tcp_input.c revision 1.127 1 /* $NetBSD: tcp_input.c,v 1.127 2001/07/08 16:18:57 abs Exp $ */
2
3 /*
4 %%% portions-copyright-nrl-95
5 Portions of this software are Copyright 1995-1998 by Randall Atkinson,
6 Ronald Lee, Daniel McDonald, Bao Phan, and Chris Winters. All Rights
7 Reserved. All rights under this copyright have been assigned to the US
8 Naval Research Laboratory (NRL). The NRL Copyright Notice and License
9 Agreement Version 1.1 (January 17, 1995) applies to these portions of the
10 software.
11 You should have received a copy of the license with this software. If you
12 didn't get a copy, you may request one from <license (at) ipv6.nrl.navy.mil>.
13
14 */
15
16 /*
17 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
18 * All rights reserved.
19 *
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
23 * 1. Redistributions of source code must retain the above copyright
24 * notice, this list of conditions and the following disclaimer.
25 * 2. Redistributions in binary form must reproduce the above copyright
26 * notice, this list of conditions and the following disclaimer in the
27 * documentation and/or other materials provided with the distribution.
28 * 3. Neither the name of the project nor the names of its contributors
29 * may be used to endorse or promote products derived from this software
30 * without specific prior written permission.
31 *
32 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
33 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
36 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42 * SUCH DAMAGE.
43 */
44
45 /*-
46 * Copyright (c) 1997, 1998, 1999, 2001 The NetBSD Foundation, Inc.
47 * All rights reserved.
48 *
49 * This code is derived from software contributed to The NetBSD Foundation
50 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
51 * Facility, NASA Ames Research Center.
52 *
53 * Redistribution and use in source and binary forms, with or without
54 * modification, are permitted provided that the following conditions
55 * are met:
56 * 1. Redistributions of source code must retain the above copyright
57 * notice, this list of conditions and the following disclaimer.
58 * 2. Redistributions in binary form must reproduce the above copyright
59 * notice, this list of conditions and the following disclaimer in the
60 * documentation and/or other materials provided with the distribution.
61 * 3. All advertising materials mentioning features or use of this software
62 * must display the following acknowledgement:
63 * This product includes software developed by the NetBSD
64 * Foundation, Inc. and its contributors.
65 * 4. Neither the name of The NetBSD Foundation nor the names of its
66 * contributors may be used to endorse or promote products derived
67 * from this software without specific prior written permission.
68 *
69 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
70 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
71 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
72 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
73 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
74 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
75 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
76 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
77 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
78 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
79 * POSSIBILITY OF SUCH DAMAGE.
80 */
81
82 /*
83 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
84 * The Regents of the University of California. All rights reserved.
85 *
86 * Redistribution and use in source and binary forms, with or without
87 * modification, are permitted provided that the following conditions
88 * are met:
89 * 1. Redistributions of source code must retain the above copyright
90 * notice, this list of conditions and the following disclaimer.
91 * 2. Redistributions in binary form must reproduce the above copyright
92 * notice, this list of conditions and the following disclaimer in the
93 * documentation and/or other materials provided with the distribution.
94 * 3. All advertising materials mentioning features or use of this software
95 * must display the following acknowledgement:
96 * This product includes software developed by the University of
97 * California, Berkeley and its contributors.
98 * 4. Neither the name of the University nor the names of its contributors
99 * may be used to endorse or promote products derived from this software
100 * without specific prior written permission.
101 *
102 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
103 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
104 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
105 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
106 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
107 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
108 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
109 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
110 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
111 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
112 * SUCH DAMAGE.
113 *
114 * @(#)tcp_input.c 8.12 (Berkeley) 5/24/95
115 */
116
117 /*
118 * TODO list for SYN cache stuff:
119 *
120 * Find room for a "state" field, which is needed to keep a
121 * compressed state for TIME_WAIT TCBs. It's been noted already
122 * that this is fairly important for very high-volume web and
123 * mail servers, which use a large number of short-lived
124 * connections.
125 */
126
127 #include "opt_inet.h"
128 #include "opt_ipsec.h"
129 #include "opt_inet_csum.h"
130 #include "opt_tcp_debug.h"
131
132 #include <sys/param.h>
133 #include <sys/systm.h>
134 #include <sys/malloc.h>
135 #include <sys/mbuf.h>
136 #include <sys/protosw.h>
137 #include <sys/socket.h>
138 #include <sys/socketvar.h>
139 #include <sys/errno.h>
140 #include <sys/syslog.h>
141 #include <sys/pool.h>
142 #include <sys/domain.h>
143
144 #include <net/if.h>
145 #include <net/route.h>
146 #include <net/if_types.h>
147
148 #include <netinet/in.h>
149 #include <netinet/in_systm.h>
150 #include <netinet/ip.h>
151 #include <netinet/in_pcb.h>
152 #include <netinet/ip_var.h>
153
154 #ifdef INET6
155 #ifndef INET
156 #include <netinet/in.h>
157 #endif
158 #include <netinet/ip6.h>
159 #include <netinet6/ip6_var.h>
160 #include <netinet6/in6_pcb.h>
161 #include <netinet6/ip6_var.h>
162 #include <netinet6/in6_var.h>
163 #include <netinet/icmp6.h>
164 #include <netinet6/nd6.h>
165 #endif
166
167 #ifdef PULLDOWN_TEST
168 #ifndef INET6
169 /* always need ip6.h for IP6_EXTHDR_GET */
170 #include <netinet/ip6.h>
171 #endif
172 #endif
173
174 #include <netinet/tcp.h>
175 #include <netinet/tcp_fsm.h>
176 #include <netinet/tcp_seq.h>
177 #include <netinet/tcp_timer.h>
178 #include <netinet/tcp_var.h>
179 #include <netinet/tcpip.h>
180 #include <netinet/tcp_debug.h>
181
182 #include <machine/stdarg.h>
183
184 #ifdef IPSEC
185 #include <netinet6/ipsec.h>
186 #include <netkey/key.h>
187 #endif /*IPSEC*/
188 #ifdef INET6
189 #include "faith.h"
190 #if defined(NFAITH) && NFAITH > 0
191 #include <net/if_faith.h>
192 #endif
193 #endif
194
195 int tcprexmtthresh = 3;
196 int tcp_log_refused;
197
198 static int tcp_rst_ppslim_count = 0;
199 static struct timeval tcp_rst_ppslim_last;
200
201 #define TCP_PAWS_IDLE (24 * 24 * 60 * 60 * PR_SLOWHZ)
202
203 /* for modulo comparisons of timestamps */
204 #define TSTMP_LT(a,b) ((int)((a)-(b)) < 0)
205 #define TSTMP_GEQ(a,b) ((int)((a)-(b)) >= 0)
206
207 /*
208 * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
209 */
210 #ifdef INET6
211 #define ND6_HINT(tp) \
212 do { \
213 if (tp && tp->t_in6pcb && tp->t_family == AF_INET6 \
214 && tp->t_in6pcb->in6p_route.ro_rt) { \
215 nd6_nud_hint(tp->t_in6pcb->in6p_route.ro_rt, NULL, 0); \
216 } \
217 } while (0)
218 #else
219 #define ND6_HINT(tp)
220 #endif
221
222 /*
223 * Macro to compute ACK transmission behavior. Delay the ACK unless
224 * we have already delayed an ACK (must send an ACK every two segments).
225 * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
226 * option is enabled.
227 */
228 #define TCP_SETUP_ACK(tp, th) \
229 do { \
230 if ((tp)->t_flags & TF_DELACK || \
231 (tcp_ack_on_push && (th)->th_flags & TH_PUSH)) \
232 tp->t_flags |= TF_ACKNOW; \
233 else \
234 TCP_SET_DELACK(tp); \
235 } while (0)
236
237 /*
238 * Convert TCP protocol fields to host order for easier processing.
239 */
240 #define TCP_FIELDS_TO_HOST(th) \
241 do { \
242 NTOHL((th)->th_seq); \
243 NTOHL((th)->th_ack); \
244 NTOHS((th)->th_win); \
245 NTOHS((th)->th_urp); \
246 } while (0)
247
248 #ifdef TCP_CSUM_COUNTERS
249 #include <sys/device.h>
250
251 extern struct evcnt tcp_hwcsum_ok;
252 extern struct evcnt tcp_hwcsum_bad;
253 extern struct evcnt tcp_hwcsum_data;
254 extern struct evcnt tcp_swcsum;
255
256 #define TCP_CSUM_COUNTER_INCR(ev) (ev)->ev_count++
257
258 #else
259
260 #define TCP_CSUM_COUNTER_INCR(ev) /* nothing */
261
262 #endif /* TCP_CSUM_COUNTERS */
263
264 int
265 tcp_reass(tp, th, m, tlen)
266 struct tcpcb *tp;
267 struct tcphdr *th;
268 struct mbuf *m;
269 int *tlen;
270 {
271 struct ipqent *p, *q, *nq, *tiqe = NULL;
272 struct socket *so = NULL;
273 int pkt_flags;
274 tcp_seq pkt_seq;
275 unsigned pkt_len;
276 u_long rcvpartdupbyte = 0;
277 u_long rcvoobyte;
278
279 if (tp->t_inpcb)
280 so = tp->t_inpcb->inp_socket;
281 #ifdef INET6
282 else if (tp->t_in6pcb)
283 so = tp->t_in6pcb->in6p_socket;
284 #endif
285
286 TCP_REASS_LOCK_CHECK(tp);
287
288 /*
289 * Call with th==0 after become established to
290 * force pre-ESTABLISHED data up to user socket.
291 */
292 if (th == 0)
293 goto present;
294
295 rcvoobyte = *tlen;
296 /*
297 * Copy these to local variables because the tcpiphdr
298 * gets munged while we are collapsing mbufs.
299 */
300 pkt_seq = th->th_seq;
301 pkt_len = *tlen;
302 pkt_flags = th->th_flags;
303 /*
304 * Find a segment which begins after this one does.
305 */
306 for (p = NULL, q = tp->segq.lh_first; q != NULL; q = nq) {
307 nq = q->ipqe_q.le_next;
308 /*
309 * If the received segment is just right after this
310 * fragment, merge the two together and then check
311 * for further overlaps.
312 */
313 if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
314 #ifdef TCPREASS_DEBUG
315 printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
316 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
317 q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
318 #endif
319 pkt_len += q->ipqe_len;
320 pkt_flags |= q->ipqe_flags;
321 pkt_seq = q->ipqe_seq;
322 m_cat(q->ipqe_m, m);
323 m = q->ipqe_m;
324 goto free_ipqe;
325 }
326 /*
327 * If the received segment is completely past this
328 * fragment, we need to go the next fragment.
329 */
330 if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
331 p = q;
332 continue;
333 }
334 /*
335 * If the fragment is past the received segment,
336 * it (or any following) can't be concatenated.
337 */
338 if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len))
339 break;
340 /*
341 * We've received all the data in this segment before.
342 * mark it as a duplicate and return.
343 */
344 if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
345 SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
346 tcpstat.tcps_rcvduppack++;
347 tcpstat.tcps_rcvdupbyte += pkt_len;
348 m_freem(m);
349 if (tiqe != NULL)
350 pool_put(&ipqent_pool, tiqe);
351 return (0);
352 }
353 /*
354 * Received segment completely overlaps this fragment
355 * so we drop the fragment (this keeps the temporal
356 * ordering of segments correct).
357 */
358 if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
359 SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
360 rcvpartdupbyte += q->ipqe_len;
361 m_freem(q->ipqe_m);
362 goto free_ipqe;
363 }
364 /*
365 * RX'ed segment extends past the end of the
366 * fragment. Drop the overlapping bytes. Then
367 * merge the fragment and segment then treat as
368 * a longer received packet.
369 */
370 if (SEQ_LT(q->ipqe_seq, pkt_seq)
371 && SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
372 int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
373 #ifdef TCPREASS_DEBUG
374 printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
375 tp, overlap,
376 pkt_seq, pkt_seq + pkt_len, pkt_len);
377 #endif
378 m_adj(m, overlap);
379 rcvpartdupbyte += overlap;
380 m_cat(q->ipqe_m, m);
381 m = q->ipqe_m;
382 pkt_seq = q->ipqe_seq;
383 pkt_len += q->ipqe_len - overlap;
384 rcvoobyte -= overlap;
385 goto free_ipqe;
386 }
387 /*
388 * RX'ed segment extends past the front of the
389 * fragment. Drop the overlapping bytes on the
390 * received packet. The packet will then be
391 * contatentated with this fragment a bit later.
392 */
393 if (SEQ_GT(q->ipqe_seq, pkt_seq)
394 && SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len)) {
395 int overlap = pkt_seq + pkt_len - q->ipqe_seq;
396 #ifdef TCPREASS_DEBUG
397 printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
398 tp, overlap,
399 pkt_seq, pkt_seq + pkt_len, pkt_len);
400 #endif
401 m_adj(m, -overlap);
402 pkt_len -= overlap;
403 rcvpartdupbyte += overlap;
404 rcvoobyte -= overlap;
405 }
406 /*
407 * If the received segment immediates precedes this
408 * fragment then tack the fragment onto this segment
409 * and reinsert the data.
410 */
411 if (q->ipqe_seq == pkt_seq + pkt_len) {
412 #ifdef TCPREASS_DEBUG
413 printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
414 tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
415 pkt_seq, pkt_seq + pkt_len, pkt_len);
416 #endif
417 pkt_len += q->ipqe_len;
418 pkt_flags |= q->ipqe_flags;
419 m_cat(m, q->ipqe_m);
420 LIST_REMOVE(q, ipqe_q);
421 LIST_REMOVE(q, ipqe_timeq);
422 if (tiqe == NULL) {
423 tiqe = q;
424 } else {
425 pool_put(&ipqent_pool, q);
426 }
427 break;
428 }
429 /*
430 * If the fragment is before the segment, remember it.
431 * When this loop is terminated, p will contain the
432 * pointer to fragment that is right before the received
433 * segment.
434 */
435 if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
436 p = q;
437
438 continue;
439
440 /*
441 * This is a common operation. It also will allow
442 * to save doing a malloc/free in most instances.
443 */
444 free_ipqe:
445 LIST_REMOVE(q, ipqe_q);
446 LIST_REMOVE(q, ipqe_timeq);
447 if (tiqe == NULL) {
448 tiqe = q;
449 } else {
450 pool_put(&ipqent_pool, q);
451 }
452 }
453
454 /*
455 * Allocate a new queue entry since the received segment did not
456 * collapse onto any other out-of-order block; thus we are allocating
457 * a new block. If it had collapsed, tiqe would not be NULL and
458 * we would be reusing it.
459 * XXX If we can't, just drop the packet. XXX
460 */
461 if (tiqe == NULL) {
462 tiqe = pool_get(&ipqent_pool, PR_NOWAIT);
463 if (tiqe == NULL) {
464 tcpstat.tcps_rcvmemdrop++;
465 m_freem(m);
466 return (0);
467 }
468 }
469
470 /*
471 * Update the counters.
472 */
473 tcpstat.tcps_rcvoopack++;
474 tcpstat.tcps_rcvoobyte += rcvoobyte;
475 if (rcvpartdupbyte) {
476 tcpstat.tcps_rcvpartduppack++;
477 tcpstat.tcps_rcvpartdupbyte += rcvpartdupbyte;
478 }
479
480 /*
481 * Insert the new fragment queue entry into both queues.
