Home | History | Annotate | Line # | Download | only in netinet
tcp_input.c revision 1.120
      1 /*	$NetBSD: tcp_input.c,v 1.120 2000/10/19 20:22:59 itojun Exp $	*/
      2 
      3 /*
      4 %%% portions-copyright-nrl-95
      5 Portions of this software are Copyright 1995-1998 by Randall Atkinson,
      6 Ronald Lee, Daniel McDonald, Bao Phan, and Chris Winters. All Rights
      7 Reserved. All rights under this copyright have been assigned to the US
      8 Naval Research Laboratory (NRL). The NRL Copyright Notice and License
      9 Agreement Version 1.1 (January 17, 1995) applies to these portions of the
     10 software.
     11 You should have received a copy of the license with this software. If you
     12 didn't get a copy, you may request one from <license (at) ipv6.nrl.navy.mil>.
     13 
     14 */
     15 
     16 /*
     17  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
     18  * All rights reserved.
     19  *
     20  * Redistribution and use in source and binary forms, with or without
     21  * modification, are permitted provided that the following conditions
     22  * are met:
     23  * 1. Redistributions of source code must retain the above copyright
     24  *    notice, this list of conditions and the following disclaimer.
     25  * 2. Redistributions in binary form must reproduce the above copyright
     26  *    notice, this list of conditions and the following disclaimer in the
     27  *    documentation and/or other materials provided with the distribution.
     28  * 3. Neither the name of the project nor the names of its contributors
     29  *    may be used to endorse or promote products derived from this software
     30  *    without specific prior written permission.
     31  *
     32  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     42  * SUCH DAMAGE.
     43  */
     44 
     45 /*-
     46  * Copyright (c) 1997, 1998, 1999 The NetBSD Foundation, Inc.
     47  * All rights reserved.
     48  *
     49  * This code is derived from software contributed to The NetBSD Foundation
     50  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
     51  * Facility, NASA Ames Research Center.
     52  *
     53  * Redistribution and use in source and binary forms, with or without
     54  * modification, are permitted provided that the following conditions
     55  * are met:
     56  * 1. Redistributions of source code must retain the above copyright
     57  *    notice, this list of conditions and the following disclaimer.
     58  * 2. Redistributions in binary form must reproduce the above copyright
     59  *    notice, this list of conditions and the following disclaimer in the
     60  *    documentation and/or other materials provided with the distribution.
     61  * 3. All advertising materials mentioning features or use of this software
     62  *    must display the following acknowledgement:
     63  *	This product includes software developed by the NetBSD
     64  *	Foundation, Inc. and its contributors.
     65  * 4. Neither the name of The NetBSD Foundation nor the names of its
     66  *    contributors may be used to endorse or promote products derived
     67  *    from this software without specific prior written permission.
     68  *
     69  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     70  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     71  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     72  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     73  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     74  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     75  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     76  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     77  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     78  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     79  * POSSIBILITY OF SUCH DAMAGE.
     80  */
     81 
     82 /*
     83  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
     84  *	The Regents of the University of California.  All rights reserved.
     85  *
     86  * Redistribution and use in source and binary forms, with or without
     87  * modification, are permitted provided that the following conditions
     88  * are met:
     89  * 1. Redistributions of source code must retain the above copyright
     90  *    notice, this list of conditions and the following disclaimer.
     91  * 2. Redistributions in binary form must reproduce the above copyright
     92  *    notice, this list of conditions and the following disclaimer in the
     93  *    documentation and/or other materials provided with the distribution.
     94  * 3. All advertising materials mentioning features or use of this software
     95  *    must display the following acknowledgement:
     96  *	This product includes software developed by the University of
     97  *	California, Berkeley and its contributors.
     98  * 4. Neither the name of the University nor the names of its contributors
     99  *    may be used to endorse or promote products derived from this software
    100  *    without specific prior written permission.
    101  *
    102  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
    103  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
    104  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
    105  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
    106  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
    107  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
    108  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    109  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    110  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    111  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    112  * SUCH DAMAGE.
    113  *
    114  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
    115  */
    116 
    117 /*
    118  *	TODO list for SYN cache stuff:
    119  *
    120  *	Find room for a "state" field, which is needed to keep a
    121  *	compressed state for TIME_WAIT TCBs.  It's been noted already
    122  *	that this is fairly important for very high-volume web and
    123  *	mail servers, which use a large number of short-lived
    124  *	connections.
    125  */
    126 
    127 #include "opt_inet.h"
    128 #include "opt_ipsec.h"
    129 
    130 #include <sys/param.h>
    131 #include <sys/systm.h>
    132 #include <sys/malloc.h>
    133 #include <sys/mbuf.h>
    134 #include <sys/protosw.h>
    135 #include <sys/socket.h>
    136 #include <sys/socketvar.h>
    137 #include <sys/errno.h>
    138 #include <sys/syslog.h>
    139 #include <sys/pool.h>
    140 #include <sys/domain.h>
    141 
    142 #include <net/if.h>
    143 #include <net/route.h>
    144 #include <net/if_types.h>
    145 
    146 #include <netinet/in.h>
    147 #include <netinet/in_systm.h>
    148 #include <netinet/ip.h>
    149 #include <netinet/in_pcb.h>
    150 #include <netinet/ip_var.h>
    151 
    152 #ifdef INET6
    153 #ifndef INET
    154 #include <netinet/in.h>
    155 #endif
    156 #include <netinet/ip6.h>
    157 #include <netinet6/ip6_var.h>
    158 #include <netinet6/in6_pcb.h>
    159 #include <netinet6/ip6_var.h>
    160 #include <netinet6/in6_var.h>
    161 #include <netinet/icmp6.h>
    162 #include <netinet6/nd6.h>
    163 #endif
    164 
    165 #ifdef PULLDOWN_TEST
    166 #ifndef INET6
    167 /* always need ip6.h for IP6_EXTHDR_GET */
    168 #include <netinet/ip6.h>
    169 #endif
    170 #endif
    171 
    172 #include <netinet/tcp.h>
    173 #include <netinet/tcp_fsm.h>
    174 #include <netinet/tcp_seq.h>
    175 #include <netinet/tcp_timer.h>
    176 #include <netinet/tcp_var.h>
    177 #include <netinet/tcpip.h>
    178 #include <netinet/tcp_debug.h>
    179 
    180 #include <machine/stdarg.h>
    181 
    182 #ifdef IPSEC
    183 #include <netinet6/ipsec.h>
    184 #include <netkey/key.h>
    185 #endif /*IPSEC*/
    186 #ifdef INET6
    187 #include "faith.h"
    188 #endif
    189 
    190 int	tcprexmtthresh = 3;
    191 int	tcp_log_refused;
    192 
    193 static int tcp_rst_ppslim_count = 0;
    194 static struct timeval tcp_rst_ppslim_last;
    195 
    196 #define TCP_PAWS_IDLE	(24 * 24 * 60 * 60 * PR_SLOWHZ)
    197 
    198 /* for modulo comparisons of timestamps */
    199 #define TSTMP_LT(a,b)	((int)((a)-(b)) < 0)
    200 #define TSTMP_GEQ(a,b)	((int)((a)-(b)) >= 0)
    201 
    202 /*
    203  * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
    204  */
    205 #ifdef INET6
    206 #define ND6_HINT(tp) \
    207 do { \
    208 	if (tp && tp->t_in6pcb && tp->t_family == AF_INET6 \
    209 	 && tp->t_in6pcb->in6p_route.ro_rt) { \
    210 		nd6_nud_hint(tp->t_in6pcb->in6p_route.ro_rt, NULL, 0); \
    211 	} \
    212 } while (0)
    213 #else
    214 #define ND6_HINT(tp)
    215 #endif
    216 
    217 /*
    218  * Macro to compute ACK transmission behavior.  Delay the ACK unless
    219  * we have already delayed an ACK (must send an ACK every two segments).
    220  * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
    221  * option is enabled.
    222  */
    223 #define	TCP_SETUP_ACK(tp, th) \
    224 do { \
    225 	if ((tp)->t_flags & TF_DELACK || \
    226 	    (tcp_ack_on_push && (th)->th_flags & TH_PUSH)) \
    227 		tp->t_flags |= TF_ACKNOW; \
    228 	else \
    229 		TCP_SET_DELACK(tp); \
    230 } while (0)
    231 
    232 /*
    233  * Convert TCP protocol fields to host order for easier processing.
    234  */
    235 #define	TCP_FIELDS_TO_HOST(th)						\
    236 do {									\
    237 	NTOHL((th)->th_seq);						\
    238 	NTOHL((th)->th_ack);						\
    239 	NTOHS((th)->th_win);						\
    240 	NTOHS((th)->th_urp);						\
    241 } while (0)
    242 
    243 int
    244 tcp_reass(tp, th, m, tlen)
    245 	struct tcpcb *tp;
    246 	struct tcphdr *th;
    247 	struct mbuf *m;
    248 	int *tlen;
    249 {
    250 	struct ipqent *p, *q, *nq, *tiqe = NULL;
    251 	struct socket *so = NULL;
    252 	int pkt_flags;
    253 	tcp_seq pkt_seq;
    254 	unsigned pkt_len;
    255 	u_long rcvpartdupbyte = 0;
    256 	u_long rcvoobyte;
    257 
    258 	if (tp->t_inpcb)
    259 		so = tp->t_inpcb->inp_socket;
    260 #ifdef INET6
    261 	else if (tp->t_in6pcb)
    262 		so = tp->t_in6pcb->in6p_socket;
    263 #endif
    264 
    265 	TCP_REASS_LOCK_CHECK(tp);
    266 
    267 	/*
    268 	 * Call with th==0 after become established to
    269 	 * force pre-ESTABLISHED data up to user socket.
    270 	 */
    271 	if (th == 0)
    272 		goto present;
    273 
    274 	rcvoobyte = *tlen;
    275 	/*
    276 	 * Copy these to local variables because the tcpiphdr
    277 	 * gets munged while we are collapsing mbufs.
    278 	 */
    279 	pkt_seq = th->th_seq;
    280 	pkt_len = *tlen;
    281 	pkt_flags = th->th_flags;
    282 	/*
    283 	 * Find a segment which begins after this one does.
    284 	 */
    285 	for (p = NULL, q = tp->segq.lh_first; q != NULL; q = nq) {
    286 		nq = q->ipqe_q.le_next;
    287 		/*
    288 		 * If the received segment is just right after this
    289 		 * fragment, merge the two together and then check
    290 		 * for further overlaps.
    291 		 */
    292 		if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
    293 #ifdef TCPREASS_DEBUG
    294 			printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
    295 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
    296 			       q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
    297 #endif
    298 			pkt_len += q->ipqe_len;
    299 			pkt_flags |= q->ipqe_flags;
    300 			pkt_seq = q->ipqe_seq;
    301 			m_cat(q->ipqe_m, m);
    302 			m = q->ipqe_m;
    303 			goto free_ipqe;
    304 		}
    305 		/*
    306 		 * If the received segment is completely past this
    307 		 * fragment, we need to go the next fragment.
    308 		 */
    309 		if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
    310 			p = q;
    311 			continue;
    312 		}
    313 		/*
    314 		 * If the fragment is past the received segment,
    315 		 * it (or any following) can't be concatenated.
    316 		 */
    317 		if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len))
    318 			break;
    319 		/*
    320 		 * We've received all the data in this segment before.
    321 		 * mark it as a duplicate and return.
    322 		 */
    323 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
    324 		    SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
    325 			tcpstat.tcps_rcvduppack++;
    326 			tcpstat.tcps_rcvdupbyte += pkt_len;
    327 			m_freem(m);
    328 			if (tiqe != NULL)
    329 				pool_put(&ipqent_pool, tiqe);
    330 			return (0);
    331 		}
    332 		/*
    333 		 * Received segment completely overlaps this fragment
    334 		 * so we drop the fragment (this keeps the temporal
    335 		 * ordering of segments correct).
    336 		 */
    337 		if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
    338 		    SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
    339 			rcvpartdupbyte += q->ipqe_len;
    340 			m_freem(q->ipqe_m);
    341 			goto free_ipqe;
    342 		}
    343 		/*
    344 		 * RX'ed segment extends past the end of the
    345 		 * fragment.  Drop the overlapping bytes.  Then
    346 		 * merge the fragment and segment then treat as
    347 		 * a longer received packet.
    348 		 */
    349 		if (SEQ_LT(q->ipqe_seq, pkt_seq)
    350 		    && SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq))  {
    351 			int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
    352 #ifdef TCPREASS_DEBUG
    353 			printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
    354 			       tp, overlap,
    355 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
    356 #endif
    357 			m_adj(m, overlap);
    358 			rcvpartdupbyte += overlap;
    359 			m_cat(q->ipqe_m, m);
    360 			m = q->ipqe_m;
    361 			pkt_seq = q->ipqe_seq;
    362 			pkt_len += q->ipqe_len - overlap;
    363 			rcvoobyte -= overlap;
    364 			goto free_ipqe;
    365 		}
    366 		/*
    367 		 * RX'ed segment extends past the front of the
    368 		 * fragment.  Drop the overlapping bytes on the
    369 		 * received packet.  The packet will then be
    370 		 * contatentated with this fragment a bit later.
    371 		 */
    372 		if (SEQ_GT(q->ipqe_seq, pkt_seq)
    373 		    && SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len))  {
    374 			int overlap = pkt_seq + pkt_len - q->ipqe_seq;
    375 #ifdef TCPREASS_DEBUG
    376 			printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
    377 			       tp, overlap,
    378 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
    379 #endif
    380 			m_adj(m, -overlap);
    381 			pkt_len -= overlap;
    382 			rcvpartdupbyte += overlap;
    383 			rcvoobyte -= overlap;
    384 		}
    385 		/*
    386 		 * If the received segment immediates precedes this
    387 		 * fragment then tack the fragment onto this segment
    388 		 * and reinsert the data.
    389 		 */
    390 		if (q->ipqe_seq == pkt_seq + pkt_len) {
    391 #ifdef TCPREASS_DEBUG
    392 			printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
    393 			       tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
    394 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
    395 #endif
    396 			pkt_len += q->ipqe_len;
    397 			pkt_flags |= q->ipqe_flags;
    398 			m_cat(m, q->ipqe_m);
    399 			LIST_REMOVE(q, ipqe_q);
    400 			LIST_REMOVE(q, ipqe_timeq);
    401 			if (tiqe == NULL) {
    402 			    tiqe = q;
    403 			} else {
    404 			    pool_put(&ipqent_pool, q);
    405 			}
    406 			break;
    407 		}
    408 		/*
    409 		 * If the fragment is before the segment, remember it.
    410 		 * When this loop is terminated, p will contain the
    411 		 * pointer to fragment that is right before the received
    412 		 * segment.
    413 		 */
    414 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
    415 			p = q;
    416 
    417 		continue;
    418 
    419 		/*
    420 		 * This is a common operation.  It also will allow
    421 		 * to save doing a malloc/free in most instances.
    422 		 */
    423 	  free_ipqe:
    424 		LIST_REMOVE(q, ipqe_q);
    425 		LIST_REMOVE(q, ipqe_timeq);
    426 		if (tiqe == NULL) {
    427 		    tiqe = q;
    428 		} else {
    429 		    pool_put(&ipqent_pool, q);
    430 		}
    431 	}
    432 
    433 	/*
    434 	 * Allocate a new queue entry since the received segment did not
    435 	 * collapse onto any other out-of-order block; thus we are allocating
    436 	 * a new block.  If it had collapsed, tiqe would not be NULL and
    437 	 * we would be reusing it.
    438 	 * XXX If we can't, just drop the packet.  XXX
    439 	 */
    440 	if (tiqe == NULL) {
    441 		tiqe = pool_get(&ipqent_pool, PR_NOWAIT);
    442 		if (tiqe == NULL) {
    443 			tcpstat.tcps_rcvmemdrop++;
    444 			m_freem(m);
    445 			return (0);
    446 		}
    447 	}
    448 
    449 	/*
    450 	 * Update the counters.
    451 	 */
    452 	tcpstat.tcps_rcvoopack++;
    453 	tcpstat.tcps_rcvoobyte += rcvoobyte;
    454 	if (rcvpartdupbyte) {
    455 	    tcpstat.tcps_rcvpartduppack++;
    456 	    tcpstat.tcps_rcvpartdupbyte += rcvpartdupbyte;
    457 	}
    458 
    459 	/*
    460 	 * Insert the new fragment queue entry into both queues.
    461 	 */
    462 	tiqe->ipqe_m = m;
    463 	tiqe->ipqe_seq = pkt_seq;
    464 	tiqe->ipqe_len = pkt_len;
    465 	tiqe->ipqe_flags = pkt_flags;
    466 	if (p == NULL) {
    467 		LIST_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
    468 #ifdef TCPREASS_DEBUG
    469 		if (tiqe->ipqe_seq != tp->rcv_nxt)
    470 			printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
    471 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
    472 #endif
    473 	} else {
    474 		LIST_INSERT_AFTER(p, tiqe, ipqe_q);
    475 #ifdef TCPREASS_DEBUG
    476 		printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
    477 		       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
    478 		       p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
    479 #endif
    480 	}
    481 
    482 	LIST_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
    483 
    484 present:
    485 	/*
    486 	 * Present data to user, advancing rcv_nxt through
    487 	 * completed sequence space.
