tcp_input.c revision 1.11 1 /* $NetBSD: tcp_input.c,v 1.11 1994/10/14 16:01:49 mycroft Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the University of
18 * California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * @(#)tcp_input.c 8.5 (Berkeley) 4/10/94
36 */
37
38 #ifndef TUBA_INCLUDE
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/malloc.h>
42 #include <sys/mbuf.h>
43 #include <sys/protosw.h>
44 #include <sys/socket.h>
45 #include <sys/socketvar.h>
46 #include <sys/errno.h>
47
48 #include <net/if.h>
49 #include <net/route.h>
50
51 #include <netinet/in.h>
52 #include <netinet/in_systm.h>
53 #include <netinet/ip.h>
54 #include <netinet/in_pcb.h>
55 #include <netinet/ip_var.h>
56 #include <netinet/tcp.h>
57 #include <netinet/tcp_fsm.h>
58 #include <netinet/tcp_seq.h>
59 #include <netinet/tcp_timer.h>
60 #include <netinet/tcp_var.h>
61 #include <netinet/tcpip.h>
62 #include <netinet/tcp_debug.h>
63
64 int tcprexmtthresh = 3;
65 struct tcpiphdr tcp_saveti;
66 struct inpcb *tcp_last_inpcb = &tcb;
67
68 extern u_long sb_max;
69
70 #endif /* TUBA_INCLUDE */
71 #define TCP_PAWS_IDLE (24 * 24 * 60 * 60 * PR_SLOWHZ)
72
73 /* for modulo comparisons of timestamps */
74 #define TSTMP_LT(a,b) ((int)((a)-(b)) < 0)
75 #define TSTMP_GEQ(a,b) ((int)((a)-(b)) >= 0)
76
77
78 /*
79 * Insert segment ti into reassembly queue of tcp with
80 * control block tp. Return TH_FIN if reassembly now includes
81 * a segment with FIN. The macro form does the common case inline
82 * (segment is the next to be received on an established connection,
83 * and the queue is empty), avoiding linkage into and removal
84 * from the queue and repetition of various conversions.
85 * Set DELACK for segments received in order, but ack immediately
86 * when segments are out of order (so fast retransmit can work).
87 */
88 #define TCP_REASS(tp, ti, m, so, flags) { \
89 if ((ti)->ti_seq == (tp)->rcv_nxt && \
90 (tp)->seg_next == (struct tcpiphdr *)(tp) && \
91 (tp)->t_state == TCPS_ESTABLISHED) { \
92 if ((ti)->ti_flags & TH_PUSH) \
93 tp->t_flags |= TF_ACKNOW; \
94 else \
95 tp->t_flags |= TF_DELACK; \
96 (tp)->rcv_nxt += (ti)->ti_len; \
97 flags = (ti)->ti_flags & TH_FIN; \
98 tcpstat.tcps_rcvpack++;\
99 tcpstat.tcps_rcvbyte += (ti)->ti_len;\
100 sbappend(&(so)->so_rcv, (m)); \
101 sorwakeup(so); \
102 } else { \
103 (flags) = tcp_reass((tp), (ti), (m)); \
104 tp->t_flags |= TF_ACKNOW; \
105 } \
106 }
107 #ifndef TUBA_INCLUDE
108
109 int
110 tcp_reass(tp, ti, m)
111 register struct tcpcb *tp;
112 register struct tcpiphdr *ti;
113 struct mbuf *m;
114 {
115 register struct tcpiphdr *q;
116 struct socket *so = tp->t_inpcb->inp_socket;
117 int flags;
118
119 /*
120 * Call with ti==0 after become established to
121 * force pre-ESTABLISHED data up to user socket.
122 */
123 if (ti == 0)
124 goto present;
125
126 /*
127 * Find a segment which begins after this one does.
128 */
129 for (q = tp->seg_next; q != (struct tcpiphdr *)tp;
130 q = (struct tcpiphdr *)q->ti_next)
131 if (SEQ_GT(q->ti_seq, ti->ti_seq))
132 break;
133
134 /*
135 * If there is a preceding segment, it may provide some of
136 * our data already. If so, drop the data from the incoming
137 * segment. If it provides all of our data, drop us.
138 */
139 if ((struct tcpiphdr *)q->ti_prev != (struct tcpiphdr *)tp) {
140 register int i;
141 q = (struct tcpiphdr *)q->ti_prev;
142 /* conversion to int (in i) handles seq wraparound */
143 i = q->ti_seq + q->ti_len - ti->ti_seq;
144 if (i > 0) {
145 if (i >= ti->ti_len) {
146 tcpstat.tcps_rcvduppack++;
147 tcpstat.tcps_rcvdupbyte += ti->ti_len;
148 m_freem(m);
149 return (0);
150 }
151 m_adj(m, i);
152 ti->ti_len -= i;
153 ti->ti_seq += i;
154 }
155 q = (struct tcpiphdr *)(q->ti_next);
156 }
157 tcpstat.tcps_rcvoopack++;
158 tcpstat.tcps_rcvoobyte += ti->ti_len;
159 REASS_MBUF(ti) = m; /* XXX */
160
161 /*
162 * While we overlap succeeding segments trim them or,
163 * if they are completely covered, dequeue them.
164 */
165 while (q != (struct tcpiphdr *)tp) {
166 register int i = (ti->ti_seq + ti->ti_len) - q->ti_seq;
167 if (i <= 0)
168 break;
169 if (i < q->ti_len) {
170 q->ti_seq += i;
171 q->ti_len -= i;
172 m_adj(REASS_MBUF(q), i);
173 break;
174 }
175 q = (struct tcpiphdr *)q->ti_next;
176 m = REASS_MBUF((struct tcpiphdr *)q->ti_prev);
177 remque(q->ti_prev);
178 m_freem(m);
179 }
180
181 /*
182 * Stick new segment in its place.
183 */
184 insque(ti, q->ti_prev);
185
186 present:
187 /*
188 * Present data to user, advancing rcv_nxt through
189 * completed sequence space.
190 */
191 if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
192 return (0);
193 ti = tp->seg_next;
194 if (ti == (struct tcpiphdr *)tp || ti->ti_seq != tp->rcv_nxt)
195 return (0);
196 if (tp->t_state == TCPS_SYN_RECEIVED && ti->ti_len)
197 return (0);
198 do {
199 tp->rcv_nxt += ti->ti_len;
200 flags = ti->ti_flags & TH_FIN;
201 remque(ti);
202 m = REASS_MBUF(ti);
203 ti = (struct tcpiphdr *)ti->ti_next;
204 if (so->so_state & SS_CANTRCVMORE)
205 m_freem(m);
206 else
207 sbappend(&so->so_rcv, m);
208 } while (ti != (struct tcpiphdr *)tp && ti->ti_seq == tp->rcv_nxt);
209 sorwakeup(so);
210 return (flags);
211 }
212
213 /*
214 * TCP input routine, follows pages 65-76 of the
215 * protocol specification dated September, 1981 very closely.
216 */
217 void
218 tcp_input(m, iphlen)
219 register struct mbuf *m;
220 int iphlen;
221 {
222 register struct tcpiphdr *ti;
223 register struct inpcb *inp;
224 caddr_t optp = NULL;
225 int optlen;
226 int len, tlen, off;
227 register struct tcpcb *tp = 0;
228 register int tiflags;
229 struct socket *so;
230 int todrop, acked, ourfinisacked, needoutput = 0;
231 short ostate;
232 struct in_addr laddr;
233 int dropsocket = 0;
234 int iss = 0;
235 u_long tiwin, ts_val, ts_ecr;
236 int ts_present = 0;
237
238 tcpstat.tcps_rcvtotal++;
239 /*
240 * Get IP and TCP header together in first mbuf.
