src, dst) \
2462 do { \
2463 hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
2464 ((struct sockaddr_in *)(src))->sin_port, \
2465 ((struct sockaddr_in *)(dst))->sin_port); \
2466 } while (0)
2467 #else
2468 #define SYN_HASH6(sa, sp, dp) \
2469 ((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
2470 (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
2471 & 0x7fffffff)
2472
2473 #define SYN_HASHALL(hash, src, dst) \
2474 do { \
2475 switch ((src)->sa_family) { \
2476 case AF_INET: \
2477 hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
2478 ((struct sockaddr_in *)(src))->sin_port, \
2479 ((struct sockaddr_in *)(dst))->sin_port); \
2480 break; \
2481 case AF_INET6: \
2482 hash = SYN_HASH6(&((struct sockaddr_in6 *)(src))->sin6_addr, \
2483 ((struct sockaddr_in6 *)(src))->sin6_port, \
2484 ((struct sockaddr_in6 *)(dst))->sin6_port); \
2485 break; \
2486 default: \
2487 hash = 0; \
2488 } \
2489 } while (0)
2490 #endif /* INET6 */
2491
2492 #define SYN_CACHE_RM(sc) \
2493 do { \
2494 LIST_REMOVE((sc), sc_bucketq); \
2495 (sc)->sc_tp = NULL; \
2496 LIST_REMOVE((sc), sc_tpq); \
2497 tcp_syn_cache[(sc)->sc_bucketidx].sch_length--; \
2498 TAILQ_REMOVE(&tcp_syn_cache_timeq[(sc)->sc_rxtshift], (sc), sc_timeq); \
2499 syn_cache_count--; \
2500 } while (0)
2501
2502 #define SYN_CACHE_PUT(sc) \
2503 do { \
2504 if ((sc)->sc_ipopts) \
2505 (void) m_free((sc)->sc_ipopts); \
2506 if ((sc)->sc_route4.ro_rt != NULL) \
2507 RTFREE((sc)->sc_route4.ro_rt); \
2508 pool_put(&syn_cache_pool, (sc)); \
2509 } while (0)
2510
2511 struct pool syn_cache_pool;
2512
2513 /*
2514 * We don't estimate RTT with SYNs, so each packet starts with the default
2515 * RTT and each timer queue has a fixed timeout value. This allows us to
2516 * optimize the timer queues somewhat.
2517 */
2518 #define SYN_CACHE_TIMER_ARM(sc) \
2519 do { \
2520 TCPT_RANGESET((sc)->sc_rxtcur, \
2521 TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN, \
2522 TCPTV_REXMTMAX); \
2523 PRT_SLOW_ARM((sc)->sc_rexmt, (sc)->sc_rxtcur); \
2524 } while (0)
2525
2526 TAILQ_HEAD(, syn_cache) tcp_syn_cache_timeq[TCP_MAXRXTSHIFT + 1];
2527
2528 void
2529 syn_cache_init()
2530 {
2531 int i;
2532
2533 /* Initialize the hash buckets. */
2534 for (i = 0; i < tcp_syn_cache_size; i++)
2535 LIST_INIT(&tcp_syn_cache[i].sch_bucket);
2536
2537 /* Initialize the timer queues. */
2538 for (i = 0; i <= TCP_MAXRXTSHIFT; i++)
2539 TAILQ_INIT(&tcp_syn_cache_timeq[i]);
2540
2541 /* Initialize the syn cache pool. */
2542 pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
2543 "synpl", 0, NULL, NULL, M_PCB);
2544 }
2545
2546 void
2547 syn_cache_insert(sc, tp)
2548 struct syn_cache *sc;
2549 struct tcpcb *tp;
2550 {
2551 struct syn_cache_head *scp;
2552 struct syn_cache *sc2;
2553 int s, i;
2554
2555 /*
2556 * If there are no entries in the hash table, reinitialize
2557 * the hash secrets.
2558 */
2559 if (syn_cache_count == 0) {
2560 struct timeval tv;
2561 microtime(&tv);
2562 syn_hash1 = random() ^ (u_long)≻
2563 syn_hash2 = random() ^ tv.tv_usec;
2564 }
2565
2566 SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
2567 sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
2568 scp = &tcp_syn_cache[sc->sc_bucketidx];
2569
2570 /*
2571 * Make sure that we don't overflow the per-bucket
2572 * limit or the total cache size limit.
2573 */
2574 s = splsoftnet();
2575 if (scp->sch_length >= tcp_syn_bucket_limit) {
2576 tcpstat.tcps_sc_bucketoverflow++;
2577 /*
2578 * The bucket is full. Toss the oldest element in the
2579 * bucket. This will be the entry with our bucket
2580 * index closest to the front of the timer queue with
2581 * the largest timeout value.
2582 *
2583 * Note: This timer queue traversal may be expensive, so
2584 * we hope that this doesn't happen very often. It is
2585 * much more likely that we'll overflow the entire
2586 * cache, which is much easier to handle; see below.
