tcp_input.c revision 1.126 1 /* $NetBSD: tcp_input.c,v 1.126 2001/06/19 13:42:19 wiz Exp $ */
2
3 /*
4 %%% portions-copyright-nrl-95
5 Portions of this software are Copyright 1995-1998 by Randall Atkinson,
6 Ronald Lee, Daniel McDonald, Bao Phan, and Chris Winters. All Rights
7 Reserved. All rights under this copyright have been assigned to the US
8 Naval Research Laboratory (NRL). The NRL Copyright Notice and License
9 Agreement Version 1.1 (January 17, 1995) applies to these portions of the
10 software.
11 You should have received a copy of the license with this software. If you
12 didn't get a copy, you may request one from <license (at) ipv6.nrl.navy.mil>.
13
14 */
15
16 /*
17 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
18 * All rights reserved.
19 *
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
23 * 1. Redistributions of source code must retain the above copyright
24 * notice, this list of conditions and the following disclaimer.
25 * 2. Redistributions in binary form must reproduce the above copyright
26 * notice, this list of conditions and the following disclaimer in the
27 * documentation and/or other materials provided with the distribution.
28 * 3. Neither the name of the project nor the names of its contributors
29 * may be used to endorse or promote products derived from this software
30 * without specific prior written permission.
31 *
32 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
33 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
36 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42 * SUCH DAMAGE.
43 */
44
45 /*-
46 * Copyright (c) 1997, 1998, 1999, 2001 The NetBSD Foundation, Inc.
47 * All rights reserved.
48 *
49 * This code is derived from software contributed to The NetBSD Foundation
50 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
51 * Facility, NASA Ames Research Center.
52 *
53 * Redistribution and use in source and binary forms, with or without
54 * modification, are permitted provided that the following conditions
55 * are met:
56 * 1. Redistributions of source code must retain the above copyright
57 * notice, this list of conditions and the following disclaimer.
58 * 2. Redistributions in binary form must reproduce the above copyright
59 * notice, this list of conditions and the following disclaimer in the
60 * documentation and/or other materials provided with the distribution.
61 * 3. All advertising materials mentioning features or use of this software
62 * must display the following acknowledgement:
63 * This product includes software developed by the NetBSD
64 * Foundation, Inc. and its contributors.
65 * 4. Neither the name of The NetBSD Foundation nor the names of its
66 * contributors may be used to endorse or promote products derived
67 * from this software without specific prior written permission.
68 *
69 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
70 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
71 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
72 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
73 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
74 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
75 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
76 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
77 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
78 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
79 * POSSIBILITY OF SUCH DAMAGE.
80 */
81
82 /*
83 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
84 * The Regents of the University of California. All rights reserved.
85 *
86 * Redistribution and use in source and binary forms, with or without
87 * modification, are permitted provided that the following conditions
88 * are met:
89 * 1. Redistributions of source code must retain the above copyright
90 * notice, this list of conditions and the following disclaimer.
91 * 2. Redistributions in binary form must reproduce the above copyright
92 * notice, this list of conditions and the following disclaimer in the
93 * documentation and/or other materials provided with the distribution.
94 * 3. All advertising materials mentioning features or use of this software
95 * must display the following acknowledgement:
96 * This product includes software developed by the University of
97 * California, Berkeley and its contributors.
98 * 4. Neither the name of the University nor the names of its contributors
99 * may be used to endorse or promote products derived from this software
100 * without specific prior written permission.
101 *
102 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
103 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
104 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
105 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
106 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
107 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
108 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
109 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
110 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
111 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
112 * SUCH DAMAGE.
113 *
114 * @(#)tcp_input.c 8.12 (Berkeley) 5/24/95
115 */
116
117 /*
118 * TODO list for SYN cache stuff:
119 *
120 * Find room for a "state" field, which is needed to keep a
121 * compressed state for TIME_WAIT TCBs. It's been noted already
122 * that this is fairly important for very high-volume web and
123 * mail servers, which use a large number of short-lived
124 * connections.
125 */
126
127 #include "opt_inet.h"
128 #include "opt_ipsec.h"
129 #include "opt_inet_csum.h"
130
131 #include <sys/param.h>
132 #include <sys/systm.h>
133 #include <sys/malloc.h>
134 #include <sys/mbuf.h>
135 #include <sys/protosw.h>
136 #include <sys/socket.h>
137 #include <sys/socketvar.h>
138 #include <sys/errno.h>
139 #include <sys/syslog.h>
140 #include <sys/pool.h>
141 #include <sys/domain.h>
142
143 #include <net/if.h>
144 #include <net/route.h>
145 #include <net/if_types.h>
146
147 #include <netinet/in.h>
148 #include <netinet/in_systm.h>
149 #include <netinet/ip.h>
150 #include <netinet/in_pcb.h>
151 #include <netinet/ip_var.h>
152
153 #ifdef INET6
154 #ifndef INET
155 #include <netinet/in.h>
156 #endif
157 #include <netinet/ip6.h>
158 #include <netinet6/ip6_var.h>
159 #include <netinet6/in6_pcb.h>
160 #include <netinet6/ip6_var.h>
161 #include <netinet6/in6_var.h>
162 #include <netinet/icmp6.h>
163 #include <netinet6/nd6.h>
164 #endif
165
166 #ifdef PULLDOWN_TEST
167 #ifndef INET6
168 /* always need ip6.h for IP6_EXTHDR_GET */
169 #include <netinet/ip6.h>
170 #endif
171 #endif
172
173 #include <netinet/tcp.h>
174 #include <netinet/tcp_fsm.h>
175 #include <netinet/tcp_seq.h>
176 #include <netinet/tcp_timer.h>
177 #include <netinet/tcp_var.h>
178 #include <netinet/tcpip.h>
179 #include <netinet/tcp_debug.h>
180
181 #include <machine/stdarg.h>
182
183 #ifdef IPSEC
184 #include <netinet6/ipsec.h>
185 #include <netkey/key.h>
186 #endif /*IPSEC*/
187 #ifdef INET6
188 #include "faith.h"
189 #if defined(NFAITH) && NFAITH > 0
190 #include <net/if_faith.h>
191 #endif
192 #endif
193
194 int tcprexmtthresh = 3;
195 int tcp_log_refused;
196
197 static int tcp_rst_ppslim_count = 0;
198 static struct timeval tcp_rst_ppslim_last;
199
200 #define TCP_PAWS_IDLE (24 * 24 * 60 * 60 * PR_SLOWHZ)
201
202 /* for modulo comparisons of timestamps */
203 #define TSTMP_LT(a,b) ((int)((a)-(b)) < 0)
204 #define TSTMP_GEQ(a,b) ((int)((a)-(b)) >= 0)
205
206 /*
207 * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
208 */
209 #ifdef INET6
210 #define ND6_HINT(tp) \
211 do { \
212 if (tp && tp->t_in6pcb && tp->t_family == AF_INET6 \
213 && tp->t_in6pcb->in6p_route.ro_rt) { \
214 nd6_nud_hint(tp->t_in6pcb->in6p_route.ro_rt, NULL, 0); \
215 } \
216 } while (0)
217 #else
218 #define ND6_HINT(tp)
219 #endif
220
221 /*
222 * Macro to compute ACK transmission behavior. Delay the ACK unless
223 * we have already delayed an ACK (must send an ACK every two segments).
224 * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
225 * option is enabled.
226 */
227 #define TCP_SETUP_ACK(tp, th) \
228 do { \
229 if ((tp)->t_flags & TF_DELACK || \
230 (tcp_ack_on_push && (th)->th_flags & TH_PUSH)) \
231 tp->t_flags |= TF_ACKNOW; \
232 else \
233 TCP_SET_DELACK(tp); \
234 } while (0)
235
236 /*
237 * Convert TCP protocol fields to host order for easier processing.
238 */
239 #define TCP_FIELDS_TO_HOST(th) \
240 do { \
241 NTOHL((th)->th_seq); \
242 NTOHL((th)->th_ack); \
243 NTOHS((th)->th_win); \
244 NTOHS((th)->th_urp); \
245 } while (0)
246
247 #ifdef TCP_CSUM_COUNTERS
248 #include <sys/device.h>
249
250 extern struct evcnt tcp_hwcsum_ok;
251 extern struct evcnt tcp_hwcsum_bad;
252 extern struct evcnt tcp_hwcsum_data;
253 extern struct evcnt tcp_swcsum;
254
255 #define TCP_CSUM_COUNTER_INCR(ev) (ev)->ev_count++
256
257 #else
258
259 #define TCP_CSUM_COUNTER_INCR(ev) /* nothing */
260
261 #endif /* TCP_CSUM_COUNTERS */
262
263 int
264 tcp_reass(tp, th, m, tlen)
265 struct tcpcb *tp;
266 struct tcphdr *th;
267 struct mbuf *m;
268 int *tlen;
269 {
270 struct ipqent *p, *q, *nq, *tiqe = NULL;
271 struct socket *so = NULL;
272 int pkt_flags;
273 tcp_seq pkt_seq;
274 unsigned pkt_len;
275 u_long rcvpartdupbyte = 0;
276 u_long rcvoobyte;
277
278 if (tp->t_inpcb)
279 so = tp->t_inpcb->inp_socket;
280 #ifdef INET6
281 else if (tp->t_in6pcb)
282 so = tp->t_in6pcb->in6p_socket;
283 #endif
284
285 TCP_REASS_LOCK_CHECK(tp);
286
287 /*
288 * Call with th==0 after become established to
289 * force pre-ESTABLISHED data up to user socket.
290 */
291 if (th == 0)
292 goto present;
293
294 rcvoobyte = *tlen;
295 /*
296 * Copy these to local variables because the tcpiphdr
297 * gets munged while we are collapsing mbufs.
298 */
299 pkt_seq = th->th_seq;
300 pkt_len = *tlen;
301 pkt_flags = th->th_flags;
302 /*
303 * Find a segment which begins after this one does.
304 */
305 for (p = NULL, q = tp->segq.lh_first; q != NULL; q = nq) {
306 nq = q->ipqe_q.le_next;
307 /*
308 * If the received segment is just right after this
309 * fragment, merge the two together and then check
310 * for further overlaps.
311 */
312 if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
313 #ifdef TCPREASS_DEBUG
314 printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
315 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
316 q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
317 #endif
318 pkt_len += q->ipqe_len;
319 pkt_flags |= q->ipqe_flags;
320 pkt_seq = q->ipqe_seq;
321 m_cat(q->ipqe_m, m);
322 m = q->ipqe_m;
323 goto free_ipqe;
324 }
325 /*
326 * If the received segment is completely past this
327 * fragment, we need to go the next fragment.
328 */
329 if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
330 p = q;
331 continue;
332 }
333 /*
334 * If the fragment is past the received segment,
335 * it (or any following) can't be concatenated.
336 */
337 if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len))
338 break;
339 /*
340 * We've received all the data in this segment before.
341 * mark it as a duplicate and return.
342 */
343 if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
344 SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
345 tcpstat.tcps_rcvduppack++;
346 tcpstat.tcps_rcvdupbyte += pkt_len;
347 m_freem(m);
348 if (tiqe != NULL)
349 pool_put(&ipqent_pool, tiqe);
350 return (0);
351 }
352 /*
353 * Received segment completely overlaps this fragment
354 * so we drop the fragment (this keeps the temporal
355 * ordering of segments correct).
356 */
357 if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
358 SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
359 rcvpartdupbyte += q->ipqe_len;
360 m_freem(q->ipqe_m);
361 goto free_ipqe;
362 }
363 /*
364 * RX'ed segment extends past the end of the
365 * fragment. Drop the overlapping bytes. Then
366 * merge the fragment and segment then treat as
367 * a longer received packet.
368 */
369 if (SEQ_LT(q->ipqe_seq, pkt_seq)
370 && SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
371 int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
372 #ifdef TCPREASS_DEBUG
373 printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
374 tp, overlap,
375 pkt_seq, pkt_seq + pkt_len, pkt_len);
376 #endif
377 m_adj(m, overlap);
378 rcvpartdupbyte += overlap;
379 m_cat(q->ipqe_m, m);
380 m = q->ipqe_m;
381 pkt_seq = q->ipqe_seq;
382 pkt_len += q->ipqe_len - overlap;
383 rcvoobyte -= overlap;
384 goto free_ipqe;
385 }
386 /*
387 * RX'ed segment extends past the front of the
388 * fragment. Drop the overlapping bytes on the
389 * received packet. The packet will then be
390 * contatentated with this fragment a bit later.
391 */
392 if (SEQ_GT(q->ipqe_seq, pkt_seq)
393 && SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len)) {
394 int overlap = pkt_seq + pkt_len - q->ipqe_seq;
395 #ifdef TCPREASS_DEBUG
396 printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
397 tp, overlap,
398 pkt_seq, pkt_seq + pkt_len, pkt_len);
399 #endif
400 m_adj(m, -overlap);
401 pkt_len -= overlap;
402 rcvpartdupbyte += overlap;
403 rcvoobyte -= overlap;
404 }
405 /*
406 * If the received segment immediates precedes this
407 * fragment then tack the fragment onto this segment
408 * and reinsert the data.
409 */
410 if (q->ipqe_seq == pkt_seq + pkt_len) {
411 #ifdef TCPREASS_DEBUG
412 printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
413 tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
414 pkt_seq, pkt_seq + pkt_len, pkt_len);
415 #endif
416 pkt_len += q->ipqe_len;
417 pkt_flags |= q->ipqe_flags;
418 m_cat(m, q->ipqe_m);
419 LIST_REMOVE(q, ipqe_q);
420 LIST_REMOVE(q, ipqe_timeq);
421 if (tiqe == NULL) {
422 tiqe = q;
423 } else {
424 pool_put(&ipqent_pool, q);
425 }
426 break;
427 }
428 /*
429 * If the fragment is before the segment, remember it.
430 * When this loop is terminated, p will contain the
431 * pointer to fragment that is right before the received
432 * segment.
433 */
434 if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
435 p = q;
436
437 continue;
438
439 /*
440 * This is a common operation. It also will allow
441 * to save doing a malloc/free in most instances.
442 */
443 free_ipqe:
444 LIST_REMOVE(q, ipqe_q);
445 LIST_REMOVE(q, ipqe_timeq);
446 if (tiqe == NULL) {
447 tiqe = q;
448 } else {
449 pool_put(&ipqent_pool, q);
450 }
451 }
452
453 /*
454 * Allocate a new queue entry since the received segment did not
455 * collapse onto any other out-of-order block; thus we are allocating
456 * a new block. If it had collapsed, tiqe would not be NULL and
457 * we would be reusing it.
458 * XXX If we can't, just drop the packet. XXX
459 */
460 if (tiqe == NULL) {
461 tiqe = pool_get(&ipqent_pool, PR_NOWAIT);
462 if (tiqe == NULL) {
463 tcpstat.tcps_rcvmemdrop++;
464 m_freem(m);
465 return (0);
466 }
467 }
468
469 /*
470 * Update the counters.
471 */
472 tcpstat.tcps_rcvoopack++;
473 tcpstat.tcps_rcvoobyte += rcvoobyte;
474 if (rcvpartdupbyte) {
475 tcpstat.tcps_rcvpartduppack++;
476 tcpstat.tcps_rcvpartdupbyte += rcvpartdupbyte;
477 }
478
479 /*
480 * Insert the new fragment queue entry into both queues.