241 * Note: IP leaves IP header in first mbuf.
242 */
243 ti = mtod(m, struct tcpiphdr *);
244 if (iphlen > sizeof (struct ip))
245 ip_stripoptions(m, (struct mbuf *)0);
246 if (m->m_len < sizeof (struct tcpiphdr)) {
247 if ((m = m_pullup(m, sizeof (struct tcpiphdr))) == 0) {
248 tcpstat.tcps_rcvshort++;
249 return;
250 }
251 ti = mtod(m, struct tcpiphdr *);
252 }
253
254 /*
255 * Checksum extended TCP header and data.
256 */
257 tlen = ((struct ip *)ti)->ip_len;
258 len = sizeof (struct ip) + tlen;
259 ti->ti_next = ti->ti_prev = 0;
260 ti->ti_x1 = 0;
261 ti->ti_len = (u_short)tlen;
262 HTONS(ti->ti_len);
263 if (ti->ti_sum = in_cksum(m, len)) {
264 tcpstat.tcps_rcvbadsum++;
265 goto drop;
266 }
267 #endif /* TUBA_INCLUDE */
268
269 /*
270 * Check that TCP offset makes sense,
271 * pull out TCP options and adjust length. XXX
272 */
273 off = ti->ti_off << 2;
274 if (off < sizeof (struct tcphdr) || off > tlen) {
275 tcpstat.tcps_rcvbadoff++;
276 goto drop;
277 }
278 tlen -= off;
279 ti->ti_len = tlen;
280 if (off > sizeof (struct tcphdr)) {
281 if (m->m_len < sizeof(struct ip) + off) {
282 if ((m = m_pullup(m, sizeof (struct ip) + off)) == 0) {
283 tcpstat.tcps_rcvshort++;
284 return;
285 }
286 ti = mtod(m, struct tcpiphdr *);
287 }
288 optlen = off - sizeof (struct tcphdr);
289 optp = mtod(m, caddr_t) + sizeof (struct tcpiphdr);
290 /*
291 * Do quick retrieval of timestamp options ("options
292 * prediction?"). If timestamp is the only option and it's
293 * formatted as recommended in RFC 1323 appendix A, we
294 * quickly get the values now and not bother calling
295 * tcp_dooptions(), etc.
296 */
297 if ((optlen == TCPOLEN_TSTAMP_APPA ||
298 (optlen > TCPOLEN_TSTAMP_APPA &&
299 optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
300 *(u_long *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
301 (ti->ti_flags & TH_SYN) == 0) {
302 ts_present = 1;
303 ts_val = ntohl(*(u_long *)(optp + 4));
304 ts_ecr = ntohl(*(u_long *)(optp + 8));
305 optp = NULL; /* we've parsed the options */
306 }
307 }
308 tiflags = ti->ti_flags;
309
310 /*
311 * Convert TCP protocol specific fields to host format.
312 */
313 NTOHL(ti->ti_seq);
314 NTOHL(ti->ti_ack);
315 NTOHS(ti->ti_win);
316 NTOHS(ti->ti_urp);
317
318 /*
319 * Locate pcb for segment.
320 */
321 findpcb:
322 inp = tcp_last_inpcb;
323 if (inp->inp_lport != ti->ti_dport ||
324 inp->inp_fport != ti->ti_sport ||
325 inp->inp_faddr.s_addr != ti->ti_src.s_addr ||
326 inp->inp_laddr.s_addr != ti->ti_dst.s_addr) {
327 inp = in_pcblookup(&tcb, ti->ti_src, ti->ti_sport,
328 ti->ti_dst, ti->ti_dport, INPLOOKUP_WILDCARD);
329 if (inp)
330 tcp_last_inpcb = inp;
331 ++tcpstat.tcps_pcbcachemiss;
332 }
333
334 /*
335 * If the state is CLOSED (i.e., TCB does not exist) then
336 * all data in the incoming segment is discarded.
337 * If the TCB exists but is in CLOSED state, it is embryonic,
338 * but should either do a listen or a connect soon.
339 */
340 if (inp == 0)
341 goto dropwithreset;
342 tp = intotcpcb(inp);
343 if (tp == 0)
344 goto dropwithreset;
345 if (tp->t_state == TCPS_CLOSED)
346 goto drop;
347
348 /* Unscale the window into a 32-bit value. */
349 if ((tiflags & TH_SYN) == 0)
350 tiwin = ti->ti_win << tp->snd_scale;
351 else
352 tiwin = ti->ti_win;
353
354 so = inp->inp_socket;
355 if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
356 if (so->so_options & SO_DEBUG) {
357 ostate = tp->t_state;
358 tcp_saveti = *ti;
359 }
360 if (so->so_options & SO_ACCEPTCONN) {
361 so = sonewconn(so, 0);
362 if (so == 0)
363 goto drop;
364 /*
365 * This is ugly, but ....
366 *
367 * Mark socket as temporary until we're
368 * committed to keeping it. The code at
369 * ``drop'' and ``dropwithreset'' check the
370 * flag dropsocket to see if the temporary
371 * socket created here should be discarded.
372 * We mark the socket as discardable until
373 * we're committed to it below in TCPS_LISTEN.
374 */
375 dropsocket++;
376 inp = (struct inpcb *)so->so_pcb;
377 inp->inp_laddr = ti->ti_dst;
378 inp->inp_lport = ti->ti_dport;
379 #if BSD>=43
380 inp->inp_options = ip_srcroute();
381 #endif
382 tp = intotcpcb(inp);
383 tp->t_state = TCPS_LISTEN;
384
385 /* Compute proper scaling value from buffer space
386 */
387 while (tp->request_r_scale < TCP_MAX_WINSHIFT &&
388 TCP_MAXWIN << tp->request_r_scale < so->so_rcv.sb_hiwat)
389 tp->request_r_scale++;
390 }
391 }
392
393 /*
394 * Segment received on connection.
395 * Reset idle time and keep-alive timer.
396 */
397 tp->t_idle = 0;
398 tp->t_timer[TCPT_KEEP] = tcp_keepidle;
399
400 /*
401 * Process options if not in LISTEN state,
402 * else do it below (after getting remote address).
403 */
404 if (optp && tp->t_state != TCPS_LISTEN)
405 tcp_dooptions(tp, optp, optlen, ti,
406 &ts_present, &ts_val, &ts_ecr);
407
408 /*
409 * Header prediction: check for the two common cases
410 * of a uni-directional data xfer. If the packet has
411 * no control flags, is in-sequence, the window didn't
412 * change and we're not retransmitting, it's a
413 * candidate. If the length is zero and the ack moved
414 * forward, we're the sender side of the xfer. Just
415 * free the data acked & wake any higher level process
416 * that was blocked waiting for space. If the length
417 * is non-zero and the ack didn't move, we're the
418 * receiver side. If we're getting packets in-order
419 * (the reassembly queue is empty), add the data to
420 * the socket buffer and note that we need a delayed ack.
421 */
422 if (tp->t_state == TCPS_ESTABLISHED &&
423 (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
424 (!ts_present || TSTMP_GEQ(ts_val, tp->ts_recent)) &&
425 ti->ti_seq == tp->rcv_nxt &&
426 tiwin && tiwin == tp->snd_wnd &&
427 tp->snd_nxt == tp->snd_max) {
428
429 /*
430 * If last ACK falls within this segment's sequence numbers,
431 * record the timestamp.
