tcp_input.c revision 1.129 1 /* $NetBSD: tcp_input.c,v 1.129 2001/09/10 22:14:26 thorpej Exp $ */
2
3 /*
4 %%% portions-copyright-nrl-95
5 Portions of this software are Copyright 1995-1998 by Randall Atkinson,
6 Ronald Lee, Daniel McDonald, Bao Phan, and Chris Winters. All Rights
7 Reserved. All rights under this copyright have been assigned to the US
8 Naval Research Laboratory (NRL). The NRL Copyright Notice and License
9 Agreement Version 1.1 (January 17, 1995) applies to these portions of the
10 software.
11 You should have received a copy of the license with this software. If you
12 didn't get a copy, you may request one from <license (at) ipv6.nrl.navy.mil>.
13
14 */
15
16 /*
17 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
18 * All rights reserved.
19 *
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
23 * 1. Redistributions of source code must retain the above copyright
24 * notice, this list of conditions and the following disclaimer.
25 * 2. Redistributions in binary form must reproduce the above copyright
26 * notice, this list of conditions and the following disclaimer in the
27 * documentation and/or other materials provided with the distribution.
28 * 3. Neither the name of the project nor the names of its contributors
29 * may be used to endorse or promote products derived from this software
30 * without specific prior written permission.
31 *
32 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
33 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
36 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42 * SUCH DAMAGE.
43 */
44
45 /*-
46 * Copyright (c) 1997, 1998, 1999, 2001 The NetBSD Foundation, Inc.
47 * All rights reserved.
48 *
49 * This code is derived from software contributed to The NetBSD Foundation
50 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
51 * Facility, NASA Ames Research Center.
52 *
53 * Redistribution and use in source and binary forms, with or without
54 * modification, are permitted provided that the following conditions
55 * are met:
56 * 1. Redistributions of source code must retain the above copyright
57 * notice, this list of conditions and the following disclaimer.
58 * 2. Redistributions in binary form must reproduce the above copyright
59 * notice, this list of conditions and the following disclaimer in the
60 * documentation and/or other materials provided with the distribution.
61 * 3. All advertising materials mentioning features or use of this software
62 * must display the following acknowledgement:
63 * This product includes software developed by the NetBSD
64 * Foundation, Inc. and its contributors.
65 * 4. Neither the name of The NetBSD Foundation nor the names of its
66 * contributors may be used to endorse or promote products derived
67 * from this software without specific prior written permission.
68 *
69 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
70 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
71 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
72 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
73 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
74 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
75 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
76 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
77 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
78 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
79 * POSSIBILITY OF SUCH DAMAGE.
80 */
81
82 /*
83 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
84 * The Regents of the University of California. All rights reserved.
85 *
86 * Redistribution and use in source and binary forms, with or without
87 * modification, are permitted provided that the following conditions
88 * are met:
89 * 1. Redistributions of source code must retain the above copyright
90 * notice, this list of conditions and the following disclaimer.
91 * 2. Redistributions in binary form must reproduce the above copyright
92 * notice, this list of conditions and the following disclaimer in the
93 * documentation and/or other materials provided with the distribution.
94 * 3. All advertising materials mentioning features or use of this software
95 * must display the following acknowledgement:
96 * This product includes software developed by the University of
97 * California, Berkeley and its contributors.
98 * 4. Neither the name of the University nor the names of its contributors
99 * may be used to endorse or promote products derived from this software
100 * without specific prior written permission.
101 *
102 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
103 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
104 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
105 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
106 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
107 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
108 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
109 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
110 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
111 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
112 * SUCH DAMAGE.
113 *
114 * @(#)tcp_input.c 8.12 (Berkeley) 5/24/95
115 */
116
117 /*
118 * TODO list for SYN cache stuff:
119 *
120 * Find room for a "state" field, which is needed to keep a
121 * compressed state for TIME_WAIT TCBs. It's been noted already
122 * that this is fairly important for very high-volume web and
123 * mail servers, which use a large number of short-lived
124 * connections.
125 */
126
127 #include "opt_inet.h"
128 #include "opt_ipsec.h"
129 #include "opt_inet_csum.h"
130 #include "opt_tcp_debug.h"
131
132 #include <sys/param.h>
133 #include <sys/systm.h>
134 #include <sys/malloc.h>
135 #include <sys/mbuf.h>
136 #include <sys/protosw.h>
137 #include <sys/socket.h>
138 #include <sys/socketvar.h>
139 #include <sys/errno.h>
140 #include <sys/syslog.h>
141 #include <sys/pool.h>
142 #include <sys/domain.h>
143 #include <sys/kernel.h>
144
145 #include <net/if.h>
146 #include <net/route.h>
147 #include <net/if_types.h>
148
149 #include <netinet/in.h>
150 #include <netinet/in_systm.h>
151 #include <netinet/ip.h>
152 #include <netinet/in_pcb.h>
153 #include <netinet/ip_var.h>
154
155 #ifdef INET6
156 #ifndef INET
157 #include <netinet/in.h>
158 #endif
159 #include <netinet/ip6.h>
160 #include <netinet6/ip6_var.h>
161 #include <netinet6/in6_pcb.h>
162 #include <netinet6/ip6_var.h>
163 #include <netinet6/in6_var.h>
164 #include <netinet/icmp6.h>
165 #include <netinet6/nd6.h>
166 #endif
167
168 #ifdef PULLDOWN_TEST
169 #ifndef INET6
170 /* always need ip6.h for IP6_EXTHDR_GET */
171 #include <netinet/ip6.h>
172 #endif
173 #endif
174
175 #include <netinet/tcp.h>
176 #include <netinet/tcp_fsm.h>
177 #include <netinet/tcp_seq.h>
178 #include <netinet/tcp_timer.h>
179 #include <netinet/tcp_var.h>
180 #include <netinet/tcpip.h>
181 #include <netinet/tcp_debug.h>
182
183 #include <machine/stdarg.h>
184
185 #ifdef IPSEC
186 #include <netinet6/ipsec.h>
187 #include <netkey/key.h>
188 #endif /*IPSEC*/
189 #ifdef INET6
190 #include "faith.h"
191 #if defined(NFAITH) && NFAITH > 0
192 #include <net/if_faith.h>
193 #endif
194 #endif
195
196 int tcprexmtthresh = 3;
197 int tcp_log_refused;
198
199 static int tcp_rst_ppslim_count = 0;
200 static struct timeval tcp_rst_ppslim_last;
201
202 #define TCP_PAWS_IDLE (24 * 24 * 60 * 60 * PR_SLOWHZ)
203
204 /* for modulo comparisons of timestamps */
205 #define TSTMP_LT(a,b) ((int)((a)-(b)) < 0)
206 #define TSTMP_GEQ(a,b) ((int)((a)-(b)) >= 0)
207
208 /*
209 * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
210 */
211 #ifdef INET6
212 #define ND6_HINT(tp) \
213 do { \
214 if (tp && tp->t_in6pcb && tp->t_family == AF_INET6 \
215 && tp->t_in6pcb->in6p_route.ro_rt) { \
216 nd6_nud_hint(tp->t_in6pcb->in6p_route.ro_rt, NULL, 0); \
217 } \
218 } while (0)
219 #else
220 #define ND6_HINT(tp)
221 #endif
222
223 /*
224 * Macro to compute ACK transmission behavior. Delay the ACK unless
225 * we have already delayed an ACK (must send an ACK every two segments).
226 * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
227 * option is enabled.
228 */
229 #define TCP_SETUP_ACK(tp, th) \
230 do { \
231 if ((tp)->t_flags & TF_DELACK || \
232 (tcp_ack_on_push && (th)->th_flags & TH_PUSH)) \
233 tp->t_flags |= TF_ACKNOW; \
234 else \
235 TCP_SET_DELACK(tp); \
236 } while (0)
237
238 /*
239 * Convert TCP protocol fields to host order for easier processing.
240 */
241 #define TCP_FIELDS_TO_HOST(th) \
242 do { \
243 NTOHL((th)->th_seq); \
244 NTOHL((th)->th_ack); \
245 NTOHS((th)->th_win); \
246 NTOHS((th)->th_urp); \
247 } while (0)
248
249 #ifdef TCP_CSUM_COUNTERS
250 #include <sys/device.h>
251
252 extern struct evcnt tcp_hwcsum_ok;
253 extern struct evcnt tcp_hwcsum_bad;
254 extern struct evcnt tcp_hwcsum_data;
255 extern struct evcnt tcp_swcsum;
256
257 #define TCP_CSUM_COUNTER_INCR(ev) (ev)->ev_count++
258
259 #else
260
261 #define TCP_CSUM_COUNTER_INCR(ev) /* nothing */
262
263 #endif /* TCP_CSUM_COUNTERS */
264
265 int
266 tcp_reass(tp, th, m, tlen)
267 struct tcpcb *tp;
268 struct tcphdr *th;
269 struct mbuf *m;
270 int *tlen;
271 {
272 struct ipqent *p, *q, *nq, *tiqe = NULL;
273 struct socket *so = NULL;
274 int pkt_flags;
275 tcp_seq pkt_seq;
276 unsigned pkt_len;
277 u_long rcvpartdupbyte = 0;
278 u_long rcvoobyte;
279
280 if (tp->t_inpcb)
281 so = tp->t_inpcb->inp_socket;
282 #ifdef INET6
283 else if (tp->t_in6pcb)
284 so = tp->t_in6pcb->in6p_socket;
285 #endif
286
287 TCP_REASS_LOCK_CHECK(tp);
288
289 /*
290 * Call with th==0 after become established to
291 * force pre-ESTABLISHED data up to user socket.
