tcp_input.c revision 1.124 1 /* $NetBSD: tcp_input.c,v 1.124 2001/05/08 10:15:13 itojun Exp $ */
2
3 /*
4 %%% portions-copyright-nrl-95
5 Portions of this software are Copyright 1995-1998 by Randall Atkinson,
6 Ronald Lee, Daniel McDonald, Bao Phan, and Chris Winters. All Rights
7 Reserved. All rights under this copyright have been assigned to the US
8 Naval Research Laboratory (NRL). The NRL Copyright Notice and License
9 Agreement Version 1.1 (January 17, 1995) applies to these portions of the
10 software.
11 You should have received a copy of the license with this software. If you
12 didn't get a copy, you may request one from <license (at) ipv6.nrl.navy.mil>.
13
14 */
15
16 /*
17 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
18 * All rights reserved.
19 *
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
23 * 1. Redistributions of source code must retain the above copyright
24 * notice, this list of conditions and the following disclaimer.
25 * 2. Redistributions in binary form must reproduce the above copyright
26 * notice, this list of conditions and the following disclaimer in the
27 * documentation and/or other materials provided with the distribution.
28 * 3. Neither the name of the project nor the names of its contributors
29 * may be used to endorse or promote products derived from this software
30 * without specific prior written permission.
31 *
32 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
33 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
36 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42 * SUCH DAMAGE.
43 */
44
45 /*-
46 * Copyright (c) 1997, 1998, 1999, 2001 The NetBSD Foundation, Inc.
47 * All rights reserved.
48 *
49 * This code is derived from software contributed to The NetBSD Foundation
50 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
51 * Facility, NASA Ames Research Center.
52 *
53 * Redistribution and use in source and binary forms, with or without
54 * modification, are permitted provided that the following conditions
55 * are met:
56 * 1. Redistributions of source code must retain the above copyright
57 * notice, this list of conditions and the following disclaimer.
58 * 2. Redistributions in binary form must reproduce the above copyright
59 * notice, this list of conditions and the following disclaimer in the
60 * documentation and/or other materials provided with the distribution.
61 * 3. All advertising materials mentioning features or use of this software
62 * must display the following acknowledgement:
63 * This product includes software developed by the NetBSD
64 * Foundation, Inc. and its contributors.
65 * 4. Neither the name of The NetBSD Foundation nor the names of its
66 * contributors may be used to endorse or promote products derived
67 * from this software without specific prior written permission.
68 *
69 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
70 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
71 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
72 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
73 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
74 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
75 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
76 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
77 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
78 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
79 * POSSIBILITY OF SUCH DAMAGE.
80 */
81
82 /*
83 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
84 * The Regents of the University of California. All rights reserved.
85 *
86 * Redistribution and use in source and binary forms, with or without
87 * modification, are permitted provided that the following conditions
88 * are met:
89 * 1. Redistributions of source code must retain the above copyright
90 * notice, this list of conditions and the following disclaimer.
91 * 2. Redistributions in binary form must reproduce the above copyright
92 * notice, this list of conditions and the following disclaimer in the
93 * documentation and/or other materials provided with the distribution.
94 * 3. All advertising materials mentioning features or use of this software
95 * must display the following acknowledgement:
96 * This product includes software developed by the University of
97 * California, Berkeley and its contributors.
98 * 4. Neither the name of the University nor the names of its contributors
99 * may be used to endorse or promote products derived from this software
100 * without specific prior written permission.
101 *
102 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
103 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
104 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
105 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
106 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
107 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
108 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
109 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
110 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
111 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
112 * SUCH DAMAGE.
113 *
114 * @(#)tcp_input.c 8.12 (Berkeley) 5/24/95
115 */
116
117 /*
118 * TODO list for SYN cache stuff:
119 *
120 * Find room for a "state" field, which is needed to keep a
121 * compressed state for TIME_WAIT TCBs. It's been noted already
122 * that this is fairly important for very high-volume web and
123 * mail servers, which use a large number of short-lived
124 * connections.
125 */
126
127 #include "opt_inet.h"
128 #include "opt_ipsec.h"
129
130 #include <sys/param.h>
131 #include <sys/systm.h>
132 #include <sys/malloc.h>
133 #include <sys/mbuf.h>
134 #include <sys/protosw.h>
135 #include <sys/socket.h>
136 #include <sys/socketvar.h>
137 #include <sys/errno.h>
138 #include <sys/syslog.h>
139 #include <sys/pool.h>
140 #include <sys/domain.h>
141
142 #include <net/if.h>
143 #include <net/route.h>
144 #include <net/if_types.h>
145
146 #include <netinet/in.h>
147 #include <netinet/in_systm.h>
148 #include <netinet/ip.h>
149 #include <netinet/in_pcb.h>
150 #include <netinet/ip_var.h>
151
152 #ifdef INET6
153 #ifndef INET
154 #include <netinet/in.h>
155 #endif
156 #include <netinet/ip6.h>
157 #include <netinet6/ip6_var.h>
158 #include <netinet6/in6_pcb.h>
159 #include <netinet6/ip6_var.h>
160 #include <netinet6/in6_var.h>
161 #include <netinet/icmp6.h>
162 #include <netinet6/nd6.h>
163 #endif
164
165 #ifdef PULLDOWN_TEST
166 #ifndef INET6
167 /* always need ip6.h for IP6_EXTHDR_GET */
168 #include <netinet/ip6.h>
169 #endif
170 #endif
171
172 #include <netinet/tcp.h>
173 #include <netinet/tcp_fsm.h>
174 #include <netinet/tcp_seq.h>
175 #include <netinet/tcp_timer.h>
176 #include <netinet/tcp_var.h>
177 #include <netinet/tcpip.h>
178 #include <netinet/tcp_debug.h>
179
180 #include <machine/stdarg.h>
181
182 #ifdef IPSEC
183 #include <netinet6/ipsec.h>
184 #include <netkey/key.h>
185 #endif /*IPSEC*/
186 #ifdef INET6
187 #include "faith.h"
188 #if defined(NFAITH) && NFAITH > 0
189 #include <net/if_faith.h>
190 #endif
191 #endif
192
193 int tcprexmtthresh = 3;
194 int tcp_log_refused;
195
196 static int tcp_rst_ppslim_count = 0;
197 static struct timeval tcp_rst_ppslim_last;
198
199 #define TCP_PAWS_IDLE (24 * 24 * 60 * 60 * PR_SLOWHZ)
200
201 /* for modulo comparisons of timestamps */
202 #define TSTMP_LT(a,b) ((int)((a)-(b)) < 0)
203 #define TSTMP_GEQ(a,b) ((int)((a)-(b)) >= 0)
204
205 /*
206 * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
207 */
208 #ifdef INET6
209 #define ND6_HINT(tp) \
210 do { \
211 if (tp && tp->t_in6pcb && tp->t_family == AF_INET6 \
212 && tp->t_in6pcb->in6p_route.ro_rt) { \
213 nd6_nud_hint(tp->t_in6pcb->in6p_route.ro_rt, NULL, 0); \
214 } \
215 } while (0)
216 #else
217 #define ND6_HINT(tp)
218 #endif
219
220 /*
221 * Macro to compute ACK transmission behavior. Delay the ACK unless
222 * we have already delayed an ACK (must send an ACK every two segments).
223 * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
224 * option is enabled.
225 */
226 #define TCP_SETUP_ACK(tp, th) \
227 do { \
228 if ((tp)->t_flags & TF_DELACK || \
229 (tcp_ack_on_push && (th)->th_flags & TH_PUSH)) \
230 tp->t_flags |= TF_ACKNOW; \
231 else \
232 TCP_SET_DELACK(tp); \
233 } while (0)
234
235 /*
236 * Convert TCP protocol fields to host order for easier processing.
237 */
238 #define TCP_FIELDS_TO_HOST(th) \
239 do { \
240 NTOHL((th)->th_seq); \
241 NTOHL((th)->th_ack); \
242 NTOHS((th)->th_win); \
243 NTOHS((th)->th_urp); \
244 } while (0)
245
246 int
247 tcp_reass(tp, th, m, tlen)
248 struct tcpcb *tp;
249 struct tcphdr *th;
250 struct mbuf *m;
251 int *tlen;
252 {
253 struct ipqent *p, *q, *nq, *tiqe = NULL;
254 struct socket *so = NULL;
255 int pkt_flags;
256 tcp_seq pkt_seq;
257 unsigned pkt_len;
258 u_long rcvpartdupbyte = 0;
259 u_long rcvoobyte;
260
261 if (tp->t_inpcb)
262 so = tp->t_inpcb->inp_socket;
263 #ifdef INET6
264 else if (tp->t_in6pcb)
265 so = tp->t_in6pcb->in6p_socket;
266 #endif
267
268 TCP_REASS_LOCK_CHECK(tp);
269
270 /*
271 * Call with th==0 after become established to
272 * force pre-ESTABLISHED data up to user socket.
273 */
274 if (th == 0)
275 goto present;
276
277 rcvoobyte = *tlen;
278 /*
279 * Copy these to local variables because the tcpiphdr
280 * gets munged while we are collapsing mbufs.
281 */
282 pkt_seq = th->th_seq;
283 pkt_len = *tlen;
284 pkt_flags = th->th_flags;
285 /*
286 * Find a segment which begins after this one does.
287 */
288 for (p = NULL, q = tp->segq.lh_first; q != NULL; q = nq) {
289 nq = q->ipqe_q.le_next;
290 /*
291 * If the received segment is just right after this
292 * fragment, merge the two together and then check
293 * for further overlaps.
294 */
295 if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
296 #ifdef TCPREASS_DEBUG
297 printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
298 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
299 q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
300 #endif
301 pkt_len += q->ipqe_len;
302 pkt_flags |= q->ipqe_flags;
303 pkt_seq = q->ipqe_seq;
304 m_cat(q->ipqe_m, m);
305 m = q->ipqe_m;
306 goto free_ipqe;
307 }
308 /*
309 * If the received segment is completely past this
310 * fragment, we need to go the next fragment.
311 */
312 if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
313 p = q;
314 continue;
315 }
316 /*
317 * If the fragment is past the received segment,
318 * it (or any following) can't be concatenated.
319 */
320 if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len))
321 break;
322 /*
323 * We've received all the data in this segment before.
324 * mark it as a duplicate and return.
325 */
326 if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
327 SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
328 tcpstat.tcps_rcvduppack++;
329 tcpstat.tcps_rcvdupbyte += pkt_len;
330 m_freem(m);
331 if (tiqe != NULL)
332 pool_put(&ipqent_pool, tiqe);
333 return (0);
334 }
335 /*
336 * Received segment completely overlaps this fragment
337 * so we drop the fragment (this keeps the temporal
338 * ordering of segments correct).
339 */
340 if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
341 SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
342 rcvpartdupbyte += q->ipqe_len;
343 m_freem(q->ipqe_m);
344 goto free_ipqe;
345 }
346 /*
347 * RX'ed segment extends past the end of the
348 * fragment. Drop the overlapping bytes. Then
349 * merge the fragment and segment then treat as
350 * a longer received packet.
351 */
352 if (SEQ_LT(q->ipqe_seq, pkt_seq)
353 && SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
354 int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
355 #ifdef TCPREASS_DEBUG
356 printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
357 tp, overlap,
358 pkt_seq, pkt_seq + pkt_len, pkt_len);
359 #endif
360 m_adj(m, overlap);
361 rcvpartdupbyte += overlap;
362 m_cat(q->ipqe_m, m);
363 m = q->ipqe_m;
364 pkt_seq = q->ipqe_seq;
365 pkt_len += q->ipqe_len - overlap;
366 rcvoobyte -= overlap;
367 goto free_ipqe;
368 }
369 /*
370 * RX'ed segment extends past the front of the
371 * fragment. Drop the overlapping bytes on the
372 * received packet. The packet will then be
373 * contatentated with this fragment a bit later.
374 */
375 if (SEQ_GT(q->ipqe_seq, pkt_seq)
376 && SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len)) {
377 int overlap = pkt_seq + pkt_len - q->ipqe_seq;
378 #ifdef TCPREASS_DEBUG
379 printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
380 tp, overlap,
381 pkt_seq, pkt_seq + pkt_len, pkt_len);
382 #endif
383 m_adj(m, -overlap);
384 pkt_len -= overlap;
385 rcvpartdupbyte += overlap;
386 rcvoobyte -= overlap;
387 }
388 /*
389 * If the received segment immediates precedes this
390 * fragment then tack the fragment onto this segment
391 * and reinsert the data.
392 */
393 if (q->ipqe_seq == pkt_seq + pkt_len) {
394 #ifdef TCPREASS_DEBUG
395 printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
396 tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
397 pkt_seq, pkt_seq + pkt_len, pkt_len);
398 #endif
399 pkt_len += q->ipqe_len;
400 pkt_flags |= q->ipqe_flags;
401 m_cat(m, q->ipqe_m);
402 LIST_REMOVE(q, ipqe_q);
403 LIST_REMOVE(q, ipqe_timeq);
404 if (tiqe == NULL) {
405 tiqe = q;
406 } else {
407 pool_put(&ipqent_pool, q);
408 }
409 break;
410 }
411 /*
412 * If the fragment is before the segment, remember it.
413 * When this loop is terminated, p will contain the
414 * pointer to fragment that is right before the received
415 * segment.
416 */
417 if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
418 p = q;
419
420 continue;
421
422 /*
423 * This is a common operation. It also will allow
424 * to save doing a malloc/free in most instances.
425 */
426 free_ipqe:
427 LIST_REMOVE(q, ipqe_q);
428 LIST_REMOVE(q, ipqe_timeq);
429 if (tiqe == NULL) {
430 tiqe = q;
431 } else {
432 pool_put(&ipqent_pool, q);
433 }
434 }
435
436 /*
437 * Allocate a new queue entry since the received segment did not
438 * collapse onto any other out-of-order block; thus we are allocating
439 * a new block. If it had collapsed, tiqe would not be NULL and
440 * we would be reusing it.
441 * XXX If we can't, just drop the packet. XXX
442 */
443 if (tiqe == NULL) {
444 tiqe = pool_get(&ipqent_pool, PR_NOWAIT);
445 if (tiqe == NULL) {
446 tcpstat.tcps_rcvmemdrop++;
447 m_freem(m);
448 return (0);
449 }
450 }
451
452 /*
453 * Update the counters.
454 */
455 tcpstat.tcps_rcvoopack++;
456 tcpstat.tcps_rcvoobyte += rcvoobyte;
457 if (rcvpartdupbyte) {
458 tcpstat.tcps_rcvpartduppack++;
459 tcpstat.tcps_rcvpartdupbyte += rcvpartdupbyte;
460 }
461
462 /*
463 * Insert the new fragment queue entry into both queues.
464 */
465 tiqe->ipqe_m = m;
466 tiqe->ipqe_seq = pkt_seq;
467 tiqe->ipqe_len = pkt_len;
468 tiqe->ipqe_flags = pkt_flags;
469 if (p == NULL) {
470 LIST_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
471 #ifdef TCPREASS_DEBUG
472 if (tiqe->ipqe_seq != tp->rcv_nxt)
473 printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
474 tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
475 #endif
476 } else {
477 LIST_INSERT_AFTER(p, tiqe, ipqe_q);
478 #ifdef TCPREASS_DEBUG
479 printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
480 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
481 p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
482 #endif
483 }
484
485 LIST_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
486
487 present:
488 /*
489 * Present data to user, advancing rcv_nxt through
490 * completed sequence space.