432 */
433 if (ts_present && SEQ_LEQ(ti->ti_seq, tp->last_ack_sent) &&
434 SEQ_LT(tp->last_ack_sent, ti->ti_seq + ti->ti_len)) {
435 tp->ts_recent_age = tcp_now;
436 tp->ts_recent = ts_val;
437 }
438
439 if (ti->ti_len == 0) {
440 if (SEQ_GT(ti->ti_ack, tp->snd_una) &&
441 SEQ_LEQ(ti->ti_ack, tp->snd_max) &&
442 tp->snd_cwnd >= tp->snd_wnd) {
443 /*
444 * this is a pure ack for outstanding data.
445 */
446 ++tcpstat.tcps_predack;
447 if (ts_present)
448 tcp_xmit_timer(tp, tcp_now-ts_ecr+1);
449 else if (tp->t_rtt &&
450 SEQ_GT(ti->ti_ack, tp->t_rtseq))
451 tcp_xmit_timer(tp, tp->t_rtt);
452 acked = ti->ti_ack - tp->snd_una;
453 tcpstat.tcps_rcvackpack++;
454 tcpstat.tcps_rcvackbyte += acked;
455 sbdrop(&so->so_snd, acked);
456 tp->snd_una = ti->ti_ack;
457 m_freem(m);
458
459 /*
460 * If all outstanding data are acked, stop
461 * retransmit timer, otherwise restart timer
462 * using current (possibly backed-off) value.
463 * If process is waiting for space,
464 * wakeup/selwakeup/signal. If data
465 * are ready to send, let tcp_output
466 * decide between more output or persist.
467 */
468 if (tp->snd_una == tp->snd_max)
469 tp->t_timer[TCPT_REXMT] = 0;
470 else if (tp->t_timer[TCPT_PERSIST] == 0)
471 tp->t_timer[TCPT_REXMT] = tp->t_rxtcur;
472
473 if (so->so_snd.sb_flags & SB_NOTIFY)
474 sowwakeup(so);
475 if (so->so_snd.sb_cc)
476 (void) tcp_output(tp);
477 return;
478 }
479 } else if (ti->ti_ack == tp->snd_una &&
480 tp->seg_next == (struct tcpiphdr *)tp &&
481 ti->ti_len <= sbspace(&so->so_rcv)) {
482 /*
483 * this is a pure, in-sequence data packet
484 * with nothing on the reassembly queue and
485 * we have enough buffer space to take it.
486 */
487 ++tcpstat.tcps_preddat;
488 tp->rcv_nxt += ti->ti_len;
489 tcpstat.tcps_rcvpack++;
490 tcpstat.tcps_rcvbyte += ti->ti_len;
491 /*
492 * Drop TCP, IP headers and TCP options then add data
493 * to socket buffer.
494 */
495 m->m_data += sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);
496 m->m_len -= sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);
497 sbappend(&so->so_rcv, m);
498 sorwakeup(so);
499 if (ti->ti_flags & TH_PUSH)
500 tp->t_flags |= TF_ACKNOW;
501 else
502 tp->t_flags |= TF_DELACK;
503 return;
504 }
505 }
506
507 /*
508 * Drop TCP, IP headers and TCP options.
509 */
510 m->m_data += sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);
511 m->m_len -= sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);
512
513 /*
514 * Calculate amount of space in receive window,
515 * and then do TCP input processing.
516 * Receive window is amount of space in rcv queue,
517 * but not less than advertised window.
518 */
519 { int win;
520
521 win = sbspace(&so->so_rcv);
522 if (win < 0)
523 win = 0;
524 tp->rcv_wnd = max(win, (int)(tp->rcv_adv - tp->rcv_nxt));
525 }
526
527 switch (tp->t_state) {
528
529 /*
530 * If the state is LISTEN then ignore segment if it contains an RST.
531 * If the segment contains an ACK then it is bad and send a RST.
532 * If it does not contain a SYN then it is not interesting; drop it.
533 * Don't bother responding if the destination was a broadcast.
534 * Otherwise initialize tp->rcv_nxt, and tp->irs, select an initial
535 * tp->iss, and send a segment:
536 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
537 * Also initialize tp->snd_nxt to tp->iss+1 and tp->snd_una to tp->iss.
538 * Fill in remote peer address fields if not previously specified.
539 * Enter SYN_RECEIVED state, and process any other fields of this
540 * segment in this state.
541 */
542 case TCPS_LISTEN: {
543 struct mbuf *am;
544 register struct sockaddr_in *sin;
545
546 if (tiflags & TH_RST)
547 goto drop;
548 if (tiflags & TH_ACK)
549 goto dropwithreset;
550 if ((tiflags & TH_SYN) == 0)
551 goto drop;
552 /*
553 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
554 * in_broadcast() should never return true on a received
555 * packet with M_BCAST not set.
556 */
557 if (m->m_flags & (M_BCAST|M_MCAST) ||
558 IN_MULTICAST(ntohl(ti->ti_dst.s_addr)))
559 goto drop;
560 am = m_get(M_DONTWAIT, MT_SONAME); /* XXX */
561 if (am == NULL)
562 goto drop;
563 am->m_len = sizeof (struct sockaddr_in);
564 sin = mtod(am, struct sockaddr_in *);
565 sin->sin_family = AF_INET;
566 sin->sin_len = sizeof(*sin);
567 sin->sin_addr = ti->ti_src;
568 sin->sin_port = ti->ti_sport;
569 bzero((caddr_t)sin->sin_zero, sizeof(sin->sin_zero));
570 laddr = inp->inp_laddr;
571 if (inp->inp_laddr.s_addr == INADDR_ANY)
572 inp->inp_laddr = ti->ti_dst;
573 if (in_pcbconnect(inp, am)) {
574 inp->inp_laddr = laddr;
575 (void) m_free(am);
576 goto drop;
577 }
578 (void) m_free(am);
579 tp->t_template = tcp_template(tp);
580 if (tp->t_template == 0) {
581 tp = tcp_drop(tp, ENOBUFS);
582 dropsocket = 0; /* socket is already gone */
583 goto drop;
584 }
585 if (optp)
586 tcp_dooptions(tp, optp, optlen, ti,
587 &ts_present, &ts_val, &ts_ecr);
588 if (iss)
589 tp->iss = iss;
590 else
591 tp->iss = tcp_iss;
592 tcp_iss += TCP_ISSINCR/2;
593 tp->irs = ti->ti_seq;
594 tcp_sendseqinit(tp);
595 tcp_rcvseqinit(tp);
596 tp->t_flags |= TF_ACKNOW;
597 tp->t_state = TCPS_SYN_RECEIVED;
598 tp->t_timer[TCPT_KEEP] = TCPTV_KEEP_INIT;
599 dropsocket = 0; /* committed to socket */
600 tcpstat.tcps_accepts++;
601 goto trimthenstep6;
602 }
603
604 /*
605 * If the state is SYN_SENT:
606 * if seg contains an ACK, but not for our SYN, drop the input.
607 * if seg contains a RST, then drop the connection.
608 * if seg does not contain SYN, then drop it.
