tcp_input.c revision 1.115 1 /* $NetBSD: tcp_input.c,v 1.115 2000/07/27 06:18:13 itojun Exp $ */
2
3 /*
4 %%% portions-copyright-nrl-95
5 Portions of this software are Copyright 1995-1998 by Randall Atkinson,
6 Ronald Lee, Daniel McDonald, Bao Phan, and Chris Winters. All Rights
7 Reserved. All rights under this copyright have been assigned to the US
8 Naval Research Laboratory (NRL). The NRL Copyright Notice and License
9 Agreement Version 1.1 (January 17, 1995) applies to these portions of the
10 software.
11 You should have received a copy of the license with this software. If you
12 didn't get a copy, you may request one from <license (at) ipv6.nrl.navy.mil>.
13
14 */
15
16 /*
17 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
18 * All rights reserved.
19 *
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
23 * 1. Redistributions of source code must retain the above copyright
24 * notice, this list of conditions and the following disclaimer.
25 * 2. Redistributions in binary form must reproduce the above copyright
26 * notice, this list of conditions and the following disclaimer in the
27 * documentation and/or other materials provided with the distribution.
28 * 3. Neither the name of the project nor the names of its contributors
29 * may be used to endorse or promote products derived from this software
30 * without specific prior written permission.
31 *
32 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
33 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
36 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42 * SUCH DAMAGE.
43 */
44
45 /*-
46 * Copyright (c) 1997, 1998, 1999 The NetBSD Foundation, Inc.
47 * All rights reserved.
48 *
49 * This code is derived from software contributed to The NetBSD Foundation
50 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
51 * Facility, NASA Ames Research Center.
52 *
53 * Redistribution and use in source and binary forms, with or without
54 * modification, are permitted provided that the following conditions
55 * are met:
56 * 1. Redistributions of source code must retain the above copyright
57 * notice, this list of conditions and the following disclaimer.
58 * 2. Redistributions in binary form must reproduce the above copyright
59 * notice, this list of conditions and the following disclaimer in the
60 * documentation and/or other materials provided with the distribution.
61 * 3. All advertising materials mentioning features or use of this software
62 * must display the following acknowledgement:
63 * This product includes software developed by the NetBSD
64 * Foundation, Inc. and its contributors.
65 * 4. Neither the name of The NetBSD Foundation nor the names of its
66 * contributors may be used to endorse or promote products derived
67 * from this software without specific prior written permission.
68 *
69 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
70 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
71 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
72 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
73 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
74 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
75 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
76 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
77 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
78 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
79 * POSSIBILITY OF SUCH DAMAGE.
80 */
81
82 /*
83 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
84 * The Regents of the University of California. All rights reserved.
85 *
86 * Redistribution and use in source and binary forms, with or without
87 * modification, are permitted provided that the following conditions
88 * are met:
89 * 1. Redistributions of source code must retain the above copyright
90 * notice, this list of conditions and the following disclaimer.
91 * 2. Redistributions in binary form must reproduce the above copyright
92 * notice, this list of conditions and the following disclaimer in the
93 * documentation and/or other materials provided with the distribution.
94 * 3. All advertising materials mentioning features or use of this software
95 * must display the following acknowledgement:
96 * This product includes software developed by the University of
97 * California, Berkeley and its contributors.
98 * 4. Neither the name of the University nor the names of its contributors
99 * may be used to endorse or promote products derived from this software
100 * without specific prior written permission.
101 *
102 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
103 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
104 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
105 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
106 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
107 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
108 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
109 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
110 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
111 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
112 * SUCH DAMAGE.
113 *
114 * @(#)tcp_input.c 8.12 (Berkeley) 5/24/95
115 */
116
117 /*
118 * TODO list for SYN cache stuff:
119 *
120 * Find room for a "state" field, which is needed to keep a
121 * compressed state for TIME_WAIT TCBs. It's been noted already
122 * that this is fairly important for very high-volume web and
123 * mail servers, which use a large number of short-lived
124 * connections.
125 */
126
127 #include "opt_inet.h"
128 #include "opt_ipsec.h"
129
130 #include <sys/param.h>
131 #include <sys/systm.h>
132 #include <sys/malloc.h>
133 #include <sys/mbuf.h>
134 #include <sys/protosw.h>
135 #include <sys/socket.h>
136 #include <sys/socketvar.h>
137 #include <sys/errno.h>
138 #include <sys/syslog.h>
139 #include <sys/pool.h>
140 #include <sys/domain.h>
141
142 #include <net/if.h>
143 #include <net/route.h>
144 #include <net/if_types.h>
145
146 #include <netinet/in.h>
147 #include <netinet/in_systm.h>
148 #include <netinet/ip.h>
149 #include <netinet/in_pcb.h>
150 #include <netinet/ip_var.h>
151
152 #ifdef INET6
153 #ifndef INET
154 #include <netinet/in.h>
155 #endif
156 #include <netinet/ip6.h>
157 #include <netinet6/ip6_var.h>
158 #include <netinet6/in6_pcb.h>
159 #include <netinet6/ip6_var.h>
160 #include <netinet6/in6_var.h>
161 #include <netinet/icmp6.h>
162 #include <netinet6/nd6.h>
163 #endif
164
165 #ifdef PULLDOWN_TEST
166 #ifndef INET6
167 /* always need ip6.h for IP6_EXTHDR_GET */
168 #include <netinet/ip6.h>
169 #endif
170 #endif
171
172 #include <netinet/tcp.h>
173 #include <netinet/tcp_fsm.h>
174 #include <netinet/tcp_seq.h>
175 #include <netinet/tcp_timer.h>
176 #include <netinet/tcp_var.h>
177 #include <netinet/tcpip.h>
178 #include <netinet/tcp_debug.h>
179
180 #include <machine/stdarg.h>
181
182 #ifdef IPSEC
183 #include <netinet6/ipsec.h>
184 #include <netkey/key.h>
185 #endif /*IPSEC*/
186 #ifdef INET6
187 #include "faith.h"
188 #endif
189
190 int tcprexmtthresh = 3;
191 int tcp_log_refused;
192
193 struct timeval tcp_rst_ratelim_last;
194
195 #define TCP_PAWS_IDLE (24 * 24 * 60 * 60 * PR_SLOWHZ)
196
197 /* for modulo comparisons of timestamps */
198 #define TSTMP_LT(a,b) ((int)((a)-(b)) < 0)
199 #define TSTMP_GEQ(a,b) ((int)((a)-(b)) >= 0)
200
201 /*
202 * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
203 */
204 #ifdef INET6
205 #define ND6_HINT(tp) \
206 do { \
207 if (tp && tp->t_in6pcb && tp->t_family == AF_INET6 \
208 && tp->t_in6pcb->in6p_route.ro_rt) { \
209 nd6_nud_hint(tp->t_in6pcb->in6p_route.ro_rt, NULL, 0); \
210 } \
211 } while (0)
212 #else
213 #define ND6_HINT(tp)
214 #endif
215
216 /*
217 * Macro to compute ACK transmission behavior. Delay the ACK unless
218 * we have already delayed an ACK (must send an ACK every two segments).
219 * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
220 * option is enabled.
221 */
222 #define TCP_SETUP_ACK(tp, th) \
223 do { \
224 if ((tp)->t_flags & TF_DELACK || \
225 (tcp_ack_on_push && (th)->th_flags & TH_PUSH)) \
226 tp->t_flags |= TF_ACKNOW; \
227 else \
228 TCP_SET_DELACK(tp); \
229 } while (0)
230
231 /*
232 * Convert TCP protocol fields to host order for easier processing.
233 */
234 #define TCP_FIELDS_TO_HOST(th) \
235 do { \
236 NTOHL((th)->th_seq); \
237 NTOHL((th)->th_ack); \
238 NTOHS((th)->th_win); \
239 NTOHS((th)->th_urp); \
240 } while (0)
241
242 int
243 tcp_reass(tp, th, m, tlen)
244 struct tcpcb *tp;
245 struct tcphdr *th;
246 struct mbuf *m;
247 int *tlen;
248 {
249 struct ipqent *p, *q, *nq, *tiqe = NULL;
250 struct socket *so = NULL;
251 int pkt_flags;
252 tcp_seq pkt_seq;
253 unsigned pkt_len;
254 u_long rcvpartdupbyte = 0;
255 u_long rcvoobyte;
256
257 if (tp->t_inpcb)
258 so = tp->t_inpcb->inp_socket;
259 #ifdef INET6
260 else if (tp->t_in6pcb)
261 so = tp->t_in6pcb->in6p_socket;
262 #endif
263
264 TCP_REASS_LOCK_CHECK(tp);
265
266 /*
267 * Call with th==0 after become established to
268 * force pre-ESTABLISHED data up to user socket.
269 */
270 if (th == 0)
271 goto present;
272
273 rcvoobyte = *tlen;
274 /*
275 * Copy these to local variables because the tcpiphdr
276 * gets munged while we are collapsing mbufs.
277 */
278 pkt_seq = th->th_seq;
279 pkt_len = *tlen;
280 pkt_flags = th->th_flags;
281 /*
282 * Find a segment which begins after this one does.
283 */
284 for (p = NULL, q = tp->segq.lh_first; q != NULL; q = nq) {
285 nq = q->ipqe_q.le_next;
286 /*
287 * If the received segment is just right after this
288 * fragment, merge the two together and then check
289 * for further overlaps.
290 */
291 if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
292 #ifdef TCPREASS_DEBUG
293 printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
294 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
295 q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
296 #endif
297 pkt_len += q->ipqe_len;
298 pkt_flags |= q->ipqe_flags;
299 pkt_seq = q->ipqe_seq;
300 m_cat(q->ipqe_m, m);
301 m = q->ipqe_m;
302 goto free_ipqe;
303 }
304 /*
305 * If the received segment is completely past this
306 * fragment, we need to go the next fragment.
307 */
308 if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
309 p = q;
310 continue;
311 }
312 /*
313 * If the fragment is past the received segment,
314 * it (or any following) can't be concatenated.
315 */
316 if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len))
317 break;
318 /*
319 * We've received all the data in this segment before.
320 * mark it as a duplicate and return.
321 */
322 if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
323 SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
324 tcpstat.tcps_rcvduppack++;
325 tcpstat.tcps_rcvdupbyte += pkt_len;
326 m_freem(m);
327 if (tiqe != NULL)
328 pool_put(&ipqent_pool, tiqe);
329 return (0);
330 }
331 /*
332 * Received segment completely overlaps this fragment
333 * so we drop the fragment (this keeps the temporal
334 * ordering of segments correct).
335 */
336 if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
337 SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
338 rcvpartdupbyte += q->ipqe_len;
339 m_freem(q->ipqe_m);
340 goto free_ipqe;
341 }
342 /*
343 * RX'ed segment extends past the end of the
344 * fragment. Drop the overlapping bytes. Then
345 * merge the fragment and segment then treat as
346 * a longer received packet.
347 */
348 if (SEQ_LT(q->ipqe_seq, pkt_seq)
349 && SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
350 int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
351 #ifdef TCPREASS_DEBUG
352 printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
353 tp, overlap,
354 pkt_seq, pkt_seq + pkt_len, pkt_len);
355 #endif
356 m_adj(m, overlap);
357 rcvpartdupbyte += overlap;
358 m_cat(q->ipqe_m, m);
359 m = q->ipqe_m;
360 pkt_seq = q->ipqe_seq;
361 pkt_len += q->ipqe_len - overlap;
362 rcvoobyte -= overlap;
363 goto free_ipqe;
364 }
365 /*
366 * RX'ed segment extends past the front of the
367 * fragment. Drop the overlapping bytes on the
368 * received packet. The packet will then be
369 * contatentated with this fragment a bit later.
370 */
371 if (SEQ_GT(q->ipqe_seq, pkt_seq)
372 && SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len)) {
373 int overlap = pkt_seq + pkt_len - q->ipqe_seq;
374 #ifdef TCPREASS_DEBUG
375 printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
376 tp, overlap,
377 pkt_seq, pkt_seq + pkt_len, pkt_len);
378 #endif
379 m_adj(m, -overlap);
380 pkt_len -= overlap;
381 rcvpartdupbyte += overlap;
382 rcvoobyte -= overlap;
383 }
384 /*
385 * If the received segment immediates precedes this
386 * fragment then tack the fragment onto this segment
387 * and reinsert the data.
388 */
389 if (q->ipqe_seq == pkt_seq + pkt_len) {
390 #ifdef TCPREASS_DEBUG
391 printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
392 tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
393 pkt_seq, pkt_seq + pkt_len, pkt_len);
394 #endif
395 pkt_len += q->ipqe_len;
396 pkt_flags |= q->ipqe_flags;
397 m_cat(m, q->ipqe_m);
398 LIST_REMOVE(q, ipqe_q);
399 LIST_REMOVE(q, ipqe_timeq);
400 if (tiqe == NULL) {
401 tiqe = q;
402 } else {
403 pool_put(&ipqent_pool, q);
404 }
405 break;
406 }
407 /*
408 * If the fragment is before the segment, remember it.
409 * When this loop is terminated, p will contain the
410 * pointer to fragment that is right before the received
411 * segment.
412 */
413 if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
414 p = q;
415
416 continue;
417
418 /*
419 * This is a common operation. It also will allow
420 * to save doing a malloc/free in most instances.
421 */
422 free_ipqe:
423 LIST_REMOVE(q, ipqe_q);
424 LIST_REMOVE(q, ipqe_timeq);
425 if (tiqe == NULL) {
426 tiqe = q;
427 } else {
428 pool_put(&ipqent_pool, q);
429 }
430 }
431
432 /*
433 * Allocate a new queue entry since the received segment did not
434 * collapse onto any other out-of-order block; thus we are allocating
435 * a new block. If it had collapsed, tiqe would not be NULL and
436 * we would be reusing it.
437 * XXX If we can't, just drop the packet. XXX
438 */
439 if (tiqe == NULL) {
440 tiqe = pool_get(&ipqent_pool, PR_NOWAIT);
441 if (tiqe == NULL) {
442 tcpstat.tcps_rcvmemdrop++;
443 m_freem(m);
444 return (0);
445 }
446 }
447
448 /*
449 * Update the counters.
450 */
451 tcpstat.tcps_rcvoopack++;
452 tcpstat.tcps_rcvoobyte += rcvoobyte;
453 if (rcvpartdupbyte) {
454 tcpstat.tcps_rcvpartduppack++;
455 tcpstat.tcps_rcvpartdupbyte += rcvpartdupbyte;
456 }
457
458 /*
459 * Insert the new fragment queue entry into both queues.
460 */
461 tiqe->ipqe_m = m;
462 tiqe->ipqe_seq = pkt_seq;
463 tiqe->ipqe_len = pkt_len;
464 tiqe->ipqe_flags = pkt_flags;
465 if (p == NULL) {
466 LIST_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
467 #ifdef TCPREASS_DEBUG
468 if (tiqe->ipqe_seq != tp->rcv_nxt)
469 printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
470 tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
471 #endif
472 } else {
473 LIST_INSERT_AFTER(p, tiqe, ipqe_q);
474 #ifdef TCPREASS_DEBUG
475 printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
476 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
477 p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
478 #endif
479 }
480
481 LIST_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
482
483 present:
484 /*
485 * Present data to user, advancing rcv_nxt through
486 * completed sequence space.