491 */
492 if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
493 return (0);
494 q = tp->segq.lh_first;
495 if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
496 return (0);
497 if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
498 return (0);
499
500 tp->rcv_nxt += q->ipqe_len;
501 pkt_flags = q->ipqe_flags & TH_FIN;
502 ND6_HINT(tp);
503
504 LIST_REMOVE(q, ipqe_q);
505 LIST_REMOVE(q, ipqe_timeq);
506 if (so->so_state & SS_CANTRCVMORE)
507 m_freem(q->ipqe_m);
508 else
509 sbappend(&so->so_rcv, q->ipqe_m);
510 pool_put(&ipqent_pool, q);
511 sorwakeup(so);
512 return (pkt_flags);
513 }
514
515 #ifdef INET6
516 int
517 tcp6_input(mp, offp, proto)
518 struct mbuf **mp;
519 int *offp, proto;
520 {
521 struct mbuf *m = *mp;
522
523 /*
524 * draft-itojun-ipv6-tcp-to-anycast
525 * better place to put this in?
526 */
527 if (m->m_flags & M_ANYCAST6) {
528 struct ip6_hdr *ip6;
529 if (m->m_len < sizeof(struct ip6_hdr)) {
530 if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
531 tcpstat.tcps_rcvshort++;
532 return IPPROTO_DONE;
533 }
534 }
535 ip6 = mtod(m, struct ip6_hdr *);
536 icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
537 (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
538 return IPPROTO_DONE;
539 }
540
541 tcp_input(m, *offp, proto);
542 return IPPROTO_DONE;
543 }
544 #endif
545
546 /*
547 * TCP input routine, follows pages 65-76 of the
548 * protocol specification dated September, 1981 very closely.
549 */
550 void
551 #if __STDC__
552 tcp_input(struct mbuf *m, ...)
553 #else
554 tcp_input(m, va_alist)
555 struct mbuf *m;
556 #endif
557 {
558 int proto;
559 struct tcphdr *th;
560 struct ip *ip;
561 struct inpcb *inp;
562 #ifdef INET6
563 struct ip6_hdr *ip6;
564 struct in6pcb *in6p;
565 #endif
566 caddr_t optp = NULL;
567 int optlen = 0;
568 int len, tlen, toff, hdroptlen = 0;
569 struct tcpcb *tp = 0;
570 int tiflags;
571 struct socket *so = NULL;
572 int todrop, acked, ourfinisacked, needoutput = 0;
573 short ostate = 0;
574 int iss = 0;
575 u_long tiwin;
576 struct tcp_opt_info opti;
577 int off, iphlen;
578 va_list ap;
579 int af; /* af on the wire */
580 struct mbuf *tcp_saveti = NULL;
581
582 va_start(ap, m);
583 toff = va_arg(ap, int);
584 proto = va_arg(ap, int);
585 va_end(ap);
586
587 tcpstat.tcps_rcvtotal++;
588
589 bzero(&opti, sizeof(opti));
590 opti.ts_present = 0;
591 opti.maxseg = 0;
592
593 /*
594 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
595 *
596 * TCP is, by definition, unicast, so we reject all
597 * multicast outright.
598 *
599 * Note, there are additional src/dst address checks in
600 * the AF-specific code below.
601 */
602 if (m->m_flags & (M_BCAST|M_MCAST)) {
603 /* XXX stat */
604 goto drop;
605 }
606 #ifdef INET6
607 if (m->m_flags & M_ANYCAST6) {
608 /* XXX stat */
609 goto drop;
610 }
611 #endif
612
613 /*
614 * Get IP and TCP header together in first mbuf.
615 * Note: IP leaves IP header in first mbuf.
616 */
617 ip = mtod(m, struct ip *);
618 #ifdef INET6
619 ip6 = NULL;
620 #endif
621 switch (ip->ip_v) {
622 #ifdef INET
623 case 4:
624 af = AF_INET;
625 iphlen = sizeof(struct ip);
626 #ifndef PULLDOWN_TEST
627 /* would like to get rid of this... */
628 if (toff > sizeof (struct ip)) {
629 ip_stripoptions(m, (struct mbuf *)0);
630 toff = sizeof(struct ip);
631 }
632 if (m->m_len < toff + sizeof (struct tcphdr)) {
633 if ((m = m_pullup(m, toff + sizeof (struct tcphdr))) == 0) {
634 tcpstat.tcps_rcvshort++;
635 return;
636 }
637 }
638 ip = mtod(m, struct ip *);
639 th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
640 #else
641 ip = mtod(m, struct ip *);
642 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
643 sizeof(struct tcphdr));
644 if (th == NULL) {
645 tcpstat.tcps_rcvshort++;
646 return;
647 }
648 #endif
649
650 /*
651 * Make sure destination address is not multicast.
652 * Source address checked in ip_input().
653 */
654 if (IN_MULTICAST(ip->ip_dst.s_addr)) {
655 /* XXX stat */
656 goto drop;
657 }
658
659 /* We do the checksum after PCB lookup... */
660 len = ip->ip_len;
661 tlen = len - toff;
662 break;
663 #endif
664 #ifdef INET6
665 case 6:
666 ip = NULL;
667 iphlen = sizeof(struct ip6_hdr);
668 af = AF_INET6;
669 #ifndef PULLDOWN_TEST
670 if (m->m_len < toff + sizeof(struct tcphdr)) {
671 m = m_pullup(m, toff + sizeof(struct tcphdr)); /*XXX*/
672 if (m == NULL) {
673 tcpstat.tcps_rcvshort++;
674 return;
675 }
676 }
677 ip6 = mtod(m, struct ip6_hdr *);
678 th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
679 #else
680 ip6 = mtod(m, struct ip6_hdr *);
681 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
682 sizeof(struct tcphdr));
683 if (th == NULL) {
684 tcpstat.tcps_rcvshort++;
685 return;
686 }
687 #endif
688
689 /* Be proactive about malicious use of IPv4 mapped address */
690 if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
691 IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
692 /* XXX stat */
693 goto drop;
694 }
695
696 /*
697 * Be proactive about unspecified IPv6 address in source.
698 * As we use all-zero to indicate unbounded/unconnected pcb,
699 * unspecified IPv6 address can be used to confuse us.
700 *
701 * Note that packets with unspecified IPv6 destination is
702 * already dropped in ip6_input.
703 */
704 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
705 /* XXX stat */
706 goto drop;
707 }
708
709 /*
710 * Make sure destination address is not multicast.
711 * Source address checked in ip6_input().
712 */
713 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
714 /* XXX stat */
715 goto drop;
716 }
717
718 /* We do the checksum after PCB lookup... */
719 len = m->m_pkthdr.len;
720 tlen = len - toff;
721 break;
722 #endif
723 default:
724 m_freem(m);
725 return;
726 }
727
728 /*
729 * Check that TCP offset makes sense,
730 * pull out TCP options and adjust length. XXX
731 */
732 off = th->th_off << 2;
733 if (off < sizeof (struct tcphdr) || off > tlen) {
734 tcpstat.tcps_rcvbadoff++;
735 goto drop;
736 }
737 tlen -= off;
738
739 /*
740 * tcp_input() has been modified to use tlen to mean the TCP data
741 * length throughout the function. Other functions can use
742 * m->m_pkthdr.len as the basis for calculating the TCP data length.
743 * rja
744 */
745
746 if (off > sizeof (struct tcphdr)) {
747 #ifndef PULLDOWN_TEST
748 if (m->m_len < toff + off) {
749 if ((m = m_pullup(m, toff + off)) == 0) {
750 tcpstat.tcps_rcvshort++;
751 return;
752 }
753 switch (af) {
754 #ifdef INET
755 case AF_INET:
756 ip = mtod(m, struct ip *);
757 break;
758 #endif
759 #ifdef INET6
760 case AF_INET6:
761 ip6 = mtod(m, struct ip6_hdr *);
762 break;
763 #endif
764 }
765 th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
766 }
767 #else
768 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
769 if (th == NULL) {
770 tcpstat.tcps_rcvshort++;
771 return;
772 }
773 /*
774 * NOTE: ip/ip6 will not be affected by m_pulldown()
775 * (as they're before toff) and we don't need to update those.
776 */
777 #endif
778 optlen = off - sizeof (struct tcphdr);
779 optp = ((caddr_t)th) + sizeof(struct tcphdr);
780 /*
781 * Do quick retrieval of timestamp options ("options
782 * prediction?"). If timestamp is the only option and it's
783 * formatted as recommended in RFC 1323 appendix A, we
784 * quickly get the values now and not bother calling
785 * tcp_dooptions(), etc.
786 */
787 if ((optlen == TCPOLEN_TSTAMP_APPA ||
788 (optlen > TCPOLEN_TSTAMP_APPA &&
789 optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
790 *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
791 (th->th_flags & TH_SYN) == 0) {
792 opti.ts_present = 1;
793 opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
794 opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
795 optp = NULL; /* we've parsed the options */
796 }
797 }
798 tiflags = th->th_flags;
799
800 /*
801 * Locate pcb for segment.
802 */
803 findpcb:
804 inp = NULL;
805 #ifdef INET6
806 in6p = NULL;
807 #endif
808 switch (af) {
809 #ifdef INET
810 case AF_INET:
811 inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
812 ip->ip_dst, th->th_dport);
813 if (inp == 0) {
814 ++tcpstat.tcps_pcbhashmiss;
815 inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
816 }
817 #ifdef INET6
818 if (inp == 0) {
819 struct in6_addr s, d;
820
821 /* mapped addr case */
822 bzero(&s, sizeof(s));
823 s.s6_addr16[5] = htons(0xffff);
824 bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
825 bzero(&d, sizeof(d));
826 d.s6_addr16[5] = htons(0xffff);
827 bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
828 in6p = in6_pcblookup_connect(&tcb6, &s, th->th_sport,
829 &d, th->th_dport, 0);
830 if (in6p == 0) {
831 ++tcpstat.tcps_pcbhashmiss;
832 in6p = in6_pcblookup_bind(&tcb6, &d,
833 th->th_dport, 0);
834 }
835 }
836 #endif
837 #ifndef INET6
838 if (inp == 0)
839 #else
840 if (inp == 0 && in6p == 0)
841 #endif
842 {
843 ++tcpstat.tcps_noport;
844 if (tcp_log_refused && (tiflags & TH_SYN)) {
845 #ifndef INET6
846 char src[4*sizeof "123"];
847 char dst[4*sizeof "123"];
848 #else
849 char src[INET6_ADDRSTRLEN];
850 char dst[INET6_ADDRSTRLEN];
851 #endif
852 if (ip) {
853 strcpy(src, inet_ntoa(ip->ip_src));
854 strcpy(dst, inet_ntoa(ip->ip_dst));
855 }
856 #ifdef INET6
857 else if (ip6) {
858 strcpy(src, ip6_sprintf(&ip6->ip6_src));
859 strcpy(dst, ip6_sprintf(&ip6->ip6_dst));
860 }
861 #endif
862 else {
863 strcpy(src, "(unknown)");
864 strcpy(dst, "(unknown)");
865 }
866 log(LOG_INFO,
867 "Connection attempt to TCP %s:%d from %s:%d\n",
868 dst, ntohs(th->th_dport),
869 src, ntohs(th->th_sport));
870 }
871 TCP_FIELDS_TO_HOST(th);
872 goto dropwithreset_ratelim;
873 }
874 #ifdef IPSEC
875 if (inp && ipsec4_in_reject(m, inp)) {
876 ipsecstat.in_polvio++;
877 goto drop;
878 }
879 #ifdef INET6
880 else if (in6p && ipsec4_in_reject_so(m, in6p->in6p_socket)) {
881 ipsecstat.in_polvio++;
882 goto drop;
883 }
884 #endif
885 #endif /*IPSEC*/
886 break;
887 #endif /*INET*/
888 #ifdef INET6
889 case AF_INET6:
890 {
891 int faith;
892
893 #if defined(NFAITH) && NFAITH > 0
894 faith = faithprefix(&ip6->ip6_dst);
895 #else
896 faith = 0;
897 #endif
898 in6p = in6_pcblookup_connect(&tcb6, &ip6->ip6_src, th->th_sport,
899 &ip6->ip6_dst, th->th_dport, faith);
900 if (in6p == NULL) {
901 ++tcpstat.tcps_pcbhashmiss;
902 in6p = in6_pcblookup_bind(&tcb6, &ip6->ip6_dst,
903 th->th_dport, faith);
904 }
905 if (in6p == NULL) {
906 ++tcpstat.tcps_noport;
907 TCP_FIELDS_TO_HOST(th);
908 goto dropwithreset_ratelim;
909 }
910 #ifdef IPSEC
911 if (ipsec6_in_reject(m, in6p)) {
912 ipsec6stat.in_polvio++;
913 goto drop;
914 }
915 #endif /*IPSEC*/
916 break;
917 }
918 #endif
919 }
920
921 /*
922 * If the state is CLOSED (i.e., TCB does not exist) then
923 * all data in the incoming segment is discarded.
924 * If the TCB exists but is in CLOSED state, it is embryonic,
925 * but should either do a listen or a connect soon.
926 */
927 tp = NULL;
928 so = NULL;
929 if (inp) {
930 tp = intotcpcb(inp);
931 so = inp->inp_socket;
932 }
933 #ifdef INET6
934 else if (in6p) {
935 tp = in6totcpcb(in6p);
936 so = in6p->in6p_socket;
937 }
938 #endif
939 if (tp == 0) {
940 TCP_FIELDS_TO_HOST(th);
941 goto dropwithreset_ratelim;
942 }
943 if (tp->t_state == TCPS_CLOSED)
944 goto drop;
945
946 /*
947 * Checksum extended TCP header and data.