481 */
482 tiqe->ipqe_m = m;
483 tiqe->ipqe_seq = pkt_seq;
484 tiqe->ipqe_len = pkt_len;
485 tiqe->ipqe_flags = pkt_flags;
486 if (p == NULL) {
487 LIST_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
488 #ifdef TCPREASS_DEBUG
489 if (tiqe->ipqe_seq != tp->rcv_nxt)
490 printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
491 tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
492 #endif
493 } else {
494 LIST_INSERT_AFTER(p, tiqe, ipqe_q);
495 #ifdef TCPREASS_DEBUG
496 printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
497 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
498 p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
499 #endif
500 }
501
502 LIST_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
503
504 present:
505 /*
506 * Present data to user, advancing rcv_nxt through
507 * completed sequence space.
508 */
509 if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
510 return (0);
511 q = tp->segq.lh_first;
512 if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
513 return (0);
514 if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
515 return (0);
516
517 tp->rcv_nxt += q->ipqe_len;
518 pkt_flags = q->ipqe_flags & TH_FIN;
519 ND6_HINT(tp);
520
521 LIST_REMOVE(q, ipqe_q);
522 LIST_REMOVE(q, ipqe_timeq);
523 if (so->so_state & SS_CANTRCVMORE)
524 m_freem(q->ipqe_m);
525 else
526 sbappend(&so->so_rcv, q->ipqe_m);
527 pool_put(&ipqent_pool, q);
528 sorwakeup(so);
529 return (pkt_flags);
530 }
531
532 #ifdef INET6
533 int
534 tcp6_input(mp, offp, proto)
535 struct mbuf **mp;
536 int *offp, proto;
537 {
538 struct mbuf *m = *mp;
539
540 /*
541 * draft-itojun-ipv6-tcp-to-anycast
542 * better place to put this in?
543 */
544 if (m->m_flags & M_ANYCAST6) {
545 struct ip6_hdr *ip6;
546 if (m->m_len < sizeof(struct ip6_hdr)) {
547 if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
548 tcpstat.tcps_rcvshort++;
549 return IPPROTO_DONE;
550 }
551 }
552 ip6 = mtod(m, struct ip6_hdr *);
553 icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
554 (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
555 return IPPROTO_DONE;
556 }
557
558 tcp_input(m, *offp, proto);
559 return IPPROTO_DONE;
560 }
561 #endif
562
563 /*
564 * TCP input routine, follows pages 65-76 of the
565 * protocol specification dated September, 1981 very closely.
566 */
567 void
568 #if __STDC__
569 tcp_input(struct mbuf *m, ...)
570 #else
571 tcp_input(m, va_alist)
572 struct mbuf *m;
573 #endif
574 {
575 int proto;
576 struct tcphdr *th;
577 struct ip *ip;
578 struct inpcb *inp;
579 #ifdef INET6
580 struct ip6_hdr *ip6;
581 struct in6pcb *in6p;
582 #endif
583 caddr_t optp = NULL;
584 int optlen = 0;
585 int len, tlen, toff, hdroptlen = 0;
586 struct tcpcb *tp = 0;
587 int tiflags;
588 struct socket *so = NULL;
589 int todrop, acked, ourfinisacked, needoutput = 0;
590 short ostate = 0;
591 int iss = 0;
592 u_long tiwin;
593 struct tcp_opt_info opti;
594 int off, iphlen;
595 va_list ap;
596 int af; /* af on the wire */
597 struct mbuf *tcp_saveti = NULL;
598
599 va_start(ap, m);
600 toff = va_arg(ap, int);
601 proto = va_arg(ap, int);
602 va_end(ap);
603
604 tcpstat.tcps_rcvtotal++;
605
606 bzero(&opti, sizeof(opti));
607 opti.ts_present = 0;
608 opti.maxseg = 0;
609
610 /*
611 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
612 *
613 * TCP is, by definition, unicast, so we reject all
614 * multicast outright.
615 *
616 * Note, there are additional src/dst address checks in
617 * the AF-specific code below.
618 */
619 if (m->m_flags & (M_BCAST|M_MCAST)) {
620 /* XXX stat */
621 goto drop;
622 }
623 #ifdef INET6
624 if (m->m_flags & M_ANYCAST6) {
625 /* XXX stat */
626 goto drop;
627 }
628 #endif
629
630 /*
631 * Get IP and TCP header together in first mbuf.
632 * Note: IP leaves IP header in first mbuf.
633 */
634 ip = mtod(m, struct ip *);
635 #ifdef INET6
636 ip6 = NULL;
637 #endif
638 switch (ip->ip_v) {
639 #ifdef INET
640 case 4:
641 af = AF_INET;
642 iphlen = sizeof(struct ip);
643 #ifndef PULLDOWN_TEST
644 /* would like to get rid of this... */
645 if (toff > sizeof (struct ip)) {
646 ip_stripoptions(m, (struct mbuf *)0);
647 toff = sizeof(struct ip);
648 }
649 if (m->m_len < toff + sizeof (struct tcphdr)) {
650 if ((m = m_pullup(m, toff + sizeof (struct tcphdr))) == 0) {
651 tcpstat.tcps_rcvshort++;
652 return;
653 }
654 }
655 ip = mtod(m, struct ip *);
656 th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
657 #else
658 ip = mtod(m, struct ip *);
659 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
660 sizeof(struct tcphdr));
661 if (th == NULL) {
662 tcpstat.tcps_rcvshort++;
663 return;
664 }
665 #endif
666
667 /*
668 * Make sure destination address is not multicast.
669 * Source address checked in ip_input().
670 */
671 if (IN_MULTICAST(ip->ip_dst.s_addr)) {
672 /* XXX stat */
673 goto drop;
674 }
675
676 /* We do the checksum after PCB lookup... */
677 len = ip->ip_len;
678 tlen = len - toff;
679 break;
680 #endif
681 #ifdef INET6
682 case 6:
683 ip = NULL;
684 iphlen = sizeof(struct ip6_hdr);
685 af = AF_INET6;
686 #ifndef PULLDOWN_TEST
687 if (m->m_len < toff + sizeof(struct tcphdr)) {
688 m = m_pullup(m, toff + sizeof(struct tcphdr)); /*XXX*/
689 if (m == NULL) {
690 tcpstat.tcps_rcvshort++;
691 return;
692 }
693 }
694 ip6 = mtod(m, struct ip6_hdr *);
695 th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
696 #else
697 ip6 = mtod(m, struct ip6_hdr *);
698 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
699 sizeof(struct tcphdr));
700 if (th == NULL) {
701 tcpstat.tcps_rcvshort++;
702 return;
703 }
704 #endif
705
706 /* Be proactive about malicious use of IPv4 mapped address */
707 if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
708 IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
709 /* XXX stat */
710 goto drop;
711 }
712
713 /*
714 * Be proactive about unspecified IPv6 address in source.
715 * As we use all-zero to indicate unbounded/unconnected pcb,
716 * unspecified IPv6 address can be used to confuse us.
717 *
718 * Note that packets with unspecified IPv6 destination is
719 * already dropped in ip6_input.
720 */
721 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
722 /* XXX stat */
723 goto drop;
724 }
725
726 /*
727 * Make sure destination address is not multicast.
728 * Source address checked in ip6_input().
729 */
730 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
731 /* XXX stat */
732 goto drop;
733 }
734
735 /* We do the checksum after PCB lookup... */
736 len = m->m_pkthdr.len;
737 tlen = len - toff;
738 break;
739 #endif
740 default:
741 m_freem(m);
742 return;
743 }
744
745 /*
746 * Check that TCP offset makes sense,
747 * pull out TCP options and adjust length. XXX
748 */
749 off = th->th_off << 2;
750 if (off < sizeof (struct tcphdr) || off > tlen) {
751 tcpstat.tcps_rcvbadoff++;
752 goto drop;
753 }
754 tlen -= off;
755
756 /*
757 * tcp_input() has been modified to use tlen to mean the TCP data
758 * length throughout the function. Other functions can use
759 * m->m_pkthdr.len as the basis for calculating the TCP data length.
760 * rja
761 */
762
763 if (off > sizeof (struct tcphdr)) {
764 #ifndef PULLDOWN_TEST
765 if (m->m_len < toff + off) {
766 if ((m = m_pullup(m, toff + off)) == 0) {
767 tcpstat.tcps_rcvshort++;
768 return;
769 }
770 switch (af) {
771 #ifdef INET
772 case AF_INET:
773 ip = mtod(m, struct ip *);
774 break;
775 #endif
776 #ifdef INET6
777 case AF_INET6:
778 ip6 = mtod(m, struct ip6_hdr *);
779 break;
780 #endif
781 }
782 th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
783 }
784 #else
785 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
786 if (th == NULL) {
787 tcpstat.tcps_rcvshort++;
788 return;
789 }
790 /*
791 * NOTE: ip/ip6 will not be affected by m_pulldown()
792 * (as they're before toff) and we don't need to update those.
793 */
794 #endif
795 optlen = off - sizeof (struct tcphdr);
796 optp = ((caddr_t)th) + sizeof(struct tcphdr);
797 /*
798 * Do quick retrieval of timestamp options ("options
799 * prediction?"). If timestamp is the only option and it's
800 * formatted as recommended in RFC 1323 appendix A, we
801 * quickly get the values now and not bother calling
802 * tcp_dooptions(), etc.
803 */
804 if ((optlen == TCPOLEN_TSTAMP_APPA ||
805 (optlen > TCPOLEN_TSTAMP_APPA &&
806 optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
807 *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
808 (th->th_flags & TH_SYN) == 0) {
809 opti.ts_present = 1;
810 opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
811 opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
812 optp = NULL; /* we've parsed the options */
813 }
814 }
815 tiflags = th->th_flags;
816
817 /*
818 * Locate pcb for segment.
819 */
820 findpcb:
821 inp = NULL;
822 #ifdef INET6
823 in6p = NULL;
824 #endif
825 switch (af) {
826 #ifdef INET
827 case AF_INET:
828 inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
829 ip->ip_dst, th->th_dport);
830 if (inp == 0) {
831 ++tcpstat.tcps_pcbhashmiss;
832 inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
833 }
834 #ifdef INET6
835 if (inp == 0) {
836 struct in6_addr s, d;
837
838 /* mapped addr case */
839 bzero(&s, sizeof(s));
840 s.s6_addr16[5] = htons(0xffff);
841 bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
842 bzero(&d, sizeof(d));
843 d.s6_addr16[5] = htons(0xffff);
844 bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
845 in6p = in6_pcblookup_connect(&tcb6, &s, th->th_sport,
846 &d, th->th_dport, 0);
847 if (in6p == 0) {
848 ++tcpstat.tcps_pcbhashmiss;
849 in6p = in6_pcblookup_bind(&tcb6, &d,
850 th->th_dport, 0);
851 }
852 }
853 #endif
854 #ifndef INET6
855 if (inp == 0)
856 #else
857 if (inp == 0 && in6p == 0)
858 #endif
859 {
860 ++tcpstat.tcps_noport;
861 if (tcp_log_refused && (tiflags & TH_SYN)) {
862 #ifndef INET6
863 char src[4*sizeof "123"];
864 char dst[4*sizeof "123"];
865 #else
866 char src[INET6_ADDRSTRLEN];
867 char dst[INET6_ADDRSTRLEN];
868 #endif
869 if (ip) {
870 strcpy(src, inet_ntoa(ip->ip_src));
871 strcpy(dst, inet_ntoa(ip->ip_dst));
872 }
873 #ifdef INET6
874 else if (ip6) {
875 strcpy(src, ip6_sprintf(&ip6->ip6_src));
876 strcpy(dst, ip6_sprintf(&ip6->ip6_dst));
877 }
878 #endif
879 else {
880 strcpy(src, "(unknown)");
881 strcpy(dst, "(unknown)");
882 }
883 log(LOG_INFO,
884 "Connection attempt to TCP %s:%d from %s:%d\n",
885 dst, ntohs(th->th_dport),
886 src, ntohs(th->th_sport));
887 }
888 TCP_FIELDS_TO_HOST(th);
889 goto dropwithreset_ratelim;
890 }
891 #ifdef IPSEC
892 if (inp && ipsec4_in_reject(m, inp)) {
893 ipsecstat.in_polvio++;
894 goto drop;
895 }
896 #ifdef INET6
897 else if (in6p && ipsec4_in_reject_so(m, in6p->in6p_socket)) {
898 ipsecstat.in_polvio++;
899 goto drop;
900 }
901 #endif
902 #endif /*IPSEC*/
903 break;
904 #endif /*INET*/
905 #ifdef INET6
906 case AF_INET6:
907 {
908 int faith;
909
910 #if defined(NFAITH) && NFAITH > 0
911 faith = faithprefix(&ip6->ip6_dst);
912 #else
913 faith = 0;
914 #endif
915 in6p = in6_pcblookup_connect(&tcb6, &ip6->ip6_src, th->th_sport,
916 &ip6->ip6_dst, th->th_dport, faith);
917 if (in6p == NULL) {
918 ++tcpstat.tcps_pcbhashmiss;
919 in6p = in6_pcblookup_bind(&tcb6, &ip6->ip6_dst,
920 th->th_dport, faith);
921 }
922 if (in6p == NULL) {
923 ++tcpstat.tcps_noport;
924 TCP_FIELDS_TO_HOST(th);
925 goto dropwithreset_ratelim;
926 }
927 #ifdef IPSEC
928 if (ipsec6_in_reject(m, in6p)) {
929 ipsec6stat.in_polvio++;
930 goto drop;
931 }
932 #endif /*IPSEC*/
933 break;
934 }
935 #endif
936 }
937
938 /*
939 * If the state is CLOSED (i.e., TCB does not exist) then
940 * all data in the incoming segment is discarded.
941 * If the TCB exists but is in CLOSED state, it is embryonic,
942 * but should either do a listen or a connect soon.
943 */
944 tp = NULL;
945 so = NULL;
946 if (inp) {
947 tp = intotcpcb(inp);
948 so = inp->inp_socket;
949 }
950 #ifdef INET6
951 else if (in6p) {
952 tp = in6totcpcb(in6p);
953 so = in6p->in6p_socket;
954 }
955 #endif
956 if (tp == 0) {
957 TCP_FIELDS_TO_HOST(th);
958 goto dropwithreset_ratelim;
959 }
960 if (tp->t_state == TCPS_CLOSED)
961 goto drop;
962
963 /*
964 * Checksum extended TCP header and data.