2587 */
2588 for (i = TCP_MAXRXTSHIFT; i >= 0; i--) {
2589 for (sc2 = TAILQ_FIRST(&tcp_syn_cache_timeq[i]);
2590 sc2 != NULL;
2591 sc2 = TAILQ_NEXT(sc2, sc_timeq)) {
2592 if (sc2->sc_bucketidx == sc->sc_bucketidx) {
2593 SYN_CACHE_RM(sc2);
2594 SYN_CACHE_PUT(sc2);
2595 goto insert; /* 2 level break */
2596 }
2597 }
2598 }
2599 #ifdef DIAGNOSTIC
2600 /*
2601 * This should never happen; we should always find an
2602 * entry in our bucket.
2603 */
2604 panic("syn_cache_insert: bucketoverflow: impossible");
2605 #endif
2606 } else if (syn_cache_count >= tcp_syn_cache_limit) {
2607 tcpstat.tcps_sc_overflowed++;
2608 /*
2609 * The cache is full. Toss the oldest entry in the
2610 * entire cache. This is the front entry in the
2611 * first non-empty timer queue with the largest
2612 * timeout value.
2613 */
2614 for (i = TCP_MAXRXTSHIFT; i >= 0; i--) {
2615 sc2 = TAILQ_FIRST(&tcp_syn_cache_timeq[i]);
2616 if (sc2 == NULL)
2617 continue;
2618 SYN_CACHE_RM(sc2);
2619 SYN_CACHE_PUT(sc2);
2620 goto insert; /* symmetry with above */
2621 }
2622 #ifdef DIAGNOSTIC
2623 /*
2624 * This should never happen; we should always find an
2625 * entry in the cache.
2626 */
2627 panic("syn_cache_insert: cache overflow: impossible");
2628 #endif
2629 }
2630
2631 insert:
2632 /*
2633 * Initialize the entry's timer.
2634 */
2635 sc->sc_rxttot = 0;
2636 sc->sc_rxtshift = 0;
2637 SYN_CACHE_TIMER_ARM(sc);
2638 TAILQ_INSERT_TAIL(&tcp_syn_cache_timeq[sc->sc_rxtshift], sc, sc_timeq);
2639
2640 /* Link it from tcpcb entry */
2641 LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
2642
2643 /* Put it into the bucket. */
2644 LIST_INSERT_HEAD(&scp->sch_bucket, sc, sc_bucketq);
2645 scp->sch_length++;
2646 syn_cache_count++;
2647
2648 tcpstat.tcps_sc_added++;
2649 splx(s);
2650 }
2651
2652 /*
2653 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
2654 * If we have retransmitted an entry the maximum number of times, expire
2655 * that entry.
2656 */
2657 void
2658 syn_cache_timer()
2659 {
2660 struct syn_cache *sc, *nsc;
2661 int i, s;
2662
2663 s = splsoftnet();
2664
2665 /*
2666 * First, get all the entries that need to be retransmitted, or
2667 * must be expired due to exceeding the initial keepalive time.
2668 */
2669 for (i = 0; i < TCP_MAXRXTSHIFT; i++) {
2670 for (sc = TAILQ_FIRST(&tcp_syn_cache_timeq[i]);
2671 sc != NULL && PRT_SLOW_ISEXPIRED(sc->sc_rexmt);
2672 sc = nsc) {
2673 nsc = TAILQ_NEXT(sc, sc_timeq);
2674
2675 /*
2676 * Compute the total amount of time this entry has
2677 * been on a queue. If this entry has been on longer
2678 * than the keep alive timer would allow, expire it.
2679 */
2680 sc->sc_rxttot += sc->sc_rxtcur;
2681 if (sc->sc_rxttot >= TCPTV_KEEP_INIT) {
2682 tcpstat.tcps_sc_timed_out++;
2683 SYN_CACHE_RM(sc);
2684 SYN_CACHE_PUT(sc);
2685 continue;
2686 }
2687
2688 tcpstat.tcps_sc_retransmitted++;
2689 (void) syn_cache_respond(sc, NULL);
2690
2691 /* Advance this entry onto the next timer queue. */
2692 TAILQ_REMOVE(&tcp_syn_cache_timeq[i], sc, sc_timeq);
2693 sc->sc_rxtshift = i + 1;
2694 SYN_CACHE_TIMER_ARM(sc);
2695 TAILQ_INSERT_TAIL(&tcp_syn_cache_timeq[sc->sc_rxtshift],
2696 sc, sc_timeq);
2697 }
2698 }
2699
2700 /*
2701 * Now get all the entries that are expired due to too many
2702 * retransmissions.