948 */
949 switch (af) {
950 #ifdef INET
951 case AF_INET:
952 #ifndef PULLDOWN_TEST
953 {
954 struct ipovly *ipov;
955 ipov = (struct ipovly *)ip;
956 bzero(ipov->ih_x1, sizeof ipov->ih_x1);
957 ipov->ih_len = htons(tlen + off);
958
959 if (in_cksum(m, len) != 0) {
960 tcpstat.tcps_rcvbadsum++;
961 goto drop;
962 }
963 }
964 #else
965 if (in4_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0) {
966 tcpstat.tcps_rcvbadsum++;
967 goto drop;
968 }
969 #endif
970 break;
971 #endif
972
973 #ifdef INET6
974 case AF_INET6:
975 if (in6_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0) {
976 tcpstat.tcps_rcvbadsum++;
977 goto drop;
978 }
979 break;
980 #endif
981 }
982
983 TCP_FIELDS_TO_HOST(th);
984
985 /* Unscale the window into a 32-bit value. */
986 if ((tiflags & TH_SYN) == 0)
987 tiwin = th->th_win << tp->snd_scale;
988 else
989 tiwin = th->th_win;
990
991 #ifdef INET6
992 /* save packet options if user wanted */
993 if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
994 if (in6p->in6p_options) {
995 m_freem(in6p->in6p_options);
996 in6p->in6p_options = 0;
997 }
998 ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
999 }
1000 #endif
1001
1002 if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
1003 union syn_cache_sa src;
1004 union syn_cache_sa dst;
1005
1006 bzero(&src, sizeof(src));
1007 bzero(&dst, sizeof(dst));
1008 switch (af) {
1009 #ifdef INET
1010 case AF_INET:
1011 src.sin.sin_len = sizeof(struct sockaddr_in);
1012 src.sin.sin_family = AF_INET;
1013 src.sin.sin_addr = ip->ip_src;
1014 src.sin.sin_port = th->th_sport;
1015
1016 dst.sin.sin_len = sizeof(struct sockaddr_in);
1017 dst.sin.sin_family = AF_INET;
1018 dst.sin.sin_addr = ip->ip_dst;
1019 dst.sin.sin_port = th->th_dport;
1020 break;
1021 #endif
1022 #ifdef INET6
1023 case AF_INET6:
1024 src.sin6.sin6_len = sizeof(struct sockaddr_in6);
1025 src.sin6.sin6_family = AF_INET6;
1026 src.sin6.sin6_addr = ip6->ip6_src;
1027 src.sin6.sin6_port = th->th_sport;
1028
1029 dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
1030 dst.sin6.sin6_family = AF_INET6;
1031 dst.sin6.sin6_addr = ip6->ip6_dst;
1032 dst.sin6.sin6_port = th->th_dport;
1033 break;
1034 #endif /* INET6 */
1035 default:
1036 goto badsyn; /*sanity*/
1037 }
1038
1039 if (so->so_options & SO_DEBUG) {
1040 ostate = tp->t_state;
1041
1042 tcp_saveti = NULL;
1043 if (iphlen + sizeof(struct tcphdr) > MHLEN)
1044 goto nosave;
1045
1046 if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
1047 tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
1048 if (!tcp_saveti)
1049 goto nosave;
1050 } else {
1051 MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
1052 if (!tcp_saveti)
1053 goto nosave;
1054 tcp_saveti->m_len = iphlen;
1055 m_copydata(m, 0, iphlen,
1056 mtod(tcp_saveti, caddr_t));
1057 }
1058
1059 if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
1060 m_freem(tcp_saveti);
1061 tcp_saveti = NULL;
1062 } else {
1063 tcp_saveti->m_len += sizeof(struct tcphdr);
1064 bcopy(th, mtod(tcp_saveti, caddr_t) + iphlen,
1065 sizeof(struct tcphdr));
1066 }
1067 if (tcp_saveti) {
1068 /*
1069 * need to recover version # field, which was
1070 * overwritten on ip_cksum computation.
1071 */
1072 struct ip *sip;
1073 sip = mtod(tcp_saveti, struct ip *);
1074 switch (af) {
1075 #ifdef INET
1076 case AF_INET:
1077 sip->ip_v = 4;
1078 break;
1079 #endif
1080 #ifdef INET6
1081 case AF_INET6:
1082 sip->ip_v = 6;
1083 break;
1084 #endif
1085 }
1086 }
1087 nosave:;
1088 }
1089 if (so->so_options & SO_ACCEPTCONN) {
1090 if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1091 if (tiflags & TH_RST) {
1092 syn_cache_reset(&src.sa, &dst.sa, th);
1093 } else if ((tiflags & (TH_ACK|TH_SYN)) ==
1094 (TH_ACK|TH_SYN)) {
1095 /*
1096 * Received a SYN,ACK. This should
1097 * never happen while we are in
1098 * LISTEN. Send an RST.
1099 */
1100 goto badsyn;
1101 } else if (tiflags & TH_ACK) {
1102 so = syn_cache_get(&src.sa, &dst.sa,
1103 th, toff, tlen, so, m);
1104 if (so == NULL) {
1105 /*
1106 * We don't have a SYN for
1107 * this ACK; send an RST.
1108 */
1109 goto badsyn;
1110 } else if (so ==
1111 (struct socket *)(-1)) {
1112 /*
1113 * We were unable to create
1114 * the connection. If the
1115 * 3-way handshake was
1116 * completed, and RST has
1117 * been sent to the peer.
1118 * Since the mbuf might be
1119 * in use for the reply,
1120 * do not free it.
1121 */
1122 m = NULL;
1123 } else {
1124 /*
1125 * We have created a
1126 * full-blown connection.
1127 */
1128 tp = NULL;
1129 inp = NULL;
1130 #ifdef INET6
1131 in6p = NULL;
1132 #endif
1133 switch (so->so_proto->pr_domain->dom_family) {
1134 #ifdef INET
1135 case AF_INET:
1136 inp = sotoinpcb(so);
1137 tp = intotcpcb(inp);
1138 break;
1139 #endif
1140 #ifdef INET6
1141 case AF_INET6:
1142 in6p = sotoin6pcb(so);
1143 tp = in6totcpcb(in6p);
1144 break;
1145 #endif
1146 }
1147 if (tp == NULL)
1148 goto badsyn; /*XXX*/
1149 tiwin <<= tp->snd_scale;
1150 goto after_listen;
1151 }
1152 } else {
1153 /*
1154 * None of RST, SYN or ACK was set.
1155 * This is an invalid packet for a
1156 * TCB in LISTEN state. Send a RST.
1157 */
1158 goto badsyn;
1159 }
1160 } else {
1161 /*
1162 * Received a SYN.
1163 */
1164
1165 /*
1166 * LISTEN socket received a SYN
1167 * from itself? This can't possibly
1168 * be valid; drop the packet.
1169 */
1170 if (th->th_sport == th->th_dport) {
1171 int i;
1172
1173 switch (af) {
1174 #ifdef INET
1175 case AF_INET:
1176 i = in_hosteq(ip->ip_src, ip->ip_dst);
1177 break;
1178 #endif
1179 #ifdef INET6
1180 case AF_INET6:
1181 i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
1182 break;
1183 #endif
1184 default:
1185 i = 1;
1186 }
1187 if (i) {
1188 tcpstat.tcps_badsyn++;
1189 goto drop;
1190 }
1191 }
1192
1193 /*
1194 * SYN looks ok; create compressed TCP
1195 * state for it.
1196 */
1197 if (so->so_qlen <= so->so_qlimit &&
1198 syn_cache_add(&src.sa, &dst.sa, th, tlen,
1199 so, m, optp, optlen, &opti))
1200 m = NULL;
1201 }
1202 goto drop;
1203 }
1204 }
1205
1206 after_listen:
1207 #ifdef DIAGNOSTIC
1208 /*
1209 * Should not happen now that all embryonic connections
1210 * are handled with compressed state.
1211 */
1212 if (tp->t_state == TCPS_LISTEN)
1213 panic("tcp_input: TCPS_LISTEN");
1214 #endif
1215
1216 /*
1217 * Segment received on connection.
1218 * Reset idle time and keep-alive timer.
1219 */
1220 tp->t_idle = 0;
1221 if (TCPS_HAVEESTABLISHED(tp->t_state))
1222 TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1223
1224 /*
1225 * Process options.
1226 */
1227 if (optp)
1228 tcp_dooptions(tp, optp, optlen, th, &opti);
1229
1230 /*
1231 * Header prediction: check for the two common cases
1232 * of a uni-directional data xfer. If the packet has
1233 * no control flags, is in-sequence, the window didn't
1234 * change and we're not retransmitting, it's a
1235 * candidate. If the length is zero and the ack moved
1236 * forward, we're the sender side of the xfer. Just
1237 * free the data acked & wake any higher level process
1238 * that was blocked waiting for space. If the length
1239 * is non-zero and the ack didn't move, we're the
1240 * receiver side. If we're getting packets in-order
1241 * (the reassembly queue is empty), add the data to
1242 * the socket buffer and note that we need a delayed ack.
1243 */
1244 if (tp->t_state == TCPS_ESTABLISHED &&
1245 (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1246 (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
1247 th->th_seq == tp->rcv_nxt &&
1248 tiwin && tiwin == tp->snd_wnd &&
1249 tp->snd_nxt == tp->snd_max) {
1250
1251 /*
1252 * If last ACK falls within this segment's sequence numbers,
1253 * record the timestamp.
1254 */
1255 if (opti.ts_present &&
1256 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1257 SEQ_LT(tp->last_ack_sent, th->th_seq + tlen)) {
1258 tp->ts_recent_age = TCP_TIMESTAMP(tp);
1259 tp->ts_recent = opti.ts_val;
1260 }
1261
1262 if (tlen == 0) {
1263 if (SEQ_GT(th->th_ack, tp->snd_una) &&
1264 SEQ_LEQ(th->th_ack, tp->snd_max) &&
1265 tp->snd_cwnd >= tp->snd_wnd &&
1266 tp->t_dupacks < tcprexmtthresh) {
1267 /*
1268 * this is a pure ack for outstanding data.
1269 */
1270 ++tcpstat.tcps_predack;
1271 if (opti.ts_present && opti.ts_ecr)
1272 tcp_xmit_timer(tp,
1273 TCP_TIMESTAMP(tp) - opti.ts_ecr + 1);
1274 else if (tp->t_rtt &&
1275 SEQ_GT(th->th_ack, tp->t_rtseq))
1276 tcp_xmit_timer(tp, tp->t_rtt);
1277 acked = th->th_ack - tp->snd_una;
1278 tcpstat.tcps_rcvackpack++;
1279 tcpstat.tcps_rcvackbyte += acked;
1280 ND6_HINT(tp);
1281 sbdrop(&so->so_snd, acked);
1282 /*
1283 * We want snd_recover to track snd_una to
1284 * avoid sequence wraparound problems for
1285 * very large transfers.
1286 */
1287 tp->snd_una = tp->snd_recover = th->th_ack;
1288 m_freem(m);
1289
1290 /*
1291 * If all outstanding data are acked, stop
1292 * retransmit timer, otherwise restart timer
1293 * using current (possibly backed-off) value.
1294 * If process is waiting for space,
1295 * wakeup/selwakeup/signal. If data
1296 * are ready to send, let tcp_output
1297 * decide between more output or persist.
1298 */
1299 if (tp->snd_una == tp->snd_max)
1300 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1301 else if (TCP_TIMER_ISARMED(tp,
1302 TCPT_PERSIST) == 0)
1303 TCP_TIMER_ARM(tp, TCPT_REXMT,
1304 tp->t_rxtcur);
1305
1306 sowwakeup(so);
1307 if (so->so_snd.sb_cc)
1308 (void) tcp_output(tp);
1309 if (tcp_saveti)
1310 m_freem(tcp_saveti);
1311 return;
1312 }
1313 } else if (th->th_ack == tp->snd_una &&
1314 tp->segq.lh_first == NULL &&
1315 tlen <= sbspace(&so->so_rcv)) {
1316 /*
1317 * this is a pure, in-sequence data packet
1318 * with nothing on the reassembly queue and
1319 * we have enough buffer space to take it.
1320 */
1321 ++tcpstat.tcps_preddat;
1322 tp->rcv_nxt += tlen;
1323 tcpstat.tcps_rcvpack++;
1324 tcpstat.tcps_rcvbyte += tlen;
1325 ND6_HINT(tp);
1326 /*
1327 * Drop TCP, IP headers and TCP options then add data
1328 * to socket buffer.
1329 */
1330 m_adj(m, toff + off);
1331 sbappend(&so->so_rcv, m);
1332 sorwakeup(so);
1333 TCP_SETUP_ACK(tp, th);
1334 if (tp->t_flags & TF_ACKNOW)
1335 (void) tcp_output(tp);
1336 if (tcp_saveti)
1337 m_freem(tcp_saveti);
1338 return;
1339 }
1340 }
1341
1342 /*
1343 * Compute mbuf offset to TCP data segment.
1344 */
1345 hdroptlen = toff + off;
1346
1347 /*
1348 * Calculate amount of space in receive window,
1349 * and then do TCP input processing.
1350 * Receive window is amount of space in rcv queue,
1351 * but not less than advertised window.
1352 */
1353 { int win;
1354
1355 win = sbspace(&so->so_rcv);
1356 if (win < 0)
1357 win = 0;
1358 tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1359 }
1360
1361 switch (tp->t_state) {
1362
1363 /*
1364 * If the state is SYN_SENT:
1365 * if seg contains an ACK, but not for our SYN, drop the input.
1366 * if seg contains a RST, then drop the connection.
1367 * if seg does not contain SYN, then drop it.
1368 * Otherwise this is an acceptable SYN segment
1369 * initialize tp->rcv_nxt and tp->irs
1370 * if seg contains ack then advance tp->snd_una
1371 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1372 * arrange for segment to be acked (eventually)
1373 * continue processing rest of data/controls, beginning with URG
1374 */
1375 case TCPS_SYN_SENT:
1376 if ((tiflags & TH_ACK) &&
1377 (SEQ_LEQ(th->th_ack, tp->iss) ||
1378 SEQ_GT(th->th_ack, tp->snd_max)))
1379 goto dropwithreset;
1380 if (tiflags & TH_RST) {
1381 if (tiflags & TH_ACK)
1382 tp = tcp_drop(tp, ECONNREFUSED);
1383 goto drop;
1384 }
1385 if ((tiflags & TH_SYN) == 0)
1386 goto drop;
1387 if (tiflags & TH_ACK) {
1388 tp->snd_una = tp->snd_recover = th->th_ack;
1389 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1390 tp->snd_nxt = tp->snd_una;
1391 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1392 }
1393 tp->irs = th->th_seq;
1394 tcp_rcvseqinit(tp);
1395 tp->t_flags |= TF_ACKNOW;
1396 tcp_mss_from_peer(tp, opti.maxseg);
1397
1398 /*
1399 * Initialize the initial congestion window. If we
1400 * had to retransmit the SYN, we must initialize cwnd
1401 * to 1 segment (i.e. the Loss Window).
1402 */
1403 if (tp->t_flags & TF_SYN_REXMT)
1404 tp->snd_cwnd = tp->t_peermss;
1405 else
1406 tp->snd_cwnd = TCP_INITIAL_WINDOW(tcp_init_win,
1407 tp->t_peermss);
1408
1409 tcp_rmx_rtt(tp);
1410 if (tiflags & TH_ACK) {
1411 tcpstat.tcps_connects++;
1412 soisconnected(so);
1413 tcp_established(tp);
1414 /* Do window scaling on this connection? */
1415 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1416 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1417 tp->snd_scale = tp->requested_s_scale;
1418 tp->rcv_scale = tp->request_r_scale;
1419 }
1420 TCP_REASS_LOCK(tp);
1421 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1422 TCP_REASS_UNLOCK(tp);
1423 /*
1424 * if we didn't have to retransmit the SYN,
1425 * use its rtt as our initial srtt & rtt var.
1426 */
1427 if (tp->t_rtt)
1428 tcp_xmit_timer(tp, tp->t_rtt);
1429 } else
1430 tp->t_state = TCPS_SYN_RECEIVED;
1431
1432 /*
1433 * Advance th->th_seq to correspond to first data byte.
1434 * If data, trim to stay within window,
1435 * dropping FIN if necessary.
