tcp_input.c revision 1.109 1 /* $NetBSD: tcp_input.c,v 1.109 2000/06/30 16:44:33 itojun Exp $ */
2
3 /*
4 %%% portions-copyright-nrl-95
5 Portions of this software are Copyright 1995-1998 by Randall Atkinson,
6 Ronald Lee, Daniel McDonald, Bao Phan, and Chris Winters. All Rights
7 Reserved. All rights under this copyright have been assigned to the US
8 Naval Research Laboratory (NRL). The NRL Copyright Notice and License
9 Agreement Version 1.1 (January 17, 1995) applies to these portions of the
10 software.
11 You should have received a copy of the license with this software. If you
12 didn't get a copy, you may request one from <license (at) ipv6.nrl.navy.mil>.
13
14 */
15
16 /*
17 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
18 * All rights reserved.
19 *
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
23 * 1. Redistributions of source code must retain the above copyright
24 * notice, this list of conditions and the following disclaimer.
25 * 2. Redistributions in binary form must reproduce the above copyright
26 * notice, this list of conditions and the following disclaimer in the
27 * documentation and/or other materials provided with the distribution.
28 * 3. Neither the name of the project nor the names of its contributors
29 * may be used to endorse or promote products derived from this software
30 * without specific prior written permission.
31 *
32 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
33 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
36 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42 * SUCH DAMAGE.
43 */
44
45 /*-
46 * Copyright (c) 1997, 1998, 1999 The NetBSD Foundation, Inc.
47 * All rights reserved.
48 *
49 * This code is derived from software contributed to The NetBSD Foundation
50 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
51 * Facility, NASA Ames Research Center.
52 *
53 * Redistribution and use in source and binary forms, with or without
54 * modification, are permitted provided that the following conditions
55 * are met:
56 * 1. Redistributions of source code must retain the above copyright
57 * notice, this list of conditions and the following disclaimer.
58 * 2. Redistributions in binary form must reproduce the above copyright
59 * notice, this list of conditions and the following disclaimer in the
60 * documentation and/or other materials provided with the distribution.
61 * 3. All advertising materials mentioning features or use of this software
62 * must display the following acknowledgement:
63 * This product includes software developed by the NetBSD
64 * Foundation, Inc. and its contributors.
65 * 4. Neither the name of The NetBSD Foundation nor the names of its
66 * contributors may be used to endorse or promote products derived
67 * from this software without specific prior written permission.
68 *
69 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
70 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
71 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
72 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
73 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
74 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
75 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
76 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
77 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
78 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
79 * POSSIBILITY OF SUCH DAMAGE.
80 */
81
82 /*
83 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
84 * The Regents of the University of California. All rights reserved.
85 *
86 * Redistribution and use in source and binary forms, with or without
87 * modification, are permitted provided that the following conditions
88 * are met:
89 * 1. Redistributions of source code must retain the above copyright
90 * notice, this list of conditions and the following disclaimer.
91 * 2. Redistributions in binary form must reproduce the above copyright
92 * notice, this list of conditions and the following disclaimer in the
93 * documentation and/or other materials provided with the distribution.
94 * 3. All advertising materials mentioning features or use of this software
95 * must display the following acknowledgement:
96 * This product includes software developed by the University of
97 * California, Berkeley and its contributors.
98 * 4. Neither the name of the University nor the names of its contributors
99 * may be used to endorse or promote products derived from this software
100 * without specific prior written permission.
101 *
102 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
103 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
104 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
105 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
106 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
107 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
108 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
109 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
110 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
111 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
112 * SUCH DAMAGE.
113 *
114 * @(#)tcp_input.c 8.12 (Berkeley) 5/24/95
115 */
116
117 /*
118 * TODO list for SYN cache stuff:
119 *
120 * Find room for a "state" field, which is needed to keep a
121 * compressed state for TIME_WAIT TCBs. It's been noted already
122 * that this is fairly important for very high-volume web and
123 * mail servers, which use a large number of short-lived
124 * connections.
125 */
126
127 #include "opt_inet.h"
128 #include "opt_ipsec.h"
129
130 #include <sys/param.h>
131 #include <sys/systm.h>
132 #include <sys/malloc.h>
133 #include <sys/mbuf.h>
134 #include <sys/protosw.h>
135 #include <sys/socket.h>
136 #include <sys/socketvar.h>
137 #include <sys/errno.h>
138 #include <sys/syslog.h>
139 #include <sys/pool.h>
140 #include <sys/domain.h>
141
142 #include <net/if.h>
143 #include <net/route.h>
144 #include <net/if_types.h>
145
146 #include <netinet/in.h>
147 #include <netinet/in_systm.h>
148 #include <netinet/ip.h>
149 #include <netinet/in_pcb.h>
150 #include <netinet/ip_var.h>
151
152 #ifdef INET6
153 #ifndef INET
154 #include <netinet/in.h>
155 #endif
156 #include <netinet/ip6.h>
157 #include <netinet6/in6_pcb.h>
158 #include <netinet6/ip6_var.h>
159 #include <netinet6/in6_var.h>
160 #include <netinet/icmp6.h>
161 #include <netinet6/nd6.h>
162 #endif
163
164 #ifdef PULLDOWN_TEST
165 #ifndef INET6
166 /* always need ip6.h for IP6_EXTHDR_GET */
167 #include <netinet/ip6.h>
168 #endif
169 #endif
170
171 #include <netinet/tcp.h>
172 #include <netinet/tcp_fsm.h>
173 #include <netinet/tcp_seq.h>
174 #include <netinet/tcp_timer.h>
175 #include <netinet/tcp_var.h>
176 #include <netinet/tcpip.h>
177 #include <netinet/tcp_debug.h>
178
179 #include <machine/stdarg.h>
180
181 #ifdef IPSEC
182 #include <netinet6/ipsec.h>
183 #include <netkey/key.h>
184 #include <netkey/key_debug.h>
185 #endif /*IPSEC*/
186 #ifdef INET6
187 #include "faith.h"
188 #endif
189
190 int tcprexmtthresh = 3;
191 int tcp_log_refused;
192
193 struct timeval tcp_rst_ratelim_last;
194
195 #define TCP_PAWS_IDLE (24 * 24 * 60 * 60 * PR_SLOWHZ)
196
197 /* for modulo comparisons of timestamps */
198 #define TSTMP_LT(a,b) ((int)((a)-(b)) < 0)
199 #define TSTMP_GEQ(a,b) ((int)((a)-(b)) >= 0)
200
201 /*
202 * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
203 */
204 #ifdef INET6
205 #define ND6_HINT(tp) \
206 do { \
207 if (tp && tp->t_in6pcb && tp->t_family == AF_INET6 \
208 && tp->t_in6pcb->in6p_route.ro_rt) { \
209 nd6_nud_hint(tp->t_in6pcb->in6p_route.ro_rt, NULL); \
210 } \
211 } while (0)
212 #else
213 #define ND6_HINT(tp)
214 #endif
215
216 /*
217 * Macro to compute ACK transmission behavior. Delay the ACK unless
218 * we have already delayed an ACK (must send an ACK every two segments).
219 * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
220 * option is enabled.
221 */
222 #define TCP_SETUP_ACK(tp, th) \
223 do { \
224 if ((tp)->t_flags & TF_DELACK || \
225 (tcp_ack_on_push && (th)->th_flags & TH_PUSH)) \
226 tp->t_flags |= TF_ACKNOW; \
227 else \
228 TCP_SET_DELACK(tp); \
229 } while (0)
230
231 /*
232 * Convert TCP protocol fields to host order for easier processing.
233 */
234 #define TCP_FIELDS_TO_HOST(th) \
235 do { \
236 NTOHL((th)->th_seq); \
237 NTOHL((th)->th_ack); \
238 NTOHS((th)->th_win); \
239 NTOHS((th)->th_urp); \
240 } while (0)
241
242 int
243 tcp_reass(tp, th, m, tlen)
244 struct tcpcb *tp;
245 struct tcphdr *th;
246 struct mbuf *m;
247 int *tlen;
248 {
249 struct ipqent *p, *q, *nq, *tiqe = NULL;
250 struct socket *so = NULL;
251 int pkt_flags;
252 tcp_seq pkt_seq;
253 unsigned pkt_len;
254 u_long rcvpartdupbyte = 0;
255 u_long rcvoobyte;
256
257 if (tp->t_inpcb)
258 so = tp->t_inpcb->inp_socket;
259 #ifdef INET6
260 else if (tp->t_in6pcb)
261 so = tp->t_in6pcb->in6p_socket;
262 #endif
263
264 TCP_REASS_LOCK_CHECK(tp);
265
266 /*
267 * Call with th==0 after become established to
268 * force pre-ESTABLISHED data up to user socket.
269 */
270 if (th == 0)
271 goto present;
272
273 rcvoobyte = *tlen;
274 /*
275 * Copy these to local variables because the tcpiphdr
276 * gets munged while we are collapsing mbufs.
277 */
278 pkt_seq = th->th_seq;
279 pkt_len = *tlen;
280 pkt_flags = th->th_flags;
281 /*
282 * Find a segment which begins after this one does.
283 */
284 for (p = NULL, q = tp->segq.lh_first; q != NULL; q = nq) {
285 nq = q->ipqe_q.le_next;
286 /*
287 * If the received segment is just right after this
288 * fragment, merge the two together and then check
289 * for further overlaps.
290 */
291 if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
292 #ifdef TCPREASS_DEBUG
293 printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
294 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
295 q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
296 #endif
297 pkt_len += q->ipqe_len;
298 pkt_flags |= q->ipqe_flags;
299 pkt_seq = q->ipqe_seq;
300 m_cat(q->ipqe_m, m);
301 m = q->ipqe_m;
302 goto free_ipqe;
303 }
304 /*
305 * If the received segment is completely past this
306 * fragment, we need to go the next fragment.
307 */
308 if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
309 p = q;
310 continue;
311 }
312 /*
313 * If the fragment is past the received segment,
314 * it (or any following) can't be concatenated.
315 */
316 if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len))
317 break;
318 /*
319 * We've received all the data in this segment before.
320 * mark it as a duplicate and return.
321 */
322 if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
323 SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
324 tcpstat.tcps_rcvduppack++;
325 tcpstat.tcps_rcvdupbyte += pkt_len;
326 m_freem(m);
327 if (tiqe != NULL)
328 pool_put(&ipqent_pool, tiqe);
329 return (0);
330 }
331 /*
332 * Received segment completely overlaps this fragment
333 * so we drop the fragment (this keeps the temporal
334 * ordering of segments correct).
335 */
336 if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
337 SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
338 rcvpartdupbyte += q->ipqe_len;
339 m_freem(q->ipqe_m);
340 goto free_ipqe;
341 }
342 /*
343 * RX'ed segment extends past the end of the
344 * fragment. Drop the overlapping bytes. Then
345 * merge the fragment and segment then treat as
346 * a longer received packet.
347 */
348 if (SEQ_LT(q->ipqe_seq, pkt_seq)
349 && SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
350 int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
351 #ifdef TCPREASS_DEBUG
352 printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
353 tp, overlap,
354 pkt_seq, pkt_seq + pkt_len, pkt_len);
355 #endif
356 m_adj(m, overlap);
357 rcvpartdupbyte += overlap;
358 m_cat(q->ipqe_m, m);
359 m = q->ipqe_m;
360 pkt_seq = q->ipqe_seq;
361 pkt_len += q->ipqe_len - overlap;
362 rcvoobyte -= overlap;
363 goto free_ipqe;
364 }
365 /*
366 * RX'ed segment extends past the front of the
367 * fragment. Drop the overlapping bytes on the
368 * received packet. The packet will then be
369 * contatentated with this fragment a bit later.
370 */
371 if (SEQ_GT(q->ipqe_seq, pkt_seq)
372 && SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len)) {
373 int overlap = pkt_seq + pkt_len - q->ipqe_seq;
374 #ifdef TCPREASS_DEBUG
375 printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
376 tp, overlap,
377 pkt_seq, pkt_seq + pkt_len, pkt_len);
378 #endif
379 m_adj(m, -overlap);
380 pkt_len -= overlap;
381 rcvpartdupbyte += overlap;
382 rcvoobyte -= overlap;
383 }
384 /*
385 * If the received segment immediates precedes this
386 * fragment then tack the fragment onto this segment
387 * and reinsert the data.
388 */
389 if (q->ipqe_seq == pkt_seq + pkt_len) {
390 #ifdef TCPREASS_DEBUG
391 printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
392 tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
393 pkt_seq, pkt_seq + pkt_len, pkt_len);
394 #endif
395 pkt_len += q->ipqe_len;
396 pkt_flags |= q->ipqe_flags;
397 m_cat(m, q->ipqe_m);
398 LIST_REMOVE(q, ipqe_q);
399 LIST_REMOVE(q, ipqe_timeq);
400 if (tiqe == NULL) {
401 tiqe = q;
402 } else {
403 pool_put(&ipqent_pool, q);
404 }
405 break;
406 }
407 /*
408 * If the fragment is before the segment, remember it.
409 * When this loop is terminated, p will contain the
410 * pointer to fragment that is right before the received
411 * segment.
412 */
413 if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
414 p = q;
415
416 continue;
417
418 /*
419 * This is a common operation. It also will allow
420 * to save doing a malloc/free in most instances.
421 */
422 free_ipqe:
423 LIST_REMOVE(q, ipqe_q);
424 LIST_REMOVE(q, ipqe_timeq);
425 if (tiqe == NULL) {
426 tiqe = q;
427 } else {
428 pool_put(&ipqent_pool, q);
429 }
430 }
431
432 /*
433 * Allocate a new queue entry since the received segment did not
434 * collapse onto any other out-of-order block; thus we are allocating
435 * a new block. If it had collapsed, tiqe would not be NULL and
436 * we would be reusing it.
437 * XXX If we can't, just drop the packet. XXX
438 */
439 if (tiqe == NULL) {
440 tiqe = pool_get(&ipqent_pool, PR_NOWAIT);
441 if (tiqe == NULL) {
442 tcpstat.tcps_rcvmemdrop++;
443 m_freem(m);
444 return (0);
445 }
446 }
447
448 /*
449 * Update the counters.
450 */
451 tcpstat.tcps_rcvoopack++;
452 tcpstat.tcps_rcvoobyte += rcvoobyte;
453 if (rcvpartdupbyte) {
454 tcpstat.tcps_rcvpartduppack++;
455 tcpstat.tcps_rcvpartdupbyte += rcvpartdupbyte;
456 }
457
458 /*
459 * Insert the new fragment queue entry into both queues.
460 */
461 tiqe->ipqe_m = m;
462 tiqe->ipqe_seq = pkt_seq;
463 tiqe->ipqe_len = pkt_len;
464 tiqe->ipqe_flags = pkt_flags;
465 if (p == NULL) {
466 LIST_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
467 #ifdef TCPREASS_DEBUG
468 if (tiqe->ipqe_seq != tp->rcv_nxt)
469 printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
470 tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
471 #endif
472 } else {
473 LIST_INSERT_AFTER(p, tiqe, ipqe_q);
474 #ifdef TCPREASS_DEBUG
475 printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
476 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
477 p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
478 #endif
479 }
480
481 LIST_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
482
483 present:
484 /*
485 * Present data to user, advancing rcv_nxt through
486 * completed sequence space.