292 */
293 if (th == 0)
294 goto present;
295
296 rcvoobyte = *tlen;
297 /*
298 * Copy these to local variables because the tcpiphdr
299 * gets munged while we are collapsing mbufs.
300 */
301 pkt_seq = th->th_seq;
302 pkt_len = *tlen;
303 pkt_flags = th->th_flags;
304 /*
305 * Find a segment which begins after this one does.
306 */
307 for (p = NULL, q = tp->segq.lh_first; q != NULL; q = nq) {
308 nq = q->ipqe_q.le_next;
309 /*
310 * If the received segment is just right after this
311 * fragment, merge the two together and then check
312 * for further overlaps.
313 */
314 if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
315 #ifdef TCPREASS_DEBUG
316 printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
317 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
318 q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
319 #endif
320 pkt_len += q->ipqe_len;
321 pkt_flags |= q->ipqe_flags;
322 pkt_seq = q->ipqe_seq;
323 m_cat(q->ipqe_m, m);
324 m = q->ipqe_m;
325 goto free_ipqe;
326 }
327 /*
328 * If the received segment is completely past this
329 * fragment, we need to go the next fragment.
330 */
331 if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
332 p = q;
333 continue;
334 }
335 /*
336 * If the fragment is past the received segment,
337 * it (or any following) can't be concatenated.
338 */
339 if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len))
340 break;
341 /*
342 * We've received all the data in this segment before.
343 * mark it as a duplicate and return.
344 */
345 if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
346 SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
347 tcpstat.tcps_rcvduppack++;
348 tcpstat.tcps_rcvdupbyte += pkt_len;
349 m_freem(m);
350 if (tiqe != NULL)
351 pool_put(&ipqent_pool, tiqe);
352 return (0);
353 }
354 /*
355 * Received segment completely overlaps this fragment
356 * so we drop the fragment (this keeps the temporal
357 * ordering of segments correct).
358 */
359 if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
360 SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
361 rcvpartdupbyte += q->ipqe_len;
362 m_freem(q->ipqe_m);
363 goto free_ipqe;
364 }
365 /*
366 * RX'ed segment extends past the end of the
367 * fragment. Drop the overlapping bytes. Then
368 * merge the fragment and segment then treat as
369 * a longer received packet.
370 */
371 if (SEQ_LT(q->ipqe_seq, pkt_seq)
372 && SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
373 int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
374 #ifdef TCPREASS_DEBUG
375 printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
376 tp, overlap,
377 pkt_seq, pkt_seq + pkt_len, pkt_len);
378 #endif
379 m_adj(m, overlap);
380 rcvpartdupbyte += overlap;
381 m_cat(q->ipqe_m, m);
382 m = q->ipqe_m;
383 pkt_seq = q->ipqe_seq;
384 pkt_len += q->ipqe_len - overlap;
385 rcvoobyte -= overlap;
386 goto free_ipqe;
387 }
388 /*
389 * RX'ed segment extends past the front of the
390 * fragment. Drop the overlapping bytes on the
391 * received packet. The packet will then be
392 * contatentated with this fragment a bit later.
393 */
394 if (SEQ_GT(q->ipqe_seq, pkt_seq)
395 && SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len)) {
396 int overlap = pkt_seq + pkt_len - q->ipqe_seq;
397 #ifdef TCPREASS_DEBUG
398 printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
399 tp, overlap,
400 pkt_seq, pkt_seq + pkt_len, pkt_len);
401 #endif
402 m_adj(m, -overlap);
403 pkt_len -= overlap;
404 rcvpartdupbyte += overlap;
405 rcvoobyte -= overlap;
406 }
407 /*
408 * If the received segment immediates precedes this
409 * fragment then tack the fragment onto this segment
410 * and reinsert the data.
411 */
412 if (q->ipqe_seq == pkt_seq + pkt_len) {
413 #ifdef TCPREASS_DEBUG
414 printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
415 tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
416 pkt_seq, pkt_seq + pkt_len, pkt_len);
417 #endif
418 pkt_len += q->ipqe_len;
419 pkt_flags |= q->ipqe_flags;
420 m_cat(m, q->ipqe_m);
421 LIST_REMOVE(q, ipqe_q);
422 LIST_REMOVE(q, ipqe_timeq);
423 if (tiqe == NULL) {
424 tiqe = q;
425 } else {
426 pool_put(&ipqent_pool, q);
427 }
428 break;
429 }
430 /*
431 * If the fragment is before the segment, remember it.
432 * When this loop is terminated, p will contain the
433 * pointer to fragment that is right before the received
434 * segment.
435 */
436 if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
437 p = q;
438
439 continue;
440
441 /*
442 * This is a common operation. It also will allow
443 * to save doing a malloc/free in most instances.
444 */
445 free_ipqe:
446 LIST_REMOVE(q, ipqe_q);
447 LIST_REMOVE(q, ipqe_timeq);
448 if (tiqe == NULL) {
449 tiqe = q;
450 } else {
451 pool_put(&ipqent_pool, q);
452 }
453 }
454
455 /*
456 * Allocate a new queue entry since the received segment did not
457 * collapse onto any other out-of-order block; thus we are allocating
458 * a new block. If it had collapsed, tiqe would not be NULL and
459 * we would be reusing it.
460 * XXX If we can't, just drop the packet. XXX
461 */
462 if (tiqe == NULL) {
463 tiqe = pool_get(&ipqent_pool, PR_NOWAIT);
464 if (tiqe == NULL) {
465 tcpstat.tcps_rcvmemdrop++;
466 m_freem(m);
467 return (0);
468 }
469 }
470
471 /*
472 * Update the counters.
473 */
474 tcpstat.tcps_rcvoopack++;
475 tcpstat.tcps_rcvoobyte += rcvoobyte;
476 if (rcvpartdupbyte) {
477 tcpstat.tcps_rcvpartduppack++;
478 tcpstat.tcps_rcvpartdupbyte += rcvpartdupbyte;
479 }
480
481 /*
482 * Insert the new fragment queue entry into both queues.
483 */
484 tiqe->ipqe_m = m;
485 tiqe->ipqe_seq = pkt_seq;
486 tiqe->ipqe_len = pkt_len;
487 tiqe->ipqe_flags = pkt_flags;
488 if (p == NULL) {
489 LIST_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
490 #ifdef TCPREASS_DEBUG
491 if (tiqe->ipqe_seq != tp->rcv_nxt)
492 printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
493 tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
494 #endif
495 } else {
496 LIST_INSERT_AFTER(p, tiqe, ipqe_q);
497 #ifdef TCPREASS_DEBUG
498 printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
499 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
500 p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
501 #endif
502 }
503
504 LIST_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
505
506 present:
507 /*
508 * Present data to user, advancing rcv_nxt through
509 * completed sequence space.
510 */
511 if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
512 return (0);
513 q = tp->segq.lh_first;
514 if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
515 return (0);
516 if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
517 return (0);
518
519 tp->rcv_nxt += q->ipqe_len;
520 pkt_flags = q->ipqe_flags & TH_FIN;
521 ND6_HINT(tp);
522
523 LIST_REMOVE(q, ipqe_q);
524 LIST_REMOVE(q, ipqe_timeq);
525 if (so->so_state & SS_CANTRCVMORE)
526 m_freem(q->ipqe_m);
527 else
528 sbappend(&so->so_rcv, q->ipqe_m);
529 pool_put(&ipqent_pool, q);
530 sorwakeup(so);
531 return (pkt_flags);
532 }
533
534 #ifdef INET6
535 int
536 tcp6_input(mp, offp, proto)
537 struct mbuf **mp;
538 int *offp, proto;
539 {
540 struct mbuf *m = *mp;
541
542 /*
543 * draft-itojun-ipv6-tcp-to-anycast
544 * better place to put this in?
545 */
546 if (m->m_flags & M_ANYCAST6) {
547 struct ip6_hdr *ip6;
548 if (m->m_len < sizeof(struct ip6_hdr)) {
549 if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
550 tcpstat.tcps_rcvshort++;
551 return IPPROTO_DONE;
552 }
553 }
554 ip6 = mtod(m, struct ip6_hdr *);
555 icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
556 (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
557 return IPPROTO_DONE;
558 }
559
560 tcp_input(m, *offp, proto);
561 return IPPROTO_DONE;
562 }
563 #endif
564
565 /*
566 * TCP input routine, follows pages 65-76 of the
567 * protocol specification dated September, 1981 very closely.
568 */
569 void
570 #if __STDC__
571 tcp_input(struct mbuf *m, ...)