    488 	 */
    489 	if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
    490 		return (0);
    491 	q = tp->segq.lh_first;
    492 	if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
    493 		return (0);
    494 	if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
    495 		return (0);
    496 
    497 	tp->rcv_nxt += q->ipqe_len;
    498 	pkt_flags = q->ipqe_flags & TH_FIN;
    499 	ND6_HINT(tp);
    500 
    501 	LIST_REMOVE(q, ipqe_q);
    502 	LIST_REMOVE(q, ipqe_timeq);
    503 	if (so->so_state & SS_CANTRCVMORE)
    504 		m_freem(q->ipqe_m);
    505 	else
    506 		sbappend(&so->so_rcv, q->ipqe_m);
    507 	pool_put(&ipqent_pool, q);
    508 	sorwakeup(so);
    509 	return (pkt_flags);
    510 }
    511 
    512 #ifdef INET6
    513 int
    514 tcp6_input(mp, offp, proto)
    515 	struct mbuf **mp;
    516 	int *offp, proto;
    517 {
    518 	struct mbuf *m = *mp;
    519 
    520 	/*
    521 	 * draft-itojun-ipv6-tcp-to-anycast
    522 	 * better place to put this in?
    523 	 */
    524 	if (m->m_flags & M_ANYCAST6) {
    525 		struct ip6_hdr *ip6;
    526 		if (m->m_len < sizeof(struct ip6_hdr)) {
    527 			if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
    528 				tcpstat.tcps_rcvshort++;
    529 				return IPPROTO_DONE;
    530 			}
    531 		}
    532 		ip6 = mtod(m, struct ip6_hdr *);
    533 		icmp6_error(m, ICMP6_DST_UNREACH,
    534 			ICMP6_DST_UNREACH_ADDR,
    535 			(caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
    536 		return IPPROTO_DONE;
    537 	}
    538 
    539 	tcp_input(m, *offp, proto);
    540 	return IPPROTO_DONE;
    541 }
    542 #endif
    543 
    544 /*
    545  * TCP input routine, follows pages 65-76 of the
    546  * protocol specification dated September, 1981 very closely.
    547  */
    548 void
    549 #if __STDC__
    550 tcp_input(struct mbuf *m, ...)
    551 #else
    552 tcp_input(m, va_alist)
    553 	struct mbuf *m;
    554 #endif
    555 {
    556 	int proto;
    557 	struct tcphdr *th;
    558 	struct ip *ip;
    559 	struct inpcb *inp;
    560 #ifdef INET6
    561 	struct ip6_hdr *ip6;
    562 	struct in6pcb *in6p;
    563 #endif
    564 	caddr_t optp = NULL;
    565 	int optlen = 0;
    566 	int len, tlen, toff, hdroptlen = 0;
    567 	struct tcpcb *tp = 0;
    568 	int tiflags;
    569 	struct socket *so = NULL;
    570 	int todrop, acked, ourfinisacked, needoutput = 0;
    571 	short ostate = 0;
    572 	int iss = 0;
    573 	u_long tiwin;
    574 	struct tcp_opt_info opti;
    575 	int off, iphlen;
    576 	va_list ap;
    577 	int af;		/* af on the wire */
    578 	struct mbuf *tcp_saveti = NULL;
    579 
    580 	va_start(ap, m);
    581 	toff = va_arg(ap, int);
    582 	proto = va_arg(ap, int);
    583 	va_end(ap);
    584 
    585 	tcpstat.tcps_rcvtotal++;
    586 
    587 	bzero(&opti, sizeof(opti));
    588 	opti.ts_present = 0;
    589 	opti.maxseg = 0;
    590 
    591 	/*
    592 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
    593 	 *
    594 	 * TCP is, by definition, unicast, so we reject all
    595 	 * multicast outright.
    596 	 *
    597 	 * Note, there are additional src/dst address checks in
    598 	 * the AF-specific code below.
    599 	 */
    600 	if (m->m_flags & (M_BCAST|M_MCAST)) {
    601 		/* XXX stat */
    602 		goto drop;
    603 	}
    604 #ifdef INET6
    605 	if (m->m_flags & M_ANYCAST6) {
    606 		/* XXX stat */
    607 		goto drop;
    608 	}
    609 #endif
    610 
    611 	/*
    612 	 * Get IP and TCP header together in first mbuf.
    613 	 * Note: IP leaves IP header in first mbuf.
    614 	 */
    615 	ip = mtod(m, struct ip *);
    616 #ifdef INET6
    617 	ip6 = NULL;
    618 #endif
    619 	switch (ip->ip_v) {
    620 #ifdef INET
    621 	case 4:
    622 		af = AF_INET;
    623 		iphlen = sizeof(struct ip);
    624 #ifndef PULLDOWN_TEST
    625 		/* would like to get rid of this... */
    626 		if (toff > sizeof (struct ip)) {
    627 			ip_stripoptions(m, (struct mbuf *)0);
    628 			toff = sizeof(struct ip);
    629 		}
    630 		if (m->m_len < toff + sizeof (struct tcphdr)) {
    631 			if ((m = m_pullup(m, toff + sizeof (struct tcphdr))) == 0) {
    632 				tcpstat.tcps_rcvshort++;
    633 				return;
    634 			}
    635 		}
    636 		ip = mtod(m, struct ip *);
    637 		th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
    638 #else
    639 		ip = mtod(m, struct ip *);
    640 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
    641 			sizeof(struct tcphdr));
    642 		if (th == NULL) {
    643 			tcpstat.tcps_rcvshort++;
    644 			return;
    645 		}
    646 #endif
    647 
    648 		/*
    649 		 * Make sure destination address is not multicast.
    650 		 * Source address checked in ip_input().
    651 		 */
    652 		if (IN_MULTICAST(ip->ip_dst.s_addr)) {
    653 			/* XXX stat */
    654 			goto drop;
    655 		}
    656 
    657 		/* We do the checksum after PCB lookup... */
    658 		len = ip->ip_len;
    659 		tlen = len - toff;
    660 		break;
    661 #endif
    662 #ifdef INET6
    663 	case 6:
    664 		ip = NULL;
    665 		iphlen = sizeof(struct ip6_hdr);
    666 		af = AF_INET6;
    667 #ifndef PULLDOWN_TEST
    668 		if (m->m_len < toff + sizeof(struct tcphdr)) {
    669 			m = m_pullup(m, toff + sizeof(struct tcphdr));	/*XXX*/
    670 			if (m == NULL) {
    671 				tcpstat.tcps_rcvshort++;
    672 				return;
    673 			}
    674 		}
    675 		ip6 = mtod(m, struct ip6_hdr *);
    676 		th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
    677 #else
    678 		ip6 = mtod(m, struct ip6_hdr *);
    679 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
    680 			sizeof(struct tcphdr));
    681 		if (th == NULL) {
    682 			tcpstat.tcps_rcvshort++;
    683 			return;
    684 		}
    685 #endif
    686 
    687 		/* Be proactive about malicious use of IPv4 mapped address */
    688 		if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
    689 		    IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
    690 			/* XXX stat */
    691 			goto drop;
    692 		}
    693 
    694 		/*
    695 		 * Be proactive about unspecified IPv6 address in source.
    696 		 * As we use all-zero to indicate unbounded/unconnected pcb,
    697 		 * unspecified IPv6 address can be used to confuse us.
    698 		 *
    699 		 * Note that packets with unspecified IPv6 destination is
    700 		 * already dropped in ip6_input.
    701 		 */
    702 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
    703 			/* XXX stat */
    704 			goto drop;
    705 		}
    706 
    707 		/*
    708 		 * Make sure destination address is not multicast.
    709 		 * Source address checked in ip6_input().
    710 		 */
    711 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
    712 			/* XXX stat */
    713 			goto drop;
    714 		}
    715 
    716 		/* We do the checksum after PCB lookup... */
    717 		len = m->m_pkthdr.len;
    718 		tlen = len - toff;
    719 		break;
    720 #endif
    721 	default:
    722 		m_freem(m);
    723 		return;
    724 	}
    725 
    726 	/*
    727 	 * Check that TCP offset makes sense,
    728 	 * pull out TCP options and adjust length.		XXX
    729 	 */
    730 	off = th->th_off << 2;
    731 	if (off < sizeof (struct tcphdr) || off > tlen) {
    732 		tcpstat.tcps_rcvbadoff++;
    733 		goto drop;
    734 	}
    735 	tlen -= off;
    736 
    737 	/*
    738 	 * tcp_input() has been modified to use tlen to mean the TCP data
    739 	 * length throughout the function.  Other functions can use
    740 	 * m->m_pkthdr.len as the basis for calculating the TCP data length.
    741 	 * rja
    742 	 */
    743 
    744 	if (off > sizeof (struct tcphdr)) {
    745 #ifndef PULLDOWN_TEST
    746 		if (m->m_len < toff + off) {
    747 			if ((m = m_pullup(m, toff + off)) == 0) {
    748 				tcpstat.tcps_rcvshort++;
    749 				return;
    750 			}
    751 			switch (af) {
    752 #ifdef INET
    753 			case AF_INET:
    754 				ip = mtod(m, struct ip *);
    755 				break;
    756 #endif
    757 #ifdef INET6
    758 			case AF_INET6:
    759 				ip6 = mtod(m, struct ip6_hdr *);
    760 				break;
    761 #endif
    762 			}
    763 			th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
    764 		}
    765 #else
    766 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
    767 		if (th == NULL) {
    768 			tcpstat.tcps_rcvshort++;
    769 			return;
    770 		}
    771 		/*
    772 		 * NOTE: ip/ip6 will not be affected by m_pulldown()
    773 		 * (as they're before toff) and we don't need to update those.
    774 		 */
    775 #endif
    776 		optlen = off - sizeof (struct tcphdr);
    777 		optp = ((caddr_t)th) + sizeof(struct tcphdr);
    778 		/*
    779 		 * Do quick retrieval of timestamp options ("options
    780 		 * prediction?").  If timestamp is the only option and it's
    781 		 * formatted as recommended in RFC 1323 appendix A, we
    782 		 * quickly get the values now and not bother calling
    783 		 * tcp_dooptions(), etc.
    784 		 */
    785 		if ((optlen == TCPOLEN_TSTAMP_APPA ||
    786 		     (optlen > TCPOLEN_TSTAMP_APPA &&
    787 			optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
    788 		     *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
    789 		     (th->th_flags & TH_SYN) == 0) {
    790 			opti.ts_present = 1;
    791 			opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
    792 			opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
    793 			optp = NULL;	/* we've parsed the options */
    794 		}
    795 	}
    796 	tiflags = th->th_flags;
    797 
    798 	/*
    799 	 * Locate pcb for segment.
    800 	 */
    801 findpcb:
    802 	inp = NULL;
    803 #ifdef INET6
    804 	in6p = NULL;
    805 #endif
    806 	switch (af) {
    807 #ifdef INET
    808 	case AF_INET:
    809 		inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
    810 		    ip->ip_dst, th->th_dport);
    811 		if (inp == 0) {
    812 			++tcpstat.tcps_pcbhashmiss;
    813 			inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
    814 		}
    815 #ifdef INET6
    816 		if (inp == 0) {
    817 			struct in6_addr s, d;
    818 
    819 			/* mapped addr case */
    820 			bzero(&s, sizeof(s));
    821 			s.s6_addr16[5] = htons(0xffff);
    822 			bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
    823 			bzero(&d, sizeof(d));
    824 			d.s6_addr16[5] = htons(0xffff);
    825 			bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
    826 			in6p = in6_pcblookup_connect(&tcb6, &s, th->th_sport,
    827 				&d, th->th_dport, 0);
    828 			if (in6p == 0) {
    829 				++tcpstat.tcps_pcbhashmiss;
    830 				in6p = in6_pcblookup_bind(&tcb6, &d,
    831 					th->th_dport, 0);
    832 			}
    833 		}
    834 #endif
    835 #ifndef INET6
    836 		if (inp == 0)
    837 #else
    838 		if (inp == 0 && in6p == 0)
    839 #endif
    840 		{
    841 			++tcpstat.tcps_noport;
    842 			if (tcp_log_refused && (tiflags & TH_SYN)) {
    843 #ifndef INET6
    844 				char src[4*sizeof "123"];
    845 				char dst[4*sizeof "123"];
    846 #else
    847 				char src[INET6_ADDRSTRLEN];
    848 				char dst[INET6_ADDRSTRLEN];
    849 #endif
    850 				if (ip) {
    851 					strcpy(src, inet_ntoa(ip->ip_src));
    852 					strcpy(dst, inet_ntoa(ip->ip_dst));
    853 				}
    854 #ifdef INET6
    855 				else if (ip6) {
    856 					strcpy(src, ip6_sprintf(&ip6->ip6_src));
    857 					strcpy(dst, ip6_sprintf(&ip6->ip6_dst));
    858 				}
    859 #endif
    860 				else {
    861 					strcpy(src, "(unknown)");
    862 					strcpy(dst, "(unknown)");
    863 				}
    864 				log(LOG_INFO,
    865 				    "Connection attempt to TCP %s:%d from %s:%d\n",
    866 				    dst, ntohs(th->th_dport),
    867 				    src, ntohs(th->th_sport));
    868 			}
    869 			TCP_FIELDS_TO_HOST(th);
    870 			goto dropwithreset_ratelim;
    871 		}
    872 #ifdef IPSEC
    873 		if (inp && ipsec4_in_reject(m, inp)) {
    874 			ipsecstat.in_polvio++;
    875 			goto drop;
    876 		}
    877 #ifdef INET6
    878 		else if (in6p && ipsec4_in_reject_so(m, in6p->in6p_socket)) {
    879 			ipsecstat.in_polvio++;
    880 			goto drop;
    881 		}
    882 #endif
    883 #endif /*IPSEC*/
    884 		break;
    885 #endif /*INET*/
    886 #ifdef INET6
    887 	case AF_INET6:
    888 	    {
    889 		int faith;
    890 
    891 #if defined(NFAITH) && NFAITH > 0
    892 		if (m->m_pkthdr.rcvif
    893 		 && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
    894 			faith = 1;
    895 		} else
    896 			faith = 0;
    897 #else
    898 		faith = 0;
    899 #endif
    900 		in6p = in6_pcblookup_connect(&tcb6, &ip6->ip6_src, th->th_sport,
    901 			&ip6->ip6_dst, th->th_dport, faith);
    902 		if (in6p == NULL) {
    903 			++tcpstat.tcps_pcbhashmiss;
    904 			in6p = in6_pcblookup_bind(&tcb6, &ip6->ip6_dst,
    905 				th->th_dport, faith);
    906 		}
    907 		if (in6p == NULL) {
    908 			++tcpstat.tcps_noport;
    909 			TCP_FIELDS_TO_HOST(th);
    910 			goto dropwithreset_ratelim;
    911 		}
    912 #ifdef IPSEC
    913 		if (ipsec6_in_reject(m, in6p)) {
    914 			ipsec6stat.in_polvio++;
    915 			goto drop;
    916 		}
    917 #endif /*IPSEC*/
    918 		break;
    919 	    }
    920 #endif
    921 	}
    922 
    923 	/*
    924 	 * If the state is CLOSED (i.e., TCB does not exist) then
    925 	 * all data in the incoming segment is discarded.
    926 	 * If the TCB exists but is in CLOSED state, it is embryonic,
    927 	 * but should either do a listen or a connect soon.
    928 	 */
    929 	tp = NULL;
    930 	so = NULL;
    931 	if (inp) {
    932 		tp = intotcpcb(inp);
    933 		so = inp->inp_socket;
    934 	}
    935 #ifdef INET6
    936 	else if (in6p) {
    937 		tp = in6totcpcb(in6p);
    938 		so = in6p->in6p_socket;
    939 	}
    940 #endif
    941 	if (tp == 0) {
    942 		TCP_FIELDS_TO_HOST(th);
    943 		goto dropwithreset_ratelim;
    944 	}
    945 	if (tp->t_state == TCPS_CLOSED)
    946 		goto drop;
    947 
    948 	/*
    949 	 * Checksum extended TCP header and data.