482 */
483 tiqe->ipqe_m = m;
484 tiqe->ipqe_seq = pkt_seq;
485 tiqe->ipqe_len = pkt_len;
486 tiqe->ipqe_flags = pkt_flags;
487 if (p == NULL) {
488 LIST_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
489 #ifdef TCPREASS_DEBUG
490 if (tiqe->ipqe_seq != tp->rcv_nxt)
491 printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
492 tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
493 #endif
494 } else {
495 LIST_INSERT_AFTER(p, tiqe, ipqe_q);
496 #ifdef TCPREASS_DEBUG
497 printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
498 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
499 p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
500 #endif
501 }
502
503 LIST_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
504
505 present:
506 /*
507 * Present data to user, advancing rcv_nxt through
508 * completed sequence space.
509 */
510 if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
511 return (0);
512 q = tp->segq.lh_first;
513 if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
514 return (0);
515 if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
516 return (0);
517
518 tp->rcv_nxt += q->ipqe_len;
519 pkt_flags = q->ipqe_flags & TH_FIN;
520 ND6_HINT(tp);
521
522 LIST_REMOVE(q, ipqe_q);
523 LIST_REMOVE(q, ipqe_timeq);
524 if (so->so_state & SS_CANTRCVMORE)
525 m_freem(q->ipqe_m);
526 else
527 sbappend(&so->so_rcv, q->ipqe_m);
528 pool_put(&ipqent_pool, q);
529 sorwakeup(so);
530 return (pkt_flags);
531 }
532
533 #ifdef INET6
534 int
535 tcp6_input(mp, offp, proto)
536 struct mbuf **mp;
537 int *offp, proto;
538 {
539 struct mbuf *m = *mp;
540
541 /*
542 * draft-itojun-ipv6-tcp-to-anycast
543 * better place to put this in?
544 */
545 if (m->m_flags & M_ANYCAST6) {
546 struct ip6_hdr *ip6;
547 if (m->m_len < sizeof(struct ip6_hdr)) {
548 if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
549 tcpstat.tcps_rcvshort++;
550 return IPPROTO_DONE;
551 }
552 }
553 ip6 = mtod(m, struct ip6_hdr *);
554 icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
555 (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
556 return IPPROTO_DONE;
557 }
558
559 tcp_input(m, *offp, proto);
560 return IPPROTO_DONE;
561 }
562 #endif
563
564 /*
565 * TCP input routine, follows pages 65-76 of the
566 * protocol specification dated September, 1981 very closely.
567 */
568 void
569 #if __STDC__
570 tcp_input(struct mbuf *m, ...)
571 #else
572 tcp_input(m, va_alist)
573 struct mbuf *m;
574 #endif
575 {
576 int proto;
577 struct tcphdr *th;
578 struct ip *ip;
579 struct inpcb *inp;
580 #ifdef INET6
581 struct ip6_hdr *ip6;
582 struct in6pcb *in6p;
583 #endif
584 caddr_t optp = NULL;
585 int optlen = 0;
586 int len, tlen, toff, hdroptlen = 0;
587 struct tcpcb *tp = 0;
588 int tiflags;
589 struct socket *so = NULL;
590 int todrop, acked, ourfinisacked, needoutput = 0;
591 short ostate = 0;
592 int iss = 0;
593 u_long tiwin;
594 struct tcp_opt_info opti;
595 int off, iphlen;
596 va_list ap;
597 int af; /* af on the wire */
598 struct mbuf *tcp_saveti = NULL;
599
600 va_start(ap, m);
601 toff = va_arg(ap, int);
602 proto = va_arg(ap, int);
603 va_end(ap);
604
605 tcpstat.tcps_rcvtotal++;
606
607 bzero(&opti, sizeof(opti));
608 opti.ts_present = 0;
609 opti.maxseg = 0;
610
611 /*
612 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
613 *
614 * TCP is, by definition, unicast, so we reject all
615 * multicast outright.
616 *
617 * Note, there are additional src/dst address checks in
618 * the AF-specific code below.
619 */
620 if (m->m_flags & (M_BCAST|M_MCAST)) {
621 /* XXX stat */
622 goto drop;
623 }
624 #ifdef INET6
625 if (m->m_flags & M_ANYCAST6) {
626 /* XXX stat */
627 goto drop;
628 }
629 #endif
630
631 /*
632 * Get IP and TCP header together in first mbuf.
633 * Note: IP leaves IP header in first mbuf.
634 */
635 ip = mtod(m, struct ip *);
636 #ifdef INET6
637 ip6 = NULL;
638 #endif
639 switch (ip->ip_v) {
640 #ifdef INET
641 case 4:
642 af = AF_INET;
643 iphlen = sizeof(struct ip);
644 #ifndef PULLDOWN_TEST
645 /* would like to get rid of this... */
646 if (toff > sizeof (struct ip)) {
647 ip_stripoptions(m, (struct mbuf *)0);
648 toff = sizeof(struct ip);
649 }
650 if (m->m_len < toff + sizeof (struct tcphdr)) {
651 if ((m = m_pullup(m, toff + sizeof (struct tcphdr))) == 0) {
652 tcpstat.tcps_rcvshort++;
653 return;
654 }
655 }
656 ip = mtod(m, struct ip *);
657 th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
658 #else
659 ip = mtod(m, struct ip *);
660 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
661 sizeof(struct tcphdr));
662 if (th == NULL) {
663 tcpstat.tcps_rcvshort++;
664 return;
665 }
666 #endif
667
668 /*
669 * Make sure destination address is not multicast.
670 * Source address checked in ip_input().
671 */
672 if (IN_MULTICAST(ip->ip_dst.s_addr)) {
673 /* XXX stat */
674 goto drop;
675 }
676
677 /* We do the checksum after PCB lookup... */
678 len = ip->ip_len;
679 tlen = len - toff;
680 break;
681 #endif
682 #ifdef INET6
683 case 6:
684 ip = NULL;
685 iphlen = sizeof(struct ip6_hdr);
686 af = AF_INET6;
687 #ifndef PULLDOWN_TEST
688 if (m->m_len < toff + sizeof(struct tcphdr)) {
689 m = m_pullup(m, toff + sizeof(struct tcphdr)); /*XXX*/
690 if (m == NULL) {
691 tcpstat.tcps_rcvshort++;
692 return;
693 }
694 }
695 ip6 = mtod(m, struct ip6_hdr *);
696 th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
697 #else
698 ip6 = mtod(m, struct ip6_hdr *);
699 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
700 sizeof(struct tcphdr));
701 if (th == NULL) {
702 tcpstat.tcps_rcvshort++;
703 return;
704 }
705 #endif
706
707 /* Be proactive about malicious use of IPv4 mapped address */
708 if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
709 IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
710 /* XXX stat */
711 goto drop;
712 }
713
714 /*
715 * Be proactive about unspecified IPv6 address in source.
716 * As we use all-zero to indicate unbounded/unconnected pcb,
717 * unspecified IPv6 address can be used to confuse us.
718 *
719 * Note that packets with unspecified IPv6 destination is
720 * already dropped in ip6_input.
721 */
722 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
723 /* XXX stat */
724 goto drop;
725 }
726
727 /*
728 * Make sure destination address is not multicast.
729 * Source address checked in ip6_input().
730 */
731 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
732 /* XXX stat */
733 goto drop;
734 }
735
736 /* We do the checksum after PCB lookup... */
737 len = m->m_pkthdr.len;
738 tlen = len - toff;
739 break;
740 #endif
741 default:
742 m_freem(m);
743 return;
744 }
745
746 /*
747 * Check that TCP offset makes sense,
748 * pull out TCP options and adjust length. XXX
749 */
750 off = th->th_off << 2;
751 if (off < sizeof (struct tcphdr) || off > tlen) {
752 tcpstat.tcps_rcvbadoff++;
753 goto drop;
754 }
755 tlen -= off;
756
757 /*
758 * tcp_input() has been modified to use tlen to mean the TCP data
759 * length throughout the function. Other functions can use
760 * m->m_pkthdr.len as the basis for calculating the TCP data length.
761 * rja
762 */
763
764 if (off > sizeof (struct tcphdr)) {
765 #ifndef PULLDOWN_TEST
766 if (m->m_len < toff + off) {
767 if ((m = m_pullup(m, toff + off)) == 0) {
768 tcpstat.tcps_rcvshort++;
769 return;
770 }
771 switch (af) {
772 #ifdef INET
773 case AF_INET:
774 ip = mtod(m, struct ip *);
775 break;
776 #endif
777 #ifdef INET6
778 case AF_INET6:
779 ip6 = mtod(m, struct ip6_hdr *);
780 break;
781 #endif
782 }
783 th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
784 }
785 #else
786 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
787 if (th == NULL) {
788 tcpstat.tcps_rcvshort++;
789 return;
790 }
791 /*
792 * NOTE: ip/ip6 will not be affected by m_pulldown()
793 * (as they're before toff) and we don't need to update those.
794 */
795 #endif
796 optlen = off - sizeof (struct tcphdr);
797 optp = ((caddr_t)th) + sizeof(struct tcphdr);
798 /*
799 * Do quick retrieval of timestamp options ("options
800 * prediction?"). If timestamp is the only option and it's
801 * formatted as recommended in RFC 1323 appendix A, we
802 * quickly get the values now and not bother calling
803 * tcp_dooptions(), etc.
804 */
805 if ((optlen == TCPOLEN_TSTAMP_APPA ||
806 (optlen > TCPOLEN_TSTAMP_APPA &&
807 optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
808 *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
809 (th->th_flags & TH_SYN) == 0) {
810 opti.ts_present = 1;
811 opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
812 opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
813 optp = NULL; /* we've parsed the options */
814 }
815 }
816 tiflags = th->th_flags;
817
818 /*
819 * Locate pcb for segment.
820 */
821 findpcb:
822 inp = NULL;
823 #ifdef INET6
824 in6p = NULL;
825 #endif
826 switch (af) {
827 #ifdef INET
828 case AF_INET:
829 inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
830 ip->ip_dst, th->th_dport);
831 if (inp == 0) {
832 ++tcpstat.tcps_pcbhashmiss;
833 inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
834 }
835 #ifdef INET6
836 if (inp == 0) {
837 struct in6_addr s, d;
838
839 /* mapped addr case */
840 bzero(&s, sizeof(s));
841 s.s6_addr16[5] = htons(0xffff);
842 bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
843 bzero(&d, sizeof(d));
844 d.s6_addr16[5] = htons(0xffff);
845 bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
846 in6p = in6_pcblookup_connect(&tcb6, &s, th->th_sport,
847 &d, th->th_dport, 0);
848 if (in6p == 0) {
849 ++tcpstat.tcps_pcbhashmiss;
850 in6p = in6_pcblookup_bind(&tcb6, &d,
851 th->th_dport, 0);
852 }
853 }
854 #endif
855 #ifndef INET6
856 if (inp == 0)
857 #else
858 if (inp == 0 && in6p == 0)
859 #endif
860 {
861 ++tcpstat.tcps_noport;
862 if (tcp_log_refused && (tiflags & TH_SYN)) {
863 #ifndef INET6
864 char src[4*sizeof "123"];
865 char dst[4*sizeof "123"];
866 #else
867 char src[INET6_ADDRSTRLEN];
868 char dst[INET6_ADDRSTRLEN];
869 #endif
870 if (ip) {
871 strcpy(src, inet_ntoa(ip->ip_src));
872 strcpy(dst, inet_ntoa(ip->ip_dst));
873 }
874 #ifdef INET6
875 else if (ip6) {
876 strcpy(src, ip6_sprintf(&ip6->ip6_src));
877 strcpy(dst, ip6_sprintf(&ip6->ip6_dst));
878 }
879 #endif
880 else {
881 strcpy(src, "(unknown)");
882 strcpy(dst, "(unknown)");
883 }
884 log(LOG_INFO,
885 "Connection attempt to TCP %s:%d from %s:%d\n",
886 dst, ntohs(th->th_dport),
887 src, ntohs(th->th_sport));
888 }
889 TCP_FIELDS_TO_HOST(th);
890 goto dropwithreset_ratelim;
891 }
892 #ifdef IPSEC
893 if (inp && ipsec4_in_reject(m, inp)) {
894 ipsecstat.in_polvio++;
895 goto drop;
896 }
897 #ifdef INET6
898 else if (in6p && ipsec4_in_reject_so(m, in6p->in6p_socket)) {
899 ipsecstat.in_polvio++;
900 goto drop;
901 }
902 #endif
903 #endif /*IPSEC*/
904 break;
905 #endif /*INET*/
906 #ifdef INET6
907 case AF_INET6:
908 {
909 int faith;
910
911 #if defined(NFAITH) && NFAITH > 0
912 faith = faithprefix(&ip6->ip6_dst);
913 #else
914 faith = 0;
915 #endif
916 in6p = in6_pcblookup_connect(&tcb6, &ip6->ip6_src, th->th_sport,
917 &ip6->ip6_dst, th->th_dport, faith);
918 if (in6p == NULL) {
919 ++tcpstat.tcps_pcbhashmiss;
920 in6p = in6_pcblookup_bind(&tcb6, &ip6->ip6_dst,
921 th->th_dport, faith);
922 }
923 if (in6p == NULL) {
924 ++tcpstat.tcps_noport;
925 TCP_FIELDS_TO_HOST(th);
926 goto dropwithreset_ratelim;
927 }
928 #ifdef IPSEC
929 if (ipsec6_in_reject(m, in6p)) {
930 ipsec6stat.in_polvio++;
931 goto drop;
932 }
933 #endif /*IPSEC*/
934 break;
935 }
936 #endif
937 }
938
939 /*
940 * If the state is CLOSED (i.e., TCB does not exist) then
941 * all data in the incoming segment is discarded.
942 * If the TCB exists but is in CLOSED state, it is embryonic,
943 * but should either do a listen or a connect soon.
944 */
945 tp = NULL;
946 so = NULL;
947 if (inp) {
948 tp = intotcpcb(inp);
949 so = inp->inp_socket;
950 }
951 #ifdef INET6
952 else if (in6p) {
953 tp = in6totcpcb(in6p);
954 so = in6p->in6p_socket;
955 }
956 #endif
957 if (tp == 0) {
958 TCP_FIELDS_TO_HOST(th);
959 goto dropwithreset_ratelim;
960 }
961 if (tp->t_state == TCPS_CLOSED)
962 goto drop;
963
964 /*
965 * Checksum extended TCP header and data.