965 */
966 switch (af) {
967 #ifdef INET
968 case AF_INET:
969 switch (m->m_pkthdr.csum_flags &
970 ((m->m_pkthdr.rcvif->if_csum_flags & M_CSUM_TCPv4) |
971 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
972 case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
973 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
974 goto badcsum;
975
976 case M_CSUM_TCPv4|M_CSUM_DATA:
977 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
978 if ((m->m_pkthdr.csum_data ^ 0xffff) != 0)
979 goto badcsum;
980 break;
981
982 case M_CSUM_TCPv4:
983 /* Checksum was okay. */
984 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
985 break;
986
987 default:
988 /* Must compute it ourselves. */
989 TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
990 #ifndef PULLDOWN_TEST
991 {
992 struct ipovly *ipov;
993 ipov = (struct ipovly *)ip;
994 bzero(ipov->ih_x1, sizeof ipov->ih_x1);
995 ipov->ih_len = htons(tlen + off);
996
997 if (in_cksum(m, len) != 0)
998 goto badcsum;
999 }
1000 #else
1001 if (in4_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0)
1002 goto badcsum;
1003 #endif /* ! PULLDOWN_TEST */
1004 break;
1005 }
1006 break;
1007 #endif /* INET4 */
1008
1009 #ifdef INET6
1010 case AF_INET6:
1011 if (in6_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0)
1012 goto badcsum;
1013 break;
1014 #endif /* INET6 */
1015 }
1016
1017 TCP_FIELDS_TO_HOST(th);
1018
1019 /* Unscale the window into a 32-bit value. */
1020 if ((tiflags & TH_SYN) == 0)
1021 tiwin = th->th_win << tp->snd_scale;
1022 else
1023 tiwin = th->th_win;
1024
1025 #ifdef INET6
1026 /* save packet options if user wanted */
1027 if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
1028 if (in6p->in6p_options) {
1029 m_freem(in6p->in6p_options);
1030 in6p->in6p_options = 0;
1031 }
1032 ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
1033 }
1034 #endif
1035
1036 if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
1037 union syn_cache_sa src;
1038 union syn_cache_sa dst;
1039
1040 bzero(&src, sizeof(src));
1041 bzero(&dst, sizeof(dst));
1042 switch (af) {
1043 #ifdef INET
1044 case AF_INET:
1045 src.sin.sin_len = sizeof(struct sockaddr_in);
1046 src.sin.sin_family = AF_INET;
1047 src.sin.sin_addr = ip->ip_src;
1048 src.sin.sin_port = th->th_sport;
1049
1050 dst.sin.sin_len = sizeof(struct sockaddr_in);
1051 dst.sin.sin_family = AF_INET;
1052 dst.sin.sin_addr = ip->ip_dst;
1053 dst.sin.sin_port = th->th_dport;
1054 break;
1055 #endif
1056 #ifdef INET6
1057 case AF_INET6:
1058 src.sin6.sin6_len = sizeof(struct sockaddr_in6);
1059 src.sin6.sin6_family = AF_INET6;
1060 src.sin6.sin6_addr = ip6->ip6_src;
1061 src.sin6.sin6_port = th->th_sport;
1062
1063 dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
1064 dst.sin6.sin6_family = AF_INET6;
1065 dst.sin6.sin6_addr = ip6->ip6_dst;
1066 dst.sin6.sin6_port = th->th_dport;
1067 break;
1068 #endif /* INET6 */
1069 default:
1070 goto badsyn; /*sanity*/
1071 }
1072
1073 if (so->so_options & SO_DEBUG) {
1074 ostate = tp->t_state;
1075
1076 tcp_saveti = NULL;
1077 if (iphlen + sizeof(struct tcphdr) > MHLEN)
1078 goto nosave;
1079
1080 if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
1081 tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
1082 if (!tcp_saveti)
1083 goto nosave;
1084 } else {
1085 MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
1086 if (!tcp_saveti)
1087 goto nosave;
1088 tcp_saveti->m_len = iphlen;
1089 m_copydata(m, 0, iphlen,
1090 mtod(tcp_saveti, caddr_t));
1091 }
1092
1093 if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
1094 m_freem(tcp_saveti);
1095 tcp_saveti = NULL;
1096 } else {
1097 tcp_saveti->m_len += sizeof(struct tcphdr);
1098 bcopy(th, mtod(tcp_saveti, caddr_t) + iphlen,
1099 sizeof(struct tcphdr));
1100 }
1101 if (tcp_saveti) {
1102 /*
1103 * need to recover version # field, which was
1104 * overwritten on ip_cksum computation.
1105 */
1106 struct ip *sip;
1107 sip = mtod(tcp_saveti, struct ip *);
1108 switch (af) {
1109 #ifdef INET
1110 case AF_INET:
1111 sip->ip_v = 4;
1112 break;
1113 #endif
1114 #ifdef INET6
1115 case AF_INET6:
1116 sip->ip_v = 6;
1117 break;
1118 #endif
1119 }
1120 }
1121 nosave:;
1122 }
1123 if (so->so_options & SO_ACCEPTCONN) {
1124 if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1125 if (tiflags & TH_RST) {
1126 syn_cache_reset(&src.sa, &dst.sa, th);
1127 } else if ((tiflags & (TH_ACK|TH_SYN)) ==
1128 (TH_ACK|TH_SYN)) {
1129 /*
1130 * Received a SYN,ACK. This should
1131 * never happen while we are in
1132 * LISTEN. Send an RST.
1133 */
1134 goto badsyn;
1135 } else if (tiflags & TH_ACK) {
1136 so = syn_cache_get(&src.sa, &dst.sa,
1137 th, toff, tlen, so, m);
1138 if (so == NULL) {
1139 /*
1140 * We don't have a SYN for
1141 * this ACK; send an RST.
1142 */
1143 goto badsyn;
1144 } else if (so ==
1145 (struct socket *)(-1)) {
1146 /*
1147 * We were unable to create
1148 * the connection. If the
1149 * 3-way handshake was
1150 * completed, and RST has
1151 * been sent to the peer.
1152 * Since the mbuf might be
1153 * in use for the reply,
1154 * do not free it.
1155 */
1156 m = NULL;
1157 } else {
1158 /*
1159 * We have created a
1160 * full-blown connection.
1161 */
1162 tp = NULL;
1163 inp = NULL;
1164 #ifdef INET6
1165 in6p = NULL;
1166 #endif
1167 switch (so->so_proto->pr_domain->dom_family) {
1168 #ifdef INET
1169 case AF_INET:
1170 inp = sotoinpcb(so);
1171 tp = intotcpcb(inp);
1172 break;
1173 #endif
1174 #ifdef INET6
1175 case AF_INET6:
1176 in6p = sotoin6pcb(so);
1177 tp = in6totcpcb(in6p);
1178 break;
1179 #endif
1180 }
1181 if (tp == NULL)
1182 goto badsyn; /*XXX*/
1183 tiwin <<= tp->snd_scale;
1184 goto after_listen;
1185 }
1186 } else {
1187 /*
1188 * None of RST, SYN or ACK was set.
1189 * This is an invalid packet for a
1190 * TCB in LISTEN state. Send a RST.
1191 */
1192 goto badsyn;
1193 }
1194 } else {
1195 /*
1196 * Received a SYN.
1197 */
1198
1199 /*
1200 * LISTEN socket received a SYN
1201 * from itself? This can't possibly
1202 * be valid; drop the packet.
1203 */
1204 if (th->th_sport == th->th_dport) {
1205 int i;
1206
1207 switch (af) {
1208 #ifdef INET
1209 case AF_INET:
1210 i = in_hosteq(ip->ip_src, ip->ip_dst);
1211 break;
1212 #endif
1213 #ifdef INET6
1214 case AF_INET6:
1215 i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
1216 break;
1217 #endif
1218 default:
1219 i = 1;
1220 }
1221 if (i) {
1222 tcpstat.tcps_badsyn++;
1223 goto drop;
1224 }
1225 }
1226
1227 /*
1228 * SYN looks ok; create compressed TCP
1229 * state for it.
1230 */
1231 if (so->so_qlen <= so->so_qlimit &&
1232 syn_cache_add(&src.sa, &dst.sa, th, tlen,
1233 so, m, optp, optlen, &opti))
1234 m = NULL;
1235 }
1236 goto drop;
1237 }
1238 }
1239
1240 after_listen:
1241 #ifdef DIAGNOSTIC
1242 /*
1243 * Should not happen now that all embryonic connections
1244 * are handled with compressed state.
1245 */
1246 if (tp->t_state == TCPS_LISTEN)
1247 panic("tcp_input: TCPS_LISTEN");
1248 #endif
1249
1250 /*
1251 * Segment received on connection.
1252 * Reset idle time and keep-alive timer.
1253 */
1254 tp->t_idle = 0;
1255 if (TCPS_HAVEESTABLISHED(tp->t_state))
1256 TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1257
1258 /*
1259 * Process options.
1260 */
1261 if (optp)
1262 tcp_dooptions(tp, optp, optlen, th, &opti);
1263
1264 /*
1265 * Header prediction: check for the two common cases
1266 * of a uni-directional data xfer. If the packet has
1267 * no control flags, is in-sequence, the window didn't
1268 * change and we're not retransmitting, it's a
1269 * candidate. If the length is zero and the ack moved
1270 * forward, we're the sender side of the xfer. Just
1271 * free the data acked & wake any higher level process
1272 * that was blocked waiting for space. If the length
1273 * is non-zero and the ack didn't move, we're the
1274 * receiver side. If we're getting packets in-order
1275 * (the reassembly queue is empty), add the data to
1276 * the socket buffer and note that we need a delayed ack.
1277 */
1278 if (tp->t_state == TCPS_ESTABLISHED &&
1279 (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1280 (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
1281 th->th_seq == tp->rcv_nxt &&
1282 tiwin && tiwin == tp->snd_wnd &&
1283 tp->snd_nxt == tp->snd_max) {
1284
1285 /*
1286 * If last ACK falls within this segment's sequence numbers,
1287 * record the timestamp.
1288 */
1289 if (opti.ts_present &&
1290 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1291 SEQ_LT(tp->last_ack_sent, th->th_seq + tlen)) {
1292 tp->ts_recent_age = TCP_TIMESTAMP(tp);
1293 tp->ts_recent = opti.ts_val;
1294 }
1295
1296 if (tlen == 0) {
1297 if (SEQ_GT(th->th_ack, tp->snd_una) &&
1298 SEQ_LEQ(th->th_ack, tp->snd_max) &&
1299 tp->snd_cwnd >= tp->snd_wnd &&
1300 tp->t_dupacks < tcprexmtthresh) {
1301 /*
1302 * this is a pure ack for outstanding data.
1303 */
1304 ++tcpstat.tcps_predack;
1305 if (opti.ts_present && opti.ts_ecr)
1306 tcp_xmit_timer(tp,
1307 TCP_TIMESTAMP(tp) - opti.ts_ecr + 1);
1308 else if (tp->t_rtt &&
1309 SEQ_GT(th->th_ack, tp->t_rtseq))
1310 tcp_xmit_timer(tp, tp->t_rtt);
1311 acked = th->th_ack - tp->snd_una;
1312 tcpstat.tcps_rcvackpack++;
1313 tcpstat.tcps_rcvackbyte += acked;
1314 ND6_HINT(tp);
1315 sbdrop(&so->so_snd, acked);
1316 /*
1317 * We want snd_recover to track snd_una to
1318 * avoid sequence wraparound problems for
1319 * very large transfers.
1320 */
1321 tp->snd_una = tp->snd_recover = th->th_ack;
1322 m_freem(m);
1323
1324 /*
1325 * If all outstanding data are acked, stop
1326 * retransmit timer, otherwise restart timer
1327 * using current (possibly backed-off) value.
1328 * If process is waiting for space,
1329 * wakeup/selwakeup/signal. If data
1330 * are ready to send, let tcp_output
1331 * decide between more output or persist.
1332 */
1333 if (tp->snd_una == tp->snd_max)
1334 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1335 else if (TCP_TIMER_ISARMED(tp,
1336 TCPT_PERSIST) == 0)
1337 TCP_TIMER_ARM(tp, TCPT_REXMT,
1338 tp->t_rxtcur);
1339
1340 sowwakeup(so);
1341 if (so->so_snd.sb_cc)
1342 (void) tcp_output(tp);
1343 if (tcp_saveti)
1344 m_freem(tcp_saveti);
1345 return;
1346 }
1347 } else if (th->th_ack == tp->snd_una &&
1348 tp->segq.lh_first == NULL &&
1349 tlen <= sbspace(&so->so_rcv)) {
1350 /*
1351 * this is a pure, in-sequence data packet
1352 * with nothing on the reassembly queue and
1353 * we have enough buffer space to take it.
1354 */
1355 ++tcpstat.tcps_preddat;
1356 tp->rcv_nxt += tlen;
1357 tcpstat.tcps_rcvpack++;
1358 tcpstat.tcps_rcvbyte += tlen;
1359 ND6_HINT(tp);
1360 /*
1361 * Drop TCP, IP headers and TCP options then add data
1362 * to socket buffer.
1363 */
1364 m_adj(m, toff + off);
1365 sbappend(&so->so_rcv, m);
1366 sorwakeup(so);
1367 TCP_SETUP_ACK(tp, th);
1368 if (tp->t_flags & TF_ACKNOW)
1369 (void) tcp_output(tp);
1370 if (tcp_saveti)
1371 m_freem(tcp_saveti);
1372 return;
1373 }
1374 }
1375
1376 /*
1377 * Compute mbuf offset to TCP data segment.
1378 */
1379 hdroptlen = toff + off;
1380
1381 /*
1382 * Calculate amount of space in receive window,
1383 * and then do TCP input processing.
1384 * Receive window is amount of space in rcv queue,
1385 * but not less than advertised window.
1386 */
1387 { int win;
1388
1389 win = sbspace(&so->so_rcv);
1390 if (win < 0)
1391 win = 0;
1392 tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1393 }
1394
1395 switch (tp->t_state) {
1396
1397 /*
1398 * If the state is SYN_SENT:
1399 * if seg contains an ACK, but not for our SYN, drop the input.
1400 * if seg contains a RST, then drop the connection.
1401 * if seg does not contain SYN, then drop it.
1402 * Otherwise this is an acceptable SYN segment
1403 * initialize tp->rcv_nxt and tp->irs
1404 * if seg contains ack then advance tp->snd_una
1405 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1406 * arrange for segment to be acked (eventually)
1407 * continue processing rest of data/controls, beginning with URG
1408 */
1409 case TCPS_SYN_SENT:
1410 if ((tiflags & TH_ACK) &&
1411 (SEQ_LEQ(th->th_ack, tp->iss) ||
1412 SEQ_GT(th->th_ack, tp->snd_max)))
1413 goto dropwithreset;
1414 if (tiflags & TH_RST) {
1415 if (tiflags & TH_ACK)
1416 tp = tcp_drop(tp, ECONNREFUSED);
1417 goto drop;
1418 }
1419 if ((tiflags & TH_SYN) == 0)
1420 goto drop;
1421 if (tiflags & TH_ACK) {
1422 tp->snd_una = tp->snd_recover = th->th_ack;
1423 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1424 tp->snd_nxt = tp->snd_una;
1425 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1426 }
1427 tp->irs = th->th_seq;
1428 tcp_rcvseqinit(tp);
1429 tp->t_flags |= TF_ACKNOW;
1430 tcp_mss_from_peer(tp, opti.maxseg);
1431
1432 /*
1433 * Initialize the initial congestion window. If we
1434 * had to retransmit the SYN, we must initialize cwnd
1435 * to 1 segment (i.e. the Loss Window).
1436 */
1437 if (tp->t_flags & TF_SYN_REXMT)
1438 tp->snd_cwnd = tp->t_peermss;
1439 else
1440 tp->snd_cwnd = TCP_INITIAL_WINDOW(tcp_init_win,
1441 tp->t_peermss);
1442
1443 tcp_rmx_rtt(tp);
1444 if (tiflags & TH_ACK) {
1445 tcpstat.tcps_connects++;
1446 soisconnected(so);
1447 tcp_established(tp);
1448 /* Do window scaling on this connection? */
1449 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1450 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1451 tp->snd_scale = tp->requested_s_scale;
1452 tp->rcv_scale = tp->request_r_scale;
1453 }
1454 TCP_REASS_LOCK(tp);
1455 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1456 TCP_REASS_UNLOCK(tp);
1457 /*
1458 * if we didn't have to retransmit the SYN,
1459 * use its rtt as our initial srtt & rtt var.