487 */
488 if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
489 return (0);
490 q = tp->segq.lh_first;
491 if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
492 return (0);
493 if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
494 return (0);
495
496 tp->rcv_nxt += q->ipqe_len;
497 pkt_flags = q->ipqe_flags & TH_FIN;
498 ND6_HINT(tp);
499
500 LIST_REMOVE(q, ipqe_q);
501 LIST_REMOVE(q, ipqe_timeq);
502 if (so->so_state & SS_CANTRCVMORE)
503 m_freem(q->ipqe_m);
504 else
505 sbappend(&so->so_rcv, q->ipqe_m);
506 pool_put(&ipqent_pool, q);
507 sorwakeup(so);
508 return (pkt_flags);
509 }
510
511 #if defined(INET6) && !defined(TCP6)
512 int
513 tcp6_input(mp, offp, proto)
514 struct mbuf **mp;
515 int *offp, proto;
516 {
517 struct mbuf *m = *mp;
518
519 #if defined(NFAITH) && 0 < NFAITH
520 if (m->m_pkthdr.rcvif) {
521 if (m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
522 /* XXX send icmp6 host/port unreach? */
523 m_freem(m);
524 return IPPROTO_DONE;
525 }
526 }
527 #endif
528
529 /*
530 * draft-itojun-ipv6-tcp-to-anycast
531 * better place to put this in?
532 */
533 if (m->m_flags & M_ANYCAST6) {
534 struct ip6_hdr *ip6;
535 if (m->m_len < sizeof(struct ip6_hdr)) {
536 if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
537 tcpstat.tcps_rcvshort++;
538 return IPPROTO_DONE;
539 }
540 }
541 ip6 = mtod(m, struct ip6_hdr *);
542 icmp6_error(m, ICMP6_DST_UNREACH,
543 ICMP6_DST_UNREACH_ADDR,
544 (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
545 return IPPROTO_DONE;
546 }
547
548 tcp_input(m, *offp, proto);
549 return IPPROTO_DONE;
550 }
551 #endif
552
553 /*
554 * TCP input routine, follows pages 65-76 of the
555 * protocol specification dated September, 1981 very closely.
556 */
557 void
558 #if __STDC__
559 tcp_input(struct mbuf *m, ...)
560 #else
561 tcp_input(m, va_alist)
562 struct mbuf *m;
563 #endif
564 {
565 int proto;
566 struct tcphdr *th;
567 struct ip *ip;
568 struct inpcb *inp;
569 #ifdef INET6
570 struct ip6_hdr *ip6;
571 struct in6pcb *in6p;
572 #endif
573 caddr_t optp = NULL;
574 int optlen = 0;
575 int len, tlen, toff, hdroptlen = 0;
576 struct tcpcb *tp = 0;
577 int tiflags;
578 struct socket *so = NULL;
579 int todrop, acked, ourfinisacked, needoutput = 0;
580 short ostate = 0;
581 int iss = 0;
582 u_long tiwin;
583 struct tcp_opt_info opti;
584 int off, iphlen;
585 va_list ap;
586 int af; /* af on the wire */
587 struct mbuf *tcp_saveti = NULL;
588
589 va_start(ap, m);
590 toff = va_arg(ap, int);
591 proto = va_arg(ap, int);
592 va_end(ap);
593
594 tcpstat.tcps_rcvtotal++;
595
596 bzero(&opti, sizeof(opti));
597 opti.ts_present = 0;
598 opti.maxseg = 0;
599
600 /*
601 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
602 *
603 * TCP is, by definition, unicast, so we reject all
604 * multicast outright.
605 *
606 * Note, there are additional src/dst address checks in
607 * the AF-specific code below.
608 */
609 if (m->m_flags & (M_BCAST|M_MCAST)) {
610 /* XXX stat */
611 goto drop;
612 }
613 #ifdef INET6
614 if (m->m_flags & M_ANYCAST6) {
615 /* XXX stat */
616 goto drop;
617 }
618 #endif
619
620 /*
621 * Get IP and TCP header together in first mbuf.
622 * Note: IP leaves IP header in first mbuf.
623 */
624 ip = mtod(m, struct ip *);
625 #ifdef INET6
626 ip6 = NULL;
627 #endif
628 switch (ip->ip_v) {
629 case 4:
630 af = AF_INET;
631 iphlen = sizeof(struct ip);
632 #ifndef PULLDOWN_TEST
633 /* would like to get rid of this... */
634 if (toff > sizeof (struct ip)) {
635 ip_stripoptions(m, (struct mbuf *)0);
636 toff = sizeof(struct ip);
637 }
638 if (m->m_len < toff + sizeof (struct tcphdr)) {
639 if ((m = m_pullup(m, toff + sizeof (struct tcphdr))) == 0) {
640 tcpstat.tcps_rcvshort++;
641 return;
642 }
643 }
644 ip = mtod(m, struct ip *);
645 th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
646 #else
647 ip = mtod(m, struct ip *);
648 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
649 sizeof(struct tcphdr));
650 if (th == NULL) {
651 tcpstat.tcps_rcvshort++;
652 return;
653 }
654 #endif
655
656 /*
657 * Make sure destination address is not multicast.
658 * Source address checked in ip_input().
659 */
660 if (IN_MULTICAST(ip->ip_dst.s_addr)) {
661 /* XXX stat */
662 goto drop;
663 }
664
665 /* We do the checksum after PCB lookup... */
666 len = ip->ip_len;
667 tlen = len - toff;
668 break;
669 #ifdef INET6
670 case 6:
671 ip = NULL;
672 iphlen = sizeof(struct ip6_hdr);
673 af = AF_INET6;
674 #ifndef PULLDOWN_TEST
675 if (m->m_len < toff + sizeof(struct tcphdr)) {
676 m = m_pullup(m, toff + sizeof(struct tcphdr)); /*XXX*/
677 if (m == NULL) {
678 tcpstat.tcps_rcvshort++;
679 return;
680 }
681 }
682 ip6 = mtod(m, struct ip6_hdr *);
683 th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
684 #else
685 ip6 = mtod(m, struct ip6_hdr *);
686 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
687 sizeof(struct tcphdr));
688 if (th == NULL) {
689 tcpstat.tcps_rcvshort++;
690 return;
691 }
692 #endif
693
694 /* Be proactive about malicious use of IPv4 mapped address */
695 if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
696 IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
697 /* XXX stat */
698 goto drop;
699 }
700
701 /*
702 * Make sure destination address is not multicast.
703 * Source address checked in ip6_input().
704 */
705 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
706 /* XXX stat */
707 goto drop;
708 }
709
710 /* We do the checksum after PCB lookup... */
711 len = m->m_pkthdr.len;
712 tlen = len - toff;
713 break;
714 #endif
715 default:
716 m_freem(m);
717 return;
718 }
719
720 /*
721 * Check that TCP offset makes sense,
722 * pull out TCP options and adjust length. XXX
723 */
724 off = th->th_off << 2;
725 if (off < sizeof (struct tcphdr) || off > tlen) {
726 tcpstat.tcps_rcvbadoff++;
727 goto drop;
728 }
729 tlen -= off;
730
731 /*
732 * tcp_input() has been modified to use tlen to mean the TCP data
733 * length throughout the function. Other functions can use
734 * m->m_pkthdr.len as the basis for calculating the TCP data length.
735 * rja
736 */
737
738 if (off > sizeof (struct tcphdr)) {
739 #ifndef PULLDOWN_TEST
740 if (m->m_len < toff + off) {
741 if ((m = m_pullup(m, toff + off)) == 0) {
742 tcpstat.tcps_rcvshort++;
743 return;
744 }
745 switch (af) {
746 case AF_INET:
747 ip = mtod(m, struct ip *);
748 break;
749 #ifdef INET6
750 case AF_INET6:
751 ip6 = mtod(m, struct ip6_hdr *);
752 break;
753 #endif
754 }
755 th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
756 }
757 #else
758 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
759 if (th == NULL) {
760 tcpstat.tcps_rcvshort++;
761 return;
762 }
763 /*
764 * NOTE: ip/ip6 will not be affected by m_pulldown()
765 * (as they're before toff) and we don't need to update those.
766 */
767 #endif
768 optlen = off - sizeof (struct tcphdr);
769 optp = ((caddr_t)th) + sizeof(struct tcphdr);
770 /*
771 * Do quick retrieval of timestamp options ("options
772 * prediction?"). If timestamp is the only option and it's
773 * formatted as recommended in RFC 1323 appendix A, we
774 * quickly get the values now and not bother calling
775 * tcp_dooptions(), etc.
776 */
777 if ((optlen == TCPOLEN_TSTAMP_APPA ||
778 (optlen > TCPOLEN_TSTAMP_APPA &&
779 optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
780 *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
781 (th->th_flags & TH_SYN) == 0) {
782 opti.ts_present = 1;
783 opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
784 opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
785 optp = NULL; /* we've parsed the options */
786 }
787 }
788 tiflags = th->th_flags;
789
790 /*
791 * Locate pcb for segment.
792 */
793 findpcb:
794 inp = NULL;
795 #ifdef INET6
796 in6p = NULL;
797 #endif
798 switch (af) {
799 case AF_INET:
800 inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
801 ip->ip_dst, th->th_dport);
802 if (inp == 0) {
803 ++tcpstat.tcps_pcbhashmiss;
804 inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
805 }
806 #if defined(INET6) && !defined(TCP6)
807 if (inp == 0) {
808 struct in6_addr s, d;
809
810 /* mapped addr case */
811 bzero(&s, sizeof(s));
812 s.s6_addr16[5] = htons(0xffff);
813 bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
814 bzero(&d, sizeof(d));
815 d.s6_addr16[5] = htons(0xffff);
816 bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
817 in6p = in6_pcblookup_connect(&tcb6, &s, th->th_sport,
818 &d, th->th_dport, 0);
819 if (in6p == 0) {
820 ++tcpstat.tcps_pcbhashmiss;
821 in6p = in6_pcblookup_bind(&tcb6, &d,
822 th->th_dport, 0);
823 }
824 }
825 #endif
826 #ifndef INET6
827 if (inp == 0)
828 #else
829 if (inp == 0 && in6p == 0)
830 #endif
831 {
832 ++tcpstat.tcps_noport;
833 if (tcp_log_refused && (tiflags & TH_SYN)) {
834 #ifndef INET6
835 char src[4*sizeof "123"];
836 char dst[4*sizeof "123"];
837 #else
838 char src[INET6_ADDRSTRLEN];
839 char dst[INET6_ADDRSTRLEN];
840 #endif
841 if (ip) {
842 strcpy(src, inet_ntoa(ip->ip_src));
843 strcpy(dst, inet_ntoa(ip->ip_dst));
844 }
845 #ifdef INET6
846 else if (ip6) {
847 strcpy(src, ip6_sprintf(&ip6->ip6_src));
848 strcpy(dst, ip6_sprintf(&ip6->ip6_dst));
849 }
850 #endif
851 else {
852 strcpy(src, "(unknown)");
853 strcpy(dst, "(unknown)");
854 }
855 log(LOG_INFO,
856 "Connection attempt to TCP %s:%d from %s:%d\n",
857 dst, ntohs(th->th_dport),
858 src, ntohs(th->th_sport));
859 }
860 TCP_FIELDS_TO_HOST(th);
861 goto dropwithreset_ratelim;
862 }
863 #ifdef IPSEC
864 if (inp && ipsec4_in_reject(m, inp)) {
865 ipsecstat.in_polvio++;
866 goto drop;
867 }
868 #ifdef INET6
869 else if (in6p && ipsec4_in_reject_so(m, in6p->in6p_socket)) {
870 ipsecstat.in_polvio++;
871 goto drop;
872 }
873 #endif
874 #endif /*IPSEC*/
875 break;
876 #if defined(INET6) && !defined(TCP6)
877 case AF_INET6:
878 {
879 int faith;
880
881 #if defined(NFAITH) && NFAITH > 0
882 if (m->m_pkthdr.rcvif
883 && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
884 faith = 1;
885 } else
886 faith = 0;
887 #else
888 faith = 0;
889 #endif
890 in6p = in6_pcblookup_connect(&tcb6, &ip6->ip6_src, th->th_sport,
891 &ip6->ip6_dst, th->th_dport, faith);
892 if (in6p == NULL) {
893 ++tcpstat.tcps_pcbhashmiss;
894 in6p = in6_pcblookup_bind(&tcb6, &ip6->ip6_dst,
895 th->th_dport, faith);
896 }
897 if (in6p == NULL) {
898 ++tcpstat.tcps_noport;
899 TCP_FIELDS_TO_HOST(th);
900 goto dropwithreset_ratelim;
901 }
902 #ifdef IPSEC
903 if (ipsec6_in_reject(m, in6p)) {
904 ipsec6stat.in_polvio++;
905 goto drop;
906 }
907 #endif /*IPSEC*/
908 break;
909 }
910 #endif
911 }
912
913 /*
914 * If the state is CLOSED (i.e., TCB does not exist) then
915 * all data in the incoming segment is discarded.
916 * If the TCB exists but is in CLOSED state, it is embryonic,
917 * but should either do a listen or a connect soon.
918 */
919 tp = NULL;
920 so = NULL;
921 if (inp) {
922 tp = intotcpcb(inp);
923 so = inp->inp_socket;
924 }
925 #ifdef INET6
926 else if (in6p) {
927 tp = in6totcpcb(in6p);
928 so = in6p->in6p_socket;
929 }
930 #endif
931 if (tp == 0) {
932 TCP_FIELDS_TO_HOST(th);
933 goto dropwithreset_ratelim;
934 }
935 if (tp->t_state == TCPS_CLOSED)
936 goto drop;
937
938 /*
939 * Checksum extended TCP header and data.