966 */
967 switch (af) {
968 #ifdef INET
969 case AF_INET:
970 switch (m->m_pkthdr.csum_flags &
971 ((m->m_pkthdr.rcvif->if_csum_flags & M_CSUM_TCPv4) |
972 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
973 case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
974 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
975 goto badcsum;
976
977 case M_CSUM_TCPv4|M_CSUM_DATA:
978 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
979 if ((m->m_pkthdr.csum_data ^ 0xffff) != 0)
980 goto badcsum;
981 break;
982
983 case M_CSUM_TCPv4:
984 /* Checksum was okay. */
985 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
986 break;
987
988 default:
989 /* Must compute it ourselves. */
990 TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
991 #ifndef PULLDOWN_TEST
992 {
993 struct ipovly *ipov;
994 ipov = (struct ipovly *)ip;
995 bzero(ipov->ih_x1, sizeof ipov->ih_x1);
996 ipov->ih_len = htons(tlen + off);
997
998 if (in_cksum(m, len) != 0)
999 goto badcsum;
1000 }
1001 #else
1002 if (in4_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0)
1003 goto badcsum;
1004 #endif /* ! PULLDOWN_TEST */
1005 break;
1006 }
1007 break;
1008 #endif /* INET4 */
1009
1010 #ifdef INET6
1011 case AF_INET6:
1012 if (in6_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0)
1013 goto badcsum;
1014 break;
1015 #endif /* INET6 */
1016 }
1017
1018 TCP_FIELDS_TO_HOST(th);
1019
1020 /* Unscale the window into a 32-bit value. */
1021 if ((tiflags & TH_SYN) == 0)
1022 tiwin = th->th_win << tp->snd_scale;
1023 else
1024 tiwin = th->th_win;
1025
1026 #ifdef INET6
1027 /* save packet options if user wanted */
1028 if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
1029 if (in6p->in6p_options) {
1030 m_freem(in6p->in6p_options);
1031 in6p->in6p_options = 0;
1032 }
1033 ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
1034 }
1035 #endif
1036
1037 if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
1038 union syn_cache_sa src;
1039 union syn_cache_sa dst;
1040
1041 bzero(&src, sizeof(src));
1042 bzero(&dst, sizeof(dst));
1043 switch (af) {
1044 #ifdef INET
1045 case AF_INET:
1046 src.sin.sin_len = sizeof(struct sockaddr_in);
1047 src.sin.sin_family = AF_INET;
1048 src.sin.sin_addr = ip->ip_src;
1049 src.sin.sin_port = th->th_sport;
1050
1051 dst.sin.sin_len = sizeof(struct sockaddr_in);
1052 dst.sin.sin_family = AF_INET;
1053 dst.sin.sin_addr = ip->ip_dst;
1054 dst.sin.sin_port = th->th_dport;
1055 break;
1056 #endif
1057 #ifdef INET6
1058 case AF_INET6:
1059 src.sin6.sin6_len = sizeof(struct sockaddr_in6);
1060 src.sin6.sin6_family = AF_INET6;
1061 src.sin6.sin6_addr = ip6->ip6_src;
1062 src.sin6.sin6_port = th->th_sport;
1063
1064 dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
1065 dst.sin6.sin6_family = AF_INET6;
1066 dst.sin6.sin6_addr = ip6->ip6_dst;
1067 dst.sin6.sin6_port = th->th_dport;
1068 break;
1069 #endif /* INET6 */
1070 default:
1071 goto badsyn; /*sanity*/
1072 }
1073
1074 if (so->so_options & SO_DEBUG) {
1075 ostate = tp->t_state;
1076
1077 tcp_saveti = NULL;
1078 if (iphlen + sizeof(struct tcphdr) > MHLEN)
1079 goto nosave;
1080
1081 if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
1082 tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
1083 if (!tcp_saveti)
1084 goto nosave;
1085 } else {
1086 MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
1087 if (!tcp_saveti)
1088 goto nosave;
1089 tcp_saveti->m_len = iphlen;
1090 m_copydata(m, 0, iphlen,
1091 mtod(tcp_saveti, caddr_t));
1092 }
1093
1094 if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
1095 m_freem(tcp_saveti);
1096 tcp_saveti = NULL;
1097 } else {
1098 tcp_saveti->m_len += sizeof(struct tcphdr);
1099 bcopy(th, mtod(tcp_saveti, caddr_t) + iphlen,
1100 sizeof(struct tcphdr));
1101 }
1102 if (tcp_saveti) {
1103 /*
1104 * need to recover version # field, which was
1105 * overwritten on ip_cksum computation.
1106 */
1107 struct ip *sip;
1108 sip = mtod(tcp_saveti, struct ip *);
1109 switch (af) {
1110 #ifdef INET
1111 case AF_INET:
1112 sip->ip_v = 4;
1113 break;
1114 #endif
1115 #ifdef INET6
1116 case AF_INET6:
1117 sip->ip_v = 6;
1118 break;
1119 #endif
1120 }
1121 }
1122 nosave:;
1123 }
1124 if (so->so_options & SO_ACCEPTCONN) {
1125 if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1126 if (tiflags & TH_RST) {
1127 syn_cache_reset(&src.sa, &dst.sa, th);
1128 } else if ((tiflags & (TH_ACK|TH_SYN)) ==
1129 (TH_ACK|TH_SYN)) {
1130 /*
1131 * Received a SYN,ACK. This should
1132 * never happen while we are in
1133 * LISTEN. Send an RST.
1134 */
1135 goto badsyn;
1136 } else if (tiflags & TH_ACK) {
1137 so = syn_cache_get(&src.sa, &dst.sa,
1138 th, toff, tlen, so, m);
1139 if (so == NULL) {
1140 /*
1141 * We don't have a SYN for
1142 * this ACK; send an RST.
1143 */
1144 goto badsyn;
1145 } else if (so ==
1146 (struct socket *)(-1)) {
1147 /*
1148 * We were unable to create
1149 * the connection. If the
1150 * 3-way handshake was
1151 * completed, and RST has
1152 * been sent to the peer.
1153 * Since the mbuf might be
1154 * in use for the reply,
1155 * do not free it.
1156 */
1157 m = NULL;
1158 } else {
1159 /*
1160 * We have created a
1161 * full-blown connection.
1162 */
1163 tp = NULL;
1164 inp = NULL;
1165 #ifdef INET6
1166 in6p = NULL;
1167 #endif
1168 switch (so->so_proto->pr_domain->dom_family) {
1169 #ifdef INET
1170 case AF_INET:
1171 inp = sotoinpcb(so);
1172 tp = intotcpcb(inp);
1173 break;
1174 #endif
1175 #ifdef INET6
1176 case AF_INET6:
1177 in6p = sotoin6pcb(so);
1178 tp = in6totcpcb(in6p);
1179 break;
1180 #endif
1181 }
1182 if (tp == NULL)
1183 goto badsyn; /*XXX*/
1184 tiwin <<= tp->snd_scale;
1185 goto after_listen;
1186 }
1187 } else {
1188 /*
1189 * None of RST, SYN or ACK was set.
1190 * This is an invalid packet for a
1191 * TCB in LISTEN state. Send a RST.
1192 */
1193 goto badsyn;
1194 }
1195 } else {
1196 /*
1197 * Received a SYN.
1198 */
1199
1200 /*
1201 * LISTEN socket received a SYN
1202 * from itself? This can't possibly
1203 * be valid; drop the packet.
1204 */
1205 if (th->th_sport == th->th_dport) {
1206 int i;
1207
1208 switch (af) {
1209 #ifdef INET
1210 case AF_INET:
1211 i = in_hosteq(ip->ip_src, ip->ip_dst);
1212 break;
1213 #endif
1214 #ifdef INET6
1215 case AF_INET6:
1216 i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
1217 break;
1218 #endif
1219 default:
1220 i = 1;
1221 }
1222 if (i) {
1223 tcpstat.tcps_badsyn++;
1224 goto drop;
1225 }
1226 }
1227
1228 /*
1229 * SYN looks ok; create compressed TCP
1230 * state for it.
1231 */
1232 if (so->so_qlen <= so->so_qlimit &&
1233 syn_cache_add(&src.sa, &dst.sa, th, tlen,
1234 so, m, optp, optlen, &opti))
1235 m = NULL;
1236 }
1237 goto drop;
1238 }
1239 }
1240
1241 after_listen:
1242 #ifdef DIAGNOSTIC
1243 /*
1244 * Should not happen now that all embryonic connections
1245 * are handled with compressed state.
1246 */
1247 if (tp->t_state == TCPS_LISTEN)
1248 panic("tcp_input: TCPS_LISTEN");
1249 #endif
1250
1251 /*
1252 * Segment received on connection.
1253 * Reset idle time and keep-alive timer.
1254 */
1255 tp->t_idle = 0;
1256 if (TCPS_HAVEESTABLISHED(tp->t_state))
1257 TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1258
1259 /*
1260 * Process options.
1261 */
1262 if (optp)
1263 tcp_dooptions(tp, optp, optlen, th, &opti);
1264
1265 /*
1266 * Header prediction: check for the two common cases
1267 * of a uni-directional data xfer. If the packet has
1268 * no control flags, is in-sequence, the window didn't
1269 * change and we're not retransmitting, it's a
1270 * candidate. If the length is zero and the ack moved
1271 * forward, we're the sender side of the xfer. Just
1272 * free the data acked & wake any higher level process
1273 * that was blocked waiting for space. If the length
1274 * is non-zero and the ack didn't move, we're the
1275 * receiver side. If we're getting packets in-order
1276 * (the reassembly queue is empty), add the data to
1277 * the socket buffer and note that we need a delayed ack.
1278 */
1279 if (tp->t_state == TCPS_ESTABLISHED &&
1280 (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1281 (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
1282 th->th_seq == tp->rcv_nxt &&
1283 tiwin && tiwin == tp->snd_wnd &&
1284 tp->snd_nxt == tp->snd_max) {
1285
1286 /*
1287 * If last ACK falls within this segment's sequence numbers,
1288 * record the timestamp.
1289 */
1290 if (opti.ts_present &&
1291 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1292 SEQ_LT(tp->last_ack_sent, th->th_seq + tlen)) {
1293 tp->ts_recent_age = TCP_TIMESTAMP(tp);
1294 tp->ts_recent = opti.ts_val;
1295 }
1296
1297 if (tlen == 0) {
1298 if (SEQ_GT(th->th_ack, tp->snd_una) &&
1299 SEQ_LEQ(th->th_ack, tp->snd_max) &&
1300 tp->snd_cwnd >= tp->snd_wnd &&
1301 tp->t_dupacks < tcprexmtthresh) {
1302 /*
1303 * this is a pure ack for outstanding data.
1304 */
1305 ++tcpstat.tcps_predack;
1306 if (opti.ts_present && opti.ts_ecr)
1307 tcp_xmit_timer(tp,
1308 TCP_TIMESTAMP(tp) - opti.ts_ecr + 1);
1309 else if (tp->t_rtt &&
1310 SEQ_GT(th->th_ack, tp->t_rtseq))
1311 tcp_xmit_timer(tp, tp->t_rtt);
1312 acked = th->th_ack - tp->snd_una;
1313 tcpstat.tcps_rcvackpack++;
1314 tcpstat.tcps_rcvackbyte += acked;
1315 ND6_HINT(tp);
1316 sbdrop(&so->so_snd, acked);
1317 /*
1318 * We want snd_recover to track snd_una to
1319 * avoid sequence wraparound problems for
1320 * very large transfers.
1321 */
1322 tp->snd_una = tp->snd_recover = th->th_ack;
1323 m_freem(m);
1324
1325 /*
1326 * If all outstanding data are acked, stop
1327 * retransmit timer, otherwise restart timer
1328 * using current (possibly backed-off) value.
1329 * If process is waiting for space,
1330 * wakeup/selwakeup/signal. If data
1331 * are ready to send, let tcp_output
1332 * decide between more output or persist.
1333 */
1334 if (tp->snd_una == tp->snd_max)
1335 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1336 else if (TCP_TIMER_ISARMED(tp,
1337 TCPT_PERSIST) == 0)
1338 TCP_TIMER_ARM(tp, TCPT_REXMT,
1339 tp->t_rxtcur);
1340
1341 sowwakeup(so);
1342 if (so->so_snd.sb_cc)
1343 (void) tcp_output(tp);
1344 if (tcp_saveti)
1345 m_freem(tcp_saveti);
1346 return;
1347 }
1348 } else if (th->th_ack == tp->snd_una &&
1349 tp->segq.lh_first == NULL &&
1350 tlen <= sbspace(&so->so_rcv)) {
1351 /*
1352 * this is a pure, in-sequence data packet
1353 * with nothing on the reassembly queue and
1354 * we have enough buffer space to take it.
1355 */
1356 ++tcpstat.tcps_preddat;
1357 tp->rcv_nxt += tlen;
1358 tcpstat.tcps_rcvpack++;
1359 tcpstat.tcps_rcvbyte += tlen;
1360 ND6_HINT(tp);
1361 /*
1362 * Drop TCP, IP headers and TCP options then add data
1363 * to socket buffer.
1364 */
1365 m_adj(m, toff + off);
1366 sbappend(&so->so_rcv, m);
1367 sorwakeup(so);
1368 TCP_SETUP_ACK(tp, th);
1369 if (tp->t_flags & TF_ACKNOW)
1370 (void) tcp_output(tp);
1371 if (tcp_saveti)
1372 m_freem(tcp_saveti);
1373 return;
1374 }
1375 }
1376
1377 /*
1378 * Compute mbuf offset to TCP data segment.
1379 */
1380 hdroptlen = toff + off;
1381
1382 /*
1383 * Calculate amount of space in receive window,
1384 * and then do TCP input processing.
1385 * Receive window is amount of space in rcv queue,
1386 * but not less than advertised window.
1387 */
1388 { int win;
1389
1390 win = sbspace(&so->so_rcv);
1391 if (win < 0)
1392 win = 0;
1393 tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1394 }
1395
1396 switch (tp->t_state) {
1397
1398 /*
1399 * If the state is SYN_SENT:
1400 * if seg contains an ACK, but not for our SYN, drop the input.
1401 * if seg contains a RST, then drop the connection.
1402 * if seg does not contain SYN, then drop it.
1403 * Otherwise this is an acceptable SYN segment
1404 * initialize tp->rcv_nxt and tp->irs
1405 * if seg contains ack then advance tp->snd_una
1406 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1407 * arrange for segment to be acked (eventually)
1408 * continue processing rest of data/controls, beginning with URG
1409 */
1410 case TCPS_SYN_SENT:
1411 if ((tiflags & TH_ACK) &&
1412 (SEQ_LEQ(th->th_ack, tp->iss) ||
1413 SEQ_GT(th->th_ack, tp->snd_max)))
1414 goto dropwithreset;
1415 if (tiflags & TH_RST) {
1416 if (tiflags & TH_ACK)
1417 tp = tcp_drop(tp, ECONNREFUSED);
1418 goto drop;
1419 }
1420 if ((tiflags & TH_SYN) == 0)
1421 goto drop;
1422 if (tiflags & TH_ACK) {
1423 tp->snd_una = tp->snd_recover = th->th_ack;
1424 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1425 tp->snd_nxt = tp->snd_una;
1426 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1427 }
1428 tp->irs = th->th_seq;
1429 tcp_rcvseqinit(tp);
1430 tp->t_flags |= TF_ACKNOW;
1431 tcp_mss_from_peer(tp, opti.maxseg);
1432
1433 /*
1434 * Initialize the initial congestion window. If we
1435 * had to retransmit the SYN, we must initialize cwnd
1436 * to 1 segment (i.e. the Loss Window).
1437 */
1438 if (tp->t_flags & TF_SYN_REXMT)
1439 tp->snd_cwnd = tp->t_peermss;
1440 else
1441 tp->snd_cwnd = TCP_INITIAL_WINDOW(tcp_init_win,
1442 tp->t_peermss);
1443
1444 tcp_rmx_rtt(tp);
1445 if (tiflags & TH_ACK) {
1446 tcpstat.tcps_connects++;
1447 soisconnected(so);
1448 tcp_established(tp);
1449 /* Do window scaling on this connection? */
1450 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1451 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1452 tp->snd_scale = tp->requested_s_scale;
1453 tp->rcv_scale = tp->request_r_scale;
1454 }
1455 TCP_REASS_LOCK(tp);
1456 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1457 TCP_REASS_UNLOCK(tp);
1458 /*
1459 * if we didn't have to retransmit the SYN,
1460 * use its rtt as our initial srtt & rtt var.