572 #else
573 tcp_input(m, va_alist)
574 struct mbuf *m;
575 #endif
576 {
577 int proto;
578 struct tcphdr *th;
579 struct ip *ip;
580 struct inpcb *inp;
581 #ifdef INET6
582 struct ip6_hdr *ip6;
583 struct in6pcb *in6p;
584 #endif
585 caddr_t optp = NULL;
586 int optlen = 0;
587 int len, tlen, toff, hdroptlen = 0;
588 struct tcpcb *tp = 0;
589 int tiflags;
590 struct socket *so = NULL;
591 int todrop, acked, ourfinisacked, needoutput = 0;
592 short ostate = 0;
593 int iss = 0;
594 u_long tiwin;
595 struct tcp_opt_info opti;
596 int off, iphlen;
597 va_list ap;
598 int af; /* af on the wire */
599 struct mbuf *tcp_saveti = NULL;
600
601 va_start(ap, m);
602 toff = va_arg(ap, int);
603 proto = va_arg(ap, int);
604 va_end(ap);
605
606 tcpstat.tcps_rcvtotal++;
607
608 bzero(&opti, sizeof(opti));
609 opti.ts_present = 0;
610 opti.maxseg = 0;
611
612 /*
613 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
614 *
615 * TCP is, by definition, unicast, so we reject all
616 * multicast outright.
617 *
618 * Note, there are additional src/dst address checks in
619 * the AF-specific code below.
620 */
621 if (m->m_flags & (M_BCAST|M_MCAST)) {
622 /* XXX stat */
623 goto drop;
624 }
625 #ifdef INET6
626 if (m->m_flags & M_ANYCAST6) {
627 /* XXX stat */
628 goto drop;
629 }
630 #endif
631
632 /*
633 * Get IP and TCP header together in first mbuf.
634 * Note: IP leaves IP header in first mbuf.
635 */
636 ip = mtod(m, struct ip *);
637 #ifdef INET6
638 ip6 = NULL;
639 #endif
640 switch (ip->ip_v) {
641 #ifdef INET
642 case 4:
643 af = AF_INET;
644 iphlen = sizeof(struct ip);
645 #ifndef PULLDOWN_TEST
646 /* would like to get rid of this... */
647 if (toff > sizeof (struct ip)) {
648 ip_stripoptions(m, (struct mbuf *)0);
649 toff = sizeof(struct ip);
650 }
651 if (m->m_len < toff + sizeof (struct tcphdr)) {
652 if ((m = m_pullup(m, toff + sizeof (struct tcphdr))) == 0) {
653 tcpstat.tcps_rcvshort++;
654 return;
655 }
656 }
657 ip = mtod(m, struct ip *);
658 th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
659 #else
660 ip = mtod(m, struct ip *);
661 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
662 sizeof(struct tcphdr));
663 if (th == NULL) {
664 tcpstat.tcps_rcvshort++;
665 return;
666 }
667 #endif
668
669 /*
670 * Make sure destination address is not multicast.
671 * Source address checked in ip_input().
672 */
673 if (IN_MULTICAST(ip->ip_dst.s_addr)) {
674 /* XXX stat */
675 goto drop;
676 }
677
678 /* We do the checksum after PCB lookup... */
679 len = ip->ip_len;
680 tlen = len - toff;
681 break;
682 #endif
683 #ifdef INET6
684 case 6:
685 ip = NULL;
686 iphlen = sizeof(struct ip6_hdr);
687 af = AF_INET6;
688 #ifndef PULLDOWN_TEST
689 if (m->m_len < toff + sizeof(struct tcphdr)) {
690 m = m_pullup(m, toff + sizeof(struct tcphdr)); /*XXX*/
691 if (m == NULL) {
692 tcpstat.tcps_rcvshort++;
693 return;
694 }
695 }
696 ip6 = mtod(m, struct ip6_hdr *);
697 th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
698 #else
699 ip6 = mtod(m, struct ip6_hdr *);
700 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
701 sizeof(struct tcphdr));
702 if (th == NULL) {
703 tcpstat.tcps_rcvshort++;
704 return;
705 }
706 #endif
707
708 /* Be proactive about malicious use of IPv4 mapped address */
709 if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
710 IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
711 /* XXX stat */
712 goto drop;
713 }
714
715 /*
716 * Be proactive about unspecified IPv6 address in source.
717 * As we use all-zero to indicate unbounded/unconnected pcb,
718 * unspecified IPv6 address can be used to confuse us.
719 *
720 * Note that packets with unspecified IPv6 destination is
721 * already dropped in ip6_input.
722 */
723 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
724 /* XXX stat */
725 goto drop;
726 }
727
728 /*
729 * Make sure destination address is not multicast.
730 * Source address checked in ip6_input().
731 */
732 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
733 /* XXX stat */
734 goto drop;
735 }
736
737 /* We do the checksum after PCB lookup... */
738 len = m->m_pkthdr.len;
739 tlen = len - toff;
740 break;
741 #endif
742 default:
743 m_freem(m);
744 return;
745 }
746
747 /*
748 * Check that TCP offset makes sense,
749 * pull out TCP options and adjust length. XXX
750 */
751 off = th->th_off << 2;
752 if (off < sizeof (struct tcphdr) || off > tlen) {
753 tcpstat.tcps_rcvbadoff++;
754 goto drop;
755 }
756 tlen -= off;
757
758 /*
759 * tcp_input() has been modified to use tlen to mean the TCP data
760 * length throughout the function. Other functions can use
761 * m->m_pkthdr.len as the basis for calculating the TCP data length.
762 * rja
763 */
764
765 if (off > sizeof (struct tcphdr)) {
766 #ifndef PULLDOWN_TEST
767 if (m->m_len < toff + off) {
768 if ((m = m_pullup(m, toff + off)) == 0) {
769 tcpstat.tcps_rcvshort++;
770 return;
771 }
772 switch (af) {
773 #ifdef INET
774 case AF_INET:
775 ip = mtod(m, struct ip *);
776 break;
777 #endif
778 #ifdef INET6
779 case AF_INET6:
780 ip6 = mtod(m, struct ip6_hdr *);
781 break;
782 #endif
783 }
784 th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
785 }
786 #else
787 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
788 if (th == NULL) {
789 tcpstat.tcps_rcvshort++;
790 return;
791 }
792 /*
793 * NOTE: ip/ip6 will not be affected by m_pulldown()
794 * (as they're before toff) and we don't need to update those.
795 */
796 #endif
797 optlen = off - sizeof (struct tcphdr);
798 optp = ((caddr_t)th) + sizeof(struct tcphdr);
799 /*
800 * Do quick retrieval of timestamp options ("options
801 * prediction?"). If timestamp is the only option and it's
802 * formatted as recommended in RFC 1323 appendix A, we
803 * quickly get the values now and not bother calling
804 * tcp_dooptions(), etc.
805 */
806 if ((optlen == TCPOLEN_TSTAMP_APPA ||
807 (optlen > TCPOLEN_TSTAMP_APPA &&
808 optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
809 *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
810 (th->th_flags & TH_SYN) == 0) {
811 opti.ts_present = 1;
812 opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
813 opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
814 optp = NULL; /* we've parsed the options */
815 }
816 }
817 tiflags = th->th_flags;
818
819 /*
820 * Locate pcb for segment.
821 */
822 findpcb:
823 inp = NULL;
824 #ifdef INET6
825 in6p = NULL;
826 #endif
827 switch (af) {
828 #ifdef INET
829 case AF_INET:
830 inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
831 ip->ip_dst, th->th_dport);
832 if (inp == 0) {
833 ++tcpstat.tcps_pcbhashmiss;
834 inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
835 }
836 #ifdef INET6
837 if (inp == 0) {
838 struct in6_addr s, d;
839
840 /* mapped addr case */
841 bzero(&s, sizeof(s));
842 s.s6_addr16[5] = htons(0xffff);
843 bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
844 bzero(&d, sizeof(d));
845 d.s6_addr16[5] = htons(0xffff);
846 bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
847 in6p = in6_pcblookup_connect(&tcb6, &s, th->th_sport,
848 &d, th->th_dport, 0);
849 if (in6p == 0) {
850 ++tcpstat.tcps_pcbhashmiss;
851 in6p = in6_pcblookup_bind(&tcb6, &d,
852 th->th_dport, 0);
853 }
854 }
855 #endif
856 #ifndef INET6
857 if (inp == 0)
858 #else
859 if (inp == 0 && in6p == 0)
860 #endif
861 {
862 ++tcpstat.tcps_noport;
863 if (tcp_log_refused && (tiflags & TH_SYN)) {
864 #ifndef INET6
865 char src[4*sizeof "123"];
866 char dst[4*sizeof "123"];
867 #else
868 char src[INET6_ADDRSTRLEN];
869 char dst[INET6_ADDRSTRLEN];
870 #endif
871 if (ip) {
872 strcpy(src, inet_ntoa(ip->ip_src));
873 strcpy(dst, inet_ntoa(ip->ip_dst));
874 }
875 #ifdef INET6
876 else if (ip6) {
877 strcpy(src, ip6_sprintf(&ip6->ip6_src));
878 strcpy(dst, ip6_sprintf(&ip6->ip6_dst));
879 }
880 #endif
881 else {
882 strcpy(src, "(unknown)");
883 strcpy(dst, "(unknown)");
884 }
885 log(LOG_INFO,
886 "Connection attempt to TCP %s:%d from %s:%d\n",
887 dst, ntohs(th->th_dport),
888 src, ntohs(th->th_sport));
889 }
890 TCP_FIELDS_TO_HOST(th);
891 goto dropwithreset_ratelim;
892 }
893 #ifdef IPSEC
894 if (inp && ipsec4_in_reject(m, inp)) {
895 ipsecstat.in_polvio++;
896 goto drop;
897 }
898 #ifdef INET6
899 else if (in6p && ipsec4_in_reject_so(m, in6p->in6p_socket)) {
900 ipsecstat.in_polvio++;
901 goto drop;
902 }
903 #endif
904 #endif /*IPSEC*/
905 break;
906 #endif /*INET*/
907 #ifdef INET6
908 case AF_INET6:
909 {
910 int faith;
911
912 #if defined(NFAITH) && NFAITH > 0
913 faith = faithprefix(&ip6->ip6_dst);
914 #else
915 faith = 0;
916 #endif
917 in6p = in6_pcblookup_connect(&tcb6, &ip6->ip6_src, th->th_sport,
918 &ip6->ip6_dst, th->th_dport, faith);
919 if (in6p == NULL) {
920 ++tcpstat.tcps_pcbhashmiss;
921 in6p = in6_pcblookup_bind(&tcb6, &ip6->ip6_dst,
922 th->th_dport, faith);
923 }
924 if (in6p == NULL) {
925 ++tcpstat.tcps_noport;
926 TCP_FIELDS_TO_HOST(th);
927 goto dropwithreset_ratelim;
928 }
929 #ifdef IPSEC
930 if (ipsec6_in_reject(m, in6p)) {
931 ipsec6stat.in_polvio++;
932 goto drop;
933 }
934 #endif /*IPSEC*/
935 break;
936 }
937 #endif
938 }
939
940 /*
941 * If the state is CLOSED (i.e., TCB does not exist) then
942 * all data in the incoming segment is discarded.