    950 	 */
    951 	switch (af) {
    952 #ifdef INET
    953 	case AF_INET:
    954 #ifndef PULLDOWN_TEST
    955 	    {
    956 		struct ipovly *ipov;
    957 		ipov = (struct ipovly *)ip;
    958 		bzero(ipov->ih_x1, sizeof ipov->ih_x1);
    959 		ipov->ih_len = htons(tlen + off);
    960 
    961 		if (in_cksum(m, len) != 0) {
    962 			tcpstat.tcps_rcvbadsum++;
    963 			goto drop;
    964 		}
    965 	    }
    966 #else
    967 		if (in4_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0) {
    968 			tcpstat.tcps_rcvbadsum++;
    969 			goto drop;
    970 		}
    971 #endif
    972 		break;
    973 #endif
    974 
    975 #ifdef INET6
    976 	case AF_INET6:
    977 		if (in6_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0) {
    978 			tcpstat.tcps_rcvbadsum++;
    979 			goto drop;
    980 		}
    981 		break;
    982 #endif
    983 	}
    984 
    985 	TCP_FIELDS_TO_HOST(th);
    986 
    987 	/* Unscale the window into a 32-bit value. */
    988 	if ((tiflags & TH_SYN) == 0)
    989 		tiwin = th->th_win << tp->snd_scale;
    990 	else
    991 		tiwin = th->th_win;
    992 
    993 #ifdef INET6
    994 	/* save packet options if user wanted */
    995 	if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
    996 		if (in6p->in6p_options) {
    997 			m_freem(in6p->in6p_options);
    998 			in6p->in6p_options = 0;
    999 		}
   1000 		ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
   1001 	}
   1002 #endif
   1003 
   1004 	if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
   1005 		union syn_cache_sa src;
   1006 		union syn_cache_sa dst;
   1007 
   1008 		bzero(&src, sizeof(src));
   1009 		bzero(&dst, sizeof(dst));
   1010 		switch (af) {
   1011 #ifdef INET
   1012 		case AF_INET:
   1013 			src.sin.sin_len = sizeof(struct sockaddr_in);
   1014 			src.sin.sin_family = AF_INET;
   1015 			src.sin.sin_addr = ip->ip_src;
   1016 			src.sin.sin_port = th->th_sport;
   1017 
   1018 			dst.sin.sin_len = sizeof(struct sockaddr_in);
   1019 			dst.sin.sin_family = AF_INET;
   1020 			dst.sin.sin_addr = ip->ip_dst;
   1021 			dst.sin.sin_port = th->th_dport;
   1022 			break;
   1023 #endif
   1024 #ifdef INET6
   1025 		case AF_INET6:
   1026 			src.sin6.sin6_len = sizeof(struct sockaddr_in6);
   1027 			src.sin6.sin6_family = AF_INET6;
   1028 			src.sin6.sin6_addr = ip6->ip6_src;
   1029 			src.sin6.sin6_port = th->th_sport;
   1030 
   1031 			dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
   1032 			dst.sin6.sin6_family = AF_INET6;
   1033 			dst.sin6.sin6_addr = ip6->ip6_dst;
   1034 			dst.sin6.sin6_port = th->th_dport;
   1035 			break;
   1036 #endif /* INET6 */
   1037 		default:
   1038 			goto badsyn;	/*sanity*/
   1039 		}
   1040 
   1041 		if (so->so_options & SO_DEBUG) {
   1042 			ostate = tp->t_state;
   1043 
   1044 			tcp_saveti = NULL;
   1045 			if (iphlen + sizeof(struct tcphdr) > MHLEN)
   1046 				goto nosave;
   1047 
   1048 			if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
   1049 				tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
   1050 				if (!tcp_saveti)
   1051 					goto nosave;
   1052 			} else {
   1053 				MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
   1054 				if (!tcp_saveti)
   1055 					goto nosave;
   1056 				tcp_saveti->m_len = iphlen;
   1057 				m_copydata(m, 0, iphlen,
   1058 				    mtod(tcp_saveti, caddr_t));
   1059 			}
   1060 
   1061 			if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
   1062 				m_freem(tcp_saveti);
   1063 				tcp_saveti = NULL;
   1064 			} else {
   1065 				tcp_saveti->m_len += sizeof(struct tcphdr);
   1066 				bcopy(th, mtod(tcp_saveti, caddr_t) + iphlen,
   1067 				    sizeof(struct tcphdr));
   1068 			}
   1069 			if (tcp_saveti) {
   1070 				/*
   1071 				 * need to recover version # field, which was
   1072 				 * overwritten on ip_cksum computation.
   1073 				 */
   1074 				struct ip *sip;
   1075 				sip = mtod(tcp_saveti, struct ip *);
   1076 				switch (af) {
   1077 #ifdef INET
   1078 				case AF_INET:
   1079 					sip->ip_v = 4;
   1080 					break;
   1081 #endif
   1082 #ifdef INET6
   1083 				case AF_INET6:
   1084 					sip->ip_v = 6;
   1085 					break;
   1086 #endif
   1087 				}
   1088 			}
   1089 	nosave:;
   1090 		}
   1091 		if (so->so_options & SO_ACCEPTCONN) {
   1092   			if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
   1093 				if (tiflags & TH_RST) {
   1094 					syn_cache_reset(&src.sa, &dst.sa, th);
   1095 				} else if ((tiflags & (TH_ACK|TH_SYN)) ==
   1096 				    (TH_ACK|TH_SYN)) {
   1097 					/*
   1098 					 * Received a SYN,ACK.  This should
   1099 					 * never happen while we are in
   1100 					 * LISTEN.  Send an RST.
   1101 					 */
   1102 					goto badsyn;
   1103 				} else if (tiflags & TH_ACK) {
   1104 					so = syn_cache_get(&src.sa, &dst.sa,
   1105 						th, toff, tlen, so, m);
   1106 					if (so == NULL) {
   1107 						/*
   1108 						 * We don't have a SYN for
   1109 						 * this ACK; send an RST.
   1110 						 */
   1111 						goto badsyn;
   1112 					} else if (so ==
   1113 					    (struct socket *)(-1)) {
   1114 						/*
   1115 						 * We were unable to create
   1116 						 * the connection.  If the
   1117 						 * 3-way handshake was
   1118 						 * completed, and RST has
   1119 						 * been sent to the peer.
   1120 						 * Since the mbuf might be
   1121 						 * in use for the reply,
   1122 						 * do not free it.
   1123 						 */
   1124 						m = NULL;
   1125 					} else {
   1126 						/*
   1127 						 * We have created a
   1128 						 * full-blown connection.
   1129 						 */
   1130 						tp = NULL;
   1131 						inp = NULL;
   1132 #ifdef INET6
   1133 						in6p = NULL;
   1134 #endif
   1135 						switch (so->so_proto->pr_domain->dom_family) {
   1136 #ifdef INET
   1137 						case AF_INET:
   1138 							inp = sotoinpcb(so);
   1139 							tp = intotcpcb(inp);
   1140 							break;
   1141 #endif
   1142 #ifdef INET6
   1143 						case AF_INET6:
   1144 							in6p = sotoin6pcb(so);
   1145 							tp = in6totcpcb(in6p);
   1146 							break;
   1147 #endif
   1148 						}
   1149 						if (tp == NULL)
   1150 							goto badsyn;	/*XXX*/
   1151 						tiwin <<= tp->snd_scale;
   1152 						goto after_listen;
   1153 					}
   1154   				} else {
   1155 					/*
   1156 					 * None of RST, SYN or ACK was set.
   1157 					 * This is an invalid packet for a
   1158 					 * TCB in LISTEN state.  Send a RST.
   1159 					 */
   1160 					goto badsyn;
   1161 				}
   1162   			} else {
   1163 				/*
   1164 				 * Received a SYN.
   1165 				 */
   1166 
   1167 				/*
   1168 				 * LISTEN socket received a SYN
   1169 				 * from itself?  This can't possibly
   1170 				 * be valid; drop the packet.
   1171 				 */
   1172 				if (th->th_sport == th->th_dport) {
   1173 					int i;
   1174 
   1175 					switch (af) {
   1176 #ifdef INET
   1177 					case AF_INET:
   1178 						i = in_hosteq(ip->ip_src, ip->ip_dst);
   1179 						break;
   1180 #endif
   1181 #ifdef INET6
   1182 					case AF_INET6:
   1183 						i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
   1184 						break;
   1185 #endif
   1186 					default:
   1187 						i = 1;
   1188 					}
   1189 					if (i) {
   1190 						tcpstat.tcps_badsyn++;
   1191 						goto drop;
   1192 					}
   1193 				}
   1194 
   1195 				/*
   1196 				 * SYN looks ok; create compressed TCP
   1197 				 * state for it.
   1198 				 */
   1199 				if (so->so_qlen <= so->so_qlimit &&
   1200 				    syn_cache_add(&src.sa, &dst.sa, th, tlen,
   1201 						so, m, optp, optlen, &opti))
   1202 					m = NULL;
   1203 			}
   1204 			goto drop;
   1205 		}
   1206 	}
   1207 
   1208 after_listen:
   1209 #ifdef DIAGNOSTIC
   1210 	/*
   1211 	 * Should not happen now that all embryonic connections
   1212 	 * are handled with compressed state.
   1213 	 */
   1214 	if (tp->t_state == TCPS_LISTEN)
   1215 		panic("tcp_input: TCPS_LISTEN");
   1216 #endif
   1217 
   1218 	/*
   1219 	 * Segment received on connection.
   1220 	 * Reset idle time and keep-alive timer.
   1221 	 */
   1222 	tp->t_idle = 0;
   1223 	if (TCPS_HAVEESTABLISHED(tp->t_state))
   1224 		TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
   1225 
   1226 	/*
   1227 	 * Process options.
   1228 	 */
   1229 	if (optp)
   1230 		tcp_dooptions(tp, optp, optlen, th, &opti);
   1231 
   1232 	/*
   1233 	 * Header prediction: check for the two common cases
   1234 	 * of a uni-directional data xfer.  If the packet has
   1235 	 * no control flags, is in-sequence, the window didn't
   1236 	 * change and we're not retransmitting, it's a
   1237 	 * candidate.  If the length is zero and the ack moved
   1238 	 * forward, we're the sender side of the xfer.  Just
   1239 	 * free the data acked & wake any higher level process
   1240 	 * that was blocked waiting for space.  If the length
   1241 	 * is non-zero and the ack didn't move, we're the
   1242 	 * receiver side.  If we're getting packets in-order
   1243 	 * (the reassembly queue is empty), add the data to
   1244 	 * the socket buffer and note that we need a delayed ack.
   1245 	 */
   1246 	if (tp->t_state == TCPS_ESTABLISHED &&
   1247 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
   1248 	    (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
   1249 	    th->th_seq == tp->rcv_nxt &&
   1250 	    tiwin && tiwin == tp->snd_wnd &&
   1251 	    tp->snd_nxt == tp->snd_max) {
   1252 
   1253 		/*
   1254 		 * If last ACK falls within this segment's sequence numbers,
   1255 		 *  record the timestamp.
   1256 		 */
   1257 		if (opti.ts_present &&
   1258 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
   1259 		    SEQ_LT(tp->last_ack_sent, th->th_seq + tlen)) {
   1260 			tp->ts_recent_age = tcp_now;
   1261 			tp->ts_recent = opti.ts_val;
   1262 		}
   1263 
   1264 		if (tlen == 0) {
   1265 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
   1266 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
   1267 			    tp->snd_cwnd >= tp->snd_wnd &&
   1268 			    tp->t_dupacks < tcprexmtthresh) {
   1269 				/*
   1270 				 * this is a pure ack for outstanding data.
   1271 				 */
   1272 				++tcpstat.tcps_predack;
   1273 				if (opti.ts_present && opti.ts_ecr)
   1274 					tcp_xmit_timer(tp,
   1275 					    tcp_now - opti.ts_ecr + 1);
   1276 				else if (tp->t_rtt &&
   1277 				    SEQ_GT(th->th_ack, tp->t_rtseq))
   1278 					tcp_xmit_timer(tp, tp->t_rtt);
   1279 				acked = th->th_ack - tp->snd_una;
   1280 				tcpstat.tcps_rcvackpack++;
   1281 				tcpstat.tcps_rcvackbyte += acked;
   1282 				ND6_HINT(tp);
   1283 				sbdrop(&so->so_snd, acked);
   1284 				/*
   1285 				 * We want snd_recover to track snd_una to
   1286 				 * avoid sequence wraparound problems for
   1287 				 * very large transfers.
   1288 				 */
   1289 				tp->snd_una = tp->snd_recover = th->th_ack;
   1290 				m_freem(m);
   1291 
   1292 				/*
   1293 				 * If all outstanding data are acked, stop
   1294 				 * retransmit timer, otherwise restart timer
   1295 				 * using current (possibly backed-off) value.
   1296 				 * If process is waiting for space,
   1297 				 * wakeup/selwakeup/signal.  If data
   1298 				 * are ready to send, let tcp_output
   1299 				 * decide between more output or persist.
   1300 				 */
   1301 				if (tp->snd_una == tp->snd_max)
   1302 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
   1303 				else if (TCP_TIMER_ISARMED(tp,
   1304 				    TCPT_PERSIST) == 0)
   1305 					TCP_TIMER_ARM(tp, TCPT_REXMT,
   1306 					    tp->t_rxtcur);
   1307 
   1308 				sowwakeup(so);
   1309 				if (so->so_snd.sb_cc)
   1310 					(void) tcp_output(tp);
   1311 				if (tcp_saveti)
   1312 					m_freem(tcp_saveti);
   1313 				return;
   1314 			}
   1315 		} else if (th->th_ack == tp->snd_una &&
   1316 		    tp->segq.lh_first == NULL &&
   1317 		    tlen <= sbspace(&so->so_rcv)) {
   1318 			/*
   1319 			 * this is a pure, in-sequence data packet
   1320 			 * with nothing on the reassembly queue and
   1321 			 * we have enough buffer space to take it.
   1322 			 */
   1323 			++tcpstat.tcps_preddat;
   1324 			tp->rcv_nxt += tlen;
   1325 			tcpstat.tcps_rcvpack++;
   1326 			tcpstat.tcps_rcvbyte += tlen;
   1327 			ND6_HINT(tp);
   1328 			/*
   1329 			 * Drop TCP, IP headers and TCP options then add data
   1330 			 * to socket buffer.
   1331 			 */
   1332 			m_adj(m, toff + off);
   1333 			sbappend(&so->so_rcv, m);
   1334 			sorwakeup(so);
   1335 			TCP_SETUP_ACK(tp, th);
   1336 			if (tp->t_flags & TF_ACKNOW)
   1337 				(void) tcp_output(tp);
   1338 			if (tcp_saveti)
   1339 				m_freem(tcp_saveti);
   1340 			return;
   1341 		}
   1342 	}
   1343 
   1344 	/*
   1345 	 * Compute mbuf offset to TCP data segment.
   1346 	 */
   1347 	hdroptlen = toff + off;
   1348 
   1349 	/*
   1350 	 * Calculate amount of space in receive window,
   1351 	 * and then do TCP input processing.
   1352 	 * Receive window is amount of space in rcv queue,
   1353 	 * but not less than advertised window.
   1354 	 */
   1355 	{ int win;
   1356 
   1357 	win = sbspace(&so->so_rcv);
   1358 	if (win < 0)
   1359 		win = 0;
   1360 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
   1361 	}
   1362 
   1363 	switch (tp->t_state) {
   1364 
   1365 	/*
   1366 	 * If the state is SYN_SENT:
   1367 	 *	if seg contains an ACK, but not for our SYN, drop the input.
   1368 	 *	if seg contains a RST, then drop the connection.
   1369 	 *	if seg does not contain SYN, then drop it.
   1370 	 * Otherwise this is an acceptable SYN segment
   1371 	 *	initialize tp->rcv_nxt and tp->irs
   1372 	 *	if seg contains ack then advance tp->snd_una
   1373 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
   1374 	 *	arrange for segment to be acked (eventually)
   1375 	 *	continue processing rest of data/controls, beginning with URG
   1376 	 */
   1377 	case TCPS_SYN_SENT:
   1378 		if ((tiflags & TH_ACK) &&
   1379 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
   1380 		     SEQ_GT(th->th_ack, tp->snd_max)))
   1381 			goto dropwithreset;
   1382 		if (tiflags & TH_RST) {
   1383 			if (tiflags & TH_ACK)
   1384 				tp = tcp_drop(tp, ECONNREFUSED);
   1385 			goto drop;
   1386 		}
   1387 		if ((tiflags & TH_SYN) == 0)
   1388 			goto drop;
   1389 		if (tiflags & TH_ACK) {
   1390 			tp->snd_una = tp->snd_recover = th->th_ack;
   1391 			if (SEQ_LT(tp->snd_nxt, tp->snd_una))
   1392 				tp->snd_nxt = tp->snd_una;
   1393 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
   1394 		}
   1395 		tp->irs = th->th_seq;
   1396 		tcp_rcvseqinit(tp);
   1397 		tp->t_flags |= TF_ACKNOW;
   1398 		tcp_mss_from_peer(tp, opti.maxseg);
   1399 
   1400 		/*
   1401 		 * Initialize the initial congestion window.  If we
   1402 		 * had to retransmit the SYN, we must initialize cwnd
   1403 		 * to 1 segment (i.e. the Loss Window).
   1404 		 */
   1405 		if (tp->t_flags & TF_SYN_REXMT)
   1406 			tp->snd_cwnd = tp->t_peermss;
   1407 		else
   1408 			tp->snd_cwnd = TCP_INITIAL_WINDOW(tcp_init_win,
   1409 			    tp->t_peermss);
   1410 
   1411 		tcp_rmx_rtt(tp);
   1412 		if (tiflags & TH_ACK) {
   1413 			tcpstat.tcps_connects++;
   1414 			soisconnected(so);
   1415 			tcp_established(tp);
   1416 			/* Do window scaling on this connection? */
   1417 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   1418 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
   1419 				tp->snd_scale = tp->requested_s_scale;
   1420 				tp->rcv_scale = tp->request_r_scale;
   1421 			}
   1422 			TCP_REASS_LOCK(tp);
   1423 			(void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
   1424 			TCP_REASS_UNLOCK(tp);
   1425 			/*
   1426 			 * if we didn't have to retransmit the SYN,
   1427 			 * use its rtt as our initial srtt & rtt var.
   1428 			 */
   1429 			if (tp->t_rtt)
   1430 				tcp_xmit_timer(tp, tp->t_rtt);
   1431 		} else
   1432 			tp->t_state = TCPS_SYN_RECEIVED;
   1433 
   1434 		/*
   1435 		 * Advance th->th_seq to correspond to first data byte.