1461 */
1462 if (tp->t_rtt)
1463 tcp_xmit_timer(tp, tp->t_rtt);
1464 } else
1465 tp->t_state = TCPS_SYN_RECEIVED;
1466
1467 /*
1468 * Advance th->th_seq to correspond to first data byte.
1469 * If data, trim to stay within window,
1470 * dropping FIN if necessary.
1471 */
1472 th->th_seq++;
1473 if (tlen > tp->rcv_wnd) {
1474 todrop = tlen - tp->rcv_wnd;
1475 m_adj(m, -todrop);
1476 tlen = tp->rcv_wnd;
1477 tiflags &= ~TH_FIN;
1478 tcpstat.tcps_rcvpackafterwin++;
1479 tcpstat.tcps_rcvbyteafterwin += todrop;
1480 }
1481 tp->snd_wl1 = th->th_seq - 1;
1482 tp->rcv_up = th->th_seq;
1483 goto step6;
1484
1485 /*
1486 * If the state is SYN_RECEIVED:
1487 * If seg contains an ACK, but not for our SYN, drop the input
1488 * and generate an RST. See page 36, rfc793
1489 */
1490 case TCPS_SYN_RECEIVED:
1491 if ((tiflags & TH_ACK) &&
1492 (SEQ_LEQ(th->th_ack, tp->iss) ||
1493 SEQ_GT(th->th_ack, tp->snd_max)))
1494 goto dropwithreset;
1495 break;
1496 }
1497
1498 /*
1499 * States other than LISTEN or SYN_SENT.
1500 * First check timestamp, if present.
1501 * Then check that at least some bytes of segment are within
1502 * receive window. If segment begins before rcv_nxt,
1503 * drop leading data (and SYN); if nothing left, just ack.
1504 *
1505 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1506 * and it's less than ts_recent, drop it.
1507 */
1508 if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
1509 TSTMP_LT(opti.ts_val, tp->ts_recent)) {
1510
1511 /* Check to see if ts_recent is over 24 days old. */
1512 if ((int)(TCP_TIMESTAMP(tp) - tp->ts_recent_age) >
1513 TCP_PAWS_IDLE) {
1514 /*
1515 * Invalidate ts_recent. If this segment updates
1516 * ts_recent, the age will be reset later and ts_recent
1517 * will get a valid value. If it does not, setting
1518 * ts_recent to zero will at least satisfy the
1519 * requirement that zero be placed in the timestamp
1520 * echo reply when ts_recent isn't valid. The
1521 * age isn't reset until we get a valid ts_recent
1522 * because we don't want out-of-order segments to be
1523 * dropped when ts_recent is old.
1524 */
1525 tp->ts_recent = 0;
1526 } else {
1527 tcpstat.tcps_rcvduppack++;
1528 tcpstat.tcps_rcvdupbyte += tlen;
1529 tcpstat.tcps_pawsdrop++;
1530 goto dropafterack;
1531 }
1532 }
1533
1534 todrop = tp->rcv_nxt - th->th_seq;
1535 if (todrop > 0) {
1536 if (tiflags & TH_SYN) {
1537 tiflags &= ~TH_SYN;
1538 th->th_seq++;
1539 if (th->th_urp > 1)
1540 th->th_urp--;
1541 else {
1542 tiflags &= ~TH_URG;
1543 th->th_urp = 0;
1544 }
1545 todrop--;
1546 }
1547 if (todrop > tlen ||
1548 (todrop == tlen && (tiflags & TH_FIN) == 0)) {
1549 /*
1550 * Any valid FIN must be to the left of the window.
1551 * At this point the FIN must be a duplicate or
1552 * out of sequence; drop it.
1553 */
1554 tiflags &= ~TH_FIN;
1555 /*
1556 * Send an ACK to resynchronize and drop any data.
1557 * But keep on processing for RST or ACK.
1558 */
1559 tp->t_flags |= TF_ACKNOW;
1560 todrop = tlen;
1561 tcpstat.tcps_rcvdupbyte += todrop;
1562 tcpstat.tcps_rcvduppack++;
1563 } else {
1564 tcpstat.tcps_rcvpartduppack++;
1565 tcpstat.tcps_rcvpartdupbyte += todrop;
1566 }
1567 hdroptlen += todrop; /*drop from head afterwards*/
1568 th->th_seq += todrop;
1569 tlen -= todrop;
1570 if (th->th_urp > todrop)
1571 th->th_urp -= todrop;
1572 else {
1573 tiflags &= ~TH_URG;
1574 th->th_urp = 0;
1575 }
1576 }
1577
1578 /*
1579 * If new data are received on a connection after the
1580 * user processes are gone, then RST the other end.
1581 */
1582 if ((so->so_state & SS_NOFDREF) &&
1583 tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1584 tp = tcp_close(tp);
1585 tcpstat.tcps_rcvafterclose++;
1586 goto dropwithreset;
1587 }
1588
1589 /*
1590 * If segment ends after window, drop trailing data
1591 * (and PUSH and FIN); if nothing left, just ACK.
1592 */
1593 todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
1594 if (todrop > 0) {
1595 tcpstat.tcps_rcvpackafterwin++;
1596 if (todrop >= tlen) {
1597 tcpstat.tcps_rcvbyteafterwin += tlen;
1598 /*
1599 * If a new connection request is received
1600 * while in TIME_WAIT, drop the old connection
1601 * and start over if the sequence numbers
1602 * are above the previous ones.
1603 */
1604 if (tiflags & TH_SYN &&
1605 tp->t_state == TCPS_TIME_WAIT &&
1606 SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1607 iss = tcp_new_iss(tp, tp->snd_nxt);
1608 tp = tcp_close(tp);
1609 goto findpcb;
1610 }
1611 /*
1612 * If window is closed can only take segments at
1613 * window edge, and have to drop data and PUSH from
1614 * incoming segments. Continue processing, but
1615 * remember to ack. Otherwise, drop segment
1616 * and ack.
1617 */
1618 if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1619 tp->t_flags |= TF_ACKNOW;
1620 tcpstat.tcps_rcvwinprobe++;
1621 } else
1622 goto dropafterack;
1623 } else
1624 tcpstat.tcps_rcvbyteafterwin += todrop;
1625 m_adj(m, -todrop);
1626 tlen -= todrop;
1627 tiflags &= ~(TH_PUSH|TH_FIN);
1628 }
1629
1630 /*
1631 * If last ACK falls within this segment's sequence numbers,
1632 * and the timestamp is newer, record it.
1633 */
1634 if (opti.ts_present && TSTMP_GEQ(opti.ts_val, tp->ts_recent) &&
1635 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1636 SEQ_LT(tp->last_ack_sent, th->th_seq + tlen +
1637 ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
1638 tp->ts_recent_age = TCP_TIMESTAMP(tp);
1639 tp->ts_recent = opti.ts_val;
1640 }
1641
1642 /*
1643 * If the RST bit is set examine the state:
1644 * SYN_RECEIVED STATE:
1645 * If passive open, return to LISTEN state.
1646 * If active open, inform user that connection was refused.
1647 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
1648 * Inform user that connection was reset, and close tcb.
1649 * CLOSING, LAST_ACK, TIME_WAIT STATES
1650 * Close the tcb.
1651 */
1652 if (tiflags&TH_RST) switch (tp->t_state) {
1653
1654 case TCPS_SYN_RECEIVED:
1655 so->so_error = ECONNREFUSED;
1656 goto close;
1657
1658 case TCPS_ESTABLISHED:
1659 case TCPS_FIN_WAIT_1:
1660 case TCPS_FIN_WAIT_2:
1661 case TCPS_CLOSE_WAIT:
1662 so->so_error = ECONNRESET;
1663 close:
1664 tp->t_state = TCPS_CLOSED;
1665 tcpstat.tcps_drops++;
1666 tp = tcp_close(tp);
1667 goto drop;
1668
1669 case TCPS_CLOSING:
1670 case TCPS_LAST_ACK:
1671 case TCPS_TIME_WAIT:
1672 tp = tcp_close(tp);
1673 goto drop;
1674 }
1675
1676 /*
1677 * If a SYN is in the window, then this is an
1678 * error and we send an RST and drop the connection.
1679 */
1680 if (tiflags & TH_SYN) {
1681 tp = tcp_drop(tp, ECONNRESET);
1682 goto dropwithreset;
1683 }
1684
1685 /*
1686 * If the ACK bit is off we drop the segment and return.
1687 */
1688 if ((tiflags & TH_ACK) == 0) {
1689 if (tp->t_flags & TF_ACKNOW)
1690 goto dropafterack;
1691 else
1692 goto drop;
1693 }
1694
1695 /*
1696 * Ack processing.
1697 */
1698 switch (tp->t_state) {
1699
1700 /*
1701 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
1702 * ESTABLISHED state and continue processing, otherwise
1703 * send an RST.
1704 */
1705 case TCPS_SYN_RECEIVED:
1706 if (SEQ_GT(tp->snd_una, th->th_ack) ||
1707 SEQ_GT(th->th_ack, tp->snd_max))
1708 goto dropwithreset;
1709 tcpstat.tcps_connects++;
1710 soisconnected(so);
1711 tcp_established(tp);
1712 /* Do window scaling? */
1713 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1714 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1715 tp->snd_scale = tp->requested_s_scale;
1716 tp->rcv_scale = tp->request_r_scale;
1717 }
1718 TCP_REASS_LOCK(tp);
1719 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1720 TCP_REASS_UNLOCK(tp);
1721 tp->snd_wl1 = th->th_seq - 1;
1722 /* fall into ... */
1723
1724 /*
1725 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1726 * ACKs. If the ack is in the range
1727 * tp->snd_una < th->th_ack <= tp->snd_max
1728 * then advance tp->snd_una to th->th_ack and drop
1729 * data from the retransmission queue. If this ACK reflects
1730 * more up to date window information we update our window information.
1731 */
1732 case TCPS_ESTABLISHED:
1733 case TCPS_FIN_WAIT_1:
1734 case TCPS_FIN_WAIT_2:
1735 case TCPS_CLOSE_WAIT:
1736 case TCPS_CLOSING:
1737 case TCPS_LAST_ACK:
1738 case TCPS_TIME_WAIT:
1739
1740 if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
1741 if (tlen == 0 && tiwin == tp->snd_wnd) {
1742 tcpstat.tcps_rcvdupack++;
1743 /*
1744 * If we have outstanding data (other than
1745 * a window probe), this is a completely
1746 * duplicate ack (ie, window info didn't
1747 * change), the ack is the biggest we've
1748 * seen and we've seen exactly our rexmt
1749 * threshhold of them, assume a packet
1750 * has been dropped and retransmit it.
1751 * Kludge snd_nxt & the congestion
1752 * window so we send only this one
1753 * packet.
1754 *
1755 * We know we're losing at the current
1756 * window size so do congestion avoidance
1757 * (set ssthresh to half the current window
1758 * and pull our congestion window back to
1759 * the new ssthresh).
1760 *
1761 * Dup acks mean that packets have left the
1762 * network (they're now cached at the receiver)
1763 * so bump cwnd by the amount in the receiver
1764 * to keep a constant cwnd packets in the
1765 * network.
1766 */
1767 if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
1768 th->th_ack != tp->snd_una)
1769 tp->t_dupacks = 0;
1770 else if (++tp->t_dupacks == tcprexmtthresh) {
1771 tcp_seq onxt = tp->snd_nxt;
1772 u_int win =
1773 min(tp->snd_wnd, tp->snd_cwnd) /
1774 2 / tp->t_segsz;
1775 if (tcp_do_newreno && SEQ_LT(th->th_ack,
1776 tp->snd_recover)) {
1777 /*
1778 * False fast retransmit after
1779 * timeout. Do not cut window.
1780 */
1781 tp->snd_cwnd += tp->t_segsz;
1782 tp->t_dupacks = 0;
1783 (void) tcp_output(tp);
1784 goto drop;
1785 }
1786
1787 if (win < 2)
1788 win = 2;
1789 tp->snd_ssthresh = win * tp->t_segsz;
1790 tp->snd_recover = tp->snd_max;
1791 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1792 tp->t_rtt = 0;
1793 tp->snd_nxt = th->th_ack;
1794 tp->snd_cwnd = tp->t_segsz;
1795 (void) tcp_output(tp);
1796 tp->snd_cwnd = tp->snd_ssthresh +
1797 tp->t_segsz * tp->t_dupacks;
1798 if (SEQ_GT(onxt, tp->snd_nxt))
1799 tp->snd_nxt = onxt;
1800 goto drop;
1801 } else if (tp->t_dupacks > tcprexmtthresh) {
1802 tp->snd_cwnd += tp->t_segsz;
1803 (void) tcp_output(tp);
1804 goto drop;
1805 }
1806 } else
1807 tp->t_dupacks = 0;
1808 break;
1809 }
1810 /*
1811 * If the congestion window was inflated to account
1812 * for the other side's cached packets, retract it.
1813 */
1814 if (tcp_do_newreno == 0) {
1815 if (tp->t_dupacks >= tcprexmtthresh &&
1816 tp->snd_cwnd > tp->snd_ssthresh)
1817 tp->snd_cwnd = tp->snd_ssthresh;
1818 tp->t_dupacks = 0;
1819 } else if (tp->t_dupacks >= tcprexmtthresh &&
1820 tcp_newreno(tp, th) == 0) {
1821 tp->snd_cwnd = tp->snd_ssthresh;
1822 /*
1823 * Window inflation should have left us with approx.
1824 * snd_ssthresh outstanding data. But in case we
1825 * would be inclined to send a burst, better to do
1826 * it via the slow start mechanism.
1827 */
1828 if (SEQ_SUB(tp->snd_max, th->th_ack) < tp->snd_ssthresh)
1829 tp->snd_cwnd = SEQ_SUB(tp->snd_max, th->th_ack)
1830 + tp->t_segsz;
1831 tp->t_dupacks = 0;
1832 }
1833 if (SEQ_GT(th->th_ack, tp->snd_max)) {
1834 tcpstat.tcps_rcvacktoomuch++;
1835 goto dropafterack;
1836 }
1837 acked = th->th_ack - tp->snd_una;
1838 tcpstat.tcps_rcvackpack++;
1839 tcpstat.tcps_rcvackbyte += acked;
1840
1841 /*
1842 * If we have a timestamp reply, update smoothed
1843 * round trip time. If no timestamp is present but
1844 * transmit timer is running and timed sequence
1845 * number was acked, update smoothed round trip time.
1846 * Since we now have an rtt measurement, cancel the
1847 * timer backoff (cf., Phil Karn's retransmit alg.).
1848 * Recompute the initial retransmit timer.
1849 */
1850 if (opti.ts_present && opti.ts_ecr)
1851 tcp_xmit_timer(tp, TCP_TIMESTAMP(tp) - opti.ts_ecr + 1);
1852 else if (tp->t_rtt && SEQ_GT(th->th_ack, tp->t_rtseq))
1853 tcp_xmit_timer(tp,tp->t_rtt);
1854
1855 /*
1856 * If all outstanding data is acked, stop retransmit
1857 * timer and remember to restart (more output or persist).
1858 * If there is more data to be acked, restart retransmit
1859 * timer, using current (possibly backed-off) value.