1460 */
1461 if (tp->t_rtt)
1462 tcp_xmit_timer(tp, tp->t_rtt);
1463 } else
1464 tp->t_state = TCPS_SYN_RECEIVED;
1465
1466 /*
1467 * Advance th->th_seq to correspond to first data byte.
1468 * If data, trim to stay within window,
1469 * dropping FIN if necessary.
1470 */
1471 th->th_seq++;
1472 if (tlen > tp->rcv_wnd) {
1473 todrop = tlen - tp->rcv_wnd;
1474 m_adj(m, -todrop);
1475 tlen = tp->rcv_wnd;
1476 tiflags &= ~TH_FIN;
1477 tcpstat.tcps_rcvpackafterwin++;
1478 tcpstat.tcps_rcvbyteafterwin += todrop;
1479 }
1480 tp->snd_wl1 = th->th_seq - 1;
1481 tp->rcv_up = th->th_seq;
1482 goto step6;
1483
1484 /*
1485 * If the state is SYN_RECEIVED:
1486 * If seg contains an ACK, but not for our SYN, drop the input
1487 * and generate an RST. See page 36, rfc793
1488 */
1489 case TCPS_SYN_RECEIVED:
1490 if ((tiflags & TH_ACK) &&
1491 (SEQ_LEQ(th->th_ack, tp->iss) ||
1492 SEQ_GT(th->th_ack, tp->snd_max)))
1493 goto dropwithreset;
1494 break;
1495 }
1496
1497 /*
1498 * States other than LISTEN or SYN_SENT.
1499 * First check timestamp, if present.
1500 * Then check that at least some bytes of segment are within
1501 * receive window. If segment begins before rcv_nxt,
1502 * drop leading data (and SYN); if nothing left, just ack.
1503 *
1504 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1505 * and it's less than ts_recent, drop it.
1506 */
1507 if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
1508 TSTMP_LT(opti.ts_val, tp->ts_recent)) {
1509
1510 /* Check to see if ts_recent is over 24 days old. */
1511 if ((int)(TCP_TIMESTAMP(tp) - tp->ts_recent_age) >
1512 TCP_PAWS_IDLE) {
1513 /*
1514 * Invalidate ts_recent. If this segment updates
1515 * ts_recent, the age will be reset later and ts_recent
1516 * will get a valid value. If it does not, setting
1517 * ts_recent to zero will at least satisfy the
1518 * requirement that zero be placed in the timestamp
1519 * echo reply when ts_recent isn't valid. The
1520 * age isn't reset until we get a valid ts_recent
1521 * because we don't want out-of-order segments to be
1522 * dropped when ts_recent is old.
1523 */
1524 tp->ts_recent = 0;
1525 } else {
1526 tcpstat.tcps_rcvduppack++;
1527 tcpstat.tcps_rcvdupbyte += tlen;
1528 tcpstat.tcps_pawsdrop++;
1529 goto dropafterack;
1530 }
1531 }
1532
1533 todrop = tp->rcv_nxt - th->th_seq;
1534 if (todrop > 0) {
1535 if (tiflags & TH_SYN) {
1536 tiflags &= ~TH_SYN;
1537 th->th_seq++;
1538 if (th->th_urp > 1)
1539 th->th_urp--;
1540 else {
1541 tiflags &= ~TH_URG;
1542 th->th_urp = 0;
1543 }
1544 todrop--;
1545 }
1546 if (todrop > tlen ||
1547 (todrop == tlen && (tiflags & TH_FIN) == 0)) {
1548 /*
1549 * Any valid FIN must be to the left of the window.
1550 * At this point the FIN must be a duplicate or
1551 * out of sequence; drop it.
1552 */
1553 tiflags &= ~TH_FIN;
1554 /*
1555 * Send an ACK to resynchronize and drop any data.
1556 * But keep on processing for RST or ACK.
1557 */
1558 tp->t_flags |= TF_ACKNOW;
1559 todrop = tlen;
1560 tcpstat.tcps_rcvdupbyte += todrop;
1561 tcpstat.tcps_rcvduppack++;
1562 } else {
1563 tcpstat.tcps_rcvpartduppack++;
1564 tcpstat.tcps_rcvpartdupbyte += todrop;
1565 }
1566 hdroptlen += todrop; /*drop from head afterwards*/
1567 th->th_seq += todrop;
1568 tlen -= todrop;
1569 if (th->th_urp > todrop)
1570 th->th_urp -= todrop;
1571 else {
1572 tiflags &= ~TH_URG;
1573 th->th_urp = 0;
1574 }
1575 }
1576
1577 /*
1578 * If new data are received on a connection after the
1579 * user processes are gone, then RST the other end.
1580 */
1581 if ((so->so_state & SS_NOFDREF) &&
1582 tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1583 tp = tcp_close(tp);
1584 tcpstat.tcps_rcvafterclose++;
1585 goto dropwithreset;
1586 }
1587
1588 /*
1589 * If segment ends after window, drop trailing data
1590 * (and PUSH and FIN); if nothing left, just ACK.
1591 */
1592 todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
1593 if (todrop > 0) {
1594 tcpstat.tcps_rcvpackafterwin++;
1595 if (todrop >= tlen) {
1596 tcpstat.tcps_rcvbyteafterwin += tlen;
1597 /*
1598 * If a new connection request is received
1599 * while in TIME_WAIT, drop the old connection
1600 * and start over if the sequence numbers
1601 * are above the previous ones.
1602 */
1603 if (tiflags & TH_SYN &&
1604 tp->t_state == TCPS_TIME_WAIT &&
1605 SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1606 iss = tcp_new_iss(tp, tp->snd_nxt);
1607 tp = tcp_close(tp);
1608 goto findpcb;
1609 }
1610 /*
1611 * If window is closed can only take segments at
1612 * window edge, and have to drop data and PUSH from
1613 * incoming segments. Continue processing, but
1614 * remember to ack. Otherwise, drop segment
1615 * and ack.
1616 */
1617 if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1618 tp->t_flags |= TF_ACKNOW;
1619 tcpstat.tcps_rcvwinprobe++;
1620 } else
1621 goto dropafterack;
1622 } else
1623 tcpstat.tcps_rcvbyteafterwin += todrop;
1624 m_adj(m, -todrop);
1625 tlen -= todrop;
1626 tiflags &= ~(TH_PUSH|TH_FIN);
1627 }
1628
1629 /*
1630 * If last ACK falls within this segment's sequence numbers,
1631 * and the timestamp is newer, record it.
1632 */
1633 if (opti.ts_present && TSTMP_GEQ(opti.ts_val, tp->ts_recent) &&
1634 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1635 SEQ_LT(tp->last_ack_sent, th->th_seq + tlen +
1636 ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
1637 tp->ts_recent_age = TCP_TIMESTAMP(tp);
1638 tp->ts_recent = opti.ts_val;
1639 }
1640
1641 /*
1642 * If the RST bit is set examine the state:
1643 * SYN_RECEIVED STATE:
1644 * If passive open, return to LISTEN state.
1645 * If active open, inform user that connection was refused.
1646 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
1647 * Inform user that connection was reset, and close tcb.
1648 * CLOSING, LAST_ACK, TIME_WAIT STATES
1649 * Close the tcb.
1650 */
1651 if (tiflags&TH_RST) switch (tp->t_state) {
1652
1653 case TCPS_SYN_RECEIVED:
1654 so->so_error = ECONNREFUSED;
1655 goto close;
1656
1657 case TCPS_ESTABLISHED:
1658 case TCPS_FIN_WAIT_1:
1659 case TCPS_FIN_WAIT_2:
1660 case TCPS_CLOSE_WAIT:
1661 so->so_error = ECONNRESET;
1662 close:
1663 tp->t_state = TCPS_CLOSED;
1664 tcpstat.tcps_drops++;
1665 tp = tcp_close(tp);
1666 goto drop;
1667
1668 case TCPS_CLOSING:
1669 case TCPS_LAST_ACK:
1670 case TCPS_TIME_WAIT:
1671 tp = tcp_close(tp);
1672 goto drop;
1673 }
1674
1675 /*
1676 * If a SYN is in the window, then this is an
1677 * error and we send an RST and drop the connection.
1678 */
1679 if (tiflags & TH_SYN) {
1680 tp = tcp_drop(tp, ECONNRESET);
1681 goto dropwithreset;
1682 }
1683
1684 /*
1685 * If the ACK bit is off we drop the segment and return.
1686 */
1687 if ((tiflags & TH_ACK) == 0) {
1688 if (tp->t_flags & TF_ACKNOW)
1689 goto dropafterack;
1690 else
1691 goto drop;
1692 }
1693
1694 /*
1695 * Ack processing.
1696 */
1697 switch (tp->t_state) {
1698
1699 /*
1700 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
1701 * ESTABLISHED state and continue processing, otherwise
1702 * send an RST.
1703 */
1704 case TCPS_SYN_RECEIVED:
1705 if (SEQ_GT(tp->snd_una, th->th_ack) ||
1706 SEQ_GT(th->th_ack, tp->snd_max))
1707 goto dropwithreset;
1708 tcpstat.tcps_connects++;
1709 soisconnected(so);
1710 tcp_established(tp);
1711 /* Do window scaling? */
1712 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1713 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1714 tp->snd_scale = tp->requested_s_scale;
1715 tp->rcv_scale = tp->request_r_scale;
1716 }
1717 TCP_REASS_LOCK(tp);
1718 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1719 TCP_REASS_UNLOCK(tp);
1720 tp->snd_wl1 = th->th_seq - 1;
1721 /* fall into ... */
1722
1723 /*
1724 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1725 * ACKs. If the ack is in the range
1726 * tp->snd_una < th->th_ack <= tp->snd_max
1727 * then advance tp->snd_una to th->th_ack and drop
1728 * data from the retransmission queue. If this ACK reflects
1729 * more up to date window information we update our window information.
1730 */
1731 case TCPS_ESTABLISHED:
1732 case TCPS_FIN_WAIT_1:
1733 case TCPS_FIN_WAIT_2:
1734 case TCPS_CLOSE_WAIT:
1735 case TCPS_CLOSING:
1736 case TCPS_LAST_ACK:
1737 case TCPS_TIME_WAIT:
1738
1739 if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
1740 if (tlen == 0 && tiwin == tp->snd_wnd) {
1741 tcpstat.tcps_rcvdupack++;
1742 /*
1743 * If we have outstanding data (other than
1744 * a window probe), this is a completely
1745 * duplicate ack (ie, window info didn't
1746 * change), the ack is the biggest we've
1747 * seen and we've seen exactly our rexmt
1748 * threshhold of them, assume a packet
1749 * has been dropped and retransmit it.
1750 * Kludge snd_nxt & the congestion
1751 * window so we send only this one
1752 * packet.
1753 *
1754 * We know we're losing at the current
1755 * window size so do congestion avoidance
1756 * (set ssthresh to half the current window
1757 * and pull our congestion window back to
1758 * the new ssthresh).
1759 *
1760 * Dup acks mean that packets have left the
1761 * network (they're now cached at the receiver)
1762 * so bump cwnd by the amount in the receiver
1763 * to keep a constant cwnd packets in the
1764 * network.
1765 */
1766 if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
1767 th->th_ack != tp->snd_una)
1768 tp->t_dupacks = 0;
1769 else if (++tp->t_dupacks == tcprexmtthresh) {
1770 tcp_seq onxt = tp->snd_nxt;
1771 u_int win =
1772 min(tp->snd_wnd, tp->snd_cwnd) /
1773 2 / tp->t_segsz;
1774 if (tcp_do_newreno && SEQ_LT(th->th_ack,
1775 tp->snd_recover)) {
1776 /*
1777 * False fast retransmit after
1778 * timeout. Do not cut window.
1779 */
1780 tp->snd_cwnd += tp->t_segsz;
1781 tp->t_dupacks = 0;
1782 (void) tcp_output(tp);
1783 goto drop;
1784 }
1785
1786 if (win < 2)
1787 win = 2;
1788 tp->snd_ssthresh = win * tp->t_segsz;
1789 tp->snd_recover = tp->snd_max;
1790 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1791 tp->t_rtt = 0;
1792 tp->snd_nxt = th->th_ack;
1793 tp->snd_cwnd = tp->t_segsz;
1794 (void) tcp_output(tp);
1795 tp->snd_cwnd = tp->snd_ssthresh +
1796 tp->t_segsz * tp->t_dupacks;
1797 if (SEQ_GT(onxt, tp->snd_nxt))
1798 tp->snd_nxt = onxt;
1799 goto drop;
1800 } else if (tp->t_dupacks > tcprexmtthresh) {
1801 tp->snd_cwnd += tp->t_segsz;
1802 (void) tcp_output(tp);
1803 goto drop;
1804 }
1805 } else
1806 tp->t_dupacks = 0;
1807 break;
1808 }
1809 /*
1810 * If the congestion window was inflated to account
1811 * for the other side's cached packets, retract it.
1812 */
1813 if (tcp_do_newreno == 0) {
1814 if (tp->t_dupacks >= tcprexmtthresh &&
1815 tp->snd_cwnd > tp->snd_ssthresh)
1816 tp->snd_cwnd = tp->snd_ssthresh;
1817 tp->t_dupacks = 0;
1818 } else if (tp->t_dupacks >= tcprexmtthresh &&
1819 tcp_newreno(tp, th) == 0) {
1820 tp->snd_cwnd = tp->snd_ssthresh;
1821 /*
1822 * Window inflation should have left us with approx.
1823 * snd_ssthresh outstanding data. But in case we
1824 * would be inclined to send a burst, better to do
1825 * it via the slow start mechanism.
1826 */
1827 if (SEQ_SUB(tp->snd_max, th->th_ack) < tp->snd_ssthresh)
1828 tp->snd_cwnd = SEQ_SUB(tp->snd_max, th->th_ack)
1829 + tp->t_segsz;
1830 tp->t_dupacks = 0;
1831 }
1832 if (SEQ_GT(th->th_ack, tp->snd_max)) {
1833 tcpstat.tcps_rcvacktoomuch++;
1834 goto dropafterack;
1835 }
1836 acked = th->th_ack - tp->snd_una;
1837 tcpstat.tcps_rcvackpack++;
1838 tcpstat.tcps_rcvackbyte += acked;
1839
1840 /*
1841 * If we have a timestamp reply, update smoothed
1842 * round trip time. If no timestamp is present but
1843 * transmit timer is running and timed sequence
1844 * number was acked, update smoothed round trip time.
1845 * Since we now have an rtt measurement, cancel the
1846 * timer backoff (cf., Phil Karn's retransmit alg.).
1847 * Recompute the initial retransmit timer.
1848 */
1849 if (opti.ts_present && opti.ts_ecr)
1850 tcp_xmit_timer(tp, TCP_TIMESTAMP(tp) - opti.ts_ecr + 1);
1851 else if (tp->t_rtt && SEQ_GT(th->th_ack, tp->t_rtseq))
1852 tcp_xmit_timer(tp,tp->t_rtt);
1853
1854 /*
1855 * If all outstanding data is acked, stop retransmit
1856 * timer and remember to restart (more output or persist).
1857 * If there is more data to be acked, restart retransmit
1858 * timer, using current (possibly backed-off) value.