609 * Otherwise this is an acceptable SYN segment
610 * initialize tp->rcv_nxt and tp->irs
611 * if seg contains ack then advance tp->snd_una
612 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
613 * arrange for segment to be acked (eventually)
614 * continue processing rest of data/controls, beginning with URG
615 */
616 case TCPS_SYN_SENT:
617 if ((tiflags & TH_ACK) &&
618 (SEQ_LEQ(ti->ti_ack, tp->iss) ||
619 SEQ_GT(ti->ti_ack, tp->snd_max)))
620 goto dropwithreset;
621 if (tiflags & TH_RST) {
622 if (tiflags & TH_ACK)
623 tp = tcp_drop(tp, ECONNREFUSED);
624 goto drop;
625 }
626 if ((tiflags & TH_SYN) == 0)
627 goto drop;
628 if (tiflags & TH_ACK) {
629 tp->snd_una = ti->ti_ack;
630 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
631 tp->snd_nxt = tp->snd_una;
632 }
633 tp->t_timer[TCPT_REXMT] = 0;
634 tp->irs = ti->ti_seq;
635 tcp_rcvseqinit(tp);
636 tp->t_flags |= TF_ACKNOW;
637 if (tiflags & TH_ACK && SEQ_GT(tp->snd_una, tp->iss)) {
638 tcpstat.tcps_connects++;
639 soisconnected(so);
640 tp->t_state = TCPS_ESTABLISHED;
641 /* Do window scaling on this connection? */
642 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
643 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
644 tp->snd_scale = tp->requested_s_scale;
645 tp->rcv_scale = tp->request_r_scale;
646 }
647 (void) tcp_reass(tp, (struct tcpiphdr *)0,
648 (struct mbuf *)0);
649 /*
650 * if we didn't have to retransmit the SYN,
651 * use its rtt as our initial srtt & rtt var.
652 */
653 if (tp->t_rtt)
654 tcp_xmit_timer(tp, tp->t_rtt);
655 } else
656 tp->t_state = TCPS_SYN_RECEIVED;
657
658 trimthenstep6:
659 /*
660 * Advance ti->ti_seq to correspond to first data byte.
661 * If data, trim to stay within window,
662 * dropping FIN if necessary.
663 */
664 ti->ti_seq++;
665 if (ti->ti_len > tp->rcv_wnd) {
666 todrop = ti->ti_len - tp->rcv_wnd;
667 m_adj(m, -todrop);
668 ti->ti_len = tp->rcv_wnd;
669 tiflags &= ~TH_FIN;
670 tcpstat.tcps_rcvpackafterwin++;
671 tcpstat.tcps_rcvbyteafterwin += todrop;
672 }
673 tp->snd_wl1 = ti->ti_seq - 1;
674 tp->rcv_up = ti->ti_seq;
675 goto step6;
676 }
677
678 /*
679 * States other than LISTEN or SYN_SENT.
680 * First check timestamp, if present.
681 * Then check that at least some bytes of segment are within
682 * receive window. If segment begins before rcv_nxt,
683 * drop leading data (and SYN); if nothing left, just ack.
684 *
685 * RFC 1323 PAWS: If we have a timestamp reply on this segment
686 * and it's less than ts_recent, drop it.
687 */
688 if (ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
689 TSTMP_LT(ts_val, tp->ts_recent)) {
690
691 /* Check to see if ts_recent is over 24 days old. */
692 if ((int)(tcp_now - tp->ts_recent_age) > TCP_PAWS_IDLE) {
693 /*
694 * Invalidate ts_recent. If this segment updates
695 * ts_recent, the age will be reset later and ts_recent
696 * will get a valid value. If it does not, setting
697 * ts_recent to zero will at least satisfy the
698 * requirement that zero be placed in the timestamp
699 * echo reply when ts_recent isn't valid. The
700 * age isn't reset until we get a valid ts_recent
701 * because we don't want out-of-order segments to be
702 * dropped when ts_recent is old.
703 */
704 tp->ts_recent = 0;
705 } else {
706 tcpstat.tcps_rcvduppack++;
707 tcpstat.tcps_rcvdupbyte += ti->ti_len;
708 tcpstat.tcps_pawsdrop++;
709 goto dropafterack;
710 }
711 }
712
713 todrop = tp->rcv_nxt - ti->ti_seq;
714 if (todrop > 0) {
715 if (tiflags & TH_SYN) {
716 tiflags &= ~TH_SYN;
717 ti->ti_seq++;
718 if (ti->ti_urp > 1)
719 ti->ti_urp--;
720 else
721 tiflags &= ~TH_URG;
722 todrop--;
723 }
724 if (todrop >= ti->ti_len) {
725 /*
726 * Any valid FIN must be to the left of the
727 * window. At this point, FIN must be a
728 * duplicate or out-of-sequence, so drop it.
729 */
730 tiflags &= ~TH_FIN;
731 /*
732 * Send ACK to resynchronize, and drop any data,
733 * but keep on processing for RST or ACK.
734 */
735 tp->t_flags |= TF_ACKNOW;
736 tcpstat.tcps_rcvdupbyte += todrop = ti->ti_len;
737 tcpstat.tcps_rcvduppack++;
738 } else {
739 tcpstat.tcps_rcvpartduppack++;
740 tcpstat.tcps_rcvpartdupbyte += todrop;
741 }
742 m_adj(m, todrop);
743 ti->ti_seq += todrop;
744 ti->ti_len -= todrop;
745 if (ti->ti_urp > todrop)
746 ti->ti_urp -= todrop;
747 else {
748 tiflags &= ~TH_URG;
749 ti->ti_urp = 0;
750 }
751 }
752
753 /*
754 * If new data are received on a connection after the
755 * user processes are gone, then RST the other end.
756 */
757 if ((so->so_state & SS_NOFDREF) &&
758 tp->t_state > TCPS_CLOSE_WAIT && ti->ti_len) {
759 tp = tcp_close(tp);
760 tcpstat.tcps_rcvafterclose++;
761 goto dropwithreset;
762 }
763
764 /*
765 * If segment ends after window, drop trailing data
766 * (and PUSH and FIN); if nothing left, just ACK.
767 */
768 todrop = (ti->ti_seq+ti->ti_len) - (tp->rcv_nxt+tp->rcv_wnd);
769 if (todrop > 0) {
770 tcpstat.tcps_rcvpackafterwin++;
771 if (todrop >= ti->ti_len) {
772 tcpstat.tcps_rcvbyteafterwin += ti->ti_len;
773 /*
774 * If a new connection request is received
775 * while in TIME_WAIT, drop the old connection
776 * and start over if the sequence numbers
777 * are above the previous ones.
778 */
779 if (tiflags & TH_SYN &&
780 tp->t_state == TCPS_TIME_WAIT &&
781 SEQ_GT(ti->ti_seq, tp->rcv_nxt)) {
782 iss = tp->rcv_nxt + TCP_ISSINCR;
783 tp = tcp_close(tp);
784 goto findpcb;
785 }
786 /*
787 * If window is closed can only take segments at
788 * window edge, and have to drop data and PUSH from
789 * incoming segments. Continue processing, but
790 * remember to ack. Otherwise, drop segment
791 * and ack.
792 */
793 if (tp->rcv_wnd == 0 && ti->ti_seq == tp->rcv_nxt) {
794 tp->t_flags |= TF_ACKNOW;
795 tcpstat.tcps_rcvwinprobe++;
796 } else
797 goto dropafterack;
798 } else
799 tcpstat.tcps_rcvbyteafterwin += todrop;
800 m_adj(m, -todrop);
801 ti->ti_len -= todrop;
802 tiflags &= ~(TH_PUSH|TH_FIN);
803 }
804
805 /*
806 * If last ACK falls within this segment's sequence numbers,
807 * record its timestamp.
808 */
809 if (ts_present && SEQ_LEQ(ti->ti_seq, tp->last_ack_sent) &&
810 SEQ_LT(tp->last_ack_sent, ti->ti_seq + ti->ti_len +
811 ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
812 tp->ts_recent_age = tcp_now;
813 tp->ts_recent = ts_val;
814 }
815
816 /*
817 * If the RST bit is set examine the state:
818 * SYN_RECEIVED STATE:
819 * If passive open, return to LISTEN state.
820 * If active open, inform user that connection was refused.
821 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
822 * Inform user that connection was reset, and close tcb.
823 * CLOSING, LAST_ACK, TIME_WAIT STATES
824 * Close the tcb.