943 * If the TCB exists but is in CLOSED state, it is embryonic,
944 * but should either do a listen or a connect soon.
945 */
946 tp = NULL;
947 so = NULL;
948 if (inp) {
949 tp = intotcpcb(inp);
950 so = inp->inp_socket;
951 }
952 #ifdef INET6
953 else if (in6p) {
954 tp = in6totcpcb(in6p);
955 so = in6p->in6p_socket;
956 }
957 #endif
958 if (tp == 0) {
959 TCP_FIELDS_TO_HOST(th);
960 goto dropwithreset_ratelim;
961 }
962 if (tp->t_state == TCPS_CLOSED)
963 goto drop;
964
965 /*
966 * Checksum extended TCP header and data.
967 */
968 switch (af) {
969 #ifdef INET
970 case AF_INET:
971 switch (m->m_pkthdr.csum_flags &
972 ((m->m_pkthdr.rcvif->if_csum_flags & M_CSUM_TCPv4) |
973 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
974 case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
975 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
976 goto badcsum;
977
978 case M_CSUM_TCPv4|M_CSUM_DATA:
979 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
980 if ((m->m_pkthdr.csum_data ^ 0xffff) != 0)
981 goto badcsum;
982 break;
983
984 case M_CSUM_TCPv4:
985 /* Checksum was okay. */
986 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
987 break;
988
989 default:
990 /* Must compute it ourselves. */
991 TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
992 #ifndef PULLDOWN_TEST
993 {
994 struct ipovly *ipov;
995 ipov = (struct ipovly *)ip;
996 bzero(ipov->ih_x1, sizeof ipov->ih_x1);
997 ipov->ih_len = htons(tlen + off);
998
999 if (in_cksum(m, len) != 0)
1000 goto badcsum;
1001 }
1002 #else
1003 if (in4_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0)
1004 goto badcsum;
1005 #endif /* ! PULLDOWN_TEST */
1006 break;
1007 }
1008 break;
1009 #endif /* INET4 */
1010
1011 #ifdef INET6
1012 case AF_INET6:
1013 if (in6_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0)
1014 goto badcsum;
1015 break;
1016 #endif /* INET6 */
1017 }
1018
1019 TCP_FIELDS_TO_HOST(th);
1020
1021 /* Unscale the window into a 32-bit value. */
1022 if ((tiflags & TH_SYN) == 0)
1023 tiwin = th->th_win << tp->snd_scale;
1024 else
1025 tiwin = th->th_win;
1026
1027 #ifdef INET6
1028 /* save packet options if user wanted */
1029 if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
1030 if (in6p->in6p_options) {
1031 m_freem(in6p->in6p_options);
1032 in6p->in6p_options = 0;
1033 }
1034 ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
1035 }
1036 #endif
1037
1038 if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
1039 union syn_cache_sa src;
1040 union syn_cache_sa dst;
1041
1042 bzero(&src, sizeof(src));
1043 bzero(&dst, sizeof(dst));
1044 switch (af) {
1045 #ifdef INET
1046 case AF_INET:
1047 src.sin.sin_len = sizeof(struct sockaddr_in);
1048 src.sin.sin_family = AF_INET;
1049 src.sin.sin_addr = ip->ip_src;
1050 src.sin.sin_port = th->th_sport;
1051
1052 dst.sin.sin_len = sizeof(struct sockaddr_in);
1053 dst.sin.sin_family = AF_INET;
1054 dst.sin.sin_addr = ip->ip_dst;
1055 dst.sin.sin_port = th->th_dport;
1056 break;
1057 #endif
1058 #ifdef INET6
1059 case AF_INET6:
1060 src.sin6.sin6_len = sizeof(struct sockaddr_in6);
1061 src.sin6.sin6_family = AF_INET6;
1062 src.sin6.sin6_addr = ip6->ip6_src;
1063 src.sin6.sin6_port = th->th_sport;
1064
1065 dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
1066 dst.sin6.sin6_family = AF_INET6;
1067 dst.sin6.sin6_addr = ip6->ip6_dst;
1068 dst.sin6.sin6_port = th->th_dport;
1069 break;
1070 #endif /* INET6 */
1071 default:
1072 goto badsyn; /*sanity*/
1073 }
1074
1075 if (so->so_options & SO_DEBUG) {
1076 ostate = tp->t_state;
1077
1078 tcp_saveti = NULL;
1079 if (iphlen + sizeof(struct tcphdr) > MHLEN)
1080 goto nosave;
1081
1082 if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
1083 tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
1084 if (!tcp_saveti)
1085 goto nosave;
1086 } else {
1087 MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
1088 if (!tcp_saveti)
1089 goto nosave;
1090 tcp_saveti->m_len = iphlen;
1091 m_copydata(m, 0, iphlen,
1092 mtod(tcp_saveti, caddr_t));
1093 }
1094
1095 if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
1096 m_freem(tcp_saveti);
1097 tcp_saveti = NULL;
1098 } else {
1099 tcp_saveti->m_len += sizeof(struct tcphdr);
1100 bcopy(th, mtod(tcp_saveti, caddr_t) + iphlen,
1101 sizeof(struct tcphdr));
1102 }
1103 if (tcp_saveti) {
1104 /*
1105 * need to recover version # field, which was
1106 * overwritten on ip_cksum computation.
1107 */
1108 struct ip *sip;
1109 sip = mtod(tcp_saveti, struct ip *);
1110 switch (af) {
1111 #ifdef INET
1112 case AF_INET:
1113 sip->ip_v = 4;
1114 break;
1115 #endif
1116 #ifdef INET6
1117 case AF_INET6:
1118 sip->ip_v = 6;
1119 break;
1120 #endif
1121 }
1122 }
1123 nosave:;
1124 }
1125 if (so->so_options & SO_ACCEPTCONN) {
1126 if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1127 if (tiflags & TH_RST) {
1128 syn_cache_reset(&src.sa, &dst.sa, th);
1129 } else if ((tiflags & (TH_ACK|TH_SYN)) ==
1130 (TH_ACK|TH_SYN)) {
1131 /*
1132 * Received a SYN,ACK. This should
1133 * never happen while we are in
1134 * LISTEN. Send an RST.
1135 */
1136 goto badsyn;
1137 } else if (tiflags & TH_ACK) {
1138 so = syn_cache_get(&src.sa, &dst.sa,
1139 th, toff, tlen, so, m);
1140 if (so == NULL) {
1141 /*
1142 * We don't have a SYN for
1143 * this ACK; send an RST.
1144 */
1145 goto badsyn;
1146 } else if (so ==
1147 (struct socket *)(-1)) {
1148 /*
1149 * We were unable to create
1150 * the connection. If the
1151 * 3-way handshake was
1152 * completed, and RST has
1153 * been sent to the peer.
1154 * Since the mbuf might be
1155 * in use for the reply,
1156 * do not free it.
1157 */
1158 m = NULL;
1159 } else {
1160 /*
1161 * We have created a
1162 * full-blown connection.
1163 */
1164 tp = NULL;
1165 inp = NULL;
1166 #ifdef INET6
1167 in6p = NULL;
1168 #endif
1169 switch (so->so_proto->pr_domain->dom_family) {
1170 #ifdef INET
1171 case AF_INET:
1172 inp = sotoinpcb(so);
1173 tp = intotcpcb(inp);
1174 break;
1175 #endif
1176 #ifdef INET6
1177 case AF_INET6:
1178 in6p = sotoin6pcb(so);
1179 tp = in6totcpcb(in6p);
1180 break;
1181 #endif
1182 }
1183 if (tp == NULL)
1184 goto badsyn; /*XXX*/
1185 tiwin <<= tp->snd_scale;
1186 goto after_listen;
1187 }
1188 } else {
1189 /*
1190 * None of RST, SYN or ACK was set.