487 */
488 if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
489 return (0);
490 q = tp->segq.lh_first;
491 if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
492 return (0);
493 if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
494 return (0);
495
496 tp->rcv_nxt += q->ipqe_len;
497 pkt_flags = q->ipqe_flags & TH_FIN;
498 ND6_HINT(tp);
499
500 LIST_REMOVE(q, ipqe_q);
501 LIST_REMOVE(q, ipqe_timeq);
502 if (so->so_state & SS_CANTRCVMORE)
503 m_freem(q->ipqe_m);
504 else
505 sbappend(&so->so_rcv, q->ipqe_m);
506 pool_put(&ipqent_pool, q);
507 sorwakeup(so);
508 return (pkt_flags);
509 }
510
511 #if defined(INET6) && !defined(TCP6)
512 int
513 tcp6_input(mp, offp, proto)
514 struct mbuf **mp;
515 int *offp, proto;
516 {
517 struct mbuf *m = *mp;
518
519 /*
520 * draft-itojun-ipv6-tcp-to-anycast
521 * better place to put this in?
522 */
523 if (m->m_flags & M_ANYCAST6) {
524 struct ip6_hdr *ip6;
525 if (m->m_len < sizeof(struct ip6_hdr)) {
526 if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
527 tcpstat.tcps_rcvshort++;
528 return IPPROTO_DONE;
529 }
530 }
531 ip6 = mtod(m, struct ip6_hdr *);
532 icmp6_error(m, ICMP6_DST_UNREACH,
533 ICMP6_DST_UNREACH_ADDR,
534 (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
535 return IPPROTO_DONE;
536 }
537
538 tcp_input(m, *offp, proto);
539 return IPPROTO_DONE;
540 }
541 #endif
542
543 /*
544 * TCP input routine, follows pages 65-76 of the
545 * protocol specification dated September, 1981 very closely.
546 */
547 void
548 #if __STDC__
549 tcp_input(struct mbuf *m, ...)
550 #else
551 tcp_input(m, va_alist)
552 struct mbuf *m;
553 #endif
554 {
555 int proto;
556 struct tcphdr *th;
557 struct ip *ip;
558 struct inpcb *inp;
559 #ifdef INET6
560 struct ip6_hdr *ip6;
561 struct in6pcb *in6p;
562 #endif
563 caddr_t optp = NULL;
564 int optlen = 0;
565 int len, tlen, toff, hdroptlen = 0;
566 struct tcpcb *tp = 0;
567 int tiflags;
568 struct socket *so = NULL;
569 int todrop, acked, ourfinisacked, needoutput = 0;
570 short ostate = 0;
571 int iss = 0;
572 u_long tiwin;
573 struct tcp_opt_info opti;
574 int off, iphlen;
575 va_list ap;
576 int af; /* af on the wire */
577 struct mbuf *tcp_saveti = NULL;
578
579 va_start(ap, m);
580 toff = va_arg(ap, int);
581 proto = va_arg(ap, int);
582 va_end(ap);
583
584 tcpstat.tcps_rcvtotal++;
585
586 bzero(&opti, sizeof(opti));
587 opti.ts_present = 0;
588 opti.maxseg = 0;
589
590 /*
591 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
592 *
593 * TCP is, by definition, unicast, so we reject all
594 * multicast outright.
595 *
596 * Note, there are additional src/dst address checks in
597 * the AF-specific code below.
598 */
599 if (m->m_flags & (M_BCAST|M_MCAST)) {
600 /* XXX stat */
601 goto drop;
602 }
603 #ifdef INET6
604 if (m->m_flags & M_ANYCAST6) {
605 /* XXX stat */
606 goto drop;
607 }
608 #endif
609
610 /*
611 * Get IP and TCP header together in first mbuf.
612 * Note: IP leaves IP header in first mbuf.
613 */
614 ip = mtod(m, struct ip *);
615 #ifdef INET6
616 ip6 = NULL;
617 #endif
618 switch (ip->ip_v) {
619 case 4:
620 af = AF_INET;
621 iphlen = sizeof(struct ip);
622 #ifndef PULLDOWN_TEST
623 /* would like to get rid of this... */
624 if (toff > sizeof (struct ip)) {
625 ip_stripoptions(m, (struct mbuf *)0);
626 toff = sizeof(struct ip);
627 }
628 if (m->m_len < toff + sizeof (struct tcphdr)) {
629 if ((m = m_pullup(m, toff + sizeof (struct tcphdr))) == 0) {
630 tcpstat.tcps_rcvshort++;
631 return;
632 }
633 }
634 ip = mtod(m, struct ip *);
635 th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
636 #else
637 ip = mtod(m, struct ip *);
638 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
639 sizeof(struct tcphdr));
640 if (th == NULL) {
641 tcpstat.tcps_rcvshort++;
642 return;
643 }
644 #endif
645
646 /*
647 * Make sure destination address is not multicast.
648 * Source address checked in ip_input().
649 */
650 if (IN_MULTICAST(ip->ip_dst.s_addr)) {
651 /* XXX stat */
652 goto drop;
653 }
654
655 /* We do the checksum after PCB lookup... */
656 len = ip->ip_len;
657 tlen = len - toff;
658 break;
659 #ifdef INET6
660 case 6:
661 ip = NULL;
662 iphlen = sizeof(struct ip6_hdr);
663 af = AF_INET6;
664 #ifndef PULLDOWN_TEST
665 if (m->m_len < toff + sizeof(struct tcphdr)) {
666 m = m_pullup(m, toff + sizeof(struct tcphdr)); /*XXX*/
667 if (m == NULL) {
668 tcpstat.tcps_rcvshort++;
669 return;
670 }
671 }
672 ip6 = mtod(m, struct ip6_hdr *);
673 th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
674 #else
675 ip6 = mtod(m, struct ip6_hdr *);
676 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
677 sizeof(struct tcphdr));
678 if (th == NULL) {
679 tcpstat.tcps_rcvshort++;
680 return;
681 }
682 #endif
683
684 /* Be proactive about malicious use of IPv4 mapped address */
685 if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
686 IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
687 /* XXX stat */
688 goto drop;
689 }
690
691 /*
692 * Be proactive about unspecified IPv6 address in source.
693 * As we use all-zero to indicate unbounded/unconnected pcb,
694 * unspecified IPv6 address can be used to confuse us.
695 *
696 * Note that packets with unspecified IPv6 destination is
697 * already dropped in ip6_input.
698 */
699 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
700 /* XXX stat */
701 goto drop;
702 }
703
704 /*
705 * Make sure destination address is not multicast.
706 * Source address checked in ip6_input().
707 */
708 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
709 /* XXX stat */
710 goto drop;
711 }
712
713 /* We do the checksum after PCB lookup... */
714 len = m->m_pkthdr.len;
715 tlen = len - toff;
716 break;
717 #endif
718 default:
719 m_freem(m);
720 return;
721 }
722
723 /*
724 * Check that TCP offset makes sense,
725 * pull out TCP options and adjust length. XXX
726 */
727 off = th->th_off << 2;
728 if (off < sizeof (struct tcphdr) || off > tlen) {
729 tcpstat.tcps_rcvbadoff++;
730 goto drop;
731 }
732 tlen -= off;
733
734 /*
735 * tcp_input() has been modified to use tlen to mean the TCP data
736 * length throughout the function. Other functions can use
737 * m->m_pkthdr.len as the basis for calculating the TCP data length.
738 * rja
739 */
740
741 if (off > sizeof (struct tcphdr)) {
742 #ifndef PULLDOWN_TEST
743 if (m->m_len < toff + off) {
744 if ((m = m_pullup(m, toff + off)) == 0) {
745 tcpstat.tcps_rcvshort++;
746 return;
747 }
748 switch (af) {
749 case AF_INET:
750 ip = mtod(m, struct ip *);
751 break;
752 #ifdef INET6
753 case AF_INET6:
754 ip6 = mtod(m, struct ip6_hdr *);
755 break;
756 #endif
757 }
758 th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
759 }
760 #else
761 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
762 if (th == NULL) {
763 tcpstat.tcps_rcvshort++;
764 return;
765 }
766 /*
767 * NOTE: ip/ip6 will not be affected by m_pulldown()
768 * (as they're before toff) and we don't need to update those.
769 */
770 #endif
771 optlen = off - sizeof (struct tcphdr);
772 optp = ((caddr_t)th) + sizeof(struct tcphdr);
773 /*
774 * Do quick retrieval of timestamp options ("options
775 * prediction?"). If timestamp is the only option and it's
776 * formatted as recommended in RFC 1323 appendix A, we
777 * quickly get the values now and not bother calling
778 * tcp_dooptions(), etc.
779 */
780 if ((optlen == TCPOLEN_TSTAMP_APPA ||
781 (optlen > TCPOLEN_TSTAMP_APPA &&
782 optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
783 *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
784 (th->th_flags & TH_SYN) == 0) {
785 opti.ts_present = 1;
786 opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
787 opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
788 optp = NULL; /* we've parsed the options */
789 }
790 }
791 tiflags = th->th_flags;
792
793 /*
794 * Locate pcb for segment.
795 */
796 findpcb:
797 inp = NULL;
798 #ifdef INET6
799 in6p = NULL;
800 #endif
801 switch (af) {
802 case AF_INET:
803 inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
804 ip->ip_dst, th->th_dport);
805 if (inp == 0) {
806 ++tcpstat.tcps_pcbhashmiss;
807 inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
808 }
809 #if defined(INET6) && !defined(TCP6)
810 if (inp == 0) {
811 struct in6_addr s, d;
812
813 /* mapped addr case */
814 bzero(&s, sizeof(s));
815 s.s6_addr16[5] = htons(0xffff);
816 bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
817 bzero(&d, sizeof(d));
818 d.s6_addr16[5] = htons(0xffff);
819 bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
820 in6p = in6_pcblookup_connect(&tcb6, &s, th->th_sport,
821 &d, th->th_dport, 0);
822 if (in6p == 0) {
823 ++tcpstat.tcps_pcbhashmiss;
824 in6p = in6_pcblookup_bind(&tcb6, &d,
825 th->th_dport, 0);
826 }
827 }
828 #endif
829 #ifndef INET6
830 if (inp == 0)
831 #else
832 if (inp == 0 && in6p == 0)
833 #endif
834 {
835 ++tcpstat.tcps_noport;
836 if (tcp_log_refused && (tiflags & TH_SYN)) {
837 #ifndef INET6
838 char src[4*sizeof "123"];
839 char dst[4*sizeof "123"];
840 #else
841 char src[INET6_ADDRSTRLEN];
842 char dst[INET6_ADDRSTRLEN];
843 #endif
844 if (ip) {
845 strcpy(src, inet_ntoa(ip->ip_src));
846 strcpy(dst, inet_ntoa(ip->ip_dst));
847 }
848 #ifdef INET6
849 else if (ip6) {
850 strcpy(src, ip6_sprintf(&ip6->ip6_src));
851 strcpy(dst, ip6_sprintf(&ip6->ip6_dst));
852 }
853 #endif
854 else {
855 strcpy(src, "(unknown)");
856 strcpy(dst, "(unknown)");
857 }
858 log(LOG_INFO,
859 "Connection attempt to TCP %s:%d from %s:%d\n",
860 dst, ntohs(th->th_dport),
861 src, ntohs(th->th_sport));
862 }
863 TCP_FIELDS_TO_HOST(th);
864 goto dropwithreset_ratelim;
865 }
866 #ifdef IPSEC
867 if (inp && ipsec4_in_reject(m, inp)) {
868 ipsecstat.in_polvio++;
869 goto drop;
870 }
871 #ifdef INET6
872 else if (in6p && ipsec4_in_reject_so(m, in6p->in6p_socket)) {
873 ipsecstat.in_polvio++;
874 goto drop;
875 }
876 #endif
877 #endif /*IPSEC*/
878 break;
879 #if defined(INET6) && !defined(TCP6)
880 case AF_INET6:
881 {
882 int faith;
883
884 #if defined(NFAITH) && NFAITH > 0
885 if (m->m_pkthdr.rcvif
886 && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
887 faith = 1;
888 } else
889 faith = 0;
890 #else
891 faith = 0;
892 #endif
893 in6p = in6_pcblookup_connect(&tcb6, &ip6->ip6_src, th->th_sport,
894 &ip6->ip6_dst, th->th_dport, faith);
895 if (in6p == NULL) {
896 ++tcpstat.tcps_pcbhashmiss;
897 in6p = in6_pcblookup_bind(&tcb6, &ip6->ip6_dst,
898 th->th_dport, faith);
899 }
900 if (in6p == NULL) {
901 ++tcpstat.tcps_noport;
902 TCP_FIELDS_TO_HOST(th);
903 goto dropwithreset_ratelim;
904 }
905 #ifdef IPSEC
906 if (ipsec6_in_reject(m, in6p)) {
907 ipsec6stat.in_polvio++;
908 goto drop;
909 }
910 #endif /*IPSEC*/
911 break;
912 }
913 #endif
914 }
915
916 /*
917 * If the state is CLOSED (i.e., TCB does not exist) then
918 * all data in the incoming segment is discarded.
919 * If the TCB exists but is in CLOSED state, it is embryonic,
920 * but should either do a listen or a connect soon.
921 */
922 tp = NULL;
923 so = NULL;
924 if (inp) {
925 tp = intotcpcb(inp);
926 so = inp->inp_socket;
927 }
928 #ifdef INET6
929 else if (in6p) {
930 tp = in6totcpcb(in6p);
931 so = in6p->in6p_socket;
932 }
933 #endif
934 if (tp == 0) {
935 TCP_FIELDS_TO_HOST(th);
936 goto dropwithreset_ratelim;
937 }
938 if (tp->t_state == TCPS_CLOSED)
939 goto drop;
940
941 /*
942 * Checksum extended TCP header and data.