2703 */
2704 for (sc = TAILQ_FIRST(&tcp_syn_cache_timeq[TCP_MAXRXTSHIFT]);
2705 sc != NULL && PRT_SLOW_ISEXPIRED(sc->sc_rexmt);
2706 sc = nsc) {
2707 nsc = TAILQ_NEXT(sc, sc_timeq);
2708 tcpstat.tcps_sc_timed_out++;
2709 SYN_CACHE_RM(sc);
2710 SYN_CACHE_PUT(sc);
2711 }
2712 splx(s);
2713 }
2714
2715 /*
2716 * Remove syn cache created by the specified tcb entry,
2717 * because this does not make sense to keep them
2718 * (if there's no tcb entry, syn cache entry will never be used)
2719 */
2720 void
2721 syn_cache_cleanup(tp)
2722 struct tcpcb *tp;
2723 {
2724 struct syn_cache *sc, *nsc;
2725 int s;
2726
2727 s = splsoftnet();
2728
2729 for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
2730 nsc = LIST_NEXT(sc, sc_tpq);
2731
2732 #ifdef DIAGNOSTIC
2733 if (sc->sc_tp != tp)
2734 panic("invalid sc_tp in syn_cache_cleanup");
2735 #endif
2736 SYN_CACHE_RM(sc);
2737 SYN_CACHE_PUT(sc);
2738 }
2739 /* just for safety */
2740 LIST_INIT(&tp->t_sc);
2741
2742 splx(s);
2743 }
2744
2745 /*
2746 * Find an entry in the syn cache.
2747 */
2748 struct syn_cache *
2749 syn_cache_lookup(src, dst, headp)
2750 struct sockaddr *src;
2751 struct sockaddr *dst;
2752 struct syn_cache_head **headp;
2753 {
2754 struct syn_cache *sc;
2755 struct syn_cache_head *scp;
2756 u_int32_t hash;
2757 int s;
2758
2759 SYN_HASHALL(hash, src, dst);
2760
2761 scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
2762 *headp = scp;
2763 s = splsoftnet();
2764 for (sc = LIST_FIRST(&scp->sch_bucket); sc != NULL;
2765 sc = LIST_NEXT(sc, sc_bucketq)) {
2766 if (sc->sc_hash != hash)
2767 continue;
2768 if (!bcmp(&sc->sc_src, src, src->sa_len) &&
2769 !bcmp(&sc->sc_dst, dst, dst->sa_len)) {
2770 splx(s);
2771 return (sc);
2772 }
2773 }
2774 splx(s);
2775 return (NULL);
2776 }
2777
2778 /*
2779 * This function gets called when we receive an ACK for a
2780 * socket in the LISTEN state. We look up the connection
2781 * in the syn cache, and if its there, we pull it out of
2782 * the cache and turn it into a full-blown connection in
2783 * the SYN-RECEIVED state.
2784 *
2785 * The return values may not be immediately obvious, and their effects
2786 * can be subtle, so here they are:
2787 *
2788 * NULL SYN was not found in cache; caller should drop the
2789 * packet and send an RST.
2790 *
2791 * -1 We were unable to create the new connection, and are
2792 * aborting it. An ACK,RST is being sent to the peer
2793 * (unless we got screwey sequence numbners; see below),
2794 * because the 3-way handshake has been completed. Caller
2795 * should not free the mbuf, since we may be using it. If
2796 * we are not, we will free it.
2797 *
2798 * Otherwise, the return value is a pointer to the new socket
2799 * associated with the connection.
2800 */
2801 struct socket *
2802 syn_cache_get(src, dst, th, hlen, tlen, so, m)
2803 struct sockaddr *src;
2804 struct sockaddr *dst;
2805 struct tcphdr *th;
2806 unsigned int hlen, tlen;
2807 struct socket *so;
2808 struct mbuf *m;
2809 {
2810 struct syn_cache *sc;
2811 struct syn_cache_head *scp;
2812 register struct inpcb *inp = NULL;
2813 #ifdef INET6
2814 register struct in6pcb *in6p = NULL;
2815 #endif
2816 register struct tcpcb *tp = 0;
2817 struct mbuf *am;
2818 int s;
2819 struct socket *oso;
2820
2821 s = splsoftnet();
2822 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
2823 splx(s);
2824 return (NULL);
2825 }
2826
2827 /*
2828 * Verify the sequence and ack numbers. Try getting the correct
2829 * response again.
2830 */
2831 if ((th->th_ack != sc->sc_iss + 1) ||
2832 SEQ_LEQ(th->th_seq, sc->sc_irs) ||
2833 SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
2834 (void) syn_cache_respond(sc, m);
2835 splx(s);
2836 return ((struct socket *)(-1));
2837 }
2838
2839 /* Remove this cache entry */
2840 SYN_CACHE_RM(sc);
2841 splx(s);
2842
2843 /*
2844 * Ok, create the full blown connection, and set things up
2845 * as they would have been set up if we had created the
2846 * connection when the SYN arrived. If we can't create
2847 * the connection, abort it.
2848 */
2849 /*
2850 * inp still has the OLD in_pcb stuff, set the
2851 * v6-related flags on the new guy, too. This is
2852 * done particularly for the case where an AF_INET6
2853 * socket is bound only to a port, and a v4 connection
2854 * comes in on that port.