1191 * This is an invalid packet for a
1192 * TCB in LISTEN state. Send a RST.
1193 */
1194 goto badsyn;
1195 }
1196 } else {
1197 /*
1198 * Received a SYN.
1199 */
1200
1201 /*
1202 * LISTEN socket received a SYN
1203 * from itself? This can't possibly
1204 * be valid; drop the packet.
1205 */
1206 if (th->th_sport == th->th_dport) {
1207 int i;
1208
1209 switch (af) {
1210 #ifdef INET
1211 case AF_INET:
1212 i = in_hosteq(ip->ip_src, ip->ip_dst);
1213 break;
1214 #endif
1215 #ifdef INET6
1216 case AF_INET6:
1217 i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
1218 break;
1219 #endif
1220 default:
1221 i = 1;
1222 }
1223 if (i) {
1224 tcpstat.tcps_badsyn++;
1225 goto drop;
1226 }
1227 }
1228
1229 /*
1230 * SYN looks ok; create compressed TCP
1231 * state for it.
1232 */
1233 if (so->so_qlen <= so->so_qlimit &&
1234 syn_cache_add(&src.sa, &dst.sa, th, tlen,
1235 so, m, optp, optlen, &opti))
1236 m = NULL;
1237 }
1238 goto drop;
1239 }
1240 }
1241
1242 after_listen:
1243 #ifdef DIAGNOSTIC
1244 /*
1245 * Should not happen now that all embryonic connections
1246 * are handled with compressed state.
1247 */
1248 if (tp->t_state == TCPS_LISTEN)
1249 panic("tcp_input: TCPS_LISTEN");
1250 #endif
1251
1252 /*
1253 * Segment received on connection.
1254 * Reset idle time and keep-alive timer.
1255 */
1256 tp->t_rcvtime = tcp_now;
1257 if (TCPS_HAVEESTABLISHED(tp->t_state))
1258 TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1259
1260 /*
1261 * Process options.
1262 */
1263 if (optp)
1264 tcp_dooptions(tp, optp, optlen, th, &opti);
1265
1266 /*
1267 * Header prediction: check for the two common cases
1268 * of a uni-directional data xfer. If the packet has
1269 * no control flags, is in-sequence, the window didn't
1270 * change and we're not retransmitting, it's a
1271 * candidate. If the length is zero and the ack moved
1272 * forward, we're the sender side of the xfer. Just
1273 * free the data acked & wake any higher level process
1274 * that was blocked waiting for space. If the length
1275 * is non-zero and the ack didn't move, we're the
1276 * receiver side. If we're getting packets in-order
1277 * (the reassembly queue is empty), add the data to
1278 * the socket buffer and note that we need a delayed ack.
1279 */
1280 if (tp->t_state == TCPS_ESTABLISHED &&
1281 (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1282 (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
1283 th->th_seq == tp->rcv_nxt &&
1284 tiwin && tiwin == tp->snd_wnd &&
1285 tp->snd_nxt == tp->snd_max) {
1286
1287 /*
1288 * If last ACK falls within this segment's sequence numbers,
1289 * record the timestamp.
1290 */
1291 if (opti.ts_present &&
1292 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1293 SEQ_LT(tp->last_ack_sent, th->th_seq + tlen)) {
1294 tp->ts_recent_age = TCP_TIMESTAMP(tp);
1295 tp->ts_recent = opti.ts_val;
1296 }
1297
1298 if (tlen == 0) {
1299 if (SEQ_GT(th->th_ack, tp->snd_una) &&
1300 SEQ_LEQ(th->th_ack, tp->snd_max) &&
1301 tp->snd_cwnd >= tp->snd_wnd &&
1302 tp->t_dupacks < tcprexmtthresh) {
1303 /*
1304 * this is a pure ack for outstanding data.
1305 */
1306 ++tcpstat.tcps_predack;
1307 if (opti.ts_present && opti.ts_ecr)
1308 tcp_xmit_timer(tp,
1309 TCP_TIMESTAMP(tp) - opti.ts_ecr + 1);
1310 else if (tp->t_rtttime &&
1311 SEQ_GT(th->th_ack, tp->t_rtseq))
1312 tcp_xmit_timer(tp,
1313 tcp_now - tp->t_rtttime);
1314 acked = th->th_ack - tp->snd_una;
1315 tcpstat.tcps_rcvackpack++;
1316 tcpstat.tcps_rcvackbyte += acked;
1317 ND6_HINT(tp);
1318 sbdrop(&so->so_snd, acked);
1319 /*
1320 * We want snd_recover to track snd_una to
1321 * avoid sequence wraparound problems for
1322 * very large transfers.
1323 */
1324 tp->snd_una = tp->snd_recover = th->th_ack;
1325 m_freem(m);
1326
1327 /*
1328 * If all outstanding data are acked, stop
1329 * retransmit timer, otherwise restart timer
1330 * using current (possibly backed-off) value.
1331 * If process is waiting for space,
1332 * wakeup/selwakeup/signal. If data
1333 * are ready to send, let tcp_output
1334 * decide between more output or persist.
1335 */
1336 if (tp->snd_una == tp->snd_max)
1337 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1338 else if (TCP_TIMER_ISARMED(tp,
1339 TCPT_PERSIST) == 0)
1340 TCP_TIMER_ARM(tp, TCPT_REXMT,
1341 tp->t_rxtcur);
1342
1343 sowwakeup(so);
1344 if (so->so_snd.sb_cc)
1345 (void) tcp_output(tp);
1346 if (tcp_saveti)
1347 m_freem(tcp_saveti);
1348 return;
1349 }
1350 } else if (th->th_ack == tp->snd_una &&
1351 tp->segq.lh_first == NULL &&
1352 tlen <= sbspace(&so->so_rcv)) {
1353 /*
1354 * this is a pure, in-sequence data packet
1355 * with nothing on the reassembly queue and
1356 * we have enough buffer space to take it.
1357 */
1358 ++tcpstat.tcps_preddat;
1359 tp->rcv_nxt += tlen;
1360 tcpstat.tcps_rcvpack++;
1361 tcpstat.tcps_rcvbyte += tlen;
1362 ND6_HINT(tp);
1363 /*
1364 * Drop TCP, IP headers and TCP options then add data
1365 * to socket buffer.
1366 */
1367 m_adj(m, toff + off);
1368 sbappend(&so->so_rcv, m);
1369 sorwakeup(so);
1370 TCP_SETUP_ACK(tp, th);
1371 if (tp->t_flags & TF_ACKNOW)
1372 (void) tcp_output(tp);
1373 if (tcp_saveti)
1374 m_freem(tcp_saveti);
1375 return;
1376 }
1377 }
1378
1379 /*
1380 * Compute mbuf offset to TCP data segment.
1381 */
1382 hdroptlen = toff + off;
1383
1384 /*
1385 * Calculate amount of space in receive window,
1386 * and then do TCP input processing.
1387 * Receive window is amount of space in rcv queue,
1388 * but not less than advertised window.
1389 */
1390 { int win;
1391
1392 win = sbspace(&so->so_rcv);
1393 if (win < 0)
1394 win = 0;
1395 tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1396 }
1397
1398 switch (tp->t_state) {
1399
1400 /*
1401 * If the state is SYN_SENT:
1402 * if seg contains an ACK, but not for our SYN, drop the input.
1403 * if seg contains a RST, then drop the connection.
1404 * if seg does not contain SYN, then drop it.
1405 * Otherwise this is an acceptable SYN segment
1406 * initialize tp->rcv_nxt and tp->irs
1407 * if seg contains ack then advance tp->snd_una
1408 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1409 * arrange for segment to be acked (eventually)
1410 * continue processing rest of data/controls, beginning with URG
1411 */
1412 case TCPS_SYN_SENT:
1413 if ((tiflags & TH_ACK) &&
1414 (SEQ_LEQ(th->th_ack, tp->iss) ||
1415 SEQ_GT(th->th_ack, tp->snd_max)))
1416 goto dropwithreset;
1417 if (tiflags & TH_RST) {
1418 if (tiflags & TH_ACK)
1419 tp = tcp_drop(tp, ECONNREFUSED);
1420 goto drop;
1421 }
1422 if ((tiflags & TH_SYN) == 0)
1423 goto drop;
1424 if (tiflags & TH_ACK) {
1425 tp->snd_una = tp->snd_recover = th->th_ack;
1426 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1427 tp->snd_nxt = tp->snd_una;
1428 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1429 }
1430 tp->irs = th->th_seq;
1431 tcp_rcvseqinit(tp);
1432 tp->t_flags |= TF_ACKNOW;
1433 tcp_mss_from_peer(tp, opti.maxseg);
1434
1435 /*
1436 * Initialize the initial congestion window. If we
1437 * had to retransmit the SYN, we must initialize cwnd
1438 * to 1 segment (i.e. the Loss Window).