   1436 		 * If data, trim to stay within window,
   1437 		 * dropping FIN if necessary.
   1438 		 */
   1439 		th->th_seq++;
   1440 		if (tlen > tp->rcv_wnd) {
   1441 			todrop = tlen - tp->rcv_wnd;
   1442 			m_adj(m, -todrop);
   1443 			tlen = tp->rcv_wnd;
   1444 			tiflags &= ~TH_FIN;
   1445 			tcpstat.tcps_rcvpackafterwin++;
   1446 			tcpstat.tcps_rcvbyteafterwin += todrop;
   1447 		}
   1448 		tp->snd_wl1 = th->th_seq - 1;
   1449 		tp->rcv_up = th->th_seq;
   1450 		goto step6;
   1451 
   1452 	/*
   1453 	 * If the state is SYN_RECEIVED:
   1454 	 *	If seg contains an ACK, but not for our SYN, drop the input
   1455 	 *	and generate an RST.  See page 36, rfc793
   1456 	 */
   1457 	case TCPS_SYN_RECEIVED:
   1458 		if ((tiflags & TH_ACK) &&
   1459 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
   1460 		     SEQ_GT(th->th_ack, tp->snd_max)))
   1461 			goto dropwithreset;
   1462 		break;
   1463 	}
   1464 
   1465 	/*
   1466 	 * States other than LISTEN or SYN_SENT.
   1467 	 * First check timestamp, if present.
   1468 	 * Then check that at least some bytes of segment are within
   1469 	 * receive window.  If segment begins before rcv_nxt,
   1470 	 * drop leading data (and SYN); if nothing left, just ack.
   1471 	 *
   1472 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
   1473 	 * and it's less than ts_recent, drop it.
   1474 	 */
   1475 	if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
   1476 	    TSTMP_LT(opti.ts_val, tp->ts_recent)) {
   1477 
   1478 		/* Check to see if ts_recent is over 24 days old.  */
   1479 		if ((int)(tcp_now - tp->ts_recent_age) > TCP_PAWS_IDLE) {
   1480 			/*
   1481 			 * Invalidate ts_recent.  If this segment updates
   1482 			 * ts_recent, the age will be reset later and ts_recent
   1483 			 * will get a valid value.  If it does not, setting
   1484 			 * ts_recent to zero will at least satisfy the
   1485 			 * requirement that zero be placed in the timestamp
   1486 			 * echo reply when ts_recent isn't valid.  The
   1487 			 * age isn't reset until we get a valid ts_recent
   1488 			 * because we don't want out-of-order segments to be
   1489 			 * dropped when ts_recent is old.
   1490 			 */
   1491 			tp->ts_recent = 0;
   1492 		} else {
   1493 			tcpstat.tcps_rcvduppack++;
   1494 			tcpstat.tcps_rcvdupbyte += tlen;
   1495 			tcpstat.tcps_pawsdrop++;
   1496 			goto dropafterack;
   1497 		}
   1498 	}
   1499 
   1500 	todrop = tp->rcv_nxt - th->th_seq;
   1501 	if (todrop > 0) {
   1502 		if (tiflags & TH_SYN) {
   1503 			tiflags &= ~TH_SYN;
   1504 			th->th_seq++;
   1505 			if (th->th_urp > 1)
   1506 				th->th_urp--;
   1507 			else {
   1508 				tiflags &= ~TH_URG;
   1509 				th->th_urp = 0;
   1510 			}
   1511 			todrop--;
   1512 		}
   1513 		if (todrop > tlen ||
   1514 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
   1515 			/*
   1516 			 * Any valid FIN must be to the left of the window.
   1517 			 * At this point the FIN must be a duplicate or
   1518 			 * out of sequence; drop it.
   1519 			 */
   1520 			tiflags &= ~TH_FIN;
   1521 			/*
   1522 			 * Send an ACK to resynchronize and drop any data.
   1523 			 * But keep on processing for RST or ACK.
   1524 			 */
   1525 			tp->t_flags |= TF_ACKNOW;
   1526 			todrop = tlen;
   1527 			tcpstat.tcps_rcvdupbyte += todrop;
   1528 			tcpstat.tcps_rcvduppack++;
   1529 		} else {
   1530 			tcpstat.tcps_rcvpartduppack++;
   1531 			tcpstat.tcps_rcvpartdupbyte += todrop;
   1532 		}
   1533 		hdroptlen += todrop;	/*drop from head afterwards*/
   1534 		th->th_seq += todrop;
   1535 		tlen -= todrop;
   1536 		if (th->th_urp > todrop)
   1537 			th->th_urp -= todrop;
   1538 		else {
   1539 			tiflags &= ~TH_URG;
   1540 			th->th_urp = 0;
   1541 		}
   1542 	}
   1543 
   1544 	/*
   1545 	 * If new data are received on a connection after the
   1546 	 * user processes are gone, then RST the other end.
   1547 	 */
   1548 	if ((so->so_state & SS_NOFDREF) &&
   1549 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
   1550 		tp = tcp_close(tp);
   1551 		tcpstat.tcps_rcvafterclose++;
   1552 		goto dropwithreset;
   1553 	}
   1554 
   1555 	/*
   1556 	 * If segment ends after window, drop trailing data
   1557 	 * (and PUSH and FIN); if nothing left, just ACK.
   1558 	 */
   1559 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
   1560 	if (todrop > 0) {
   1561 		tcpstat.tcps_rcvpackafterwin++;
   1562 		if (todrop >= tlen) {
   1563 			tcpstat.tcps_rcvbyteafterwin += tlen;
   1564 			/*
   1565 			 * If a new connection request is received
   1566 			 * while in TIME_WAIT, drop the old connection
   1567 			 * and start over if the sequence numbers
   1568 			 * are above the previous ones.
   1569 			 */
   1570 			if (tiflags & TH_SYN &&
   1571 			    tp->t_state == TCPS_TIME_WAIT &&
   1572 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
   1573 				iss = tcp_new_iss(tp, sizeof(struct tcpcb),
   1574 						  tp->snd_nxt);
   1575 				tp = tcp_close(tp);
   1576 				goto findpcb;
   1577 			}
   1578 			/*
   1579 			 * If window is closed can only take segments at
   1580 			 * window edge, and have to drop data and PUSH from
   1581 			 * incoming segments.  Continue processing, but
   1582 			 * remember to ack.  Otherwise, drop segment
   1583 			 * and ack.
   1584 			 */
   1585 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
   1586 				tp->t_flags |= TF_ACKNOW;
   1587 				tcpstat.tcps_rcvwinprobe++;
   1588 			} else
   1589 				goto dropafterack;
   1590 		} else
   1591 			tcpstat.tcps_rcvbyteafterwin += todrop;
   1592 		m_adj(m, -todrop);
   1593 		tlen -= todrop;
   1594 		tiflags &= ~(TH_PUSH|TH_FIN);
   1595 	}
   1596 
   1597 	/*
   1598 	 * If last ACK falls within this segment's sequence numbers,
   1599 	 * and the timestamp is newer, record it.
   1600 	 */
   1601 	if (opti.ts_present && TSTMP_GEQ(opti.ts_val, tp->ts_recent) &&
   1602 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
   1603 	    SEQ_LT(tp->last_ack_sent, th->th_seq + tlen +
   1604 		   ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
   1605 		tp->ts_recent_age = tcp_now;
   1606 		tp->ts_recent = opti.ts_val;
   1607 	}
   1608 
   1609 	/*
   1610 	 * If the RST bit is set examine the state:
   1611 	 *    SYN_RECEIVED STATE:
   1612 	 *	If passive open, return to LISTEN state.
   1613 	 *	If active open, inform user that connection was refused.
   1614 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
   1615 	 *	Inform user that connection was reset, and close tcb.
   1616 	 *    CLOSING, LAST_ACK, TIME_WAIT STATES
   1617 	 *	Close the tcb.
   1618 	 */
   1619 	if (tiflags&TH_RST) switch (tp->t_state) {
   1620 
   1621 	case TCPS_SYN_RECEIVED:
   1622 		so->so_error = ECONNREFUSED;
   1623 		goto close;
   1624 
   1625 	case TCPS_ESTABLISHED:
   1626 	case TCPS_FIN_WAIT_1:
   1627 	case TCPS_FIN_WAIT_2:
   1628 	case TCPS_CLOSE_WAIT:
   1629 		so->so_error = ECONNRESET;
   1630 	close:
   1631 		tp->t_state = TCPS_CLOSED;
   1632 		tcpstat.tcps_drops++;
   1633 		tp = tcp_close(tp);
   1634 		goto drop;
   1635 
   1636 	case TCPS_CLOSING:
   1637 	case TCPS_LAST_ACK:
   1638 	case TCPS_TIME_WAIT:
   1639 		tp = tcp_close(tp);
   1640 		goto drop;
   1641 	}
   1642 
   1643 	/*
   1644 	 * If a SYN is in the window, then this is an
   1645 	 * error and we send an RST and drop the connection.
   1646 	 */
   1647 	if (tiflags & TH_SYN) {
   1648 		tp = tcp_drop(tp, ECONNRESET);
   1649 		goto dropwithreset;
   1650 	}
   1651 
   1652 	/*
   1653 	 * If the ACK bit is off we drop the segment and return.
   1654 	 */
   1655 	if ((tiflags & TH_ACK) == 0) {
   1656 		if (tp->t_flags & TF_ACKNOW)
   1657 			goto dropafterack;
   1658 		else
   1659 			goto drop;
   1660 	}
   1661 
   1662 	/*
   1663 	 * Ack processing.
   1664 	 */
   1665 	switch (tp->t_state) {
   1666 
   1667 	/*
   1668 	 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
   1669 	 * ESTABLISHED state and continue processing, otherwise
   1670 	 * send an RST.
   1671 	 */
   1672 	case TCPS_SYN_RECEIVED:
   1673 		if (SEQ_GT(tp->snd_una, th->th_ack) ||
   1674 		    SEQ_GT(th->th_ack, tp->snd_max))
   1675 			goto dropwithreset;
   1676 		tcpstat.tcps_connects++;
   1677 		soisconnected(so);
   1678 		tcp_established(tp);
   1679 		/* Do window scaling? */
   1680 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   1681 			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
   1682 			tp->snd_scale = tp->requested_s_scale;
   1683 			tp->rcv_scale = tp->request_r_scale;
   1684 		}
   1685 		TCP_REASS_LOCK(tp);
   1686 		(void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
   1687 		TCP_REASS_UNLOCK(tp);
   1688 		tp->snd_wl1 = th->th_seq - 1;
   1689 		/* fall into ... */
   1690 
   1691 	/*
   1692 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
   1693 	 * ACKs.  If the ack is in the range
   1694 	 *	tp->snd_una < th->th_ack <= tp->snd_max
   1695 	 * then advance tp->snd_una to th->th_ack and drop
   1696 	 * data from the retransmission queue.  If this ACK reflects
   1697 	 * more up to date window information we update our window information.
   1698 	 */
   1699 	case TCPS_ESTABLISHED:
   1700 	case TCPS_FIN_WAIT_1:
   1701 	case TCPS_FIN_WAIT_2:
   1702 	case TCPS_CLOSE_WAIT:
   1703 	case TCPS_CLOSING:
   1704 	case TCPS_LAST_ACK:
   1705 	case TCPS_TIME_WAIT:
   1706 
   1707 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
   1708 			if (tlen == 0 && tiwin == tp->snd_wnd) {
   1709 				tcpstat.tcps_rcvdupack++;
   1710 				/*
   1711 				 * If we have outstanding data (other than
   1712 				 * a window probe), this is a completely
   1713 				 * duplicate ack (ie, window info didn't
   1714 				 * change), the ack is the biggest we've
   1715 				 * seen and we've seen exactly our rexmt
   1716 				 * threshhold of them, assume a packet
   1717 				 * has been dropped and retransmit it.
   1718 				 * Kludge snd_nxt & the congestion
   1719 				 * window so we send only this one
   1720 				 * packet.
   1721 				 *
   1722 				 * We know we're losing at the current
   1723 				 * window size so do congestion avoidance
   1724 				 * (set ssthresh to half the current window
   1725 				 * and pull our congestion window back to
   1726 				 * the new ssthresh).
   1727 				 *
   1728 				 * Dup acks mean that packets have left the
   1729 				 * network (they're now cached at the receiver)
   1730 				 * so bump cwnd by the amount in the receiver
   1731 				 * to keep a constant cwnd packets in the
   1732 				 * network.
   1733 				 */
   1734 				if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
   1735 				    th->th_ack != tp->snd_una)
   1736 					tp->t_dupacks = 0;
   1737 				else if (++tp->t_dupacks == tcprexmtthresh) {
   1738 					tcp_seq onxt = tp->snd_nxt;
   1739 					u_int win =
   1740 					    min(tp->snd_wnd, tp->snd_cwnd) /
   1741 					    2 /	tp->t_segsz;
   1742 					if (tcp_do_newreno && SEQ_LT(th->th_ack,
   1743 					    tp->snd_recover)) {
   1744 						/*
   1745 						 * False fast retransmit after
   1746 						 * timeout.  Do not cut window.
   1747 						 */
   1748 						tp->snd_cwnd += tp->t_segsz;
   1749 						tp->t_dupacks = 0;
   1750 						(void) tcp_output(tp);
   1751 						goto drop;
   1752 					}
   1753 
   1754 					if (win < 2)
   1755 						win = 2;
   1756 					tp->snd_ssthresh = win * tp->t_segsz;
   1757 					tp->snd_recover = tp->snd_max;
   1758 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
   1759 					tp->t_rtt = 0;
   1760 					tp->snd_nxt = th->th_ack;
   1761 					tp->snd_cwnd = tp->t_segsz;
   1762 					(void) tcp_output(tp);
   1763 					tp->snd_cwnd = tp->snd_ssthresh +
   1764 					       tp->t_segsz * tp->t_dupacks;
   1765 					if (SEQ_GT(onxt, tp->snd_nxt))
   1766 						tp->snd_nxt = onxt;
   1767 					goto drop;
   1768 				} else if (tp->t_dupacks > tcprexmtthresh) {
   1769 					tp->snd_cwnd += tp->t_segsz;
   1770 					(void) tcp_output(tp);
   1771 					goto drop;
   1772 				}
   1773 			} else
   1774 				tp->t_dupacks = 0;
   1775 			break;
   1776 		}
   1777 		/*
   1778 		 * If the congestion window was inflated to account
   1779 		 * for the other side's cached packets, retract it.
   1780 		 */
   1781 		if (tcp_do_newreno == 0) {
   1782 			if (tp->t_dupacks >= tcprexmtthresh &&
   1783 			    tp->snd_cwnd > tp->snd_ssthresh)
   1784 				tp->snd_cwnd = tp->snd_ssthresh;
   1785 			tp->t_dupacks = 0;
   1786 		} else if (tp->t_dupacks >= tcprexmtthresh &&
   1787 			   tcp_newreno(tp, th) == 0) {
   1788 			tp->snd_cwnd = tp->snd_ssthresh;
   1789 			/*
   1790 			 * Window inflation should have left us with approx.
   1791 			 * snd_ssthresh outstanding data.  But in case we
   1792 			 * would be inclined to send a burst, better to do
   1793 			 * it via the slow start mechanism.
   1794 			 */
   1795 			if (SEQ_SUB(tp->snd_max, th->th_ack) < tp->snd_ssthresh)
   1796 				tp->snd_cwnd = SEQ_SUB(tp->snd_max, th->th_ack)
   1797 				    + tp->t_segsz;
   1798 			tp->t_dupacks = 0;
   1799 		}
   1800 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
   1801 			tcpstat.tcps_rcvacktoomuch++;
   1802 			goto dropafterack;
   1803 		}
   1804 		acked = th->th_ack - tp->snd_una;
   1805 		tcpstat.tcps_rcvackpack++;
   1806 		tcpstat.tcps_rcvackbyte += acked;
   1807 
   1808 		/*
   1809 		 * If we have a timestamp reply, update smoothed
   1810 		 * round trip time.  If no timestamp is present but
   1811 		 * transmit timer is running and timed sequence
   1812 		 * number was acked, update smoothed round trip time.
   1813 		 * Since we now have an rtt measurement, cancel the
   1814 		 * timer backoff (cf., Phil Karn's retransmit alg.).
   1815 		 * Recompute the initial retransmit timer.
   1816 		 */
   1817 		if (opti.ts_present && opti.ts_ecr)
   1818 			tcp_xmit_timer(tp, tcp_now - opti.ts_ecr + 1);
   1819 		else if (tp->t_rtt && SEQ_GT(th->th_ack, tp->t_rtseq))
   1820 			tcp_xmit_timer(tp,tp->t_rtt);
   1821 
   1822 		/*
   1823 		 * If all outstanding data is acked, stop retransmit
   1824 		 * timer and remember to restart (more output or persist).
   1825 		 * If there is more data to be acked, restart retransmit
   1826 		 * timer, using current (possibly backed-off) value.
   1827 		 */
   1828 		if (th->th_ack == tp->snd_max) {
   1829 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
   1830 			needoutput = 1;
   1831 		} else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
   1832 			TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
   1833 		/*
   1834 		 * When new data is acked, open the congestion window.
   1835 		 * If the window gives us less than ssthresh packets
   1836 		 * in flight, open exponentially (segsz per packet).