1436 */
1437 th->th_seq++;
1438 if (tlen > tp->rcv_wnd) {
1439 todrop = tlen - tp->rcv_wnd;
1440 m_adj(m, -todrop);
1441 tlen = tp->rcv_wnd;
1442 tiflags &= ~TH_FIN;
1443 tcpstat.tcps_rcvpackafterwin++;
1444 tcpstat.tcps_rcvbyteafterwin += todrop;
1445 }
1446 tp->snd_wl1 = th->th_seq - 1;
1447 tp->rcv_up = th->th_seq;
1448 goto step6;
1449
1450 /*
1451 * If the state is SYN_RECEIVED:
1452 * If seg contains an ACK, but not for our SYN, drop the input
1453 * and generate an RST. See page 36, rfc793
1454 */
1455 case TCPS_SYN_RECEIVED:
1456 if ((tiflags & TH_ACK) &&
1457 (SEQ_LEQ(th->th_ack, tp->iss) ||
1458 SEQ_GT(th->th_ack, tp->snd_max)))
1459 goto dropwithreset;
1460 break;
1461 }
1462
1463 /*
1464 * States other than LISTEN or SYN_SENT.
1465 * First check timestamp, if present.
1466 * Then check that at least some bytes of segment are within
1467 * receive window. If segment begins before rcv_nxt,
1468 * drop leading data (and SYN); if nothing left, just ack.
1469 *
1470 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1471 * and it's less than ts_recent, drop it.
1472 */
1473 if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
1474 TSTMP_LT(opti.ts_val, tp->ts_recent)) {
1475
1476 /* Check to see if ts_recent is over 24 days old. */
1477 if ((int)(TCP_TIMESTAMP(tp) - tp->ts_recent_age) >
1478 TCP_PAWS_IDLE) {
1479 /*
1480 * Invalidate ts_recent. If this segment updates
1481 * ts_recent, the age will be reset later and ts_recent
1482 * will get a valid value. If it does not, setting
1483 * ts_recent to zero will at least satisfy the
1484 * requirement that zero be placed in the timestamp
1485 * echo reply when ts_recent isn't valid. The
1486 * age isn't reset until we get a valid ts_recent
1487 * because we don't want out-of-order segments to be
1488 * dropped when ts_recent is old.
1489 */
1490 tp->ts_recent = 0;
1491 } else {
1492 tcpstat.tcps_rcvduppack++;
1493 tcpstat.tcps_rcvdupbyte += tlen;
1494 tcpstat.tcps_pawsdrop++;
1495 goto dropafterack;
1496 }
1497 }
1498
1499 todrop = tp->rcv_nxt - th->th_seq;
1500 if (todrop > 0) {
1501 if (tiflags & TH_SYN) {
1502 tiflags &= ~TH_SYN;
1503 th->th_seq++;
1504 if (th->th_urp > 1)
1505 th->th_urp--;
1506 else {
1507 tiflags &= ~TH_URG;
1508 th->th_urp = 0;
1509 }
1510 todrop--;
1511 }
1512 if (todrop > tlen ||
1513 (todrop == tlen && (tiflags & TH_FIN) == 0)) {
1514 /*
1515 * Any valid FIN must be to the left of the window.
1516 * At this point the FIN must be a duplicate or
1517 * out of sequence; drop it.
1518 */
1519 tiflags &= ~TH_FIN;
1520 /*
1521 * Send an ACK to resynchronize and drop any data.
1522 * But keep on processing for RST or ACK.
1523 */
1524 tp->t_flags |= TF_ACKNOW;
1525 todrop = tlen;
1526 tcpstat.tcps_rcvdupbyte += todrop;
1527 tcpstat.tcps_rcvduppack++;
1528 } else {
1529 tcpstat.tcps_rcvpartduppack++;
1530 tcpstat.tcps_rcvpartdupbyte += todrop;
1531 }
1532 hdroptlen += todrop; /*drop from head afterwards*/
1533 th->th_seq += todrop;
1534 tlen -= todrop;
1535 if (th->th_urp > todrop)
1536 th->th_urp -= todrop;
1537 else {
1538 tiflags &= ~TH_URG;
1539 th->th_urp = 0;
1540 }
1541 }
1542
1543 /*
1544 * If new data are received on a connection after the
1545 * user processes are gone, then RST the other end.
1546 */
1547 if ((so->so_state & SS_NOFDREF) &&
1548 tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1549 tp = tcp_close(tp);
1550 tcpstat.tcps_rcvafterclose++;
1551 goto dropwithreset;
1552 }
1553
1554 /*
1555 * If segment ends after window, drop trailing data
1556 * (and PUSH and FIN); if nothing left, just ACK.
1557 */
1558 todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
1559 if (todrop > 0) {
1560 tcpstat.tcps_rcvpackafterwin++;
1561 if (todrop >= tlen) {
1562 tcpstat.tcps_rcvbyteafterwin += tlen;
1563 /*
1564 * If a new connection request is received
1565 * while in TIME_WAIT, drop the old connection
1566 * and start over if the sequence numbers
1567 * are above the previous ones.
1568 */
1569 if (tiflags & TH_SYN &&
1570 tp->t_state == TCPS_TIME_WAIT &&
1571 SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1572 iss = tcp_new_iss(tp, tp->snd_nxt);
1573 tp = tcp_close(tp);
1574 goto findpcb;
1575 }
1576 /*
1577 * If window is closed can only take segments at
1578 * window edge, and have to drop data and PUSH from
1579 * incoming segments. Continue processing, but
1580 * remember to ack. Otherwise, drop segment
1581 * and ack.
1582 */
1583 if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1584 tp->t_flags |= TF_ACKNOW;
1585 tcpstat.tcps_rcvwinprobe++;
1586 } else
1587 goto dropafterack;
1588 } else
1589 tcpstat.tcps_rcvbyteafterwin += todrop;
1590 m_adj(m, -todrop);
1591 tlen -= todrop;
1592 tiflags &= ~(TH_PUSH|TH_FIN);
1593 }
1594
1595 /*
1596 * If last ACK falls within this segment's sequence numbers,
1597 * and the timestamp is newer, record it.
1598 */
1599 if (opti.ts_present && TSTMP_GEQ(opti.ts_val, tp->ts_recent) &&
1600 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1601 SEQ_LT(tp->last_ack_sent, th->th_seq + tlen +
1602 ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
1603 tp->ts_recent_age = TCP_TIMESTAMP(tp);
1604 tp->ts_recent = opti.ts_val;
1605 }
1606
1607 /*
1608 * If the RST bit is set examine the state:
1609 * SYN_RECEIVED STATE:
1610 * If passive open, return to LISTEN state.
1611 * If active open, inform user that connection was refused.
1612 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
1613 * Inform user that connection was reset, and close tcb.
1614 * CLOSING, LAST_ACK, TIME_WAIT STATES
1615 * Close the tcb.
1616 */
1617 if (tiflags&TH_RST) switch (tp->t_state) {
1618
1619 case TCPS_SYN_RECEIVED:
1620 so->so_error = ECONNREFUSED;
1621 goto close;
1622
1623 case TCPS_ESTABLISHED:
1624 case TCPS_FIN_WAIT_1:
1625 case TCPS_FIN_WAIT_2:
1626 case TCPS_CLOSE_WAIT:
1627 so->so_error = ECONNRESET;
1628 close:
1629 tp->t_state = TCPS_CLOSED;
1630 tcpstat.tcps_drops++;
1631 tp = tcp_close(tp);
1632 goto drop;
1633
1634 case TCPS_CLOSING:
1635 case TCPS_LAST_ACK:
1636 case TCPS_TIME_WAIT:
1637 tp = tcp_close(tp);
1638 goto drop;
1639 }
1640
1641 /*
1642 * If a SYN is in the window, then this is an
1643 * error and we send an RST and drop the connection.
1644 */
1645 if (tiflags & TH_SYN) {
1646 tp = tcp_drop(tp, ECONNRESET);
1647 goto dropwithreset;
1648 }
1649
1650 /*
1651 * If the ACK bit is off we drop the segment and return.
1652 */
1653 if ((tiflags & TH_ACK) == 0) {
1654 if (tp->t_flags & TF_ACKNOW)
1655 goto dropafterack;
1656 else
1657 goto drop;
1658 }
1659
1660 /*
1661 * Ack processing.
1662 */
1663 switch (tp->t_state) {
1664
1665 /*
1666 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
1667 * ESTABLISHED state and continue processing, otherwise
1668 * send an RST.
1669 */
1670 case TCPS_SYN_RECEIVED:
1671 if (SEQ_GT(tp->snd_una, th->th_ack) ||
1672 SEQ_GT(th->th_ack, tp->snd_max))
1673 goto dropwithreset;
1674 tcpstat.tcps_connects++;
1675 soisconnected(so);
1676 tcp_established(tp);
1677 /* Do window scaling? */
1678 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1679 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1680 tp->snd_scale = tp->requested_s_scale;
1681 tp->rcv_scale = tp->request_r_scale;
1682 }
1683 TCP_REASS_LOCK(tp);
1684 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1685 TCP_REASS_UNLOCK(tp);
1686 tp->snd_wl1 = th->th_seq - 1;
1687 /* fall into ... */
1688
1689 /*
1690 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1691 * ACKs. If the ack is in the range
1692 * tp->snd_una < th->th_ack <= tp->snd_max
1693 * then advance tp->snd_una to th->th_ack and drop
1694 * data from the retransmission queue. If this ACK reflects
1695 * more up to date window information we update our window information.
1696 */
1697 case TCPS_ESTABLISHED:
1698 case TCPS_FIN_WAIT_1:
1699 case TCPS_FIN_WAIT_2:
1700 case TCPS_CLOSE_WAIT:
1701 case TCPS_CLOSING:
1702 case TCPS_LAST_ACK:
1703 case TCPS_TIME_WAIT:
1704
1705 if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
1706 if (tlen == 0 && tiwin == tp->snd_wnd) {
1707 tcpstat.tcps_rcvdupack++;
1708 /*
1709 * If we have outstanding data (other than
1710 * a window probe), this is a completely
1711 * duplicate ack (ie, window info didn't
1712 * change), the ack is the biggest we've
1713 * seen and we've seen exactly our rexmt
1714 * threshhold of them, assume a packet
1715 * has been dropped and retransmit it.
1716 * Kludge snd_nxt & the congestion
1717 * window so we send only this one
1718 * packet.
1719 *
1720 * We know we're losing at the current
1721 * window size so do congestion avoidance
1722 * (set ssthresh to half the current window
1723 * and pull our congestion window back to
1724 * the new ssthresh).
1725 *
1726 * Dup acks mean that packets have left the
1727 * network (they're now cached at the receiver)
1728 * so bump cwnd by the amount in the receiver
1729 * to keep a constant cwnd packets in the
1730 * network.
1731 */
1732 if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
1733 th->th_ack != tp->snd_una)
1734 tp->t_dupacks = 0;
1735 else if (++tp->t_dupacks == tcprexmtthresh) {
1736 tcp_seq onxt = tp->snd_nxt;
1737 u_int win =
1738 min(tp->snd_wnd, tp->snd_cwnd) /
1739 2 / tp->t_segsz;
1740 if (tcp_do_newreno && SEQ_LT(th->th_ack,
1741 tp->snd_recover)) {
1742 /*
1743 * False fast retransmit after
1744 * timeout. Do not cut window.
1745 */
1746 tp->snd_cwnd += tp->t_segsz;
1747 tp->t_dupacks = 0;
1748 (void) tcp_output(tp);
1749 goto drop;
1750 }
1751
1752 if (win < 2)
1753 win = 2;
1754 tp->snd_ssthresh = win * tp->t_segsz;
1755 tp->snd_recover = tp->snd_max;
1756 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1757 tp->t_rtt = 0;
1758 tp->snd_nxt = th->th_ack;
1759 tp->snd_cwnd = tp->t_segsz;
1760 (void) tcp_output(tp);
1761 tp->snd_cwnd = tp->snd_ssthresh +
1762 tp->t_segsz * tp->t_dupacks;
1763 if (SEQ_GT(onxt, tp->snd_nxt))
1764 tp->snd_nxt = onxt;
1765 goto drop;
1766 } else if (tp->t_dupacks > tcprexmtthresh) {
1767 tp->snd_cwnd += tp->t_segsz;
1768 (void) tcp_output(tp);
1769 goto drop;
1770 }
1771 } else
1772 tp->t_dupacks = 0;
1773 break;
1774 }
1775 /*
1776 * If the congestion window was inflated to account
1777 * for the other side's cached packets, retract it.
1778 */
1779 if (tcp_do_newreno == 0) {
1780 if (tp->t_dupacks >= tcprexmtthresh &&
1781 tp->snd_cwnd > tp->snd_ssthresh)
1782 tp->snd_cwnd = tp->snd_ssthresh;
1783 tp->t_dupacks = 0;
1784 } else if (tp->t_dupacks >= tcprexmtthresh &&
1785 tcp_newreno(tp, th) == 0) {
1786 tp->snd_cwnd = tp->snd_ssthresh;
1787 /*
1788 * Window inflation should have left us with approx.
1789 * snd_ssthresh outstanding data. But in case we
1790 * would be inclined to send a burst, better to do
1791 * it via the slow start mechanism.
1792 */
1793 if (SEQ_SUB(tp->snd_max, th->th_ack) < tp->snd_ssthresh)
1794 tp->snd_cwnd = SEQ_SUB(tp->snd_max, th->th_ack)
1795 + tp->t_segsz;
1796 tp->t_dupacks = 0;
1797 }
1798 if (SEQ_GT(th->th_ack, tp->snd_max)) {
1799 tcpstat.tcps_rcvacktoomuch++;
1800 goto dropafterack;
1801 }
1802 acked = th->th_ack - tp->snd_una;
1803 tcpstat.tcps_rcvackpack++;
1804 tcpstat.tcps_rcvackbyte += acked;
1805
1806 /*
1807 * If we have a timestamp reply, update smoothed
1808 * round trip time. If no timestamp is present but
1809 * transmit timer is running and timed sequence
1810 * number was acked, update smoothed round trip time.
1811 * Since we now have an rtt measurement, cancel the
1812 * timer backoff (cf., Phil Karn's retransmit alg.).
1813 * Recompute the initial retransmit timer.
1814 */
1815 if (opti.ts_present && opti.ts_ecr)
1816 tcp_xmit_timer(tp, TCP_TIMESTAMP(tp) - opti.ts_ecr + 1);
1817 else if (tp->t_rtt && SEQ_GT(th->th_ack, tp->t_rtseq))
1818 tcp_xmit_timer(tp,tp->t_rtt);
1819
1820 /*
1821 * If all outstanding data is acked, stop retransmit
1822 * timer and remember to restart (more output or persist).
1823 * If there is more data to be acked, restart retransmit
1824 * timer, using current (possibly backed-off) value.
1825 */
1826 if (th->th_ack == tp->snd_max) {
1827 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1828 needoutput = 1;
1829 } else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
1830 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
1831 /*
1832 * When new data is acked, open the congestion window.
1833 * If the window gives us less than ssthresh packets
1834 * in flight, open exponentially (segsz per packet).
1835 * Otherwise open linearly: segsz per window
1836 * (segsz^2 / cwnd per packet), plus a constant
1837 * fraction of a packet (segsz/8) to help larger windows
1838 * open quickly enough.