2855 * we also copy the flowinfo from the original pcb
2856 * to the new one.
2857 */
2858 {
2859 struct inpcb *parentinpcb;
2860
2861 parentinpcb = (struct inpcb *)so->so_pcb;
2862
2863 oso = so;
2864 so = sonewconn(so, SS_ISCONNECTED);
2865 if (so == NULL)
2866 goto resetandabort;
2867
2868 switch (so->so_proto->pr_domain->dom_family) {
2869 case AF_INET:
2870 inp = sotoinpcb(so);
2871 break;
2872 #ifdef INET6
2873 case AF_INET6:
2874 in6p = sotoin6pcb(so);
2875 #if 0 /*def INET6*/
2876 inp->inp_flags |= (parentinpcb->inp_flags &
2877 (INP_IPV6 | INP_IPV6_UNDEC | INP_IPV6_MAPPED));
2878 if ((inp->inp_flags & INP_IPV6) &&
2879 !(inp->inp_flags & INP_IPV6_MAPPED)) {
2880 inp->inp_ipv6.ip6_hlim = parentinpcb->inp_ipv6.ip6_hlim;
2881 inp->inp_ipv6.ip6_vfc = parentinpcb->inp_ipv6.ip6_vfc;
2882 }
2883 #endif
2884 break;
2885 #endif
2886 }
2887 }
2888 switch (src->sa_family) {
2889 case AF_INET:
2890 if (inp) {
2891 inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
2892 inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
2893 inp->inp_options = ip_srcroute();
2894 in_pcbstate(inp, INP_BOUND);
2895 if (inp->inp_options == NULL) {
2896 inp->inp_options = sc->sc_ipopts;
2897 sc->sc_ipopts = NULL;
2898 }
2899 }
2900 #ifdef INET6
2901 else if (in6p) {
2902 /* IPv4 packet to AF_INET6 socket */
2903 bzero(&in6p->in6p_laddr, sizeof(in6p->in6p_laddr));
2904 in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
2905 bcopy(&((struct sockaddr_in *)dst)->sin_addr,
2906 &in6p->in6p_laddr.s6_addr32[3],
2907 sizeof(((struct sockaddr_in *)dst)->sin_addr));
2908 in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
2909 in6totcpcb(in6p)->t_family = AF_INET;
2910 }
2911 #endif
2912 break;
2913 #ifdef INET6
2914 case AF_INET6:
2915 if (in6p) {
2916 in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
2917 in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
2918 #if 0
2919 in6p->in6p_flowinfo = ip6->ip6_flow & IPV6_FLOWINFO_MASK;
2920 /*inp->inp_options = ip6_srcroute();*/ /* soon. */
2921 #endif
2922 }
2923 break;
2924 #endif
2925 }
2926 #ifdef INET6
2927 if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
2928 struct in6pcb *oin6p = sotoin6pcb(oso);
2929 /* inherit socket options from the listening socket */
2930 in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
2931 if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
2932 m_freem(in6p->in6p_options);
2933 in6p->in6p_options = 0;
2934 }
2935 ip6_savecontrol(in6p, &in6p->in6p_options,
2936 mtod(m, struct ip6_hdr *), m);
2937 }
2938 #endif
2939
2940 #ifdef IPSEC
2941 /*
2942 * we make a copy of policy, instead of sharing the policy,
2943 * for better behavior in terms of SA lookup and dead SA removal.
2944 */
2945 if (inp) {
2946 /* copy old policy into new socket's */
2947 if (ipsec_copy_policy(sotoinpcb(oso)->inp_sp, inp->inp_sp))
2948 printf("tcp_input: could not copy policy\n");
2949 }
2950 #ifdef INET6
2951 else if (in6p) {
2952 /* copy old policy into new socket's */
2953 if (ipsec_copy_policy(sotoin6pcb(oso)->in6p_sp, in6p->in6p_sp))
2954 printf("tcp_input: could not copy policy\n");
2955 }
2956 #endif
2957 #endif
2958
2959 /*
2960 * Give the new socket our cached route reference.