825 */
826 if (tiflags&TH_RST) switch (tp->t_state) {
827
828 case TCPS_SYN_RECEIVED:
829 so->so_error = ECONNREFUSED;
830 goto close;
831
832 case TCPS_ESTABLISHED:
833 case TCPS_FIN_WAIT_1:
834 case TCPS_FIN_WAIT_2:
835 case TCPS_CLOSE_WAIT:
836 so->so_error = ECONNRESET;
837 close:
838 tp->t_state = TCPS_CLOSED;
839 tcpstat.tcps_drops++;
840 tp = tcp_close(tp);
841 goto drop;
842
843 case TCPS_CLOSING:
844 case TCPS_LAST_ACK:
845 case TCPS_TIME_WAIT:
846 tp = tcp_close(tp);
847 goto drop;
848 }
849
850 /*
851 * If a SYN is in the window, then this is an
852 * error and we send an RST and drop the connection.
853 */
854 if (tiflags & TH_SYN) {
855 tp = tcp_drop(tp, ECONNRESET);
856 goto dropwithreset;
857 }
858
859 /*
860 * If the ACK bit is off we drop the segment and return.
861 */
862 if ((tiflags & TH_ACK) == 0)
863 goto drop;
864
865 /*
866 * Ack processing.
867 */
868 switch (tp->t_state) {
869
870 /*
871 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
872 * ESTABLISHED state and continue processing, otherwise
873 * send an RST.
874 */
875 case TCPS_SYN_RECEIVED:
876 if (SEQ_GT(tp->snd_una, ti->ti_ack) ||
877 SEQ_GT(ti->ti_ack, tp->snd_max))
878 goto dropwithreset;
879 tcpstat.tcps_connects++;
880 soisconnected(so);
881 tp->t_state = TCPS_ESTABLISHED;
882 /* Do window scaling? */
883 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
884 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
885 tp->snd_scale = tp->requested_s_scale;
886 tp->rcv_scale = tp->request_r_scale;
887 }
888 (void) tcp_reass(tp, (struct tcpiphdr *)0, (struct mbuf *)0);
889 tp->snd_wl1 = ti->ti_seq - 1;
890 /* fall into ... */
891
892 /*
893 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
894 * ACKs. If the ack is in the range
895 * tp->snd_una < ti->ti_ack <= tp->snd_max
896 * then advance tp->snd_una to ti->ti_ack and drop
897 * data from the retransmission queue. If this ACK reflects
898 * more up to date window information we update our window information.
899 */
900 case TCPS_ESTABLISHED:
901 case TCPS_FIN_WAIT_1:
902 case TCPS_FIN_WAIT_2:
903 case TCPS_CLOSE_WAIT:
904 case TCPS_CLOSING:
905 case TCPS_LAST_ACK:
906 case TCPS_TIME_WAIT:
907
908 if (SEQ_LEQ(ti->ti_ack, tp->snd_una)) {
909 if (ti->ti_len == 0 && tiwin == tp->snd_wnd) {
910 tcpstat.tcps_rcvdupack++;
911 /*
912 * If we have outstanding data (other than
913 * a window probe), this is a completely
914 * duplicate ack (ie, window info didn't
915 * change), the ack is the biggest we've
916 * seen and we've seen exactly our rexmt
917 * threshhold of them, assume a packet
918 * has been dropped and retransmit it.
919 * Kludge snd_nxt & the congestion
920 * window so we send only this one
921 * packet.
922 *
923 * We know we're losing at the current
924 * window size so do congestion avoidance
925 * (set ssthresh to half the current window
926 * and pull our congestion window back to
927 * the new ssthresh).
928 *
929 * Dup acks mean that packets have left the
930 * network (they're now cached at the receiver)
931 * so bump cwnd by the amount in the receiver
932 * to keep a constant cwnd packets in the
933 * network.
934 */
935 if (tp->t_timer[TCPT_REXMT] == 0 ||
936 ti->ti_ack != tp->snd_una)
937 tp->t_dupacks = 0;
938 else if (++tp->t_dupacks == tcprexmtthresh) {
939 tcp_seq onxt = tp->snd_nxt;
940 u_int win =
941 min(tp->snd_wnd, tp->snd_cwnd) / 2 /
942 tp->t_maxseg;
943
944 if (win < 2)
945 win = 2;
946 tp->snd_ssthresh = win * tp->t_maxseg;
947 tp->t_timer[TCPT_REXMT] = 0;
948 tp->t_rtt = 0;
949 tp->snd_nxt = ti->ti_ack;
950 tp->snd_cwnd = tp->t_maxseg;
951 (void) tcp_output(tp);
952 tp->snd_cwnd = tp->snd_ssthresh +
953 tp->t_maxseg * tp->t_dupacks;
954 if (SEQ_GT(onxt, tp->snd_nxt))
955 tp->snd_nxt = onxt;
956 goto drop;
957 } else if (tp->t_dupacks > tcprexmtthresh) {
958 tp->snd_cwnd += tp->t_maxseg;
959 (void) tcp_output(tp);
960 goto drop;
961 }
962 } else
963 tp->t_dupacks = 0;
964 break;
965 }
966 /*
967 * If the congestion window was inflated to account
968 * for the other side's cached packets, retract it.
969 */
970 if (tp->t_dupacks > tcprexmtthresh &&
971 tp->snd_cwnd > tp->snd_ssthresh)
972 tp->snd_cwnd = tp->snd_ssthresh;
973 tp->t_dupacks = 0;
974 if (SEQ_GT(ti->ti_ack, tp->snd_max)) {
975 tcpstat.tcps_rcvacktoomuch++;
976 goto dropafterack;
977 }
978 acked = ti->ti_ack - tp->snd_una;
979 tcpstat.tcps_rcvackpack++;
980 tcpstat.tcps_rcvackbyte += acked;
981
982 /*
983 * If we have a timestamp reply, update smoothed
984 * round trip time. If no timestamp is present but
985 * transmit timer is running and timed sequence
986 * number was acked, update smoothed round trip time.
987 * Since we now have an rtt measurement, cancel the
988 * timer backoff (cf., Phil Karn's retransmit alg.).
989 * Recompute the initial retransmit timer.
990 */
991 if (ts_present)
992 tcp_xmit_timer(tp, tcp_now-ts_ecr+1);
993 else if (tp->t_rtt && SEQ_GT(ti->ti_ack, tp->t_rtseq))
994 tcp_xmit_timer(tp,tp->t_rtt);
995
996 /*
997 * If all outstanding data is acked, stop retransmit
998 * timer and remember to restart (more output or persist).
999 * If there is more data to be acked, restart retransmit
1000 * timer, using current (possibly backed-off) value.
1001 */
1002 if (ti->ti_ack == tp->snd_max) {
1003 tp->t_timer[TCPT_REXMT] = 0;
1004 needoutput = 1;
1005 } else if (tp->t_timer[TCPT_PERSIST] == 0)
1006 tp->t_timer[TCPT_REXMT] = tp->t_rxtcur;
1007 /*
1008 * When new data is acked, open the congestion window.
1009 * If the window gives us less than ssthresh packets
1010 * in flight, open exponentially (maxseg per packet).
1011 * Otherwise open linearly: maxseg per window
1012 * (maxseg^2 / cwnd per packet), plus a constant
1013 * fraction of a packet (maxseg/8) to help larger windows
1014 * open quickly enough.