1860 */
1861 if (th->th_ack == tp->snd_max) {
1862 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1863 needoutput = 1;
1864 } else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
1865 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
1866 /*
1867 * When new data is acked, open the congestion window.
1868 * If the window gives us less than ssthresh packets
1869 * in flight, open exponentially (segsz per packet).
1870 * Otherwise open linearly: segsz per window
1871 * (segsz^2 / cwnd per packet), plus a constant
1872 * fraction of a packet (segsz/8) to help larger windows
1873 * open quickly enough.
1874 */
1875 {
1876 u_int cw = tp->snd_cwnd;
1877 u_int incr = tp->t_segsz;
1878
1879 if (cw > tp->snd_ssthresh)
1880 incr = incr * incr / cw;
1881 if (tcp_do_newreno == 0 || SEQ_GEQ(th->th_ack, tp->snd_recover))
1882 tp->snd_cwnd = min(cw + incr,
1883 TCP_MAXWIN << tp->snd_scale);
1884 }
1885 ND6_HINT(tp);
1886 if (acked > so->so_snd.sb_cc) {
1887 tp->snd_wnd -= so->so_snd.sb_cc;
1888 sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
1889 ourfinisacked = 1;
1890 } else {
1891 sbdrop(&so->so_snd, acked);
1892 tp->snd_wnd -= acked;
1893 ourfinisacked = 0;
1894 }
1895 sowwakeup(so);
1896 /*
1897 * We want snd_recover to track snd_una to
1898 * avoid sequence wraparound problems for
1899 * very large transfers.
1900 */
1901 tp->snd_una = tp->snd_recover = th->th_ack;
1902 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1903 tp->snd_nxt = tp->snd_una;
1904
1905 switch (tp->t_state) {
1906
1907 /*
1908 * In FIN_WAIT_1 STATE in addition to the processing
1909 * for the ESTABLISHED state if our FIN is now acknowledged
1910 * then enter FIN_WAIT_2.
1911 */
1912 case TCPS_FIN_WAIT_1:
1913 if (ourfinisacked) {
1914 /*
1915 * If we can't receive any more
1916 * data, then closing user can proceed.
1917 * Starting the timer is contrary to the
1918 * specification, but if we don't get a FIN
1919 * we'll hang forever.
1920 */
1921 if (so->so_state & SS_CANTRCVMORE) {
1922 soisdisconnected(so);
1923 if (tcp_maxidle > 0)
1924 TCP_TIMER_ARM(tp, TCPT_2MSL,
1925 tcp_maxidle);
1926 }
1927 tp->t_state = TCPS_FIN_WAIT_2;
1928 }
1929 break;
1930
1931 /*
1932 * In CLOSING STATE in addition to the processing for
1933 * the ESTABLISHED state if the ACK acknowledges our FIN
1934 * then enter the TIME-WAIT state, otherwise ignore
1935 * the segment.
1936 */
1937 case TCPS_CLOSING:
1938 if (ourfinisacked) {
1939 tp->t_state = TCPS_TIME_WAIT;
1940 tcp_canceltimers(tp);
1941 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
1942 soisdisconnected(so);
1943 }
1944 break;
1945
1946 /*
1947 * In LAST_ACK, we may still be waiting for data to drain
1948 * and/or to be acked, as well as for the ack of our FIN.
1949 * If our FIN is now acknowledged, delete the TCB,
1950 * enter the closed state and return.
1951 */
1952 case TCPS_LAST_ACK:
1953 if (ourfinisacked) {
1954 tp = tcp_close(tp);
1955 goto drop;
1956 }
1957 break;
1958
1959 /*
1960 * In TIME_WAIT state the only thing that should arrive
1961 * is a retransmission of the remote FIN. Acknowledge
1962 * it and restart the finack timer.
1963 */
1964 case TCPS_TIME_WAIT:
1965 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
1966 goto dropafterack;
1967 }
1968 }
1969
1970 step6:
1971 /*
1972 * Update window information.
1973 * Don't look at window if no ACK: TAC's send garbage on first SYN.
1974 */
1975 if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
1976 (tp->snd_wl1 == th->th_seq && SEQ_LT(tp->snd_wl2, th->th_ack)) ||
1977 (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))) {
1978 /* keep track of pure window updates */
1979 if (tlen == 0 &&
1980 tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
1981 tcpstat.tcps_rcvwinupd++;
1982 tp->snd_wnd = tiwin;
1983 tp->snd_wl1 = th->th_seq;
1984 tp->snd_wl2 = th->th_ack;
1985 if (tp->snd_wnd > tp->max_sndwnd)
1986 tp->max_sndwnd = tp->snd_wnd;
1987 needoutput = 1;
1988 }
1989
1990 /*
1991 * Process segments with URG.
1992 */
1993 if ((tiflags & TH_URG) && th->th_urp &&
1994 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1995 /*
1996 * This is a kludge, but if we receive and accept
1997 * random urgent pointers, we'll crash in
1998 * soreceive. It's hard to imagine someone
1999 * actually wanting to send this much urgent data.
2000 */
2001 if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2002 th->th_urp = 0; /* XXX */
2003 tiflags &= ~TH_URG; /* XXX */
2004 goto dodata; /* XXX */
2005 }
2006 /*
2007 * If this segment advances the known urgent pointer,
2008 * then mark the data stream. This should not happen
2009 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2010 * a FIN has been received from the remote side.
2011 * In these states we ignore the URG.
2012 *
2013 * According to RFC961 (Assigned Protocols),
2014 * the urgent pointer points to the last octet
2015 * of urgent data. We continue, however,
2016 * to consider it to indicate the first octet
2017 * of data past the urgent section as the original
2018 * spec states (in one of two places).
2019 */
2020 if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2021 tp->rcv_up = th->th_seq + th->th_urp;
2022 so->so_oobmark = so->so_rcv.sb_cc +
2023 (tp->rcv_up - tp->rcv_nxt) - 1;
2024 if (so->so_oobmark == 0)
2025 so->so_state |= SS_RCVATMARK;
2026 sohasoutofband(so);
2027 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2028 }
2029 /*
2030 * Remove out of band data so doesn't get presented to user.
2031 * This can happen independent of advancing the URG pointer,
2032 * but if two URG's are pending at once, some out-of-band
2033 * data may creep in... ick.
2034 */
2035 if (th->th_urp <= (u_int16_t) tlen
2036 #ifdef SO_OOBINLINE
2037 && (so->so_options & SO_OOBINLINE) == 0
2038 #endif
2039 )
2040 tcp_pulloutofband(so, th, m, hdroptlen);
2041 } else
2042 /*
2043 * If no out of band data is expected,
2044 * pull receive urgent pointer along
2045 * with the receive window.
2046 */
2047 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2048 tp->rcv_up = tp->rcv_nxt;
2049 dodata: /* XXX */
2050
2051 /*
2052 * Process the segment text, merging it into the TCP sequencing queue,
2053 * and arranging for acknowledgement of receipt if necessary.
2054 * This process logically involves adjusting tp->rcv_wnd as data
2055 * is presented to the user (this happens in tcp_usrreq.c,
2056 * case PRU_RCVD). If a FIN has already been received on this
2057 * connection then we just ignore the text.
2058 */
2059 if ((tlen || (tiflags & TH_FIN)) &&
2060 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2061 /*
2062 * Insert segment ti into reassembly queue of tcp with
2063 * control block tp. Return TH_FIN if reassembly now includes
2064 * a segment with FIN. The macro form does the common case
2065 * inline (segment is the next to be received on an
2066 * established connection, and the queue is empty),
2067 * avoiding linkage into and removal from the queue and
2068 * repetition of various conversions.
2069 * Set DELACK for segments received in order, but ack
2070 * immediately when segments are out of order
2071 * (so fast retransmit can work).
2072 */
2073 /* NOTE: this was TCP_REASS() macro, but used only once */
2074 TCP_REASS_LOCK(tp);
2075 if (th->th_seq == tp->rcv_nxt &&
2076 tp->segq.lh_first == NULL &&
2077 tp->t_state == TCPS_ESTABLISHED) {
2078 TCP_SETUP_ACK(tp, th);
2079 tp->rcv_nxt += tlen;
2080 tiflags = th->th_flags & TH_FIN;
2081 tcpstat.tcps_rcvpack++;
2082 tcpstat.tcps_rcvbyte += tlen;
2083 ND6_HINT(tp);
2084 m_adj(m, hdroptlen);
2085 sbappend(&(so)->so_rcv, m);
2086 sorwakeup(so);
2087 } else {
2088 m_adj(m, hdroptlen);
2089 tiflags = tcp_reass(tp, th, m, &tlen);
2090 tp->t_flags |= TF_ACKNOW;
2091 }
2092 TCP_REASS_UNLOCK(tp);
2093
2094 /*
2095 * Note the amount of data that peer has sent into
2096 * our window, in order to estimate the sender's
2097 * buffer size.
2098 */
2099 len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2100 } else {
2101 m_freem(m);
2102 m = NULL;
2103 tiflags &= ~TH_FIN;
2104 }
2105
2106 /*
2107 * If FIN is received ACK the FIN and let the user know
2108 * that the connection is closing. Ignore a FIN received before
2109 * the connection is fully established.
2110 */
2111 if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2112 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2113 socantrcvmore(so);
2114 tp->t_flags |= TF_ACKNOW;
2115 tp->rcv_nxt++;
2116 }
2117 switch (tp->t_state) {
2118
2119 /*
2120 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2121 */
2122 case TCPS_ESTABLISHED:
2123 tp->t_state = TCPS_CLOSE_WAIT;
2124 break;
2125
2126 /*
2127 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2128 * enter the CLOSING state.
2129 */
2130 case TCPS_FIN_WAIT_1:
2131 tp->t_state = TCPS_CLOSING;
2132 break;
2133
2134 /*
2135 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2136 * starting the time-wait timer, turning off the other
2137 * standard timers.
2138 */
2139 case TCPS_FIN_WAIT_2:
2140 tp->t_state = TCPS_TIME_WAIT;
2141 tcp_canceltimers(tp);
2142 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2143 soisdisconnected(so);
2144 break;
2145
2146 /*
2147 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2148 */
2149 case TCPS_TIME_WAIT:
2150 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2151 break;
2152 }
2153 }
2154 #ifdef TCP_DEBUG
2155 if (so->so_options & SO_DEBUG)
2156 tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
2157 #endif
2158
2159 /*
2160 * Return any desired output.
2161 */
2162 if (needoutput || (tp->t_flags & TF_ACKNOW))
2163 (void) tcp_output(tp);
2164 if (tcp_saveti)
2165 m_freem(tcp_saveti);
2166 return;
2167
2168 badsyn:
2169 /*
2170 * Received a bad SYN. Increment counters and dropwithreset.
2171 */
2172 tcpstat.tcps_badsyn++;
2173 tp = NULL;
2174 goto dropwithreset;
2175
2176 dropafterack:
2177 /*
2178 * Generate an ACK dropping incoming segment if it occupies
2179 * sequence space, where the ACK reflects our state.
2180 */
2181 if (tiflags & TH_RST)
2182 goto drop;
2183 m_freem(m);
2184 tp->t_flags |= TF_ACKNOW;
2185 (void) tcp_output(tp);
2186 if (tcp_saveti)
2187 m_freem(tcp_saveti);
2188 return;
2189
2190 dropwithreset_ratelim:
2191 /*
2192 * We may want to rate-limit RSTs in certain situations,
2193 * particularly if we are sending an RST in response to
2194 * an attempt to connect to or otherwise communicate with
2195 * a port for which we have no socket.
2196 */
2197 if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
2198 tcp_rst_ppslim) == 0) {
2199 /* XXX stat */
2200 goto drop;
2201 }
2202 /* ...fall into dropwithreset... */
2203
2204 dropwithreset:
2205 /*
2206 * Generate a RST, dropping incoming segment.
2207 * Make ACK acceptable to originator of segment.
2208 */
2209 if (tiflags & TH_RST)
2210 goto drop;
2211 {
2212 /*
2213 * need to recover version # field, which was overwritten on
2214 * ip_cksum computation.
2215 */
2216 struct ip *sip;
2217 sip = mtod(m, struct ip *);
2218 switch (af) {
2219 #ifdef INET
2220 case AF_INET:
2221 sip->ip_v = 4;
2222 break;
2223 #endif
2224 #ifdef INET6
2225 case AF_INET6:
2226 sip->ip_v = 6;
2227 break;
2228 #endif
2229 }
2230 }
2231 if (tiflags & TH_ACK)
2232 (void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
2233 else {
2234 if (tiflags & TH_SYN)
2235 tlen++;
2236 (void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
2237 TH_RST|TH_ACK);
2238 }
2239 if (tcp_saveti)
2240 m_freem(tcp_saveti);
2241 return;
2242
2243 badcsum:
2244 tcpstat.tcps_rcvbadsum++;
2245 drop:
2246 /*
2247 * Drop space held by incoming segment and return.
2248 */
2249 if (tp) {
2250 if (tp->t_inpcb)
2251 so = tp->t_inpcb->inp_socket;
2252 #ifdef INET6
2253 else if (tp->t_in6pcb)
2254 so = tp->t_in6pcb->in6p_socket;
2255 #endif
2256 else
2257 so = NULL;
2258 #ifdef TCP_DEBUG
2259 if (so && (so->so_options & SO_DEBUG) != 0)
2260 tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
2261 #endif
2262 }
2263 if (tcp_saveti)
2264 m_freem(tcp_saveti);
2265 m_freem(m);
2266 return;
2267 }
2268
2269 void
2270 tcp_dooptions(tp, cp, cnt, th, oi)
2271 struct tcpcb *tp;
2272 u_char *cp;
2273 int cnt;
2274 struct tcphdr *th;
2275 struct tcp_opt_info *oi;
2276 {
2277 u_int16_t mss;
2278 int opt, optlen;
2279
2280 for (; cnt > 0; cnt -= optlen, cp += optlen) {
2281 opt = cp[0];
2282 if (opt == TCPOPT_EOL)
2283 break;
2284 if (opt == TCPOPT_NOP)
2285 optlen = 1;
2286 else {
2287 if (cnt < 2)
2288 break;
2289 optlen = cp[1];
2290 if (optlen < 2 || optlen > cnt)
2291 break;
2292 }
2293 switch (opt) {
2294
2295 default:
2296 continue;
2297
2298 case TCPOPT_MAXSEG:
2299 if (optlen != TCPOLEN_MAXSEG)
2300 continue;
2301 if (!(th->th_flags & TH_SYN))
2302 continue;
2303 bcopy(cp + 2, &mss, sizeof(mss));
2304 oi->maxseg = ntohs(mss);
2305 break;
2306
2307 case TCPOPT_WINDOW:
2308 if (optlen != TCPOLEN_WINDOW)
2309 continue;
2310 if (!(th->th_flags & TH_SYN))
2311 continue;
2312 tp->t_flags |= TF_RCVD_SCALE;
2313 tp->requested_s_scale = cp[2];
2314 if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
2315 #if 0 /*XXX*/
2316 char *p;
2317
2318 if (ip)
2319 p = ntohl(ip->ip_src);
2320 #ifdef INET6
2321 else if (ip6)
2322 p = ip6_sprintf(&ip6->ip6_src);
2323 #endif
2324 else
2325 p = "(unknown)";
2326 log(LOG_ERR, "TCP: invalid wscale %d from %s, "
2327 "assuming %d\n",
2328 tp->requested_s_scale, p,
2329 TCP_MAX_WINSHIFT);
2330 #else
2331 log(LOG_ERR, "TCP: invalid wscale %d, "
2332 "assuming %d\n",
2333 tp->requested_s_scale,
2334 TCP_MAX_WINSHIFT);
2335 #endif
2336 tp->requested_s_scale = TCP_MAX_WINSHIFT;
2337 }
2338 break;
2339
2340 case TCPOPT_TIMESTAMP:
2341 if (optlen != TCPOLEN_TIMESTAMP)
2342 continue;
2343 oi->ts_present = 1;
2344 bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
2345 NTOHL(oi->ts_val);
2346 bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
2347 NTOHL(oi->ts_ecr);
2348
2349 /*
2350 * A timestamp received in a SYN makes
2351 * it ok to send timestamp requests and replies.