   1837 		 * Otherwise open linearly: segsz per window
   1838 		 * (segsz^2 / cwnd per packet), plus a constant
   1839 		 * fraction of a packet (segsz/8) to help larger windows
   1840 		 * open quickly enough.
   1841 		 */
   1842 		{
   1843 		u_int cw = tp->snd_cwnd;
   1844 		u_int incr = tp->t_segsz;
   1845 
   1846 		if (cw > tp->snd_ssthresh)
   1847 			incr = incr * incr / cw;
   1848 		if (tcp_do_newreno == 0 || SEQ_GEQ(th->th_ack, tp->snd_recover))
   1849 			tp->snd_cwnd = min(cw + incr,
   1850 			    TCP_MAXWIN << tp->snd_scale);
   1851 		}
   1852 		ND6_HINT(tp);
   1853 		if (acked > so->so_snd.sb_cc) {
   1854 			tp->snd_wnd -= so->so_snd.sb_cc;
   1855 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
   1856 			ourfinisacked = 1;
   1857 		} else {
   1858 			sbdrop(&so->so_snd, acked);
   1859 			tp->snd_wnd -= acked;
   1860 			ourfinisacked = 0;
   1861 		}
   1862 		sowwakeup(so);
   1863 		/*
   1864 		 * We want snd_recover to track snd_una to
   1865 		 * avoid sequence wraparound problems for
   1866 		 * very large transfers.
   1867 		 */
   1868 		tp->snd_una = tp->snd_recover = th->th_ack;
   1869 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
   1870 			tp->snd_nxt = tp->snd_una;
   1871 
   1872 		switch (tp->t_state) {
   1873 
   1874 		/*
   1875 		 * In FIN_WAIT_1 STATE in addition to the processing
   1876 		 * for the ESTABLISHED state if our FIN is now acknowledged
   1877 		 * then enter FIN_WAIT_2.
   1878 		 */
   1879 		case TCPS_FIN_WAIT_1:
   1880 			if (ourfinisacked) {
   1881 				/*
   1882 				 * If we can't receive any more
   1883 				 * data, then closing user can proceed.
   1884 				 * Starting the timer is contrary to the
   1885 				 * specification, but if we don't get a FIN
   1886 				 * we'll hang forever.
   1887 				 */
   1888 				if (so->so_state & SS_CANTRCVMORE) {
   1889 					soisdisconnected(so);
   1890 					if (tcp_maxidle > 0)
   1891 						TCP_TIMER_ARM(tp, TCPT_2MSL,
   1892 						    tcp_maxidle);
   1893 				}
   1894 				tp->t_state = TCPS_FIN_WAIT_2;
   1895 			}
   1896 			break;
   1897 
   1898 	 	/*
   1899 		 * In CLOSING STATE in addition to the processing for
   1900 		 * the ESTABLISHED state if the ACK acknowledges our FIN
   1901 		 * then enter the TIME-WAIT state, otherwise ignore
   1902 		 * the segment.
   1903 		 */
   1904 		case TCPS_CLOSING:
   1905 			if (ourfinisacked) {
   1906 				tp->t_state = TCPS_TIME_WAIT;
   1907 				tcp_canceltimers(tp);
   1908 				TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
   1909 				soisdisconnected(so);
   1910 			}
   1911 			break;
   1912 
   1913 		/*
   1914 		 * In LAST_ACK, we may still be waiting for data to drain
   1915 		 * and/or to be acked, as well as for the ack of our FIN.
   1916 		 * If our FIN is now acknowledged, delete the TCB,
   1917 		 * enter the closed state and return.
   1918 		 */
   1919 		case TCPS_LAST_ACK:
   1920 			if (ourfinisacked) {
   1921 				tp = tcp_close(tp);
   1922 				goto drop;
   1923 			}
   1924 			break;
   1925 
   1926 		/*
   1927 		 * In TIME_WAIT state the only thing that should arrive
   1928 		 * is a retransmission of the remote FIN.  Acknowledge
   1929 		 * it and restart the finack timer.
   1930 		 */
   1931 		case TCPS_TIME_WAIT:
   1932 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
   1933 			goto dropafterack;
   1934 		}
   1935 	}
   1936 
   1937 step6:
   1938 	/*
   1939 	 * Update window information.
   1940 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
   1941 	 */
   1942 	if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
   1943 	    (tp->snd_wl1 == th->th_seq && SEQ_LT(tp->snd_wl2, th->th_ack)) ||
   1944 	    (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))) {
   1945 		/* keep track of pure window updates */
   1946 		if (tlen == 0 &&
   1947 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
   1948 			tcpstat.tcps_rcvwinupd++;
   1949 		tp->snd_wnd = tiwin;
   1950 		tp->snd_wl1 = th->th_seq;
   1951 		tp->snd_wl2 = th->th_ack;
   1952 		if (tp->snd_wnd > tp->max_sndwnd)
   1953 			tp->max_sndwnd = tp->snd_wnd;
   1954 		needoutput = 1;
   1955 	}
   1956 
   1957 	/*
   1958 	 * Process segments with URG.
   1959 	 */
   1960 	if ((tiflags & TH_URG) && th->th_urp &&
   1961 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   1962 		/*
   1963 		 * This is a kludge, but if we receive and accept
   1964 		 * random urgent pointers, we'll crash in
   1965 		 * soreceive.  It's hard to imagine someone
   1966 		 * actually wanting to send this much urgent data.
   1967 		 */
   1968 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
   1969 			th->th_urp = 0;			/* XXX */
   1970 			tiflags &= ~TH_URG;		/* XXX */
   1971 			goto dodata;			/* XXX */
   1972 		}
   1973 		/*
   1974 		 * If this segment advances the known urgent pointer,
   1975 		 * then mark the data stream.  This should not happen
   1976 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
   1977 		 * a FIN has been received from the remote side.
   1978 		 * In these states we ignore the URG.
   1979 		 *
   1980 		 * According to RFC961 (Assigned Protocols),
   1981 		 * the urgent pointer points to the last octet
   1982 		 * of urgent data.  We continue, however,
   1983 		 * to consider it to indicate the first octet
   1984 		 * of data past the urgent section as the original
   1985 		 * spec states (in one of two places).
   1986 		 */
   1987 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
   1988 			tp->rcv_up = th->th_seq + th->th_urp;
   1989 			so->so_oobmark = so->so_rcv.sb_cc +
   1990 			    (tp->rcv_up - tp->rcv_nxt) - 1;
   1991 			if (so->so_oobmark == 0)
   1992 				so->so_state |= SS_RCVATMARK;
   1993 			sohasoutofband(so);
   1994 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
   1995 		}
   1996 		/*
   1997 		 * Remove out of band data so doesn't get presented to user.
   1998 		 * This can happen independent of advancing the URG pointer,
   1999 		 * but if two URG's are pending at once, some out-of-band
   2000 		 * data may creep in... ick.
   2001 		 */
   2002 		if (th->th_urp <= (u_int16_t) tlen
   2003 #ifdef SO_OOBINLINE
   2004 		     && (so->so_options & SO_OOBINLINE) == 0
   2005 #endif
   2006 		     )
   2007 			tcp_pulloutofband(so, th, m, hdroptlen);
   2008 	} else
   2009 		/*
   2010 		 * If no out of band data is expected,
   2011 		 * pull receive urgent pointer along
   2012 		 * with the receive window.
   2013 		 */
   2014 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
   2015 			tp->rcv_up = tp->rcv_nxt;
   2016 dodata:							/* XXX */
   2017 
   2018 	/*
   2019 	 * Process the segment text, merging it into the TCP sequencing queue,
   2020 	 * and arranging for acknowledgement of receipt if necessary.
   2021 	 * This process logically involves adjusting tp->rcv_wnd as data
   2022 	 * is presented to the user (this happens in tcp_usrreq.c,
   2023 	 * case PRU_RCVD).  If a FIN has already been received on this
   2024 	 * connection then we just ignore the text.
   2025 	 */
   2026 	if ((tlen || (tiflags & TH_FIN)) &&
   2027 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   2028 		/*
   2029 		 * Insert segment ti into reassembly queue of tcp with
   2030 		 * control block tp.  Return TH_FIN if reassembly now includes
   2031 		 * a segment with FIN.  The macro form does the common case
   2032 		 * inline (segment is the next to be received on an
   2033 		 * established connection, and the queue is empty),
   2034 		 * avoiding linkage into and removal from the queue and
   2035 		 * repetition of various conversions.
   2036 		 * Set DELACK for segments received in order, but ack
   2037 		 * immediately when segments are out of order
   2038 		 * (so fast retransmit can work).
   2039 		 */
   2040 		/* NOTE: this was TCP_REASS() macro, but used only once */
   2041 		TCP_REASS_LOCK(tp);
   2042 		if (th->th_seq == tp->rcv_nxt &&
   2043 		    tp->segq.lh_first == NULL &&
   2044 		    tp->t_state == TCPS_ESTABLISHED) {
   2045 			TCP_SETUP_ACK(tp, th);
   2046 			tp->rcv_nxt += tlen;
   2047 			tiflags = th->th_flags & TH_FIN;
   2048 			tcpstat.tcps_rcvpack++;
   2049 			tcpstat.tcps_rcvbyte += tlen;
   2050 			ND6_HINT(tp);
   2051 			m_adj(m, hdroptlen);
   2052 			sbappend(&(so)->so_rcv, m);
   2053 			sorwakeup(so);
   2054 		} else {
   2055 			m_adj(m, hdroptlen);
   2056 			tiflags = tcp_reass(tp, th, m, &tlen);
   2057 			tp->t_flags |= TF_ACKNOW;
   2058 		}
   2059 		TCP_REASS_UNLOCK(tp);
   2060 
   2061 		/*
   2062 		 * Note the amount of data that peer has sent into
   2063 		 * our window, in order to estimate the sender's
   2064 		 * buffer size.
   2065 		 */
   2066 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
   2067 	} else {
   2068 		m_freem(m);
   2069 		m = NULL;
   2070 		tiflags &= ~TH_FIN;
   2071 	}
   2072 
   2073 	/*
   2074 	 * If FIN is received ACK the FIN and let the user know
   2075 	 * that the connection is closing.  Ignore a FIN received before
   2076 	 * the connection is fully established.
   2077 	 */
   2078 	if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
   2079 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   2080 			socantrcvmore(so);
   2081 			tp->t_flags |= TF_ACKNOW;
   2082 			tp->rcv_nxt++;
   2083 		}
   2084 		switch (tp->t_state) {
   2085 
   2086 	 	/*
   2087 		 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
   2088 		 */
   2089 		case TCPS_ESTABLISHED:
   2090 			tp->t_state = TCPS_CLOSE_WAIT;
   2091 			break;
   2092 
   2093 	 	/*
   2094 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
   2095 		 * enter the CLOSING state.
   2096 		 */
   2097 		case TCPS_FIN_WAIT_1:
   2098 			tp->t_state = TCPS_CLOSING;
   2099 			break;
   2100 
   2101 	 	/*
   2102 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
   2103 		 * starting the time-wait timer, turning off the other
   2104 		 * standard timers.
   2105 		 */
   2106 		case TCPS_FIN_WAIT_2:
   2107 			tp->t_state = TCPS_TIME_WAIT;
   2108 			tcp_canceltimers(tp);
   2109 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
   2110 			soisdisconnected(so);
   2111 			break;
   2112 
   2113 		/*
   2114 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
   2115 		 */
   2116 		case TCPS_TIME_WAIT:
   2117 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
   2118 			break;
   2119 		}
   2120 	}
   2121 	if (so->so_options & SO_DEBUG) {
   2122 		tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
   2123 	}
   2124 
   2125 	/*
   2126 	 * Return any desired output.
   2127 	 */
   2128 	if (needoutput || (tp->t_flags & TF_ACKNOW))
   2129 		(void) tcp_output(tp);
   2130 	if (tcp_saveti)
   2131 		m_freem(tcp_saveti);
   2132 	return;
   2133 
   2134 badsyn:
   2135 	/*
   2136 	 * Received a bad SYN.  Increment counters and dropwithreset.
   2137 	 */
   2138 	tcpstat.tcps_badsyn++;
   2139 	tp = NULL;
   2140 	goto dropwithreset;
   2141 
   2142 dropafterack:
   2143 	/*
   2144 	 * Generate an ACK dropping incoming segment if it occupies
   2145 	 * sequence space, where the ACK reflects our state.
   2146 	 */
   2147 	if (tiflags & TH_RST)
   2148 		goto drop;
   2149 	m_freem(m);
   2150 	tp->t_flags |= TF_ACKNOW;
   2151 	(void) tcp_output(tp);
   2152 	if (tcp_saveti)
   2153 		m_freem(tcp_saveti);
   2154 	return;
   2155 
   2156 dropwithreset_ratelim:
   2157 	/*
   2158 	 * We may want to rate-limit RSTs in certain situations,
   2159 	 * particularly if we are sending an RST in response to
   2160 	 * an attempt to connect to or otherwise communicate with
   2161 	 * a port for which we have no socket.
   2162 	 */
   2163 	if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
   2164 	    tcp_rst_ppslim) == 0) {
   2165 		/* XXX stat */
   2166 		goto drop;
   2167 	}
   2168 	/* ...fall into dropwithreset... */
   2169 
   2170 dropwithreset:
   2171 	/*
   2172 	 * Generate a RST, dropping incoming segment.
   2173 	 * Make ACK acceptable to originator of segment.
   2174 	 */
   2175 	if (tiflags & TH_RST)
   2176 		goto drop;
   2177     {
   2178 	/*
   2179 	 * need to recover version # field, which was overwritten on
   2180 	 * ip_cksum computation.
   2181 	 */
   2182 	struct ip *sip;
   2183 	sip = mtod(m, struct ip *);
   2184 	switch (af) {
   2185 #ifdef INET
   2186 	case AF_INET:
   2187 		sip->ip_v = 4;
   2188 		break;
   2189 #endif
   2190 #ifdef INET6
   2191 	case AF_INET6:
   2192 		sip->ip_v = 6;
   2193 		break;
   2194 #endif
   2195 	}
   2196     }
   2197 	if (tiflags & TH_ACK)
   2198 		(void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
   2199 	else {
   2200 		if (tiflags & TH_SYN)
   2201 			tlen++;
   2202 		(void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
   2203 		    TH_RST|TH_ACK);
   2204 	}
   2205 	if (tcp_saveti)
   2206 		m_freem(tcp_saveti);
   2207 	return;
   2208 
   2209 drop:
   2210 	/*
   2211 	 * Drop space held by incoming segment and return.
   2212 	 */
   2213 	if (tp) {
   2214 		if (tp->t_inpcb)
   2215 			so = tp->t_inpcb->inp_socket;
   2216 #ifdef INET6
   2217 		else if (tp->t_in6pcb)
   2218 			so = tp->t_in6pcb->in6p_socket;
   2219 #endif
   2220 		else
   2221 			so = NULL;
   2222 		if (so && (so->so_options & SO_DEBUG) != 0)
   2223 			tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
   2224 	}
   2225 	if (tcp_saveti)
   2226 		m_freem(tcp_saveti);
   2227 	m_freem(m);
   2228 	return;
   2229 }
   2230 
   2231 void
   2232 tcp_dooptions(tp, cp, cnt, th, oi)
   2233 	struct tcpcb *tp;
   2234 	u_char *cp;
   2235 	int cnt;
   2236 	struct tcphdr *th;
   2237 	struct tcp_opt_info *oi;
   2238 {
   2239 	u_int16_t mss;
   2240 	int opt, optlen;
   2241 
   2242 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
   2243 		opt = cp[0];
   2244 		if (opt == TCPOPT_EOL)
   2245 			break;
   2246 		if (opt == TCPOPT_NOP)
   2247 			optlen = 1;
   2248 		else {
   2249 			if (cnt < 2)
   2250 				break;
   2251 			optlen = cp[1];
   2252 			if (optlen < 2 || optlen > cnt)
   2253 				break;
   2254 		}
   2255 		switch (opt) {
   2256 
   2257 		default:
   2258 			continue;
   2259 
   2260 		case TCPOPT_MAXSEG:
   2261 			if (optlen != TCPOLEN_MAXSEG)
   2262 				continue;
   2263 			if (!(th->th_flags & TH_SYN))
   2264 				continue;
   2265 			bcopy(cp + 2, &mss, sizeof(mss));
   2266 			oi->maxseg = ntohs(mss);
   2267 			break;
   2268 
   2269 		case TCPOPT_WINDOW:
   2270 			if (optlen != TCPOLEN_WINDOW)
   2271 				continue;
   2272 			if (!(th->th_flags & TH_SYN))
   2273 				continue;
   2274 			tp->t_flags |= TF_RCVD_SCALE;
   2275 			tp->requested_s_scale = cp[2];
   2276 			if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
   2277 #if 0	/*XXX*/
   2278 				char *p;
   2279 
   2280 				if (ip)
   2281 					p = ntohl(ip->ip_src);
   2282 #ifdef INET6
   2283 				else if (ip6)
   2284 					p = ip6_sprintf(&ip6->ip6_src);
   2285 #endif
   2286 				else
   2287 					p = "(unknown)";
   2288 				log(LOG_ERR, "TCP: invalid wscale %d from %s, "
   2289 				    "assuming %d\n",
   2290 				    tp->requested_s_scale, p,
   2291 				    TCP_MAX_WINSHIFT);
   2292 #else
   2293 				log(LOG_ERR, "TCP: invalid wscale %d, "
   2294 				    "assuming %d\n",
   2295 				    tp->requested_s_scale,
   2296 				    TCP_MAX_WINSHIFT);
   2297 #endif
   2298 				tp->requested_s_scale = TCP_MAX_WINSHIFT;
   2299 			}
   2300 			break;
   2301 
   2302 		case TCPOPT_TIMESTAMP:
   2303 			if (optlen != TCPOLEN_TIMESTAMP)
   2304 				continue;
   2305 			oi->ts_present = 1;
   2306 			bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
   2307 			NTOHL(oi->ts_val);
   2308 			bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
   2309 			NTOHL(oi->ts_ecr);
   2310 
   2311 			/*
   2312 			 * A timestamp received in a SYN makes
   2313 			 * it ok to send timestamp requests and replies.