1015 */
1016 {
1017 register u_int cw = tp->snd_cwnd;
1018 register u_int incr = tp->t_maxseg;
1019
1020 if (cw > tp->snd_ssthresh)
1021 incr = incr * incr / cw + incr / 8;
1022 tp->snd_cwnd = min(cw + incr, TCP_MAXWIN<<tp->snd_scale);
1023 }
1024 if (acked > so->so_snd.sb_cc) {
1025 tp->snd_wnd -= so->so_snd.sb_cc;
1026 sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
1027 ourfinisacked = 1;
1028 } else {
1029 sbdrop(&so->so_snd, acked);
1030 tp->snd_wnd -= acked;
1031 ourfinisacked = 0;
1032 }
1033 if (so->so_snd.sb_flags & SB_NOTIFY)
1034 sowwakeup(so);
1035 tp->snd_una = ti->ti_ack;
1036 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1037 tp->snd_nxt = tp->snd_una;
1038
1039 switch (tp->t_state) {
1040
1041 /*
1042 * In FIN_WAIT_1 STATE in addition to the processing
1043 * for the ESTABLISHED state if our FIN is now acknowledged
1044 * then enter FIN_WAIT_2.
1045 */
1046 case TCPS_FIN_WAIT_1:
1047 if (ourfinisacked) {
1048 /*
1049 * If we can't receive any more
1050 * data, then closing user can proceed.
1051 * Starting the timer is contrary to the
1052 * specification, but if we don't get a FIN
1053 * we'll hang forever.
1054 */
1055 if (so->so_state & SS_CANTRCVMORE) {
1056 soisdisconnected(so);
1057 tp->t_timer[TCPT_2MSL] = tcp_maxidle;
1058 }
1059 tp->t_state = TCPS_FIN_WAIT_2;
1060 }
1061 break;
1062
1063 /*
1064 * In CLOSING STATE in addition to the processing for
1065 * the ESTABLISHED state if the ACK acknowledges our FIN
1066 * then enter the TIME-WAIT state, otherwise ignore
1067 * the segment.
1068 */
1069 case TCPS_CLOSING:
1070 if (ourfinisacked) {
1071 tp->t_state = TCPS_TIME_WAIT;
1072 tcp_canceltimers(tp);
1073 tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
1074 soisdisconnected(so);
1075 }
1076 break;
1077
1078 /*
1079 * In LAST_ACK, we may still be waiting for data to drain
1080 * and/or to be acked, as well as for the ack of our FIN.
1081 * If our FIN is now acknowledged, delete the TCB,
1082 * enter the closed state and return.
1083 */
1084 case TCPS_LAST_ACK:
1085 if (ourfinisacked) {
1086 tp = tcp_close(tp);
1087 goto drop;
1088 }
1089 break;
1090
1091 /*
1092 * In TIME_WAIT state the only thing that should arrive
1093 * is a retransmission of the remote FIN. Acknowledge
1094 * it and restart the finack timer.
1095 */
1096 case TCPS_TIME_WAIT:
1097 tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
1098 goto dropafterack;
1099 }
1100 }
1101
1102 step6:
1103 /*
1104 * Update window information.
1105 * Don't look at window if no ACK: TAC's send garbage on first SYN.
1106 */
1107 if ((tiflags & TH_ACK) &&
1108 (SEQ_LT(tp->snd_wl1, ti->ti_seq) || tp->snd_wl1 == ti->ti_seq &&
1109 (SEQ_LT(tp->snd_wl2, ti->ti_ack) ||
1110 tp->snd_wl2 == ti->ti_ack && tiwin > tp->snd_wnd))) {
1111 /* keep track of pure window updates */
1112 if (ti->ti_len == 0 &&
1113 tp->snd_wl2 == ti->ti_ack && tiwin > tp->snd_wnd)
1114 tcpstat.tcps_rcvwinupd++;
1115 tp->snd_wnd = tiwin;
1116 tp->snd_wl1 = ti->ti_seq;
1117 tp->snd_wl2 = ti->ti_ack;
1118 if (tp->snd_wnd > tp->max_sndwnd)
1119 tp->max_sndwnd = tp->snd_wnd;
1120 needoutput = 1;
1121 }
1122
1123 /*
1124 * Process segments with URG.
1125 */
1126 if ((tiflags & TH_URG) && ti->ti_urp &&
1127 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1128 /*
1129 * This is a kludge, but if we receive and accept
1130 * random urgent pointers, we'll crash in
1131 * soreceive. It's hard to imagine someone
1132 * actually wanting to send this much urgent data.
1133 */
1134 if (ti->ti_urp + so->so_rcv.sb_cc > sb_max) {
1135 ti->ti_urp = 0; /* XXX */
1136 tiflags &= ~TH_URG; /* XXX */
1137 goto dodata; /* XXX */
1138 }
1139 /*
1140 * If this segment advances the known urgent pointer,
1141 * then mark the data stream. This should not happen
1142 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
1143 * a FIN has been received from the remote side.
1144 * In these states we ignore the URG.
1145 *
1146 * According to RFC961 (Assigned Protocols),
1147 * the urgent pointer points to the last octet
1148 * of urgent data. We continue, however,
1149 * to consider it to indicate the first octet
1150 * of data past the urgent section as the original
1151 * spec states (in one of two places).
1152 */
1153 if (SEQ_GT(ti->ti_seq+ti->ti_urp, tp->rcv_up)) {
1154 tp->rcv_up = ti->ti_seq + ti->ti_urp;
1155 so->so_oobmark = so->so_rcv.sb_cc +
1156 (tp->rcv_up - tp->rcv_nxt) - 1;
1157 if (so->so_oobmark == 0)
1158 so->so_state |= SS_RCVATMARK;
1159 sohasoutofband(so);
1160 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
1161 }
1162 /*
1163 * Remove out of band data so doesn't get presented to user.
1164 * This can happen independent of advancing the URG pointer,
1165 * but if two URG's are pending at once, some out-of-band
1166 * data may creep in... ick.
1167 */
1168 if (ti->ti_urp <= ti->ti_len
1169 #ifdef SO_OOBINLINE
1170 && (so->so_options & SO_OOBINLINE) == 0
1171 #endif
1172 )
1173 tcp_pulloutofband(so, ti, m);
1174 } else
1175 /*
1176 * If no out of band data is expected,
1177 * pull receive urgent pointer along
1178 * with the receive window.
1179 */
1180 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
1181 tp->rcv_up = tp->rcv_nxt;
1182 dodata: /* XXX */
1183
1184 /*
1185 * Process the segment text, merging it into the TCP sequencing queue,
1186 * and arranging for acknowledgment of receipt if necessary.
1187 * This process logically involves adjusting tp->rcv_wnd as data
1188 * is presented to the user (this happens in tcp_usrreq.c,
1189 * case PRU_RCVD). If a FIN has already been received on this
1190 * connection then we just ignore the text.
1191 */
1192 if ((ti->ti_len || (tiflags&TH_FIN)) &&
1193 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1194 TCP_REASS(tp, ti, m, so, tiflags);
1195 /*
1196 * Note the amount of data that peer has sent into
1197 * our window, in order to estimate the sender's
1198 * buffer size.
1199 */
1200 len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
1201 } else {
1202 m_freem(m);
1203 tiflags &= ~TH_FIN;
1204 }
1205
1206 /*
1207 * If FIN is received ACK the FIN and let the user know
1208 * that the connection is closing.
1209 */
1210 if (tiflags & TH_FIN) {
1211 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1212 socantrcvmore(so);
1213 tp->t_flags |= TF_ACKNOW;
1214 tp->rcv_nxt++;
1215 }
1216 switch (tp->t_state) {
1217
1218 /*
1219 * In SYN_RECEIVED and ESTABLISHED STATES
1220 * enter the CLOSE_WAIT state.
1221 */
1222 case TCPS_SYN_RECEIVED:
1223 case TCPS_ESTABLISHED:
1224 tp->t_state = TCPS_CLOSE_WAIT;
1225 break;
1226
1227 /*
1228 * If still in FIN_WAIT_1 STATE FIN has not been acked so
1229 * enter the CLOSING state.