943 */
944 switch (af) {
945 case AF_INET:
946 #ifndef PULLDOWN_TEST
947 {
948 struct ipovly *ipov;
949 ipov = (struct ipovly *)ip;
950 bzero(ipov->ih_x1, sizeof ipov->ih_x1);
951 ipov->ih_len = htons(tlen + off);
952
953 if (in_cksum(m, len) != 0) {
954 tcpstat.tcps_rcvbadsum++;
955 goto drop;
956 }
957 }
958 #else
959 if (in4_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0) {
960 tcpstat.tcps_rcvbadsum++;
961 goto drop;
962 }
963 #endif
964 break;
965
966 #ifdef INET6
967 case AF_INET6:
968 if (in6_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0) {
969 tcpstat.tcps_rcvbadsum++;
970 goto drop;
971 }
972 break;
973 #endif
974 }
975
976 TCP_FIELDS_TO_HOST(th);
977
978 /* Unscale the window into a 32-bit value. */
979 if ((tiflags & TH_SYN) == 0)
980 tiwin = th->th_win << tp->snd_scale;
981 else
982 tiwin = th->th_win;
983
984 #ifdef INET6
985 /* save packet options if user wanted */
986 if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
987 if (in6p->in6p_options) {
988 m_freem(in6p->in6p_options);
989 in6p->in6p_options = 0;
990 }
991 ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
992 }
993 #endif
994
995 if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
996 union syn_cache_sa src;
997 union syn_cache_sa dst;
998
999 bzero(&src, sizeof(src));
1000 bzero(&dst, sizeof(dst));
1001 switch (af) {
1002 case AF_INET:
1003 src.sin.sin_len = sizeof(struct sockaddr_in);
1004 src.sin.sin_family = AF_INET;
1005 src.sin.sin_addr = ip->ip_src;
1006 src.sin.sin_port = th->th_sport;
1007
1008 dst.sin.sin_len = sizeof(struct sockaddr_in);
1009 dst.sin.sin_family = AF_INET;
1010 dst.sin.sin_addr = ip->ip_dst;
1011 dst.sin.sin_port = th->th_dport;
1012 break;
1013 #ifdef INET6
1014 case AF_INET6:
1015 src.sin6.sin6_len = sizeof(struct sockaddr_in6);
1016 src.sin6.sin6_family = AF_INET6;
1017 src.sin6.sin6_addr = ip6->ip6_src;
1018 src.sin6.sin6_port = th->th_sport;
1019
1020 dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
1021 dst.sin6.sin6_family = AF_INET6;
1022 dst.sin6.sin6_addr = ip6->ip6_dst;
1023 dst.sin6.sin6_port = th->th_dport;
1024 break;
1025 #endif /* INET6 */
1026 default:
1027 goto badsyn; /*sanity*/
1028 }
1029
1030 if (so->so_options & SO_DEBUG) {
1031 ostate = tp->t_state;
1032
1033 tcp_saveti = NULL;
1034 if (iphlen + sizeof(struct tcphdr) > MHLEN)
1035 goto nosave;
1036
1037 if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
1038 tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
1039 if (!tcp_saveti)
1040 goto nosave;
1041 } else {
1042 MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
1043 if (!tcp_saveti)
1044 goto nosave;
1045 tcp_saveti->m_len = iphlen;
1046 m_copydata(m, 0, iphlen,
1047 mtod(tcp_saveti, caddr_t));
1048 }
1049
1050 if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
1051 m_freem(tcp_saveti);
1052 tcp_saveti = NULL;
1053 } else {
1054 tcp_saveti->m_len += sizeof(struct tcphdr);
1055 bcopy(th, mtod(tcp_saveti, caddr_t) + iphlen,
1056 sizeof(struct tcphdr));
1057 }
1058 if (tcp_saveti) {
1059 /*
1060 * need to recover version # field, which was
1061 * overwritten on ip_cksum computation.
1062 */
1063 struct ip *sip;
1064 sip = mtod(tcp_saveti, struct ip *);
1065 switch (af) {
1066 case AF_INET:
1067 sip->ip_v = 4;
1068 break;
1069 #ifdef INET6
1070 case AF_INET6:
1071 sip->ip_v = 6;
1072 break;
1073 #endif
1074 }
1075 }
1076 nosave:;
1077 }
1078 if (so->so_options & SO_ACCEPTCONN) {
1079 if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1080 if (tiflags & TH_RST) {
1081 syn_cache_reset(&src.sa, &dst.sa, th);
1082 } else if ((tiflags & (TH_ACK|TH_SYN)) ==
1083 (TH_ACK|TH_SYN)) {
1084 /*
1085 * Received a SYN,ACK. This should
1086 * never happen while we are in
1087 * LISTEN. Send an RST.
1088 */
1089 goto badsyn;
1090 } else if (tiflags & TH_ACK) {
1091 so = syn_cache_get(&src.sa, &dst.sa,
1092 th, toff, tlen, so, m);
1093 if (so == NULL) {
1094 /*
1095 * We don't have a SYN for
1096 * this ACK; send an RST.
1097 */
1098 goto badsyn;
1099 } else if (so ==
1100 (struct socket *)(-1)) {
1101 /*
1102 * We were unable to create
1103 * the connection. If the
1104 * 3-way handshake was
1105 * completed, and RST has
1106 * been sent to the peer.
1107 * Since the mbuf might be
1108 * in use for the reply,
1109 * do not free it.
1110 */
1111 m = NULL;
1112 } else {
1113 /*
1114 * We have created a
1115 * full-blown connection.
1116 */
1117 tp = NULL;
1118 inp = NULL;
1119 #ifdef INET6
1120 in6p = NULL;
1121 #endif
1122 switch (so->so_proto->pr_domain->dom_family) {
1123 case AF_INET:
1124 inp = sotoinpcb(so);
1125 tp = intotcpcb(inp);
1126 break;
1127 #ifdef INET6
1128 case AF_INET6:
1129 in6p = sotoin6pcb(so);
1130 tp = in6totcpcb(in6p);
1131 break;
1132 #endif
1133 }
1134 if (tp == NULL)
1135 goto badsyn; /*XXX*/
1136 tiwin <<= tp->snd_scale;
1137 goto after_listen;
1138 }
1139 } else {
1140 /*
1141 * None of RST, SYN or ACK was set.
1142 * This is an invalid packet for a
1143 * TCB in LISTEN state. Send a RST.
1144 */
1145 goto badsyn;
1146 }
1147 } else {
1148 /*
1149 * Received a SYN.
1150 */
1151
1152 /*
1153 * LISTEN socket received a SYN
1154 * from itself? This can't possibly
1155 * be valid; drop the packet.
1156 */
1157 if (th->th_sport == th->th_dport) {
1158 int i;
1159
1160 switch (af) {
1161 case AF_INET:
1162 i = in_hosteq(ip->ip_src, ip->ip_dst);
1163 break;
1164 #ifdef INET6
1165 case AF_INET6:
1166 i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
1167 break;
1168 #endif
1169 default:
1170 i = 1;
1171 }
1172 if (i) {
1173 tcpstat.tcps_badsyn++;
1174 goto drop;
1175 }
1176 }
1177
1178 /*
1179 * SYN looks ok; create compressed TCP
1180 * state for it.
1181 */
1182 if (so->so_qlen <= so->so_qlimit &&
1183 syn_cache_add(&src.sa, &dst.sa, th, tlen,
1184 so, m, optp, optlen, &opti))
1185 m = NULL;
1186 }
1187 goto drop;
1188 }
1189 }
1190
1191 after_listen:
1192 #ifdef DIAGNOSTIC
1193 /*
1194 * Should not happen now that all embryonic connections
1195 * are handled with compressed state.
1196 */
1197 if (tp->t_state == TCPS_LISTEN)
1198 panic("tcp_input: TCPS_LISTEN");
1199 #endif
1200
1201 /*
1202 * Segment received on connection.
1203 * Reset idle time and keep-alive timer.
1204 */
1205 tp->t_idle = 0;
1206 if (TCPS_HAVEESTABLISHED(tp->t_state))
1207 TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1208
1209 /*
1210 * Process options.
1211 */
1212 if (optp)
1213 tcp_dooptions(tp, optp, optlen, th, &opti);
1214
1215 /*
1216 * Header prediction: check for the two common cases
1217 * of a uni-directional data xfer. If the packet has
1218 * no control flags, is in-sequence, the window didn't
1219 * change and we're not retransmitting, it's a
1220 * candidate. If the length is zero and the ack moved
1221 * forward, we're the sender side of the xfer. Just
1222 * free the data acked & wake any higher level process
1223 * that was blocked waiting for space. If the length
1224 * is non-zero and the ack didn't move, we're the
1225 * receiver side. If we're getting packets in-order
1226 * (the reassembly queue is empty), add the data to
1227 * the socket buffer and note that we need a delayed ack.
1228 */
1229 if (tp->t_state == TCPS_ESTABLISHED &&
1230 (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1231 (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
1232 th->th_seq == tp->rcv_nxt &&
1233 tiwin && tiwin == tp->snd_wnd &&
1234 tp->snd_nxt == tp->snd_max) {
1235
1236 /*
1237 * If last ACK falls within this segment's sequence numbers,
1238 * record the timestamp.
1239 */
1240 if (opti.ts_present &&
1241 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1242 SEQ_LT(tp->last_ack_sent, th->th_seq + tlen)) {
1243 tp->ts_recent_age = tcp_now;
1244 tp->ts_recent = opti.ts_val;
1245 }
1246
1247 if (tlen == 0) {
1248 if (SEQ_GT(th->th_ack, tp->snd_una) &&
1249 SEQ_LEQ(th->th_ack, tp->snd_max) &&
1250 tp->snd_cwnd >= tp->snd_wnd &&
1251 tp->t_dupacks < tcprexmtthresh) {
1252 /*
1253 * this is a pure ack for outstanding data.
1254 */
1255 ++tcpstat.tcps_predack;
1256 if (opti.ts_present && opti.ts_ecr)
1257 tcp_xmit_timer(tp,
1258 tcp_now - opti.ts_ecr + 1);
1259 else if (tp->t_rtt &&
1260 SEQ_GT(th->th_ack, tp->t_rtseq))
1261 tcp_xmit_timer(tp, tp->t_rtt);
1262 acked = th->th_ack - tp->snd_una;
1263 tcpstat.tcps_rcvackpack++;
1264 tcpstat.tcps_rcvackbyte += acked;
1265 ND6_HINT(tp);
1266 sbdrop(&so->so_snd, acked);
1267 /*
1268 * We want snd_recover to track snd_una to
1269 * avoid sequence wraparound problems for
1270 * very large transfers.
1271 */
1272 tp->snd_una = tp->snd_recover = th->th_ack;
1273 m_freem(m);
1274
1275 /*
1276 * If all outstanding data are acked, stop
1277 * retransmit timer, otherwise restart timer
1278 * using current (possibly backed-off) value.
1279 * If process is waiting for space,
1280 * wakeup/selwakeup/signal. If data
1281 * are ready to send, let tcp_output
1282 * decide between more output or persist.
1283 */
1284 if (tp->snd_una == tp->snd_max)
1285 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1286 else if (TCP_TIMER_ISARMED(tp,
1287 TCPT_PERSIST) == 0)
1288 TCP_TIMER_ARM(tp, TCPT_REXMT,
1289 tp->t_rxtcur);
1290
1291 sowwakeup(so);
1292 if (so->so_snd.sb_cc)
1293 (void) tcp_output(tp);
1294 if (tcp_saveti)
1295 m_freem(tcp_saveti);
1296 return;
1297 }
1298 } else if (th->th_ack == tp->snd_una &&
1299 tp->segq.lh_first == NULL &&
1300 tlen <= sbspace(&so->so_rcv)) {
1301 /*
1302 * this is a pure, in-sequence data packet
1303 * with nothing on the reassembly queue and
1304 * we have enough buffer space to take it.
1305 */
1306 ++tcpstat.tcps_preddat;
1307 tp->rcv_nxt += tlen;
1308 tcpstat.tcps_rcvpack++;
1309 tcpstat.tcps_rcvbyte += tlen;
1310 ND6_HINT(tp);
1311 /*
1312 * Drop TCP, IP headers and TCP options then add data
1313 * to socket buffer.
1314 */
1315 m_adj(m, toff + off);
1316 sbappend(&so->so_rcv, m);
1317 sorwakeup(so);
1318 TCP_SETUP_ACK(tp, th);
1319 if (tp->t_flags & TF_ACKNOW)
1320 (void) tcp_output(tp);
1321 if (tcp_saveti)
1322 m_freem(tcp_saveti);
1323 return;
1324 }
1325 }
1326
1327 /*
1328 * Compute mbuf offset to TCP data segment.
1329 */
1330 hdroptlen = toff + off;
1331
1332 /*
1333 * Calculate amount of space in receive window,
1334 * and then do TCP input processing.
1335 * Receive window is amount of space in rcv queue,
1336 * but not less than advertised window.
1337 */
1338 { int win;
1339
1340 win = sbspace(&so->so_rcv);
1341 if (win < 0)
1342 win = 0;
1343 tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1344 }
1345
1346 switch (tp->t_state) {
1347
1348 /*
1349 * If the state is SYN_SENT:
1350 * if seg contains an ACK, but not for our SYN, drop the input.
1351 * if seg contains a RST, then drop the connection.
1352 * if seg does not contain SYN, then drop it.
1353 * Otherwise this is an acceptable SYN segment
1354 * initialize tp->rcv_nxt and tp->irs
1355 * if seg contains ack then advance tp->snd_una
1356 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1357 * arrange for segment to be acked (eventually)
1358 * continue processing rest of data/controls, beginning with URG
1359 */
1360 case TCPS_SYN_SENT:
1361 if ((tiflags & TH_ACK) &&
1362 (SEQ_LEQ(th->th_ack, tp->iss) ||
1363 SEQ_GT(th->th_ack, tp->snd_max)))
1364 goto dropwithreset;
1365 if (tiflags & TH_RST) {
1366 if (tiflags & TH_ACK)
1367 tp = tcp_drop(tp, ECONNREFUSED);
1368 goto drop;
1369 }
1370 if ((tiflags & TH_SYN) == 0)
1371 goto drop;
1372 if (tiflags & TH_ACK) {
1373 tp->snd_una = tp->snd_recover = th->th_ack;
1374 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1375 tp->snd_nxt = tp->snd_una;
1376 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1377 }
1378 tp->irs = th->th_seq;
1379 tcp_rcvseqinit(tp);
1380 tp->t_flags |= TF_ACKNOW;
1381 tcp_mss_from_peer(tp, opti.maxseg);
1382
1383 /*
1384 * Initialize the initial congestion window. If we
1385 * had to retransmit the SYN, we must initialize cwnd
1386 * to 1 segment (i.e. the Loss Window).
1387 */
1388 if (tp->t_flags & TF_SYN_REXMT)
1389 tp->snd_cwnd = tp->t_peermss;
1390 else
1391 tp->snd_cwnd = TCP_INITIAL_WINDOW(tcp_init_win,
1392 tp->t_peermss);
1393
1394 tcp_rmx_rtt(tp);
1395 if (tiflags & TH_ACK) {
1396 tcpstat.tcps_connects++;
1397 soisconnected(so);
1398 tcp_established(tp);
1399 /* Do window scaling on this connection? */
1400 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1401 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1402 tp->snd_scale = tp->requested_s_scale;
1403 tp->rcv_scale = tp->request_r_scale;
1404 }
1405 TCP_REASS_LOCK(tp);
1406 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1407 TCP_REASS_UNLOCK(tp);
1408 /*
1409 * if we didn't have to retransmit the SYN,
1410 * use its rtt as our initial srtt & rtt var.
1411 */
1412 if (tp->t_rtt)
1413 tcp_xmit_timer(tp, tp->t_rtt);
1414 } else
1415 tp->t_state = TCPS_SYN_RECEIVED;
1416
1417 /*
1418 * Advance th->th_seq to correspond to first data byte.
1419 * If data, trim to stay within window,
1420 * dropping FIN if necessary.
1421 */
1422 th->th_seq++;
1423 if (tlen > tp->rcv_wnd) {
1424 todrop = tlen - tp->rcv_wnd;
1425 m_adj(m, -todrop);
1426 tlen = tp->rcv_wnd;
1427 tiflags &= ~TH_FIN;
1428 tcpstat.tcps_rcvpackafterwin++;
1429 tcpstat.tcps_rcvbyteafterwin += todrop;
1430 }
1431 tp->snd_wl1 = th->th_seq - 1;
1432 tp->rcv_up = th->th_seq;
1433 goto step6;
1434
1435 /*
1436 * If the state is SYN_RECEIVED:
1437 * If seg contains an ACK, but not for our SYN, drop the input
1438 * and generate an RST. See page 36, rfc793
1439 */
1440 case TCPS_SYN_RECEIVED:
1441 if ((tiflags & TH_ACK) &&
1442 (SEQ_LEQ(th->th_ack, tp->iss) ||
1443 SEQ_GT(th->th_ack, tp->snd_max)))
1444 goto dropwithreset;
1445 break;
1446 }
1447
1448 /*
1449 * States other than LISTEN or SYN_SENT.