1859 */
1860 if (th->th_ack == tp->snd_max) {
1861 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1862 needoutput = 1;
1863 } else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
1864 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
1865 /*
1866 * When new data is acked, open the congestion window.
1867 * If the window gives us less than ssthresh packets
1868 * in flight, open exponentially (segsz per packet).
1869 * Otherwise open linearly: segsz per window
1870 * (segsz^2 / cwnd per packet), plus a constant
1871 * fraction of a packet (segsz/8) to help larger windows
1872 * open quickly enough.
1873 */
1874 {
1875 u_int cw = tp->snd_cwnd;
1876 u_int incr = tp->t_segsz;
1877
1878 if (cw > tp->snd_ssthresh)
1879 incr = incr * incr / cw;
1880 if (tcp_do_newreno == 0 || SEQ_GEQ(th->th_ack, tp->snd_recover))
1881 tp->snd_cwnd = min(cw + incr,
1882 TCP_MAXWIN << tp->snd_scale);
1883 }
1884 ND6_HINT(tp);
1885 if (acked > so->so_snd.sb_cc) {
1886 tp->snd_wnd -= so->so_snd.sb_cc;
1887 sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
1888 ourfinisacked = 1;
1889 } else {
1890 sbdrop(&so->so_snd, acked);
1891 tp->snd_wnd -= acked;
1892 ourfinisacked = 0;
1893 }
1894 sowwakeup(so);
1895 /*
1896 * We want snd_recover to track snd_una to
1897 * avoid sequence wraparound problems for
1898 * very large transfers.
1899 */
1900 tp->snd_una = tp->snd_recover = th->th_ack;
1901 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1902 tp->snd_nxt = tp->snd_una;
1903
1904 switch (tp->t_state) {
1905
1906 /*
1907 * In FIN_WAIT_1 STATE in addition to the processing
1908 * for the ESTABLISHED state if our FIN is now acknowledged
1909 * then enter FIN_WAIT_2.
1910 */
1911 case TCPS_FIN_WAIT_1:
1912 if (ourfinisacked) {
1913 /*
1914 * If we can't receive any more
1915 * data, then closing user can proceed.
1916 * Starting the timer is contrary to the
1917 * specification, but if we don't get a FIN
1918 * we'll hang forever.
1919 */
1920 if (so->so_state & SS_CANTRCVMORE) {
1921 soisdisconnected(so);
1922 if (tcp_maxidle > 0)
1923 TCP_TIMER_ARM(tp, TCPT_2MSL,
1924 tcp_maxidle);
1925 }
1926 tp->t_state = TCPS_FIN_WAIT_2;
1927 }
1928 break;
1929
1930 /*
1931 * In CLOSING STATE in addition to the processing for
1932 * the ESTABLISHED state if the ACK acknowledges our FIN
1933 * then enter the TIME-WAIT state, otherwise ignore
1934 * the segment.
1935 */
1936 case TCPS_CLOSING:
1937 if (ourfinisacked) {
1938 tp->t_state = TCPS_TIME_WAIT;
1939 tcp_canceltimers(tp);
1940 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
1941 soisdisconnected(so);
1942 }
1943 break;
1944
1945 /*
1946 * In LAST_ACK, we may still be waiting for data to drain
1947 * and/or to be acked, as well as for the ack of our FIN.
1948 * If our FIN is now acknowledged, delete the TCB,
1949 * enter the closed state and return.
1950 */
1951 case TCPS_LAST_ACK:
1952 if (ourfinisacked) {
1953 tp = tcp_close(tp);
1954 goto drop;
1955 }
1956 break;
1957
1958 /*
1959 * In TIME_WAIT state the only thing that should arrive
1960 * is a retransmission of the remote FIN. Acknowledge
1961 * it and restart the finack timer.
1962 */
1963 case TCPS_TIME_WAIT:
1964 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
1965 goto dropafterack;
1966 }
1967 }
1968
1969 step6:
1970 /*
1971 * Update window information.
1972 * Don't look at window if no ACK: TAC's send garbage on first SYN.
1973 */
1974 if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
1975 (tp->snd_wl1 == th->th_seq && SEQ_LT(tp->snd_wl2, th->th_ack)) ||
1976 (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))) {
1977 /* keep track of pure window updates */
1978 if (tlen == 0 &&
1979 tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
1980 tcpstat.tcps_rcvwinupd++;
1981 tp->snd_wnd = tiwin;
1982 tp->snd_wl1 = th->th_seq;
1983 tp->snd_wl2 = th->th_ack;
1984 if (tp->snd_wnd > tp->max_sndwnd)
1985 tp->max_sndwnd = tp->snd_wnd;
1986 needoutput = 1;
1987 }
1988
1989 /*
1990 * Process segments with URG.
1991 */
1992 if ((tiflags & TH_URG) && th->th_urp &&
1993 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1994 /*
1995 * This is a kludge, but if we receive and accept
1996 * random urgent pointers, we'll crash in
1997 * soreceive. It's hard to imagine someone
1998 * actually wanting to send this much urgent data.
1999 */
2000 if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2001 th->th_urp = 0; /* XXX */
2002 tiflags &= ~TH_URG; /* XXX */
2003 goto dodata; /* XXX */
2004 }
2005 /*
2006 * If this segment advances the known urgent pointer,
2007 * then mark the data stream. This should not happen
2008 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2009 * a FIN has been received from the remote side.
2010 * In these states we ignore the URG.
2011 *
2012 * According to RFC961 (Assigned Protocols),
2013 * the urgent pointer points to the last octet
2014 * of urgent data. We continue, however,
2015 * to consider it to indicate the first octet
2016 * of data past the urgent section as the original
2017 * spec states (in one of two places).
2018 */
2019 if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2020 tp->rcv_up = th->th_seq + th->th_urp;
2021 so->so_oobmark = so->so_rcv.sb_cc +
2022 (tp->rcv_up - tp->rcv_nxt) - 1;
2023 if (so->so_oobmark == 0)
2024 so->so_state |= SS_RCVATMARK;
2025 sohasoutofband(so);
2026 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2027 }
2028 /*
2029 * Remove out of band data so doesn't get presented to user.
2030 * This can happen independent of advancing the URG pointer,
2031 * but if two URG's are pending at once, some out-of-band
2032 * data may creep in... ick.
2033 */
2034 if (th->th_urp <= (u_int16_t) tlen
2035 #ifdef SO_OOBINLINE
2036 && (so->so_options & SO_OOBINLINE) == 0
2037 #endif
2038 )
2039 tcp_pulloutofband(so, th, m, hdroptlen);
2040 } else
2041 /*
2042 * If no out of band data is expected,
2043 * pull receive urgent pointer along
2044 * with the receive window.
2045 */
2046 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2047 tp->rcv_up = tp->rcv_nxt;
2048 dodata: /* XXX */
2049
2050 /*
2051 * Process the segment text, merging it into the TCP sequencing queue,
2052 * and arranging for acknowledgement of receipt if necessary.
2053 * This process logically involves adjusting tp->rcv_wnd as data
2054 * is presented to the user (this happens in tcp_usrreq.c,
2055 * case PRU_RCVD). If a FIN has already been received on this
2056 * connection then we just ignore the text.
2057 */
2058 if ((tlen || (tiflags & TH_FIN)) &&
2059 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2060 /*
2061 * Insert segment ti into reassembly queue of tcp with
2062 * control block tp. Return TH_FIN if reassembly now includes
2063 * a segment with FIN. The macro form does the common case
2064 * inline (segment is the next to be received on an
2065 * established connection, and the queue is empty),
2066 * avoiding linkage into and removal from the queue and
2067 * repetition of various conversions.
2068 * Set DELACK for segments received in order, but ack
2069 * immediately when segments are out of order
2070 * (so fast retransmit can work).
2071 */
2072 /* NOTE: this was TCP_REASS() macro, but used only once */
2073 TCP_REASS_LOCK(tp);
2074 if (th->th_seq == tp->rcv_nxt &&
2075 tp->segq.lh_first == NULL &&
2076 tp->t_state == TCPS_ESTABLISHED) {
2077 TCP_SETUP_ACK(tp, th);
2078 tp->rcv_nxt += tlen;
2079 tiflags = th->th_flags & TH_FIN;
2080 tcpstat.tcps_rcvpack++;
2081 tcpstat.tcps_rcvbyte += tlen;
2082 ND6_HINT(tp);
2083 m_adj(m, hdroptlen);
2084 sbappend(&(so)->so_rcv, m);
2085 sorwakeup(so);
2086 } else {
2087 m_adj(m, hdroptlen);
2088 tiflags = tcp_reass(tp, th, m, &tlen);
2089 tp->t_flags |= TF_ACKNOW;
2090 }
2091 TCP_REASS_UNLOCK(tp);
2092
2093 /*
2094 * Note the amount of data that peer has sent into
2095 * our window, in order to estimate the sender's
2096 * buffer size.
2097 */
2098 len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2099 } else {
2100 m_freem(m);
2101 m = NULL;
2102 tiflags &= ~TH_FIN;
2103 }
2104
2105 /*
2106 * If FIN is received ACK the FIN and let the user know
2107 * that the connection is closing. Ignore a FIN received before
2108 * the connection is fully established.
2109 */
2110 if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2111 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2112 socantrcvmore(so);
2113 tp->t_flags |= TF_ACKNOW;
2114 tp->rcv_nxt++;
2115 }
2116 switch (tp->t_state) {
2117
2118 /*
2119 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2120 */
2121 case TCPS_ESTABLISHED:
2122 tp->t_state = TCPS_CLOSE_WAIT;
2123 break;
2124
2125 /*
2126 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2127 * enter the CLOSING state.
2128 */
2129 case TCPS_FIN_WAIT_1:
2130 tp->t_state = TCPS_CLOSING;
2131 break;
2132
2133 /*
2134 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2135 * starting the time-wait timer, turning off the other
2136 * standard timers.
2137 */
2138 case TCPS_FIN_WAIT_2:
2139 tp->t_state = TCPS_TIME_WAIT;
2140 tcp_canceltimers(tp);
2141 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2142 soisdisconnected(so);
2143 break;
2144
2145 /*
2146 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2147 */
2148 case TCPS_TIME_WAIT:
2149 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2150 break;
2151 }
2152 }
2153 if (so->so_options & SO_DEBUG) {
2154 tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
2155 }
2156
2157 /*
2158 * Return any desired output.
2159 */
2160 if (needoutput || (tp->t_flags & TF_ACKNOW))
2161 (void) tcp_output(tp);
2162 if (tcp_saveti)
2163 m_freem(tcp_saveti);
2164 return;
2165
2166 badsyn:
2167 /*
2168 * Received a bad SYN. Increment counters and dropwithreset.
2169 */
2170 tcpstat.tcps_badsyn++;
2171 tp = NULL;
2172 goto dropwithreset;
2173
2174 dropafterack:
2175 /*
2176 * Generate an ACK dropping incoming segment if it occupies
2177 * sequence space, where the ACK reflects our state.
2178 */
2179 if (tiflags & TH_RST)
2180 goto drop;
2181 m_freem(m);
2182 tp->t_flags |= TF_ACKNOW;
2183 (void) tcp_output(tp);
2184 if (tcp_saveti)
2185 m_freem(tcp_saveti);
2186 return;
2187
2188 dropwithreset_ratelim:
2189 /*
2190 * We may want to rate-limit RSTs in certain situations,
2191 * particularly if we are sending an RST in response to
2192 * an attempt to connect to or otherwise communicate with
2193 * a port for which we have no socket.
2194 */
2195 if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
2196 tcp_rst_ppslim) == 0) {
2197 /* XXX stat */
2198 goto drop;
2199 }
2200 /* ...fall into dropwithreset... */
2201
2202 dropwithreset:
2203 /*
2204 * Generate a RST, dropping incoming segment.
2205 * Make ACK acceptable to originator of segment.
2206 */
2207 if (tiflags & TH_RST)
2208 goto drop;
2209 {
2210 /*
2211 * need to recover version # field, which was overwritten on
2212 * ip_cksum computation.
2213 */
2214 struct ip *sip;
2215 sip = mtod(m, struct ip *);
2216 switch (af) {
2217 #ifdef INET
2218 case AF_INET:
2219 sip->ip_v = 4;
2220 break;
2221 #endif
2222 #ifdef INET6
2223 case AF_INET6:
2224 sip->ip_v = 6;
2225 break;
2226 #endif
2227 }
2228 }
2229 if (tiflags & TH_ACK)
2230 (void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
2231 else {
2232 if (tiflags & TH_SYN)
2233 tlen++;
2234 (void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
2235 TH_RST|TH_ACK);
2236 }
2237 if (tcp_saveti)
2238 m_freem(tcp_saveti);
2239 return;
2240
2241 badcsum:
2242 tcpstat.tcps_rcvbadsum++;
2243 drop:
2244 /*
2245 * Drop space held by incoming segment and return.
2246 */
2247 if (tp) {
2248 if (tp->t_inpcb)
2249 so = tp->t_inpcb->inp_socket;
2250 #ifdef INET6
2251 else if (tp->t_in6pcb)
2252 so = tp->t_in6pcb->in6p_socket;
2253 #endif
2254 else
2255 so = NULL;
2256 if (so && (so->so_options & SO_DEBUG) != 0)
2257 tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
2258 }
2259 if (tcp_saveti)
2260 m_freem(tcp_saveti);
2261 m_freem(m);
2262 return;
2263 }
2264
2265 void
2266 tcp_dooptions(tp, cp, cnt, th, oi)
2267 struct tcpcb *tp;
2268 u_char *cp;
2269 int cnt;
2270 struct tcphdr *th;
2271 struct tcp_opt_info *oi;
2272 {
2273 u_int16_t mss;
2274 int opt, optlen;
2275
2276 for (; cnt > 0; cnt -= optlen, cp += optlen) {
2277 opt = cp[0];
2278 if (opt == TCPOPT_EOL)
2279 break;
2280 if (opt == TCPOPT_NOP)
2281 optlen = 1;
2282 else {
2283 if (cnt < 2)
2284 break;
2285 optlen = cp[1];
2286 if (optlen < 2 || optlen > cnt)
2287 break;
2288 }
2289 switch (opt) {
2290
2291 default:
2292 continue;
2293
2294 case TCPOPT_MAXSEG:
2295 if (optlen != TCPOLEN_MAXSEG)
2296 continue;
2297 if (!(th->th_flags & TH_SYN))
2298 continue;
2299 bcopy(cp + 2, &mss, sizeof(mss));
2300 oi->maxseg = ntohs(mss);
2301 break;
2302
2303 case TCPOPT_WINDOW:
2304 if (optlen != TCPOLEN_WINDOW)
2305 continue;
2306 if (!(th->th_flags & TH_SYN))
2307 continue;
2308 tp->t_flags |= TF_RCVD_SCALE;
2309 tp->requested_s_scale = cp[2];
2310 if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
2311 #if 0 /*XXX*/
2312 char *p;
2313
2314 if (ip)
2315 p = ntohl(ip->ip_src);
2316 #ifdef INET6
2317 else if (ip6)
2318 p = ip6_sprintf(&ip6->ip6_src);
2319 #endif
2320 else
2321 p = "(unknown)";
2322 log(LOG_ERR, "TCP: invalid wscale %d from %s, "
2323 "assuming %d\n",
2324 tp->requested_s_scale, p,
2325 TCP_MAX_WINSHIFT);
2326 #else
2327 log(LOG_ERR, "TCP: invalid wscale %d, "
2328 "assuming %d\n",
2329 tp->requested_s_scale,
2330 TCP_MAX_WINSHIFT);
2331 #endif
2332 tp->requested_s_scale = TCP_MAX_WINSHIFT;
2333 }
2334 break;
2335
2336 case TCPOPT_TIMESTAMP:
2337 if (optlen != TCPOLEN_TIMESTAMP)
2338 continue;
2339 oi->ts_present = 1;
2340 bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
2341 NTOHL(oi->ts_val);
2342 bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
2343 NTOHL(oi->ts_ecr);
2344
2345 /*
2346 * A timestamp received in a SYN makes
2347 * it ok to send timestamp requests and replies.