2961 */
2962 if (inp)
2963 inp->inp_route = sc->sc_route4; /* struct assignment */
2964 #ifdef INET6
2965 else
2966 in6p->in6p_route = sc->sc_route6;
2967 #endif
2968 sc->sc_route4.ro_rt = NULL;
2969
2970 am = m_get(M_DONTWAIT, MT_SONAME); /* XXX */
2971 if (am == NULL)
2972 goto resetandabort;
2973 am->m_len = src->sa_len;
2974 bcopy(src, mtod(am, caddr_t), src->sa_len);
2975 if (inp) {
2976 if (in_pcbconnect(inp, am)) {
2977 (void) m_free(am);
2978 goto resetandabort;
2979 }
2980 }
2981 #ifdef INET6
2982 else if (in6p) {
2983 if (src->sa_family == AF_INET) {
2984 /* IPv4 packet to AF_INET6 socket */
2985 struct sockaddr_in6 *sin6;
2986 sin6 = mtod(am, struct sockaddr_in6 *);
2987 am->m_len = sizeof(*sin6);
2988 bzero(sin6, sizeof(*sin6));
2989 sin6->sin6_family = AF_INET6;
2990 sin6->sin6_len = sizeof(*sin6);
2991 sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port;
2992 sin6->sin6_addr.s6_addr16[5] = htons(0xffff);
2993 bcopy(&((struct sockaddr_in *)src)->sin_addr,
2994 &sin6->sin6_addr.s6_addr32[3],
2995 sizeof(sin6->sin6_addr.s6_addr32[3]));
2996 }
2997 if (in6_pcbconnect(in6p, am)) {
2998 (void) m_free(am);
2999 goto resetandabort;
3000 }
3001 }
3002 #endif
3003 else {
3004 (void) m_free(am);
3005 goto resetandabort;
3006 }
3007 (void) m_free(am);
3008
3009 if (inp)
3010 tp = intotcpcb(inp);
3011 #ifdef INET6
3012 else if (in6p)
3013 tp = in6totcpcb(in6p);
3014 #endif
3015 else
3016 tp = NULL;
3017 if (sc->sc_request_r_scale != 15) {
3018 tp->requested_s_scale = sc->sc_requested_s_scale;
3019 tp->request_r_scale = sc->sc_request_r_scale;
3020 tp->snd_scale = sc->sc_requested_s_scale;
3021 tp->rcv_scale = sc->sc_request_r_scale;
3022 tp->t_flags |= TF_RCVD_SCALE;
3023 }
3024 if (sc->sc_flags & SCF_TIMESTAMP)
3025 tp->t_flags |= TF_RCVD_TSTMP;
3026
3027 tp->t_template = tcp_template(tp);
3028 if (tp->t_template == 0) {
3029 tp = tcp_drop(tp, ENOBUFS); /* destroys socket */
3030 so = NULL;
3031 m_freem(m);
3032 goto abort;
3033 }
3034
3035 tp->iss = sc->sc_iss;
3036 tp->irs = sc->sc_irs;
3037 tcp_sendseqinit(tp);
3038 tcp_rcvseqinit(tp);
3039 tp->t_state = TCPS_SYN_RECEIVED;
3040 TCP_TIMER_ARM(tp, TCPT_KEEP, TCPTV_KEEP_INIT);
3041 tcpstat.tcps_accepts++;
3042
3043 /* Initialize tp->t_ourmss before we deal with the peer's! */
3044 tp->t_ourmss = sc->sc_ourmaxseg;
3045 tcp_mss_from_peer(tp, sc->sc_peermaxseg);
3046
3047 /*
3048 * Initialize the initial congestion window. If we
3049 * had to retransmit the SYN,ACK, we must initialize cwnd
3050 * to 1 segment (i.e. the Loss Window).
3051 */
3052 if (sc->sc_rxtshift)
3053 tp->snd_cwnd = tp->t_peermss;
3054 else
3055 tp->snd_cwnd = TCP_INITIAL_WINDOW(tcp_init_win, tp->t_peermss);
3056
3057 tcp_rmx_rtt(tp);
3058 tp->snd_wl1 = sc->sc_irs;
3059 tp->rcv_up = sc->sc_irs + 1;
3060
3061 /*
3062 * This is what whould have happened in tcp_ouput() when
3063 * the SYN,ACK was sent.
3064 */
3065 tp->snd_up = tp->snd_una;
3066 tp->snd_max = tp->snd_nxt = tp->iss+1;
3067 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
3068 if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
3069 tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
3070 tp->last_ack_sent = tp->rcv_nxt;
3071
3072 tcpstat.tcps_sc_completed++;
3073 SYN_CACHE_PUT(sc);
3074 return (so);
3075
3076 resetandabort:
3077 (void) tcp_respond(NULL, m, m, th,
3078 th->th_seq + tlen, (tcp_seq)0, TH_RST|TH_ACK);
3079 abort:
3080 if (so != NULL)
3081 (void) soabort(so);
3082 SYN_CACHE_PUT(sc);
3083 tcpstat.tcps_sc_aborted++;
3084 return ((struct socket *)(-1));
3085 }
3086
3087 /*
3088 * This function is called when we get a RST for a
3089 * non-existant connection, so that we can see if the
3090 * connection is in the syn cache. If it is, zap it.