1450 * First check timestamp, if present.
1451 * Then check that at least some bytes of segment are within
1452 * receive window. If segment begins before rcv_nxt,
1453 * drop leading data (and SYN); if nothing left, just ack.
1454 *
1455 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1456 * and it's less than ts_recent, drop it.
1457 */
1458 if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
1459 TSTMP_LT(opti.ts_val, tp->ts_recent)) {
1460
1461 /* Check to see if ts_recent is over 24 days old. */
1462 if ((int)(tcp_now - tp->ts_recent_age) > TCP_PAWS_IDLE) {
1463 /*
1464 * Invalidate ts_recent. If this segment updates
1465 * ts_recent, the age will be reset later and ts_recent
1466 * will get a valid value. If it does not, setting
1467 * ts_recent to zero will at least satisfy the
1468 * requirement that zero be placed in the timestamp
1469 * echo reply when ts_recent isn't valid. The
1470 * age isn't reset until we get a valid ts_recent
1471 * because we don't want out-of-order segments to be
1472 * dropped when ts_recent is old.
1473 */
1474 tp->ts_recent = 0;
1475 } else {
1476 tcpstat.tcps_rcvduppack++;
1477 tcpstat.tcps_rcvdupbyte += tlen;
1478 tcpstat.tcps_pawsdrop++;
1479 goto dropafterack;
1480 }
1481 }
1482
1483 todrop = tp->rcv_nxt - th->th_seq;
1484 if (todrop > 0) {
1485 if (tiflags & TH_SYN) {
1486 tiflags &= ~TH_SYN;
1487 th->th_seq++;
1488 if (th->th_urp > 1)
1489 th->th_urp--;
1490 else {
1491 tiflags &= ~TH_URG;
1492 th->th_urp = 0;
1493 }
1494 todrop--;
1495 }
1496 if (todrop > tlen ||
1497 (todrop == tlen && (tiflags & TH_FIN) == 0)) {
1498 /*
1499 * Any valid FIN must be to the left of the window.
1500 * At this point the FIN must be a duplicate or
1501 * out of sequence; drop it.
1502 */
1503 tiflags &= ~TH_FIN;
1504 /*
1505 * Send an ACK to resynchronize and drop any data.
1506 * But keep on processing for RST or ACK.
1507 */
1508 tp->t_flags |= TF_ACKNOW;
1509 todrop = tlen;
1510 tcpstat.tcps_rcvdupbyte += todrop;
1511 tcpstat.tcps_rcvduppack++;
1512 } else {
1513 tcpstat.tcps_rcvpartduppack++;
1514 tcpstat.tcps_rcvpartdupbyte += todrop;
1515 }
1516 hdroptlen += todrop; /*drop from head afterwards*/
1517 th->th_seq += todrop;
1518 tlen -= todrop;
1519 if (th->th_urp > todrop)
1520 th->th_urp -= todrop;
1521 else {
1522 tiflags &= ~TH_URG;
1523 th->th_urp = 0;
1524 }
1525 }
1526
1527 /*
1528 * If new data are received on a connection after the
1529 * user processes are gone, then RST the other end.
1530 */
1531 if ((so->so_state & SS_NOFDREF) &&
1532 tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1533 tp = tcp_close(tp);
1534 tcpstat.tcps_rcvafterclose++;
1535 goto dropwithreset;
1536 }
1537
1538 /*
1539 * If segment ends after window, drop trailing data
1540 * (and PUSH and FIN); if nothing left, just ACK.
1541 */
1542 todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
1543 if (todrop > 0) {
1544 tcpstat.tcps_rcvpackafterwin++;
1545 if (todrop >= tlen) {
1546 tcpstat.tcps_rcvbyteafterwin += tlen;
1547 /*
1548 * If a new connection request is received
1549 * while in TIME_WAIT, drop the old connection
1550 * and start over if the sequence numbers
1551 * are above the previous ones.
1552 */
1553 if (tiflags & TH_SYN &&
1554 tp->t_state == TCPS_TIME_WAIT &&
1555 SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1556 iss = tcp_new_iss(tp, sizeof(struct tcpcb),
1557 tp->snd_nxt);
1558 tp = tcp_close(tp);
1559 goto findpcb;
1560 }
1561 /*
1562 * If window is closed can only take segments at
1563 * window edge, and have to drop data and PUSH from
1564 * incoming segments. Continue processing, but
1565 * remember to ack. Otherwise, drop segment
1566 * and ack.
1567 */
1568 if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1569 tp->t_flags |= TF_ACKNOW;
1570 tcpstat.tcps_rcvwinprobe++;
1571 } else
1572 goto dropafterack;
1573 } else
1574 tcpstat.tcps_rcvbyteafterwin += todrop;
1575 m_adj(m, -todrop);
1576 tlen -= todrop;
1577 tiflags &= ~(TH_PUSH|TH_FIN);
1578 }
1579
1580 /*
1581 * If last ACK falls within this segment's sequence numbers,
1582 * and the timestamp is newer, record it.
1583 */
1584 if (opti.ts_present && TSTMP_GEQ(opti.ts_val, tp->ts_recent) &&
1585 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1586 SEQ_LT(tp->last_ack_sent, th->th_seq + tlen +
1587 ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
1588 tp->ts_recent_age = tcp_now;
1589 tp->ts_recent = opti.ts_val;
1590 }
1591
1592 /*
1593 * If the RST bit is set examine the state:
1594 * SYN_RECEIVED STATE:
1595 * If passive open, return to LISTEN state.
1596 * If active open, inform user that connection was refused.
1597 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
1598 * Inform user that connection was reset, and close tcb.
1599 * CLOSING, LAST_ACK, TIME_WAIT STATES
1600 * Close the tcb.
1601 */
1602 if (tiflags&TH_RST) switch (tp->t_state) {
1603
1604 case TCPS_SYN_RECEIVED:
1605 so->so_error = ECONNREFUSED;
1606 goto close;
1607
1608 case TCPS_ESTABLISHED:
1609 case TCPS_FIN_WAIT_1:
1610 case TCPS_FIN_WAIT_2:
1611 case TCPS_CLOSE_WAIT:
1612 so->so_error = ECONNRESET;
1613 close:
1614 tp->t_state = TCPS_CLOSED;
1615 tcpstat.tcps_drops++;
1616 tp = tcp_close(tp);
1617 goto drop;
1618
1619 case TCPS_CLOSING:
1620 case TCPS_LAST_ACK:
1621 case TCPS_TIME_WAIT:
1622 tp = tcp_close(tp);
1623 goto drop;
1624 }
1625
1626 /*
1627 * If a SYN is in the window, then this is an
1628 * error and we send an RST and drop the connection.
1629 */
1630 if (tiflags & TH_SYN) {
1631 tp = tcp_drop(tp, ECONNRESET);
1632 goto dropwithreset;
1633 }
1634
1635 /*
1636 * If the ACK bit is off we drop the segment and return.
1637 */
1638 if ((tiflags & TH_ACK) == 0) {
1639 if (tp->t_flags & TF_ACKNOW)
1640 goto dropafterack;
1641 else
1642 goto drop;
1643 }
1644
1645 /*
1646 * Ack processing.
1647 */
1648 switch (tp->t_state) {
1649
1650 /*
1651 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
1652 * ESTABLISHED state and continue processing, otherwise
1653 * send an RST.
1654 */
1655 case TCPS_SYN_RECEIVED:
1656 if (SEQ_GT(tp->snd_una, th->th_ack) ||
1657 SEQ_GT(th->th_ack, tp->snd_max))
1658 goto dropwithreset;
1659 tcpstat.tcps_connects++;
1660 soisconnected(so);
1661 tcp_established(tp);
1662 /* Do window scaling? */
1663 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1664 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1665 tp->snd_scale = tp->requested_s_scale;
1666 tp->rcv_scale = tp->request_r_scale;
1667 }
1668 TCP_REASS_LOCK(tp);
1669 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1670 TCP_REASS_UNLOCK(tp);
1671 tp->snd_wl1 = th->th_seq - 1;
1672 /* fall into ... */
1673
1674 /*
1675 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1676 * ACKs. If the ack is in the range
1677 * tp->snd_una < th->th_ack <= tp->snd_max
1678 * then advance tp->snd_una to th->th_ack and drop
1679 * data from the retransmission queue. If this ACK reflects
1680 * more up to date window information we update our window information.
1681 */
1682 case TCPS_ESTABLISHED:
1683 case TCPS_FIN_WAIT_1:
1684 case TCPS_FIN_WAIT_2:
1685 case TCPS_CLOSE_WAIT:
1686 case TCPS_CLOSING:
1687 case TCPS_LAST_ACK:
1688 case TCPS_TIME_WAIT:
1689
1690 if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
1691 if (tlen == 0 && tiwin == tp->snd_wnd) {
1692 tcpstat.tcps_rcvdupack++;
1693 /*
1694 * If we have outstanding data (other than
1695 * a window probe), this is a completely
1696 * duplicate ack (ie, window info didn't
1697 * change), the ack is the biggest we've
1698 * seen and we've seen exactly our rexmt
1699 * threshhold of them, assume a packet
1700 * has been dropped and retransmit it.
1701 * Kludge snd_nxt & the congestion
1702 * window so we send only this one
1703 * packet.
1704 *
1705 * We know we're losing at the current
1706 * window size so do congestion avoidance
1707 * (set ssthresh to half the current window
1708 * and pull our congestion window back to
1709 * the new ssthresh).
1710 *
1711 * Dup acks mean that packets have left the
1712 * network (they're now cached at the receiver)
1713 * so bump cwnd by the amount in the receiver
1714 * to keep a constant cwnd packets in the
1715 * network.
1716 */
1717 if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
1718 th->th_ack != tp->snd_una)
1719 tp->t_dupacks = 0;
1720 else if (++tp->t_dupacks == tcprexmtthresh) {
1721 tcp_seq onxt = tp->snd_nxt;
1722 u_int win =
1723 min(tp->snd_wnd, tp->snd_cwnd) /
1724 2 / tp->t_segsz;
1725 if (tcp_do_newreno && SEQ_LT(th->th_ack,
1726 tp->snd_recover)) {
1727 /*
1728 * False fast retransmit after
1729 * timeout. Do not cut window.
1730 */
1731 tp->snd_cwnd += tp->t_segsz;
1732 tp->t_dupacks = 0;
1733 (void) tcp_output(tp);
1734 goto drop;
1735 }
1736
1737 if (win < 2)
1738 win = 2;
1739 tp->snd_ssthresh = win * tp->t_segsz;
1740 tp->snd_recover = tp->snd_max;
1741 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1742 tp->t_rtt = 0;
1743 tp->snd_nxt = th->th_ack;
1744 tp->snd_cwnd = tp->t_segsz;
1745 (void) tcp_output(tp);
1746 tp->snd_cwnd = tp->snd_ssthresh +
1747 tp->t_segsz * tp->t_dupacks;
1748 if (SEQ_GT(onxt, tp->snd_nxt))
1749 tp->snd_nxt = onxt;
1750 goto drop;
1751 } else if (tp->t_dupacks > tcprexmtthresh) {
1752 tp->snd_cwnd += tp->t_segsz;
1753 (void) tcp_output(tp);
1754 goto drop;
1755 }
1756 } else
1757 tp->t_dupacks = 0;
1758 break;
1759 }
1760 /*
1761 * If the congestion window was inflated to account
1762 * for the other side's cached packets, retract it.
1763 */
1764 if (tcp_do_newreno == 0) {
1765 if (tp->t_dupacks >= tcprexmtthresh &&
1766 tp->snd_cwnd > tp->snd_ssthresh)
1767 tp->snd_cwnd = tp->snd_ssthresh;
1768 tp->t_dupacks = 0;
1769 } else if (tp->t_dupacks >= tcprexmtthresh &&
1770 tcp_newreno(tp, th) == 0) {
1771 tp->snd_cwnd = tp->snd_ssthresh;
1772 /*
1773 * Window inflation should have left us with approx.
1774 * snd_ssthresh outstanding data. But in case we
1775 * would be inclined to send a burst, better to do
1776 * it via the slow start mechanism.
1777 */
1778 if (SEQ_SUB(tp->snd_max, th->th_ack) < tp->snd_ssthresh)
1779 tp->snd_cwnd = SEQ_SUB(tp->snd_max, th->th_ack)
1780 + tp->t_segsz;
1781 tp->t_dupacks = 0;
1782 }
1783 if (SEQ_GT(th->th_ack, tp->snd_max)) {
1784 tcpstat.tcps_rcvacktoomuch++;
1785 goto dropafterack;
1786 }
1787 acked = th->th_ack - tp->snd_una;
1788 tcpstat.tcps_rcvackpack++;
1789 tcpstat.tcps_rcvackbyte += acked;
1790
1791 /*
1792 * If we have a timestamp reply, update smoothed
1793 * round trip time. If no timestamp is present but
1794 * transmit timer is running and timed sequence
1795 * number was acked, update smoothed round trip time.
1796 * Since we now have an rtt measurement, cancel the
1797 * timer backoff (cf., Phil Karn's retransmit alg.).
1798 * Recompute the initial retransmit timer.
1799 */
1800 if (opti.ts_present && opti.ts_ecr)
1801 tcp_xmit_timer(tp, tcp_now - opti.ts_ecr + 1);
1802 else if (tp->t_rtt && SEQ_GT(th->th_ack, tp->t_rtseq))
1803 tcp_xmit_timer(tp,tp->t_rtt);
1804
1805 /*
1806 * If all outstanding data is acked, stop retransmit
1807 * timer and remember to restart (more output or persist).
1808 * If there is more data to be acked, restart retransmit
1809 * timer, using current (possibly backed-off) value.
1810 */
1811 if (th->th_ack == tp->snd_max) {
1812 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1813 needoutput = 1;
1814 } else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
1815 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
1816 /*
1817 * When new data is acked, open the congestion window.
1818 * If the window gives us less than ssthresh packets
1819 * in flight, open exponentially (segsz per packet).
1820 * Otherwise open linearly: segsz per window
1821 * (segsz^2 / cwnd per packet), plus a constant
1822 * fraction of a packet (segsz/8) to help larger windows
1823 * open quickly enough.
1824 */
1825 {
1826 u_int cw = tp->snd_cwnd;
1827 u_int incr = tp->t_segsz;
1828
1829 if (cw > tp->snd_ssthresh)
1830 incr = incr * incr / cw;
1831 if (tcp_do_newreno == 0 || SEQ_GEQ(th->th_ack, tp->snd_recover))
1832 tp->snd_cwnd = min(cw + incr,
1833 TCP_MAXWIN << tp->snd_scale);
1834 }
1835 ND6_HINT(tp);
1836 if (acked > so->so_snd.sb_cc) {
1837 tp->snd_wnd -= so->so_snd.sb_cc;
1838 sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
1839 ourfinisacked = 1;
1840 } else {
1841 sbdrop(&so->so_snd, acked);
1842 tp->snd_wnd -= acked;
1843 ourfinisacked = 0;
1844 }
1845 sowwakeup(so);
1846 /*
1847 * We want snd_recover to track snd_una to
1848 * avoid sequence wraparound problems for
1849 * very large transfers.