940 */
941 switch (af) {
942 case AF_INET:
943 #ifndef PULLDOWN_TEST
944 {
945 struct ipovly *ipov;
946 ipov = (struct ipovly *)ip;
947 bzero(ipov->ih_x1, sizeof ipov->ih_x1);
948 ipov->ih_len = htons(tlen + off);
949
950 if (in_cksum(m, len) != 0) {
951 tcpstat.tcps_rcvbadsum++;
952 goto drop;
953 }
954 }
955 #else
956 if (in4_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0) {
957 tcpstat.tcps_rcvbadsum++;
958 goto drop;
959 }
960 #endif
961 break;
962
963 #ifdef INET6
964 case AF_INET6:
965 if (in6_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0) {
966 tcpstat.tcps_rcvbadsum++;
967 goto drop;
968 }
969 break;
970 #endif
971 }
972
973 TCP_FIELDS_TO_HOST(th);
974
975 /* Unscale the window into a 32-bit value. */
976 if ((tiflags & TH_SYN) == 0)
977 tiwin = th->th_win << tp->snd_scale;
978 else
979 tiwin = th->th_win;
980
981 #ifdef INET6
982 /* save packet options if user wanted */
983 if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
984 if (in6p->in6p_options) {
985 m_freem(in6p->in6p_options);
986 in6p->in6p_options = 0;
987 }
988 ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
989 }
990 #endif
991
992 if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
993 union syn_cache_sa src;
994 union syn_cache_sa dst;
995
996 bzero(&src, sizeof(src));
997 bzero(&dst, sizeof(dst));
998 switch (af) {
999 case AF_INET:
1000 src.sin.sin_len = sizeof(struct sockaddr_in);
1001 src.sin.sin_family = AF_INET;
1002 src.sin.sin_addr = ip->ip_src;
1003 src.sin.sin_port = th->th_sport;
1004
1005 dst.sin.sin_len = sizeof(struct sockaddr_in);
1006 dst.sin.sin_family = AF_INET;
1007 dst.sin.sin_addr = ip->ip_dst;
1008 dst.sin.sin_port = th->th_dport;
1009 break;
1010 #ifdef INET6
1011 case AF_INET6:
1012 src.sin6.sin6_len = sizeof(struct sockaddr_in6);
1013 src.sin6.sin6_family = AF_INET6;
1014 src.sin6.sin6_addr = ip6->ip6_src;
1015 src.sin6.sin6_port = th->th_sport;
1016
1017 dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
1018 dst.sin6.sin6_family = AF_INET6;
1019 dst.sin6.sin6_addr = ip6->ip6_dst;
1020 dst.sin6.sin6_port = th->th_dport;
1021 break;
1022 #endif /* INET6 */
1023 default:
1024 goto badsyn; /*sanity*/
1025 }
1026
1027 if (so->so_options & SO_DEBUG) {
1028 ostate = tp->t_state;
1029
1030 tcp_saveti = NULL;
1031 if (iphlen + sizeof(struct tcphdr) > MHLEN)
1032 goto nosave;
1033
1034 if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
1035 tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
1036 if (!tcp_saveti)
1037 goto nosave;
1038 } else {
1039 MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
1040 if (!tcp_saveti)
1041 goto nosave;
1042 tcp_saveti->m_len = iphlen;
1043 m_copydata(m, 0, iphlen,
1044 mtod(tcp_saveti, caddr_t));
1045 }
1046
1047 if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
1048 m_freem(tcp_saveti);
1049 tcp_saveti = NULL;
1050 } else {
1051 tcp_saveti->m_len += sizeof(struct tcphdr);
1052 bcopy(th, mtod(tcp_saveti, caddr_t) + iphlen,
1053 sizeof(struct tcphdr));
1054 }
1055 if (tcp_saveti) {
1056 /*
1057 * need to recover version # field, which was
1058 * overwritten on ip_cksum computation.
1059 */
1060 struct ip *sip;
1061 sip = mtod(tcp_saveti, struct ip *);
1062 switch (af) {
1063 case AF_INET:
1064 sip->ip_v = 4;
1065 break;
1066 #ifdef INET6
1067 case AF_INET6:
1068 sip->ip_v = 6;
1069 break;
1070 #endif
1071 }
1072 }
1073 nosave:;
1074 }
1075 if (so->so_options & SO_ACCEPTCONN) {
1076 if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1077 if (tiflags & TH_RST) {
1078 syn_cache_reset(&src.sa, &dst.sa, th);
1079 } else if ((tiflags & (TH_ACK|TH_SYN)) ==
1080 (TH_ACK|TH_SYN)) {
1081 /*
1082 * Received a SYN,ACK. This should
1083 * never happen while we are in
1084 * LISTEN. Send an RST.
1085 */
1086 goto badsyn;
1087 } else if (tiflags & TH_ACK) {
1088 so = syn_cache_get(&src.sa, &dst.sa,
1089 th, toff, tlen, so, m);
1090 if (so == NULL) {
1091 /*
1092 * We don't have a SYN for
1093 * this ACK; send an RST.
1094 */
1095 goto badsyn;
1096 } else if (so ==
1097 (struct socket *)(-1)) {
1098 /*
1099 * We were unable to create
1100 * the connection. If the
1101 * 3-way handshake was
1102 * completed, and RST has
1103 * been sent to the peer.
1104 * Since the mbuf might be
1105 * in use for the reply,
1106 * do not free it.
1107 */
1108 m = NULL;
1109 } else {
1110 /*
1111 * We have created a
1112 * full-blown connection.
1113 */
1114 tp = NULL;
1115 inp = NULL;
1116 #ifdef INET6
1117 in6p = NULL;
1118 #endif
1119 switch (so->so_proto->pr_domain->dom_family) {
1120 case AF_INET:
1121 inp = sotoinpcb(so);
1122 tp = intotcpcb(inp);
1123 break;
1124 #ifdef INET6
1125 case AF_INET6:
1126 in6p = sotoin6pcb(so);
1127 tp = in6totcpcb(in6p);
1128 break;
1129 #endif
1130 }
1131 if (tp == NULL)
1132 goto badsyn; /*XXX*/
1133 tiwin <<= tp->snd_scale;
1134 goto after_listen;
1135 }
1136 } else {
1137 /*
1138 * None of RST, SYN or ACK was set.
1139 * This is an invalid packet for a
1140 * TCB in LISTEN state. Send a RST.
1141 */
1142 goto badsyn;
1143 }
1144 } else {
1145 /*
1146 * Received a SYN.
1147 */
1148
1149 /*
1150 * LISTEN socket received a SYN
1151 * from itself? This can't possibly
1152 * be valid; drop the packet.
1153 */
1154 if (th->th_sport == th->th_dport) {
1155 int i;
1156
1157 switch (af) {
1158 case AF_INET:
1159 i = in_hosteq(ip->ip_src, ip->ip_dst);
1160 break;
1161 #ifdef INET6
1162 case AF_INET6:
1163 i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
1164 break;
1165 #endif
1166 default:
1167 i = 1;
1168 }
1169 if (i) {
1170 tcpstat.tcps_badsyn++;
1171 goto drop;
1172 }
1173 }
1174
1175 /*
1176 * SYN looks ok; create compressed TCP
1177 * state for it.
1178 */
1179 if (so->so_qlen <= so->so_qlimit &&
1180 syn_cache_add(&src.sa, &dst.sa, th, tlen,
1181 so, m, optp, optlen, &opti))
1182 m = NULL;
1183 }
1184 goto drop;
1185 }
1186 }
1187
1188 after_listen:
1189 #ifdef DIAGNOSTIC
1190 /*
1191 * Should not happen now that all embryonic connections
1192 * are handled with compressed state.
1193 */
1194 if (tp->t_state == TCPS_LISTEN)
1195 panic("tcp_input: TCPS_LISTEN");
1196 #endif
1197
1198 /*
1199 * Segment received on connection.
1200 * Reset idle time and keep-alive timer.
1201 */
1202 tp->t_idle = 0;
1203 if (TCPS_HAVEESTABLISHED(tp->t_state))
1204 TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1205
1206 /*
1207 * Process options.
1208 */
1209 if (optp)
1210 tcp_dooptions(tp, optp, optlen, th, &opti);
1211
1212 /*
1213 * Header prediction: check for the two common cases
1214 * of a uni-directional data xfer. If the packet has
1215 * no control flags, is in-sequence, the window didn't
1216 * change and we're not retransmitting, it's a
1217 * candidate. If the length is zero and the ack moved
1218 * forward, we're the sender side of the xfer. Just
1219 * free the data acked & wake any higher level process
1220 * that was blocked waiting for space. If the length
1221 * is non-zero and the ack didn't move, we're the
1222 * receiver side. If we're getting packets in-order
1223 * (the reassembly queue is empty), add the data to
1224 * the socket buffer and note that we need a delayed ack.
1225 */
1226 if (tp->t_state == TCPS_ESTABLISHED &&
1227 (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1228 (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
1229 th->th_seq == tp->rcv_nxt &&
1230 tiwin && tiwin == tp->snd_wnd &&
1231 tp->snd_nxt == tp->snd_max) {
1232
1233 /*
1234 * If last ACK falls within this segment's sequence numbers,
1235 * record the timestamp.
1236 */
1237 if (opti.ts_present &&
1238 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1239 SEQ_LT(tp->last_ack_sent, th->th_seq + tlen)) {
1240 tp->ts_recent_age = tcp_now;
1241 tp->ts_recent = opti.ts_val;
1242 }
1243
1244 if (tlen == 0) {
1245 if (SEQ_GT(th->th_ack, tp->snd_una) &&
1246 SEQ_LEQ(th->th_ack, tp->snd_max) &&
1247 tp->snd_cwnd >= tp->snd_wnd &&
1248 tp->t_dupacks < tcprexmtthresh) {
1249 /*
1250 * this is a pure ack for outstanding data.
1251 */
1252 ++tcpstat.tcps_predack;
1253 if (opti.ts_present && opti.ts_ecr)
1254 tcp_xmit_timer(tp,
1255 tcp_now - opti.ts_ecr + 1);
1256 else if (tp->t_rtt &&
1257 SEQ_GT(th->th_ack, tp->t_rtseq))
1258 tcp_xmit_timer(tp, tp->t_rtt);
1259 acked = th->th_ack - tp->snd_una;
1260 tcpstat.tcps_rcvackpack++;
1261 tcpstat.tcps_rcvackbyte += acked;
1262 ND6_HINT(tp);
1263 sbdrop(&so->so_snd, acked);
1264 /*
1265 * We want snd_recover to track snd_una to
1266 * avoid sequence wraparound problems for
1267 * very large transfers.
1268 */
1269 tp->snd_una = tp->snd_recover = th->th_ack;
1270 m_freem(m);
1271
1272 /*
1273 * If all outstanding data are acked, stop
1274 * retransmit timer, otherwise restart timer
1275 * using current (possibly backed-off) value.
1276 * If process is waiting for space,
1277 * wakeup/selwakeup/signal. If data
1278 * are ready to send, let tcp_output
1279 * decide between more output or persist.
1280 */
1281 if (tp->snd_una == tp->snd_max)
1282 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1283 else if (TCP_TIMER_ISARMED(tp,
1284 TCPT_PERSIST) == 0)
1285 TCP_TIMER_ARM(tp, TCPT_REXMT,
1286 tp->t_rxtcur);
1287
1288 sowwakeup(so);
1289 if (so->so_snd.sb_cc)
1290 (void) tcp_output(tp);
1291 if (tcp_saveti)
1292 m_freem(tcp_saveti);
1293 return;
1294 }
1295 } else if (th->th_ack == tp->snd_una &&
1296 tp->segq.lh_first == NULL &&
1297 tlen <= sbspace(&so->so_rcv)) {
1298 /*
1299 * this is a pure, in-sequence data packet
1300 * with nothing on the reassembly queue and
1301 * we have enough buffer space to take it.
1302 */
1303 ++tcpstat.tcps_preddat;
1304 tp->rcv_nxt += tlen;
1305 tcpstat.tcps_rcvpack++;
1306 tcpstat.tcps_rcvbyte += tlen;
1307 ND6_HINT(tp);
1308 /*
1309 * Drop TCP, IP headers and TCP options then add data
1310 * to socket buffer.
1311 */
1312 m_adj(m, toff + off);
1313 sbappend(&so->so_rcv, m);
1314 sorwakeup(so);
1315 TCP_SETUP_ACK(tp, th);
1316 if (tp->t_flags & TF_ACKNOW)
1317 (void) tcp_output(tp);
1318 if (tcp_saveti)
1319 m_freem(tcp_saveti);
1320 return;
1321 }
1322 }
1323
1324 /*
1325 * Compute mbuf offset to TCP data segment.
1326 */
1327 hdroptlen = toff + off;
1328
1329 /*
1330 * Calculate amount of space in receive window,
1331 * and then do TCP input processing.
1332 * Receive window is amount of space in rcv queue,
1333 * but not less than advertised window.
1334 */
1335 { int win;
1336
1337 win = sbspace(&so->so_rcv);
1338 if (win < 0)
1339 win = 0;
1340 tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1341 }
1342
1343 switch (tp->t_state) {
1344
1345 /*
1346 * If the state is SYN_SENT:
1347 * if seg contains an ACK, but not for our SYN, drop the input.
1348 * if seg contains a RST, then drop the connection.
1349 * if seg does not contain SYN, then drop it.
1350 * Otherwise this is an acceptable SYN segment
1351 * initialize tp->rcv_nxt and tp->irs
1352 * if seg contains ack then advance tp->snd_una
1353 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1354 * arrange for segment to be acked (eventually)
1355 * continue processing rest of data/controls, beginning with URG
1356 */
1357 case TCPS_SYN_SENT:
1358 if ((tiflags & TH_ACK) &&
1359 (SEQ_LEQ(th->th_ack, tp->iss) ||
1360 SEQ_GT(th->th_ack, tp->snd_max)))
1361 goto dropwithreset;
1362 if (tiflags & TH_RST) {
1363 if (tiflags & TH_ACK)
1364 tp = tcp_drop(tp, ECONNREFUSED);
1365 goto drop;
1366 }
1367 if ((tiflags & TH_SYN) == 0)
1368 goto drop;
1369 if (tiflags & TH_ACK) {
1370 tp->snd_una = tp->snd_recover = th->th_ack;
1371 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1372 tp->snd_nxt = tp->snd_una;
1373 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1374 }
1375 tp->irs = th->th_seq;
1376 tcp_rcvseqinit(tp);
1377 tp->t_flags |= TF_ACKNOW;
1378 tcp_mss_from_peer(tp, opti.maxseg);
1379
1380 /*
1381 * Initialize the initial congestion window. If we
1382 * had to retransmit the SYN, we must initialize cwnd
1383 * to 1 segment (i.e. the Loss Window).
1384 */
1385 if (tp->t_flags & TF_SYN_REXMT)
1386 tp->snd_cwnd = tp->t_peermss;
1387 else
1388 tp->snd_cwnd = TCP_INITIAL_WINDOW(tcp_init_win,
1389 tp->t_peermss);
1390
1391 tcp_rmx_rtt(tp);
1392 if (tiflags & TH_ACK) {
1393 tcpstat.tcps_connects++;
1394 soisconnected(so);
1395 tcp_established(tp);
1396 /* Do window scaling on this connection? */
1397 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1398 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1399 tp->snd_scale = tp->requested_s_scale;
1400 tp->rcv_scale = tp->request_r_scale;
1401 }
1402 TCP_REASS_LOCK(tp);
1403 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1404 TCP_REASS_UNLOCK(tp);
1405 /*
1406 * if we didn't have to retransmit the SYN,
1407 * use its rtt as our initial srtt & rtt var.
1408 */
1409 if (tp->t_rtt)
1410 tcp_xmit_timer(tp, tp->t_rtt);
1411 } else
1412 tp->t_state = TCPS_SYN_RECEIVED;
1413
1414 /*
1415 * Advance th->th_seq to correspond to first data byte.
1416 * If data, trim to stay within window,
1417 * dropping FIN if necessary.
1418 */
1419 th->th_seq++;
1420 if (tlen > tp->rcv_wnd) {
1421 todrop = tlen - tp->rcv_wnd;
1422 m_adj(m, -todrop);
1423 tlen = tp->rcv_wnd;
1424 tiflags &= ~TH_FIN;
1425 tcpstat.tcps_rcvpackafterwin++;
1426 tcpstat.tcps_rcvbyteafterwin += todrop;
1427 }
1428 tp->snd_wl1 = th->th_seq - 1;
1429 tp->rcv_up = th->th_seq;
1430 goto step6;
1431
1432 /*
1433 * If the state is SYN_RECEIVED:
1434 * If seg contains an ACK, but not for our SYN, drop the input
1435 * and generate an RST. See page 36, rfc793
1436 */
1437 case TCPS_SYN_RECEIVED:
1438 if ((tiflags & TH_ACK) &&
1439 (SEQ_LEQ(th->th_ack, tp->iss) ||
1440 SEQ_GT(th->th_ack, tp->snd_max)))
1441 goto dropwithreset;
1442 break;
1443 }
1444
1445 /*
1446 * States other than LISTEN or SYN_SENT.