1439 */
1440 if (tp->t_flags & TF_SYN_REXMT)
1441 tp->snd_cwnd = tp->t_peermss;
1442 else
1443 tp->snd_cwnd = TCP_INITIAL_WINDOW(tcp_init_win,
1444 tp->t_peermss);
1445
1446 tcp_rmx_rtt(tp);
1447 if (tiflags & TH_ACK) {
1448 tcpstat.tcps_connects++;
1449 soisconnected(so);
1450 tcp_established(tp);
1451 /* Do window scaling on this connection? */
1452 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1453 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1454 tp->snd_scale = tp->requested_s_scale;
1455 tp->rcv_scale = tp->request_r_scale;
1456 }
1457 TCP_REASS_LOCK(tp);
1458 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1459 TCP_REASS_UNLOCK(tp);
1460 /*
1461 * if we didn't have to retransmit the SYN,
1462 * use its rtt as our initial srtt & rtt var.
1463 */
1464 if (tp->t_rtttime)
1465 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
1466 } else
1467 tp->t_state = TCPS_SYN_RECEIVED;
1468
1469 /*
1470 * Advance th->th_seq to correspond to first data byte.
1471 * If data, trim to stay within window,
1472 * dropping FIN if necessary.
1473 */
1474 th->th_seq++;
1475 if (tlen > tp->rcv_wnd) {
1476 todrop = tlen - tp->rcv_wnd;
1477 m_adj(m, -todrop);
1478 tlen = tp->rcv_wnd;
1479 tiflags &= ~TH_FIN;
1480 tcpstat.tcps_rcvpackafterwin++;
1481 tcpstat.tcps_rcvbyteafterwin += todrop;
1482 }
1483 tp->snd_wl1 = th->th_seq - 1;
1484 tp->rcv_up = th->th_seq;
1485 goto step6;
1486
1487 /*
1488 * If the state is SYN_RECEIVED:
1489 * If seg contains an ACK, but not for our SYN, drop the input
1490 * and generate an RST. See page 36, rfc793
1491 */
1492 case TCPS_SYN_RECEIVED:
1493 if ((tiflags & TH_ACK) &&
1494 (SEQ_LEQ(th->th_ack, tp->iss) ||
1495 SEQ_GT(th->th_ack, tp->snd_max)))
1496 goto dropwithreset;
1497 break;
1498 }
1499
1500 /*
1501 * States other than LISTEN or SYN_SENT.
1502 * First check timestamp, if present.
1503 * Then check that at least some bytes of segment are within
1504 * receive window. If segment begins before rcv_nxt,
1505 * drop leading data (and SYN); if nothing left, just ack.
1506 *
1507 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1508 * and it's less than ts_recent, drop it.
1509 */
1510 if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
1511 TSTMP_LT(opti.ts_val, tp->ts_recent)) {
1512
1513 /* Check to see if ts_recent is over 24 days old. */
1514 if ((int)(TCP_TIMESTAMP(tp) - tp->ts_recent_age) >
1515 TCP_PAWS_IDLE) {
1516 /*
1517 * Invalidate ts_recent. If this segment updates
1518 * ts_recent, the age will be reset later and ts_recent
1519 * will get a valid value. If it does not, setting
1520 * ts_recent to zero will at least satisfy the
1521 * requirement that zero be placed in the timestamp
1522 * echo reply when ts_recent isn't valid. The
1523 * age isn't reset until we get a valid ts_recent
1524 * because we don't want out-of-order segments to be
1525 * dropped when ts_recent is old.
1526 */
1527 tp->ts_recent = 0;
1528 } else {
1529 tcpstat.tcps_rcvduppack++;
1530 tcpstat.tcps_rcvdupbyte += tlen;
1531 tcpstat.tcps_pawsdrop++;
1532 goto dropafterack;
1533 }
1534 }
1535
1536 todrop = tp->rcv_nxt - th->th_seq;
1537 if (todrop > 0) {
1538 if (tiflags & TH_SYN) {
1539 tiflags &= ~TH_SYN;
1540 th->th_seq++;
1541 if (th->th_urp > 1)
1542 th->th_urp--;
1543 else {
1544 tiflags &= ~TH_URG;
1545 th->th_urp = 0;
1546 }
1547 todrop--;
1548 }
1549 if (todrop > tlen ||
1550 (todrop == tlen && (tiflags & TH_FIN) == 0)) {
1551 /*
1552 * Any valid FIN must be to the left of the window.
1553 * At this point the FIN must be a duplicate or
1554 * out of sequence; drop it.
1555 */
1556 tiflags &= ~TH_FIN;
1557 /*
1558 * Send an ACK to resynchronize and drop any data.
1559 * But keep on processing for RST or ACK.
1560 */
1561 tp->t_flags |= TF_ACKNOW;
1562 todrop = tlen;
1563 tcpstat.tcps_rcvdupbyte += todrop;
1564 tcpstat.tcps_rcvduppack++;
1565 } else {
1566 tcpstat.tcps_rcvpartduppack++;
1567 tcpstat.tcps_rcvpartdupbyte += todrop;
1568 }
1569 hdroptlen += todrop; /*drop from head afterwards*/
1570 th->th_seq += todrop;
1571 tlen -= todrop;
1572 if (th->th_urp > todrop)
1573 th->th_urp -= todrop;
1574 else {
1575 tiflags &= ~TH_URG;
1576 th->th_urp = 0;
1577 }
1578 }
1579
1580 /*
1581 * If new data are received on a connection after the
1582 * user processes are gone, then RST the other end.
1583 */
1584 if ((so->so_state & SS_NOFDREF) &&
1585 tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1586 tp = tcp_close(tp);
1587 tcpstat.tcps_rcvafterclose++;
1588 goto dropwithreset;
1589 }
1590
1591 /*
1592 * If segment ends after window, drop trailing data
1593 * (and PUSH and FIN); if nothing left, just ACK.
1594 */
1595 todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
1596 if (todrop > 0) {
1597 tcpstat.tcps_rcvpackafterwin++;
1598 if (todrop >= tlen) {
1599 tcpstat.tcps_rcvbyteafterwin += tlen;
1600 /*
1601 * If a new connection request is received
1602 * while in TIME_WAIT, drop the old connection
1603 * and start over if the sequence numbers
1604 * are above the previous ones.
1605 */
1606 if (tiflags & TH_SYN &&
1607 tp->t_state == TCPS_TIME_WAIT &&
1608 SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1609 iss = tcp_new_iss(tp, tp->snd_nxt);
1610 tp = tcp_close(tp);
1611 goto findpcb;
1612 }
1613 /*
1614 * If window is closed can only take segments at
1615 * window edge, and have to drop data and PUSH from
1616 * incoming segments. Continue processing, but
1617 * remember to ack. Otherwise, drop segment
1618 * and ack.
1619 */
1620 if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1621 tp->t_flags |= TF_ACKNOW;
1622 tcpstat.tcps_rcvwinprobe++;
1623 } else
1624 goto dropafterack;
1625 } else
1626 tcpstat.tcps_rcvbyteafterwin += todrop;
1627 m_adj(m, -todrop);
1628 tlen -= todrop;
1629 tiflags &= ~(TH_PUSH|TH_FIN);
1630 }
1631
1632 /*
1633 * If last ACK falls within this segment's sequence numbers,
1634 * and the timestamp is newer, record it.
1635 */
1636 if (opti.ts_present && TSTMP_GEQ(opti.ts_val, tp->ts_recent) &&
1637 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1638 SEQ_LT(tp->last_ack_sent, th->th_seq + tlen +
1639 ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
1640 tp->ts_recent_age = TCP_TIMESTAMP(tp);
1641 tp->ts_recent = opti.ts_val;
1642 }
1643
1644 /*
1645 * If the RST bit is set examine the state:
1646 * SYN_RECEIVED STATE:
1647 * If passive open, return to LISTEN state.
1648 * If active open, inform user that connection was refused.
1649 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
1650 * Inform user that connection was reset, and close tcb.
1651 * CLOSING, LAST_ACK, TIME_WAIT STATES
1652 * Close the tcb.
1653 */
1654 if (tiflags&TH_RST) switch (tp->t_state) {
1655
1656 case TCPS_SYN_RECEIVED:
1657 so->so_error = ECONNREFUSED;
1658 goto close;
1659
1660 case TCPS_ESTABLISHED:
1661 case TCPS_FIN_WAIT_1:
1662 case TCPS_FIN_WAIT_2:
1663 case TCPS_CLOSE_WAIT:
1664 so->so_error = ECONNRESET;
1665 close:
1666 tp->t_state = TCPS_CLOSED;
1667 tcpstat.tcps_drops++;
1668 tp = tcp_close(tp);
1669 goto drop;
1670
1671 case TCPS_CLOSING:
1672 case TCPS_LAST_ACK:
1673 case TCPS_TIME_WAIT:
1674 tp = tcp_close(tp);
1675 goto drop;
1676 }
1677
1678 /*
1679 * If a SYN is in the window, then this is an
1680 * error and we send an RST and drop the connection.
1681 */
1682 if (tiflags & TH_SYN) {
1683 tp = tcp_drop(tp, ECONNRESET);
1684 goto dropwithreset;
1685 }
1686
1687 /*
1688 * If the ACK bit is off we drop the segment and return.
1689 */
1690 if ((tiflags & TH_ACK) == 0) {
1691 if (tp->t_flags & TF_ACKNOW)
1692 goto dropafterack;
1693 else
1694 goto drop;
1695 }
1696
1697 /*
1698 * Ack processing.