1230 */
1231 case TCPS_FIN_WAIT_1:
1232 tp->t_state = TCPS_CLOSING;
1233 break;
1234
1235 /*
1236 * In FIN_WAIT_2 state enter the TIME_WAIT state,
1237 * starting the time-wait timer, turning off the other
1238 * standard timers.
1239 */
1240 case TCPS_FIN_WAIT_2:
1241 tp->t_state = TCPS_TIME_WAIT;
1242 tcp_canceltimers(tp);
1243 tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
1244 soisdisconnected(so);
1245 break;
1246
1247 /*
1248 * In TIME_WAIT state restart the 2 MSL time_wait timer.
1249 */
1250 case TCPS_TIME_WAIT:
1251 tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
1252 break;
1253 }
1254 }
1255 if (so->so_options & SO_DEBUG)
1256 tcp_trace(TA_INPUT, ostate, tp, &tcp_saveti, 0);
1257
1258 /*
1259 * Return any desired output.
1260 */
1261 if (needoutput || (tp->t_flags & TF_ACKNOW))
1262 (void) tcp_output(tp);
1263 return;
1264
1265 dropafterack:
1266 /*
1267 * Generate an ACK dropping incoming segment if it occupies
1268 * sequence space, where the ACK reflects our state.
1269 */
1270 if (tiflags & TH_RST)
1271 goto drop;
1272 m_freem(m);
1273 tp->t_flags |= TF_ACKNOW;
1274 (void) tcp_output(tp);
1275 return;
1276
1277 dropwithreset:
1278 /*
1279 * Generate a RST, dropping incoming segment.
1280 * Make ACK acceptable to originator of segment.
1281 * Don't bother to respond if destination was broadcast/multicast.
1282 */
1283 if ((tiflags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST) ||
1284 IN_MULTICAST(ntohl(ti->ti_dst.s_addr)))
1285 goto drop;
1286 if (tiflags & TH_ACK)
1287 tcp_respond(tp, ti, m, (tcp_seq)0, ti->ti_ack, TH_RST);
1288 else {
1289 if (tiflags & TH_SYN)
1290 ti->ti_len++;
1291 tcp_respond(tp, ti, m, ti->ti_seq+ti->ti_len, (tcp_seq)0,
1292 TH_RST|TH_ACK);
1293 }
1294 /* destroy temporarily created socket */
1295 if (dropsocket)
1296 (void) soabort(so);
1297 return;
1298
1299 drop:
1300 /*
1301 * Drop space held by incoming segment and return.
1302 */
1303 if (tp && (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
1304 tcp_trace(TA_DROP, ostate, tp, &tcp_saveti, 0);
1305 m_freem(m);
1306 /* destroy temporarily created socket */
1307 if (dropsocket)
1308 (void) soabort(so);
1309 return;
1310 #ifndef TUBA_INCLUDE
1311 }
1312
1313 void
1314 tcp_dooptions(tp, cp, cnt, ti, ts_present, ts_val, ts_ecr)
1315 struct tcpcb *tp;
1316 u_char *cp;
1317 int cnt;
1318 struct tcpiphdr *ti;
1319 int *ts_present;
1320 u_long *ts_val, *ts_ecr;
1321 {
1322 u_short mss;
1323 int opt, optlen;
1324
1325 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1326 opt = cp[0];
1327 if (opt == TCPOPT_EOL)
1328 break;
1329 if (opt == TCPOPT_NOP)
1330 optlen = 1;
1331 else {
1332 optlen = cp[1];
1333 if (optlen <= 0)
1334 break;
1335 }
1336 switch (opt) {
1337
1338 default:
1339 continue;
1340
1341 case TCPOPT_MAXSEG:
1342 if (optlen != TCPOLEN_MAXSEG)
1343 continue;
1344 if (!(ti->ti_flags & TH_SYN))
1345 continue;
1346 bcopy((char *) cp + 2, (char *) &mss, sizeof(mss));
1347 NTOHS(mss);
1348 (void) tcp_mss(tp, mss); /* sets t_maxseg */
1349 break;
1350
1351 case TCPOPT_WINDOW:
1352 if (optlen != TCPOLEN_WINDOW)
1353 continue;
1354 if (!(ti->ti_flags & TH_SYN))
1355 continue;
1356 tp->t_flags |= TF_RCVD_SCALE;
1357 tp->requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT);
1358 break;
1359
1360 case TCPOPT_TIMESTAMP:
1361 if (optlen != TCPOLEN_TIMESTAMP)
1362 continue;
1363 *ts_present = 1;
1364 bcopy((char *)cp + 2, (char *) ts_val, sizeof(*ts_val));
1365 NTOHL(*ts_val);
1366 bcopy((char *)cp + 6, (char *) ts_ecr, sizeof(*ts_ecr));
1367 NTOHL(*ts_ecr);
1368
1369 /*
1370 * A timestamp received in a SYN makes
1371 * it ok to send timestamp requests and replies.
1372 */
1373 if (ti->ti_flags & TH_SYN) {
1374 tp->t_flags |= TF_RCVD_TSTMP;
1375 tp->ts_recent = *ts_val;
1376 tp->ts_recent_age = tcp_now;
1377 }
1378 break;
1379 }
1380 }
1381 }
1382
1383 /*
1384 * Pull out of band byte out of a segment so
1385 * it doesn't appear in the user's data queue.
1386 * It is still reflected in the segment length for
1387 * sequencing purposes.
1388 */
1389 void
1390 tcp_pulloutofband(so, ti, m)
1391 struct socket *so;
1392 struct tcpiphdr *ti;
1393 register struct mbuf *m;
1394 {
1395 int cnt = ti->ti_urp - 1;
1396
1397 while (cnt >= 0) {
1398 if (m->m_len > cnt) {
1399 char *cp = mtod(m, caddr_t) + cnt;
1400 struct tcpcb *tp = sototcpcb(so);
1401
1402 tp->t_iobc = *cp;
1403 tp->t_oobflags |= TCPOOB_HAVEDATA;
1404 bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
1405 m->m_len--;
1406 return;
1407 }
1408 cnt -= m->m_len;
1409 m = m->m_next;
1410 if (m == 0)
1411 break;
1412 }
1413 panic("tcp_pulloutofband");
1414 }
1415
1416 /*
1417 * Collect new round-trip time estimate
1418 * and update averages and current timeout.
1419 */
1420 void
1421 tcp_xmit_timer(tp, rtt)
1422 register struct tcpcb *tp;
1423 short rtt;
1424 {
1425 register short delta;
1426
1427 tcpstat.tcps_rttupdated++;
1428 if (tp->t_srtt != 0) {
1429 /*
1430 * srtt is stored as fixed point with 3 bits after the
1431 * binary point (i.e., scaled by 8). The following magic
1432 * is equivalent to the smoothing algorithm in rfc793 with
1433 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
1434 * point). Adjust rtt to origin 0.
1435 */
1436 delta = rtt - 1 - (tp->t_srtt >> TCP_RTT_SHIFT);
1437 if ((tp->t_srtt += delta) <= 0)
1438 tp->t_srtt = 1;
1439 /*
1440 * We accumulate a smoothed rtt variance (actually, a
1441 * smoothed mean difference), then set the retransmit
1442 * timer to smoothed rtt + 4 times the smoothed variance.
1443 * rttvar is stored as fixed point with 2 bits after the
1444 * binary point (scaled by 4). The following is
1445 * equivalent to rfc793 smoothing with an alpha of .75
1446 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces
1447 * rfc793's wired-in beta.