1850 */
1851 tp->snd_una = tp->snd_recover = th->th_ack;
1852 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1853 tp->snd_nxt = tp->snd_una;
1854
1855 switch (tp->t_state) {
1856
1857 /*
1858 * In FIN_WAIT_1 STATE in addition to the processing
1859 * for the ESTABLISHED state if our FIN is now acknowledged
1860 * then enter FIN_WAIT_2.
1861 */
1862 case TCPS_FIN_WAIT_1:
1863 if (ourfinisacked) {
1864 /*
1865 * If we can't receive any more
1866 * data, then closing user can proceed.
1867 * Starting the timer is contrary to the
1868 * specification, but if we don't get a FIN
1869 * we'll hang forever.
1870 */
1871 if (so->so_state & SS_CANTRCVMORE) {
1872 soisdisconnected(so);
1873 if (tcp_maxidle > 0)
1874 TCP_TIMER_ARM(tp, TCPT_2MSL,
1875 tcp_maxidle);
1876 }
1877 tp->t_state = TCPS_FIN_WAIT_2;
1878 }
1879 break;
1880
1881 /*
1882 * In CLOSING STATE in addition to the processing for
1883 * the ESTABLISHED state if the ACK acknowledges our FIN
1884 * then enter the TIME-WAIT state, otherwise ignore
1885 * the segment.
1886 */
1887 case TCPS_CLOSING:
1888 if (ourfinisacked) {
1889 tp->t_state = TCPS_TIME_WAIT;
1890 tcp_canceltimers(tp);
1891 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
1892 soisdisconnected(so);
1893 }
1894 break;
1895
1896 /*
1897 * In LAST_ACK, we may still be waiting for data to drain
1898 * and/or to be acked, as well as for the ack of our FIN.
1899 * If our FIN is now acknowledged, delete the TCB,
1900 * enter the closed state and return.
1901 */
1902 case TCPS_LAST_ACK:
1903 if (ourfinisacked) {
1904 tp = tcp_close(tp);
1905 goto drop;
1906 }
1907 break;
1908
1909 /*
1910 * In TIME_WAIT state the only thing that should arrive
1911 * is a retransmission of the remote FIN. Acknowledge
1912 * it and restart the finack timer.
1913 */
1914 case TCPS_TIME_WAIT:
1915 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
1916 goto dropafterack;
1917 }
1918 }
1919
1920 step6:
1921 /*
1922 * Update window information.
1923 * Don't look at window if no ACK: TAC's send garbage on first SYN.
1924 */
1925 if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
1926 (tp->snd_wl1 == th->th_seq && SEQ_LT(tp->snd_wl2, th->th_ack)) ||
1927 (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))) {
1928 /* keep track of pure window updates */
1929 if (tlen == 0 &&
1930 tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
1931 tcpstat.tcps_rcvwinupd++;
1932 tp->snd_wnd = tiwin;
1933 tp->snd_wl1 = th->th_seq;
1934 tp->snd_wl2 = th->th_ack;
1935 if (tp->snd_wnd > tp->max_sndwnd)
1936 tp->max_sndwnd = tp->snd_wnd;
1937 needoutput = 1;
1938 }
1939
1940 /*
1941 * Process segments with URG.
1942 */
1943 if ((tiflags & TH_URG) && th->th_urp &&
1944 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1945 /*
1946 * This is a kludge, but if we receive and accept
1947 * random urgent pointers, we'll crash in
1948 * soreceive. It's hard to imagine someone
1949 * actually wanting to send this much urgent data.
1950 */
1951 if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
1952 th->th_urp = 0; /* XXX */
1953 tiflags &= ~TH_URG; /* XXX */
1954 goto dodata; /* XXX */
1955 }
1956 /*
1957 * If this segment advances the known urgent pointer,
1958 * then mark the data stream. This should not happen
1959 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
1960 * a FIN has been received from the remote side.
1961 * In these states we ignore the URG.
1962 *
1963 * According to RFC961 (Assigned Protocols),
1964 * the urgent pointer points to the last octet
1965 * of urgent data. We continue, however,
1966 * to consider it to indicate the first octet
1967 * of data past the urgent section as the original
1968 * spec states (in one of two places).
1969 */
1970 if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
1971 tp->rcv_up = th->th_seq + th->th_urp;
1972 so->so_oobmark = so->so_rcv.sb_cc +
1973 (tp->rcv_up - tp->rcv_nxt) - 1;
1974 if (so->so_oobmark == 0)
1975 so->so_state |= SS_RCVATMARK;
1976 sohasoutofband(so);
1977 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
1978 }
1979 /*
1980 * Remove out of band data so doesn't get presented to user.
1981 * This can happen independent of advancing the URG pointer,
1982 * but if two URG's are pending at once, some out-of-band
1983 * data may creep in... ick.
1984 */
1985 if (th->th_urp <= (u_int16_t) tlen
1986 #ifdef SO_OOBINLINE
1987 && (so->so_options & SO_OOBINLINE) == 0
1988 #endif
1989 )
1990 tcp_pulloutofband(so, th, m, hdroptlen);
1991 } else
1992 /*
1993 * If no out of band data is expected,
1994 * pull receive urgent pointer along
1995 * with the receive window.
1996 */
1997 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
1998 tp->rcv_up = tp->rcv_nxt;
1999 dodata: /* XXX */
2000
2001 /*
2002 * Process the segment text, merging it into the TCP sequencing queue,
2003 * and arranging for acknowledgement of receipt if necessary.
2004 * This process logically involves adjusting tp->rcv_wnd as data
2005 * is presented to the user (this happens in tcp_usrreq.c,
2006 * case PRU_RCVD). If a FIN has already been received on this
2007 * connection then we just ignore the text.
2008 */
2009 if ((tlen || (tiflags & TH_FIN)) &&
2010 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2011 /*
2012 * Insert segment ti into reassembly queue of tcp with
2013 * control block tp. Return TH_FIN if reassembly now includes
2014 * a segment with FIN. The macro form does the common case
2015 * inline (segment is the next to be received on an
2016 * established connection, and the queue is empty),
2017 * avoiding linkage into and removal from the queue and
2018 * repetition of various conversions.
2019 * Set DELACK for segments received in order, but ack
2020 * immediately when segments are out of order
2021 * (so fast retransmit can work).
2022 */
2023 /* NOTE: this was TCP_REASS() macro, but used only once */
2024 TCP_REASS_LOCK(tp);
2025 if (th->th_seq == tp->rcv_nxt &&
2026 tp->segq.lh_first == NULL &&
2027 tp->t_state == TCPS_ESTABLISHED) {
2028 TCP_SETUP_ACK(tp, th);
2029 tp->rcv_nxt += tlen;
2030 tiflags = th->th_flags & TH_FIN;
2031 tcpstat.tcps_rcvpack++;
2032 tcpstat.tcps_rcvbyte += tlen;
2033 ND6_HINT(tp);
2034 m_adj(m, hdroptlen);
2035 sbappend(&(so)->so_rcv, m);
2036 sorwakeup(so);
2037 } else {
2038 m_adj(m, hdroptlen);
2039 tiflags = tcp_reass(tp, th, m, &tlen);
2040 tp->t_flags |= TF_ACKNOW;
2041 }
2042 TCP_REASS_UNLOCK(tp);
2043
2044 /*
2045 * Note the amount of data that peer has sent into
2046 * our window, in order to estimate the sender's
2047 * buffer size.
2048 */
2049 len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2050 } else {
2051 m_freem(m);
2052 m = NULL;
2053 tiflags &= ~TH_FIN;
2054 }
2055
2056 /*
2057 * If FIN is received ACK the FIN and let the user know
2058 * that the connection is closing. Ignore a FIN received before
2059 * the connection is fully established.
2060 */
2061 if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2062 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2063 socantrcvmore(so);
2064 tp->t_flags |= TF_ACKNOW;
2065 tp->rcv_nxt++;
2066 }
2067 switch (tp->t_state) {
2068
2069 /*
2070 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2071 */
2072 case TCPS_ESTABLISHED:
2073 tp->t_state = TCPS_CLOSE_WAIT;
2074 break;
2075
2076 /*
2077 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2078 * enter the CLOSING state.
2079 */
2080 case TCPS_FIN_WAIT_1:
2081 tp->t_state = TCPS_CLOSING;
2082 break;
2083
2084 /*
2085 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2086 * starting the time-wait timer, turning off the other
2087 * standard timers.
2088 */
2089 case TCPS_FIN_WAIT_2:
2090 tp->t_state = TCPS_TIME_WAIT;
2091 tcp_canceltimers(tp);
2092 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2093 soisdisconnected(so);
2094 break;
2095
2096 /*
2097 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2098 */
2099 case TCPS_TIME_WAIT:
2100 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2101 break;
2102 }
2103 }
2104 if (so->so_options & SO_DEBUG) {
2105 tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
2106 }
2107
2108 /*
2109 * Return any desired output.
2110 */
2111 if (needoutput || (tp->t_flags & TF_ACKNOW))
2112 (void) tcp_output(tp);
2113 if (tcp_saveti)
2114 m_freem(tcp_saveti);
2115 return;
2116
2117 badsyn:
2118 /*
2119 * Received a bad SYN. Increment counters and dropwithreset.
2120 */
2121 tcpstat.tcps_badsyn++;
2122 tp = NULL;
2123 goto dropwithreset;
2124
2125 dropafterack:
2126 /*
2127 * Generate an ACK dropping incoming segment if it occupies
2128 * sequence space, where the ACK reflects our state.
2129 */
2130 if (tiflags & TH_RST)
2131 goto drop;
2132 m_freem(m);
2133 tp->t_flags |= TF_ACKNOW;
2134 (void) tcp_output(tp);
2135 if (tcp_saveti)
2136 m_freem(tcp_saveti);
2137 return;
2138
2139 dropwithreset_ratelim:
2140 /*
2141 * We may want to rate-limit RSTs in certain situations,
2142 * particularly if we are sending an RST in response to
2143 * an attempt to connect to or otherwise communicate with
2144 * a port for which we have no socket.
2145 */
2146 if (ratecheck(&tcp_rst_ratelim_last, &tcp_rst_ratelim) == 0) {
2147 /* XXX stat */
2148 goto drop;
2149 }
2150 /* ...fall into dropwithreset... */
2151
2152 dropwithreset:
2153 /*
2154 * Generate a RST, dropping incoming segment.
2155 * Make ACK acceptable to originator of segment.
2156 */
2157 if (tiflags & TH_RST)
2158 goto drop;
2159 {
2160 /*
2161 * need to recover version # field, which was overwritten on
2162 * ip_cksum computation.
2163 */
2164 struct ip *sip;
2165 sip = mtod(m, struct ip *);
2166 switch (af) {
2167 case AF_INET:
2168 sip->ip_v = 4;
2169 break;
2170 #ifdef INET6
2171 case AF_INET6:
2172 sip->ip_v = 6;
2173 break;
2174 #endif
2175 }
2176 }
2177 if (tiflags & TH_ACK)
2178 (void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
2179 else {
2180 if (tiflags & TH_SYN)
2181 tlen++;
2182 (void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
2183 TH_RST|TH_ACK);
2184 }
2185 if (tcp_saveti)
2186 m_freem(tcp_saveti);
2187 return;
2188
2189 drop:
2190 /*
2191 * Drop space held by incoming segment and return.
2192 */
2193 if (tp) {
2194 if (tp->t_inpcb)
2195 so = tp->t_inpcb->inp_socket;
2196 #ifdef INET6
2197 else if (tp->t_in6pcb)
2198 so = tp->t_in6pcb->in6p_socket;
2199 #endif
2200 else
2201 so = NULL;
2202 if (so && (so->so_options & SO_DEBUG) != 0)
2203 tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
2204 }
2205 if (tcp_saveti)
2206 m_freem(tcp_saveti);
2207 m_freem(m);
2208 return;
2209 }
2210
2211 void
2212 tcp_dooptions(tp, cp, cnt, th, oi)
2213 struct tcpcb *tp;
2214 u_char *cp;
2215 int cnt;
2216 struct tcphdr *th;
2217 struct tcp_opt_info *oi;
2218 {
2219 u_int16_t mss;
2220 int opt, optlen;
2221
2222 for (; cnt > 0; cnt -= optlen, cp += optlen) {
2223 opt = cp[0];
2224 if (opt == TCPOPT_EOL)
2225 break;
2226 if (opt == TCPOPT_NOP)
2227 optlen = 1;
2228 else {
2229 if (cnt < 2)
2230 break;
2231 optlen = cp[1];
2232 if (optlen < 2 || optlen > cnt)
2233 break;
2234 }
2235 switch (opt) {
2236
2237 default:
2238 continue;
2239
2240 case TCPOPT_MAXSEG:
2241 if (optlen != TCPOLEN_MAXSEG)
2242 continue;
2243 if (!(th->th_flags & TH_SYN))
2244 continue;
2245 bcopy(cp + 2, &mss, sizeof(mss));
2246 oi->maxseg = ntohs(mss);
2247 break;
2248
2249 case TCPOPT_WINDOW:
2250 if (optlen != TCPOLEN_WINDOW)
2251 continue;
2252 if (!(th->th_flags & TH_SYN))
2253 continue;
2254 tp->t_flags |= TF_RCVD_SCALE;
2255 tp->requested_s_scale = cp[2];
2256 if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
2257 #if 0 /*XXX*/
2258 char *p;
2259
2260 if (ip)
2261 p = ntohl(ip->ip_src);
2262 #ifdef INET6
2263 else if (ip6)
2264 p = ip6_sprintf(&ip6->ip6_src);
2265 #endif
2266 else
2267 p = "(unknown)";
2268 log(LOG_ERR, "TCP: invalid wscale %d from %s, "
2269 "assuming %d\n",
2270 tp->requested_s_scale, p,
2271 TCP_MAX_WINSHIFT);
2272 #else
2273 log(LOG_ERR, "TCP: invalid wscale %d, "
2274 "assuming %d\n",
2275 tp->requested_s_scale,
2276 TCP_MAX_WINSHIFT);
2277 #endif
2278 tp->requested_s_scale = TCP_MAX_WINSHIFT;
2279 }
2280 break;
2281
2282 case TCPOPT_TIMESTAMP:
2283 if (optlen != TCPOLEN_TIMESTAMP)
2284 continue;
2285 oi->ts_present = 1;
2286 bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
2287 NTOHL(oi->ts_val);
2288 bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
2289 NTOHL(oi->ts_ecr);
2290
2291 /*
2292 * A timestamp received in a SYN makes
2293 * it ok to send timestamp requests and replies.