1839 */
1840 {
1841 u_int cw = tp->snd_cwnd;
1842 u_int incr = tp->t_segsz;
1843
1844 if (cw > tp->snd_ssthresh)
1845 incr = incr * incr / cw;
1846 if (tcp_do_newreno == 0 || SEQ_GEQ(th->th_ack, tp->snd_recover))
1847 tp->snd_cwnd = min(cw + incr,
1848 TCP_MAXWIN << tp->snd_scale);
1849 }
1850 ND6_HINT(tp);
1851 if (acked > so->so_snd.sb_cc) {
1852 tp->snd_wnd -= so->so_snd.sb_cc;
1853 sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
1854 ourfinisacked = 1;
1855 } else {
1856 sbdrop(&so->so_snd, acked);
1857 tp->snd_wnd -= acked;
1858 ourfinisacked = 0;
1859 }
1860 sowwakeup(so);
1861 /*
1862 * We want snd_recover to track snd_una to
1863 * avoid sequence wraparound problems for
1864 * very large transfers.
1865 */
1866 tp->snd_una = tp->snd_recover = th->th_ack;
1867 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1868 tp->snd_nxt = tp->snd_una;
1869
1870 switch (tp->t_state) {
1871
1872 /*
1873 * In FIN_WAIT_1 STATE in addition to the processing
1874 * for the ESTABLISHED state if our FIN is now acknowledged
1875 * then enter FIN_WAIT_2.
1876 */
1877 case TCPS_FIN_WAIT_1:
1878 if (ourfinisacked) {
1879 /*
1880 * If we can't receive any more
1881 * data, then closing user can proceed.
1882 * Starting the timer is contrary to the
1883 * specification, but if we don't get a FIN
1884 * we'll hang forever.
1885 */
1886 if (so->so_state & SS_CANTRCVMORE) {
1887 soisdisconnected(so);
1888 if (tcp_maxidle > 0)
1889 TCP_TIMER_ARM(tp, TCPT_2MSL,
1890 tcp_maxidle);
1891 }
1892 tp->t_state = TCPS_FIN_WAIT_2;
1893 }
1894 break;
1895
1896 /*
1897 * In CLOSING STATE in addition to the processing for
1898 * the ESTABLISHED state if the ACK acknowledges our FIN
1899 * then enter the TIME-WAIT state, otherwise ignore
1900 * the segment.
1901 */
1902 case TCPS_CLOSING:
1903 if (ourfinisacked) {
1904 tp->t_state = TCPS_TIME_WAIT;
1905 tcp_canceltimers(tp);
1906 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
1907 soisdisconnected(so);
1908 }
1909 break;
1910
1911 /*
1912 * In LAST_ACK, we may still be waiting for data to drain
1913 * and/or to be acked, as well as for the ack of our FIN.
1914 * If our FIN is now acknowledged, delete the TCB,
1915 * enter the closed state and return.
1916 */
1917 case TCPS_LAST_ACK:
1918 if (ourfinisacked) {
1919 tp = tcp_close(tp);
1920 goto drop;
1921 }
1922 break;
1923
1924 /*
1925 * In TIME_WAIT state the only thing that should arrive
1926 * is a retransmission of the remote FIN. Acknowledge
1927 * it and restart the finack timer.
1928 */
1929 case TCPS_TIME_WAIT:
1930 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
1931 goto dropafterack;
1932 }
1933 }
1934
1935 step6:
1936 /*
1937 * Update window information.
1938 * Don't look at window if no ACK: TAC's send garbage on first SYN.
1939 */
1940 if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
1941 (tp->snd_wl1 == th->th_seq && SEQ_LT(tp->snd_wl2, th->th_ack)) ||
1942 (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))) {
1943 /* keep track of pure window updates */
1944 if (tlen == 0 &&
1945 tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
1946 tcpstat.tcps_rcvwinupd++;
1947 tp->snd_wnd = tiwin;
1948 tp->snd_wl1 = th->th_seq;
1949 tp->snd_wl2 = th->th_ack;
1950 if (tp->snd_wnd > tp->max_sndwnd)
1951 tp->max_sndwnd = tp->snd_wnd;
1952 needoutput = 1;
1953 }
1954
1955 /*
1956 * Process segments with URG.
1957 */
1958 if ((tiflags & TH_URG) && th->th_urp &&
1959 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1960 /*
1961 * This is a kludge, but if we receive and accept
1962 * random urgent pointers, we'll crash in
1963 * soreceive. It's hard to imagine someone
1964 * actually wanting to send this much urgent data.
1965 */
1966 if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
1967 th->th_urp = 0; /* XXX */
1968 tiflags &= ~TH_URG; /* XXX */
1969 goto dodata; /* XXX */
1970 }
1971 /*
1972 * If this segment advances the known urgent pointer,
1973 * then mark the data stream. This should not happen
1974 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
1975 * a FIN has been received from the remote side.
1976 * In these states we ignore the URG.
1977 *
1978 * According to RFC961 (Assigned Protocols),
1979 * the urgent pointer points to the last octet
1980 * of urgent data. We continue, however,
1981 * to consider it to indicate the first octet
1982 * of data past the urgent section as the original
1983 * spec states (in one of two places).
1984 */
1985 if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
1986 tp->rcv_up = th->th_seq + th->th_urp;
1987 so->so_oobmark = so->so_rcv.sb_cc +
1988 (tp->rcv_up - tp->rcv_nxt) - 1;
1989 if (so->so_oobmark == 0)
1990 so->so_state |= SS_RCVATMARK;
1991 sohasoutofband(so);
1992 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
1993 }
1994 /*
1995 * Remove out of band data so doesn't get presented to user.
1996 * This can happen independent of advancing the URG pointer,
1997 * but if two URG's are pending at once, some out-of-band
1998 * data may creep in... ick.
1999 */
2000 if (th->th_urp <= (u_int16_t) tlen
2001 #ifdef SO_OOBINLINE
2002 && (so->so_options & SO_OOBINLINE) == 0
2003 #endif
2004 )
2005 tcp_pulloutofband(so, th, m, hdroptlen);
2006 } else
2007 /*
2008 * If no out of band data is expected,
2009 * pull receive urgent pointer along
2010 * with the receive window.
2011 */
2012 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2013 tp->rcv_up = tp->rcv_nxt;
2014 dodata: /* XXX */
2015
2016 /*
2017 * Process the segment text, merging it into the TCP sequencing queue,
2018 * and arranging for acknowledgement of receipt if necessary.
2019 * This process logically involves adjusting tp->rcv_wnd as data
2020 * is presented to the user (this happens in tcp_usrreq.c,
2021 * case PRU_RCVD). If a FIN has already been received on this
2022 * connection then we just ignore the text.
2023 */
2024 if ((tlen || (tiflags & TH_FIN)) &&
2025 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2026 /*
2027 * Insert segment ti into reassembly queue of tcp with
2028 * control block tp. Return TH_FIN if reassembly now includes
2029 * a segment with FIN. The macro form does the common case
2030 * inline (segment is the next to be received on an
2031 * established connection, and the queue is empty),
2032 * avoiding linkage into and removal from the queue and
2033 * repetition of various conversions.
2034 * Set DELACK for segments received in order, but ack
2035 * immediately when segments are out of order
2036 * (so fast retransmit can work).
2037 */
2038 /* NOTE: this was TCP_REASS() macro, but used only once */
2039 TCP_REASS_LOCK(tp);
2040 if (th->th_seq == tp->rcv_nxt &&
2041 tp->segq.lh_first == NULL &&
2042 tp->t_state == TCPS_ESTABLISHED) {
2043 TCP_SETUP_ACK(tp, th);
2044 tp->rcv_nxt += tlen;
2045 tiflags = th->th_flags & TH_FIN;
2046 tcpstat.tcps_rcvpack++;
2047 tcpstat.tcps_rcvbyte += tlen;
2048 ND6_HINT(tp);
2049 m_adj(m, hdroptlen);
2050 sbappend(&(so)->so_rcv, m);
2051 sorwakeup(so);
2052 } else {
2053 m_adj(m, hdroptlen);
2054 tiflags = tcp_reass(tp, th, m, &tlen);
2055 tp->t_flags |= TF_ACKNOW;
2056 }
2057 TCP_REASS_UNLOCK(tp);
2058
2059 /*
2060 * Note the amount of data that peer has sent into
2061 * our window, in order to estimate the sender's
2062 * buffer size.
2063 */
2064 len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2065 } else {
2066 m_freem(m);
2067 m = NULL;
2068 tiflags &= ~TH_FIN;
2069 }
2070
2071 /*
2072 * If FIN is received ACK the FIN and let the user know
2073 * that the connection is closing. Ignore a FIN received before
2074 * the connection is fully established.
2075 */
2076 if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2077 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2078 socantrcvmore(so);
2079 tp->t_flags |= TF_ACKNOW;
2080 tp->rcv_nxt++;
2081 }
2082 switch (tp->t_state) {
2083
2084 /*
2085 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2086 */
2087 case TCPS_ESTABLISHED:
2088 tp->t_state = TCPS_CLOSE_WAIT;
2089 break;
2090
2091 /*
2092 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2093 * enter the CLOSING state.
2094 */
2095 case TCPS_FIN_WAIT_1:
2096 tp->t_state = TCPS_CLOSING;
2097 break;
2098
2099 /*
2100 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2101 * starting the time-wait timer, turning off the other
2102 * standard timers.
2103 */
2104 case TCPS_FIN_WAIT_2:
2105 tp->t_state = TCPS_TIME_WAIT;
2106 tcp_canceltimers(tp);
2107 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2108 soisdisconnected(so);
2109 break;
2110
2111 /*
2112 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2113 */
2114 case TCPS_TIME_WAIT:
2115 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2116 break;
2117 }
2118 }
2119 if (so->so_options & SO_DEBUG) {
2120 tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
2121 }
2122
2123 /*
2124 * Return any desired output.
2125 */
2126 if (needoutput || (tp->t_flags & TF_ACKNOW))
2127 (void) tcp_output(tp);
2128 if (tcp_saveti)
2129 m_freem(tcp_saveti);
2130 return;
2131
2132 badsyn:
2133 /*
2134 * Received a bad SYN. Increment counters and dropwithreset.
2135 */
2136 tcpstat.tcps_badsyn++;
2137 tp = NULL;
2138 goto dropwithreset;
2139
2140 dropafterack:
2141 /*
2142 * Generate an ACK dropping incoming segment if it occupies
2143 * sequence space, where the ACK reflects our state.
2144 */
2145 if (tiflags & TH_RST)
2146 goto drop;
2147 m_freem(m);
2148 tp->t_flags |= TF_ACKNOW;
2149 (void) tcp_output(tp);
2150 if (tcp_saveti)
2151 m_freem(tcp_saveti);
2152 return;
2153
2154 dropwithreset_ratelim:
2155 /*
2156 * We may want to rate-limit RSTs in certain situations,
2157 * particularly if we are sending an RST in response to
2158 * an attempt to connect to or otherwise communicate with
2159 * a port for which we have no socket.
2160 */
2161 if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
2162 tcp_rst_ppslim) == 0) {
2163 /* XXX stat */
2164 goto drop;
2165 }
2166 /* ...fall into dropwithreset... */
2167
2168 dropwithreset:
2169 /*
2170 * Generate a RST, dropping incoming segment.
2171 * Make ACK acceptable to originator of segment.
2172 */
2173 if (tiflags & TH_RST)
2174 goto drop;
2175 {
2176 /*
2177 * need to recover version # field, which was overwritten on
2178 * ip_cksum computation.
2179 */
2180 struct ip *sip;
2181 sip = mtod(m, struct ip *);
2182 switch (af) {
2183 #ifdef INET
2184 case AF_INET:
2185 sip->ip_v = 4;
2186 break;
2187 #endif
2188 #ifdef INET6
2189 case AF_INET6:
2190 sip->ip_v = 6;
2191 break;
2192 #endif
2193 }
2194 }
2195 if (tiflags & TH_ACK)
2196 (void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
2197 else {
2198 if (tiflags & TH_SYN)
2199 tlen++;
2200 (void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
2201 TH_RST|TH_ACK);
2202 }
2203 if (tcp_saveti)
2204 m_freem(tcp_saveti);
2205 return;
2206
2207 drop:
2208 /*
2209 * Drop space held by incoming segment and return.
2210 */
2211 if (tp) {
2212 if (tp->t_inpcb)
2213 so = tp->t_inpcb->inp_socket;
2214 #ifdef INET6
2215 else if (tp->t_in6pcb)
2216 so = tp->t_in6pcb->in6p_socket;
2217 #endif
2218 else
2219 so = NULL;
2220 if (so && (so->so_options & SO_DEBUG) != 0)
2221 tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
2222 }
2223 if (tcp_saveti)
2224 m_freem(tcp_saveti);
2225 m_freem(m);
2226 return;
2227 }
2228
2229 void
2230 tcp_dooptions(tp, cp, cnt, th, oi)
2231 struct tcpcb *tp;
2232 u_char *cp;
2233 int cnt;
2234 struct tcphdr *th;
2235 struct tcp_opt_info *oi;
2236 {
2237 u_int16_t mss;
2238 int opt, optlen;
2239
2240 for (; cnt > 0; cnt -= optlen, cp += optlen) {
2241 opt = cp[0];
2242 if (opt == TCPOPT_EOL)
2243 break;
2244 if (opt == TCPOPT_NOP)
2245 optlen = 1;
2246 else {
2247 if (cnt < 2)
2248 break;
2249 optlen = cp[1];
2250 if (optlen < 2 || optlen > cnt)
2251 break;
2252 }
2253 switch (opt) {
2254
2255 default:
2256 continue;
2257
2258 case TCPOPT_MAXSEG:
2259 if (optlen != TCPOLEN_MAXSEG)
2260 continue;
2261 if (!(th->th_flags & TH_SYN))
2262 continue;
2263 bcopy(cp + 2, &mss, sizeof(mss));
2264 oi->maxseg = ntohs(mss);
2265 break;
2266
2267 case TCPOPT_WINDOW:
2268 if (optlen != TCPOLEN_WINDOW)
2269 continue;
2270 if (!(th->th_flags & TH_SYN))
2271 continue;
2272 tp->t_flags |= TF_RCVD_SCALE;
2273 tp->requested_s_scale = cp[2];
2274 if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
2275 #if 0 /*XXX*/
2276 char *p;
2277
2278 if (ip)
2279 p = ntohl(ip->ip_src);
2280 #ifdef INET6
2281 else if (ip6)
2282 p = ip6_sprintf(&ip6->ip6_src);
2283 #endif
2284 else
2285 p = "(unknown)";
2286 log(LOG_ERR, "TCP: invalid wscale %d from %s, "
2287 "assuming %d\n",
2288 tp->requested_s_scale, p,
2289 TCP_MAX_WINSHIFT);
2290 #else
2291 log(LOG_ERR, "TCP: invalid wscale %d, "
2292 "assuming %d\n",
2293 tp->requested_s_scale,
2294 TCP_MAX_WINSHIFT);
2295 #endif
2296 tp->requested_s_scale = TCP_MAX_WINSHIFT;
2297 }
2298 break;
2299
2300 case TCPOPT_TIMESTAMP:
2301 if (optlen != TCPOLEN_TIMESTAMP)
2302 continue;
2303 oi->ts_present = 1;
2304 bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
2305 NTOHL(oi->ts_val);
2306 bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
2307 NTOHL(oi->ts_ecr);
2308
2309 /*
2310 * A timestamp received in a SYN makes
2311 * it ok to send timestamp requests and replies.