1699 */
1700 switch (tp->t_state) {
1701
1702 /*
1703 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
1704 * ESTABLISHED state and continue processing, otherwise
1705 * send an RST.
1706 */
1707 case TCPS_SYN_RECEIVED:
1708 if (SEQ_GT(tp->snd_una, th->th_ack) ||
1709 SEQ_GT(th->th_ack, tp->snd_max))
1710 goto dropwithreset;
1711 tcpstat.tcps_connects++;
1712 soisconnected(so);
1713 tcp_established(tp);
1714 /* Do window scaling? */
1715 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1716 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1717 tp->snd_scale = tp->requested_s_scale;
1718 tp->rcv_scale = tp->request_r_scale;
1719 }
1720 TCP_REASS_LOCK(tp);
1721 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1722 TCP_REASS_UNLOCK(tp);
1723 tp->snd_wl1 = th->th_seq - 1;
1724 /* fall into ... */
1725
1726 /*
1727 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1728 * ACKs. If the ack is in the range
1729 * tp->snd_una < th->th_ack <= tp->snd_max
1730 * then advance tp->snd_una to th->th_ack and drop
1731 * data from the retransmission queue. If this ACK reflects
1732 * more up to date window information we update our window information.
1733 */
1734 case TCPS_ESTABLISHED:
1735 case TCPS_FIN_WAIT_1:
1736 case TCPS_FIN_WAIT_2:
1737 case TCPS_CLOSE_WAIT:
1738 case TCPS_CLOSING:
1739 case TCPS_LAST_ACK:
1740 case TCPS_TIME_WAIT:
1741
1742 if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
1743 if (tlen == 0 && tiwin == tp->snd_wnd) {
1744 tcpstat.tcps_rcvdupack++;
1745 /*
1746 * If we have outstanding data (other than
1747 * a window probe), this is a completely
1748 * duplicate ack (ie, window info didn't
1749 * change), the ack is the biggest we've
1750 * seen and we've seen exactly our rexmt
1751 * threshhold of them, assume a packet
1752 * has been dropped and retransmit it.
1753 * Kludge snd_nxt & the congestion
1754 * window so we send only this one
1755 * packet.
1756 *
1757 * We know we're losing at the current
1758 * window size so do congestion avoidance
1759 * (set ssthresh to half the current window
1760 * and pull our congestion window back to
1761 * the new ssthresh).
1762 *
1763 * Dup acks mean that packets have left the
1764 * network (they're now cached at the receiver)
1765 * so bump cwnd by the amount in the receiver
1766 * to keep a constant cwnd packets in the
1767 * network.
1768 */
1769 if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
1770 th->th_ack != tp->snd_una)
1771 tp->t_dupacks = 0;
1772 else if (++tp->t_dupacks == tcprexmtthresh) {
1773 tcp_seq onxt = tp->snd_nxt;
1774 u_int win =
1775 min(tp->snd_wnd, tp->snd_cwnd) /
1776 2 / tp->t_segsz;
1777 if (tcp_do_newreno && SEQ_LT(th->th_ack,
1778 tp->snd_recover)) {
1779 /*
1780 * False fast retransmit after
1781 * timeout. Do not cut window.
1782 */
1783 tp->snd_cwnd += tp->t_segsz;
1784 tp->t_dupacks = 0;
1785 (void) tcp_output(tp);
1786 goto drop;
1787 }
1788
1789 if (win < 2)
1790 win = 2;
1791 tp->snd_ssthresh = win * tp->t_segsz;
1792 tp->snd_recover = tp->snd_max;
1793 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1794 tp->t_rtttime = 0;
1795 tp->snd_nxt = th->th_ack;
1796 tp->snd_cwnd = tp->t_segsz;
1797 (void) tcp_output(tp);
1798 tp->snd_cwnd = tp->snd_ssthresh +
1799 tp->t_segsz * tp->t_dupacks;
1800 if (SEQ_GT(onxt, tp->snd_nxt))
1801 tp->snd_nxt = onxt;
1802 goto drop;
1803 } else if (tp->t_dupacks > tcprexmtthresh) {
1804 tp->snd_cwnd += tp->t_segsz;
1805 (void) tcp_output(tp);
1806 goto drop;
1807 }
1808 } else
1809 tp->t_dupacks = 0;
1810 break;
1811 }
1812 /*
1813 * If the congestion window was inflated to account
1814 * for the other side's cached packets, retract it.
1815 */
1816 if (tcp_do_newreno == 0) {
1817 if (tp->t_dupacks >= tcprexmtthresh &&
1818 tp->snd_cwnd > tp->snd_ssthresh)
1819 tp->snd_cwnd = tp->snd_ssthresh;
1820 tp->t_dupacks = 0;
1821 } else if (tp->t_dupacks >= tcprexmtthresh &&
1822 tcp_newreno(tp, th) == 0) {
1823 tp->snd_cwnd = tp->snd_ssthresh;
1824 /*
1825 * Window inflation should have left us with approx.
1826 * snd_ssthresh outstanding data. But in case we
1827 * would be inclined to send a burst, better to do
1828 * it via the slow start mechanism.
1829 */
1830 if (SEQ_SUB(tp->snd_max, th->th_ack) < tp->snd_ssthresh)
1831 tp->snd_cwnd = SEQ_SUB(tp->snd_max, th->th_ack)
1832 + tp->t_segsz;
1833 tp->t_dupacks = 0;
1834 }
1835 if (SEQ_GT(th->th_ack, tp->snd_max)) {
1836 tcpstat.tcps_rcvacktoomuch++;
1837 goto dropafterack;
1838 }
1839 acked = th->th_ack - tp->snd_una;
1840 tcpstat.tcps_rcvackpack++;
1841 tcpstat.tcps_rcvackbyte += acked;
1842
1843 /*
1844 * If we have a timestamp reply, update smoothed
1845 * round trip time. If no timestamp is present but
1846 * transmit timer is running and timed sequence
1847 * number was acked, update smoothed round trip time.
1848 * Since we now have an rtt measurement, cancel the
1849 * timer backoff (cf., Phil Karn's retransmit alg.).
1850 * Recompute the initial retransmit timer.
1851 */
1852 if (opti.ts_present && opti.ts_ecr)
1853 tcp_xmit_timer(tp, TCP_TIMESTAMP(tp) - opti.ts_ecr + 1);
1854 else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
1855 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
1856
1857 /*
1858 * If all outstanding data is acked, stop retransmit
1859 * timer and remember to restart (more output or persist).
1860 * If there is more data to be acked, restart retransmit
1861 * timer, using current (possibly backed-off) value.
1862 */
1863 if (th->th_ack == tp->snd_max) {
1864 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1865 needoutput = 1;
1866 } else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
1867 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
1868 /*
1869 * When new data is acked, open the congestion window.
1870 * If the window gives us less than ssthresh packets
1871 * in flight, open exponentially (segsz per packet).
1872 * Otherwise open linearly: segsz per window
1873 * (segsz^2 / cwnd per packet), plus a constant
1874 * fraction of a packet (segsz/8) to help larger windows
1875 * open quickly enough.
1876 */
1877 {
1878 u_int cw = tp->snd_cwnd;
1879 u_int incr = tp->t_segsz;
1880
1881 if (cw > tp->snd_ssthresh)
1882 incr = incr * incr / cw;
1883 if (tcp_do_newreno == 0 || SEQ_GEQ(th->th_ack, tp->snd_recover))
1884 tp->snd_cwnd = min(cw + incr,
1885 TCP_MAXWIN << tp->snd_scale);
1886 }
1887 ND6_HINT(tp);
1888 if (acked > so->so_snd.sb_cc) {
1889 tp->snd_wnd -= so->so_snd.sb_cc;
1890 sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
1891 ourfinisacked = 1;
1892 } else {
1893 sbdrop(&so->so_snd, acked);
1894 tp->snd_wnd -= acked;
1895 ourfinisacked = 0;
1896 }
1897 sowwakeup(so);
1898 /*
1899 * We want snd_recover to track snd_una to
1900 * avoid sequence wraparound problems for
1901 * very large transfers.
1902 */
1903 tp->snd_una = tp->snd_recover = th->th_ack;
1904 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1905 tp->snd_nxt = tp->snd_una;
1906
1907 switch (tp->t_state) {
1908
1909 /*
1910 * In FIN_WAIT_1 STATE in addition to the processing
1911 * for the ESTABLISHED state if our FIN is now acknowledged
1912 * then enter FIN_WAIT_2.
1913 */
1914 case TCPS_FIN_WAIT_1:
1915 if (ourfinisacked) {
1916 /*
1917 * If we can't receive any more
1918 * data, then closing user can proceed.
1919 * Starting the timer is contrary to the
1920 * specification, but if we don't get a FIN
1921 * we'll hang forever.
1922 */
1923 if (so->so_state & SS_CANTRCVMORE) {
1924 soisdisconnected(so);
1925 if (tcp_maxidle > 0)
1926 TCP_TIMER_ARM(tp, TCPT_2MSL,
1927 tcp_maxidle);
1928 }
1929 tp->t_state = TCPS_FIN_WAIT_2;
1930 }
1931 break;
1932
1933 /*
1934 * In CLOSING STATE in addition to the processing for
1935 * the ESTABLISHED state if the ACK acknowledges our FIN
1936 * then enter the TIME-WAIT state, otherwise ignore
1937 * the segment.