2348 */
2349 if (th->th_flags & TH_SYN) {
2350 tp->t_flags |= TF_RCVD_TSTMP;
2351 tp->ts_recent = oi->ts_val;
2352 tp->ts_recent_age = TCP_TIMESTAMP(tp);
2353 }
2354 break;
2355 case TCPOPT_SACK_PERMITTED:
2356 if (optlen != TCPOLEN_SACK_PERMITTED)
2357 continue;
2358 if (!(th->th_flags & TH_SYN))
2359 continue;
2360 tp->t_flags &= ~TF_CANT_TXSACK;
2361 break;
2362
2363 case TCPOPT_SACK:
2364 if (tp->t_flags & TF_IGNR_RXSACK)
2365 continue;
2366 if (optlen % 8 != 2 || optlen < 10)
2367 continue;
2368 cp += 2;
2369 optlen -= 2;
2370 for (; optlen > 0; cp -= 8, optlen -= 8) {
2371 tcp_seq lwe, rwe;
2372 bcopy((char *)cp, (char *) &lwe, sizeof(lwe));
2373 NTOHL(lwe);
2374 bcopy((char *)cp, (char *) &rwe, sizeof(rwe));
2375 NTOHL(rwe);
2376 /* tcp_mark_sacked(tp, lwe, rwe); */
2377 }
2378 break;
2379 }
2380 }
2381 }
2382
2383 /*
2384 * Pull out of band byte out of a segment so
2385 * it doesn't appear in the user's data queue.
2386 * It is still reflected in the segment length for
2387 * sequencing purposes.
2388 */
2389 void
2390 tcp_pulloutofband(so, th, m, off)
2391 struct socket *so;
2392 struct tcphdr *th;
2393 struct mbuf *m;
2394 int off;
2395 {
2396 int cnt = off + th->th_urp - 1;
2397
2398 while (cnt >= 0) {
2399 if (m->m_len > cnt) {
2400 char *cp = mtod(m, caddr_t) + cnt;
2401 struct tcpcb *tp = sototcpcb(so);
2402
2403 tp->t_iobc = *cp;
2404 tp->t_oobflags |= TCPOOB_HAVEDATA;
2405 bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
2406 m->m_len--;
2407 return;
2408 }
2409 cnt -= m->m_len;
2410 m = m->m_next;
2411 if (m == 0)
2412 break;
2413 }
2414 panic("tcp_pulloutofband");
2415 }
2416
2417 /*
2418 * Collect new round-trip time estimate
2419 * and update averages and current timeout.
2420 */
2421 void
2422 tcp_xmit_timer(tp, rtt)
2423 struct tcpcb *tp;
2424 short rtt;
2425 {
2426 short delta;
2427 short rttmin;
2428
2429 tcpstat.tcps_rttupdated++;
2430 --rtt;
2431 if (tp->t_srtt != 0) {
2432 /*
2433 * srtt is stored as fixed point with 3 bits after the
2434 * binary point (i.e., scaled by 8). The following magic
2435 * is equivalent to the smoothing algorithm in rfc793 with
2436 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2437 * point). Adjust rtt to origin 0.
2438 */
2439 delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
2440 if ((tp->t_srtt += delta) <= 0)
2441 tp->t_srtt = 1 << 2;
2442 /*
2443 * We accumulate a smoothed rtt variance (actually, a
2444 * smoothed mean difference), then set the retransmit
2445 * timer to smoothed rtt + 4 times the smoothed variance.
2446 * rttvar is stored as fixed point with 2 bits after the
2447 * binary point (scaled by 4). The following is
2448 * equivalent to rfc793 smoothing with an alpha of .75
2449 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces
2450 * rfc793's wired-in beta.
2451 */
2452 if (delta < 0)
2453 delta = -delta;
2454 delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
2455 if ((tp->t_rttvar += delta) <= 0)
2456 tp->t_rttvar = 1 << 2;
2457 } else {
2458 /*
2459 * No rtt measurement yet - use the unsmoothed rtt.
2460 * Set the variance to half the rtt (so our first
2461 * retransmit happens at 3*rtt).
2462 */
2463 tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
2464 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
2465 }
2466 tp->t_rtt = 0;
2467 tp->t_rxtshift = 0;
2468
2469 /*
2470 * the retransmit should happen at rtt + 4 * rttvar.
2471 * Because of the way we do the smoothing, srtt and rttvar
2472 * will each average +1/2 tick of bias. When we compute
2473 * the retransmit timer, we want 1/2 tick of rounding and
2474 * 1 extra tick because of +-1/2 tick uncertainty in the
2475 * firing of the timer. The bias will give us exactly the
2476 * 1.5 tick we need. But, because the bias is
2477 * statistical, we have to test that we don't drop below
2478 * the minimum feasible timer (which is 2 ticks).
2479 */
2480 if (tp->t_rttmin > rtt + 2)
2481 rttmin = tp->t_rttmin;
2482 else
2483 rttmin = rtt + 2;
2484 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp), rttmin, TCPTV_REXMTMAX);
2485
2486 /*
2487 * We received an ack for a packet that wasn't retransmitted;
2488 * it is probably safe to discard any error indications we've
2489 * received recently. This isn't quite right, but close enough
2490 * for now (a route might have failed after we sent a segment,
2491 * and the return path might not be symmetrical).
2492 */
2493 tp->t_softerror = 0;
2494 }
2495
2496 /*
2497 * Checks for partial ack. If partial ack arrives, force the retransmission
2498 * of the next unacknowledged segment, do not clear tp->t_dupacks, and return
2499 * 1. By setting snd_nxt to th_ack, this forces retransmission timer to
2500 * be started again. If the ack advances at least to tp->snd_recover, return 0.
2501 */
2502 int
2503 tcp_newreno(tp, th)
2504 struct tcpcb *tp;
2505 struct tcphdr *th;
2506 {
2507 tcp_seq onxt = tp->snd_nxt;
2508 u_long ocwnd = tp->snd_cwnd;
2509
2510 if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2511 /*
2512 * snd_una has not yet been updated and the socket's send
2513 * buffer has not yet drained off the ACK'd data, so we
2514 * have to leave snd_una as it was to get the correct data
2515 * offset in tcp_output().
2516 */
2517 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2518 tp->t_rtt = 0;
2519 tp->snd_nxt = th->th_ack;
2520 /*
2521 * Set snd_cwnd to one segment beyond ACK'd offset. snd_una
2522 * is not yet updated when we're called.
2523 */
2524 tp->snd_cwnd = tp->t_segsz + (th->th_ack - tp->snd_una);
2525 (void) tcp_output(tp);
2526 tp->snd_cwnd = ocwnd;
2527 if (SEQ_GT(onxt, tp->snd_nxt))
2528 tp->snd_nxt = onxt;
2529 /*
2530 * Partial window deflation. Relies on fact that tp->snd_una
2531 * not updated yet.
2532 */
2533 tp->snd_cwnd -= (th->th_ack - tp->snd_una - tp->t_segsz);
2534 return 1;
2535 }
2536 return 0;
2537 }
2538
2539
2540 /*
2541 * TCP compressed state engine. Currently used to hold compressed
2542 * state for SYN_RECEIVED.
2543 */
2544
2545 u_long syn_cache_count;
2546 u_int32_t syn_hash1, syn_hash2;
2547
2548 #define SYN_HASH(sa, sp, dp) \
2549 ((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
2550 ((u_int32_t)(sp)))^syn_hash2)))
2551 #ifndef INET6
2552 #define SYN_HASHALL(hash, src, dst) \
2553 do { \
2554 hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
2555 ((struct sockaddr_in *)(src))->sin_port, \
2556 ((struct sockaddr_in *)(dst))->sin_port); \
2557 } while (0)
2558 #else
2559 #define SYN_HASH6(sa, sp, dp) \
2560 ((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
2561 (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
2562 & 0x7fffffff)
2563
2564 #define SYN_HASHALL(hash, src, dst) \
2565 do { \
2566 switch ((src)->sa_family) { \
2567 case AF_INET: \
2568 hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
2569 ((struct sockaddr_in *)(src))->sin_port, \
2570 ((struct sockaddr_in *)(dst))->sin_port); \
2571 break; \
2572 case AF_INET6: \
2573 hash = SYN_HASH6(&((struct sockaddr_in6 *)(src))->sin6_addr, \
2574 ((struct sockaddr_in6 *)(src))->sin6_port, \
2575 ((struct sockaddr_in6 *)(dst))->sin6_port); \
2576 break; \
2577 default: \
2578 hash = 0; \
2579 } \
2580 } while (0)
2581 #endif /* INET6 */
2582
2583 #define SYN_CACHE_RM(sc) \
2584 do { \
2585 LIST_REMOVE((sc), sc_bucketq); \
2586 (sc)->sc_tp = NULL; \
2587 LIST_REMOVE((sc), sc_tpq); \
2588 tcp_syn_cache[(sc)->sc_bucketidx].sch_length--; \
2589 TAILQ_REMOVE(&tcp_syn_cache_timeq[(sc)->sc_rxtshift], (sc), sc_timeq); \
2590 syn_cache_count--; \
2591 } while (0)
2592
2593 #define SYN_CACHE_PUT(sc) \
2594 do { \
2595 if ((sc)->sc_ipopts) \
2596 (void) m_free((sc)->sc_ipopts); \
2597 if ((sc)->sc_route4.ro_rt != NULL) \
2598 RTFREE((sc)->sc_route4.ro_rt); \
2599 pool_put(&syn_cache_pool, (sc)); \
2600 } while (0)
2601
2602 struct pool syn_cache_pool;
2603
2604 /*
2605 * We don't estimate RTT with SYNs, so each packet starts with the default
2606 * RTT and each timer queue has a fixed timeout value. This allows us to
2607 * optimize the timer queues somewhat.
2608 */
2609 #define SYN_CACHE_TIMER_ARM(sc) \
2610 do { \
2611 TCPT_RANGESET((sc)->sc_rxtcur, \
2612 TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN, \
2613 TCPTV_REXMTMAX); \
2614 PRT_SLOW_ARM((sc)->sc_rexmt, (sc)->sc_rxtcur); \
2615 } while (0)
2616
2617 TAILQ_HEAD(, syn_cache) tcp_syn_cache_timeq[TCP_MAXRXTSHIFT + 1];
2618
2619 #define SYN_CACHE_TIMESTAMP(sc) (tcp_now - (sc)->sc_timebase)
2620
2621 void
2622 syn_cache_init()
2623 {
2624 int i;
2625
2626 /* Initialize the hash buckets. */
2627 for (i = 0; i < tcp_syn_cache_size; i++)
2628 LIST_INIT(&tcp_syn_cache[i].sch_bucket);
2629
2630 /* Initialize the timer queues. */
2631 for (i = 0; i <= TCP_MAXRXTSHIFT; i++)
2632 TAILQ_INIT(&tcp_syn_cache_timeq[i]);
2633
2634 /* Initialize the syn cache pool. */
2635 pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
2636 "synpl", 0, NULL, NULL, M_PCB);
2637 }
2638
2639 void
2640 syn_cache_insert(sc, tp)
2641 struct syn_cache *sc;
2642 struct tcpcb *tp;
2643 {
2644 struct syn_cache_head *scp;
2645 struct syn_cache *sc2;
2646 int s, i;
2647
2648 /*
2649 * If there are no entries in the hash table, reinitialize
2650 * the hash secrets.
2651 */
2652 if (syn_cache_count == 0) {
2653 struct timeval tv;
2654 microtime(&tv);
2655 syn_hash1 = random() ^ (u_long)≻
2656 syn_hash2 = random() ^ tv.tv_usec;
2657 }
2658
2659 SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
2660 sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
2661 scp = &tcp_syn_cache[sc->sc_bucketidx];
2662
2663 /*
2664 * Make sure that we don't overflow the per-bucket
2665 * limit or the total cache size limit.
2666 */
2667 s = splsoftnet();
2668 if (scp->sch_length >= tcp_syn_bucket_limit) {
2669 tcpstat.tcps_sc_bucketoverflow++;
2670 /*
2671 * The bucket is full. Toss the oldest element in the
2672 * bucket. This will be the entry with our bucket
2673 * index closest to the front of the timer queue with
2674 * the largest timeout value.
2675 *
2676 * Note: This timer queue traversal may be expensive, so
2677 * we hope that this doesn't happen very often. It is
2678 * much more likely that we'll overflow the entire
2679 * cache, which is much easier to handle; see below.
2680 */
2681 for (i = TCP_MAXRXTSHIFT; i >= 0; i--) {
2682 for (sc2 = TAILQ_FIRST(&tcp_syn_cache_timeq[i]);
2683 sc2 != NULL;
2684 sc2 = TAILQ_NEXT(sc2, sc_timeq)) {
2685 if (sc2->sc_bucketidx == sc->sc_bucketidx) {
2686 SYN_CACHE_RM(sc2);
2687 SYN_CACHE_PUT(sc2);
2688 goto insert; /* 2 level break */
2689 }
2690 }
2691 }
2692 #ifdef DIAGNOSTIC
2693 /*
2694 * This should never happen; we should always find an
2695 * entry in our bucket.
2696 */
2697 panic("syn_cache_insert: bucketoverflow: impossible");
2698 #endif
2699 } else if (syn_cache_count >= tcp_syn_cache_limit) {
2700 tcpstat.tcps_sc_overflowed++;
2701 /*
2702 * The cache is full. Toss the oldest entry in the
2703 * entire cache. This is the front entry in the
2704 * first non-empty timer queue with the largest
2705 * timeout value.
2706 */
2707 for (i = TCP_MAXRXTSHIFT; i >= 0; i--) {
2708 sc2 = TAILQ_FIRST(&tcp_syn_cache_timeq[i]);
2709 if (sc2 == NULL)
2710 continue;
2711 SYN_CACHE_RM(sc2);
2712 SYN_CACHE_PUT(sc2);
2713 goto insert; /* symmetry with above */
2714 }
2715 #ifdef DIAGNOSTIC
2716 /*
2717 * This should never happen; we should always find an
2718 * entry in the cache.
2719 */
2720 panic("syn_cache_insert: cache overflow: impossible");
2721 #endif
2722 }
2723
2724 insert:
2725 /*
2726 * Initialize the entry's timer.
2727 */
2728 sc->sc_rxttot = 0;
2729 sc->sc_rxtshift = 0;
2730 SYN_CACHE_TIMER_ARM(sc);
2731 TAILQ_INSERT_TAIL(&tcp_syn_cache_timeq[sc->sc_rxtshift], sc, sc_timeq);
2732
2733 /* Link it from tcpcb entry */
2734 LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
2735
2736 /* Put it into the bucket. */
2737 LIST_INSERT_HEAD(&scp->sch_bucket, sc, sc_bucketq);
2738 scp->sch_length++;
2739 syn_cache_count++;
2740
2741 tcpstat.tcps_sc_added++;
2742 splx(s);
2743 }
2744
2745 /*
2746 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
2747 * If we have retransmitted an entry the maximum number of times, expire
2748 * that entry.