2352 */
2353 if (th->th_flags & TH_SYN) {
2354 tp->t_flags |= TF_RCVD_TSTMP;
2355 tp->ts_recent = oi->ts_val;
2356 tp->ts_recent_age = TCP_TIMESTAMP(tp);
2357 }
2358 break;
2359 case TCPOPT_SACK_PERMITTED:
2360 if (optlen != TCPOLEN_SACK_PERMITTED)
2361 continue;
2362 if (!(th->th_flags & TH_SYN))
2363 continue;
2364 tp->t_flags &= ~TF_CANT_TXSACK;
2365 break;
2366
2367 case TCPOPT_SACK:
2368 if (tp->t_flags & TF_IGNR_RXSACK)
2369 continue;
2370 if (optlen % 8 != 2 || optlen < 10)
2371 continue;
2372 cp += 2;
2373 optlen -= 2;
2374 for (; optlen > 0; cp -= 8, optlen -= 8) {
2375 tcp_seq lwe, rwe;
2376 bcopy((char *)cp, (char *) &lwe, sizeof(lwe));
2377 NTOHL(lwe);
2378 bcopy((char *)cp, (char *) &rwe, sizeof(rwe));
2379 NTOHL(rwe);
2380 /* tcp_mark_sacked(tp, lwe, rwe); */
2381 }
2382 break;
2383 }
2384 }
2385 }
2386
2387 /*
2388 * Pull out of band byte out of a segment so
2389 * it doesn't appear in the user's data queue.
2390 * It is still reflected in the segment length for
2391 * sequencing purposes.
2392 */
2393 void
2394 tcp_pulloutofband(so, th, m, off)
2395 struct socket *so;
2396 struct tcphdr *th;
2397 struct mbuf *m;
2398 int off;
2399 {
2400 int cnt = off + th->th_urp - 1;
2401
2402 while (cnt >= 0) {
2403 if (m->m_len > cnt) {
2404 char *cp = mtod(m, caddr_t) + cnt;
2405 struct tcpcb *tp = sototcpcb(so);
2406
2407 tp->t_iobc = *cp;
2408 tp->t_oobflags |= TCPOOB_HAVEDATA;
2409 bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
2410 m->m_len--;
2411 return;
2412 }
2413 cnt -= m->m_len;
2414 m = m->m_next;
2415 if (m == 0)
2416 break;
2417 }
2418 panic("tcp_pulloutofband");
2419 }
2420
2421 /*
2422 * Collect new round-trip time estimate
2423 * and update averages and current timeout.
2424 */
2425 void
2426 tcp_xmit_timer(tp, rtt)
2427 struct tcpcb *tp;
2428 short rtt;
2429 {
2430 short delta;
2431 short rttmin;
2432
2433 tcpstat.tcps_rttupdated++;
2434 --rtt;
2435 if (tp->t_srtt != 0) {
2436 /*
2437 * srtt is stored as fixed point with 3 bits after the
2438 * binary point (i.e., scaled by 8). The following magic
2439 * is equivalent to the smoothing algorithm in rfc793 with
2440 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2441 * point). Adjust rtt to origin 0.
2442 */
2443 delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
2444 if ((tp->t_srtt += delta) <= 0)
2445 tp->t_srtt = 1 << 2;
2446 /*
2447 * We accumulate a smoothed rtt variance (actually, a
2448 * smoothed mean difference), then set the retransmit
2449 * timer to smoothed rtt + 4 times the smoothed variance.
2450 * rttvar is stored as fixed point with 2 bits after the
2451 * binary point (scaled by 4). The following is
2452 * equivalent to rfc793 smoothing with an alpha of .75
2453 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces
2454 * rfc793's wired-in beta.
2455 */
2456 if (delta < 0)
2457 delta = -delta;
2458 delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
2459 if ((tp->t_rttvar += delta) <= 0)
2460 tp->t_rttvar = 1 << 2;
2461 } else {
2462 /*
2463 * No rtt measurement yet - use the unsmoothed rtt.
2464 * Set the variance to half the rtt (so our first
2465 * retransmit happens at 3*rtt).
2466 */
2467 tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
2468 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
2469 }
2470 tp->t_rtt = 0;
2471 tp->t_rxtshift = 0;
2472
2473 /*
2474 * the retransmit should happen at rtt + 4 * rttvar.
2475 * Because of the way we do the smoothing, srtt and rttvar
2476 * will each average +1/2 tick of bias. When we compute
2477 * the retransmit timer, we want 1/2 tick of rounding and
2478 * 1 extra tick because of +-1/2 tick uncertainty in the
2479 * firing of the timer. The bias will give us exactly the
2480 * 1.5 tick we need. But, because the bias is
2481 * statistical, we have to test that we don't drop below
2482 * the minimum feasible timer (which is 2 ticks).
2483 */
2484 if (tp->t_rttmin > rtt + 2)
2485 rttmin = tp->t_rttmin;
2486 else
2487 rttmin = rtt + 2;
2488 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp), rttmin, TCPTV_REXMTMAX);
2489
2490 /*
2491 * We received an ack for a packet that wasn't retransmitted;
2492 * it is probably safe to discard any error indications we've
2493 * received recently. This isn't quite right, but close enough
2494 * for now (a route might have failed after we sent a segment,
2495 * and the return path might not be symmetrical).
2496 */
2497 tp->t_softerror = 0;
2498 }
2499
2500 /*
2501 * Checks for partial ack. If partial ack arrives, force the retransmission
2502 * of the next unacknowledged segment, do not clear tp->t_dupacks, and return
2503 * 1. By setting snd_nxt to th_ack, this forces retransmission timer to
2504 * be started again. If the ack advances at least to tp->snd_recover, return 0.
2505 */
2506 int
2507 tcp_newreno(tp, th)
2508 struct tcpcb *tp;
2509 struct tcphdr *th;
2510 {
2511 tcp_seq onxt = tp->snd_nxt;
2512 u_long ocwnd = tp->snd_cwnd;
2513
2514 if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2515 /*
2516 * snd_una has not yet been updated and the socket's send
2517 * buffer has not yet drained off the ACK'd data, so we
2518 * have to leave snd_una as it was to get the correct data
2519 * offset in tcp_output().
2520 */
2521 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2522 tp->t_rtt = 0;
2523 tp->snd_nxt = th->th_ack;
2524 /*
2525 * Set snd_cwnd to one segment beyond ACK'd offset. snd_una
2526 * is not yet updated when we're called.
2527 */
2528 tp->snd_cwnd = tp->t_segsz + (th->th_ack - tp->snd_una);
2529 (void) tcp_output(tp);
2530 tp->snd_cwnd = ocwnd;
2531 if (SEQ_GT(onxt, tp->snd_nxt))
2532 tp->snd_nxt = onxt;
2533 /*
2534 * Partial window deflation. Relies on fact that tp->snd_una
2535 * not updated yet.
2536 */
2537 tp->snd_cwnd -= (th->th_ack - tp->snd_una - tp->t_segsz);
2538 return 1;
2539 }
2540 return 0;
2541 }
2542
2543
2544 /*
2545 * TCP compressed state engine. Currently used to hold compressed
2546 * state for SYN_RECEIVED.
2547 */
2548
2549 u_long syn_cache_count;
2550 u_int32_t syn_hash1, syn_hash2;
2551
2552 #define SYN_HASH(sa, sp, dp) \
2553 ((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
2554 ((u_int32_t)(sp)))^syn_hash2)))
2555 #ifndef INET6
2556 #define SYN_HASHALL(hash, src, dst) \
2557 do { \
2558 hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
2559 ((struct sockaddr_in *)(src))->sin_port, \
2560 ((struct sockaddr_in *)(dst))->sin_port); \
2561 } while (0)
2562 #else
2563 #define SYN_HASH6(sa, sp, dp) \
2564 ((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
2565 (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
2566 & 0x7fffffff)
2567
2568 #define SYN_HASHALL(hash, src, dst) \
2569 do { \
2570 switch ((src)->sa_family) { \
2571 case AF_INET: \
2572 hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
2573 ((struct sockaddr_in *)(src))->sin_port, \
2574 ((struct sockaddr_in *)(dst))->sin_port); \
2575 break; \
2576 case AF_INET6: \
2577 hash = SYN_HASH6(&((struct sockaddr_in6 *)(src))->sin6_addr, \
2578 ((struct sockaddr_in6 *)(src))->sin6_port, \
2579 ((struct sockaddr_in6 *)(dst))->sin6_port); \
2580 break; \
2581 default: \
2582 hash = 0; \
2583 } \
2584 } while (0)
2585 #endif /* INET6 */
2586
2587 #define SYN_CACHE_RM(sc) \
2588 do { \
2589 LIST_REMOVE((sc), sc_bucketq); \
2590 (sc)->sc_tp = NULL; \
2591 LIST_REMOVE((sc), sc_tpq); \
2592 tcp_syn_cache[(sc)->sc_bucketidx].sch_length--; \
2593 TAILQ_REMOVE(&tcp_syn_cache_timeq[(sc)->sc_rxtshift], (sc), sc_timeq); \
2594 syn_cache_count--; \
2595 } while (0)
2596
2597 #define SYN_CACHE_PUT(sc) \
2598 do { \
2599 if ((sc)->sc_ipopts) \
2600 (void) m_free((sc)->sc_ipopts); \
2601 if ((sc)->sc_route4.ro_rt != NULL) \
2602 RTFREE((sc)->sc_route4.ro_rt); \
2603 pool_put(&syn_cache_pool, (sc)); \
2604 } while (0)
2605
2606 struct pool syn_cache_pool;
2607
2608 /*
2609 * We don't estimate RTT with SYNs, so each packet starts with the default
2610 * RTT and each timer queue has a fixed timeout value. This allows us to
2611 * optimize the timer queues somewhat.
2612 */
2613 #define SYN_CACHE_TIMER_ARM(sc) \
2614 do { \
2615 TCPT_RANGESET((sc)->sc_rxtcur, \
2616 TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN, \
2617 TCPTV_REXMTMAX); \
2618 PRT_SLOW_ARM((sc)->sc_rexmt, (sc)->sc_rxtcur); \
2619 } while (0)
2620
2621 TAILQ_HEAD(, syn_cache) tcp_syn_cache_timeq[TCP_MAXRXTSHIFT + 1];
2622
2623 #define SYN_CACHE_TIMESTAMP(sc) (tcp_now - (sc)->sc_timebase)
2624
2625 void
2626 syn_cache_init()
2627 {
2628 int i;
2629
2630 /* Initialize the hash buckets. */
2631 for (i = 0; i < tcp_syn_cache_size; i++)
2632 LIST_INIT(&tcp_syn_cache[i].sch_bucket);
2633
2634 /* Initialize the timer queues. */
2635 for (i = 0; i <= TCP_MAXRXTSHIFT; i++)
2636 TAILQ_INIT(&tcp_syn_cache_timeq[i]);
2637
2638 /* Initialize the syn cache pool. */
2639 pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
2640 "synpl", 0, NULL, NULL, M_PCB);
2641 }
2642
2643 void
2644 syn_cache_insert(sc, tp)
2645 struct syn_cache *sc;
2646 struct tcpcb *tp;
2647 {
2648 struct syn_cache_head *scp;
2649 struct syn_cache *sc2;
2650 int s, i;
2651
2652 /*
2653 * If there are no entries in the hash table, reinitialize
2654 * the hash secrets.
2655 */
2656 if (syn_cache_count == 0) {
2657 struct timeval tv;
2658 microtime(&tv);
2659 syn_hash1 = random() ^ (u_long)≻
2660 syn_hash2 = random() ^ tv.tv_usec;
2661 }
2662
2663 SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
2664 sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
2665 scp = &tcp_syn_cache[sc->sc_bucketidx];
2666
2667 /*
2668 * Make sure that we don't overflow the per-bucket
2669 * limit or the total cache size limit.
2670 */
2671 s = splsoftnet();
2672 if (scp->sch_length >= tcp_syn_bucket_limit) {
2673 tcpstat.tcps_sc_bucketoverflow++;
2674 /*
2675 * The bucket is full. Toss the oldest element in the
2676 * bucket. This will be the entry with our bucket
2677 * index closest to the front of the timer queue with
2678 * the largest timeout value.
2679 *
2680 * Note: This timer queue traversal may be expensive, so
2681 * we hope that this doesn't happen very often. It is
2682 * much more likely that we'll overflow the entire
2683 * cache, which is much easier to handle; see below.
2684 */
2685 for (i = TCP_MAXRXTSHIFT; i >= 0; i--) {
2686 for (sc2 = TAILQ_FIRST(&tcp_syn_cache_timeq[i]);
2687 sc2 != NULL;
2688 sc2 = TAILQ_NEXT(sc2, sc_timeq)) {
2689 if (sc2->sc_bucketidx == sc->sc_bucketidx) {
2690 SYN_CACHE_RM(sc2);
2691 SYN_CACHE_PUT(sc2);
2692 goto insert; /* 2 level break */
2693 }
2694 }
2695 }
2696 #ifdef DIAGNOSTIC
2697 /*
2698 * This should never happen; we should always find an
2699 * entry in our bucket.
2700 */
2701 panic("syn_cache_insert: bucketoverflow: impossible");
2702 #endif
2703 } else if (syn_cache_count >= tcp_syn_cache_limit) {
2704 tcpstat.tcps_sc_overflowed++;
2705 /*
2706 * The cache is full. Toss the oldest entry in the
2707 * entire cache. This is the front entry in the
2708 * first non-empty timer queue with the largest
2709 * timeout value.
2710 */
2711 for (i = TCP_MAXRXTSHIFT; i >= 0; i--) {
2712 sc2 = TAILQ_FIRST(&tcp_syn_cache_timeq[i]);
2713 if (sc2 == NULL)
2714 continue;
2715 SYN_CACHE_RM(sc2);
2716 SYN_CACHE_PUT(sc2);
2717 goto insert; /* symmetry with above */
2718 }
2719 #ifdef DIAGNOSTIC
2720 /*
2721 * This should never happen; we should always find an
2722 * entry in the cache.
2723 */
2724 panic("syn_cache_insert: cache overflow: impossible");
2725 #endif
2726 }
2727
2728 insert:
2729 /*
2730 * Initialize the entry's timer.
2731 */
2732 sc->sc_rxttot = 0;
2733 sc->sc_rxtshift = 0;
2734 SYN_CACHE_TIMER_ARM(sc);
2735 TAILQ_INSERT_TAIL(&tcp_syn_cache_timeq[sc->sc_rxtshift], sc, sc_timeq);
2736
2737 /* Link it from tcpcb entry */
2738 LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
2739
2740 /* Put it into the bucket. */
2741 LIST_INSERT_HEAD(&scp->sch_bucket, sc, sc_bucketq);
2742 scp->sch_length++;
2743 syn_cache_count++;
2744
2745 tcpstat.tcps_sc_added++;
2746 splx(s);
2747 }
2748
2749 /*
2750 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
2751 * If we have retransmitted an entry the maximum number of times, expire
2752 * that entry.