3091 */
3092
3093 void
3094 syn_cache_reset(src, dst, th)
3095 struct sockaddr *src;
3096 struct sockaddr *dst;
3097 struct tcphdr *th;
3098 {
3099 struct syn_cache *sc;
3100 struct syn_cache_head *scp;
3101 int s = splsoftnet();
3102
3103 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3104 splx(s);
3105 return;
3106 }
3107 if (SEQ_LT(th->th_seq, sc->sc_irs) ||
3108 SEQ_GT(th->th_seq, sc->sc_irs+1)) {
3109 splx(s);
3110 return;
3111 }
3112 SYN_CACHE_RM(sc);
3113 splx(s);
3114 tcpstat.tcps_sc_reset++;
3115 SYN_CACHE_PUT(sc);
3116 }
3117
3118 void
3119 syn_cache_unreach(src, dst, th)
3120 struct sockaddr *src;
3121 struct sockaddr *dst;
3122 struct tcphdr *th;
3123 {
3124 struct syn_cache *sc;
3125 struct syn_cache_head *scp;
3126 int s;
3127
3128 s = splsoftnet();
3129 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3130 splx(s);
3131 return;
3132 }
3133 /* If the sequence number != sc_iss, then it's a bogus ICMP msg */
3134 if (ntohl (th->th_seq) != sc->sc_iss) {
3135 splx(s);
3136 return;
3137 }
3138
3139 /*
3140 * If we've rertransmitted 3 times and this is our second error,
3141 * we remove the entry. Otherwise, we allow it to continue on.
3142 * This prevents us from incorrectly nuking an entry during a
3143 * spurious network outage.
3144 *
3145 * See tcp_notify().
3146 */
3147 if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
3148 sc->sc_flags |= SCF_UNREACH;
3149 splx(s);
3150 return;
3151 }
3152
3153 SYN_CACHE_RM(sc);
3154 splx(s);
3155 tcpstat.tcps_sc_unreach++;
3156 SYN_CACHE_PUT(sc);
3157 }
3158
3159 /*
3160 * Given a LISTEN socket and an inbound SYN request, add
3161 * this to the syn cache, and send back a segment:
3162 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
3163 * to the source.
3164 *
3165 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
3166 * Doing so would require that we hold onto the data and deliver it
3167 * to the application. However, if we are the target of a SYN-flood
3168 * DoS attack, an attacker could send data which would eventually
3169 * consume all available buffer space if it were ACKed. By not ACKing
3170 * the data, we avoid this DoS scenario.
3171 */
3172
3173 int
3174 syn_cache_add(src, dst, th, hlen, so, m, optp, optlen, oi)
3175 struct sockaddr *src;
3176 struct sockaddr *dst;
3177 struct tcphdr *th;
3178 unsigned int hlen;
3179 struct socket *so;
3180 struct mbuf *m;
3181 u_char *optp;
3182 int optlen;
3183 struct tcp_opt_info *oi;
3184 {
3185 struct tcpcb tb, *tp;
3186 long win;
3187 struct syn_cache *sc;
3188 struct syn_cache_head *scp;
3189 struct mbuf *ipopts;
3190
3191 tp = sototcpcb(so);
3192
3193 /*
3194 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
3195 *
3196 * Note this check is performed in tcp_input() very early on.
3197 */
3198
3199 /*
3200 * Initialize some local state.
3201 */
3202 win = sbspace(&so->so_rcv);
3203 if (win > TCP_MAXWIN)
3204 win = TCP_MAXWIN;
3205
3206 if (src->sa_family == AF_INET) {
3207 /*
3208 * Remember the IP options, if any.
3209 */
3210 ipopts = ip_srcroute();
3211 } else
3212 ipopts = NULL;
3213
3214 if (optp) {
3215 tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
3216 tcp_dooptions(&tb, optp, optlen, th, oi);
3217 } else
3218 tb.t_flags = 0;
3219
3220 /*
3221 * See if we already have an entry for this connection.
3222 * If we do, resend the SYN,ACK. We do not count this
3223 * as a retransmission (XXX though maybe we should).
3224 */
3225 if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
3226 tcpstat.tcps_sc_dupesyn++;
3227 if (ipopts) {
3228 /*
3229 * If we were remembering a previous source route,
3230 * forget it and use the new one we've been given.
3231 */
3232 if (sc->sc_ipopts)
3233 (void) m_free(sc->sc_ipopts);
3234 sc->sc_ipopts = ipopts;
3235 }
3236 sc->sc_timestamp = tb.ts_recent;
3237 if (syn_cache_respond(sc, m) == 0) {
3238 tcpstat.tcps_sndacks++;
3239 tcpstat.tcps_sndtotal++;
3240 }
3241 return (1);
3242 }
3243
3244 sc = pool_get(&syn_cache_pool, PR_NOWAIT);
3245 if (sc == NULL) {
3246 if (ipopts)
3247 (void) m_free(ipopts);
3248 return (0);
3249 }
3250
3251 /*
3252 * Fill in the cache, and put the necessary IP and TCP
3253 * options into the reply.