1447 * First check timestamp, if present.
1448 * Then check that at least some bytes of segment are within
1449 * receive window. If segment begins before rcv_nxt,
1450 * drop leading data (and SYN); if nothing left, just ack.
1451 *
1452 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1453 * and it's less than ts_recent, drop it.
1454 */
1455 if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
1456 TSTMP_LT(opti.ts_val, tp->ts_recent)) {
1457
1458 /* Check to see if ts_recent is over 24 days old. */
1459 if ((int)(tcp_now - tp->ts_recent_age) > TCP_PAWS_IDLE) {
1460 /*
1461 * Invalidate ts_recent. If this segment updates
1462 * ts_recent, the age will be reset later and ts_recent
1463 * will get a valid value. If it does not, setting
1464 * ts_recent to zero will at least satisfy the
1465 * requirement that zero be placed in the timestamp
1466 * echo reply when ts_recent isn't valid. The
1467 * age isn't reset until we get a valid ts_recent
1468 * because we don't want out-of-order segments to be
1469 * dropped when ts_recent is old.
1470 */
1471 tp->ts_recent = 0;
1472 } else {
1473 tcpstat.tcps_rcvduppack++;
1474 tcpstat.tcps_rcvdupbyte += tlen;
1475 tcpstat.tcps_pawsdrop++;
1476 goto dropafterack;
1477 }
1478 }
1479
1480 todrop = tp->rcv_nxt - th->th_seq;
1481 if (todrop > 0) {
1482 if (tiflags & TH_SYN) {
1483 tiflags &= ~TH_SYN;
1484 th->th_seq++;
1485 if (th->th_urp > 1)
1486 th->th_urp--;
1487 else {
1488 tiflags &= ~TH_URG;
1489 th->th_urp = 0;
1490 }
1491 todrop--;
1492 }
1493 if (todrop > tlen ||
1494 (todrop == tlen && (tiflags & TH_FIN) == 0)) {
1495 /*
1496 * Any valid FIN must be to the left of the window.
1497 * At this point the FIN must be a duplicate or
1498 * out of sequence; drop it.
1499 */
1500 tiflags &= ~TH_FIN;
1501 /*
1502 * Send an ACK to resynchronize and drop any data.
1503 * But keep on processing for RST or ACK.
1504 */
1505 tp->t_flags |= TF_ACKNOW;
1506 todrop = tlen;
1507 tcpstat.tcps_rcvdupbyte += todrop;
1508 tcpstat.tcps_rcvduppack++;
1509 } else {
1510 tcpstat.tcps_rcvpartduppack++;
1511 tcpstat.tcps_rcvpartdupbyte += todrop;
1512 }
1513 hdroptlen += todrop; /*drop from head afterwards*/
1514 th->th_seq += todrop;
1515 tlen -= todrop;
1516 if (th->th_urp > todrop)
1517 th->th_urp -= todrop;
1518 else {
1519 tiflags &= ~TH_URG;
1520 th->th_urp = 0;
1521 }
1522 }
1523
1524 /*
1525 * If new data are received on a connection after the
1526 * user processes are gone, then RST the other end.
1527 */
1528 if ((so->so_state & SS_NOFDREF) &&
1529 tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1530 tp = tcp_close(tp);
1531 tcpstat.tcps_rcvafterclose++;
1532 goto dropwithreset;
1533 }
1534
1535 /*
1536 * If segment ends after window, drop trailing data
1537 * (and PUSH and FIN); if nothing left, just ACK.
1538 */
1539 todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
1540 if (todrop > 0) {
1541 tcpstat.tcps_rcvpackafterwin++;
1542 if (todrop >= tlen) {
1543 tcpstat.tcps_rcvbyteafterwin += tlen;
1544 /*
1545 * If a new connection request is received
1546 * while in TIME_WAIT, drop the old connection
1547 * and start over if the sequence numbers
1548 * are above the previous ones.
1549 */
1550 if (tiflags & TH_SYN &&
1551 tp->t_state == TCPS_TIME_WAIT &&
1552 SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1553 iss = tcp_new_iss(tp, sizeof(struct tcpcb),
1554 tp->snd_nxt);
1555 tp = tcp_close(tp);
1556 goto findpcb;
1557 }
1558 /*
1559 * If window is closed can only take segments at
1560 * window edge, and have to drop data and PUSH from
1561 * incoming segments. Continue processing, but
1562 * remember to ack. Otherwise, drop segment
1563 * and ack.
1564 */
1565 if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1566 tp->t_flags |= TF_ACKNOW;
1567 tcpstat.tcps_rcvwinprobe++;
1568 } else
1569 goto dropafterack;
1570 } else
1571 tcpstat.tcps_rcvbyteafterwin += todrop;
1572 m_adj(m, -todrop);
1573 tlen -= todrop;
1574 tiflags &= ~(TH_PUSH|TH_FIN);
1575 }
1576
1577 /*
1578 * If last ACK falls within this segment's sequence numbers,
1579 * and the timestamp is newer, record it.
1580 */
1581 if (opti.ts_present && TSTMP_GEQ(opti.ts_val, tp->ts_recent) &&
1582 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1583 SEQ_LT(tp->last_ack_sent, th->th_seq + tlen +
1584 ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
1585 tp->ts_recent_age = tcp_now;
1586 tp->ts_recent = opti.ts_val;
1587 }
1588
1589 /*
1590 * If the RST bit is set examine the state:
1591 * SYN_RECEIVED STATE:
1592 * If passive open, return to LISTEN state.
1593 * If active open, inform user that connection was refused.
1594 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
1595 * Inform user that connection was reset, and close tcb.
1596 * CLOSING, LAST_ACK, TIME_WAIT STATES
1597 * Close the tcb.
1598 */
1599 if (tiflags&TH_RST) switch (tp->t_state) {
1600
1601 case TCPS_SYN_RECEIVED:
1602 so->so_error = ECONNREFUSED;
1603 goto close;
1604
1605 case TCPS_ESTABLISHED:
1606 case TCPS_FIN_WAIT_1:
1607 case TCPS_FIN_WAIT_2:
1608 case TCPS_CLOSE_WAIT:
1609 so->so_error = ECONNRESET;
1610 close:
1611 tp->t_state = TCPS_CLOSED;
1612 tcpstat.tcps_drops++;
1613 tp = tcp_close(tp);
1614 goto drop;
1615
1616 case TCPS_CLOSING:
1617 case TCPS_LAST_ACK:
1618 case TCPS_TIME_WAIT:
1619 tp = tcp_close(tp);
1620 goto drop;
1621 }
1622
1623 /*
1624 * If a SYN is in the window, then this is an
1625 * error and we send an RST and drop the connection.
1626 */
1627 if (tiflags & TH_SYN) {
1628 tp = tcp_drop(tp, ECONNRESET);
1629 goto dropwithreset;
1630 }
1631
1632 /*
1633 * If the ACK bit is off we drop the segment and return.
1634 */
1635 if ((tiflags & TH_ACK) == 0) {
1636 if (tp->t_flags & TF_ACKNOW)
1637 goto dropafterack;
1638 else
1639 goto drop;
1640 }
1641
1642 /*
1643 * Ack processing.
1644 */
1645 switch (tp->t_state) {
1646
1647 /*
1648 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
1649 * ESTABLISHED state and continue processing, otherwise
1650 * send an RST.
1651 */
1652 case TCPS_SYN_RECEIVED:
1653 if (SEQ_GT(tp->snd_una, th->th_ack) ||
1654 SEQ_GT(th->th_ack, tp->snd_max))
1655 goto dropwithreset;
1656 tcpstat.tcps_connects++;
1657 soisconnected(so);
1658 tcp_established(tp);
1659 /* Do window scaling? */
1660 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1661 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1662 tp->snd_scale = tp->requested_s_scale;
1663 tp->rcv_scale = tp->request_r_scale;
1664 }
1665 TCP_REASS_LOCK(tp);
1666 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1667 TCP_REASS_UNLOCK(tp);
1668 tp->snd_wl1 = th->th_seq - 1;
1669 /* fall into ... */
1670
1671 /*
1672 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1673 * ACKs. If the ack is in the range
1674 * tp->snd_una < th->th_ack <= tp->snd_max
1675 * then advance tp->snd_una to th->th_ack and drop
1676 * data from the retransmission queue. If this ACK reflects
1677 * more up to date window information we update our window information.
1678 */
1679 case TCPS_ESTABLISHED:
1680 case TCPS_FIN_WAIT_1:
1681 case TCPS_FIN_WAIT_2:
1682 case TCPS_CLOSE_WAIT:
1683 case TCPS_CLOSING:
1684 case TCPS_LAST_ACK:
1685 case TCPS_TIME_WAIT:
1686
1687 if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
1688 if (tlen == 0 && tiwin == tp->snd_wnd) {
1689 tcpstat.tcps_rcvdupack++;
1690 /*
1691 * If we have outstanding data (other than
1692 * a window probe), this is a completely
1693 * duplicate ack (ie, window info didn't
1694 * change), the ack is the biggest we've
1695 * seen and we've seen exactly our rexmt
1696 * threshhold of them, assume a packet
1697 * has been dropped and retransmit it.
1698 * Kludge snd_nxt & the congestion
1699 * window so we send only this one
1700 * packet.
1701 *
1702 * We know we're losing at the current
1703 * window size so do congestion avoidance
1704 * (set ssthresh to half the current window
1705 * and pull our congestion window back to
1706 * the new ssthresh).
1707 *
1708 * Dup acks mean that packets have left the
1709 * network (they're now cached at the receiver)
1710 * so bump cwnd by the amount in the receiver
1711 * to keep a constant cwnd packets in the
1712 * network.
1713 */
1714 if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
1715 th->th_ack != tp->snd_una)
1716 tp->t_dupacks = 0;
1717 else if (++tp->t_dupacks == tcprexmtthresh) {
1718 tcp_seq onxt = tp->snd_nxt;
1719 u_int win =
1720 min(tp->snd_wnd, tp->snd_cwnd) /
1721 2 / tp->t_segsz;
1722 if (tcp_do_newreno && SEQ_LT(th->th_ack,
1723 tp->snd_recover)) {
1724 /*
1725 * False fast retransmit after
1726 * timeout. Do not cut window.
1727 */
1728 tp->snd_cwnd += tp->t_segsz;
1729 tp->t_dupacks = 0;
1730 (void) tcp_output(tp);
1731 goto drop;
1732 }
1733
1734 if (win < 2)
1735 win = 2;
1736 tp->snd_ssthresh = win * tp->t_segsz;
1737 tp->snd_recover = tp->snd_max;
1738 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1739 tp->t_rtt = 0;
1740 tp->snd_nxt = th->th_ack;
1741 tp->snd_cwnd = tp->t_segsz;
1742 (void) tcp_output(tp);
1743 tp->snd_cwnd = tp->snd_ssthresh +
1744 tp->t_segsz * tp->t_dupacks;
1745 if (SEQ_GT(onxt, tp->snd_nxt))
1746 tp->snd_nxt = onxt;
1747 goto drop;
1748 } else if (tp->t_dupacks > tcprexmtthresh) {
1749 tp->snd_cwnd += tp->t_segsz;
1750 (void) tcp_output(tp);
1751 goto drop;
1752 }
1753 } else
1754 tp->t_dupacks = 0;
1755 break;
1756 }
1757 /*
1758 * If the congestion window was inflated to account
1759 * for the other side's cached packets, retract it.
1760 */
1761 if (tcp_do_newreno == 0) {
1762 if (tp->t_dupacks >= tcprexmtthresh &&
1763 tp->snd_cwnd > tp->snd_ssthresh)
1764 tp->snd_cwnd = tp->snd_ssthresh;
1765 tp->t_dupacks = 0;
1766 } else if (tp->t_dupacks >= tcprexmtthresh &&
1767 tcp_newreno(tp, th) == 0) {
1768 tp->snd_cwnd = tp->snd_ssthresh;
1769 /*
1770 * Window inflation should have left us with approx.
1771 * snd_ssthresh outstanding data. But in case we
1772 * would be inclined to send a burst, better to do
1773 * it via the slow start mechanism.
1774 */
1775 if (SEQ_SUB(tp->snd_max, th->th_ack) < tp->snd_ssthresh)
1776 tp->snd_cwnd = SEQ_SUB(tp->snd_max, th->th_ack)
1777 + tp->t_segsz;
1778 tp->t_dupacks = 0;
1779 }
1780 if (SEQ_GT(th->th_ack, tp->snd_max)) {
1781 tcpstat.tcps_rcvacktoomuch++;
1782 goto dropafterack;
1783 }
1784 acked = th->th_ack - tp->snd_una;
1785 tcpstat.tcps_rcvackpack++;
1786 tcpstat.tcps_rcvackbyte += acked;
1787
1788 /*
1789 * If we have a timestamp reply, update smoothed
1790 * round trip time. If no timestamp is present but
1791 * transmit timer is running and timed sequence
1792 * number was acked, update smoothed round trip time.
1793 * Since we now have an rtt measurement, cancel the
1794 * timer backoff (cf., Phil Karn's retransmit alg.).
1795 * Recompute the initial retransmit timer.
1796 */
1797 if (opti.ts_present && opti.ts_ecr)
1798 tcp_xmit_timer(tp, tcp_now - opti.ts_ecr + 1);
1799 else if (tp->t_rtt && SEQ_GT(th->th_ack, tp->t_rtseq))
1800 tcp_xmit_timer(tp,tp->t_rtt);
1801
1802 /*
1803 * If all outstanding data is acked, stop retransmit
1804 * timer and remember to restart (more output or persist).
1805 * If there is more data to be acked, restart retransmit
1806 * timer, using current (possibly backed-off) value.
1807 */
1808 if (th->th_ack == tp->snd_max) {
1809 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1810 needoutput = 1;
1811 } else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
1812 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
1813 /*
1814 * When new data is acked, open the congestion window.
1815 * If the window gives us less than ssthresh packets
1816 * in flight, open exponentially (segsz per packet).
1817 * Otherwise open linearly: segsz per window
1818 * (segsz^2 / cwnd per packet), plus a constant
1819 * fraction of a packet (segsz/8) to help larger windows
1820 * open quickly enough.