2753 */
2754 void
2755 syn_cache_timer()
2756 {
2757 struct syn_cache *sc, *nsc;
2758 int i, s;
2759
2760 s = splsoftnet();
2761
2762 /*
2763 * First, get all the entries that need to be retransmitted, or
2764 * must be expired due to exceeding the initial keepalive time.
2765 */
2766 for (i = 0; i < TCP_MAXRXTSHIFT; i++) {
2767 for (sc = TAILQ_FIRST(&tcp_syn_cache_timeq[i]);
2768 sc != NULL && PRT_SLOW_ISEXPIRED(sc->sc_rexmt);
2769 sc = nsc) {
2770 nsc = TAILQ_NEXT(sc, sc_timeq);
2771
2772 /*
2773 * Compute the total amount of time this entry has
2774 * been on a queue. If this entry has been on longer
2775 * than the keep alive timer would allow, expire it.
2776 */
2777 sc->sc_rxttot += sc->sc_rxtcur;
2778 if (sc->sc_rxttot >= TCPTV_KEEP_INIT) {
2779 tcpstat.tcps_sc_timed_out++;
2780 SYN_CACHE_RM(sc);
2781 SYN_CACHE_PUT(sc);
2782 continue;
2783 }
2784
2785 tcpstat.tcps_sc_retransmitted++;
2786 (void) syn_cache_respond(sc, NULL);
2787
2788 /* Advance this entry onto the next timer queue. */
2789 TAILQ_REMOVE(&tcp_syn_cache_timeq[i], sc, sc_timeq);
2790 sc->sc_rxtshift = i + 1;
2791 SYN_CACHE_TIMER_ARM(sc);
2792 TAILQ_INSERT_TAIL(&tcp_syn_cache_timeq[sc->sc_rxtshift],
2793 sc, sc_timeq);
2794 }
2795 }
2796
2797 /*
2798 * Now get all the entries that are expired due to too many
2799 * retransmissions.
2800 */
2801 for (sc = TAILQ_FIRST(&tcp_syn_cache_timeq[TCP_MAXRXTSHIFT]);
2802 sc != NULL && PRT_SLOW_ISEXPIRED(sc->sc_rexmt);
2803 sc = nsc) {
2804 nsc = TAILQ_NEXT(sc, sc_timeq);
2805 tcpstat.tcps_sc_timed_out++;
2806 SYN_CACHE_RM(sc);
2807 SYN_CACHE_PUT(sc);
2808 }
2809 splx(s);
2810 }
2811
2812 /*
2813 * Remove syn cache created by the specified tcb entry,
2814 * because this does not make sense to keep them
2815 * (if there's no tcb entry, syn cache entry will never be used)
2816 */
2817 void
2818 syn_cache_cleanup(tp)
2819 struct tcpcb *tp;
2820 {
2821 struct syn_cache *sc, *nsc;
2822 int s;
2823
2824 s = splsoftnet();
2825
2826 for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
2827 nsc = LIST_NEXT(sc, sc_tpq);
2828
2829 #ifdef DIAGNOSTIC
2830 if (sc->sc_tp != tp)
2831 panic("invalid sc_tp in syn_cache_cleanup");
2832 #endif
2833 SYN_CACHE_RM(sc);
2834 SYN_CACHE_PUT(sc);
2835 }
2836 /* just for safety */
2837 LIST_INIT(&tp->t_sc);
2838
2839 splx(s);
2840 }
2841
2842 /*
2843 * Find an entry in the syn cache.
2844 */
2845 struct syn_cache *
2846 syn_cache_lookup(src, dst, headp)
2847 struct sockaddr *src;
2848 struct sockaddr *dst;
2849 struct syn_cache_head **headp;
2850 {
2851 struct syn_cache *sc;
2852 struct syn_cache_head *scp;
2853 u_int32_t hash;
2854 int s;
2855
2856 SYN_HASHALL(hash, src, dst);
2857
2858 scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
2859 *headp = scp;
2860 s = splsoftnet();
2861 for (sc = LIST_FIRST(&scp->sch_bucket); sc != NULL;
2862 sc = LIST_NEXT(sc, sc_bucketq)) {
2863 if (sc->sc_hash != hash)
2864 continue;
2865 if (!bcmp(&sc->sc_src, src, src->sa_len) &&
2866 !bcmp(&sc->sc_dst, dst, dst->sa_len)) {
2867 splx(s);
2868 return (sc);
2869 }
2870 }
2871 splx(s);
2872 return (NULL);
2873 }
2874
2875 /*
2876 * This function gets called when we receive an ACK for a
2877 * socket in the LISTEN state. We look up the connection
2878 * in the syn cache, and if its there, we pull it out of
2879 * the cache and turn it into a full-blown connection in
2880 * the SYN-RECEIVED state.
2881 *
2882 * The return values may not be immediately obvious, and their effects
2883 * can be subtle, so here they are:
2884 *
2885 * NULL SYN was not found in cache; caller should drop the
2886 * packet and send an RST.
2887 *
2888 * -1 We were unable to create the new connection, and are
2889 * aborting it. An ACK,RST is being sent to the peer
2890 * (unless we got screwey sequence numbners; see below),
2891 * because the 3-way handshake has been completed. Caller
2892 * should not free the mbuf, since we may be using it. If
2893 * we are not, we will free it.
2894 *
2895 * Otherwise, the return value is a pointer to the new socket
2896 * associated with the connection.
2897 */
2898 struct socket *
2899 syn_cache_get(src, dst, th, hlen, tlen, so, m)
2900 struct sockaddr *src;
2901 struct sockaddr *dst;
2902 struct tcphdr *th;
2903 unsigned int hlen, tlen;
2904 struct socket *so;
2905 struct mbuf *m;
2906 {
2907 struct syn_cache *sc;
2908 struct syn_cache_head *scp;
2909 struct inpcb *inp = NULL;
2910 #ifdef INET6
2911 struct in6pcb *in6p = NULL;
2912 #endif
2913 struct tcpcb *tp = 0;
2914 struct mbuf *am;
2915 int s;
2916 struct socket *oso;
2917
2918 s = splsoftnet();
2919 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
2920 splx(s);
2921 return (NULL);
2922 }
2923
2924 /*
2925 * Verify the sequence and ack numbers. Try getting the correct
2926 * response again.
2927 */
2928 if ((th->th_ack != sc->sc_iss + 1) ||
2929 SEQ_LEQ(th->th_seq, sc->sc_irs) ||
2930 SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
2931 (void) syn_cache_respond(sc, m);
2932 splx(s);
2933 return ((struct socket *)(-1));
2934 }
2935
2936 /* Remove this cache entry */
2937 SYN_CACHE_RM(sc);
2938 splx(s);
2939
2940 /*
2941 * Ok, create the full blown connection, and set things up
2942 * as they would have been set up if we had created the
2943 * connection when the SYN arrived. If we can't create
2944 * the connection, abort it.
2945 */
2946 /*
2947 * inp still has the OLD in_pcb stuff, set the
2948 * v6-related flags on the new guy, too. This is
2949 * done particularly for the case where an AF_INET6
2950 * socket is bound only to a port, and a v4 connection
2951 * comes in on that port.
2952 * we also copy the flowinfo from the original pcb
2953 * to the new one.
2954 */
2955 {
2956 struct inpcb *parentinpcb;
2957
2958 parentinpcb = (struct inpcb *)so->so_pcb;
2959
2960 oso = so;
2961 so = sonewconn(so, SS_ISCONNECTED);
2962 if (so == NULL)
2963 goto resetandabort;
2964
2965 switch (so->so_proto->pr_domain->dom_family) {
2966 #ifdef INET
2967 case AF_INET:
2968 inp = sotoinpcb(so);
2969 break;
2970 #endif
2971 #ifdef INET6
2972 case AF_INET6:
2973 in6p = sotoin6pcb(so);
2974 break;
2975 #endif
2976 }
2977 }
2978 switch (src->sa_family) {
2979 #ifdef INET
2980 case AF_INET:
2981 if (inp) {
2982 inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
2983 inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
2984 inp->inp_options = ip_srcroute();
2985 in_pcbstate(inp, INP_BOUND);
2986 if (inp->inp_options == NULL) {
2987 inp->inp_options = sc->sc_ipopts;
2988 sc->sc_ipopts = NULL;
2989 }
2990 }
2991 #ifdef INET6
2992 else if (in6p) {
2993 /* IPv4 packet to AF_INET6 socket */
2994 bzero(&in6p->in6p_laddr, sizeof(in6p->in6p_laddr));
2995 in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
2996 bcopy(&((struct sockaddr_in *)dst)->sin_addr,
2997 &in6p->in6p_laddr.s6_addr32[3],
2998 sizeof(((struct sockaddr_in *)dst)->sin_addr));
2999 in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
3000 in6totcpcb(in6p)->t_family = AF_INET;
3001 }
3002 #endif
3003 break;
3004 #endif
3005 #ifdef INET6
3006 case AF_INET6:
3007 if (in6p) {
3008 in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
3009 in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
3010 #if 0
3011 in6p->in6p_flowinfo = ip6->ip6_flow & IPV6_FLOWINFO_MASK;
3012 /*inp->inp_options = ip6_srcroute();*/ /* soon. */
3013 #endif
3014 }
3015 break;
3016 #endif
3017 }
3018 #ifdef INET6
3019 if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
3020 struct in6pcb *oin6p = sotoin6pcb(oso);
3021 /* inherit socket options from the listening socket */
3022 in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
3023 if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
3024 m_freem(in6p->in6p_options);
3025 in6p->in6p_options = 0;
3026 }
3027 ip6_savecontrol(in6p, &in6p->in6p_options,
3028 mtod(m, struct ip6_hdr *), m);
3029 }
3030 #endif
3031
3032 #ifdef IPSEC
3033 /*
3034 * we make a copy of policy, instead of sharing the policy,
3035 * for better behavior in terms of SA lookup and dead SA removal.
3036 */
3037 if (inp) {
3038 /* copy old policy into new socket's */
3039 if (ipsec_copy_policy(sotoinpcb(oso)->inp_sp, inp->inp_sp))
3040 printf("tcp_input: could not copy policy\n");
3041 }
3042 #ifdef INET6
3043 else if (in6p) {
3044 /* copy old policy into new socket's */
3045 if (ipsec_copy_policy(sotoin6pcb(oso)->in6p_sp, in6p->in6p_sp))
3046 printf("tcp_input: could not copy policy\n");
3047 }
3048 #endif
3049 #endif
3050
3051 /*
3052 * Give the new socket our cached route reference.
3053 */
3054 if (inp)
3055 inp->inp_route = sc->sc_route4; /* struct assignment */
3056 #ifdef INET6
3057 else
3058 in6p->in6p_route = sc->sc_route6;
3059 #endif
3060 sc->sc_route4.ro_rt = NULL;
3061
3062 am = m_get(M_DONTWAIT, MT_SONAME); /* XXX */
3063 if (am == NULL)
3064 goto resetandabort;
3065 am->m_len = src->sa_len;
3066 bcopy(src, mtod(am, caddr_t), src->sa_len);
3067 if (inp) {
3068 if (in_pcbconnect(inp, am)) {
3069 (void) m_free(am);
3070 goto resetandabort;
3071 }
3072 }
3073 #ifdef INET6
3074 else if (in6p) {
3075 if (src->sa_family == AF_INET) {
3076 /* IPv4 packet to AF_INET6 socket */
3077 struct sockaddr_in6 *sin6;
3078 sin6 = mtod(am, struct sockaddr_in6 *);
3079 am->m_len = sizeof(*sin6);
3080 bzero(sin6, sizeof(*sin6));
3081 sin6->sin6_family = AF_INET6;
3082 sin6->sin6_len = sizeof(*sin6);
3083 sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port;
3084 sin6->sin6_addr.s6_addr16[5] = htons(0xffff);
3085 bcopy(&((struct sockaddr_in *)src)->sin_addr,
3086 &sin6->sin6_addr.s6_addr32[3],
3087 sizeof(sin6->sin6_addr.s6_addr32[3]));
3088 }
3089 if (in6_pcbconnect(in6p, am)) {
3090 (void) m_free(am);
3091 goto resetandabort;
3092 }
3093 }
3094 #endif
3095 else {
3096 (void) m_free(am);
3097 goto resetandabort;
3098 }
3099 (void) m_free(am);
3100
3101 if (inp)
3102 tp = intotcpcb(inp);
3103 #ifdef INET6
3104 else if (in6p)
3105 tp = in6totcpcb(in6p);
3106 #endif
3107 else
3108 tp = NULL;
3109 if (sc->sc_request_r_scale != 15) {
3110 tp->requested_s_scale = sc->sc_requested_s_scale;
3111 tp->request_r_scale = sc->sc_request_r_scale;
3112 tp->snd_scale = sc->sc_requested_s_scale;
3113 tp->rcv_scale = sc->sc_request_r_scale;
3114 tp->t_flags |= TF_RCVD_SCALE;
3115 }
3116 if (sc->sc_flags & SCF_TIMESTAMP)
3117 tp->t_flags |= TF_RCVD_TSTMP;
3118 tp->ts_timebase = sc->sc_timebase;
3119
3120 tp->t_template = tcp_template(tp);
3121 if (tp->t_template == 0) {
3122 tp = tcp_drop(tp, ENOBUFS); /* destroys socket */
3123 so = NULL;
3124 m_freem(m);
3125 goto abort;
3126 }
3127
3128 tp->iss = sc->sc_iss;
3129 tp->irs = sc->sc_irs;
3130 tcp_sendseqinit(tp);
3131 tcp_rcvseqinit(tp);
3132 tp->t_state = TCPS_SYN_RECEIVED;
3133 TCP_TIMER_ARM(tp, TCPT_KEEP, TCPTV_KEEP_INIT);
3134 tcpstat.tcps_accepts++;
3135
3136 /* Initialize tp->t_ourmss before we deal with the peer's! */
3137 tp->t_ourmss = sc->sc_ourmaxseg;
3138 tcp_mss_from_peer(tp, sc->sc_peermaxseg);
3139
3140 /*
3141 * Initialize the initial congestion window. If we
3142 * had to retransmit the SYN,ACK, we must initialize cwnd
3143 * to 1 segment (i.e. the Loss Window).
3144 */
3145 if (sc->sc_rxtshift)
3146 tp->snd_cwnd = tp->t_peermss;
3147 else
3148 tp->snd_cwnd = TCP_INITIAL_WINDOW(tcp_init_win, tp->t_peermss);
3149
3150 tcp_rmx_rtt(tp);
3151 tp->snd_wl1 = sc->sc_irs;
3152 tp->rcv_up = sc->sc_irs + 1;
3153
3154 /*
3155 * This is what whould have happened in tcp_ouput() when
3156 * the SYN,ACK was sent.