   2314 			 */
   2315 			if (th->th_flags & TH_SYN) {
   2316 				tp->t_flags |= TF_RCVD_TSTMP;
   2317 				tp->ts_recent = oi->ts_val;
   2318 				tp->ts_recent_age = tcp_now;
   2319 			}
   2320 			break;
   2321 		case TCPOPT_SACK_PERMITTED:
   2322 			if (optlen != TCPOLEN_SACK_PERMITTED)
   2323 				continue;
   2324 			if (!(th->th_flags & TH_SYN))
   2325 				continue;
   2326 			tp->t_flags &= ~TF_CANT_TXSACK;
   2327 			break;
   2328 
   2329 		case TCPOPT_SACK:
   2330 			if (tp->t_flags & TF_IGNR_RXSACK)
   2331 				continue;
   2332 			if (optlen % 8 != 2 || optlen < 10)
   2333 				continue;
   2334 			cp += 2;
   2335 			optlen -= 2;
   2336 			for (; optlen > 0; cp -= 8, optlen -= 8) {
   2337 				tcp_seq lwe, rwe;
   2338 				bcopy((char *)cp, (char *) &lwe, sizeof(lwe));
   2339 				NTOHL(lwe);
   2340 				bcopy((char *)cp, (char *) &rwe, sizeof(rwe));
   2341 				NTOHL(rwe);
   2342 				/* tcp_mark_sacked(tp, lwe, rwe); */
   2343 			}
   2344 			break;
   2345 		}
   2346 	}
   2347 }
   2348 
   2349 /*
   2350  * Pull out of band byte out of a segment so
   2351  * it doesn't appear in the user's data queue.
   2352  * It is still reflected in the segment length for
   2353  * sequencing purposes.
   2354  */
   2355 void
   2356 tcp_pulloutofband(so, th, m, off)
   2357 	struct socket *so;
   2358 	struct tcphdr *th;
   2359 	struct mbuf *m;
   2360 	int off;
   2361 {
   2362 	int cnt = off + th->th_urp - 1;
   2363 
   2364 	while (cnt >= 0) {
   2365 		if (m->m_len > cnt) {
   2366 			char *cp = mtod(m, caddr_t) + cnt;
   2367 			struct tcpcb *tp = sototcpcb(so);
   2368 
   2369 			tp->t_iobc = *cp;
   2370 			tp->t_oobflags |= TCPOOB_HAVEDATA;
   2371 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
   2372 			m->m_len--;
   2373 			return;
   2374 		}
   2375 		cnt -= m->m_len;
   2376 		m = m->m_next;
   2377 		if (m == 0)
   2378 			break;
   2379 	}
   2380 	panic("tcp_pulloutofband");
   2381 }
   2382 
   2383 /*
   2384  * Collect new round-trip time estimate
   2385  * and update averages and current timeout.
   2386  */
   2387 void
   2388 tcp_xmit_timer(tp, rtt)
   2389 	struct tcpcb *tp;
   2390 	short rtt;
   2391 {
   2392 	short delta;
   2393 	short rttmin;
   2394 
   2395 	tcpstat.tcps_rttupdated++;
   2396 	--rtt;
   2397 	if (tp->t_srtt != 0) {
   2398 		/*
   2399 		 * srtt is stored as fixed point with 3 bits after the
   2400 		 * binary point (i.e., scaled by 8).  The following magic
   2401 		 * is equivalent to the smoothing algorithm in rfc793 with
   2402 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
   2403 		 * point).  Adjust rtt to origin 0.
   2404 		 */
   2405 		delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
   2406 		if ((tp->t_srtt += delta) <= 0)
   2407 			tp->t_srtt = 1 << 2;
   2408 		/*
   2409 		 * We accumulate a smoothed rtt variance (actually, a
   2410 		 * smoothed mean difference), then set the retransmit
   2411 		 * timer to smoothed rtt + 4 times the smoothed variance.
   2412 		 * rttvar is stored as fixed point with 2 bits after the
   2413 		 * binary point (scaled by 4).  The following is
   2414 		 * equivalent to rfc793 smoothing with an alpha of .75
   2415 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
   2416 		 * rfc793's wired-in beta.
   2417 		 */
   2418 		if (delta < 0)
   2419 			delta = -delta;
   2420 		delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
   2421 		if ((tp->t_rttvar += delta) <= 0)
   2422 			tp->t_rttvar = 1 << 2;
   2423 	} else {
   2424 		/*
   2425 		 * No rtt measurement yet - use the unsmoothed rtt.
   2426 		 * Set the variance to half the rtt (so our first
   2427 		 * retransmit happens at 3*rtt).
   2428 		 */
   2429 		tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
   2430 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
   2431 	}
   2432 	tp->t_rtt = 0;
   2433 	tp->t_rxtshift = 0;
   2434 
   2435 	/*
   2436 	 * the retransmit should happen at rtt + 4 * rttvar.
   2437 	 * Because of the way we do the smoothing, srtt and rttvar
   2438 	 * will each average +1/2 tick of bias.  When we compute
   2439 	 * the retransmit timer, we want 1/2 tick of rounding and
   2440 	 * 1 extra tick because of +-1/2 tick uncertainty in the
   2441 	 * firing of the timer.  The bias will give us exactly the
   2442 	 * 1.5 tick we need.  But, because the bias is
   2443 	 * statistical, we have to test that we don't drop below
   2444 	 * the minimum feasible timer (which is 2 ticks).
   2445 	 */
   2446 	if (tp->t_rttmin > rtt + 2)
   2447 		rttmin = tp->t_rttmin;
   2448 	else
   2449 		rttmin = rtt + 2;
   2450 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp), rttmin, TCPTV_REXMTMAX);
   2451 
   2452 	/*
   2453 	 * We received an ack for a packet that wasn't retransmitted;
   2454 	 * it is probably safe to discard any error indications we've
   2455 	 * received recently.  This isn't quite right, but close enough
   2456 	 * for now (a route might have failed after we sent a segment,
   2457 	 * and the return path might not be symmetrical).
   2458 	 */
   2459 	tp->t_softerror = 0;
   2460 }
   2461 
   2462 /*
   2463  * Checks for partial ack.  If partial ack arrives, force the retransmission
   2464  * of the next unacknowledged segment, do not clear tp->t_dupacks, and return
   2465  * 1.  By setting snd_nxt to th_ack, this forces retransmission timer to
   2466  * be started again.  If the ack advances at least to tp->snd_recover, return 0.
   2467  */
   2468 int
   2469 tcp_newreno(tp, th)
   2470 	struct tcpcb *tp;
   2471 	struct tcphdr *th;
   2472 {
   2473 	tcp_seq onxt = tp->snd_nxt;
   2474 	u_long ocwnd = tp->snd_cwnd;
   2475 
   2476 	if (SEQ_LT(th->th_ack, tp->snd_recover)) {
   2477 		/*
   2478 		 * snd_una has not yet been updated and the socket's send
   2479 		 * buffer has not yet drained off the ACK'd data, so we
   2480 		 * have to leave snd_una as it was to get the correct data
   2481 		 * offset in tcp_output().
   2482 		 */
   2483 		TCP_TIMER_DISARM(tp, TCPT_REXMT);
   2484 	        tp->t_rtt = 0;
   2485 	        tp->snd_nxt = th->th_ack;
   2486 		/*
   2487 		 * Set snd_cwnd to one segment beyond ACK'd offset.  snd_una
   2488 		 * is not yet updated when we're called.
   2489 		 */
   2490 		tp->snd_cwnd = tp->t_segsz + (th->th_ack - tp->snd_una);
   2491 	        (void) tcp_output(tp);
   2492 	        tp->snd_cwnd = ocwnd;
   2493 	        if (SEQ_GT(onxt, tp->snd_nxt))
   2494 	                tp->snd_nxt = onxt;
   2495 	        /*
   2496 	         * Partial window deflation.  Relies on fact that tp->snd_una
   2497 	         * not updated yet.
   2498 	         */
   2499 	        tp->snd_cwnd -= (th->th_ack - tp->snd_una - tp->t_segsz);
   2500 	        return 1;
   2501 	}
   2502 	return 0;
   2503 }
   2504 
   2505 
   2506 /*
   2507  * TCP compressed state engine.  Currently used to hold compressed
   2508  * state for SYN_RECEIVED.
   2509  */
   2510 
   2511 u_long	syn_cache_count;
   2512 u_int32_t syn_hash1, syn_hash2;
   2513 
   2514 #define SYN_HASH(sa, sp, dp) \
   2515 	((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
   2516 				     ((u_int32_t)(sp)))^syn_hash2)))
   2517 #ifndef INET6
   2518 #define	SYN_HASHALL(hash, src, dst) \
   2519 do {									\
   2520 	hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr,	\
   2521 		((struct sockaddr_in *)(src))->sin_port,		\
   2522 		((struct sockaddr_in *)(dst))->sin_port);		\
   2523 } while (0)
   2524 #else
   2525 #define SYN_HASH6(sa, sp, dp) \
   2526 	((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
   2527 	  (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
   2528 	 & 0x7fffffff)
   2529 
   2530 #define SYN_HASHALL(hash, src, dst) \
   2531 do {									\
   2532 	switch ((src)->sa_family) {					\
   2533 	case AF_INET:							\
   2534 		hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
   2535 			((struct sockaddr_in *)(src))->sin_port,	\
   2536 			((struct sockaddr_in *)(dst))->sin_port);	\
   2537 		break;							\
   2538 	case AF_INET6:							\
   2539 		hash = SYN_HASH6(&((struct sockaddr_in6 *)(src))->sin6_addr, \
   2540 			((struct sockaddr_in6 *)(src))->sin6_port,	\
   2541 			((struct sockaddr_in6 *)(dst))->sin6_port);	\
   2542 		break;							\
   2543 	default:							\
   2544 		hash = 0;						\
   2545 	}								\
   2546 } while (0)
   2547 #endif /* INET6 */
   2548 
   2549 #define	SYN_CACHE_RM(sc)						\
   2550 do {									\
   2551 	LIST_REMOVE((sc), sc_bucketq);					\
   2552 	(sc)->sc_tp = NULL;						\
   2553 	LIST_REMOVE((sc), sc_tpq);					\
   2554 	tcp_syn_cache[(sc)->sc_bucketidx].sch_length--;			\
   2555 	TAILQ_REMOVE(&tcp_syn_cache_timeq[(sc)->sc_rxtshift], (sc), sc_timeq); \
   2556 	syn_cache_count--;						\
   2557 } while (0)
   2558 
   2559 #define	SYN_CACHE_PUT(sc)						\
   2560 do {									\
   2561 	if ((sc)->sc_ipopts)						\
   2562 		(void) m_free((sc)->sc_ipopts);				\
   2563 	if ((sc)->sc_route4.ro_rt != NULL)				\
   2564 		RTFREE((sc)->sc_route4.ro_rt);				\
   2565 	pool_put(&syn_cache_pool, (sc));				\
   2566 } while (0)
   2567 
   2568 struct pool syn_cache_pool;
   2569 
   2570 /*
   2571  * We don't estimate RTT with SYNs, so each packet starts with the default
   2572  * RTT and each timer queue has a fixed timeout value.  This allows us to
   2573  * optimize the timer queues somewhat.
   2574  */
   2575 #define	SYN_CACHE_TIMER_ARM(sc)						\
   2576 do {									\
   2577 	TCPT_RANGESET((sc)->sc_rxtcur,					\
   2578 	    TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN,	\
   2579 	    TCPTV_REXMTMAX);						\
   2580 	PRT_SLOW_ARM((sc)->sc_rexmt, (sc)->sc_rxtcur);			\
   2581 } while (0)
   2582 
   2583 TAILQ_HEAD(, syn_cache) tcp_syn_cache_timeq[TCP_MAXRXTSHIFT + 1];
   2584 
   2585 void
   2586 syn_cache_init()
   2587 {
   2588 	int i;
   2589 
   2590 	/* Initialize the hash buckets. */
   2591 	for (i = 0; i < tcp_syn_cache_size; i++)
   2592 		LIST_INIT(&tcp_syn_cache[i].sch_bucket);
   2593 
   2594 	/* Initialize the timer queues. */
   2595 	for (i = 0; i <= TCP_MAXRXTSHIFT; i++)
   2596 		TAILQ_INIT(&tcp_syn_cache_timeq[i]);
   2597 
   2598 	/* Initialize the syn cache pool. */
   2599 	pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
   2600 	    "synpl", 0, NULL, NULL, M_PCB);
   2601 }
   2602 
   2603 void
   2604 syn_cache_insert(sc, tp)
   2605 	struct syn_cache *sc;
   2606 	struct tcpcb *tp;
   2607 {
   2608 	struct syn_cache_head *scp;
   2609 	struct syn_cache *sc2;
   2610 	int s, i;
   2611 
   2612 	/*
   2613 	 * If there are no entries in the hash table, reinitialize
   2614 	 * the hash secrets.
   2615 	 */
   2616 	if (syn_cache_count == 0) {
   2617 		struct timeval tv;
   2618 		microtime(&tv);
   2619 		syn_hash1 = random() ^ (u_long)&sc;
   2620 		syn_hash2 = random() ^ tv.tv_usec;
   2621 	}
   2622 
   2623 	SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
   2624 	sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
   2625 	scp = &tcp_syn_cache[sc->sc_bucketidx];
   2626 
   2627 	/*
   2628 	 * Make sure that we don't overflow the per-bucket
   2629 	 * limit or the total cache size limit.
   2630 	 */
   2631 	s = splsoftnet();
   2632 	if (scp->sch_length >= tcp_syn_bucket_limit) {
   2633 		tcpstat.tcps_sc_bucketoverflow++;
   2634 		/*
   2635 		 * The bucket is full.  Toss the oldest element in the
   2636 		 * bucket.  This will be the entry with our bucket
   2637 		 * index closest to the front of the timer queue with
   2638 		 * the largest timeout value.
   2639 		 *
   2640 		 * Note: This timer queue traversal may be expensive, so
   2641 		 * we hope that this doesn't happen very often.  It is
   2642 		 * much more likely that we'll overflow the entire
   2643 		 * cache, which is much easier to handle; see below.
   2644 		 */
   2645 		for (i = TCP_MAXRXTSHIFT; i >= 0; i--) {
   2646 			for (sc2 = TAILQ_FIRST(&tcp_syn_cache_timeq[i]);
   2647 			     sc2 != NULL;
   2648 			     sc2 = TAILQ_NEXT(sc2, sc_timeq)) {
   2649 				if (sc2->sc_bucketidx == sc->sc_bucketidx) {
   2650 					SYN_CACHE_RM(sc2);
   2651 					SYN_CACHE_PUT(sc2);
   2652 					goto insert;	/* 2 level break */
   2653 				}
   2654 			}
   2655 		}
   2656 #ifdef DIAGNOSTIC
   2657 		/*
   2658 		 * This should never happen; we should always find an
   2659 		 * entry in our bucket.
   2660 		 */
   2661 		panic("syn_cache_insert: bucketoverflow: impossible");
   2662 #endif
   2663 	} else if (syn_cache_count >= tcp_syn_cache_limit) {
   2664 		tcpstat.tcps_sc_overflowed++;
   2665 		/*
   2666 		 * The cache is full.  Toss the oldest entry in the
   2667 		 * entire cache.  This is the front entry in the
   2668 		 * first non-empty timer queue with the largest
   2669 		 * timeout value.
   2670 		 */
   2671 		for (i = TCP_MAXRXTSHIFT; i >= 0; i--) {
   2672 			sc2 = TAILQ_FIRST(&tcp_syn_cache_timeq[i]);
   2673 			if (sc2 == NULL)
   2674 				continue;
   2675 			SYN_CACHE_RM(sc2);
   2676 			SYN_CACHE_PUT(sc2);
   2677 			goto insert;		/* symmetry with above */
   2678 		}
   2679 #ifdef DIAGNOSTIC
   2680 		/*
   2681 		 * This should never happen; we should always find an
   2682 		 * entry in the cache.
   2683 		 */
   2684 		panic("syn_cache_insert: cache overflow: impossible");
   2685 #endif
   2686 	}
   2687 
   2688  insert:
   2689 	/*
   2690 	 * Initialize the entry's timer.