1821 */
1822 {
1823 u_int cw = tp->snd_cwnd;
1824 u_int incr = tp->t_segsz;
1825
1826 if (cw > tp->snd_ssthresh)
1827 incr = incr * incr / cw;
1828 if (tcp_do_newreno == 0 || SEQ_GEQ(th->th_ack, tp->snd_recover))
1829 tp->snd_cwnd = min(cw + incr,
1830 TCP_MAXWIN << tp->snd_scale);
1831 }
1832 ND6_HINT(tp);
1833 if (acked > so->so_snd.sb_cc) {
1834 tp->snd_wnd -= so->so_snd.sb_cc;
1835 sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
1836 ourfinisacked = 1;
1837 } else {
1838 sbdrop(&so->so_snd, acked);
1839 tp->snd_wnd -= acked;
1840 ourfinisacked = 0;
1841 }
1842 sowwakeup(so);
1843 /*
1844 * We want snd_recover to track snd_una to
1845 * avoid sequence wraparound problems for
1846 * very large transfers.
1847 */
1848 tp->snd_una = tp->snd_recover = th->th_ack;
1849 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1850 tp->snd_nxt = tp->snd_una;
1851
1852 switch (tp->t_state) {
1853
1854 /*
1855 * In FIN_WAIT_1 STATE in addition to the processing
1856 * for the ESTABLISHED state if our FIN is now acknowledged
1857 * then enter FIN_WAIT_2.
1858 */
1859 case TCPS_FIN_WAIT_1:
1860 if (ourfinisacked) {
1861 /*
1862 * If we can't receive any more
1863 * data, then closing user can proceed.
1864 * Starting the timer is contrary to the
1865 * specification, but if we don't get a FIN
1866 * we'll hang forever.
1867 */
1868 if (so->so_state & SS_CANTRCVMORE) {
1869 soisdisconnected(so);
1870 if (tcp_maxidle > 0)
1871 TCP_TIMER_ARM(tp, TCPT_2MSL,
1872 tcp_maxidle);
1873 }
1874 tp->t_state = TCPS_FIN_WAIT_2;
1875 }
1876 break;
1877
1878 /*
1879 * In CLOSING STATE in addition to the processing for
1880 * the ESTABLISHED state if the ACK acknowledges our FIN
1881 * then enter the TIME-WAIT state, otherwise ignore
1882 * the segment.
1883 */
1884 case TCPS_CLOSING:
1885 if (ourfinisacked) {
1886 tp->t_state = TCPS_TIME_WAIT;
1887 tcp_canceltimers(tp);
1888 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
1889 soisdisconnected(so);
1890 }
1891 break;
1892
1893 /*
1894 * In LAST_ACK, we may still be waiting for data to drain
1895 * and/or to be acked, as well as for the ack of our FIN.
1896 * If our FIN is now acknowledged, delete the TCB,
1897 * enter the closed state and return.
1898 */
1899 case TCPS_LAST_ACK:
1900 if (ourfinisacked) {
1901 tp = tcp_close(tp);
1902 goto drop;
1903 }
1904 break;
1905
1906 /*
1907 * In TIME_WAIT state the only thing that should arrive
1908 * is a retransmission of the remote FIN. Acknowledge
1909 * it and restart the finack timer.
1910 */
1911 case TCPS_TIME_WAIT:
1912 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
1913 goto dropafterack;
1914 }
1915 }
1916
1917 step6:
1918 /*
1919 * Update window information.
1920 * Don't look at window if no ACK: TAC's send garbage on first SYN.
1921 */
1922 if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
1923 (tp->snd_wl1 == th->th_seq && SEQ_LT(tp->snd_wl2, th->th_ack)) ||
1924 (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))) {
1925 /* keep track of pure window updates */
1926 if (tlen == 0 &&
1927 tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
1928 tcpstat.tcps_rcvwinupd++;
1929 tp->snd_wnd = tiwin;
1930 tp->snd_wl1 = th->th_seq;
1931 tp->snd_wl2 = th->th_ack;
1932 if (tp->snd_wnd > tp->max_sndwnd)
1933 tp->max_sndwnd = tp->snd_wnd;
1934 needoutput = 1;
1935 }
1936
1937 /*
1938 * Process segments with URG.
1939 */
1940 if ((tiflags & TH_URG) && th->th_urp &&
1941 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1942 /*
1943 * This is a kludge, but if we receive and accept
1944 * random urgent pointers, we'll crash in
1945 * soreceive. It's hard to imagine someone
1946 * actually wanting to send this much urgent data.
1947 */
1948 if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
1949 th->th_urp = 0; /* XXX */
1950 tiflags &= ~TH_URG; /* XXX */
1951 goto dodata; /* XXX */
1952 }
1953 /*
1954 * If this segment advances the known urgent pointer,
1955 * then mark the data stream. This should not happen
1956 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
1957 * a FIN has been received from the remote side.
1958 * In these states we ignore the URG.
1959 *
1960 * According to RFC961 (Assigned Protocols),
1961 * the urgent pointer points to the last octet
1962 * of urgent data. We continue, however,
1963 * to consider it to indicate the first octet
1964 * of data past the urgent section as the original
1965 * spec states (in one of two places).
1966 */
1967 if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
1968 tp->rcv_up = th->th_seq + th->th_urp;
1969 so->so_oobmark = so->so_rcv.sb_cc +
1970 (tp->rcv_up - tp->rcv_nxt) - 1;
1971 if (so->so_oobmark == 0)
1972 so->so_state |= SS_RCVATMARK;
1973 sohasoutofband(so);
1974 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
1975 }
1976 /*
1977 * Remove out of band data so doesn't get presented to user.
1978 * This can happen independent of advancing the URG pointer,
1979 * but if two URG's are pending at once, some out-of-band
1980 * data may creep in... ick.
1981 */
1982 if (th->th_urp <= (u_int16_t) tlen
1983 #ifdef SO_OOBINLINE
1984 && (so->so_options & SO_OOBINLINE) == 0
1985 #endif
1986 )
1987 tcp_pulloutofband(so, th, m, hdroptlen);
1988 } else
1989 /*
1990 * If no out of band data is expected,
1991 * pull receive urgent pointer along
1992 * with the receive window.
1993 */
1994 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
1995 tp->rcv_up = tp->rcv_nxt;
1996 dodata: /* XXX */
1997
1998 /*
1999 * Process the segment text, merging it into the TCP sequencing queue,
2000 * and arranging for acknowledgement of receipt if necessary.
2001 * This process logically involves adjusting tp->rcv_wnd as data
2002 * is presented to the user (this happens in tcp_usrreq.c,
2003 * case PRU_RCVD). If a FIN has already been received on this
2004 * connection then we just ignore the text.
2005 */
2006 if ((tlen || (tiflags & TH_FIN)) &&
2007 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2008 /*
2009 * Insert segment ti into reassembly queue of tcp with
2010 * control block tp. Return TH_FIN if reassembly now includes
2011 * a segment with FIN. The macro form does the common case
2012 * inline (segment is the next to be received on an
2013 * established connection, and the queue is empty),
2014 * avoiding linkage into and removal from the queue and
2015 * repetition of various conversions.
2016 * Set DELACK for segments received in order, but ack
2017 * immediately when segments are out of order
2018 * (so fast retransmit can work).
2019 */
2020 /* NOTE: this was TCP_REASS() macro, but used only once */
2021 TCP_REASS_LOCK(tp);
2022 if (th->th_seq == tp->rcv_nxt &&
2023 tp->segq.lh_first == NULL &&
2024 tp->t_state == TCPS_ESTABLISHED) {
2025 TCP_SETUP_ACK(tp, th);
2026 tp->rcv_nxt += tlen;
2027 tiflags = th->th_flags & TH_FIN;
2028 tcpstat.tcps_rcvpack++;
2029 tcpstat.tcps_rcvbyte += tlen;
2030 ND6_HINT(tp);
2031 m_adj(m, hdroptlen);
2032 sbappend(&(so)->so_rcv, m);
2033 sorwakeup(so);
2034 } else {
2035 m_adj(m, hdroptlen);
2036 tiflags = tcp_reass(tp, th, m, &tlen);
2037 tp->t_flags |= TF_ACKNOW;
2038 }
2039 TCP_REASS_UNLOCK(tp);
2040
2041 /*
2042 * Note the amount of data that peer has sent into
2043 * our window, in order to estimate the sender's
2044 * buffer size.
2045 */
2046 len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2047 } else {
2048 m_freem(m);
2049 m = NULL;
2050 tiflags &= ~TH_FIN;
2051 }
2052
2053 /*
2054 * If FIN is received ACK the FIN and let the user know
2055 * that the connection is closing. Ignore a FIN received before
2056 * the connection is fully established.
2057 */
2058 if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2059 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2060 socantrcvmore(so);
2061 tp->t_flags |= TF_ACKNOW;
2062 tp->rcv_nxt++;
2063 }
2064 switch (tp->t_state) {
2065
2066 /*
2067 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2068 */
2069 case TCPS_ESTABLISHED:
2070 tp->t_state = TCPS_CLOSE_WAIT;
2071 break;
2072
2073 /*
2074 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2075 * enter the CLOSING state.
2076 */
2077 case TCPS_FIN_WAIT_1:
2078 tp->t_state = TCPS_CLOSING;
2079 break;
2080
2081 /*
2082 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2083 * starting the time-wait timer, turning off the other
2084 * standard timers.
2085 */
2086 case TCPS_FIN_WAIT_2:
2087 tp->t_state = TCPS_TIME_WAIT;
2088 tcp_canceltimers(tp);
2089 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2090 soisdisconnected(so);
2091 break;
2092
2093 /*
2094 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2095 */
2096 case TCPS_TIME_WAIT:
2097 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2098 break;
2099 }
2100 }
2101 if (so->so_options & SO_DEBUG) {
2102 tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
2103 }
2104
2105 /*
2106 * Return any desired output.
2107 */
2108 if (needoutput || (tp->t_flags & TF_ACKNOW))
2109 (void) tcp_output(tp);
2110 if (tcp_saveti)
2111 m_freem(tcp_saveti);
2112 return;
2113
2114 badsyn:
2115 /*
2116 * Received a bad SYN. Increment counters and dropwithreset.
2117 */
2118 tcpstat.tcps_badsyn++;
2119 tp = NULL;
2120 goto dropwithreset;
2121
2122 dropafterack:
2123 /*
2124 * Generate an ACK dropping incoming segment if it occupies
2125 * sequence space, where the ACK reflects our state.
2126 */
2127 if (tiflags & TH_RST)
2128 goto drop;
2129 m_freem(m);
2130 tp->t_flags |= TF_ACKNOW;
2131 (void) tcp_output(tp);
2132 if (tcp_saveti)
2133 m_freem(tcp_saveti);
2134 return;
2135
2136 dropwithreset_ratelim:
2137 /*
2138 * We may want to rate-limit RSTs in certain situations,
2139 * particularly if we are sending an RST in response to
2140 * an attempt to connect to or otherwise communicate with
2141 * a port for which we have no socket.
2142 */
2143 if (ratecheck(&tcp_rst_ratelim_last, &tcp_rst_ratelim) == 0) {
2144 /* XXX stat */
2145 goto drop;
2146 }
2147 /* ...fall into dropwithreset... */
2148
2149 dropwithreset:
2150 /*
2151 * Generate a RST, dropping incoming segment.
2152 * Make ACK acceptable to originator of segment.
2153 */
2154 if (tiflags & TH_RST)
2155 goto drop;
2156 {
2157 /*
2158 * need to recover version # field, which was overwritten on
2159 * ip_cksum computation.
2160 */
2161 struct ip *sip;
2162 sip = mtod(m, struct ip *);
2163 switch (af) {
2164 case AF_INET:
2165 sip->ip_v = 4;
2166 break;
2167 #ifdef INET6
2168 case AF_INET6:
2169 sip->ip_v = 6;
2170 break;
2171 #endif
2172 }
2173 }
2174 if (tiflags & TH_ACK)
2175 (void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
2176 else {
2177 if (tiflags & TH_SYN)
2178 tlen++;
2179 (void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
2180 TH_RST|TH_ACK);
2181 }
2182 if (tcp_saveti)
2183 m_freem(tcp_saveti);
2184 return;
2185
2186 drop:
2187 /*
2188 * Drop space held by incoming segment and return.
2189 */
2190 if (tp) {
2191 if (tp->t_inpcb)
2192 so = tp->t_inpcb->inp_socket;
2193 #ifdef INET6
2194 else if (tp->t_in6pcb)
2195 so = tp->t_in6pcb->in6p_socket;
2196 #endif
2197 else
2198 so = NULL;
2199 if (so && (so->so_options & SO_DEBUG) != 0)
2200 tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
2201 }
2202 if (tcp_saveti)
2203 m_freem(tcp_saveti);
2204 m_freem(m);
2205 return;
2206 }
2207
2208 void
2209 tcp_dooptions(tp, cp, cnt, th, oi)
2210 struct tcpcb *tp;
2211 u_char *cp;
2212 int cnt;
2213 struct tcphdr *th;
2214 struct tcp_opt_info *oi;
2215 {
2216 u_int16_t mss;
2217 int opt, optlen;
2218
2219 for (; cnt > 0; cnt -= optlen, cp += optlen) {
2220 opt = cp[0];
2221 if (opt == TCPOPT_EOL)
2222 break;
2223 if (opt == TCPOPT_NOP)
2224 optlen = 1;
2225 else {
2226 optlen = cp[1];
2227 if (optlen <= 0)
2228 break;
2229 }
2230 switch (opt) {
2231
2232 default:
2233 continue;
2234
2235 case TCPOPT_MAXSEG:
2236 if (optlen != TCPOLEN_MAXSEG)
2237 continue;
2238 if (!(th->th_flags & TH_SYN))
2239 continue;
2240 bcopy(cp + 2, &mss, sizeof(mss));
2241 oi->maxseg = ntohs(mss);
2242 break;
2243
2244 case TCPOPT_WINDOW:
2245 if (optlen != TCPOLEN_WINDOW)
2246 continue;
2247 if (!(th->th_flags & TH_SYN))
2248 continue;
2249 tp->t_flags |= TF_RCVD_SCALE;
2250 tp->requested_s_scale = cp[2];
2251 if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
2252 #if 0 /*XXX*/
2253 char *p;
2254
2255 if (ip)
2256 p = ntohl(ip->ip_src);
2257 #ifdef INET6
2258 else if (ip6)
2259 p = ip6_sprintf(&ip6->ip6_src);
2260 #endif
2261 else
2262 p = "(unknown)";
2263 log(LOG_ERR, "TCP: invalid wscale %d from %s, "
2264 "assuming %d\n",
2265 tp->requested_s_scale, p,
2266 TCP_MAX_WINSHIFT);
2267 #else
2268 log(LOG_ERR, "TCP: invalid wscale %d, "
2269 "assuming %d\n",
2270 tp->requested_s_scale,
2271 TCP_MAX_WINSHIFT);
2272 #endif
2273 tp->requested_s_scale = TCP_MAX_WINSHIFT;
2274 }
2275 break;
2276
2277 case TCPOPT_TIMESTAMP:
2278 if (optlen != TCPOLEN_TIMESTAMP)
2279 continue;
2280 oi->ts_present = 1;
2281 bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
2282 NTOHL(oi->ts_val);
2283 bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
2284 NTOHL(oi->ts_ecr);
2285
2286 /*
2287 * A timestamp received in a SYN makes
2288 * it ok to send timestamp requests and replies.