2294 */
2295 if (th->th_flags & TH_SYN) {
2296 tp->t_flags |= TF_RCVD_TSTMP;
2297 tp->ts_recent = oi->ts_val;
2298 tp->ts_recent_age = tcp_now;
2299 }
2300 break;
2301 case TCPOPT_SACK_PERMITTED:
2302 if (optlen != TCPOLEN_SACK_PERMITTED)
2303 continue;
2304 if (!(th->th_flags & TH_SYN))
2305 continue;
2306 tp->t_flags &= ~TF_CANT_TXSACK;
2307 break;
2308
2309 case TCPOPT_SACK:
2310 if (tp->t_flags & TF_IGNR_RXSACK)
2311 continue;
2312 if (optlen % 8 != 2 || optlen < 10)
2313 continue;
2314 cp += 2;
2315 optlen -= 2;
2316 for (; optlen > 0; cp -= 8, optlen -= 8) {
2317 tcp_seq lwe, rwe;
2318 bcopy((char *)cp, (char *) &lwe, sizeof(lwe));
2319 NTOHL(lwe);
2320 bcopy((char *)cp, (char *) &rwe, sizeof(rwe));
2321 NTOHL(rwe);
2322 /* tcp_mark_sacked(tp, lwe, rwe); */
2323 }
2324 break;
2325 }
2326 }
2327 }
2328
2329 /*
2330 * Pull out of band byte out of a segment so
2331 * it doesn't appear in the user's data queue.
2332 * It is still reflected in the segment length for
2333 * sequencing purposes.
2334 */
2335 void
2336 tcp_pulloutofband(so, th, m, off)
2337 struct socket *so;
2338 struct tcphdr *th;
2339 struct mbuf *m;
2340 int off;
2341 {
2342 int cnt = off + th->th_urp - 1;
2343
2344 while (cnt >= 0) {
2345 if (m->m_len > cnt) {
2346 char *cp = mtod(m, caddr_t) + cnt;
2347 struct tcpcb *tp = sototcpcb(so);
2348
2349 tp->t_iobc = *cp;
2350 tp->t_oobflags |= TCPOOB_HAVEDATA;
2351 bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
2352 m->m_len--;
2353 return;
2354 }
2355 cnt -= m->m_len;
2356 m = m->m_next;
2357 if (m == 0)
2358 break;
2359 }
2360 panic("tcp_pulloutofband");
2361 }
2362
2363 /*
2364 * Collect new round-trip time estimate
2365 * and update averages and current timeout.
2366 */
2367 void
2368 tcp_xmit_timer(tp, rtt)
2369 struct tcpcb *tp;
2370 short rtt;
2371 {
2372 short delta;
2373 short rttmin;
2374
2375 tcpstat.tcps_rttupdated++;
2376 --rtt;
2377 if (tp->t_srtt != 0) {
2378 /*
2379 * srtt is stored as fixed point with 3 bits after the
2380 * binary point (i.e., scaled by 8). The following magic
2381 * is equivalent to the smoothing algorithm in rfc793 with
2382 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2383 * point). Adjust rtt to origin 0.
2384 */
2385 delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
2386 if ((tp->t_srtt += delta) <= 0)
2387 tp->t_srtt = 1 << 2;
2388 /*
2389 * We accumulate a smoothed rtt variance (actually, a
2390 * smoothed mean difference), then set the retransmit
2391 * timer to smoothed rtt + 4 times the smoothed variance.
2392 * rttvar is stored as fixed point with 2 bits after the
2393 * binary point (scaled by 4). The following is
2394 * equivalent to rfc793 smoothing with an alpha of .75
2395 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces
2396 * rfc793's wired-in beta.
2397 */
2398 if (delta < 0)
2399 delta = -delta;
2400 delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
2401 if ((tp->t_rttvar += delta) <= 0)
2402 tp->t_rttvar = 1 << 2;
2403 } else {
2404 /*
2405 * No rtt measurement yet - use the unsmoothed rtt.
2406 * Set the variance to half the rtt (so our first
2407 * retransmit happens at 3*rtt).
2408 */
2409 tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
2410 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
2411 }
2412 tp->t_rtt = 0;
2413 tp->t_rxtshift = 0;
2414
2415 /*
2416 * the retransmit should happen at rtt + 4 * rttvar.
2417 * Because of the way we do the smoothing, srtt and rttvar
2418 * will each average +1/2 tick of bias. When we compute
2419 * the retransmit timer, we want 1/2 tick of rounding and
2420 * 1 extra tick because of +-1/2 tick uncertainty in the
2421 * firing of the timer. The bias will give us exactly the
2422 * 1.5 tick we need. But, because the bias is
2423 * statistical, we have to test that we don't drop below
2424 * the minimum feasible timer (which is 2 ticks).
2425 */
2426 if (tp->t_rttmin > rtt + 2)
2427 rttmin = tp->t_rttmin;
2428 else
2429 rttmin = rtt + 2;
2430 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp), rttmin, TCPTV_REXMTMAX);
2431
2432 /*
2433 * We received an ack for a packet that wasn't retransmitted;
2434 * it is probably safe to discard any error indications we've
2435 * received recently. This isn't quite right, but close enough
2436 * for now (a route might have failed after we sent a segment,
2437 * and the return path might not be symmetrical).
2438 */
2439 tp->t_softerror = 0;
2440 }
2441
2442 /*
2443 * Checks for partial ack. If partial ack arrives, force the retransmission
2444 * of the next unacknowledged segment, do not clear tp->t_dupacks, and return
2445 * 1. By setting snd_nxt to th_ack, this forces retransmission timer to
2446 * be started again. If the ack advances at least to tp->snd_recover, return 0.
2447 */
2448 int
2449 tcp_newreno(tp, th)
2450 struct tcpcb *tp;
2451 struct tcphdr *th;
2452 {
2453 tcp_seq onxt = tp->snd_nxt;
2454 u_long ocwnd = tp->snd_cwnd;
2455
2456 if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2457 /*
2458 * snd_una has not yet been updated and the socket's send
2459 * buffer has not yet drained off the ACK'd data, so we
2460 * have to leave snd_una as it was to get the correct data
2461 * offset in tcp_output().
2462 */
2463 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2464 tp->t_rtt = 0;
2465 tp->snd_nxt = th->th_ack;
2466 /*
2467 * Set snd_cwnd to one segment beyond ACK'd offset. snd_una
2468 * is not yet updated when we're called.
2469 */
2470 tp->snd_cwnd = tp->t_segsz + (th->th_ack - tp->snd_una);
2471 (void) tcp_output(tp);
2472 tp->snd_cwnd = ocwnd;
2473 if (SEQ_GT(onxt, tp->snd_nxt))
2474 tp->snd_nxt = onxt;
2475 /*
2476 * Partial window deflation. Relies on fact that tp->snd_una
2477 * not updated yet.
2478 */
2479 tp->snd_cwnd -= (th->th_ack - tp->snd_una - tp->t_segsz);
2480 return 1;
2481 }
2482 return 0;
2483 }
2484
2485
2486 /*
2487 * TCP compressed state engine. Currently used to hold compressed
2488 * state for SYN_RECEIVED.
2489 */
2490
2491 u_long syn_cache_count;
2492 u_int32_t syn_hash1, syn_hash2;
2493
2494 #define SYN_HASH(sa, sp, dp) \
2495 ((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
2496 ((u_int32_t)(sp)))^syn_hash2)))
2497 #ifndef INET6
2498 #define SYN_HASHALL(hash, src, dst) \
2499 do { \
2500 hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
2501 ((struct sockaddr_in *)(src))->sin_port, \
2502 ((struct sockaddr_in *)(dst))->sin_port); \
2503 } while (0)
2504 #else
2505 #define SYN_HASH6(sa, sp, dp) \
2506 ((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
2507 (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
2508 & 0x7fffffff)
2509
2510 #define SYN_HASHALL(hash, src, dst) \
2511 do { \
2512 switch ((src)->sa_family) { \
2513 case AF_INET: \
2514 hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
2515 ((struct sockaddr_in *)(src))->sin_port, \
2516 ((struct sockaddr_in *)(dst))->sin_port); \
2517 break; \
2518 case AF_INET6: \
2519 hash = SYN_HASH6(&((struct sockaddr_in6 *)(src))->sin6_addr, \
2520 ((struct sockaddr_in6 *)(src))->sin6_port, \
2521 ((struct sockaddr_in6 *)(dst))->sin6_port); \
2522 break; \
2523 default: \
2524 hash = 0; \
2525 } \
2526 } while (0)
2527 #endif /* INET6 */
2528
2529 #define SYN_CACHE_RM(sc) \
2530 do { \
2531 LIST_REMOVE((sc), sc_bucketq); \
2532 (sc)->sc_tp = NULL; \
2533 LIST_REMOVE((sc), sc_tpq); \
2534 tcp_syn_cache[(sc)->sc_bucketidx].sch_length--; \
2535 TAILQ_REMOVE(&tcp_syn_cache_timeq[(sc)->sc_rxtshift], (sc), sc_timeq); \
2536 syn_cache_count--; \
2537 } while (0)
2538
2539 #define SYN_CACHE_PUT(sc) \
2540 do { \
2541 if ((sc)->sc_ipopts) \
2542 (void) m_free((sc)->sc_ipopts); \
2543 if ((sc)->sc_route4.ro_rt != NULL) \
2544 RTFREE((sc)->sc_route4.ro_rt); \
2545 pool_put(&syn_cache_pool, (sc)); \
2546 } while (0)
2547
2548 struct pool syn_cache_pool;
2549
2550 /*
2551 * We don't estimate RTT with SYNs, so each packet starts with the default
2552 * RTT and each timer queue has a fixed timeout value. This allows us to
2553 * optimize the timer queues somewhat.
2554 */
2555 #define SYN_CACHE_TIMER_ARM(sc) \
2556 do { \
2557 TCPT_RANGESET((sc)->sc_rxtcur, \
2558 TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN, \
2559 TCPTV_REXMTMAX); \
2560 PRT_SLOW_ARM((sc)->sc_rexmt, (sc)->sc_rxtcur); \
2561 } while (0)
2562
2563 TAILQ_HEAD(, syn_cache) tcp_syn_cache_timeq[TCP_MAXRXTSHIFT + 1];
2564
2565 void
2566 syn_cache_init()
2567 {
2568 int i;
2569
2570 /* Initialize the hash buckets. */
2571 for (i = 0; i < tcp_syn_cache_size; i++)
2572 LIST_INIT(&tcp_syn_cache[i].sch_bucket);
2573
2574 /* Initialize the timer queues. */
2575 for (i = 0; i <= TCP_MAXRXTSHIFT; i++)
2576 TAILQ_INIT(&tcp_syn_cache_timeq[i]);
2577
2578 /* Initialize the syn cache pool. */
2579 pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
2580 "synpl", 0, NULL, NULL, M_PCB);
2581 }
2582
2583 void
2584 syn_cache_insert(sc, tp)
2585 struct syn_cache *sc;
2586 struct tcpcb *tp;
2587 {
2588 struct syn_cache_head *scp;
2589 struct syn_cache *sc2;
2590 int s, i;
2591
2592 /*
2593 * If there are no entries in the hash table, reinitialize
2594 * the hash secrets.
2595 */
2596 if (syn_cache_count == 0) {
2597 struct timeval tv;
2598 microtime(&tv);
2599 syn_hash1 = random() ^ (u_long)≻
2600 syn_hash2 = random() ^ tv.tv_usec;
2601 }
2602
2603 SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
2604 sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
2605 scp = &tcp_syn_cache[sc->sc_bucketidx];
2606
2607 /*
2608 * Make sure that we don't overflow the per-bucket
2609 * limit or the total cache size limit.
2610 */
2611 s = splsoftnet();
2612 if (scp->sch_length >= tcp_syn_bucket_limit) {
2613 tcpstat.tcps_sc_bucketoverflow++;
2614 /*
2615 * The bucket is full. Toss the oldest element in the
2616 * bucket. This will be the entry with our bucket
2617 * index closest to the front of the timer queue with
2618 * the largest timeout value.
2619 *
2620 * Note: This timer queue traversal may be expensive, so
2621 * we hope that this doesn't happen very often. It is
2622 * much more likely that we'll overflow the entire
2623 * cache, which is much easier to handle; see below.
2624 */
2625 for (i = TCP_MAXRXTSHIFT; i >= 0; i--) {
2626 for (sc2 = TAILQ_FIRST(&tcp_syn_cache_timeq[i]);
2627 sc2 != NULL;
2628 sc2 = TAILQ_NEXT(sc2, sc_timeq)) {
2629 if (sc2->sc_bucketidx == sc->sc_bucketidx) {
2630 SYN_CACHE_RM(sc2);
2631 SYN_CACHE_PUT(sc2);
2632 goto insert; /* 2 level break */
2633 }
2634 }
2635 }
2636 #ifdef DIAGNOSTIC
2637 /*
2638 * This should never happen; we should always find an
2639 * entry in our bucket.
2640 */
2641 panic("syn_cache_insert: bucketoverflow: impossible");
2642 #endif
2643 } else if (syn_cache_count >= tcp_syn_cache_limit) {
2644 tcpstat.tcps_sc_overflowed++;
2645 /*
2646 * The cache is full. Toss the oldest entry in the
2647 * entire cache. This is the front entry in the
2648 * first non-empty timer queue with the largest
2649 * timeout value.
2650 */
2651 for (i = TCP_MAXRXTSHIFT; i >= 0; i--) {
2652 sc2 = TAILQ_FIRST(&tcp_syn_cache_timeq[i]);
2653 if (sc2 == NULL)
2654 continue;
2655 SYN_CACHE_RM(sc2);
2656 SYN_CACHE_PUT(sc2);
2657 goto insert; /* symmetry with above */
2658 }
2659 #ifdef DIAGNOSTIC
2660 /*
2661 * This should never happen; we should always find an
2662 * entry in the cache.
2663 */
2664 panic("syn_cache_insert: cache overflow: impossible");
2665 #endif
2666 }
2667
2668 insert:
2669 /*
2670 * Initialize the entry's timer.
2671 */
2672 sc->sc_rxttot = 0;
2673 sc->sc_rxtshift = 0;
2674 SYN_CACHE_TIMER_ARM(sc);
2675 TAILQ_INSERT_TAIL(&tcp_syn_cache_timeq[sc->sc_rxtshift], sc, sc_timeq);
2676
2677 /* Link it from tcpcb entry */
2678 LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
2679
2680 /* Put it into the bucket. */
2681 LIST_INSERT_HEAD(&scp->sch_bucket, sc, sc_bucketq);
2682 scp->sch_length++;
2683 syn_cache_count++;
2684
2685 tcpstat.tcps_sc_added++;
2686 splx(s);
2687 }
2688
2689 /*
2690 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
2691 * If we have retransmitted an entry the maximum number of times, expire
2692 * that entry.
2693 */
2694 void
2695 syn_cache_timer()
2696 {
2697 struct syn_cache *sc, *nsc;
2698 int i, s;
2699
2700 s = splsoftnet();
2701
2702 /*
2703 * First, get all the entries that need to be retransmitted, or
2704 * must be expired due to exceeding the initial keepalive time.
2705 */
2706 for (i = 0; i < TCP_MAXRXTSHIFT; i++) {
2707 for (sc = TAILQ_FIRST(&tcp_syn_cache_timeq[i]);
2708 sc != NULL && PRT_SLOW_ISEXPIRED(sc->sc_rexmt);
2709 sc = nsc) {
2710 nsc = TAILQ_NEXT(sc, sc_timeq);
2711
2712 /*
2713 * Compute the total amount of time this entry has
2714 * been on a queue. If this entry has been on longer
2715 * than the keep alive timer would allow, expire it.