2312 */
2313 if (th->th_flags & TH_SYN) {
2314 tp->t_flags |= TF_RCVD_TSTMP;
2315 tp->ts_recent = oi->ts_val;
2316 tp->ts_recent_age = TCP_TIMESTAMP(tp);
2317 }
2318 break;
2319 case TCPOPT_SACK_PERMITTED:
2320 if (optlen != TCPOLEN_SACK_PERMITTED)
2321 continue;
2322 if (!(th->th_flags & TH_SYN))
2323 continue;
2324 tp->t_flags &= ~TF_CANT_TXSACK;
2325 break;
2326
2327 case TCPOPT_SACK:
2328 if (tp->t_flags & TF_IGNR_RXSACK)
2329 continue;
2330 if (optlen % 8 != 2 || optlen < 10)
2331 continue;
2332 cp += 2;
2333 optlen -= 2;
2334 for (; optlen > 0; cp -= 8, optlen -= 8) {
2335 tcp_seq lwe, rwe;
2336 bcopy((char *)cp, (char *) &lwe, sizeof(lwe));
2337 NTOHL(lwe);
2338 bcopy((char *)cp, (char *) &rwe, sizeof(rwe));
2339 NTOHL(rwe);
2340 /* tcp_mark_sacked(tp, lwe, rwe); */
2341 }
2342 break;
2343 }
2344 }
2345 }
2346
2347 /*
2348 * Pull out of band byte out of a segment so
2349 * it doesn't appear in the user's data queue.
2350 * It is still reflected in the segment length for
2351 * sequencing purposes.
2352 */
2353 void
2354 tcp_pulloutofband(so, th, m, off)
2355 struct socket *so;
2356 struct tcphdr *th;
2357 struct mbuf *m;
2358 int off;
2359 {
2360 int cnt = off + th->th_urp - 1;
2361
2362 while (cnt >= 0) {
2363 if (m->m_len > cnt) {
2364 char *cp = mtod(m, caddr_t) + cnt;
2365 struct tcpcb *tp = sototcpcb(so);
2366
2367 tp->t_iobc = *cp;
2368 tp->t_oobflags |= TCPOOB_HAVEDATA;
2369 bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
2370 m->m_len--;
2371 return;
2372 }
2373 cnt -= m->m_len;
2374 m = m->m_next;
2375 if (m == 0)
2376 break;
2377 }
2378 panic("tcp_pulloutofband");
2379 }
2380
2381 /*
2382 * Collect new round-trip time estimate
2383 * and update averages and current timeout.
2384 */
2385 void
2386 tcp_xmit_timer(tp, rtt)
2387 struct tcpcb *tp;
2388 short rtt;
2389 {
2390 short delta;
2391 short rttmin;
2392
2393 tcpstat.tcps_rttupdated++;
2394 --rtt;
2395 if (tp->t_srtt != 0) {
2396 /*
2397 * srtt is stored as fixed point with 3 bits after the
2398 * binary point (i.e., scaled by 8). The following magic
2399 * is equivalent to the smoothing algorithm in rfc793 with
2400 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2401 * point). Adjust rtt to origin 0.
2402 */
2403 delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
2404 if ((tp->t_srtt += delta) <= 0)
2405 tp->t_srtt = 1 << 2;
2406 /*
2407 * We accumulate a smoothed rtt variance (actually, a
2408 * smoothed mean difference), then set the retransmit
2409 * timer to smoothed rtt + 4 times the smoothed variance.
2410 * rttvar is stored as fixed point with 2 bits after the
2411 * binary point (scaled by 4). The following is
2412 * equivalent to rfc793 smoothing with an alpha of .75
2413 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces
2414 * rfc793's wired-in beta.
2415 */
2416 if (delta < 0)
2417 delta = -delta;
2418 delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
2419 if ((tp->t_rttvar += delta) <= 0)
2420 tp->t_rttvar = 1 << 2;
2421 } else {
2422 /*
2423 * No rtt measurement yet - use the unsmoothed rtt.
2424 * Set the variance to half the rtt (so our first
2425 * retransmit happens at 3*rtt).
2426 */
2427 tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
2428 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
2429 }
2430 tp->t_rtt = 0;
2431 tp->t_rxtshift = 0;
2432
2433 /*
2434 * the retransmit should happen at rtt + 4 * rttvar.
2435 * Because of the way we do the smoothing, srtt and rttvar
2436 * will each average +1/2 tick of bias. When we compute
2437 * the retransmit timer, we want 1/2 tick of rounding and
2438 * 1 extra tick because of +-1/2 tick uncertainty in the
2439 * firing of the timer. The bias will give us exactly the
2440 * 1.5 tick we need. But, because the bias is
2441 * statistical, we have to test that we don't drop below
2442 * the minimum feasible timer (which is 2 ticks).
2443 */
2444 if (tp->t_rttmin > rtt + 2)
2445 rttmin = tp->t_rttmin;
2446 else
2447 rttmin = rtt + 2;
2448 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp), rttmin, TCPTV_REXMTMAX);
2449
2450 /*
2451 * We received an ack for a packet that wasn't retransmitted;
2452 * it is probably safe to discard any error indications we've
2453 * received recently. This isn't quite right, but close enough
2454 * for now (a route might have failed after we sent a segment,
2455 * and the return path might not be symmetrical).
2456 */
2457 tp->t_softerror = 0;
2458 }
2459
2460 /*
2461 * Checks for partial ack. If partial ack arrives, force the retransmission
2462 * of the next unacknowledged segment, do not clear tp->t_dupacks, and return
2463 * 1. By setting snd_nxt to th_ack, this forces retransmission timer to
2464 * be started again. If the ack advances at least to tp->snd_recover, return 0.
2465 */
2466 int
2467 tcp_newreno(tp, th)
2468 struct tcpcb *tp;
2469 struct tcphdr *th;
2470 {
2471 tcp_seq onxt = tp->snd_nxt;
2472 u_long ocwnd = tp->snd_cwnd;
2473
2474 if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2475 /*
2476 * snd_una has not yet been updated and the socket's send
2477 * buffer has not yet drained off the ACK'd data, so we
2478 * have to leave snd_una as it was to get the correct data
2479 * offset in tcp_output().
2480 */
2481 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2482 tp->t_rtt = 0;
2483 tp->snd_nxt = th->th_ack;
2484 /*
2485 * Set snd_cwnd to one segment beyond ACK'd offset. snd_una
2486 * is not yet updated when we're called.
2487 */
2488 tp->snd_cwnd = tp->t_segsz + (th->th_ack - tp->snd_una);
2489 (void) tcp_output(tp);
2490 tp->snd_cwnd = ocwnd;
2491 if (SEQ_GT(onxt, tp->snd_nxt))
2492 tp->snd_nxt = onxt;
2493 /*
2494 * Partial window deflation. Relies on fact that tp->snd_una
2495 * not updated yet.
2496 */
2497 tp->snd_cwnd -= (th->th_ack - tp->snd_una - tp->t_segsz);
2498 return 1;
2499 }
2500 return 0;
2501 }
2502
2503
2504 /*
2505 * TCP compressed state engine. Currently used to hold compressed
2506 * state for SYN_RECEIVED.
2507 */
2508
2509 u_long syn_cache_count;
2510 u_int32_t syn_hash1, syn_hash2;
2511
2512 #define SYN_HASH(sa, sp, dp) \
2513 ((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
2514 ((u_int32_t)(sp)))^syn_hash2)))
2515 #ifndef INET6
2516 #define SYN_HASHALL(hash, src, dst) \
2517 do { \
2518 hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
2519 ((struct sockaddr_in *)(src))->sin_port, \
2520 ((struct sockaddr_in *)(dst))->sin_port); \
2521 } while (0)
2522 #else
2523 #define SYN_HASH6(sa, sp, dp) \
2524 ((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
2525 (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
2526 & 0x7fffffff)
2527
2528 #define SYN_HASHALL(hash, src, dst) \
2529 do { \
2530 switch ((src)->sa_family) { \
2531 case AF_INET: \
2532 hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
2533 ((struct sockaddr_in *)(src))->sin_port, \
2534 ((struct sockaddr_in *)(dst))->sin_port); \
2535 break; \
2536 case AF_INET6: \
2537 hash = SYN_HASH6(&((struct sockaddr_in6 *)(src))->sin6_addr, \
2538 ((struct sockaddr_in6 *)(src))->sin6_port, \
2539 ((struct sockaddr_in6 *)(dst))->sin6_port); \
2540 break; \
2541 default: \
2542 hash = 0; \
2543 } \
2544 } while (0)
2545 #endif /* INET6 */
2546
2547 #define SYN_CACHE_RM(sc) \
2548 do { \
2549 LIST_REMOVE((sc), sc_bucketq); \
2550 (sc)->sc_tp = NULL; \
2551 LIST_REMOVE((sc), sc_tpq); \
2552 tcp_syn_cache[(sc)->sc_bucketidx].sch_length--; \
2553 TAILQ_REMOVE(&tcp_syn_cache_timeq[(sc)->sc_rxtshift], (sc), sc_timeq); \
2554 syn_cache_count--; \
2555 } while (0)
2556
2557 #define SYN_CACHE_PUT(sc) \
2558 do { \
2559 if ((sc)->sc_ipopts) \
2560 (void) m_free((sc)->sc_ipopts); \
2561 if ((sc)->sc_route4.ro_rt != NULL) \
2562 RTFREE((sc)->sc_route4.ro_rt); \
2563 pool_put(&syn_cache_pool, (sc)); \
2564 } while (0)
2565
2566 struct pool syn_cache_pool;
2567
2568 /*
2569 * We don't estimate RTT with SYNs, so each packet starts with the default
2570 * RTT and each timer queue has a fixed timeout value. This allows us to
2571 * optimize the timer queues somewhat.
2572 */
2573 #define SYN_CACHE_TIMER_ARM(sc) \
2574 do { \
2575 TCPT_RANGESET((sc)->sc_rxtcur, \
2576 TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN, \
2577 TCPTV_REXMTMAX); \
2578 PRT_SLOW_ARM((sc)->sc_rexmt, (sc)->sc_rxtcur); \
2579 } while (0)
2580
2581 TAILQ_HEAD(, syn_cache) tcp_syn_cache_timeq[TCP_MAXRXTSHIFT + 1];
2582
2583 #define SYN_CACHE_TIMESTAMP(sc) (tcp_now - (sc)->sc_timebase)
2584
2585 void
2586 syn_cache_init()
2587 {
2588 int i;
2589
2590 /* Initialize the hash buckets. */
2591 for (i = 0; i < tcp_syn_cache_size; i++)
2592 LIST_INIT(&tcp_syn_cache[i].sch_bucket);
2593
2594 /* Initialize the timer queues. */
2595 for (i = 0; i <= TCP_MAXRXTSHIFT; i++)
2596 TAILQ_INIT(&tcp_syn_cache_timeq[i]);
2597
2598 /* Initialize the syn cache pool. */
2599 pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
2600 "synpl", 0, NULL, NULL, M_PCB);
2601 }
2602
2603 void
2604 syn_cache_insert(sc, tp)
2605 struct syn_cache *sc;
2606 struct tcpcb *tp;
2607 {
2608 struct syn_cache_head *scp;
2609 struct syn_cache *sc2;
2610 int s, i;
2611
2612 /*
2613 * If there are no entries in the hash table, reinitialize
2614 * the hash secrets.
2615 */
2616 if (syn_cache_count == 0) {
2617 struct timeval tv;
2618 microtime(&tv);
2619 syn_hash1 = random() ^ (u_long)≻
2620 syn_hash2 = random() ^ tv.tv_usec;
2621 }
2622
2623 SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
2624 sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
2625 scp = &tcp_syn_cache[sc->sc_bucketidx];
2626
2627 /*
2628 * Make sure that we don't overflow the per-bucket
2629 * limit or the total cache size limit.
2630 */
2631 s = splsoftnet();
2632 if (scp->sch_length >= tcp_syn_bucket_limit) {
2633 tcpstat.tcps_sc_bucketoverflow++;
2634 /*
2635 * The bucket is full. Toss the oldest element in the
2636 * bucket. This will be the entry with our bucket
2637 * index closest to the front of the timer queue with
2638 * the largest timeout value.
2639 *
2640 * Note: This timer queue traversal may be expensive, so
2641 * we hope that this doesn't happen very often. It is
2642 * much more likely that we'll overflow the entire
2643 * cache, which is much easier to handle; see below.
2644 */
2645 for (i = TCP_MAXRXTSHIFT; i >= 0; i--) {
2646 for (sc2 = TAILQ_FIRST(&tcp_syn_cache_timeq[i]);
2647 sc2 != NULL;
2648 sc2 = TAILQ_NEXT(sc2, sc_timeq)) {
2649 if (sc2->sc_bucketidx == sc->sc_bucketidx) {
2650 SYN_CACHE_RM(sc2);
2651 SYN_CACHE_PUT(sc2);
2652 goto insert; /* 2 level break */
2653 }
2654 }
2655 }
2656 #ifdef DIAGNOSTIC
2657 /*
2658 * This should never happen; we should always find an
2659 * entry in our bucket.
2660 */
2661 panic("syn_cache_insert: bucketoverflow: impossible");
2662 #endif
2663 } else if (syn_cache_count >= tcp_syn_cache_limit) {
2664 tcpstat.tcps_sc_overflowed++;
2665 /*
2666 * The cache is full. Toss the oldest entry in the
2667 * entire cache. This is the front entry in the
2668 * first non-empty timer queue with the largest
2669 * timeout value.
2670 */
2671 for (i = TCP_MAXRXTSHIFT; i >= 0; i--) {
2672 sc2 = TAILQ_FIRST(&tcp_syn_cache_timeq[i]);
2673 if (sc2 == NULL)
2674 continue;
2675 SYN_CACHE_RM(sc2);
2676 SYN_CACHE_PUT(sc2);
2677 goto insert; /* symmetry with above */
2678 }
2679 #ifdef DIAGNOSTIC
2680 /*
2681 * This should never happen; we should always find an
2682 * entry in the cache.
2683 */
2684 panic("syn_cache_insert: cache overflow: impossible");
2685 #endif
2686 }
2687
2688 insert:
2689 /*
2690 * Initialize the entry's timer.
2691 */
2692 sc->sc_rxttot = 0;
2693 sc->sc_rxtshift = 0;
2694 SYN_CACHE_TIMER_ARM(sc);
2695 TAILQ_INSERT_TAIL(&tcp_syn_cache_timeq[sc->sc_rxtshift], sc, sc_timeq);
2696
2697 /* Link it from tcpcb entry */
2698 LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
2699
2700 /* Put it into the bucket. */
2701 LIST_INSERT_HEAD(&scp->sch_bucket, sc, sc_bucketq);
2702 scp->sch_length++;
2703 syn_cache_count++;
2704
2705 tcpstat.tcps_sc_added++;
2706 splx(s);
2707 }
2708
2709 /*
2710 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
2711 * If we have retransmitted an entry the maximum number of times, expire
2712 * that entry.