2289 */
2290 if (th->th_flags & TH_SYN) {
2291 tp->t_flags |= TF_RCVD_TSTMP;
2292 tp->ts_recent = oi->ts_val;
2293 tp->ts_recent_age = tcp_now;
2294 }
2295 break;
2296 case TCPOPT_SACK_PERMITTED:
2297 if (optlen != TCPOLEN_SACK_PERMITTED)
2298 continue;
2299 if (!(th->th_flags & TH_SYN))
2300 continue;
2301 tp->t_flags &= ~TF_CANT_TXSACK;
2302 break;
2303
2304 case TCPOPT_SACK:
2305 if (tp->t_flags & TF_IGNR_RXSACK)
2306 continue;
2307 if (optlen % 8 != 2 || optlen < 10)
2308 continue;
2309 cp += 2;
2310 optlen -= 2;
2311 for (; optlen > 0; cp -= 8, optlen -= 8) {
2312 tcp_seq lwe, rwe;
2313 bcopy((char *)cp, (char *) &lwe, sizeof(lwe));
2314 NTOHL(lwe);
2315 bcopy((char *)cp, (char *) &rwe, sizeof(rwe));
2316 NTOHL(rwe);
2317 /* tcp_mark_sacked(tp, lwe, rwe); */
2318 }
2319 break;
2320 }
2321 }
2322 }
2323
2324 /*
2325 * Pull out of band byte out of a segment so
2326 * it doesn't appear in the user's data queue.
2327 * It is still reflected in the segment length for
2328 * sequencing purposes.
2329 */
2330 void
2331 tcp_pulloutofband(so, th, m, off)
2332 struct socket *so;
2333 struct tcphdr *th;
2334 struct mbuf *m;
2335 int off;
2336 {
2337 int cnt = off + th->th_urp - 1;
2338
2339 while (cnt >= 0) {
2340 if (m->m_len > cnt) {
2341 char *cp = mtod(m, caddr_t) + cnt;
2342 struct tcpcb *tp = sototcpcb(so);
2343
2344 tp->t_iobc = *cp;
2345 tp->t_oobflags |= TCPOOB_HAVEDATA;
2346 bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
2347 m->m_len--;
2348 return;
2349 }
2350 cnt -= m->m_len;
2351 m = m->m_next;
2352 if (m == 0)
2353 break;
2354 }
2355 panic("tcp_pulloutofband");
2356 }
2357
2358 /*
2359 * Collect new round-trip time estimate
2360 * and update averages and current timeout.
2361 */
2362 void
2363 tcp_xmit_timer(tp, rtt)
2364 struct tcpcb *tp;
2365 short rtt;
2366 {
2367 short delta;
2368 short rttmin;
2369
2370 tcpstat.tcps_rttupdated++;
2371 --rtt;
2372 if (tp->t_srtt != 0) {
2373 /*
2374 * srtt is stored as fixed point with 3 bits after the
2375 * binary point (i.e., scaled by 8). The following magic
2376 * is equivalent to the smoothing algorithm in rfc793 with
2377 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2378 * point). Adjust rtt to origin 0.
2379 */
2380 delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
2381 if ((tp->t_srtt += delta) <= 0)
2382 tp->t_srtt = 1 << 2;
2383 /*
2384 * We accumulate a smoothed rtt variance (actually, a
2385 * smoothed mean difference), then set the retransmit
2386 * timer to smoothed rtt + 4 times the smoothed variance.
2387 * rttvar is stored as fixed point with 2 bits after the
2388 * binary point (scaled by 4). The following is
2389 * equivalent to rfc793 smoothing with an alpha of .75
2390 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces
2391 * rfc793's wired-in beta.
2392 */
2393 if (delta < 0)
2394 delta = -delta;
2395 delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
2396 if ((tp->t_rttvar += delta) <= 0)
2397 tp->t_rttvar = 1 << 2;
2398 } else {
2399 /*
2400 * No rtt measurement yet - use the unsmoothed rtt.
2401 * Set the variance to half the rtt (so our first
2402 * retransmit happens at 3*rtt).
2403 */
2404 tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
2405 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
2406 }
2407 tp->t_rtt = 0;
2408 tp->t_rxtshift = 0;
2409
2410 /*
2411 * the retransmit should happen at rtt + 4 * rttvar.
2412 * Because of the way we do the smoothing, srtt and rttvar
2413 * will each average +1/2 tick of bias. When we compute
2414 * the retransmit timer, we want 1/2 tick of rounding and
2415 * 1 extra tick because of +-1/2 tick uncertainty in the
2416 * firing of the timer. The bias will give us exactly the
2417 * 1.5 tick we need. But, because the bias is
2418 * statistical, we have to test that we don't drop below
2419 * the minimum feasible timer (which is 2 ticks).
2420 */
2421 if (tp->t_rttmin > rtt + 2)
2422 rttmin = tp->t_rttmin;
2423 else
2424 rttmin = rtt + 2;
2425 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp), rttmin, TCPTV_REXMTMAX);
2426
2427 /*
2428 * We received an ack for a packet that wasn't retransmitted;
2429 * it is probably safe to discard any error indications we've
2430 * received recently. This isn't quite right, but close enough
2431 * for now (a route might have failed after we sent a segment,
2432 * and the return path might not be symmetrical).
2433 */
2434 tp->t_softerror = 0;
2435 }
2436
2437 /*
2438 * Checks for partial ack. If partial ack arrives, force the retransmission
2439 * of the next unacknowledged segment, do not clear tp->t_dupacks, and return
2440 * 1. By setting snd_nxt to th_ack, this forces retransmission timer to
2441 * be started again. If the ack advances at least to tp->snd_recover, return 0.
2442 */
2443 int
2444 tcp_newreno(tp, th)
2445 struct tcpcb *tp;
2446 struct tcphdr *th;
2447 {
2448 tcp_seq onxt = tp->snd_nxt;
2449 u_long ocwnd = tp->snd_cwnd;
2450
2451 if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2452 /*
2453 * snd_una has not yet been updated and the socket's send
2454 * buffer has not yet drained off the ACK'd data, so we
2455 * have to leave snd_una as it was to get the correct data
2456 * offset in tcp_output().
2457 */
2458 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2459 tp->t_rtt = 0;
2460 tp->snd_nxt = th->th_ack;
2461 /*
2462 * Set snd_cwnd to one segment beyond ACK'd offset. snd_una
2463 * is not yet updated when we're called.
2464 */
2465 tp->snd_cwnd = tp->t_segsz + (th->th_ack - tp->snd_una);
2466 (void) tcp_output(tp);
2467 tp->snd_cwnd = ocwnd;
2468 if (SEQ_GT(onxt, tp->snd_nxt))
2469 tp->snd_nxt = onxt;
2470 /*
2471 * Partial window deflation. Relies on fact that tp->snd_una
2472 * not updated yet.
2473 */
2474 tp->snd_cwnd -= (th->th_ack - tp->snd_una - tp->t_segsz);
2475 return 1;
2476 }
2477 return 0;
2478 }
2479
2480
2481 /*
2482 * TCP compressed state engine. Currently used to hold compressed
2483 * state for SYN_RECEIVED.
2484 */
2485
2486 u_long syn_cache_count;
2487 u_int32_t syn_hash1, syn_hash2;
2488
2489 #define SYN_HASH(sa, sp, dp) \
2490 ((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
2491 ((u_int32_t)(sp)))^syn_hash2)))
2492 #ifndef INET6
2493 #define SYN_HASHALL(hash, src, dst) \
2494 do { \
2495 hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
2496 ((struct sockaddr_in *)(src))->sin_port, \
2497 ((struct sockaddr_in *)(dst))->sin_port); \
2498 } while (0)
2499 #else
2500 #define SYN_HASH6(sa, sp, dp) \
2501 ((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
2502 (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
2503 & 0x7fffffff)
2504
2505 #define SYN_HASHALL(hash, src, dst) \
2506 do { \
2507 switch ((src)->sa_family) { \
2508 case AF_INET: \
2509 hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
2510 ((struct sockaddr_in *)(src))->sin_port, \
2511 ((struct sockaddr_in *)(dst))->sin_port); \
2512 break; \
2513 case AF_INET6: \
2514 hash = SYN_HASH6(&((struct sockaddr_in6 *)(src))->sin6_addr, \
2515 ((struct sockaddr_in6 *)(src))->sin6_port, \
2516 ((struct sockaddr_in6 *)(dst))->sin6_port); \
2517 break; \
2518 default: \
2519 hash = 0; \
2520 } \
2521 } while (0)
2522 #endif /* INET6 */
2523
2524 #define SYN_CACHE_RM(sc) \
2525 do { \
2526 LIST_REMOVE((sc), sc_bucketq); \
2527 (sc)->sc_tp = NULL; \
2528 LIST_REMOVE((sc), sc_tpq); \
2529 tcp_syn_cache[(sc)->sc_bucketidx].sch_length--; \
2530 TAILQ_REMOVE(&tcp_syn_cache_timeq[(sc)->sc_rxtshift], (sc), sc_timeq); \
2531 syn_cache_count--; \
2532 } while (0)
2533
2534 #define SYN_CACHE_PUT(sc) \
2535 do { \
2536 if ((sc)->sc_ipopts) \
2537 (void) m_free((sc)->sc_ipopts); \
2538 if ((sc)->sc_route4.ro_rt != NULL) \
2539 RTFREE((sc)->sc_route4.ro_rt); \
2540 pool_put(&syn_cache_pool, (sc)); \
2541 } while (0)
2542
2543 struct pool syn_cache_pool;
2544
2545 /*
2546 * We don't estimate RTT with SYNs, so each packet starts with the default
2547 * RTT and each timer queue has a fixed timeout value. This allows us to
2548 * optimize the timer queues somewhat.
2549 */
2550 #define SYN_CACHE_TIMER_ARM(sc) \
2551 do { \
2552 TCPT_RANGESET((sc)->sc_rxtcur, \
2553 TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN, \
2554 TCPTV_REXMTMAX); \
2555 PRT_SLOW_ARM((sc)->sc_rexmt, (sc)->sc_rxtcur); \
2556 } while (0)
2557
2558 TAILQ_HEAD(, syn_cache) tcp_syn_cache_timeq[TCP_MAXRXTSHIFT + 1];
2559
2560 void
2561 syn_cache_init()
2562 {
2563 int i;
2564
2565 /* Initialize the hash buckets. */
2566 for (i = 0; i < tcp_syn_cache_size; i++)
2567 LIST_INIT(&tcp_syn_cache[i].sch_bucket);
2568
2569 /* Initialize the timer queues. */
2570 for (i = 0; i <= TCP_MAXRXTSHIFT; i++)
2571 TAILQ_INIT(&tcp_syn_cache_timeq[i]);
2572
2573 /* Initialize the syn cache pool. */
2574 pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
2575 "synpl", 0, NULL, NULL, M_PCB);
2576 }
2577
2578 void
2579 syn_cache_insert(sc, tp)
2580 struct syn_cache *sc;
2581 struct tcpcb *tp;
2582 {
2583 struct syn_cache_head *scp;
2584 struct syn_cache *sc2;
2585 int s, i;
2586
2587 /*
2588 * If there are no entries in the hash table, reinitialize
2589 * the hash secrets.
2590 */
2591 if (syn_cache_count == 0) {
2592 struct timeval tv;
2593 microtime(&tv);
2594 syn_hash1 = random() ^ (u_long)≻
2595 syn_hash2 = random() ^ tv.tv_usec;
2596 }
2597
2598 SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
2599 sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
2600 scp = &tcp_syn_cache[sc->sc_bucketidx];
2601
2602 /*
2603 * Make sure that we don't overflow the per-bucket
2604 * limit or the total cache size limit.
2605 */
2606 s = splsoftnet();
2607 if (scp->sch_length >= tcp_syn_bucket_limit) {
2608 tcpstat.tcps_sc_bucketoverflow++;
2609 /*
2610 * The bucket is full. Toss the oldest element in the
2611 * bucket. This will be the entry with our bucket
2612 * index closest to the front of the timer queue with
2613 * the largest timeout value.
2614 *
2615 * Note: This timer queue traversal may be expensive, so
2616 * we hope that this doesn't happen very often. It is
2617 * much more likely that we'll overflow the entire
2618 * cache, which is much easier to handle; see below.
2619 */
2620 for (i = TCP_MAXRXTSHIFT; i >= 0; i--) {
2621 for (sc2 = TAILQ_FIRST(&tcp_syn_cache_timeq[i]);
2622 sc2 != NULL;
2623 sc2 = TAILQ_NEXT(sc2, sc_timeq)) {
2624 if (sc2->sc_bucketidx == sc->sc_bucketidx) {
2625 SYN_CACHE_RM(sc2);
2626 SYN_CACHE_PUT(sc2);
2627 goto insert; /* 2 level break */
2628 }
2629 }
2630 }
2631 #ifdef DIAGNOSTIC
2632 /*
2633 * This should never happen; we should always find an
2634 * entry in our bucket.
2635 */
2636 panic("syn_cache_insert: bucketoverflow: impossible");
2637 #endif
2638 } else if (syn_cache_count >= tcp_syn_cache_limit) {
2639 tcpstat.tcps_sc_overflowed++;
2640 /*
2641 * The cache is full. Toss the oldest entry in the
2642 * entire cache. This is the front entry in the
2643 * first non-empty timer queue with the largest
2644 * timeout value.
2645 */
2646 for (i = TCP_MAXRXTSHIFT; i >= 0; i--) {
2647 sc2 = TAILQ_FIRST(&tcp_syn_cache_timeq[i]);
2648 if (sc2 == NULL)
2649 continue;
2650 SYN_CACHE_RM(sc2);
2651 SYN_CACHE_PUT(sc2);
2652 goto insert; /* symmetry with above */
2653 }
2654 #ifdef DIAGNOSTIC
2655 /*
2656 * This should never happen; we should always find an
2657 * entry in the cache.
2658 */
2659 panic("syn_cache_insert: cache overflow: impossible");
2660 #endif
2661 }
2662
2663 insert:
2664 /*
2665 * Initialize the entry's timer.
2666 */
2667 sc->sc_rxttot = 0;
2668 sc->sc_rxtshift = 0;
2669 SYN_CACHE_TIMER_ARM(sc);
2670 TAILQ_INSERT_TAIL(&tcp_syn_cache_timeq[sc->sc_rxtshift], sc, sc_timeq);
2671
2672 /* Link it from tcpcb entry */
2673 LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
2674
2675 /* Put it into the bucket. */
2676 LIST_INSERT_HEAD(&scp->sch_bucket, sc, sc_bucketq);
2677 scp->sch_length++;
2678 syn_cache_count++;
2679
2680 tcpstat.tcps_sc_added++;
2681 splx(s);
2682 }
2683
2684 /*
2685 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
2686 * If we have retransmitted an entry the maximum number of times, expire
2687 * that entry.
2688 */
2689 void
2690 syn_cache_timer()
2691 {
2692 struct syn_cache *sc, *nsc;
2693 int i, s;
2694
2695 s = splsoftnet();
2696
2697 /*
2698 * First, get all the entries that need to be retransmitted, or
2699 * must be expired due to exceeding the initial keepalive time.