3254 */
3255 bzero(sc, sizeof(struct syn_cache));
3256 bcopy(src, &sc->sc_src, src->sa_len);
3257 bcopy(dst, &sc->sc_dst, dst->sa_len);
3258 sc->sc_flags = 0;
3259 sc->sc_ipopts = ipopts;
3260 sc->sc_irs = th->th_seq;
3261 sc->sc_iss = tcp_new_iss(sc, sizeof(struct syn_cache), 0);
3262 sc->sc_peermaxseg = oi->maxseg;
3263 sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
3264 m->m_pkthdr.rcvif : NULL,
3265 sc->sc_src.sa.sa_family);
3266 sc->sc_win = win;
3267 sc->sc_timestamp = tb.ts_recent;
3268 if (tcp_do_rfc1323 && (tb.t_flags & TF_RCVD_TSTMP))
3269 sc->sc_flags |= SCF_TIMESTAMP;
3270 if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
3271 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
3272 sc->sc_requested_s_scale = tb.requested_s_scale;
3273 sc->sc_request_r_scale = 0;
3274 while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
3275 TCP_MAXWIN << sc->sc_request_r_scale <
3276 so->so_rcv.sb_hiwat)
3277 sc->sc_request_r_scale++;
3278 } else {
3279 sc->sc_requested_s_scale = 15;
3280 sc->sc_request_r_scale = 15;
3281 }
3282 sc->sc_tp = tp;
3283 if (syn_cache_respond(sc, m) == 0) {
3284 syn_cache_insert(sc, tp);
3285 tcpstat.tcps_sndacks++;
3286 tcpstat.tcps_sndtotal++;
3287 } else {
3288 SYN_CACHE_PUT(sc);
3289 tcpstat.tcps_sc_dropped++;
3290 }
3291 return (1);
3292 }
3293
3294 int
3295 syn_cache_respond(sc, m)
3296 struct syn_cache *sc;
3297 struct mbuf *m;
3298 {
3299 struct route *ro;
3300 struct rtentry *rt;
3301 u_int8_t *optp;
3302 int optlen, error;
3303 u_int16_t tlen;
3304 struct ip *ip = NULL;
3305 #ifdef INET6
3306 struct ip6_hdr *ip6 = NULL;
3307 #endif
3308 struct tcphdr *th;
3309 u_int hlen;
3310
3311 switch (sc->sc_src.sa.sa_family) {
3312 case AF_INET:
3313 hlen = sizeof(struct ip);
3314 ro = &sc->sc_route4;
3315 break;
3316 #ifdef INET6
3317 case AF_INET6:
3318 hlen = sizeof(struct ip6_hdr);
3319 ro = (struct route *)&sc->sc_route6;
3320 break;
3321 #endif
3322 default:
3323 if (m)
3324 m_freem(m);
3325 return EAFNOSUPPORT;
3326 }
3327
3328 /* Compute the size of the TCP options. */
3329 optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
3330 ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
3331
3332 tlen = hlen + sizeof(struct tcphdr) + optlen;
3333
3334 /*
3335 * Create the IP+TCP header from scratch. Reuse the received mbuf
3336 * if possible.
3337 */
3338 if (m != NULL) {
3339 m_freem(m->m_next);
3340 m->m_next = NULL;
3341 MRESETDATA(m);
3342 } else {
3343 MGETHDR(m, M_DONTWAIT, MT_DATA);
3344 if (m == NULL)
3345 return (ENOBUFS);
3346 }
3347
3348 /* Fixup the mbuf. */
3349 m->m_data += max_linkhdr;
3350 m->m_len = m->m_pkthdr.len = tlen;
3351 #ifdef IPSEC
3352 if (sc->sc_tp) {
3353 struct tcpcb *tp;
3354 struct socket *so;
3355
3356 tp = sc->sc_tp;
3357 if (tp->t_inpcb)
3358 so = tp->t_inpcb->inp_socket;
3359 #ifdef INET6
3360 else if (tp->t_in6pcb)
3361 so = tp->t_in6pcb->in6p_socket;
3362 #endif
3363 else
3364 so = NULL;
3365 /* use IPsec policy on listening socket, on SYN ACK */
3366 m->m_pkthdr.rcvif = (struct ifnet *)so;
3367 }
3368 #else
3369 m->m_pkthdr.rcvif = NULL;
3370 #endif
3371 memset(mtod(m, u_char *), 0, tlen);
3372
3373 switch (sc->sc_src.sa.sa_family) {
3374 case AF_INET:
3375 ip = mtod(m, struct ip *);
3376 ip->ip_dst = sc->sc_src.sin.sin_addr;
3377 ip->ip_src = sc->sc_dst.sin.sin_addr;
3378 ip->ip_p = IPPROTO_TCP;
3379 th = (struct tcphdr *)(ip + 1);
3380 th->th_dport = sc->sc_src.sin.sin_port;
3381 th->th_sport = sc->sc_dst.sin.sin_port;
3382 break;
3383 #ifdef INET6
3384 case AF_INET6:
3385 ip6 = mtod(m, struct ip6_hdr *);
3386 ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
3387 ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