2749 */
2750 void
2751 syn_cache_timer()
2752 {
2753 struct syn_cache *sc, *nsc;
2754 int i, s;
2755
2756 s = splsoftnet();
2757
2758 /*
2759 * First, get all the entries that need to be retransmitted, or
2760 * must be expired due to exceeding the initial keepalive time.
2761 */
2762 for (i = 0; i < TCP_MAXRXTSHIFT; i++) {
2763 for (sc = TAILQ_FIRST(&tcp_syn_cache_timeq[i]);
2764 sc != NULL && PRT_SLOW_ISEXPIRED(sc->sc_rexmt);
2765 sc = nsc) {
2766 nsc = TAILQ_NEXT(sc, sc_timeq);
2767
2768 /*
2769 * Compute the total amount of time this entry has
2770 * been on a queue. If this entry has been on longer
2771 * than the keep alive timer would allow, expire it.
2772 */
2773 sc->sc_rxttot += sc->sc_rxtcur;
2774 if (sc->sc_rxttot >= TCPTV_KEEP_INIT) {
2775 tcpstat.tcps_sc_timed_out++;
2776 SYN_CACHE_RM(sc);
2777 SYN_CACHE_PUT(sc);
2778 continue;
2779 }
2780
2781 tcpstat.tcps_sc_retransmitted++;
2782 (void) syn_cache_respond(sc, NULL);
2783
2784 /* Advance this entry onto the next timer queue. */
2785 TAILQ_REMOVE(&tcp_syn_cache_timeq[i], sc, sc_timeq);
2786 sc->sc_rxtshift = i + 1;
2787 SYN_CACHE_TIMER_ARM(sc);
2788 TAILQ_INSERT_TAIL(&tcp_syn_cache_timeq[sc->sc_rxtshift],
2789 sc, sc_timeq);
2790 }
2791 }
2792
2793 /*
2794 * Now get all the entries that are expired due to too many
2795 * retransmissions.
2796 */
2797 for (sc = TAILQ_FIRST(&tcp_syn_cache_timeq[TCP_MAXRXTSHIFT]);
2798 sc != NULL && PRT_SLOW_ISEXPIRED(sc->sc_rexmt);
2799 sc = nsc) {
2800 nsc = TAILQ_NEXT(sc, sc_timeq);
2801 tcpstat.tcps_sc_timed_out++;
2802 SYN_CACHE_RM(sc);
2803 SYN_CACHE_PUT(sc);
2804 }
2805 splx(s);
2806 }
2807
2808 /*
2809 * Remove syn cache created by the specified tcb entry,
2810 * because this does not make sense to keep them
2811 * (if there's no tcb entry, syn cache entry will never be used)
2812 */
2813 void
2814 syn_cache_cleanup(tp)
2815 struct tcpcb *tp;
2816 {
2817 struct syn_cache *sc, *nsc;
2818 int s;
2819
2820 s = splsoftnet();
2821
2822 for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
2823 nsc = LIST_NEXT(sc, sc_tpq);
2824
2825 #ifdef DIAGNOSTIC
2826 if (sc->sc_tp != tp)
2827 panic("invalid sc_tp in syn_cache_cleanup");
2828 #endif
2829 SYN_CACHE_RM(sc);
2830 SYN_CACHE_PUT(sc);
2831 }
2832 /* just for safety */
2833 LIST_INIT(&tp->t_sc);
2834
2835 splx(s);
2836 }
2837
2838 /*
2839 * Find an entry in the syn cache.
2840 */
2841 struct syn_cache *
2842 syn_cache_lookup(src, dst, headp)
2843 struct sockaddr *src;
2844 struct sockaddr *dst;
2845 struct syn_cache_head **headp;
2846 {
2847 struct syn_cache *sc;
2848 struct syn_cache_head *scp;
2849 u_int32_t hash;
2850 int s;
2851
2852 SYN_HASHALL(hash, src, dst);
2853
2854 scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
2855 *headp = scp;
2856 s = splsoftnet();
2857 for (sc = LIST_FIRST(&scp->sch_bucket); sc != NULL;
2858 sc = LIST_NEXT(sc, sc_bucketq)) {
2859 if (sc->sc_hash != hash)
2860 continue;
2861 if (!bcmp(&sc->sc_src, src, src->sa_len) &&
2862 !bcmp(&sc->sc_dst, dst, dst->sa_len)) {
2863 splx(s);
2864 return (sc);
2865 }
2866 }
2867 splx(s);
2868 return (NULL);
2869 }
2870
2871 /*
2872 * This function gets called when we receive an ACK for a
2873 * socket in the LISTEN state. We look up the connection
2874 * in the syn cache, and if its there, we pull it out of
2875 * the cache and turn it into a full-blown connection in
2876 * the SYN-RECEIVED state.
2877 *
2878 * The return values may not be immediately obvious, and their effects
2879 * can be subtle, so here they are:
2880 *
2881 * NULL SYN was not found in cache; caller should drop the
2882 * packet and send an RST.
2883 *
2884 * -1 We were unable to create the new connection, and are
2885 * aborting it. An ACK,RST is being sent to the peer
2886 * (unless we got screwey sequence numbners; see below),
2887 * because the 3-way handshake has been completed. Caller
2888 * should not free the mbuf, since we may be using it. If
2889 * we are not, we will free it.
2890 *
2891 * Otherwise, the return value is a pointer to the new socket
2892 * associated with the connection.
2893 */
2894 struct socket *
2895 syn_cache_get(src, dst, th, hlen, tlen, so, m)
2896 struct sockaddr *src;
2897 struct sockaddr *dst;
2898 struct tcphdr *th;
2899 unsigned int hlen, tlen;
2900 struct socket *so;
2901 struct mbuf *m;
2902 {
2903 struct syn_cache *sc;
2904 struct syn_cache_head *scp;
2905 struct inpcb *inp = NULL;
2906 #ifdef INET6
2907 struct in6pcb *in6p = NULL;
2908 #endif
2909 struct tcpcb *tp = 0;
2910 struct mbuf *am;
2911 int s;
2912 struct socket *oso;
2913
2914 s = splsoftnet();
2915 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
2916 splx(s);
2917 return (NULL);
2918 }
2919
2920 /*
2921 * Verify the sequence and ack numbers. Try getting the correct
2922 * response again.
2923 */
2924 if ((th->th_ack != sc->sc_iss + 1) ||
2925 SEQ_LEQ(th->th_seq, sc->sc_irs) ||
2926 SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
2927 (void) syn_cache_respond(sc, m);
2928 splx(s);
2929 return ((struct socket *)(-1));
2930 }
2931
2932 /* Remove this cache entry */
2933 SYN_CACHE_RM(sc);
2934 splx(s);
2935
2936 /*
2937 * Ok, create the full blown connection, and set things up
2938 * as they would have been set up if we had created the
2939 * connection when the SYN arrived. If we can't create
2940 * the connection, abort it.
2941 */
2942 /*
2943 * inp still has the OLD in_pcb stuff, set the
2944 * v6-related flags on the new guy, too. This is
2945 * done particularly for the case where an AF_INET6
2946 * socket is bound only to a port, and a v4 connection
2947 * comes in on that port.
2948 * we also copy the flowinfo from the original pcb
2949 * to the new one.
2950 */
2951 {
2952 struct inpcb *parentinpcb;
2953
2954 parentinpcb = (struct inpcb *)so->so_pcb;
2955
2956 oso = so;
2957 so = sonewconn(so, SS_ISCONNECTED);
2958 if (so == NULL)
2959 goto resetandabort;
2960
2961 switch (so->so_proto->pr_domain->dom_family) {
2962 #ifdef INET
2963 case AF_INET:
2964 inp = sotoinpcb(so);
2965 break;
2966 #endif
2967 #ifdef INET6
2968 case AF_INET6:
2969 in6p = sotoin6pcb(so);
2970 break;
2971 #endif
2972 }
2973 }
2974 switch (src->sa_family) {
2975 #ifdef INET
2976 case AF_INET:
2977 if (inp) {
2978 inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
2979 inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
2980 inp->inp_options = ip_srcroute();
2981 in_pcbstate(inp, INP_BOUND);
2982 if (inp->inp_options == NULL) {
2983 inp->inp_options = sc->sc_ipopts;
2984 sc->sc_ipopts = NULL;
2985 }
2986 }
2987 #ifdef INET6
2988 else if (in6p) {
2989 /* IPv4 packet to AF_INET6 socket */
2990 bzero(&in6p->in6p_laddr, sizeof(in6p->in6p_laddr));
2991 in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
2992 bcopy(&((struct sockaddr_in *)dst)->sin_addr,
2993 &in6p->in6p_laddr.s6_addr32[3],
2994 sizeof(((struct sockaddr_in *)dst)->sin_addr));
2995 in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
2996 in6totcpcb(in6p)->t_family = AF_INET;
2997 }
2998 #endif
2999 break;
3000 #endif
3001 #ifdef INET6
3002 case AF_INET6:
3003 if (in6p) {
3004 in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
3005 in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
3006 #if 0
3007 in6p->in6p_flowinfo = ip6->ip6_flow & IPV6_FLOWINFO_MASK;
3008 /*inp->inp_options = ip6_srcroute();*/ /* soon. */
3009 #endif
3010 }
3011 break;
3012 #endif
3013 }
3014 #ifdef INET6
3015 if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
3016 struct in6pcb *oin6p = sotoin6pcb(oso);
3017 /* inherit socket options from the listening socket */
3018 in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
3019 if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
3020 m_freem(in6p->in6p_options);
3021 in6p->in6p_options = 0;
3022 }
3023 ip6_savecontrol(in6p, &in6p->in6p_options,
3024 mtod(m, struct ip6_hdr *), m);
3025 }
3026 #endif
3027
3028 #ifdef IPSEC
3029 /*
3030 * we make a copy of policy, instead of sharing the policy,
3031 * for better behavior in terms of SA lookup and dead SA removal.
3032 */
3033 if (inp) {
3034 /* copy old policy into new socket's */
3035 if (ipsec_copy_policy(sotoinpcb(oso)->inp_sp, inp->inp_sp))
3036 printf("tcp_input: could not copy policy\n");
3037 }
3038 #ifdef INET6
3039 else if (in6p) {
3040 /* copy old policy into new socket's */
3041 if (ipsec_copy_policy(sotoin6pcb(oso)->in6p_sp, in6p->in6p_sp))
3042 printf("tcp_input: could not copy policy\n");
3043 }
3044 #endif
3045 #endif
3046
3047 /*
3048 * Give the new socket our cached route reference.
3049 */
3050 if (inp)
3051 inp->inp_route = sc->sc_route4; /* struct assignment */
3052 #ifdef INET6
3053 else
3054 in6p->in6p_route = sc->sc_route6;
3055 #endif
3056 sc->sc_route4.ro_rt = NULL;
3057
3058 am = m_get(M_DONTWAIT, MT_SONAME); /* XXX */
3059 if (am == NULL)
3060 goto resetandabort;
3061 am->m_len = src->sa_len;
3062 bcopy(src, mtod(am, caddr_t), src->sa_len);
3063 if (inp) {
3064 if (in_pcbconnect(inp, am)) {
3065 (void) m_free(am);
3066 goto resetandabort;
3067 }
3068 }
3069 #ifdef INET6
3070 else if (in6p) {
3071 if (src->sa_family == AF_INET) {
3072 /* IPv4 packet to AF_INET6 socket */
3073 struct sockaddr_in6 *sin6;
3074 sin6 = mtod(am, struct sockaddr_in6 *);
3075 am->m_len = sizeof(*sin6);
3076 bzero(sin6, sizeof(*sin6));
3077 sin6->sin6_family = AF_INET6;
3078 sin6->sin6_len = sizeof(*sin6);
3079 sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port;
3080 sin6->sin6_addr.s6_addr16[5] = htons(0xffff);
3081 bcopy(&((struct sockaddr_in *)src)->sin_addr,
3082 &sin6->sin6_addr.s6_addr32[3],
3083 sizeof(sin6->sin6_addr.s6_addr32[3]));
3084 }
3085 if (in6_pcbconnect(in6p, am)) {
3086 (void) m_free(am);
3087 goto resetandabort;
3088 }
3089 }
3090 #endif
3091 else {
3092 (void) m_free(am);
3093 goto resetandabort;
3094 }
3095 (void) m_free(am);
3096
3097 if (inp)
3098 tp = intotcpcb(inp);
3099 #ifdef INET6
3100 else if (in6p)
3101 tp = in6totcpcb(in6p);
3102 #endif
3103 else
3104 tp = NULL;
3105 if (sc->sc_request_r_scale != 15) {
3106 tp->requested_s_scale = sc->sc_requested_s_scale;
3107 tp->request_r_scale = sc->sc_request_r_scale;
3108 tp->snd_scale = sc->sc_requested_s_scale;
3109 tp->rcv_scale = sc->sc_request_r_scale;
3110 tp->t_flags |= TF_RCVD_SCALE;
3111 }
3112 if (sc->sc_flags & SCF_TIMESTAMP)
3113 tp->t_flags |= TF_RCVD_TSTMP;
3114 tp->ts_timebase = sc->sc_timebase;
3115
3116 tp->t_template = tcp_template(tp);
3117 if (tp->t_template == 0) {
3118 tp = tcp_drop(tp, ENOBUFS); /* destroys socket */
3119 so = NULL;
3120 m_freem(m);
3121 goto abort;
3122 }
3123
3124 tp->iss = sc->sc_iss;
3125 tp->irs = sc->sc_irs;
3126 tcp_sendseqinit(tp);
3127 tcp_rcvseqinit(tp);
3128 tp->t_state = TCPS_SYN_RECEIVED;
3129 TCP_TIMER_ARM(tp, TCPT_KEEP, TCPTV_KEEP_INIT);
3130 tcpstat.tcps_accepts++;
3131
3132 /* Initialize tp->t_ourmss before we deal with the peer's! */
3133 tp->t_ourmss = sc->sc_ourmaxseg;
3134 tcp_mss_from_peer(tp, sc->sc_peermaxseg);
3135
3136 /*
3137 * Initialize the initial congestion window. If we
3138 * had to retransmit the SYN,ACK, we must initialize cwnd
3139 * to 1 segment (i.e. the Loss Window).
3140 */
3141 if (sc->sc_rxtshift)
3142 tp->snd_cwnd = tp->t_peermss;
3143 else
3144 tp->snd_cwnd = TCP_INITIAL_WINDOW(tcp_init_win, tp->t_peermss);
3145
3146 tcp_rmx_rtt(tp);
3147 tp->snd_wl1 = sc->sc_irs;
3148 tp->rcv_up = sc->sc_irs + 1;
3149
3150 /*
3151 * This is what whould have happened in tcp_ouput() when
3152 * the SYN,ACK was sent.