   2691 	 */
   2692 	sc->sc_rxttot = 0;
   2693 	sc->sc_rxtshift = 0;
   2694 	SYN_CACHE_TIMER_ARM(sc);
   2695 	TAILQ_INSERT_TAIL(&tcp_syn_cache_timeq[sc->sc_rxtshift], sc, sc_timeq);
   2696 
   2697 	/* Link it from tcpcb entry */
   2698 	LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
   2699 
   2700 	/* Put it into the bucket. */
   2701 	LIST_INSERT_HEAD(&scp->sch_bucket, sc, sc_bucketq);
   2702 	scp->sch_length++;
   2703 	syn_cache_count++;
   2704 
   2705 	tcpstat.tcps_sc_added++;
   2706 	splx(s);
   2707 }
   2708 
   2709 /*
   2710  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
   2711  * If we have retransmitted an entry the maximum number of times, expire
   2712  * that entry.
   2713  */
   2714 void
   2715 syn_cache_timer()
   2716 {
   2717 	struct syn_cache *sc, *nsc;
   2718 	int i, s;
   2719 
   2720 	s = splsoftnet();
   2721 
   2722 	/*
   2723 	 * First, get all the entries that need to be retransmitted, or
   2724 	 * must be expired due to exceeding the initial keepalive time.
   2725 	 */
   2726 	for (i = 0; i < TCP_MAXRXTSHIFT; i++) {
   2727 		for (sc = TAILQ_FIRST(&tcp_syn_cache_timeq[i]);
   2728 		     sc != NULL && PRT_SLOW_ISEXPIRED(sc->sc_rexmt);
   2729 		     sc = nsc) {
   2730 			nsc = TAILQ_NEXT(sc, sc_timeq);
   2731 
   2732 			/*
   2733 			 * Compute the total amount of time this entry has
   2734 			 * been on a queue.  If this entry has been on longer
   2735 			 * than the keep alive timer would allow, expire it.
   2736 			 */
   2737 			sc->sc_rxttot += sc->sc_rxtcur;
   2738 			if (sc->sc_rxttot >= TCPTV_KEEP_INIT) {
   2739 				tcpstat.tcps_sc_timed_out++;
   2740 				SYN_CACHE_RM(sc);
   2741 				SYN_CACHE_PUT(sc);
   2742 				continue;
   2743 			}
   2744 
   2745 			tcpstat.tcps_sc_retransmitted++;
   2746 			(void) syn_cache_respond(sc, NULL);
   2747 
   2748 			/* Advance this entry onto the next timer queue. */
   2749 			TAILQ_REMOVE(&tcp_syn_cache_timeq[i], sc, sc_timeq);
   2750 			sc->sc_rxtshift = i + 1;
   2751 			SYN_CACHE_TIMER_ARM(sc);
   2752 			TAILQ_INSERT_TAIL(&tcp_syn_cache_timeq[sc->sc_rxtshift],
   2753 			    sc, sc_timeq);
   2754 		}
   2755 	}
   2756 
   2757 	/*
   2758 	 * Now get all the entries that are expired due to too many
   2759 	 * retransmissions.
   2760 	 */
   2761 	for (sc = TAILQ_FIRST(&tcp_syn_cache_timeq[TCP_MAXRXTSHIFT]);
   2762 	     sc != NULL && PRT_SLOW_ISEXPIRED(sc->sc_rexmt);
   2763 	     sc = nsc) {
   2764 		nsc = TAILQ_NEXT(sc, sc_timeq);
   2765 		tcpstat.tcps_sc_timed_out++;
   2766 		SYN_CACHE_RM(sc);
   2767 		SYN_CACHE_PUT(sc);
   2768 	}
   2769 	splx(s);
   2770 }
   2771 
   2772 /*
   2773  * Remove syn cache created by the specified tcb entry,
   2774  * because this does not make sense to keep them
   2775  * (if there's no tcb entry, syn cache entry will never be used)
   2776  */
   2777 void
   2778 syn_cache_cleanup(tp)
   2779 	struct tcpcb *tp;
   2780 {
   2781 	struct syn_cache *sc, *nsc;
   2782 	int s;
   2783 
   2784 	s = splsoftnet();
   2785 
   2786 	for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
   2787 		nsc = LIST_NEXT(sc, sc_tpq);
   2788 
   2789 #ifdef DIAGNOSTIC
   2790 		if (sc->sc_tp != tp)
   2791 			panic("invalid sc_tp in syn_cache_cleanup");
   2792 #endif
   2793 		SYN_CACHE_RM(sc);
   2794 		SYN_CACHE_PUT(sc);
   2795 	}
   2796 	/* just for safety */
   2797 	LIST_INIT(&tp->t_sc);
   2798 
   2799 	splx(s);
   2800 }
   2801 
   2802 /*
   2803  * Find an entry in the syn cache.
   2804  */
   2805 struct syn_cache *
   2806 syn_cache_lookup(src, dst, headp)
   2807 	struct sockaddr *src;
   2808 	struct sockaddr *dst;
   2809 	struct syn_cache_head **headp;
   2810 {
   2811 	struct syn_cache *sc;
   2812 	struct syn_cache_head *scp;
   2813 	u_int32_t hash;
   2814 	int s;
   2815 
   2816 	SYN_HASHALL(hash, src, dst);
   2817 
   2818 	scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
   2819 	*headp = scp;
   2820 	s = splsoftnet();
   2821 	for (sc = LIST_FIRST(&scp->sch_bucket); sc != NULL;
   2822 	     sc = LIST_NEXT(sc, sc_bucketq)) {
   2823 		if (sc->sc_hash != hash)
   2824 			continue;
   2825 		if (!bcmp(&sc->sc_src, src, src->sa_len) &&
   2826 		    !bcmp(&sc->sc_dst, dst, dst->sa_len)) {
   2827 			splx(s);
   2828 			return (sc);
   2829 		}
   2830 	}
   2831 	splx(s);
   2832 	return (NULL);
   2833 }
   2834 
   2835 /*
   2836  * This function gets called when we receive an ACK for a
   2837  * socket in the LISTEN state.  We look up the connection
   2838  * in the syn cache, and if its there, we pull it out of
   2839  * the cache and turn it into a full-blown connection in
   2840  * the SYN-RECEIVED state.
   2841  *
   2842  * The return values may not be immediately obvious, and their effects
   2843  * can be subtle, so here they are:
   2844  *
   2845  *	NULL	SYN was not found in cache; caller should drop the
   2846  *		packet and send an RST.
   2847  *
   2848  *	-1	We were unable to create the new connection, and are
   2849  *		aborting it.  An ACK,RST is being sent to the peer
   2850  *		(unless we got screwey sequence numbners; see below),
   2851  *		because the 3-way handshake has been completed.  Caller
   2852  *		should not free the mbuf, since we may be using it.  If
   2853  *		we are not, we will free it.
   2854  *
   2855  *	Otherwise, the return value is a pointer to the new socket
   2856  *	associated with the connection.
   2857  */
   2858 struct socket *
   2859 syn_cache_get(src, dst, th, hlen, tlen, so, m)
   2860 	struct sockaddr *src;
   2861 	struct sockaddr *dst;
   2862 	struct tcphdr *th;
   2863 	unsigned int hlen, tlen;
   2864 	struct socket *so;
   2865 	struct mbuf *m;
   2866 {
   2867 	struct syn_cache *sc;
   2868 	struct syn_cache_head *scp;
   2869 	struct inpcb *inp = NULL;
   2870 #ifdef INET6
   2871 	struct in6pcb *in6p = NULL;
   2872 #endif
   2873 	struct tcpcb *tp = 0;
   2874 	struct mbuf *am;
   2875 	int s;
   2876 	struct socket *oso;
   2877 
   2878 	s = splsoftnet();
   2879 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
   2880 		splx(s);
   2881 		return (NULL);
   2882 	}
   2883 
   2884 	/*
   2885 	 * Verify the sequence and ack numbers.  Try getting the correct
   2886 	 * response again.
   2887 	 */
   2888 	if ((th->th_ack != sc->sc_iss + 1) ||
   2889 	    SEQ_LEQ(th->th_seq, sc->sc_irs) ||
   2890 	    SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
   2891 		(void) syn_cache_respond(sc, m);
   2892 		splx(s);
   2893 		return ((struct socket *)(-1));
   2894 	}
   2895 
   2896 	/* Remove this cache entry */
   2897 	SYN_CACHE_RM(sc);
   2898 	splx(s);
   2899 
   2900 	/*
   2901 	 * Ok, create the full blown connection, and set things up
   2902 	 * as they would have been set up if we had created the
   2903 	 * connection when the SYN arrived.  If we can't create
   2904 	 * the connection, abort it.
   2905 	 */
   2906 	/*
   2907 	 * inp still has the OLD in_pcb stuff, set the
   2908 	 * v6-related flags on the new guy, too.   This is
   2909 	 * done particularly for the case where an AF_INET6
   2910 	 * socket is bound only to a port, and a v4 connection
   2911 	 * comes in on that port.
   2912 	 * we also copy the flowinfo from the original pcb
   2913 	 * to the new one.
   2914 	 */
   2915     {
   2916 	struct inpcb *parentinpcb;
   2917 
   2918 	parentinpcb = (struct inpcb *)so->so_pcb;
   2919 
   2920 	oso = so;
   2921 	so = sonewconn(so, SS_ISCONNECTED);
   2922 	if (so == NULL)
   2923 		goto resetandabort;
   2924 
   2925 	switch (so->so_proto->pr_domain->dom_family) {
   2926 #ifdef INET
   2927 	case AF_INET:
   2928 		inp = sotoinpcb(so);
   2929 		break;
   2930 #endif
   2931 #ifdef INET6
   2932 	case AF_INET6:
   2933 		in6p = sotoin6pcb(so);
   2934 #if 0 /*def INET6*/
   2935 		inp->inp_flags |= (parentinpcb->inp_flags &
   2936 			(INP_IPV6 | INP_IPV6_UNDEC | INP_IPV6_MAPPED));
   2937 		if ((inp->inp_flags & INP_IPV6) &&
   2938 		   !(inp->inp_flags & INP_IPV6_MAPPED)) {
   2939 			inp->inp_ipv6.ip6_hlim = parentinpcb->inp_ipv6.ip6_hlim;
   2940 			inp->inp_ipv6.ip6_vfc = parentinpcb->inp_ipv6.ip6_vfc;
   2941 		}
   2942 #endif
   2943 		break;
   2944 #endif
   2945 	}
   2946     }
   2947 	switch (src->sa_family) {
   2948 #ifdef INET
   2949 	case AF_INET:
   2950 		if (inp) {
   2951 			inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
   2952 			inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
   2953 			inp->inp_options = ip_srcroute();
   2954 			in_pcbstate(inp, INP_BOUND);
   2955 			if (inp->inp_options == NULL) {
   2956 				inp->inp_options = sc->sc_ipopts;
   2957 				sc->sc_ipopts = NULL;
   2958 			}
   2959 		}
   2960 #ifdef INET6
   2961 		else if (in6p) {
   2962 			/* IPv4 packet to AF_INET6 socket */
   2963 			bzero(&in6p->in6p_laddr, sizeof(in6p->in6p_laddr));
   2964 			in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
   2965 			bcopy(&((struct sockaddr_in *)dst)->sin_addr,
   2966 				&in6p->in6p_laddr.s6_addr32[3],
   2967 				sizeof(((struct sockaddr_in *)dst)->sin_addr));
   2968 			in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
   2969 			in6totcpcb(in6p)->t_family = AF_INET;
   2970 		}
   2971 #endif
   2972 		break;
   2973 #endif
   2974 #ifdef INET6
   2975 	case AF_INET6:
   2976 		if (in6p) {
   2977 			in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
   2978 			in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
   2979 #if 0
   2980 			in6p->in6p_flowinfo = ip6->ip6_flow & IPV6_FLOWINFO_MASK;
   2981 			/*inp->inp_options = ip6_srcroute();*/ /* soon. */
   2982 #endif
   2983 		}
   2984 		break;
   2985 #endif
   2986 	}
   2987 #ifdef INET6
   2988 	if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
   2989 		struct in6pcb *oin6p = sotoin6pcb(oso);
   2990 		/* inherit socket options from the listening socket */
   2991 		in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
   2992 		if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
   2993 			m_freem(in6p->in6p_options);
   2994 			in6p->in6p_options = 0;
   2995 		}
   2996 		ip6_savecontrol(in6p, &in6p->in6p_options,
   2997 			mtod(m, struct ip6_hdr *), m);
   2998 	}
   2999 #endif
   3000 
   3001 #ifdef IPSEC
   3002 	/*
   3003 	 * we make a copy of policy, instead of sharing the policy,
   3004 	 * for better behavior in terms of SA lookup and dead SA removal.
   3005 	 */
   3006 	if (inp) {
   3007 		/* copy old policy into new socket's */
   3008 		if (ipsec_copy_policy(sotoinpcb(oso)->inp_sp, inp->inp_sp))
   3009 			printf("tcp_input: could not copy policy\n");
   3010 	}
   3011 #ifdef INET6
   3012 	else if (in6p) {
   3013 		/* copy old policy into new socket's */
   3014 		if (ipsec_copy_policy(sotoin6pcb(oso)->in6p_sp, in6p->in6p_sp))
   3015 			printf("tcp_input: could not copy policy\n");
   3016 	}
   3017 #endif
   3018 #endif
   3019 
   3020 	/*
   3021 	 * Give the new socket our cached route reference.
   3022 	 */
   3023 	if (inp)
   3024 		inp->inp_route = sc->sc_route4;		/* struct assignment */
   3025 #ifdef INET6
   3026 	else
   3027 		in6p->in6p_route = sc->sc_route6;
   3028 #endif
   3029 	sc->sc_route4.ro_rt = NULL;
   3030 
   3031 	am = m_get(M_DONTWAIT, MT_SONAME);	/* XXX */
   3032 	if (am == NULL)
   3033 		goto resetandabort;
   3034 	am->m_len = src->sa_len;
   3035 	bcopy(src, mtod(am, caddr_t), src->sa_len);
   3036 	if (inp) {
   3037 		if (in_pcbconnect(inp, am)) {
   3038 			(void) m_free(am);
   3039 			goto resetandabort;
   3040 		}
   3041 	}
   3042 #ifdef INET6
   3043 	else if (in6p) {
   3044 		if (src->sa_family == AF_INET) {
   3045 			/* IPv4 packet to AF_INET6 socket */
   3046 			struct sockaddr_in6 *sin6;
   3047 			sin6 = mtod(am, struct sockaddr_in6 *);
   3048 			am->m_len = sizeof(*sin6);
   3049 			bzero(sin6, sizeof(*sin6));
   3050 			sin6->sin6_family = AF_INET6;
   3051 			sin6->sin6_len = sizeof(*sin6);
   3052 			sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port;
   3053 			sin6->sin6_addr.s6_addr16[5] = htons(0xffff);
   3054 			bcopy(&((struct sockaddr_in *)src)->sin_addr,
   3055 				&sin6->sin6_addr.s6_addr32[3],
   3056 				sizeof(sin6->sin6_addr.s6_addr32[3]));
   3057 		}
   3058 		if (in6_pcbconnect(in6p, am)) {
   3059 			(void) m_free(am);
   3060 			goto resetandabort;
   3061 		}
   3062 	}
   3063 #endif
   3064 	else {
   3065 		(void) m_free(am);
   3066 		goto resetandabort;
   3067 	}
   3068 	(void) m_free(am);
   3069 
   3070 	if (inp)
   3071 		tp = intotcpcb(inp);
   3072 #ifdef INET6
   3073 	else if (in6p)
   3074 		tp = in6totcpcb(in6p);
   3075 #endif
   3076 	else
   3077 		tp = NULL;
   3078 	if (sc->sc_request_r_scale != 15) {
   3079 		tp->requested_s_scale = sc->sc_requested_s_scale;
   3080 		tp->request_r_scale = sc->sc_request_r_scale;
   3081 		tp->snd_scale = sc->sc_requested_s_scale;
   3082 		tp->rcv_scale = sc->sc_request_r_scale;
   3083 		tp->t_flags |= TF_RCVD_SCALE;
   3084 	}
   3085 	if (sc->sc_flags & SCF_TIMESTAMP)
   3086 		tp->t_flags |= TF_RCVD_TSTMP;
   3087 
   3088 	tp->t_template = tcp_template(tp);
   3089 	if (tp->t_template == 0) {
   3090 		tp = tcp_drop(tp, ENOBUFS);	/* destroys socket */
   3091 		so = NULL;
   3092 		m_freem(m);
   3093 		goto abort;
   3094 	}
   3095 
   3096 	tp->iss = sc->sc_iss;
   3097 	tp->irs = sc->sc_irs;
   3098 	tcp_sendseqinit(tp);
   3099 	tcp_rcvseqinit(tp);
   3100 	tp->t_state = TCPS_SYN_RECEIVED;
   3101 	TCP_TIMER_ARM(tp, TCPT_KEEP, TCPTV_KEEP_INIT);
   3102 	tcpstat.tcps_accepts++;
   3103 
   3104 	/* Initialize tp->t_ourmss before we deal with the peer's! */
   3105 	tp->t_ourmss = sc->sc_ourmaxseg;
   3106 	tcp_mss_from_peer(tp, sc->sc_peermaxseg);
   3107 
   3108 	/*
   3109 	 * Initialize the initial congestion window.  If we
   3110 	 * had to retransmit the SYN,ACK, we must initialize cwnd
   3111 	 * to 1 segment (i.e. the Loss Window).