2716 */
2717 sc->sc_rxttot += sc->sc_rxtcur;
2718 if (sc->sc_rxttot >= TCPTV_KEEP_INIT) {
2719 tcpstat.tcps_sc_timed_out++;
2720 SYN_CACHE_RM(sc);
2721 SYN_CACHE_PUT(sc);
2722 continue;
2723 }
2724
2725 tcpstat.tcps_sc_retransmitted++;
2726 (void) syn_cache_respond(sc, NULL);
2727
2728 /* Advance this entry onto the next timer queue. */
2729 TAILQ_REMOVE(&tcp_syn_cache_timeq[i], sc, sc_timeq);
2730 sc->sc_rxtshift = i + 1;
2731 SYN_CACHE_TIMER_ARM(sc);
2732 TAILQ_INSERT_TAIL(&tcp_syn_cache_timeq[sc->sc_rxtshift],
2733 sc, sc_timeq);
2734 }
2735 }
2736
2737 /*
2738 * Now get all the entries that are expired due to too many
2739 * retransmissions.
2740 */
2741 for (sc = TAILQ_FIRST(&tcp_syn_cache_timeq[TCP_MAXRXTSHIFT]);
2742 sc != NULL && PRT_SLOW_ISEXPIRED(sc->sc_rexmt);
2743 sc = nsc) {
2744 nsc = TAILQ_NEXT(sc, sc_timeq);
2745 tcpstat.tcps_sc_timed_out++;
2746 SYN_CACHE_RM(sc);
2747 SYN_CACHE_PUT(sc);
2748 }
2749 splx(s);
2750 }
2751
2752 /*
2753 * Remove syn cache created by the specified tcb entry,
2754 * because this does not make sense to keep them
2755 * (if there's no tcb entry, syn cache entry will never be used)
2756 */
2757 void
2758 syn_cache_cleanup(tp)
2759 struct tcpcb *tp;
2760 {
2761 struct syn_cache *sc, *nsc;
2762 int s;
2763
2764 s = splsoftnet();
2765
2766 for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
2767 nsc = LIST_NEXT(sc, sc_tpq);
2768
2769 #ifdef DIAGNOSTIC
2770 if (sc->sc_tp != tp)
2771 panic("invalid sc_tp in syn_cache_cleanup");
2772 #endif
2773 SYN_CACHE_RM(sc);
2774 SYN_CACHE_PUT(sc);
2775 }
2776 /* just for safety */
2777 LIST_INIT(&tp->t_sc);
2778
2779 splx(s);
2780 }
2781
2782 /*
2783 * Find an entry in the syn cache.
2784 */
2785 struct syn_cache *
2786 syn_cache_lookup(src, dst, headp)
2787 struct sockaddr *src;
2788 struct sockaddr *dst;
2789 struct syn_cache_head **headp;
2790 {
2791 struct syn_cache *sc;
2792 struct syn_cache_head *scp;
2793 u_int32_t hash;
2794 int s;
2795
2796 SYN_HASHALL(hash, src, dst);
2797
2798 scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
2799 *headp = scp;
2800 s = splsoftnet();
2801 for (sc = LIST_FIRST(&scp->sch_bucket); sc != NULL;
2802 sc = LIST_NEXT(sc, sc_bucketq)) {
2803 if (sc->sc_hash != hash)
2804 continue;
2805 if (!bcmp(&sc->sc_src, src, src->sa_len) &&
2806 !bcmp(&sc->sc_dst, dst, dst->sa_len)) {
2807 splx(s);
2808 return (sc);
2809 }
2810 }
2811 splx(s);
2812 return (NULL);
2813 }
2814
2815 /*
2816 * This function gets called when we receive an ACK for a
2817 * socket in the LISTEN state. We look up the connection
2818 * in the syn cache, and if its there, we pull it out of
2819 * the cache and turn it into a full-blown connection in
2820 * the SYN-RECEIVED state.
2821 *
2822 * The return values may not be immediately obvious, and their effects
2823 * can be subtle, so here they are:
2824 *
2825 * NULL SYN was not found in cache; caller should drop the
2826 * packet and send an RST.
2827 *
2828 * -1 We were unable to create the new connection, and are
2829 * aborting it. An ACK,RST is being sent to the peer
2830 * (unless we got screwey sequence numbners; see below),
2831 * because the 3-way handshake has been completed. Caller
2832 * should not free the mbuf, since we may be using it. If
2833 * we are not, we will free it.
2834 *
2835 * Otherwise, the return value is a pointer to the new socket
2836 * associated with the connection.
2837 */
2838 struct socket *
2839 syn_cache_get(src, dst, th, hlen, tlen, so, m)
2840 struct sockaddr *src;
2841 struct sockaddr *dst;
2842 struct tcphdr *th;
2843 unsigned int hlen, tlen;
2844 struct socket *so;
2845 struct mbuf *m;
2846 {
2847 struct syn_cache *sc;
2848 struct syn_cache_head *scp;
2849 struct inpcb *inp = NULL;
2850 #ifdef INET6
2851 struct in6pcb *in6p = NULL;
2852 #endif
2853 struct tcpcb *tp = 0;
2854 struct mbuf *am;
2855 int s;
2856 struct socket *oso;
2857
2858 s = splsoftnet();
2859 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
2860 splx(s);
2861 return (NULL);
2862 }
2863
2864 /*
2865 * Verify the sequence and ack numbers. Try getting the correct
2866 * response again.
2867 */
2868 if ((th->th_ack != sc->sc_iss + 1) ||
2869 SEQ_LEQ(th->th_seq, sc->sc_irs) ||
2870 SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
2871 (void) syn_cache_respond(sc, m);
2872 splx(s);
2873 return ((struct socket *)(-1));
2874 }
2875
2876 /* Remove this cache entry */
2877 SYN_CACHE_RM(sc);
2878 splx(s);
2879
2880 /*
2881 * Ok, create the full blown connection, and set things up
2882 * as they would have been set up if we had created the
2883 * connection when the SYN arrived. If we can't create
2884 * the connection, abort it.
2885 */
2886 /*
2887 * inp still has the OLD in_pcb stuff, set the
2888 * v6-related flags on the new guy, too. This is
2889 * done particularly for the case where an AF_INET6
2890 * socket is bound only to a port, and a v4 connection
2891 * comes in on that port.
2892 * we also copy the flowinfo from the original pcb
2893 * to the new one.
2894 */
2895 {
2896 struct inpcb *parentinpcb;
2897
2898 parentinpcb = (struct inpcb *)so->so_pcb;
2899
2900 oso = so;
2901 so = sonewconn(so, SS_ISCONNECTED);
2902 if (so == NULL)
2903 goto resetandabort;
2904
2905 switch (so->so_proto->pr_domain->dom_family) {
2906 case AF_INET:
2907 inp = sotoinpcb(so);
2908 break;
2909 #ifdef INET6
2910 case AF_INET6:
2911 in6p = sotoin6pcb(so);
2912 #if 0 /*def INET6*/
2913 inp->inp_flags |= (parentinpcb->inp_flags &
2914 (INP_IPV6 | INP_IPV6_UNDEC | INP_IPV6_MAPPED));
2915 if ((inp->inp_flags & INP_IPV6) &&
2916 !(inp->inp_flags & INP_IPV6_MAPPED)) {
2917 inp->inp_ipv6.ip6_hlim = parentinpcb->inp_ipv6.ip6_hlim;
2918 inp->inp_ipv6.ip6_vfc = parentinpcb->inp_ipv6.ip6_vfc;
2919 }
2920 #endif
2921 break;
2922 #endif
2923 }
2924 }
2925 switch (src->sa_family) {
2926 case AF_INET:
2927 if (inp) {
2928 inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
2929 inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
2930 inp->inp_options = ip_srcroute();
2931 in_pcbstate(inp, INP_BOUND);
2932 if (inp->inp_options == NULL) {
2933 inp->inp_options = sc->sc_ipopts;
2934 sc->sc_ipopts = NULL;
2935 }
2936 }
2937 #ifdef INET6
2938 else if (in6p) {
2939 /* IPv4 packet to AF_INET6 socket */
2940 bzero(&in6p->in6p_laddr, sizeof(in6p->in6p_laddr));
2941 in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
2942 bcopy(&((struct sockaddr_in *)dst)->sin_addr,
2943 &in6p->in6p_laddr.s6_addr32[3],
2944 sizeof(((struct sockaddr_in *)dst)->sin_addr));
2945 in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
2946 in6totcpcb(in6p)->t_family = AF_INET;
2947 }
2948 #endif
2949 break;
2950 #ifdef INET6
2951 case AF_INET6:
2952 if (in6p) {
2953 in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
2954 in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
2955 #if 0
2956 in6p->in6p_flowinfo = ip6->ip6_flow & IPV6_FLOWINFO_MASK;
2957 /*inp->inp_options = ip6_srcroute();*/ /* soon. */
2958 #endif
2959 }
2960 break;
2961 #endif
2962 }
2963 #ifdef INET6
2964 if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
2965 struct in6pcb *oin6p = sotoin6pcb(oso);
2966 /* inherit socket options from the listening socket */
2967 in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
2968 if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
2969 m_freem(in6p->in6p_options);
2970 in6p->in6p_options = 0;
2971 }
2972 ip6_savecontrol(in6p, &in6p->in6p_options,
2973 mtod(m, struct ip6_hdr *), m);
2974 }
2975 #endif
2976
2977 #ifdef IPSEC
2978 /*
2979 * we make a copy of policy, instead of sharing the policy,
2980 * for better behavior in terms of SA lookup and dead SA removal.
2981 */
2982 if (inp) {
2983 /* copy old policy into new socket's */
2984 if (ipsec_copy_policy(sotoinpcb(oso)->inp_sp, inp->inp_sp))
2985 printf("tcp_input: could not copy policy\n");
2986 }
2987 #ifdef INET6
2988 else if (in6p) {
2989 /* copy old policy into new socket's */
2990 if (ipsec_copy_policy(sotoin6pcb(oso)->in6p_sp, in6p->in6p_sp))
2991 printf("tcp_input: could not copy policy\n");
2992 }
2993 #endif
2994 #endif
2995
2996 /*
2997 * Give the new socket our cached route reference.
2998 */
2999 if (inp)
3000 inp->inp_route = sc->sc_route4; /* struct assignment */
3001 #ifdef INET6
3002 else
3003 in6p->in6p_route = sc->sc_route6;
3004 #endif
3005 sc->sc_route4.ro_rt = NULL;
3006
3007 am = m_get(M_DONTWAIT, MT_SONAME); /* XXX */
3008 if (am == NULL)
3009 goto resetandabort;
3010 am->m_len = src->sa_len;
3011 bcopy(src, mtod(am, caddr_t), src->sa_len);
3012 if (inp) {
3013 if (in_pcbconnect(inp, am)) {
3014 (void) m_free(am);
3015 goto resetandabort;
3016 }
3017 }
3018 #ifdef INET6
3019 else if (in6p) {
3020 if (src->sa_family == AF_INET) {
3021 /* IPv4 packet to AF_INET6 socket */
3022 struct sockaddr_in6 *sin6;
3023 sin6 = mtod(am, struct sockaddr_in6 *);
3024 am->m_len = sizeof(*sin6);
3025 bzero(sin6, sizeof(*sin6));
3026 sin6->sin6_family = AF_INET6;
3027 sin6->sin6_len = sizeof(*sin6);
3028 sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port;
3029 sin6->sin6_addr.s6_addr16[5] = htons(0xffff);
3030 bcopy(&((struct sockaddr_in *)src)->sin_addr,
3031 &sin6->sin6_addr.s6_addr32[3],
3032 sizeof(sin6->sin6_addr.s6_addr32[3]));
3033 }
3034 if (in6_pcbconnect(in6p, am)) {
3035 (void) m_free(am);
3036 goto resetandabort;
3037 }
3038 }
3039 #endif
3040 else {
3041 (void) m_free(am);
3042 goto resetandabort;
3043 }
3044 (void) m_free(am);
3045
3046 if (inp)
3047 tp = intotcpcb(inp);
3048 #ifdef INET6
3049 else if (in6p)
3050 tp = in6totcpcb(in6p);
3051 #endif
3052 else
3053 tp = NULL;
3054 if (sc->sc_request_r_scale != 15) {
3055 tp->requested_s_scale = sc->sc_requested_s_scale;
3056 tp->request_r_scale = sc->sc_request_r_scale;
3057 tp->snd_scale = sc->sc_requested_s_scale;
3058 tp->rcv_scale = sc->sc_request_r_scale;
3059 tp->t_flags |= TF_RCVD_SCALE;
3060 }
3061 if (sc->sc_flags & SCF_TIMESTAMP)
3062 tp->t_flags |= TF_RCVD_TSTMP;
3063
3064 tp->t_template = tcp_template(tp);
3065 if (tp->t_template == 0) {
3066 tp = tcp_drop(tp, ENOBUFS); /* destroys socket */
3067 so = NULL;
3068 m_freem(m);
3069 goto abort;
3070 }
3071
3072 tp->iss = sc->sc_iss;
3073 tp->irs = sc->sc_irs;
3074 tcp_sendseqinit(tp);
3075 tcp_rcvseqinit(tp);
3076 tp->t_state = TCPS_SYN_RECEIVED;
3077 TCP_TIMER_ARM(tp, TCPT_KEEP, TCPTV_KEEP_INIT);
3078 tcpstat.tcps_accepts++;
3079
3080 /* Initialize tp->t_ourmss before we deal with the peer's! */
3081 tp->t_ourmss = sc->sc_ourmaxseg;
3082 tcp_mss_from_peer(tp, sc->sc_peermaxseg);
3083
3084 /*
3085 * Initialize the initial congestion window. If we
3086 * had to retransmit the SYN,ACK, we must initialize cwnd
3087 * to 1 segment (i.e. the Loss Window).
3088 */
3089 if (sc->sc_rxtshift)
3090 tp->snd_cwnd = tp->t_peermss;
3091 else
3092 tp->snd_cwnd = TCP_INITIAL_WINDOW(tcp_init_win, tp->t_peermss);
3093
3094 tcp_rmx_rtt(tp);
3095 tp->snd_wl1 = sc->sc_irs;
3096 tp->rcv_up = sc->sc_irs + 1;
3097
3098 /*
3099 * This is what whould have happened in tcp_ouput() when
3100 * the SYN,ACK was sent.
3101 */
3102 tp->snd_up = tp->snd_una;
3103 tp->snd_max = tp->snd_nxt = tp->iss+1;
3104 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
3105 if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
3106 tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
3107 tp->last_ack_sent = tp->rcv_nxt;
3108
3109 tcpstat.tcps_sc_completed++;
3110 SYN_CACHE_PUT(sc);
3111 return (so);
3112
3113 resetandabort:
3114 (void) tcp_respond(NULL, m, m, th,
3115 th->th_seq + tlen, (tcp_seq)0, TH_RST|TH_ACK);
3116 abort:
3117 if (so != NULL)
3118 (void) soabort(so);
3119 SYN_CACHE_PUT(sc);
3120 tcpstat.tcps_sc_aborted++;
3121 return ((struct socket *)(-1));
3122 }
3123
3124 /*
3125 * This function is called when we get a RST for a
3126 * non-existant connection, so that we can see if the
3127 * connection is in the syn cache. If it is, zap it.