2713 */
2714 void
2715 syn_cache_timer()
2716 {
2717 struct syn_cache *sc, *nsc;
2718 int i, s;
2719
2720 s = splsoftnet();
2721
2722 /*
2723 * First, get all the entries that need to be retransmitted, or
2724 * must be expired due to exceeding the initial keepalive time.
2725 */
2726 for (i = 0; i < TCP_MAXRXTSHIFT; i++) {
2727 for (sc = TAILQ_FIRST(&tcp_syn_cache_timeq[i]);
2728 sc != NULL && PRT_SLOW_ISEXPIRED(sc->sc_rexmt);
2729 sc = nsc) {
2730 nsc = TAILQ_NEXT(sc, sc_timeq);
2731
2732 /*
2733 * Compute the total amount of time this entry has
2734 * been on a queue. If this entry has been on longer
2735 * than the keep alive timer would allow, expire it.
2736 */
2737 sc->sc_rxttot += sc->sc_rxtcur;
2738 if (sc->sc_rxttot >= TCPTV_KEEP_INIT) {
2739 tcpstat.tcps_sc_timed_out++;
2740 SYN_CACHE_RM(sc);
2741 SYN_CACHE_PUT(sc);
2742 continue;
2743 }
2744
2745 tcpstat.tcps_sc_retransmitted++;
2746 (void) syn_cache_respond(sc, NULL);
2747
2748 /* Advance this entry onto the next timer queue. */
2749 TAILQ_REMOVE(&tcp_syn_cache_timeq[i], sc, sc_timeq);
2750 sc->sc_rxtshift = i + 1;
2751 SYN_CACHE_TIMER_ARM(sc);
2752 TAILQ_INSERT_TAIL(&tcp_syn_cache_timeq[sc->sc_rxtshift],
2753 sc, sc_timeq);
2754 }
2755 }
2756
2757 /*
2758 * Now get all the entries that are expired due to too many
2759 * retransmissions.
2760 */
2761 for (sc = TAILQ_FIRST(&tcp_syn_cache_timeq[TCP_MAXRXTSHIFT]);
2762 sc != NULL && PRT_SLOW_ISEXPIRED(sc->sc_rexmt);
2763 sc = nsc) {
2764 nsc = TAILQ_NEXT(sc, sc_timeq);
2765 tcpstat.tcps_sc_timed_out++;
2766 SYN_CACHE_RM(sc);
2767 SYN_CACHE_PUT(sc);
2768 }
2769 splx(s);
2770 }
2771
2772 /*
2773 * Remove syn cache created by the specified tcb entry,
2774 * because this does not make sense to keep them
2775 * (if there's no tcb entry, syn cache entry will never be used)
2776 */
2777 void
2778 syn_cache_cleanup(tp)
2779 struct tcpcb *tp;
2780 {
2781 struct syn_cache *sc, *nsc;
2782 int s;
2783
2784 s = splsoftnet();
2785
2786 for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
2787 nsc = LIST_NEXT(sc, sc_tpq);
2788
2789 #ifdef DIAGNOSTIC
2790 if (sc->sc_tp != tp)
2791 panic("invalid sc_tp in syn_cache_cleanup");
2792 #endif
2793 SYN_CACHE_RM(sc);
2794 SYN_CACHE_PUT(sc);
2795 }
2796 /* just for safety */
2797 LIST_INIT(&tp->t_sc);
2798
2799 splx(s);
2800 }
2801
2802 /*
2803 * Find an entry in the syn cache.
2804 */
2805 struct syn_cache *
2806 syn_cache_lookup(src, dst, headp)
2807 struct sockaddr *src;
2808 struct sockaddr *dst;
2809 struct syn_cache_head **headp;
2810 {
2811 struct syn_cache *sc;
2812 struct syn_cache_head *scp;
2813 u_int32_t hash;
2814 int s;
2815
2816 SYN_HASHALL(hash, src, dst);
2817
2818 scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
2819 *headp = scp;
2820 s = splsoftnet();
2821 for (sc = LIST_FIRST(&scp->sch_bucket); sc != NULL;
2822 sc = LIST_NEXT(sc, sc_bucketq)) {
2823 if (sc->sc_hash != hash)
2824 continue;
2825 if (!bcmp(&sc->sc_src, src, src->sa_len) &&
2826 !bcmp(&sc->sc_dst, dst, dst->sa_len)) {
2827 splx(s);
2828 return (sc);
2829 }
2830 }
2831 splx(s);
2832 return (NULL);
2833 }
2834
2835 /*
2836 * This function gets called when we receive an ACK for a
2837 * socket in the LISTEN state. We look up the connection
2838 * in the syn cache, and if its there, we pull it out of
2839 * the cache and turn it into a full-blown connection in
2840 * the SYN-RECEIVED state.
2841 *
2842 * The return values may not be immediately obvious, and their effects
2843 * can be subtle, so here they are:
2844 *
2845 * NULL SYN was not found in cache; caller should drop the
2846 * packet and send an RST.
2847 *
2848 * -1 We were unable to create the new connection, and are
2849 * aborting it. An ACK,RST is being sent to the peer
2850 * (unless we got screwey sequence numbners; see below),
2851 * because the 3-way handshake has been completed. Caller
2852 * should not free the mbuf, since we may be using it. If
2853 * we are not, we will free it.
2854 *
2855 * Otherwise, the return value is a pointer to the new socket
2856 * associated with the connection.
2857 */
2858 struct socket *
2859 syn_cache_get(src, dst, th, hlen, tlen, so, m)
2860 struct sockaddr *src;
2861 struct sockaddr *dst;
2862 struct tcphdr *th;
2863 unsigned int hlen, tlen;
2864 struct socket *so;
2865 struct mbuf *m;
2866 {
2867 struct syn_cache *sc;
2868 struct syn_cache_head *scp;
2869 struct inpcb *inp = NULL;
2870 #ifdef INET6
2871 struct in6pcb *in6p = NULL;
2872 #endif
2873 struct tcpcb *tp = 0;
2874 struct mbuf *am;
2875 int s;
2876 struct socket *oso;
2877
2878 s = splsoftnet();
2879 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
2880 splx(s);
2881 return (NULL);
2882 }
2883
2884 /*
2885 * Verify the sequence and ack numbers. Try getting the correct
2886 * response again.
2887 */
2888 if ((th->th_ack != sc->sc_iss + 1) ||
2889 SEQ_LEQ(th->th_seq, sc->sc_irs) ||
2890 SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
2891 (void) syn_cache_respond(sc, m);
2892 splx(s);
2893 return ((struct socket *)(-1));
2894 }
2895
2896 /* Remove this cache entry */
2897 SYN_CACHE_RM(sc);
2898 splx(s);
2899
2900 /*
2901 * Ok, create the full blown connection, and set things up
2902 * as they would have been set up if we had created the
2903 * connection when the SYN arrived. If we can't create
2904 * the connection, abort it.
2905 */
2906 /*
2907 * inp still has the OLD in_pcb stuff, set the
2908 * v6-related flags on the new guy, too. This is
2909 * done particularly for the case where an AF_INET6
2910 * socket is bound only to a port, and a v4 connection
2911 * comes in on that port.
2912 * we also copy the flowinfo from the original pcb
2913 * to the new one.
2914 */
2915 {
2916 struct inpcb *parentinpcb;
2917
2918 parentinpcb = (struct inpcb *)so->so_pcb;
2919
2920 oso = so;
2921 so = sonewconn(so, SS_ISCONNECTED);
2922 if (so == NULL)
2923 goto resetandabort;
2924
2925 switch (so->so_proto->pr_domain->dom_family) {
2926 #ifdef INET
2927 case AF_INET:
2928 inp = sotoinpcb(so);
2929 break;
2930 #endif
2931 #ifdef INET6
2932 case AF_INET6:
2933 in6p = sotoin6pcb(so);
2934 break;
2935 #endif
2936 }
2937 }
2938 switch (src->sa_family) {
2939 #ifdef INET
2940 case AF_INET:
2941 if (inp) {
2942 inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
2943 inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
2944 inp->inp_options = ip_srcroute();
2945 in_pcbstate(inp, INP_BOUND);
2946 if (inp->inp_options == NULL) {
2947 inp->inp_options = sc->sc_ipopts;
2948 sc->sc_ipopts = NULL;
2949 }
2950 }
2951 #ifdef INET6
2952 else if (in6p) {
2953 /* IPv4 packet to AF_INET6 socket */
2954 bzero(&in6p->in6p_laddr, sizeof(in6p->in6p_laddr));
2955 in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
2956 bcopy(&((struct sockaddr_in *)dst)->sin_addr,
2957 &in6p->in6p_laddr.s6_addr32[3],
2958 sizeof(((struct sockaddr_in *)dst)->sin_addr));
2959 in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
2960 in6totcpcb(in6p)->t_family = AF_INET;
2961 }
2962 #endif
2963 break;
2964 #endif
2965 #ifdef INET6
2966 case AF_INET6:
2967 if (in6p) {
2968 in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
2969 in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
2970 #if 0
2971 in6p->in6p_flowinfo = ip6->ip6_flow & IPV6_FLOWINFO_MASK;
2972 /*inp->inp_options = ip6_srcroute();*/ /* soon. */
2973 #endif
2974 }
2975 break;
2976 #endif
2977 }
2978 #ifdef INET6
2979 if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
2980 struct in6pcb *oin6p = sotoin6pcb(oso);
2981 /* inherit socket options from the listening socket */
2982 in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
2983 if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
2984 m_freem(in6p->in6p_options);
2985 in6p->in6p_options = 0;
2986 }
2987 ip6_savecontrol(in6p, &in6p->in6p_options,
2988 mtod(m, struct ip6_hdr *), m);
2989 }
2990 #endif
2991
2992 #ifdef IPSEC
2993 /*
2994 * we make a copy of policy, instead of sharing the policy,
2995 * for better behavior in terms of SA lookup and dead SA removal.
2996 */
2997 if (inp) {
2998 /* copy old policy into new socket's */
2999 if (ipsec_copy_policy(sotoinpcb(oso)->inp_sp, inp->inp_sp))
3000 printf("tcp_input: could not copy policy\n");
3001 }
3002 #ifdef INET6
3003 else if (in6p) {
3004 /* copy old policy into new socket's */
3005 if (ipsec_copy_policy(sotoin6pcb(oso)->in6p_sp, in6p->in6p_sp))
3006 printf("tcp_input: could not copy policy\n");
3007 }
3008 #endif
3009 #endif
3010
3011 /*
3012 * Give the new socket our cached route reference.
3013 */
3014 if (inp)
3015 inp->inp_route = sc->sc_route4; /* struct assignment */
3016 #ifdef INET6
3017 else
3018 in6p->in6p_route = sc->sc_route6;
3019 #endif
3020 sc->sc_route4.ro_rt = NULL;
3021
3022 am = m_get(M_DONTWAIT, MT_SONAME); /* XXX */
3023 if (am == NULL)
3024 goto resetandabort;
3025 am->m_len = src->sa_len;
3026 bcopy(src, mtod(am, caddr_t), src->sa_len);
3027 if (inp) {
3028 if (in_pcbconnect(inp, am)) {
3029 (void) m_free(am);
3030 goto resetandabort;
3031 }
3032 }
3033 #ifdef INET6
3034 else if (in6p) {
3035 if (src->sa_family == AF_INET) {
3036 /* IPv4 packet to AF_INET6 socket */
3037 struct sockaddr_in6 *sin6;
3038 sin6 = mtod(am, struct sockaddr_in6 *);
3039 am->m_len = sizeof(*sin6);
3040 bzero(sin6, sizeof(*sin6));
3041 sin6->sin6_family = AF_INET6;
3042 sin6->sin6_len = sizeof(*sin6);
3043 sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port;
3044 sin6->sin6_addr.s6_addr16[5] = htons(0xffff);
3045 bcopy(&((struct sockaddr_in *)src)->sin_addr,
3046 &sin6->sin6_addr.s6_addr32[3],
3047 sizeof(sin6->sin6_addr.s6_addr32[3]));
3048 }
3049 if (in6_pcbconnect(in6p, am)) {
3050 (void) m_free(am);
3051 goto resetandabort;
3052 }
3053 }
3054 #endif
3055 else {
3056 (void) m_free(am);
3057 goto resetandabort;
3058 }
3059 (void) m_free(am);
3060
3061 if (inp)
3062 tp = intotcpcb(inp);
3063 #ifdef INET6
3064 else if (in6p)
3065 tp = in6totcpcb(in6p);
3066 #endif
3067 else
3068 tp = NULL;
3069 if (sc->sc_request_r_scale != 15) {
3070 tp->requested_s_scale = sc->sc_requested_s_scale;
3071 tp->request_r_scale = sc->sc_request_r_scale;
3072 tp->snd_scale = sc->sc_requested_s_scale;
3073 tp->rcv_scale = sc->sc_request_r_scale;
3074 tp->t_flags |= TF_RCVD_SCALE;
3075 }
3076 if (sc->sc_flags & SCF_TIMESTAMP)
3077 tp->t_flags |= TF_RCVD_TSTMP;
3078 tp->ts_timebase = sc->sc_timebase;
3079
3080 tp->t_template = tcp_template(tp);
3081 if (tp->t_template == 0) {
3082 tp = tcp_drop(tp, ENOBUFS); /* destroys socket */
3083 so = NULL;
3084 m_freem(m);
3085 goto abort;
3086 }
3087
3088 tp->iss = sc->sc_iss;
3089 tp->irs = sc->sc_irs;
3090 tcp_sendseqinit(tp);
3091 tcp_rcvseqinit(tp);
3092 tp->t_state = TCPS_SYN_RECEIVED;
3093 TCP_TIMER_ARM(tp, TCPT_KEEP, TCPTV_KEEP_INIT);
3094 tcpstat.tcps_accepts++;
3095
3096 /* Initialize tp->t_ourmss before we deal with the peer's! */
3097 tp->t_ourmss = sc->sc_ourmaxseg;
3098 tcp_mss_from_peer(tp, sc->sc_peermaxseg);
3099
3100 /*
3101 * Initialize the initial congestion window. If we
3102 * had to retransmit the SYN,ACK, we must initialize cwnd
3103 * to 1 segment (i.e. the Loss Window).
3104 */
3105 if (sc->sc_rxtshift)
3106 tp->snd_cwnd = tp->t_peermss;
3107 else
3108 tp->snd_cwnd = TCP_INITIAL_WINDOW(tcp_init_win, tp->t_peermss);
3109
3110 tcp_rmx_rtt(tp);
3111 tp->snd_wl1 = sc->sc_irs;
3112 tp->rcv_up = sc->sc_irs + 1;
3113
3114 /*
3115 * This is what whould have happened in tcp_ouput() when
3116 * the SYN,ACK was sent.
3117 */
3118 tp->snd_up = tp->snd_una;
3119 tp->snd_max = tp->snd_nxt = tp->iss+1;
3120 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
3121 if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
3122 tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
3123 tp->last_ack_sent = tp->rcv_nxt;
3124
3125 tcpstat.tcps_sc_completed++;
3126 SYN_CACHE_PUT(sc);
3127 return (so);
3128
3129 resetandabort:
3130 (void) tcp_respond(NULL, m, m, th,
3131 th->th_seq + tlen, (tcp_seq)0, TH_RST|TH_ACK);
3132 abort:
3133 if (so != NULL)
3134 (void) soabort(so);
3135 SYN_CACHE_PUT(sc);
3136 tcpstat.tcps_sc_aborted++;
3137 return ((struct socket *)(-1));
3138 }
3139
3140 /*
3141 * This function is called when we get a RST for a
3142 * non-existant connection, so that we can see if the
3143 * connection is in the syn cache. If it is, zap it.