3157 */
3158 tp->snd_up = tp->snd_una;
3159 tp->snd_max = tp->snd_nxt = tp->iss+1;
3160 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
3161 if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
3162 tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
3163 tp->last_ack_sent = tp->rcv_nxt;
3164
3165 tcpstat.tcps_sc_completed++;
3166 SYN_CACHE_PUT(sc);
3167 return (so);
3168
3169 resetandabort:
3170 (void) tcp_respond(NULL, m, m, th,
3171 th->th_seq + tlen, (tcp_seq)0, TH_RST|TH_ACK);
3172 abort:
3173 if (so != NULL)
3174 (void) soabort(so);
3175 SYN_CACHE_PUT(sc);
3176 tcpstat.tcps_sc_aborted++;
3177 return ((struct socket *)(-1));
3178 }
3179
3180 /*
3181 * This function is called when we get a RST for a
3182 * non-existent connection, so that we can see if the
3183 * connection is in the syn cache. If it is, zap it.
3184 */
3185
3186 void
3187 syn_cache_reset(src, dst, th)
3188 struct sockaddr *src;
3189 struct sockaddr *dst;
3190 struct tcphdr *th;
3191 {
3192 struct syn_cache *sc;
3193 struct syn_cache_head *scp;
3194 int s = splsoftnet();
3195
3196 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3197 splx(s);
3198 return;
3199 }
3200 if (SEQ_LT(th->th_seq, sc->sc_irs) ||
3201 SEQ_GT(th->th_seq, sc->sc_irs+1)) {
3202 splx(s);
3203 return;
3204 }
3205 SYN_CACHE_RM(sc);
3206 splx(s);
3207 tcpstat.tcps_sc_reset++;
3208 SYN_CACHE_PUT(sc);
3209 }
3210
3211 void
3212 syn_cache_unreach(src, dst, th)
3213 struct sockaddr *src;
3214 struct sockaddr *dst;
3215 struct tcphdr *th;
3216 {
3217 struct syn_cache *sc;
3218 struct syn_cache_head *scp;
3219 int s;
3220
3221 s = splsoftnet();
3222 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3223 splx(s);
3224 return;
3225 }
3226 /* If the sequence number != sc_iss, then it's a bogus ICMP msg */
3227 if (ntohl (th->th_seq) != sc->sc_iss) {
3228 splx(s);
3229 return;
3230 }
3231
3232 /*
3233 * If we've rertransmitted 3 times and this is our second error,
3234 * we remove the entry. Otherwise, we allow it to continue on.
3235 * This prevents us from incorrectly nuking an entry during a
3236 * spurious network outage.
3237 *
3238 * See tcp_notify().
3239 */
3240 if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
3241 sc->sc_flags |= SCF_UNREACH;
3242 splx(s);
3243 return;
3244 }
3245
3246 SYN_CACHE_RM(sc);
3247 splx(s);
3248 tcpstat.tcps_sc_unreach++;
3249 SYN_CACHE_PUT(sc);
3250 }
3251
3252 /*
3253 * Given a LISTEN socket and an inbound SYN request, add
3254 * this to the syn cache, and send back a segment:
3255 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
3256 * to the source.
3257 *
3258 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
3259 * Doing so would require that we hold onto the data and deliver it
3260 * to the application. However, if we are the target of a SYN-flood
3261 * DoS attack, an attacker could send data which would eventually
3262 * consume all available buffer space if it were ACKed. By not ACKing
3263 * the data, we avoid this DoS scenario.
3264 */
3265
3266 int
3267 syn_cache_add(src, dst, th, hlen, so, m, optp, optlen, oi)
3268 struct sockaddr *src;
3269 struct sockaddr *dst;
3270 struct tcphdr *th;
3271 unsigned int hlen;
3272 struct socket *so;
3273 struct mbuf *m;
3274 u_char *optp;
3275 int optlen;
3276 struct tcp_opt_info *oi;
3277 {
3278 struct tcpcb tb, *tp;
3279 long win;
3280 struct syn_cache *sc;
3281 struct syn_cache_head *scp;
3282 struct mbuf *ipopts;
3283
3284 tp = sototcpcb(so);
3285
3286 /*
3287 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
3288 *
3289 * Note this check is performed in tcp_input() very early on.
3290 */
3291
3292 /*
3293 * Initialize some local state.
3294 */
3295 win = sbspace(&so->so_rcv);
3296 if (win > TCP_MAXWIN)
3297 win = TCP_MAXWIN;
3298
3299 switch (src->sa_family) {
3300 #ifdef INET
3301 case AF_INET:
3302 /*
3303 * Remember the IP options, if any.
3304 */
3305 ipopts = ip_srcroute();
3306 break;
3307 #endif
3308 default:
3309 ipopts = NULL;
3310 }
3311
3312 if (optp) {
3313 tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
3314 tcp_dooptions(&tb, optp, optlen, th, oi);
3315 } else
3316 tb.t_flags = 0;
3317
3318 /*
3319 * See if we already have an entry for this connection.
3320 * If we do, resend the SYN,ACK. We do not count this
3321 * as a retransmission (XXX though maybe we should).
3322 */
3323 if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
3324 tcpstat.tcps_sc_dupesyn++;
3325 if (ipopts) {
3326 /*
3327 * If we were remembering a previous source route,
3328 * forget it and use the new one we've been given.
3329 */
3330 if (sc->sc_ipopts)
3331 (void) m_free(sc->sc_ipopts);
3332 sc->sc_ipopts = ipopts;
3333 }
3334 sc->sc_timestamp = tb.ts_recent;
3335 if (syn_cache_respond(sc, m) == 0) {
3336 tcpstat.tcps_sndacks++;
3337 tcpstat.tcps_sndtotal++;
3338 }
3339 return (1);
3340 }
3341
3342 sc = pool_get(&syn_cache_pool, PR_NOWAIT);
3343 if (sc == NULL) {
3344 if (ipopts)
3345 (void) m_free(ipopts);
3346 return (0);
3347 }
3348
3349 /*
3350 * Fill in the cache, and put the necessary IP and TCP
3351 * options into the reply.
3352 */
3353 bzero(sc, sizeof(struct syn_cache));
3354 bcopy(src, &sc->sc_src, src->sa_len);
3355 bcopy(dst, &sc->sc_dst, dst->sa_len);
3356 sc->sc_flags = 0;
3357 sc->sc_ipopts = ipopts;
3358 sc->sc_irs = th->th_seq;
3359 switch (src->sa_family) {
3360 #ifdef INET
3361 case AF_INET:
3362 {
3363 struct sockaddr_in *srcin = (void *) src;
3364 struct sockaddr_in *dstin = (void *) dst;
3365
3366 sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
3367 &srcin->sin_addr, dstin->sin_port,
3368 srcin->sin_port, sizeof(dstin->sin_addr), 0);
3369 break;
3370 }
3371 #endif /* INET */
3372 #ifdef INET6
3373 case AF_INET6:
3374 {
3375 struct sockaddr_in6 *srcin6 = (void *) src;
3376 struct sockaddr_in6 *dstin6 = (void *) dst;
3377
3378 sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
3379 &srcin6->sin6_addr, dstin6->sin6_port,
3380 srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
3381 break;
3382 }
3383 #endif /* INET6 */
3384 }
3385 sc->sc_peermaxseg = oi->maxseg;
3386 sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
3387 m->m_pkthdr.rcvif : NULL,
3388 sc->sc_src.sa.sa_family);
3389 sc->sc_win = win;
3390 sc->sc_timebase = tcp_now; /* see tcp_newtcpcb() */
3391 sc->sc_timestamp = tb.ts_recent;
3392 if (tcp_do_rfc1323 && (tb.t_flags & TF_RCVD_TSTMP))
3393 sc->sc_flags |= SCF_TIMESTAMP;
3394 if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
3395 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
3396 sc->sc_requested_s_scale = tb.requested_s_scale;
3397 sc->sc_request_r_scale = 0;
3398 while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
3399 TCP_MAXWIN << sc->sc_request_r_scale <
3400 so->so_rcv.sb_hiwat)
3401 sc->sc_request_r_scale++;
3402 } else {
3403 sc->sc_requested_s_scale = 15;
3404 sc->sc_request_r_scale = 15;
3405 }
3406 sc->sc_tp = tp;
3407 if (syn_cache_respond(sc, m) == 0) {
3408 syn_cache_insert(sc, tp);
3409 tcpstat.tcps_sndacks++;
3410 tcpstat.tcps_sndtotal++;
3411 } else {
3412 SYN_CACHE_PUT(sc);
3413 tcpstat.tcps_sc_dropped++;
3414 }
3415 return (1);
3416 }
3417
3418 int
3419 syn_cache_respond(sc, m)
3420 struct syn_cache *sc;
3421 struct mbuf *m;
3422 {
3423 struct route *ro;
3424 u_int8_t *optp;
3425 int optlen, error;
3426 u_int16_t tlen;
3427 struct ip *ip = NULL;
3428 #ifdef INET6
3429 struct ip6_hdr *ip6 = NULL;
3430 #endif
3431 struct tcphdr *th;
3432 u_int hlen;
3433
3434 switch (sc->sc_src.sa.sa_family) {
3435 case AF_INET:
3436 hlen = sizeof(struct ip);
3437 ro = &sc->sc_route4;
3438 break;
3439 #ifdef INET6
3440 case AF_INET6:
3441 hlen = sizeof(struct ip6_hdr);
3442 ro = (struct route *)&sc->sc_route6;
3443 break;
3444 #endif
3445 default:
3446 if (m)
3447 m_freem(m);
3448 return EAFNOSUPPORT;
3449 }
3450
3451 /* Compute the size of the TCP options. */
3452 optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
3453 ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
3454
3455 tlen = hlen + sizeof(struct tcphdr) + optlen;
3456
3457 /*
3458 * Create the IP+TCP header from scratch.
3459 */
3460 if (m)
3461 m_freem(m);
3462 #ifdef DIAGNOSTIC
3463 if (max_linkhdr + tlen > MCLBYTES)
3464 return (ENOBUFS);
3465 #endif
3466 MGETHDR(m, M_DONTWAIT, MT_DATA);
3467 if (m && tlen > MHLEN) {
3468 MCLGET(m, M_DONTWAIT);
3469 if ((m->m_flags & M_EXT) == 0) {
3470 m_freem(m);
3471 m = NULL;
3472 }
3473 }
3474 if (m == NULL)
3475 return (ENOBUFS);
3476
3477 /* Fixup the mbuf. */
3478 m->m_data += max_linkhdr;
3479 m->m_len = m->m_pkthdr.len = tlen;
3480 #ifdef IPSEC
3481 if (sc->sc_tp) {
3482 struct tcpcb *tp;
3483 struct socket *so;
3484
3485 tp = sc->sc_tp;
3486 if (tp->t_inpcb)
3487 so = tp->t_inpcb->inp_socket;
3488 #ifdef INET6
3489 else if (tp->t_in6pcb)
3490 so = tp->t_in6pcb->in6p_socket;
3491 #endif
3492 else
3493 so = NULL;
3494 /* use IPsec policy on listening socket, on SYN ACK */
3495 if (ipsec_setsocket(m, so) != 0) {
3496 m_freem(m);
3497 return ENOBUFS;
3498 }
3499 }
3500 #endif
3501 m->m_pkthdr.rcvif = NULL;
3502 memset(mtod(m, u_char *), 0, tlen);
3503
3504 switch (sc->sc_src.sa.sa_family) {
3505 case AF_INET:
3506 ip = mtod(m, struct ip *);
3507 ip->ip_dst = sc->sc_src.sin.sin_addr;
3508 ip->ip_src = sc->sc_dst.sin.sin_addr;
3509 ip->ip_p = IPPROTO_TCP;
3510 th = (struct tcphdr *)(ip + 1);
3511 th->th_dport = sc->sc_src.sin.sin_port;
3512 th->th_sport = sc->sc_dst.sin.sin_port;
3513 break;
3514 #ifdef INET6
3515 case AF_INET6:
3516 ip6 = mtod(m, struct ip6_hdr *);
3517 ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
3518 ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
3519 ip6->ip6_nxt = IPPROTO_TCP;
3520 /* ip6_plen will be updated in ip6_output() */
3521 th = (struct tcphdr *)(ip6 + 1);
3522 th->th_dport = sc->sc_src.sin6.sin6_port;
3523 th->th_sport = sc->sc_dst.sin6.sin6_port;
3524 break;
3525 #endif
3526 default:
3527 th = NULL;
3528 }
3529
3530 th->th_seq = htonl(sc->sc_iss);
3531 th->th_ack = htonl(sc->sc_irs + 1);
3532 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
3533 th->th_flags = TH_SYN|TH_ACK;
3534 th->th_win = htons(sc->sc_win);
3535 /* th_sum already 0 */
3536 /* th_urp already 0 */
3537
3538 /* Tack on the TCP options. */
3539 optp = (u_int8_t *)(th + 1);
3540 *optp++ = TCPOPT_MAXSEG;
3541 *optp++ = 4;
3542 *optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
3543 *optp++ = sc->sc_ourmaxseg & 0xff;
3544
3545 if (sc->sc_request_r_scale != 15) {
3546 *((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
3547 TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
3548 sc->sc_request_r_scale);
3549 optp += 4;
3550 }
3551
3552 if (sc->sc_flags & SCF_TIMESTAMP) {
3553 u_int32_t *lp = (u_int32_t *)(optp);
3554 /* Form timestamp option as shown in appendix A of RFC 1323. */
3555 *lp++ = htonl(TCPOPT_TSTAMP_HDR);
3556 *lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
3557 *lp = htonl(sc->sc_timestamp);
3558 optp += TCPOLEN_TSTAMP_APPA;
3559 }
3560
3561 /* Compute the packet's checksum. */
3562 switch (sc->sc_src.sa.sa_family) {
3563 case AF_INET:
3564 ip->ip_len = htons(tlen - hlen);
3565 th->th_sum = 0;
3566 th->th_sum = in_cksum(m, tlen);
3567 break;
3568 #ifdef INET6
3569 case AF_INET6:
3570 ip6->ip6_plen = htons(tlen - hlen);
3571 th->th_sum = 0;
3572 th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
3573 break;
3574 #endif
3575 }
3576
3577 /*
3578 * Fill in some straggling IP bits. Note the stack expects
3579 * ip_len to be in host order, for convenience.
3580 */
3581 switch (sc->sc_src.sa.sa_family) {
3582 #ifdef INET
3583 case AF_INET:
3584 ip->ip_len = tlen;
3585 ip->ip_ttl = ip_defttl;
3586 /* XXX tos? */
3587 break;
3588 #endif
3589 #ifdef INET6
3590 case AF_INET6:
3591 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
3592 ip6->ip6_vfc |= IPV6_VERSION;
3593 ip6->ip6_plen = htons(tlen - hlen);
3594 /* ip6_hlim will be initialized afterwards */
3595 /* XXX flowlabel? */
3596 break;
3597 #endif
3598 }
3599
3600 switch (sc->sc_src.sa.sa_family) {
3601 #ifdef INET
3602 case AF_INET:
3603 error = ip_output(m, sc->sc_ipopts, ro,
3604 (ip_mtudisc ? IP_MTUDISC : 0),
3605 NULL);
3606 break;
3607 #endif
3608 #ifdef INET6
3609 case AF_INET6:
3610 ip6->ip6_hlim = in6_selecthlim(NULL,
3611 ro->ro_rt ? ro->ro_rt->rt_ifp : NULL);
3612
3613 error = ip6_output(m, NULL /*XXX*/, (struct route_in6 *)ro,
3614 0, NULL, NULL);
3615 break;
3616 #endif
3617 default:
3618 error = EAFNOSUPPORT;
3619 break;
3620 }
3621 return (error);
3622 }
3623