3128 */
3129
3130 void
3131 syn_cache_reset(src, dst, th)
3132 struct sockaddr *src;
3133 struct sockaddr *dst;
3134 struct tcphdr *th;
3135 {
3136 struct syn_cache *sc;
3137 struct syn_cache_head *scp;
3138 int s = splsoftnet();
3139
3140 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3141 splx(s);
3142 return;
3143 }
3144 if (SEQ_LT(th->th_seq, sc->sc_irs) ||
3145 SEQ_GT(th->th_seq, sc->sc_irs+1)) {
3146 splx(s);
3147 return;
3148 }
3149 SYN_CACHE_RM(sc);
3150 splx(s);
3151 tcpstat.tcps_sc_reset++;
3152 SYN_CACHE_PUT(sc);
3153 }
3154
3155 void
3156 syn_cache_unreach(src, dst, th)
3157 struct sockaddr *src;
3158 struct sockaddr *dst;
3159 struct tcphdr *th;
3160 {
3161 struct syn_cache *sc;
3162 struct syn_cache_head *scp;
3163 int s;
3164
3165 s = splsoftnet();
3166 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3167 splx(s);
3168 return;
3169 }
3170 /* If the sequence number != sc_iss, then it's a bogus ICMP msg */
3171 if (ntohl (th->th_seq) != sc->sc_iss) {
3172 splx(s);
3173 return;
3174 }
3175
3176 /*
3177 * If we've rertransmitted 3 times and this is our second error,
3178 * we remove the entry. Otherwise, we allow it to continue on.
3179 * This prevents us from incorrectly nuking an entry during a
3180 * spurious network outage.
3181 *
3182 * See tcp_notify().
3183 */
3184 if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
3185 sc->sc_flags |= SCF_UNREACH;
3186 splx(s);
3187 return;
3188 }
3189
3190 SYN_CACHE_RM(sc);
3191 splx(s);
3192 tcpstat.tcps_sc_unreach++;
3193 SYN_CACHE_PUT(sc);
3194 }
3195
3196 /*
3197 * Given a LISTEN socket and an inbound SYN request, add
3198 * this to the syn cache, and send back a segment:
3199 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
3200 * to the source.
3201 *
3202 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
3203 * Doing so would require that we hold onto the data and deliver it
3204 * to the application. However, if we are the target of a SYN-flood
3205 * DoS attack, an attacker could send data which would eventually
3206 * consume all available buffer space if it were ACKed. By not ACKing
3207 * the data, we avoid this DoS scenario.
3208 */
3209
3210 int
3211 syn_cache_add(src, dst, th, hlen, so, m, optp, optlen, oi)
3212 struct sockaddr *src;
3213 struct sockaddr *dst;
3214 struct tcphdr *th;
3215 unsigned int hlen;
3216 struct socket *so;
3217 struct mbuf *m;
3218 u_char *optp;
3219 int optlen;
3220 struct tcp_opt_info *oi;
3221 {
3222 struct tcpcb tb, *tp;
3223 long win;
3224 struct syn_cache *sc;
3225 struct syn_cache_head *scp;
3226 struct mbuf *ipopts;
3227
3228 tp = sototcpcb(so);
3229
3230 /*
3231 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
3232 *
3233 * Note this check is performed in tcp_input() very early on.
3234 */
3235
3236 /*
3237 * Initialize some local state.
3238 */
3239 win = sbspace(&so->so_rcv);
3240 if (win > TCP_MAXWIN)
3241 win = TCP_MAXWIN;
3242
3243 if (src->sa_family == AF_INET) {
3244 /*
3245 * Remember the IP options, if any.
3246 */
3247 ipopts = ip_srcroute();
3248 } else
3249 ipopts = NULL;
3250
3251 if (optp) {
3252 tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
3253 tcp_dooptions(&tb, optp, optlen, th, oi);
3254 } else
3255 tb.t_flags = 0;
3256
3257 /*
3258 * See if we already have an entry for this connection.
3259 * If we do, resend the SYN,ACK. We do not count this
3260 * as a retransmission (XXX though maybe we should).
3261 */
3262 if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
3263 tcpstat.tcps_sc_dupesyn++;
3264 if (ipopts) {
3265 /*
3266 * If we were remembering a previous source route,
3267 * forget it and use the new one we've been given.
3268 */
3269 if (sc->sc_ipopts)
3270 (void) m_free(sc->sc_ipopts);
3271 sc->sc_ipopts = ipopts;
3272 }
3273 sc->sc_timestamp = tb.ts_recent;
3274 if (syn_cache_respond(sc, m) == 0) {
3275 tcpstat.tcps_sndacks++;
3276 tcpstat.tcps_sndtotal++;
3277 }
3278 return (1);
3279 }
3280
3281 sc = pool_get(&syn_cache_pool, PR_NOWAIT);
3282 if (sc == NULL) {
3283 if (ipopts)
3284 (void) m_free(ipopts);
3285 return (0);
3286 }
3287
3288 /*
3289 * Fill in the cache, and put the necessary IP and TCP
3290 * options into the reply.
3291 */
3292 bzero(sc, sizeof(struct syn_cache));
3293 bcopy(src, &sc->sc_src, src->sa_len);
3294 bcopy(dst, &sc->sc_dst, dst->sa_len);
3295 sc->sc_flags = 0;
3296 sc->sc_ipopts = ipopts;
3297 sc->sc_irs = th->th_seq;
3298 sc->sc_iss = tcp_new_iss(sc, sizeof(struct syn_cache), 0);
3299 sc->sc_peermaxseg = oi->maxseg;
3300 sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
3301 m->m_pkthdr.rcvif : NULL,
3302 sc->sc_src.sa.sa_family);
3303 sc->sc_win = win;
3304 sc->sc_timestamp = tb.ts_recent;
3305 if (tcp_do_rfc1323 && (tb.t_flags & TF_RCVD_TSTMP))
3306 sc->sc_flags |= SCF_TIMESTAMP;
3307 if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
3308 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
3309 sc->sc_requested_s_scale = tb.requested_s_scale;
3310 sc->sc_request_r_scale = 0;
3311 while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
3312 TCP_MAXWIN << sc->sc_request_r_scale <
3313 so->so_rcv.sb_hiwat)
3314 sc->sc_request_r_scale++;
3315 } else {
3316 sc->sc_requested_s_scale = 15;
3317 sc->sc_request_r_scale = 15;
3318 }
3319 sc->sc_tp = tp;
3320 if (syn_cache_respond(sc, m) == 0) {
3321 syn_cache_insert(sc, tp);
3322 tcpstat.tcps_sndacks++;
3323 tcpstat.tcps_sndtotal++;
3324 } else {
3325 SYN_CACHE_PUT(sc);
3326 tcpstat.tcps_sc_dropped++;
3327 }
3328 return (1);
3329 }
3330
3331 int
3332 syn_cache_respond(sc, m)
3333 struct syn_cache *sc;
3334 struct mbuf *m;
3335 {
3336 struct route *ro;
3337 struct rtentry *rt;
3338 u_int8_t *optp;
3339 int optlen, error;
3340 u_int16_t tlen;
3341 struct ip *ip = NULL;
3342 #ifdef INET6
3343 struct ip6_hdr *ip6 = NULL;
3344 #endif
3345 struct tcphdr *th;
3346 u_int hlen;
3347
3348 switch (sc->sc_src.sa.sa_family) {
3349 case AF_INET:
3350 hlen = sizeof(struct ip);
3351 ro = &sc->sc_route4;
3352 break;
3353 #ifdef INET6
3354 case AF_INET6:
3355 hlen = sizeof(struct ip6_hdr);
3356 ro = (struct route *)&sc->sc_route6;
3357 break;
3358 #endif
3359 default:
3360 if (m)
3361 m_freem(m);
3362 return EAFNOSUPPORT;
3363 }
3364
3365 /* Compute the size of the TCP options. */
3366 optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
3367 ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
3368
3369 tlen = hlen + sizeof(struct tcphdr) + optlen;
3370
3371 /*
3372 * Create the IP+TCP header from scratch.
3373 */
3374 if (m)
3375 m_freem(m);
3376 #ifdef DIAGNOSTIC
3377 if (max_linkhdr + tlen > MCLBYTES)
3378 return (ENOBUFS);
3379 #endif
3380 MGETHDR(m, M_DONTWAIT, MT_DATA);
3381 if (m && tlen > MHLEN) {
3382 MCLGET(m, M_DONTWAIT);
3383 if ((m->m_flags & M_EXT) == 0) {
3384 m_freem(m);
3385 m = NULL;
3386 }
3387 }
3388 if (m == NULL)
3389 return (ENOBUFS);
3390
3391 /* Fixup the mbuf. */
3392 m->m_data += max_linkhdr;
3393 m->m_len = m->m_pkthdr.len = tlen;
3394 #ifdef IPSEC
3395 if (sc->sc_tp) {
3396 struct tcpcb *tp;
3397 struct socket *so;
3398
3399 tp = sc->sc_tp;
3400 if (tp->t_inpcb)
3401 so = tp->t_inpcb->inp_socket;
3402 #ifdef INET6
3403 else if (tp->t_in6pcb)
3404 so = tp->t_in6pcb->in6p_socket;
3405 #endif
3406 else
3407 so = NULL;
3408 /* use IPsec policy on listening socket, on SYN ACK */
3409 ipsec_setsocket(m, so);
3410 }
3411 #endif
3412 m->m_pkthdr.rcvif = NULL;
3413 memset(mtod(m, u_char *), 0, tlen);
3414
3415 switch (sc->sc_src.sa.sa_family) {
3416 case AF_INET:
3417 ip = mtod(m, struct ip *);
3418 ip->ip_dst = sc->sc_src.sin.sin_addr;
3419 ip->ip_src = sc->sc_dst.sin.sin_addr;
3420 ip->ip_p = IPPROTO_TCP;
3421 th = (struct tcphdr *)(ip + 1);
3422 th->th_dport = sc->sc_src.sin.sin_port;
3423 th->th_sport = sc->sc_dst.sin.sin_port;
3424 break;
3425 #ifdef INET6
3426 case AF_INET6:
3427 ip6 = mtod(m, struct ip6_hdr *);
3428 ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
3429 ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
3430 ip6->ip6_nxt = IPPROTO_TCP;
3431 /* ip6_plen will be updated in ip6_output() */
3432 th = (struct tcphdr *)(ip6 + 1);
3433 th->th_dport = sc->sc_src.sin6.sin6_port;
3434 th->th_sport = sc->sc_dst.sin6.sin6_port;
3435 break;
3436 #endif
3437 default:
3438 th = NULL;
3439 }
3440
3441 th->th_seq = htonl(sc->sc_iss);
3442 th->th_ack = htonl(sc->sc_irs + 1);
3443 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
3444 th->th_flags = TH_SYN|TH_ACK;
3445 th->th_win = htons(sc->sc_win);
3446 /* th_sum already 0 */
3447 /* th_urp already 0 */
3448
3449 /* Tack on the TCP options. */
3450 optp = (u_int8_t *)(th + 1);
3451 *optp++ = TCPOPT_MAXSEG;
3452 *optp++ = 4;
3453 *optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
3454 *optp++ = sc->sc_ourmaxseg & 0xff;
3455
3456 if (sc->sc_request_r_scale != 15) {
3457 *((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
3458 TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
3459 sc->sc_request_r_scale);
3460 optp += 4;
3461 }
3462
3463 if (sc->sc_flags & SCF_TIMESTAMP) {
3464 u_int32_t *lp = (u_int32_t *)(optp);
3465 /* Form timestamp option as shown in appendix A of RFC 1323. */
3466 *lp++ = htonl(TCPOPT_TSTAMP_HDR);
3467 *lp++ = htonl(tcp_now);
3468 *lp = htonl(sc->sc_timestamp);
3469 optp += TCPOLEN_TSTAMP_APPA;
3470 }
3471
3472 /* Compute the packet's checksum. */
3473 switch (sc->sc_src.sa.sa_family) {
3474 case AF_INET:
3475 ip->ip_len = htons(tlen - hlen);
3476 th->th_sum = 0;
3477 th->th_sum = in_cksum(m, tlen);
3478 break;
3479 #ifdef INET6
3480 case AF_INET6:
3481 ip6->ip6_plen = htons(tlen - hlen);
3482 th->th_sum = 0;
3483 th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
3484 break;
3485 #endif
3486 }
3487
3488 /*
3489 * Fill in some straggling IP bits. Note the stack expects
3490 * ip_len to be in host order, for convenience.
3491 */
3492 switch (sc->sc_src.sa.sa_family) {
3493 case AF_INET:
3494 ip->ip_len = tlen;
3495 ip->ip_ttl = ip_defttl;
3496 /* XXX tos? */
3497 break;
3498 #ifdef INET6
3499 case AF_INET6:
3500 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
3501 ip6->ip6_vfc |= IPV6_VERSION;
3502 ip6->ip6_plen = htons(tlen - hlen);
3503 /* ip6_hlim will be initialized afterwards */
3504 /* XXX flowlabel? */
3505 break;
3506 #endif
3507 }
3508
3509 /*
3510 * If we're doing Path MTU discovery, we need to set DF unless
3511 * the route's MTU is locked. If we don't yet know the route,
3512 * look it up now. We will copy this reference to the inpcb
3513 * when we finish creating the connection.
3514 */
3515 if ((rt = ro->ro_rt) == NULL || (rt->rt_flags & RTF_UP) == 0) {
3516 if (ro->ro_rt != NULL) {
3517 RTFREE(ro->ro_rt);
3518 ro->ro_rt = NULL;
3519 }
3520 bcopy(&sc->sc_src, &ro->ro_dst, sc->sc_src.sa.sa_len);
3521 rtalloc(ro);
3522 if ((rt = ro->ro_rt) == NULL) {
3523 m_freem(m);
3524 switch (sc->sc_src.sa.sa_family) {
3525 case AF_INET:
3526 ipstat.ips_noroute++;
3527 break;
3528 #ifdef INET6
3529 case AF_INET6:
3530 ip6stat.ip6s_noroute++;
3531 break;
3532 #endif
3533 }
3534 return (EHOSTUNREACH);
3535 }
3536 }
3537
3538 switch (sc->sc_src.sa.sa_family) {
3539 case AF_INET:
3540 if (ip_mtudisc != 0 && (rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
3541 ip->ip_off |= IP_DF;
3542
3543 /* ...and send it off! */
3544 error = ip_output(m, sc->sc_ipopts, ro, 0, NULL);
3545 break;
3546 #ifdef INET6
3547 case AF_INET6:
3548 ip6->ip6_hlim = in6_selecthlim(NULL,
3549 ro->ro_rt ? ro->ro_rt->rt_ifp : NULL);
3550
3551 error = ip6_output(m, NULL /*XXX*/, (struct route_in6 *)ro,
3552 0, NULL, NULL);
3553 break;
3554 #endif
3555 default:
3556 error = EAFNOSUPPORT;
3557 break;
3558 }
3559 return (error);
3560 }
3561