   3112 	 */
   3113 	if (sc->sc_rxtshift)
   3114 		tp->snd_cwnd = tp->t_peermss;
   3115 	else
   3116 		tp->snd_cwnd = TCP_INITIAL_WINDOW(tcp_init_win, tp->t_peermss);
   3117 
   3118 	tcp_rmx_rtt(tp);
   3119 	tp->snd_wl1 = sc->sc_irs;
   3120 	tp->rcv_up = sc->sc_irs + 1;
   3121 
   3122 	/*
   3123 	 * This is what whould have happened in tcp_ouput() when
   3124 	 * the SYN,ACK was sent.
   3125 	 */
   3126 	tp->snd_up = tp->snd_una;
   3127 	tp->snd_max = tp->snd_nxt = tp->iss+1;
   3128 	TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
   3129 	if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
   3130 		tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
   3131 	tp->last_ack_sent = tp->rcv_nxt;
   3132 
   3133 	tcpstat.tcps_sc_completed++;
   3134 	SYN_CACHE_PUT(sc);
   3135 	return (so);
   3136 
   3137 resetandabort:
   3138 	(void) tcp_respond(NULL, m, m, th,
   3139 			   th->th_seq + tlen, (tcp_seq)0, TH_RST|TH_ACK);
   3140 abort:
   3141 	if (so != NULL)
   3142 		(void) soabort(so);
   3143 	SYN_CACHE_PUT(sc);
   3144 	tcpstat.tcps_sc_aborted++;
   3145 	return ((struct socket *)(-1));
   3146 }
   3147 
   3148 /*
   3149  * This function is called when we get a RST for a
   3150  * non-existant connection, so that we can see if the
   3151  * connection is in the syn cache.  If it is, zap it.
   3152  */
   3153 
   3154 void
   3155 syn_cache_reset(src, dst, th)
   3156 	struct sockaddr *src;
   3157 	struct sockaddr *dst;
   3158 	struct tcphdr *th;
   3159 {
   3160 	struct syn_cache *sc;
   3161 	struct syn_cache_head *scp;
   3162 	int s = splsoftnet();
   3163 
   3164 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
   3165 		splx(s);
   3166 		return;
   3167 	}
   3168 	if (SEQ_LT(th->th_seq, sc->sc_irs) ||
   3169 	    SEQ_GT(th->th_seq, sc->sc_irs+1)) {
   3170 		splx(s);
   3171 		return;
   3172 	}
   3173 	SYN_CACHE_RM(sc);
   3174 	splx(s);
   3175 	tcpstat.tcps_sc_reset++;
   3176 	SYN_CACHE_PUT(sc);
   3177 }
   3178 
   3179 void
   3180 syn_cache_unreach(src, dst, th)
   3181 	struct sockaddr *src;
   3182 	struct sockaddr *dst;
   3183 	struct tcphdr *th;
   3184 {
   3185 	struct syn_cache *sc;
   3186 	struct syn_cache_head *scp;
   3187 	int s;
   3188 
   3189 	s = splsoftnet();
   3190 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
   3191 		splx(s);
   3192 		return;
   3193 	}
   3194 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
   3195 	if (ntohl (th->th_seq) != sc->sc_iss) {
   3196 		splx(s);
   3197 		return;
   3198 	}
   3199 
   3200 	/*
   3201 	 * If we've rertransmitted 3 times and this is our second error,
   3202 	 * we remove the entry.  Otherwise, we allow it to continue on.
   3203 	 * This prevents us from incorrectly nuking an entry during a
   3204 	 * spurious network outage.
   3205 	 *
   3206 	 * See tcp_notify().
   3207 	 */
   3208 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
   3209 		sc->sc_flags |= SCF_UNREACH;
   3210 		splx(s);
   3211 		return;
   3212 	}
   3213 
   3214 	SYN_CACHE_RM(sc);
   3215 	splx(s);
   3216 	tcpstat.tcps_sc_unreach++;
   3217 	SYN_CACHE_PUT(sc);
   3218 }
   3219 
   3220 /*
   3221  * Given a LISTEN socket and an inbound SYN request, add
   3222  * this to the syn cache, and send back a segment:
   3223  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
   3224  * to the source.
   3225  *
   3226  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
   3227  * Doing so would require that we hold onto the data and deliver it
   3228  * to the application.  However, if we are the target of a SYN-flood
   3229  * DoS attack, an attacker could send data which would eventually
   3230  * consume all available buffer space if it were ACKed.  By not ACKing
   3231  * the data, we avoid this DoS scenario.
   3232  */
   3233 
   3234 int
   3235 syn_cache_add(src, dst, th, hlen, so, m, optp, optlen, oi)
   3236 	struct sockaddr *src;
   3237 	struct sockaddr *dst;
   3238 	struct tcphdr *th;
   3239 	unsigned int hlen;
   3240 	struct socket *so;
   3241 	struct mbuf *m;
   3242 	u_char *optp;
   3243 	int optlen;
   3244 	struct tcp_opt_info *oi;
   3245 {
   3246 	struct tcpcb tb, *tp;
   3247 	long win;
   3248 	struct syn_cache *sc;
   3249 	struct syn_cache_head *scp;
   3250 	struct mbuf *ipopts;
   3251 
   3252 	tp = sototcpcb(so);
   3253 
   3254 	/*
   3255 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
   3256 	 *
   3257 	 * Note this check is performed in tcp_input() very early on.
   3258 	 */
   3259 
   3260 	/*
   3261 	 * Initialize some local state.
   3262 	 */
   3263 	win = sbspace(&so->so_rcv);
   3264 	if (win > TCP_MAXWIN)
   3265 		win = TCP_MAXWIN;
   3266 
   3267 	switch (src->sa_family) {
   3268 #ifdef INET
   3269 	case AF_INET:
   3270 		/*
   3271 		 * Remember the IP options, if any.
   3272 		 */
   3273 		ipopts = ip_srcroute();
   3274 		break;
   3275 #endif
   3276 	default:
   3277 		ipopts = NULL;
   3278 	}
   3279 
   3280 	if (optp) {
   3281 		tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
   3282 		tcp_dooptions(&tb, optp, optlen, th, oi);
   3283 	} else
   3284 		tb.t_flags = 0;
   3285 
   3286 	/*
   3287 	 * See if we already have an entry for this connection.
   3288 	 * If we do, resend the SYN,ACK.  We do not count this
   3289 	 * as a retransmission (XXX though maybe we should).
   3290 	 */
   3291 	if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
   3292 		tcpstat.tcps_sc_dupesyn++;
   3293 		if (ipopts) {
   3294 			/*
   3295 			 * If we were remembering a previous source route,
   3296 			 * forget it and use the new one we've been given.
   3297 			 */
   3298 			if (sc->sc_ipopts)
   3299 				(void) m_free(sc->sc_ipopts);
   3300 			sc->sc_ipopts = ipopts;
   3301 		}
   3302 		sc->sc_timestamp = tb.ts_recent;
   3303 		if (syn_cache_respond(sc, m) == 0) {
   3304 			tcpstat.tcps_sndacks++;
   3305 			tcpstat.tcps_sndtotal++;
   3306 		}
   3307 		return (1);
   3308 	}
   3309 
   3310 	sc = pool_get(&syn_cache_pool, PR_NOWAIT);
   3311 	if (sc == NULL) {
   3312 		if (ipopts)
   3313 			(void) m_free(ipopts);
   3314 		return (0);
   3315 	}
   3316 
   3317 	/*
   3318 	 * Fill in the cache, and put the necessary IP and TCP
   3319 	 * options into the reply.
   3320 	 */
   3321 	bzero(sc, sizeof(struct syn_cache));
   3322 	bcopy(src, &sc->sc_src, src->sa_len);
   3323 	bcopy(dst, &sc->sc_dst, dst->sa_len);
   3324 	sc->sc_flags = 0;
   3325 	sc->sc_ipopts = ipopts;
   3326 	sc->sc_irs = th->th_seq;
   3327 	sc->sc_iss = tcp_new_iss(sc, sizeof(struct syn_cache), 0);
   3328 	sc->sc_peermaxseg = oi->maxseg;
   3329 	sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
   3330 						m->m_pkthdr.rcvif : NULL,
   3331 						sc->sc_src.sa.sa_family);
   3332 	sc->sc_win = win;
   3333 	sc->sc_timestamp = tb.ts_recent;
   3334 	if (tcp_do_rfc1323 && (tb.t_flags & TF_RCVD_TSTMP))
   3335 		sc->sc_flags |= SCF_TIMESTAMP;
   3336 	if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   3337 	    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
   3338 		sc->sc_requested_s_scale = tb.requested_s_scale;
   3339 		sc->sc_request_r_scale = 0;
   3340 		while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
   3341 		    TCP_MAXWIN << sc->sc_request_r_scale <
   3342 		    so->so_rcv.sb_hiwat)
   3343 			sc->sc_request_r_scale++;
   3344 	} else {
   3345 		sc->sc_requested_s_scale = 15;
   3346 		sc->sc_request_r_scale = 15;
   3347 	}
   3348 	sc->sc_tp = tp;
   3349 	if (syn_cache_respond(sc, m) == 0) {
   3350 		syn_cache_insert(sc, tp);
   3351 		tcpstat.tcps_sndacks++;
   3352 		tcpstat.tcps_sndtotal++;
   3353 	} else {
   3354 		SYN_CACHE_PUT(sc);
   3355 		tcpstat.tcps_sc_dropped++;
   3356 	}
   3357 	return (1);
   3358 }
   3359 
   3360 int
   3361 syn_cache_respond(sc, m)
   3362 	struct syn_cache *sc;
   3363 	struct mbuf *m;
   3364 {
   3365 	struct route *ro;
   3366 	u_int8_t *optp;
   3367 	int optlen, error;
   3368 	u_int16_t tlen;
   3369 	struct ip *ip = NULL;
   3370 #ifdef INET6
   3371 	struct ip6_hdr *ip6 = NULL;
   3372 #endif
   3373 	struct tcphdr *th;
   3374 	u_int hlen;
   3375 
   3376 	switch (sc->sc_src.sa.sa_family) {
   3377 	case AF_INET:
   3378 		hlen = sizeof(struct ip);
   3379 		ro = &sc->sc_route4;
   3380 		break;
   3381 #ifdef INET6
   3382 	case AF_INET6:
   3383 		hlen = sizeof(struct ip6_hdr);
   3384 		ro = (struct route *)&sc->sc_route6;
   3385 		break;
   3386 #endif
   3387 	default:
   3388 		if (m)
   3389 			m_freem(m);
   3390 		return EAFNOSUPPORT;
   3391 	}
   3392 
   3393 	/* Compute the size of the TCP options. */
   3394 	optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
   3395 	    ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
   3396 
   3397 	tlen = hlen + sizeof(struct tcphdr) + optlen;
   3398 
   3399 	/*
   3400 	 * Create the IP+TCP header from scratch.
   3401 	 */
   3402 	if (m)
   3403 		m_freem(m);
   3404 #ifdef DIAGNOSTIC
   3405 	if (max_linkhdr + tlen > MCLBYTES)
   3406 		return (ENOBUFS);
   3407 #endif
   3408 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   3409 	if (m && tlen > MHLEN) {
   3410 		MCLGET(m, M_DONTWAIT);
   3411 		if ((m->m_flags & M_EXT) == 0) {
   3412 			m_freem(m);
   3413 			m = NULL;
   3414 		}
   3415 	}
   3416 	if (m == NULL)
   3417 		return (ENOBUFS);
   3418 
   3419 	/* Fixup the mbuf. */
   3420 	m->m_data += max_linkhdr;
   3421 	m->m_len = m->m_pkthdr.len = tlen;
   3422 #ifdef IPSEC
   3423 	if (sc->sc_tp) {
   3424 		struct tcpcb *tp;
   3425 		struct socket *so;
   3426 
   3427 		tp = sc->sc_tp;
   3428 		if (tp->t_inpcb)
   3429 			so = tp->t_inpcb->inp_socket;
   3430 #ifdef INET6
   3431 		else if (tp->t_in6pcb)
   3432 			so = tp->t_in6pcb->in6p_socket;
   3433 #endif
   3434 		else
   3435 			so = NULL;
   3436 		/* use IPsec policy on listening socket, on SYN ACK */
   3437 		ipsec_setsocket(m, so);
   3438 	}
   3439 #endif
   3440 	m->m_pkthdr.rcvif = NULL;
   3441 	memset(mtod(m, u_char *), 0, tlen);
   3442 
   3443 	switch (sc->sc_src.sa.sa_family) {
   3444 	case AF_INET:
   3445 		ip = mtod(m, struct ip *);
   3446 		ip->ip_dst = sc->sc_src.sin.sin_addr;
   3447 		ip->ip_src = sc->sc_dst.sin.sin_addr;
   3448 		ip->ip_p = IPPROTO_TCP;
   3449 		th = (struct tcphdr *)(ip + 1);
   3450 		th->th_dport = sc->sc_src.sin.sin_port;
   3451 		th->th_sport = sc->sc_dst.sin.sin_port;
   3452 		break;
   3453 #ifdef INET6
   3454 	case AF_INET6:
   3455 		ip6 = mtod(m, struct ip6_hdr *);
   3456 		ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
   3457 		ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
   3458 		ip6->ip6_nxt = IPPROTO_TCP;
   3459 		/* ip6_plen will be updated in ip6_output() */
   3460 		th = (struct tcphdr *)(ip6 + 1);
   3461 		th->th_dport = sc->sc_src.sin6.sin6_port;
   3462 		th->th_sport = sc->sc_dst.sin6.sin6_port;
   3463 		break;
   3464 #endif
   3465 	default:
   3466 		th = NULL;
   3467 	}
   3468 
   3469 	th->th_seq = htonl(sc->sc_iss);
   3470 	th->th_ack = htonl(sc->sc_irs + 1);
   3471 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
   3472 	th->th_flags = TH_SYN|TH_ACK;
   3473 	th->th_win = htons(sc->sc_win);
   3474 	/* th_sum already 0 */
   3475 	/* th_urp already 0 */
   3476 
   3477 	/* Tack on the TCP options. */
   3478 	optp = (u_int8_t *)(th + 1);
   3479 	*optp++ = TCPOPT_MAXSEG;
   3480 	*optp++ = 4;
   3481 	*optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
   3482 	*optp++ = sc->sc_ourmaxseg & 0xff;
   3483 
   3484 	if (sc->sc_request_r_scale != 15) {
   3485 		*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
   3486 		    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
   3487 		    sc->sc_request_r_scale);
   3488 		optp += 4;
   3489 	}
   3490 
   3491 	if (sc->sc_flags & SCF_TIMESTAMP) {
   3492 		u_int32_t *lp = (u_int32_t *)(optp);
   3493 		/* Form timestamp option as shown in appendix A of RFC 1323. */
   3494 		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
   3495 		*lp++ = htonl(tcp_now);
   3496 		*lp   = htonl(sc->sc_timestamp);
   3497 		optp += TCPOLEN_TSTAMP_APPA;
   3498 	}
   3499 
   3500 	/* Compute the packet's checksum. */
   3501 	switch (sc->sc_src.sa.sa_family) {
   3502 	case AF_INET:
   3503 		ip->ip_len = htons(tlen - hlen);
   3504 		th->th_sum = 0;
   3505 		th->th_sum = in_cksum(m, tlen);
   3506 		break;
   3507 #ifdef INET6
   3508 	case AF_INET6:
   3509 		ip6->ip6_plen = htons(tlen - hlen);
   3510 		th->th_sum = 0;
   3511 		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
   3512 		break;
   3513 #endif
   3514 	}
   3515 
   3516 	/*
   3517 	 * Fill in some straggling IP bits.  Note the stack expects
   3518 	 * ip_len to be in host order, for convenience.
   3519 	 */
   3520 	switch (sc->sc_src.sa.sa_family) {
   3521 #ifdef INET
   3522 	case AF_INET:
   3523 		ip->ip_len = tlen;
   3524 		ip->ip_ttl = ip_defttl;
   3525 		/* XXX tos? */
   3526 		break;
   3527 #endif
   3528 #ifdef INET6
   3529 	case AF_INET6:
   3530 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
   3531 		ip6->ip6_vfc |= IPV6_VERSION;
   3532 		ip6->ip6_plen = htons(tlen - hlen);
   3533 		/* ip6_hlim will be initialized afterwards */
   3534 		/* XXX flowlabel? */
   3535 		break;
   3536 #endif
   3537 	}
   3538 
   3539 	switch (sc->sc_src.sa.sa_family) {
   3540 #ifdef INET
   3541 	case AF_INET:
   3542 		error = ip_output(m, sc->sc_ipopts, ro,
   3543 		    (ip_mtudisc ? IP_MTUDISC : 0),
   3544 		    NULL);
   3545 		break;
   3546 #endif
   3547 #ifdef INET6
   3548 	case AF_INET6:
   3549 		ip6->ip6_hlim = in6_selecthlim(NULL,
   3550 				ro->ro_rt ? ro->ro_rt->rt_ifp : NULL);
   3551 
   3552 		error = ip6_output(m, NULL /*XXX*/, (struct route_in6 *)ro,
   3553 			0, NULL, NULL);
   3554 		break;
   3555 #endif
   3556 	default:
   3557 		error = EAFNOSUPPORT;
   3558 		break;
   3559 	}
   3560 	return (error);
   3561 }
   3562