2700 */
2701 for (i = 0; i < TCP_MAXRXTSHIFT; i++) {
2702 for (sc = TAILQ_FIRST(&tcp_syn_cache_timeq[i]);
2703 sc != NULL && PRT_SLOW_ISEXPIRED(sc->sc_rexmt);
2704 sc = nsc) {
2705 nsc = TAILQ_NEXT(sc, sc_timeq);
2706
2707 /*
2708 * Compute the total amount of time this entry has
2709 * been on a queue. If this entry has been on longer
2710 * than the keep alive timer would allow, expire it.
2711 */
2712 sc->sc_rxttot += sc->sc_rxtcur;
2713 if (sc->sc_rxttot >= TCPTV_KEEP_INIT) {
2714 tcpstat.tcps_sc_timed_out++;
2715 SYN_CACHE_RM(sc);
2716 SYN_CACHE_PUT(sc);
2717 continue;
2718 }
2719
2720 tcpstat.tcps_sc_retransmitted++;
2721 (void) syn_cache_respond(sc, NULL);
2722
2723 /* Advance this entry onto the next timer queue. */
2724 TAILQ_REMOVE(&tcp_syn_cache_timeq[i], sc, sc_timeq);
2725 sc->sc_rxtshift = i + 1;
2726 SYN_CACHE_TIMER_ARM(sc);
2727 TAILQ_INSERT_TAIL(&tcp_syn_cache_timeq[sc->sc_rxtshift],
2728 sc, sc_timeq);
2729 }
2730 }
2731
2732 /*
2733 * Now get all the entries that are expired due to too many
2734 * retransmissions.
2735 */
2736 for (sc = TAILQ_FIRST(&tcp_syn_cache_timeq[TCP_MAXRXTSHIFT]);
2737 sc != NULL && PRT_SLOW_ISEXPIRED(sc->sc_rexmt);
2738 sc = nsc) {
2739 nsc = TAILQ_NEXT(sc, sc_timeq);
2740 tcpstat.tcps_sc_timed_out++;
2741 SYN_CACHE_RM(sc);
2742 SYN_CACHE_PUT(sc);
2743 }
2744 splx(s);
2745 }
2746
2747 /*
2748 * Remove syn cache created by the specified tcb entry,
2749 * because this does not make sense to keep them
2750 * (if there's no tcb entry, syn cache entry will never be used)
2751 */
2752 void
2753 syn_cache_cleanup(tp)
2754 struct tcpcb *tp;
2755 {
2756 struct syn_cache *sc, *nsc;
2757 int s;
2758
2759 s = splsoftnet();
2760
2761 for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
2762 nsc = LIST_NEXT(sc, sc_tpq);
2763
2764 #ifdef DIAGNOSTIC
2765 if (sc->sc_tp != tp)
2766 panic("invalid sc_tp in syn_cache_cleanup");
2767 #endif
2768 SYN_CACHE_RM(sc);
2769 SYN_CACHE_PUT(sc);
2770 }
2771 /* just for safety */
2772 LIST_INIT(&tp->t_sc);
2773
2774 splx(s);
2775 }
2776
2777 /*
2778 * Find an entry in the syn cache.
2779 */
2780 struct syn_cache *
2781 syn_cache_lookup(src, dst, headp)
2782 struct sockaddr *src;
2783 struct sockaddr *dst;
2784 struct syn_cache_head **headp;
2785 {
2786 struct syn_cache *sc;
2787 struct syn_cache_head *scp;
2788 u_int32_t hash;
2789 int s;
2790
2791 SYN_HASHALL(hash, src, dst);
2792
2793 scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
2794 *headp = scp;
2795 s = splsoftnet();
2796 for (sc = LIST_FIRST(&scp->sch_bucket); sc != NULL;
2797 sc = LIST_NEXT(sc, sc_bucketq)) {
2798 if (sc->sc_hash != hash)
2799 continue;
2800 if (!bcmp(&sc->sc_src, src, src->sa_len) &&
2801 !bcmp(&sc->sc_dst, dst, dst->sa_len)) {
2802 splx(s);
2803 return (sc);
2804 }
2805 }
2806 splx(s);
2807 return (NULL);
2808 }
2809
2810 /*
2811 * This function gets called when we receive an ACK for a
2812 * socket in the LISTEN state. We look up the connection
2813 * in the syn cache, and if its there, we pull it out of
2814 * the cache and turn it into a full-blown connection in
2815 * the SYN-RECEIVED state.
2816 *
2817 * The return values may not be immediately obvious, and their effects
2818 * can be subtle, so here they are:
2819 *
2820 * NULL SYN was not found in cache; caller should drop the
2821 * packet and send an RST.
2822 *
2823 * -1 We were unable to create the new connection, and are
2824 * aborting it. An ACK,RST is being sent to the peer
2825 * (unless we got screwey sequence numbners; see below),
2826 * because the 3-way handshake has been completed. Caller
2827 * should not free the mbuf, since we may be using it. If
2828 * we are not, we will free it.
2829 *
2830 * Otherwise, the return value is a pointer to the new socket
2831 * associated with the connection.
2832 */
2833 struct socket *
2834 syn_cache_get(src, dst, th, hlen, tlen, so, m)
2835 struct sockaddr *src;
2836 struct sockaddr *dst;
2837 struct tcphdr *th;
2838 unsigned int hlen, tlen;
2839 struct socket *so;
2840 struct mbuf *m;
2841 {
2842 struct syn_cache *sc;
2843 struct syn_cache_head *scp;
2844 struct inpcb *inp = NULL;
2845 #ifdef INET6
2846 struct in6pcb *in6p = NULL;
2847 #endif
2848 struct tcpcb *tp = 0;
2849 struct mbuf *am;
2850 int s;
2851 struct socket *oso;
2852
2853 s = splsoftnet();
2854 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
2855 splx(s);
2856 return (NULL);
2857 }
2858
2859 /*
2860 * Verify the sequence and ack numbers. Try getting the correct
2861 * response again.
2862 */
2863 if ((th->th_ack != sc->sc_iss + 1) ||
2864 SEQ_LEQ(th->th_seq, sc->sc_irs) ||
2865 SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
2866 (void) syn_cache_respond(sc, m);
2867 splx(s);
2868 return ((struct socket *)(-1));
2869 }
2870
2871 /* Remove this cache entry */
2872 SYN_CACHE_RM(sc);
2873 splx(s);
2874
2875 /*
2876 * Ok, create the full blown connection, and set things up
2877 * as they would have been set up if we had created the
2878 * connection when the SYN arrived. If we can't create
2879 * the connection, abort it.
2880 */
2881 /*
2882 * inp still has the OLD in_pcb stuff, set the
2883 * v6-related flags on the new guy, too. This is
2884 * done particularly for the case where an AF_INET6
2885 * socket is bound only to a port, and a v4 connection
2886 * comes in on that port.
2887 * we also copy the flowinfo from the original pcb
2888 * to the new one.
2889 */
2890 {
2891 struct inpcb *parentinpcb;
2892
2893 parentinpcb = (struct inpcb *)so->so_pcb;
2894
2895 oso = so;
2896 so = sonewconn(so, SS_ISCONNECTED);
2897 if (so == NULL)
2898 goto resetandabort;
2899
2900 switch (so->so_proto->pr_domain->dom_family) {
2901 case AF_INET:
2902 inp = sotoinpcb(so);
2903 break;
2904 #ifdef INET6
2905 case AF_INET6:
2906 in6p = sotoin6pcb(so);
2907 #if 0 /*def INET6*/
2908 inp->inp_flags |= (parentinpcb->inp_flags &
2909 (INP_IPV6 | INP_IPV6_UNDEC | INP_IPV6_MAPPED));
2910 if ((inp->inp_flags & INP_IPV6) &&
2911 !(inp->inp_flags & INP_IPV6_MAPPED)) {
2912 inp->inp_ipv6.ip6_hlim = parentinpcb->inp_ipv6.ip6_hlim;
2913 inp->inp_ipv6.ip6_vfc = parentinpcb->inp_ipv6.ip6_vfc;
2914 }
2915 #endif
2916 break;
2917 #endif
2918 }
2919 }
2920 switch (src->sa_family) {
2921 case AF_INET:
2922 if (inp) {
2923 inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
2924 inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
2925 inp->inp_options = ip_srcroute();
2926 in_pcbstate(inp, INP_BOUND);
2927 if (inp->inp_options == NULL) {
2928 inp->inp_options = sc->sc_ipopts;
2929 sc->sc_ipopts = NULL;
2930 }
2931 }
2932 #ifdef INET6
2933 else if (in6p) {
2934 /* IPv4 packet to AF_INET6 socket */
2935 bzero(&in6p->in6p_laddr, sizeof(in6p->in6p_laddr));
2936 in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
2937 bcopy(&((struct sockaddr_in *)dst)->sin_addr,
2938 &in6p->in6p_laddr.s6_addr32[3],
2939 sizeof(((struct sockaddr_in *)dst)->sin_addr));
2940 in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
2941 in6totcpcb(in6p)->t_family = AF_INET;
2942 }
2943 #endif
2944 break;
2945 #ifdef INET6
2946 case AF_INET6:
2947 if (in6p) {
2948 in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
2949 in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
2950 #if 0
2951 in6p->in6p_flowinfo = ip6->ip6_flow & IPV6_FLOWINFO_MASK;
2952 /*inp->inp_options = ip6_srcroute();*/ /* soon. */
2953 #endif
2954 }
2955 break;
2956 #endif
2957 }
2958 #ifdef INET6
2959 if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
2960 struct in6pcb *oin6p = sotoin6pcb(oso);
2961 /* inherit socket options from the listening socket */
2962 in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
2963 if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
2964 m_freem(in6p->in6p_options);
2965 in6p->in6p_options = 0;
2966 }
2967 ip6_savecontrol(in6p, &in6p->in6p_options,
2968 mtod(m, struct ip6_hdr *), m);
2969 }
2970 #endif
2971
2972 #ifdef IPSEC
2973 /*
2974 * we make a copy of policy, instead of sharing the policy,
2975 * for better behavior in terms of SA lookup and dead SA removal.
2976 */
2977 if (inp) {
2978 /* copy old policy into new socket's */
2979 if (ipsec_copy_policy(sotoinpcb(oso)->inp_sp, inp->inp_sp))
2980 printf("tcp_input: could not copy policy\n");
2981 }
2982 #ifdef INET6
2983 else if (in6p) {
2984 /* copy old policy into new socket's */
2985 if (ipsec_copy_policy(sotoin6pcb(oso)->in6p_sp, in6p->in6p_sp))
2986 printf("tcp_input: could not copy policy\n");
2987 }
2988 #endif
2989 #endif
2990
2991 /*
2992 * Give the new socket our cached route reference.
2993 */
2994 if (inp)
2995 inp->inp_route = sc->sc_route4; /* struct assignment */
2996 #ifdef INET6
2997 else
2998 in6p->in6p_route = sc->sc_route6;
2999 #endif
3000 sc->sc_route4.ro_rt = NULL;
3001
3002 am = m_get(M_DONTWAIT, MT_SONAME); /* XXX */
3003 if (am == NULL)
3004 goto resetandabort;
3005 am->m_len = src->sa_len;
3006 bcopy(src, mtod(am, caddr_t), src->sa_len);
3007 if (inp) {
3008 if (in_pcbconnect(inp, am)) {
3009 (void) m_free(am);
3010 goto resetandabort;
3011 }
3012 }
3013 #ifdef INET6
3014 else if (in6p) {
3015 if (src->sa_family == AF_INET) {
3016 /* IPv4 packet to AF_INET6 socket */
3017 struct sockaddr_in6 *sin6;
3018 sin6 = mtod(am, struct sockaddr_in6 *);
3019 am->m_len = sizeof(*sin6);
3020 bzero(sin6, sizeof(*sin6));
3021 sin6->sin6_family = AF_INET6;
3022 sin6->sin6_len = sizeof(*sin6);
3023 sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port;
3024 sin6->sin6_addr.s6_addr16[5] = htons(0xffff);
3025 bcopy(&((struct sockaddr_in *)src)->sin_addr,
3026 &sin6->sin6_addr.s6_addr32[3],
3027 sizeof(sin6->sin6_addr.s6_addr32[3]));
3028 }
3029 if (in6_pcbconnect(in6p, am)) {
3030 (void) m_free(am);
3031 goto resetandabort;
3032 }
3033 }
3034 #endif
3035 else {
3036 (void) m_free(am);
3037 goto resetandabort;
3038 }
3039 (void) m_free(am);
3040
3041 if (inp)
3042 tp = intotcpcb(inp);
3043 #ifdef INET6
3044 else if (in6p)
3045 tp = in6totcpcb(in6p);
3046 #endif
3047 else
3048 tp = NULL;
3049 if (sc->sc_request_r_scale != 15) {
3050 tp->requested_s_scale = sc->sc_requested_s_scale;
3051 tp->request_r_scale = sc->sc_request_r_scale;
3052 tp->snd_scale = sc->sc_requested_s_scale;
3053 tp->rcv_scale = sc->sc_request_r_scale;
3054 tp->t_flags |= TF_RCVD_SCALE;
3055 }
3056 if (sc->sc_flags & SCF_TIMESTAMP)
3057 tp->t_flags |= TF_RCVD_TSTMP;
3058
3059 tp->t_template = tcp_template(tp);
3060 if (tp->t_template == 0) {
3061 tp = tcp_drop(tp, ENOBUFS); /* destroys socket */
3062 so = NULL;
3063 m_freem(m);
3064 goto abort;
3065 }
3066
3067 tp->iss = sc->sc_iss;
3068 tp->irs = sc->sc_irs;
3069 tcp_sendseqinit(tp);
3070 tcp_rcvseqinit(tp);
3071 tp->t_state = TCPS_SYN_RECEIVED;
3072 TCP_TIMER_ARM(tp, TCPT_KEEP, TCPTV_KEEP_INIT);
3073 tcpstat.tcps_accepts++;
3074
3075 /* Initialize tp->t_ourmss before we deal with the peer's! */
3076 tp->t_ourmss = sc->sc_ourmaxseg;
3077 tcp_mss_from_peer(tp, sc->sc_peermaxseg);
3078
3079 /*
3080 * Initialize the initial congestion window. If we
3081 * had to retransmit the SYN,ACK, we must initialize cwnd
3082 * to 1 segment (i.e. the Loss Window).
3083 */
3084 if (sc->sc_rxtshift)
3085 tp->snd_cwnd = tp->t_peermss;
3086 else
3087 tp->snd_cwnd = TCP_INITIAL_WINDOW(tcp_init_win, tp->t_peermss);
3088
3089 tcp_rmx_rtt(tp);
3090 tp->snd_wl1 = sc->sc_irs;
3091 tp->rcv_up = sc->sc_irs + 1;
3092
3093 /*
3094 * This is what whould have happened in tcp_ouput() when
3095 * the SYN,ACK was sent.
3096 */
3097 tp->snd_up = tp->snd_una;
3098 tp->snd_max = tp->snd_nxt = tp->iss+1;
3099 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
3100 if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
3101 tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
3102 tp->last_ack_sent = tp->rcv_nxt;
3103
3104 tcpstat.tcps_sc_completed++;
3105 SYN_CACHE_PUT(sc);
3106 return (so);
3107
3108 resetandabort:
3109 (void) tcp_respond(NULL, m, m, th,
3110 th->th_seq + tlen, (tcp_seq)0, TH_RST|TH_ACK);
3111 abort:
3112 if (so != NULL)
3113 (void) soabort(so);
3114 SYN_CACHE_PUT(sc);
3115 tcpstat.tcps_sc_aborted++;
3116 return ((struct socket *)(-1));
3117 }
3118
3119 /*
3120 * This function is called when we get a RST for a
3121 * non-existant connection, so that we can see if the
3122 * connection is in the syn cache. If it is, zap it.