3388 ip6->ip6_nxt = IPPROTO_TCP;
3389 /* ip6_plen will be updated in ip6_output() */
3390 th = (struct tcphdr *)(ip6 + 1);
3391 th->th_dport = sc->sc_src.sin6.sin6_port;
3392 th->th_sport = sc->sc_dst.sin6.sin6_port;
3393 break;
3394 #endif
3395 default:
3396 th = NULL;
3397 }
3398
3399 th->th_seq = htonl(sc->sc_iss);
3400 th->th_ack = htonl(sc->sc_irs + 1);
3401 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
3402 th->th_flags = TH_SYN|TH_ACK;
3403 th->th_win = htons(sc->sc_win);
3404 /* th_sum already 0 */
3405 /* th_urp already 0 */
3406
3407 /* Tack on the TCP options. */
3408 optp = (u_int8_t *)(th + 1);
3409 *optp++ = TCPOPT_MAXSEG;
3410 *optp++ = 4;
3411 *optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
3412 *optp++ = sc->sc_ourmaxseg & 0xff;
3413
3414 if (sc->sc_request_r_scale != 15) {
3415 *((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
3416 TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
3417 sc->sc_request_r_scale);
3418 optp += 4;
3419 }
3420
3421 if (sc->sc_flags & SCF_TIMESTAMP) {
3422 u_int32_t *lp = (u_int32_t *)(optp);
3423 /* Form timestamp option as shown in appendix A of RFC 1323. */
3424 *lp++ = htonl(TCPOPT_TSTAMP_HDR);
3425 *lp++ = htonl(tcp_now);
3426 *lp = htonl(sc->sc_timestamp);
3427 optp += TCPOLEN_TSTAMP_APPA;
3428 }
3429
3430 /* Compute the packet's checksum. */
3431 switch (sc->sc_src.sa.sa_family) {
3432 case AF_INET:
3433 ip->ip_len = htons(tlen - hlen);
3434 th->th_sum = 0;
3435 th->th_sum = in_cksum(m, tlen);
3436 break;
3437 #ifdef INET6
3438 case AF_INET6:
3439 ip6->ip6_plen = htons(tlen - hlen);
3440 th->th_sum = 0;
3441 th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
3442 break;
3443 #endif
3444 }
3445
3446 /*
3447 * Fill in some straggling IP bits. Note the stack expects
3448 * ip_len to be in host order, for convenience.
3449 */
3450 switch (sc->sc_src.sa.sa_family) {
3451 case AF_INET:
3452 ip->ip_len = tlen;
3453 ip->ip_ttl = ip_defttl;
3454 /* XXX tos? */
3455 break;
3456 #ifdef INET6
3457 case AF_INET6:
3458 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
3459 ip6->ip6_vfc |= IPV6_VERSION;
3460 ip6->ip6_plen = htons(tlen - hlen);
3461 /* ip6_hlim will be initialized afterwards */
3462 /* XXX flowlabel? */
3463 break;
3464 #endif
3465 }
3466
3467 /*
3468 * If we're doing Path MTU discovery, we need to set DF unless
3469 * the route's MTU is locked. If we don't yet know the route,
3470 * look it up now. We will copy this reference to the inpcb
3471 * when we finish creating the connection.
3472 */
3473 if ((rt = ro->ro_rt) == NULL || (rt->rt_flags & RTF_UP) == 0) {
3474 if (ro->ro_rt != NULL) {
3475 RTFREE(ro->ro_rt);
3476 ro->ro_rt = NULL;
3477 }
3478 bcopy(&sc->sc_src, &ro->ro_dst, sc->sc_src.sa.sa_len);
3479 rtalloc(ro);
3480 if ((rt = ro->ro_rt) == NULL) {
3481 m_freem(m);
3482 switch (sc->sc_src.sa.sa_family) {
3483 case AF_INET:
3484 ipstat.ips_noroute++;
3485 break;
3486 #ifdef INET6
3487 case AF_INET6:
3488 ip6stat.ip6s_noroute++;
3489 break;
3490 #endif
3491 }
3492 return (EHOSTUNREACH);
3493 }
3494 }
3495
3496 switch (sc->sc_src.sa.sa_family) {
3497 case AF_INET:
3498 if (ip_mtudisc != 0 && (rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
3499 ip->ip_off |= IP_DF;
3500
3501 /* ...and send it off! */
3502 error = ip_output(m, sc->sc_ipopts, ro, 0, NULL);
3503 break;
3504 #ifdef INET6
3505 case AF_INET6:
3506 ip6->ip6_hlim = in6_selecthlim(NULL,
3507 ro->ro_rt ? ro->ro_rt->rt_ifp : NULL);
3508
3509 error = ip6_output(m, NULL /*XXX*/, (struct route_in6 *)ro,
3510 0, NULL, NULL);
3511 break;
3512 #endif
3513 default:
3514 error = EAFNOSUPPORT;
3515 break;
3516 }
3517 return (error);
3518 }
3519