1448 */
1449 if (delta < 0)
1450 delta = -delta;
1451 delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
1452 if ((tp->t_rttvar += delta) <= 0)
1453 tp->t_rttvar = 1;
1454 } else {
1455 /*
1456 * No rtt measurement yet - use the unsmoothed rtt.
1457 * Set the variance to half the rtt (so our first
1458 * retransmit happens at 3*rtt).
1459 */
1460 tp->t_srtt = rtt << TCP_RTT_SHIFT;
1461 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
1462 }
1463 tp->t_rtt = 0;
1464 tp->t_rxtshift = 0;
1465
1466 /*
1467 * the retransmit should happen at rtt + 4 * rttvar.
1468 * Because of the way we do the smoothing, srtt and rttvar
1469 * will each average +1/2 tick of bias. When we compute
1470 * the retransmit timer, we want 1/2 tick of rounding and
1471 * 1 extra tick because of +-1/2 tick uncertainty in the
1472 * firing of the timer. The bias will give us exactly the
1473 * 1.5 tick we need. But, because the bias is
1474 * statistical, we have to test that we don't drop below
1475 * the minimum feasible timer (which is 2 ticks).
1476 */
1477 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
1478 tp->t_rttmin, TCPTV_REXMTMAX);
1479
1480 /*
1481 * We received an ack for a packet that wasn't retransmitted;
1482 * it is probably safe to discard any error indications we've
1483 * received recently. This isn't quite right, but close enough
1484 * for now (a route might have failed after we sent a segment,
1485 * and the return path might not be symmetrical).
1486 */
1487 tp->t_softerror = 0;
1488 }
1489
1490 /*
1491 * Determine a reasonable value for maxseg size.
1492 * If the route is known, check route for mtu.
1493 * If none, use an mss that can be handled on the outgoing
1494 * interface without forcing IP to fragment; if bigger than
1495 * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
1496 * to utilize large mbufs. If no route is found, route has no mtu,
1497 * or the destination isn't local, use a default, hopefully conservative
1498 * size (usually 512 or the default IP max size, but no more than the mtu
1499 * of the interface), as we can't discover anything about intervening
1500 * gateways or networks. We also initialize the congestion/slow start
1501 * window to be a single segment if the destination isn't local.
1502 * While looking at the routing entry, we also initialize other path-dependent
1503 * parameters from pre-set or cached values in the routing entry.
1504 */
1505 int
1506 tcp_mss(tp, offer)
1507 register struct tcpcb *tp;
1508 u_int offer;
1509 {
1510 struct route *ro;
1511 register struct rtentry *rt;
1512 struct ifnet *ifp;
1513 register int rtt, mss;
1514 u_long bufsize;
1515 struct inpcb *inp;
1516 struct socket *so;
1517 extern int tcp_mssdflt;
1518
1519 inp = tp->t_inpcb;
1520 ro = &inp->inp_route;
1521
1522 if ((rt = ro->ro_rt) == (struct rtentry *)0) {
1523 /* No route yet, so try to acquire one */
1524 if (inp->inp_faddr.s_addr != INADDR_ANY) {
1525 ro->ro_dst.sa_family = AF_INET;
1526 ro->ro_dst.sa_len = sizeof(ro->ro_dst);
1527 ((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
1528 inp->inp_faddr;
1529 rtalloc(ro);
1530 }
1531 if ((rt = ro->ro_rt) == (struct rtentry *)0)
1532 return (tcp_mssdflt);
1533 }
1534 ifp = rt->rt_ifp;
1535 so = inp->inp_socket;
1536
1537 #ifdef RTV_MTU /* if route characteristics exist ... */
1538 /*
1539 * While we're here, check if there's an initial rtt
1540 * or rttvar. Convert from the route-table units
1541 * to scaled multiples of the slow timeout timer.
1542 */
1543 if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
1544 /*
1545 * XXX the lock bit for MTU indicates that the value
1546 * is also a minimum value; this is subject to time.
1547 */
1548 if (rt->rt_rmx.rmx_locks & RTV_RTT)
1549 tp->t_rttmin = rtt / (RTM_RTTUNIT / PR_SLOWHZ);
1550 tp->t_srtt = rtt / (RTM_RTTUNIT / (PR_SLOWHZ * TCP_RTT_SCALE));
1551 if (rt->rt_rmx.rmx_rttvar)
1552 tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
1553 (RTM_RTTUNIT / (PR_SLOWHZ * TCP_RTTVAR_SCALE));
1554 else
1555 /* default variation is +- 1 rtt */
1556 tp->t_rttvar =
1557 tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
1558 TCPT_RANGESET(tp->t_rxtcur,
1559 ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
1560 tp->t_rttmin, TCPTV_REXMTMAX);
1561 }
1562 /*
1563 * if there's an mtu associated with the route, use it
1564 */
1565 if (rt->rt_rmx.rmx_mtu)
1566 mss = rt->rt_rmx.rmx_mtu - sizeof(struct tcpiphdr);
1567 else
1568 #endif /* RTV_MTU */
1569 {
1570 mss = ifp->if_mtu - sizeof(struct tcpiphdr);
1571 #if (MCLBYTES & (MCLBYTES - 1)) == 0
1572 if (mss > MCLBYTES)
1573 mss &= ~(MCLBYTES-1);
1574 #else
1575 if (mss > MCLBYTES)
1576 mss = mss / MCLBYTES * MCLBYTES;
1577 #endif
1578 if (!in_localaddr(inp->inp_faddr))
1579 mss = min(mss, tcp_mssdflt);
1580 }
1581 /*
1582 * The current mss, t_maxseg, is initialized to the default value.
1583 * If we compute a smaller value, reduce the current mss.
1584 * If we compute a larger value, return it for use in sending
1585 * a max seg size option, but don't store it for use
1586 * unless we received an offer at least that large from peer.
1587 * However, do not accept offers under 32 bytes.
1588 */
1589 if (offer)
1590 mss = min(mss, offer);
1591 mss = max(mss, 32); /* sanity */
1592 if (mss < tp->t_maxseg || offer != 0) {
1593 /*
1594 * If there's a pipesize, change the socket buffer
1595 * to that size. Make the socket buffers an integral
1596 * number of mss units; if the mss is larger than
1597 * the socket buffer, decrease the mss.
1598 */
1599 #ifdef RTV_SPIPE
1600 if ((bufsize = rt->rt_rmx.rmx_sendpipe) == 0)
1601 #endif
1602 bufsize = so->so_snd.sb_hiwat;
1603 if (bufsize < mss)
1604 mss = bufsize;
1605 else {
1606 bufsize = roundup(bufsize, mss);
1607 if (bufsize > sb_max)
1608 bufsize = sb_max;
1609 (void)sbreserve(&so->so_snd, bufsize);
1610 }
1611 tp->t_maxseg = mss;
1612
1613 #ifdef RTV_RPIPE
1614 if ((bufsize = rt->rt_rmx.rmx_recvpipe) == 0)
1615 #endif
1616 bufsize = so->so_rcv.sb_hiwat;
1617 if (bufsize > mss) {
1618 bufsize = roundup(bufsize, mss);
1619 if (bufsize > sb_max)
1620 bufsize = sb_max;
1621 (void)sbreserve(&so->so_rcv, bufsize);
1622 }
1623 }
1624 tp->snd_cwnd = mss;
1625
1626 #ifdef RTV_SSTHRESH
1627 if (rt->rt_rmx.rmx_ssthresh) {
1628 /*
1629 * There's some sort of gateway or interface
1630 * buffer limit on the path. Use this to set
1631 * the slow start threshhold, but set the
1632 * threshold to no less than 2*mss.
1633 */
1634 tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
1635 }
1636 #endif /* RTV_MTU */
1637 return (mss);
1638 }
1639 #endif /* TUBA_INCLUDE */
1640