3123 */
3124
3125 void
3126 syn_cache_reset(src, dst, th)
3127 struct sockaddr *src;
3128 struct sockaddr *dst;
3129 struct tcphdr *th;
3130 {
3131 struct syn_cache *sc;
3132 struct syn_cache_head *scp;
3133 int s = splsoftnet();
3134
3135 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3136 splx(s);
3137 return;
3138 }
3139 if (SEQ_LT(th->th_seq, sc->sc_irs) ||
3140 SEQ_GT(th->th_seq, sc->sc_irs+1)) {
3141 splx(s);
3142 return;
3143 }
3144 SYN_CACHE_RM(sc);
3145 splx(s);
3146 tcpstat.tcps_sc_reset++;
3147 SYN_CACHE_PUT(sc);
3148 }
3149
3150 void
3151 syn_cache_unreach(src, dst, th)
3152 struct sockaddr *src;
3153 struct sockaddr *dst;
3154 struct tcphdr *th;
3155 {
3156 struct syn_cache *sc;
3157 struct syn_cache_head *scp;
3158 int s;
3159
3160 s = splsoftnet();
3161 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3162 splx(s);
3163 return;
3164 }
3165 /* If the sequence number != sc_iss, then it's a bogus ICMP msg */
3166 if (ntohl (th->th_seq) != sc->sc_iss) {
3167 splx(s);
3168 return;
3169 }
3170
3171 /*
3172 * If we've rertransmitted 3 times and this is our second error,
3173 * we remove the entry. Otherwise, we allow it to continue on.
3174 * This prevents us from incorrectly nuking an entry during a
3175 * spurious network outage.
3176 *
3177 * See tcp_notify().
3178 */
3179 if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
3180 sc->sc_flags |= SCF_UNREACH;
3181 splx(s);
3182 return;
3183 }
3184
3185 SYN_CACHE_RM(sc);
3186 splx(s);
3187 tcpstat.tcps_sc_unreach++;
3188 SYN_CACHE_PUT(sc);
3189 }
3190
3191 /*
3192 * Given a LISTEN socket and an inbound SYN request, add
3193 * this to the syn cache, and send back a segment:
3194 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
3195 * to the source.
3196 *
3197 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
3198 * Doing so would require that we hold onto the data and deliver it
3199 * to the application. However, if we are the target of a SYN-flood
3200 * DoS attack, an attacker could send data which would eventually
3201 * consume all available buffer space if it were ACKed. By not ACKing
3202 * the data, we avoid this DoS scenario.
3203 */
3204
3205 int
3206 syn_cache_add(src, dst, th, hlen, so, m, optp, optlen, oi)
3207 struct sockaddr *src;
3208 struct sockaddr *dst;
3209 struct tcphdr *th;
3210 unsigned int hlen;
3211 struct socket *so;
3212 struct mbuf *m;
3213 u_char *optp;
3214 int optlen;
3215 struct tcp_opt_info *oi;
3216 {
3217 struct tcpcb tb, *tp;
3218 long win;
3219 struct syn_cache *sc;
3220 struct syn_cache_head *scp;
3221 struct mbuf *ipopts;
3222
3223 tp = sototcpcb(so);
3224
3225 /*
3226 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
3227 *
3228 * Note this check is performed in tcp_input() very early on.
3229 */
3230
3231 /*
3232 * Initialize some local state.
3233 */
3234 win = sbspace(&so->so_rcv);
3235 if (win > TCP_MAXWIN)
3236 win = TCP_MAXWIN;
3237
3238 if (src->sa_family == AF_INET) {
3239 /*
3240 * Remember the IP options, if any.
3241 */
3242 ipopts = ip_srcroute();
3243 } else
3244 ipopts = NULL;
3245
3246 if (optp) {
3247 tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
3248 tcp_dooptions(&tb, optp, optlen, th, oi);
3249 } else
3250 tb.t_flags = 0;
3251
3252 /*
3253 * See if we already have an entry for this connection.
3254 * If we do, resend the SYN,ACK. We do not count this
3255 * as a retransmission (XXX though maybe we should).
3256 */
3257 if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
3258 tcpstat.tcps_sc_dupesyn++;
3259 if (ipopts) {
3260 /*
3261 * If we were remembering a previous source route,
3262 * forget it and use the new one we've been given.
3263 */
3264 if (sc->sc_ipopts)
3265 (void) m_free(sc->sc_ipopts);
3266 sc->sc_ipopts = ipopts;
3267 }
3268 sc->sc_timestamp = tb.ts_recent;
3269 if (syn_cache_respond(sc, m) == 0) {
3270 tcpstat.tcps_sndacks++;
3271 tcpstat.tcps_sndtotal++;
3272 }
3273 return (1);
3274 }
3275
3276 sc = pool_get(&syn_cache_pool, PR_NOWAIT);
3277 if (sc == NULL) {
3278 if (ipopts)
3279 (void) m_free(ipopts);
3280 return (0);
3281 }
3282
3283 /*
3284 * Fill in the cache, and put the necessary IP and TCP
3285 * options into the reply.
3286 */
3287 bzero(sc, sizeof(struct syn_cache));
3288 bcopy(src, &sc->sc_src, src->sa_len);
3289 bcopy(dst, &sc->sc_dst, dst->sa_len);
3290 sc->sc_flags = 0;
3291 sc->sc_ipopts = ipopts;
3292 sc->sc_irs = th->th_seq;
3293 sc->sc_iss = tcp_new_iss(sc, sizeof(struct syn_cache), 0);
3294 sc->sc_peermaxseg = oi->maxseg;
3295 sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
3296 m->m_pkthdr.rcvif : NULL,
3297 sc->sc_src.sa.sa_family);
3298 sc->sc_win = win;
3299 sc->sc_timestamp = tb.ts_recent;
3300 if (tcp_do_rfc1323 && (tb.t_flags & TF_RCVD_TSTMP))
3301 sc->sc_flags |= SCF_TIMESTAMP;
3302 if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
3303 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
3304 sc->sc_requested_s_scale = tb.requested_s_scale;
3305 sc->sc_request_r_scale = 0;
3306 while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
3307 TCP_MAXWIN << sc->sc_request_r_scale <
3308 so->so_rcv.sb_hiwat)
3309 sc->sc_request_r_scale++;
3310 } else {
3311 sc->sc_requested_s_scale = 15;
3312 sc->sc_request_r_scale = 15;
3313 }
3314 sc->sc_tp = tp;
3315 if (syn_cache_respond(sc, m) == 0) {
3316 syn_cache_insert(sc, tp);
3317 tcpstat.tcps_sndacks++;
3318 tcpstat.tcps_sndtotal++;
3319 } else {
3320 SYN_CACHE_PUT(sc);
3321 tcpstat.tcps_sc_dropped++;
3322 }
3323 return (1);
3324 }
3325
3326 int
3327 syn_cache_respond(sc, m)
3328 struct syn_cache *sc;
3329 struct mbuf *m;
3330 {
3331 struct route *ro;
3332 struct rtentry *rt;
3333 u_int8_t *optp;
3334 int optlen, error;
3335 u_int16_t tlen;
3336 struct ip *ip = NULL;
3337 #ifdef INET6
3338 struct ip6_hdr *ip6 = NULL;
3339 #endif
3340 struct tcphdr *th;
3341 u_int hlen;
3342
3343 switch (sc->sc_src.sa.sa_family) {
3344 case AF_INET:
3345 hlen = sizeof(struct ip);
3346 ro = &sc->sc_route4;
3347 break;
3348 #ifdef INET6
3349 case AF_INET6:
3350 hlen = sizeof(struct ip6_hdr);
3351 ro = (struct route *)&sc->sc_route6;
3352 break;
3353 #endif
3354 default:
3355 if (m)
3356 m_freem(m);
3357 return EAFNOSUPPORT;
3358 }
3359
3360 /* Compute the size of the TCP options. */
3361 optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
3362 ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
3363
3364 tlen = hlen + sizeof(struct tcphdr) + optlen;
3365
3366 /*
3367 * Create the IP+TCP header from scratch.
3368 */
3369 if (m)
3370 m_freem(m);
3371 MGETHDR(m, M_DONTWAIT, MT_DATA);
3372 if (m && tlen > MHLEN) {
3373 MCLGET(m, M_DONTWAIT);
3374 if ((m->m_flags & M_EXT) == NULL) {
3375 m_freem(m);
3376 m = NULL;
3377 }
3378 }
3379 if (m == NULL)
3380 return (ENOBUFS);
3381
3382 /* Fixup the mbuf. */
3383 m->m_data += max_linkhdr;
3384 m->m_len = m->m_pkthdr.len = tlen;
3385 #ifdef IPSEC
3386 if (sc->sc_tp) {
3387 struct tcpcb *tp;
3388 struct socket *so;
3389
3390 tp = sc->sc_tp;
3391 if (tp->t_inpcb)
3392 so = tp->t_inpcb->inp_socket;
3393 #ifdef INET6
3394 else if (tp->t_in6pcb)
3395 so = tp->t_in6pcb->in6p_socket;
3396 #endif
3397 else
3398 so = NULL;
3399 /* use IPsec policy on listening socket, on SYN ACK */
3400 ipsec_setsocket(m, so);
3401 }
3402 #endif
3403 m->m_pkthdr.rcvif = NULL;
3404 memset(mtod(m, u_char *), 0, tlen);
3405
3406 switch (sc->sc_src.sa.sa_family) {
3407 case AF_INET:
3408 ip = mtod(m, struct ip *);
3409 ip->ip_dst = sc->sc_src.sin.sin_addr;
3410 ip->ip_src = sc->sc_dst.sin.sin_addr;
3411 ip->ip_p = IPPROTO_TCP;
3412 th = (struct tcphdr *)(ip + 1);
3413 th->th_dport = sc->sc_src.sin.sin_port;
3414 th->th_sport = sc->sc_dst.sin.sin_port;
3415 break;
3416 #ifdef INET6
3417 case AF_INET6:
3418 ip6 = mtod(m, struct ip6_hdr *);
3419 ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
3420 ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
3421 ip6->ip6_nxt = IPPROTO_TCP;
3422 /* ip6_plen will be updated in ip6_output() */
3423 th = (struct tcphdr *)(ip6 + 1);
3424 th->th_dport = sc->sc_src.sin6.sin6_port;
3425 th->th_sport = sc->sc_dst.sin6.sin6_port;
3426 break;
3427 #endif
3428 default:
3429 th = NULL;
3430 }
3431
3432 th->th_seq = htonl(sc->sc_iss);
3433 th->th_ack = htonl(sc->sc_irs + 1);
3434 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
3435 th->th_flags = TH_SYN|TH_ACK;
3436 th->th_win = htons(sc->sc_win);
3437 /* th_sum already 0 */
3438 /* th_urp already 0 */
3439
3440 /* Tack on the TCP options. */
3441 optp = (u_int8_t *)(th + 1);
3442 *optp++ = TCPOPT_MAXSEG;
3443 *optp++ = 4;
3444 *optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
3445 *optp++ = sc->sc_ourmaxseg & 0xff;
3446
3447 if (sc->sc_request_r_scale != 15) {
3448 *((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
3449 TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
3450 sc->sc_request_r_scale);
3451 optp += 4;
3452 }
3453
3454 if (sc->sc_flags & SCF_TIMESTAMP) {
3455 u_int32_t *lp = (u_int32_t *)(optp);
3456 /* Form timestamp option as shown in appendix A of RFC 1323. */
3457 *lp++ = htonl(TCPOPT_TSTAMP_HDR);
3458 *lp++ = htonl(tcp_now);
3459 *lp = htonl(sc->sc_timestamp);
3460 optp += TCPOLEN_TSTAMP_APPA;
3461 }
3462
3463 /* Compute the packet's checksum. */
3464 switch (sc->sc_src.sa.sa_family) {
3465 case AF_INET:
3466 ip->ip_len = htons(tlen - hlen);
3467 th->th_sum = 0;
3468 th->th_sum = in_cksum(m, tlen);
3469 break;
3470 #ifdef INET6
3471 case AF_INET6:
3472 ip6->ip6_plen = htons(tlen - hlen);
3473 th->th_sum = 0;
3474 th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
3475 break;
3476 #endif
3477 }
3478
3479 /*
3480 * Fill in some straggling IP bits. Note the stack expects
3481 * ip_len to be in host order, for convenience.
3482 */
3483 switch (sc->sc_src.sa.sa_family) {
3484 case AF_INET:
3485 ip->ip_len = tlen;
3486 ip->ip_ttl = ip_defttl;
3487 /* XXX tos? */
3488 break;
3489 #ifdef INET6
3490 case AF_INET6:
3491 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
3492 ip6->ip6_vfc |= IPV6_VERSION;
3493 ip6->ip6_plen = htons(tlen - hlen);
3494 /* ip6_hlim will be initialized afterwards */
3495 /* XXX flowlabel? */
3496 break;
3497 #endif
3498 }
3499
3500 /*
3501 * If we're doing Path MTU discovery, we need to set DF unless
3502 * the route's MTU is locked. If we don't yet know the route,
3503 * look it up now. We will copy this reference to the inpcb
3504 * when we finish creating the connection.
3505 */
3506 if ((rt = ro->ro_rt) == NULL || (rt->rt_flags & RTF_UP) == 0) {
3507 if (ro->ro_rt != NULL) {
3508 RTFREE(ro->ro_rt);
3509 ro->ro_rt = NULL;
3510 }
3511 bcopy(&sc->sc_src, &ro->ro_dst, sc->sc_src.sa.sa_len);
3512 rtalloc(ro);
3513 if ((rt = ro->ro_rt) == NULL) {
3514 m_freem(m);
3515 switch (sc->sc_src.sa.sa_family) {
3516 case AF_INET:
3517 ipstat.ips_noroute++;
3518 break;
3519 #ifdef INET6
3520 case AF_INET6:
3521 ip6stat.ip6s_noroute++;
3522 break;
3523 #endif
3524 }
3525 return (EHOSTUNREACH);
3526 }
3527 }
3528
3529 switch (sc->sc_src.sa.sa_family) {
3530 case AF_INET:
3531 if (ip_mtudisc != 0 && (rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
3532 ip->ip_off |= IP_DF;
3533
3534 /* ...and send it off! */
3535 error = ip_output(m, sc->sc_ipopts, ro, 0, NULL);
3536 break;
3537 #ifdef INET6
3538 case AF_INET6:
3539 ip6->ip6_hlim = in6_selecthlim(NULL,
3540 ro->ro_rt ? ro->ro_rt->rt_ifp : NULL);
3541
3542 error = ip6_output(m, NULL /*XXX*/, (struct route_in6 *)ro,
3543 0, NULL, NULL);
3544 break;
3545 #endif
3546 default:
3547 error = EAFNOSUPPORT;
3548 break;
3549 }
3550 return (error);
3551 }
3552