3144 */
3145
3146 void
3147 syn_cache_reset(src, dst, th)
3148 struct sockaddr *src;
3149 struct sockaddr *dst;
3150 struct tcphdr *th;
3151 {
3152 struct syn_cache *sc;
3153 struct syn_cache_head *scp;
3154 int s = splsoftnet();
3155
3156 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3157 splx(s);
3158 return;
3159 }
3160 if (SEQ_LT(th->th_seq, sc->sc_irs) ||
3161 SEQ_GT(th->th_seq, sc->sc_irs+1)) {
3162 splx(s);
3163 return;
3164 }
3165 SYN_CACHE_RM(sc);
3166 splx(s);
3167 tcpstat.tcps_sc_reset++;
3168 SYN_CACHE_PUT(sc);
3169 }
3170
3171 void
3172 syn_cache_unreach(src, dst, th)
3173 struct sockaddr *src;
3174 struct sockaddr *dst;
3175 struct tcphdr *th;
3176 {
3177 struct syn_cache *sc;
3178 struct syn_cache_head *scp;
3179 int s;
3180
3181 s = splsoftnet();
3182 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3183 splx(s);
3184 return;
3185 }
3186 /* If the sequence number != sc_iss, then it's a bogus ICMP msg */
3187 if (ntohl (th->th_seq) != sc->sc_iss) {
3188 splx(s);
3189 return;
3190 }
3191
3192 /*
3193 * If we've rertransmitted 3 times and this is our second error,
3194 * we remove the entry. Otherwise, we allow it to continue on.
3195 * This prevents us from incorrectly nuking an entry during a
3196 * spurious network outage.
3197 *
3198 * See tcp_notify().
3199 */
3200 if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
3201 sc->sc_flags |= SCF_UNREACH;
3202 splx(s);
3203 return;
3204 }
3205
3206 SYN_CACHE_RM(sc);
3207 splx(s);
3208 tcpstat.tcps_sc_unreach++;
3209 SYN_CACHE_PUT(sc);
3210 }
3211
3212 /*
3213 * Given a LISTEN socket and an inbound SYN request, add
3214 * this to the syn cache, and send back a segment:
3215 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
3216 * to the source.
3217 *
3218 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
3219 * Doing so would require that we hold onto the data and deliver it
3220 * to the application. However, if we are the target of a SYN-flood
3221 * DoS attack, an attacker could send data which would eventually
3222 * consume all available buffer space if it were ACKed. By not ACKing
3223 * the data, we avoid this DoS scenario.
3224 */
3225
3226 int
3227 syn_cache_add(src, dst, th, hlen, so, m, optp, optlen, oi)
3228 struct sockaddr *src;
3229 struct sockaddr *dst;
3230 struct tcphdr *th;
3231 unsigned int hlen;
3232 struct socket *so;
3233 struct mbuf *m;
3234 u_char *optp;
3235 int optlen;
3236 struct tcp_opt_info *oi;
3237 {
3238 struct tcpcb tb, *tp;
3239 long win;
3240 struct syn_cache *sc;
3241 struct syn_cache_head *scp;
3242 struct mbuf *ipopts;
3243
3244 tp = sototcpcb(so);
3245
3246 /*
3247 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
3248 *
3249 * Note this check is performed in tcp_input() very early on.
3250 */
3251
3252 /*
3253 * Initialize some local state.
3254 */
3255 win = sbspace(&so->so_rcv);
3256 if (win > TCP_MAXWIN)
3257 win = TCP_MAXWIN;
3258
3259 switch (src->sa_family) {
3260 #ifdef INET
3261 case AF_INET:
3262 /*
3263 * Remember the IP options, if any.
3264 */
3265 ipopts = ip_srcroute();
3266 break;
3267 #endif
3268 default:
3269 ipopts = NULL;
3270 }
3271
3272 if (optp) {
3273 tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
3274 tcp_dooptions(&tb, optp, optlen, th, oi);
3275 } else
3276 tb.t_flags = 0;
3277
3278 /*
3279 * See if we already have an entry for this connection.
3280 * If we do, resend the SYN,ACK. We do not count this
3281 * as a retransmission (XXX though maybe we should).
3282 */
3283 if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
3284 tcpstat.tcps_sc_dupesyn++;
3285 if (ipopts) {
3286 /*
3287 * If we were remembering a previous source route,
3288 * forget it and use the new one we've been given.
3289 */
3290 if (sc->sc_ipopts)
3291 (void) m_free(sc->sc_ipopts);
3292 sc->sc_ipopts = ipopts;
3293 }
3294 sc->sc_timestamp = tb.ts_recent;
3295 if (syn_cache_respond(sc, m) == 0) {
3296 tcpstat.tcps_sndacks++;
3297 tcpstat.tcps_sndtotal++;
3298 }
3299 return (1);
3300 }
3301
3302 sc = pool_get(&syn_cache_pool, PR_NOWAIT);
3303 if (sc == NULL) {
3304 if (ipopts)
3305 (void) m_free(ipopts);
3306 return (0);
3307 }
3308
3309 /*
3310 * Fill in the cache, and put the necessary IP and TCP
3311 * options into the reply.
3312 */
3313 bzero(sc, sizeof(struct syn_cache));
3314 bcopy(src, &sc->sc_src, src->sa_len);
3315 bcopy(dst, &sc->sc_dst, dst->sa_len);
3316 sc->sc_flags = 0;
3317 sc->sc_ipopts = ipopts;
3318 sc->sc_irs = th->th_seq;
3319 switch (src->sa_family) {
3320 #ifdef INET
3321 case AF_INET:
3322 {
3323 struct sockaddr_in *srcin = (void *) src;
3324 struct sockaddr_in *dstin = (void *) dst;
3325
3326 sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
3327 &srcin->sin_addr, dstin->sin_port,
3328 srcin->sin_port, sizeof(dstin->sin_addr), 0);
3329 break;
3330 }
3331 #endif /* INET */
3332 #ifdef INET6
3333 case AF_INET6:
3334 {
3335 struct sockaddr_in6 *srcin6 = (void *) src;
3336 struct sockaddr_in6 *dstin6 = (void *) dst;
3337
3338 sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
3339 &srcin6->sin6_addr, dstin6->sin6_port,
3340 srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
3341 break;
3342 }
3343 #endif /* INET6 */
3344 }
3345 sc->sc_peermaxseg = oi->maxseg;
3346 sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
3347 m->m_pkthdr.rcvif : NULL,
3348 sc->sc_src.sa.sa_family);
3349 sc->sc_win = win;
3350 sc->sc_timebase = tcp_now; /* see tcp_newtcpcb() */
3351 sc->sc_timestamp = tb.ts_recent;
3352 if (tcp_do_rfc1323 && (tb.t_flags & TF_RCVD_TSTMP))
3353 sc->sc_flags |= SCF_TIMESTAMP;
3354 if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
3355 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
3356 sc->sc_requested_s_scale = tb.requested_s_scale;
3357 sc->sc_request_r_scale = 0;
3358 while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
3359 TCP_MAXWIN << sc->sc_request_r_scale <
3360 so->so_rcv.sb_hiwat)
3361 sc->sc_request_r_scale++;
3362 } else {
3363 sc->sc_requested_s_scale = 15;
3364 sc->sc_request_r_scale = 15;
3365 }
3366 sc->sc_tp = tp;
3367 if (syn_cache_respond(sc, m) == 0) {
3368 syn_cache_insert(sc, tp);
3369 tcpstat.tcps_sndacks++;
3370 tcpstat.tcps_sndtotal++;
3371 } else {
3372 SYN_CACHE_PUT(sc);
3373 tcpstat.tcps_sc_dropped++;
3374 }
3375 return (1);
3376 }
3377
3378 int
3379 syn_cache_respond(sc, m)
3380 struct syn_cache *sc;
3381 struct mbuf *m;
3382 {
3383 struct route *ro;
3384 u_int8_t *optp;
3385 int optlen, error;
3386 u_int16_t tlen;
3387 struct ip *ip = NULL;
3388 #ifdef INET6
3389 struct ip6_hdr *ip6 = NULL;
3390 #endif
3391 struct tcphdr *th;
3392 u_int hlen;
3393
3394 switch (sc->sc_src.sa.sa_family) {
3395 case AF_INET:
3396 hlen = sizeof(struct ip);
3397 ro = &sc->sc_route4;
3398 break;
3399 #ifdef INET6
3400 case AF_INET6:
3401 hlen = sizeof(struct ip6_hdr);
3402 ro = (struct route *)&sc->sc_route6;
3403 break;
3404 #endif
3405 default:
3406 if (m)
3407 m_freem(m);
3408 return EAFNOSUPPORT;
3409 }
3410
3411 /* Compute the size of the TCP options. */
3412 optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
3413 ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
3414
3415 tlen = hlen + sizeof(struct tcphdr) + optlen;
3416
3417 /*
3418 * Create the IP+TCP header from scratch.
3419 */
3420 if (m)
3421 m_freem(m);
3422 #ifdef DIAGNOSTIC
3423 if (max_linkhdr + tlen > MCLBYTES)
3424 return (ENOBUFS);
3425 #endif
3426 MGETHDR(m, M_DONTWAIT, MT_DATA);
3427 if (m && tlen > MHLEN) {
3428 MCLGET(m, M_DONTWAIT);
3429 if ((m->m_flags & M_EXT) == 0) {
3430 m_freem(m);
3431 m = NULL;
3432 }
3433 }
3434 if (m == NULL)
3435 return (ENOBUFS);
3436
3437 /* Fixup the mbuf. */
3438 m->m_data += max_linkhdr;
3439 m->m_len = m->m_pkthdr.len = tlen;
3440 #ifdef IPSEC
3441 if (sc->sc_tp) {
3442 struct tcpcb *tp;
3443 struct socket *so;
3444
3445 tp = sc->sc_tp;
3446 if (tp->t_inpcb)
3447 so = tp->t_inpcb->inp_socket;
3448 #ifdef INET6
3449 else if (tp->t_in6pcb)
3450 so = tp->t_in6pcb->in6p_socket;
3451 #endif
3452 else
3453 so = NULL;
3454 /* use IPsec policy on listening socket, on SYN ACK */
3455 if (ipsec_setsocket(m, so) != 0) {
3456 m_freem(m);
3457 return ENOBUFS;
3458 }
3459 }
3460 #endif
3461 m->m_pkthdr.rcvif = NULL;
3462 memset(mtod(m, u_char *), 0, tlen);
3463
3464 switch (sc->sc_src.sa.sa_family) {
3465 case AF_INET:
3466 ip = mtod(m, struct ip *);
3467 ip->ip_dst = sc->sc_src.sin.sin_addr;
3468 ip->ip_src = sc->sc_dst.sin.sin_addr;
3469 ip->ip_p = IPPROTO_TCP;
3470 th = (struct tcphdr *)(ip + 1);
3471 th->th_dport = sc->sc_src.sin.sin_port;
3472 th->th_sport = sc->sc_dst.sin.sin_port;
3473 break;
3474 #ifdef INET6
3475 case AF_INET6:
3476 ip6 = mtod(m, struct ip6_hdr *);
3477 ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
3478 ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
3479 ip6->ip6_nxt = IPPROTO_TCP;
3480 /* ip6_plen will be updated in ip6_output() */
3481 th = (struct tcphdr *)(ip6 + 1);
3482 th->th_dport = sc->sc_src.sin6.sin6_port;
3483 th->th_sport = sc->sc_dst.sin6.sin6_port;
3484 break;
3485 #endif
3486 default:
3487 th = NULL;
3488 }
3489
3490 th->th_seq = htonl(sc->sc_iss);
3491 th->th_ack = htonl(sc->sc_irs + 1);
3492 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
3493 th->th_flags = TH_SYN|TH_ACK;
3494 th->th_win = htons(sc->sc_win);
3495 /* th_sum already 0 */
3496 /* th_urp already 0 */
3497
3498 /* Tack on the TCP options. */
3499 optp = (u_int8_t *)(th + 1);
3500 *optp++ = TCPOPT_MAXSEG;
3501 *optp++ = 4;
3502 *optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
3503 *optp++ = sc->sc_ourmaxseg & 0xff;
3504
3505 if (sc->sc_request_r_scale != 15) {
3506 *((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
3507 TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
3508 sc->sc_request_r_scale);
3509 optp += 4;
3510 }
3511
3512 if (sc->sc_flags & SCF_TIMESTAMP) {
3513 u_int32_t *lp = (u_int32_t *)(optp);
3514 /* Form timestamp option as shown in appendix A of RFC 1323. */
3515 *lp++ = htonl(TCPOPT_TSTAMP_HDR);
3516 *lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
3517 *lp = htonl(sc->sc_timestamp);
3518 optp += TCPOLEN_TSTAMP_APPA;
3519 }
3520
3521 /* Compute the packet's checksum. */
3522 switch (sc->sc_src.sa.sa_family) {
3523 case AF_INET:
3524 ip->ip_len = htons(tlen - hlen);
3525 th->th_sum = 0;
3526 th->th_sum = in_cksum(m, tlen);
3527 break;
3528 #ifdef INET6
3529 case AF_INET6:
3530 ip6->ip6_plen = htons(tlen - hlen);
3531 th->th_sum = 0;
3532 th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
3533 break;
3534 #endif
3535 }
3536
3537 /*
3538 * Fill in some straggling IP bits. Note the stack expects
3539 * ip_len to be in host order, for convenience.
3540 */
3541 switch (sc->sc_src.sa.sa_family) {
3542 #ifdef INET
3543 case AF_INET:
3544 ip->ip_len = tlen;
3545 ip->ip_ttl = ip_defttl;
3546 /* XXX tos? */
3547 break;
3548 #endif
3549 #ifdef INET6
3550 case AF_INET6:
3551 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
3552 ip6->ip6_vfc |= IPV6_VERSION;
3553 ip6->ip6_plen = htons(tlen - hlen);
3554 /* ip6_hlim will be initialized afterwards */
3555 /* XXX flowlabel? */
3556 break;
3557 #endif
3558 }
3559
3560 switch (sc->sc_src.sa.sa_family) {
3561 #ifdef INET
3562 case AF_INET:
3563 error = ip_output(m, sc->sc_ipopts, ro,
3564 (ip_mtudisc ? IP_MTUDISC : 0),
3565 NULL);
3566 break;
3567 #endif
3568 #ifdef INET6
3569 case AF_INET6:
3570 ip6->ip6_hlim = in6_selecthlim(NULL,
3571 ro->ro_rt ? ro->ro_rt->rt_ifp : NULL);
3572
3573 error = ip6_output(m, NULL /*XXX*/, (struct route_in6 *)ro,
3574 0, NULL, NULL);
3575 break;
3576 #endif
3577 default:
3578 error = EAFNOSUPPORT;
3579 break;
3580 }
3581 return (error);
3582 }
3583