3153 */
3154 tp->snd_up = tp->snd_una;
3155 tp->snd_max = tp->snd_nxt = tp->iss+1;
3156 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
3157 if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
3158 tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
3159 tp->last_ack_sent = tp->rcv_nxt;
3160
3161 tcpstat.tcps_sc_completed++;
3162 SYN_CACHE_PUT(sc);
3163 return (so);
3164
3165 resetandabort:
3166 (void) tcp_respond(NULL, m, m, th,
3167 th->th_seq + tlen, (tcp_seq)0, TH_RST|TH_ACK);
3168 abort:
3169 if (so != NULL)
3170 (void) soabort(so);
3171 SYN_CACHE_PUT(sc);
3172 tcpstat.tcps_sc_aborted++;
3173 return ((struct socket *)(-1));
3174 }
3175
3176 /*
3177 * This function is called when we get a RST for a
3178 * non-existent connection, so that we can see if the
3179 * connection is in the syn cache. If it is, zap it.
3180 */
3181
3182 void
3183 syn_cache_reset(src, dst, th)
3184 struct sockaddr *src;
3185 struct sockaddr *dst;
3186 struct tcphdr *th;
3187 {
3188 struct syn_cache *sc;
3189 struct syn_cache_head *scp;
3190 int s = splsoftnet();
3191
3192 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3193 splx(s);
3194 return;
3195 }
3196 if (SEQ_LT(th->th_seq, sc->sc_irs) ||
3197 SEQ_GT(th->th_seq, sc->sc_irs+1)) {
3198 splx(s);
3199 return;
3200 }
3201 SYN_CACHE_RM(sc);
3202 splx(s);
3203 tcpstat.tcps_sc_reset++;
3204 SYN_CACHE_PUT(sc);
3205 }
3206
3207 void
3208 syn_cache_unreach(src, dst, th)
3209 struct sockaddr *src;
3210 struct sockaddr *dst;
3211 struct tcphdr *th;
3212 {
3213 struct syn_cache *sc;
3214 struct syn_cache_head *scp;
3215 int s;
3216
3217 s = splsoftnet();
3218 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3219 splx(s);
3220 return;
3221 }
3222 /* If the sequence number != sc_iss, then it's a bogus ICMP msg */
3223 if (ntohl (th->th_seq) != sc->sc_iss) {
3224 splx(s);
3225 return;
3226 }
3227
3228 /*
3229 * If we've rertransmitted 3 times and this is our second error,
3230 * we remove the entry. Otherwise, we allow it to continue on.
3231 * This prevents us from incorrectly nuking an entry during a
3232 * spurious network outage.
3233 *
3234 * See tcp_notify().
3235 */
3236 if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
3237 sc->sc_flags |= SCF_UNREACH;
3238 splx(s);
3239 return;
3240 }
3241
3242 SYN_CACHE_RM(sc);
3243 splx(s);
3244 tcpstat.tcps_sc_unreach++;
3245 SYN_CACHE_PUT(sc);
3246 }
3247
3248 /*
3249 * Given a LISTEN socket and an inbound SYN request, add
3250 * this to the syn cache, and send back a segment:
3251 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
3252 * to the source.
3253 *
3254 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
3255 * Doing so would require that we hold onto the data and deliver it
3256 * to the application. However, if we are the target of a SYN-flood
3257 * DoS attack, an attacker could send data which would eventually
3258 * consume all available buffer space if it were ACKed. By not ACKing
3259 * the data, we avoid this DoS scenario.
3260 */
3261
3262 int
3263 syn_cache_add(src, dst, th, hlen, so, m, optp, optlen, oi)
3264 struct sockaddr *src;
3265 struct sockaddr *dst;
3266 struct tcphdr *th;
3267 unsigned int hlen;
3268 struct socket *so;
3269 struct mbuf *m;
3270 u_char *optp;
3271 int optlen;
3272 struct tcp_opt_info *oi;
3273 {
3274 struct tcpcb tb, *tp;
3275 long win;
3276 struct syn_cache *sc;
3277 struct syn_cache_head *scp;
3278 struct mbuf *ipopts;
3279
3280 tp = sototcpcb(so);
3281
3282 /*
3283 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
3284 *
3285 * Note this check is performed in tcp_input() very early on.
3286 */
3287
3288 /*
3289 * Initialize some local state.
3290 */
3291 win = sbspace(&so->so_rcv);
3292 if (win > TCP_MAXWIN)
3293 win = TCP_MAXWIN;
3294
3295 switch (src->sa_family) {
3296 #ifdef INET
3297 case AF_INET:
3298 /*
3299 * Remember the IP options, if any.
3300 */
3301 ipopts = ip_srcroute();
3302 break;
3303 #endif
3304 default:
3305 ipopts = NULL;
3306 }
3307
3308 if (optp) {
3309 tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
3310 tcp_dooptions(&tb, optp, optlen, th, oi);
3311 } else
3312 tb.t_flags = 0;
3313
3314 /*
3315 * See if we already have an entry for this connection.
3316 * If we do, resend the SYN,ACK. We do not count this
3317 * as a retransmission (XXX though maybe we should).
3318 */
3319 if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
3320 tcpstat.tcps_sc_dupesyn++;
3321 if (ipopts) {
3322 /*
3323 * If we were remembering a previous source route,
3324 * forget it and use the new one we've been given.
3325 */
3326 if (sc->sc_ipopts)
3327 (void) m_free(sc->sc_ipopts);
3328 sc->sc_ipopts = ipopts;
3329 }
3330 sc->sc_timestamp = tb.ts_recent;
3331 if (syn_cache_respond(sc, m) == 0) {
3332 tcpstat.tcps_sndacks++;
3333 tcpstat.tcps_sndtotal++;
3334 }
3335 return (1);
3336 }
3337
3338 sc = pool_get(&syn_cache_pool, PR_NOWAIT);
3339 if (sc == NULL) {
3340 if (ipopts)
3341 (void) m_free(ipopts);
3342 return (0);
3343 }
3344
3345 /*
3346 * Fill in the cache, and put the necessary IP and TCP
3347 * options into the reply.
3348 */
3349 bzero(sc, sizeof(struct syn_cache));
3350 bcopy(src, &sc->sc_src, src->sa_len);
3351 bcopy(dst, &sc->sc_dst, dst->sa_len);
3352 sc->sc_flags = 0;
3353 sc->sc_ipopts = ipopts;
3354 sc->sc_irs = th->th_seq;
3355 switch (src->sa_family) {
3356 #ifdef INET
3357 case AF_INET:
3358 {
3359 struct sockaddr_in *srcin = (void *) src;
3360 struct sockaddr_in *dstin = (void *) dst;
3361
3362 sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
3363 &srcin->sin_addr, dstin->sin_port,
3364 srcin->sin_port, sizeof(dstin->sin_addr), 0);
3365 break;
3366 }
3367 #endif /* INET */
3368 #ifdef INET6
3369 case AF_INET6:
3370 {
3371 struct sockaddr_in6 *srcin6 = (void *) src;
3372 struct sockaddr_in6 *dstin6 = (void *) dst;
3373
3374 sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
3375 &srcin6->sin6_addr, dstin6->sin6_port,
3376 srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
3377 break;
3378 }
3379 #endif /* INET6 */
3380 }
3381 sc->sc_peermaxseg = oi->maxseg;
3382 sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
3383 m->m_pkthdr.rcvif : NULL,
3384 sc->sc_src.sa.sa_family);
3385 sc->sc_win = win;
3386 sc->sc_timebase = tcp_now; /* see tcp_newtcpcb() */
3387 sc->sc_timestamp = tb.ts_recent;
3388 if (tcp_do_rfc1323 && (tb.t_flags & TF_RCVD_TSTMP))
3389 sc->sc_flags |= SCF_TIMESTAMP;
3390 if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
3391 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
3392 sc->sc_requested_s_scale = tb.requested_s_scale;
3393 sc->sc_request_r_scale = 0;
3394 while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
3395 TCP_MAXWIN << sc->sc_request_r_scale <
3396 so->so_rcv.sb_hiwat)
3397 sc->sc_request_r_scale++;
3398 } else {
3399 sc->sc_requested_s_scale = 15;
3400 sc->sc_request_r_scale = 15;
3401 }
3402 sc->sc_tp = tp;
3403 if (syn_cache_respond(sc, m) == 0) {
3404 syn_cache_insert(sc, tp);
3405 tcpstat.tcps_sndacks++;
3406 tcpstat.tcps_sndtotal++;
3407 } else {
3408 SYN_CACHE_PUT(sc);
3409 tcpstat.tcps_sc_dropped++;
3410 }
3411 return (1);
3412 }
3413
3414 int
3415 syn_cache_respond(sc, m)
3416 struct syn_cache *sc;
3417 struct mbuf *m;
3418 {
3419 struct route *ro;
3420 u_int8_t *optp;
3421 int optlen, error;
3422 u_int16_t tlen;
3423 struct ip *ip = NULL;
3424 #ifdef INET6
3425 struct ip6_hdr *ip6 = NULL;
3426 #endif
3427 struct tcphdr *th;
3428 u_int hlen;
3429
3430 switch (sc->sc_src.sa.sa_family) {
3431 case AF_INET:
3432 hlen = sizeof(struct ip);
3433 ro = &sc->sc_route4;
3434 break;
3435 #ifdef INET6
3436 case AF_INET6:
3437 hlen = sizeof(struct ip6_hdr);
3438 ro = (struct route *)&sc->sc_route6;
3439 break;
3440 #endif
3441 default:
3442 if (m)
3443 m_freem(m);
3444 return EAFNOSUPPORT;
3445 }
3446
3447 /* Compute the size of the TCP options. */
3448 optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
3449 ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
3450
3451 tlen = hlen + sizeof(struct tcphdr) + optlen;
3452
3453 /*
3454 * Create the IP+TCP header from scratch.
3455 */
3456 if (m)
3457 m_freem(m);
3458 #ifdef DIAGNOSTIC
3459 if (max_linkhdr + tlen > MCLBYTES)
3460 return (ENOBUFS);
3461 #endif
3462 MGETHDR(m, M_DONTWAIT, MT_DATA);
3463 if (m && tlen > MHLEN) {
3464 MCLGET(m, M_DONTWAIT);
3465 if ((m->m_flags & M_EXT) == 0) {
3466 m_freem(m);
3467 m = NULL;
3468 }
3469 }
3470 if (m == NULL)
3471 return (ENOBUFS);
3472
3473 /* Fixup the mbuf. */
3474 m->m_data += max_linkhdr;
3475 m->m_len = m->m_pkthdr.len = tlen;
3476 #ifdef IPSEC
3477 if (sc->sc_tp) {
3478 struct tcpcb *tp;
3479 struct socket *so;
3480
3481 tp = sc->sc_tp;
3482 if (tp->t_inpcb)
3483 so = tp->t_inpcb->inp_socket;
3484 #ifdef INET6
3485 else if (tp->t_in6pcb)
3486 so = tp->t_in6pcb->in6p_socket;
3487 #endif
3488 else
3489 so = NULL;
3490 /* use IPsec policy on listening socket, on SYN ACK */
3491 if (ipsec_setsocket(m, so) != 0) {
3492 m_freem(m);
3493 return ENOBUFS;
3494 }
3495 }
3496 #endif
3497 m->m_pkthdr.rcvif = NULL;
3498 memset(mtod(m, u_char *), 0, tlen);
3499
3500 switch (sc->sc_src.sa.sa_family) {
3501 case AF_INET:
3502 ip = mtod(m, struct ip *);
3503 ip->ip_dst = sc->sc_src.sin.sin_addr;
3504 ip->ip_src = sc->sc_dst.sin.sin_addr;
3505 ip->ip_p = IPPROTO_TCP;
3506 th = (struct tcphdr *)(ip + 1);
3507 th->th_dport = sc->sc_src.sin.sin_port;
3508 th->th_sport = sc->sc_dst.sin.sin_port;
3509 break;
3510 #ifdef INET6
3511 case AF_INET6:
3512 ip6 = mtod(m, struct ip6_hdr *);
3513 ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
3514 ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
3515 ip6->ip6_nxt = IPPROTO_TCP;
3516 /* ip6_plen will be updated in ip6_output() */
3517 th = (struct tcphdr *)(ip6 + 1);
3518 th->th_dport = sc->sc_src.sin6.sin6_port;
3519 th->th_sport = sc->sc_dst.sin6.sin6_port;
3520 break;
3521 #endif
3522 default:
3523 th = NULL;
3524 }
3525
3526 th->th_seq = htonl(sc->sc_iss);
3527 th->th_ack = htonl(sc->sc_irs + 1);
3528 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
3529 th->th_flags = TH_SYN|TH_ACK;
3530 th->th_win = htons(sc->sc_win);
3531 /* th_sum already 0 */
3532 /* th_urp already 0 */
3533
3534 /* Tack on the TCP options. */
3535 optp = (u_int8_t *)(th + 1);
3536 *optp++ = TCPOPT_MAXSEG;
3537 *optp++ = 4;
3538 *optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
3539 *optp++ = sc->sc_ourmaxseg & 0xff;
3540
3541 if (sc->sc_request_r_scale != 15) {
3542 *((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
3543 TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
3544 sc->sc_request_r_scale);
3545 optp += 4;
3546 }
3547
3548 if (sc->sc_flags & SCF_TIMESTAMP) {
3549 u_int32_t *lp = (u_int32_t *)(optp);
3550 /* Form timestamp option as shown in appendix A of RFC 1323. */
3551 *lp++ = htonl(TCPOPT_TSTAMP_HDR);
3552 *lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
3553 *lp = htonl(sc->sc_timestamp);
3554 optp += TCPOLEN_TSTAMP_APPA;
3555 }
3556
3557 /* Compute the packet's checksum. */
3558 switch (sc->sc_src.sa.sa_family) {
3559 case AF_INET:
3560 ip->ip_len = htons(tlen - hlen);
3561 th->th_sum = 0;
3562 th->th_sum = in_cksum(m, tlen);
3563 break;
3564 #ifdef INET6
3565 case AF_INET6:
3566 ip6->ip6_plen = htons(tlen - hlen);
3567 th->th_sum = 0;
3568 th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
3569 break;
3570 #endif
3571 }
3572
3573 /*
3574 * Fill in some straggling IP bits. Note the stack expects
3575 * ip_len to be in host order, for convenience.
3576 */
3577 switch (sc->sc_src.sa.sa_family) {
3578 #ifdef INET
3579 case AF_INET:
3580 ip->ip_len = tlen;
3581 ip->ip_ttl = ip_defttl;
3582 /* XXX tos? */
3583 break;
3584 #endif
3585 #ifdef INET6
3586 case AF_INET6:
3587 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
3588 ip6->ip6_vfc |= IPV6_VERSION;
3589 ip6->ip6_plen = htons(tlen - hlen);
3590 /* ip6_hlim will be initialized afterwards */
3591 /* XXX flowlabel? */
3592 break;
3593 #endif
3594 }
3595
3596 switch (sc->sc_src.sa.sa_family) {
3597 #ifdef INET
3598 case AF_INET:
3599 error = ip_output(m, sc->sc_ipopts, ro,
3600 (ip_mtudisc ? IP_MTUDISC : 0),
3601 NULL);
3602 break;
3603 #endif
3604 #ifdef INET6
3605 case AF_INET6:
3606 ip6->ip6_hlim = in6_selecthlim(NULL,
3607 ro->ro_rt ? ro->ro_rt->rt_ifp : NULL);
3608
3609 error = ip6_output(m, NULL /*XXX*/, (struct route_in6 *)ro,
3610 0, NULL, NULL);
3611 break;
3612 #endif
3613 default:
3614 error = EAFNOSUPPORT;
3615 break;
3616 }
3617 return (error);
3618 }
3619