1938 */
1939 case TCPS_CLOSING:
1940 if (ourfinisacked) {
1941 tp->t_state = TCPS_TIME_WAIT;
1942 tcp_canceltimers(tp);
1943 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
1944 soisdisconnected(so);
1945 }
1946 break;
1947
1948 /*
1949 * In LAST_ACK, we may still be waiting for data to drain
1950 * and/or to be acked, as well as for the ack of our FIN.
1951 * If our FIN is now acknowledged, delete the TCB,
1952 * enter the closed state and return.
1953 */
1954 case TCPS_LAST_ACK:
1955 if (ourfinisacked) {
1956 tp = tcp_close(tp);
1957 goto drop;
1958 }
1959 break;
1960
1961 /*
1962 * In TIME_WAIT state the only thing that should arrive
1963 * is a retransmission of the remote FIN. Acknowledge
1964 * it and restart the finack timer.
1965 */
1966 case TCPS_TIME_WAIT:
1967 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
1968 goto dropafterack;
1969 }
1970 }
1971
1972 step6:
1973 /*
1974 * Update window information.
1975 * Don't look at window if no ACK: TAC's send garbage on first SYN.
1976 */
1977 if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
1978 (tp->snd_wl1 == th->th_seq && SEQ_LT(tp->snd_wl2, th->th_ack)) ||
1979 (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))) {
1980 /* keep track of pure window updates */
1981 if (tlen == 0 &&
1982 tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
1983 tcpstat.tcps_rcvwinupd++;
1984 tp->snd_wnd = tiwin;
1985 tp->snd_wl1 = th->th_seq;
1986 tp->snd_wl2 = th->th_ack;
1987 if (tp->snd_wnd > tp->max_sndwnd)
1988 tp->max_sndwnd = tp->snd_wnd;
1989 needoutput = 1;
1990 }
1991
1992 /*
1993 * Process segments with URG.
1994 */
1995 if ((tiflags & TH_URG) && th->th_urp &&
1996 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1997 /*
1998 * This is a kludge, but if we receive and accept
1999 * random urgent pointers, we'll crash in
2000 * soreceive. It's hard to imagine someone
2001 * actually wanting to send this much urgent data.
2002 */
2003 if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2004 th->th_urp = 0; /* XXX */
2005 tiflags &= ~TH_URG; /* XXX */
2006 goto dodata; /* XXX */
2007 }
2008 /*
2009 * If this segment advances the known urgent pointer,
2010 * then mark the data stream. This should not happen
2011 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2012 * a FIN has been received from the remote side.
2013 * In these states we ignore the URG.
2014 *
2015 * According to RFC961 (Assigned Protocols),
2016 * the urgent pointer points to the last octet
2017 * of urgent data. We continue, however,
2018 * to consider it to indicate the first octet
2019 * of data past the urgent section as the original
2020 * spec states (in one of two places).
2021 */
2022 if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2023 tp->rcv_up = th->th_seq + th->th_urp;
2024 so->so_oobmark = so->so_rcv.sb_cc +
2025 (tp->rcv_up - tp->rcv_nxt) - 1;
2026 if (so->so_oobmark == 0)
2027 so->so_state |= SS_RCVATMARK;
2028 sohasoutofband(so);
2029 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2030 }
2031 /*
2032 * Remove out of band data so doesn't get presented to user.
2033 * This can happen independent of advancing the URG pointer,
2034 * but if two URG's are pending at once, some out-of-band
2035 * data may creep in... ick.
2036 */
2037 if (th->th_urp <= (u_int16_t) tlen
2038 #ifdef SO_OOBINLINE
2039 && (so->so_options & SO_OOBINLINE) == 0
2040 #endif
2041 )
2042 tcp_pulloutofband(so, th, m, hdroptlen);
2043 } else
2044 /*
2045 * If no out of band data is expected,
2046 * pull receive urgent pointer along
2047 * with the receive window.
2048 */
2049 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2050 tp->rcv_up = tp->rcv_nxt;
2051 dodata: /* XXX */
2052
2053 /*
2054 * Process the segment text, merging it into the TCP sequencing queue,
2055 * and arranging for acknowledgement of receipt if necessary.
2056 * This process logically involves adjusting tp->rcv_wnd as data
2057 * is presented to the user (this happens in tcp_usrreq.c,
2058 * case PRU_RCVD). If a FIN has already been received on this
2059 * connection then we just ignore the text.
2060 */
2061 if ((tlen || (tiflags & TH_FIN)) &&
2062 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2063 /*
2064 * Insert segment ti into reassembly queue of tcp with
2065 * control block tp. Return TH_FIN if reassembly now includes
2066 * a segment with FIN. The macro form does the common case
2067 * inline (segment is the next to be received on an
2068 * established connection, and the queue is empty),
2069 * avoiding linkage into and removal from the queue and
2070 * repetition of various conversions.
2071 * Set DELACK for segments received in order, but ack
2072 * immediately when segments are out of order
2073 * (so fast retransmit can work).
2074 */
2075 /* NOTE: this was TCP_REASS() macro, but used only once */
2076 TCP_REASS_LOCK(tp);
2077 if (th->th_seq == tp->rcv_nxt &&
2078 tp->segq.lh_first == NULL &&
2079 tp->t_state == TCPS_ESTABLISHED) {
2080 TCP_SETUP_ACK(tp, th);
2081 tp->rcv_nxt += tlen;
2082 tiflags = th->th_flags & TH_FIN;
2083 tcpstat.tcps_rcvpack++;
2084 tcpstat.tcps_rcvbyte += tlen;
2085 ND6_HINT(tp);
2086 m_adj(m, hdroptlen);
2087 sbappend(&(so)->so_rcv, m);
2088 sorwakeup(so);
2089 } else {
2090 m_adj(m, hdroptlen);
2091 tiflags = tcp_reass(tp, th, m, &tlen);
2092 tp->t_flags |= TF_ACKNOW;
2093 }
2094 TCP_REASS_UNLOCK(tp);
2095
2096 /*
2097 * Note the amount of data that peer has sent into
2098 * our window, in order to estimate the sender's
2099 * buffer size.
2100 */
2101 len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2102 } else {
2103 m_freem(m);
2104 m = NULL;
2105 tiflags &= ~TH_FIN;
2106 }
2107
2108 /*
2109 * If FIN is received ACK the FIN and let the user know
2110 * that the connection is closing. Ignore a FIN received before
2111 * the connection is fully established.
2112 */
2113 if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2114 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2115 socantrcvmore(so);
2116 tp->t_flags |= TF_ACKNOW;
2117 tp->rcv_nxt++;
2118 }
2119 switch (tp->t_state) {
2120
2121 /*
2122 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2123 */
2124 case TCPS_ESTABLISHED:
2125 tp->t_state = TCPS_CLOSE_WAIT;
2126 break;
2127
2128 /*
2129 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2130 * enter the CLOSING state.
2131 */
2132 case TCPS_FIN_WAIT_1:
2133 tp->t_state = TCPS_CLOSING;
2134 break;
2135
2136 /*
2137 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2138 * starting the time-wait timer, turning off the other
2139 * standard timers.
2140 */
2141 case TCPS_FIN_WAIT_2:
2142 tp->t_state = TCPS_TIME_WAIT;
2143 tcp_canceltimers(tp);
2144 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2145 soisdisconnected(so);
2146 break;
2147
2148 /*
2149 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2150 */
2151 case TCPS_TIME_WAIT:
2152 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2153 break;
2154 }
2155 }
2156 #ifdef TCP_DEBUG
2157 if (so->so_options & SO_DEBUG)
2158 tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
2159 #endif
2160
2161 /*
2162 * Return any desired output.
2163 */
2164 if (needoutput || (tp->t_flags & TF_ACKNOW))
2165 (void) tcp_output(tp);
2166 if (tcp_saveti)
2167 m_freem(tcp_saveti);
2168 return;
2169
2170 badsyn:
2171 /*
2172 * Received a bad SYN. Increment counters and dropwithreset.
2173 */
2174 tcpstat.tcps_badsyn++;
2175 tp = NULL;
2176 goto dropwithreset;
2177
2178 dropafterack:
2179 /*
2180 * Generate an ACK dropping incoming segment if it occupies
2181 * sequence space, where the ACK reflects our state.
2182 */
2183 if (tiflags & TH_RST)
2184 goto drop;
2185 m_freem(m);
2186 tp->t_flags |= TF_ACKNOW;
2187 (void) tcp_output(tp);
2188 if (tcp_saveti)
2189 m_freem(tcp_saveti);
2190 return;
2191
2192 dropwithreset_ratelim:
2193 /*
2194 * We may want to rate-limit RSTs in certain situations,
2195 * particularly if we are sending an RST in response to
2196 * an attempt to connect to or otherwise communicate with
2197 * a port for which we have no socket.
2198 */
2199 if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
2200 tcp_rst_ppslim) == 0) {
2201 /* XXX stat */
2202 goto drop;
2203 }
2204 /* ...fall into dropwithreset... */
2205
2206 dropwithreset:
2207 /*
2208 * Generate a RST, dropping incoming segment.
2209 * Make ACK acceptable to originator of segment.
2210 */
2211 if (tiflags & TH_RST)
2212 goto drop;
2213 {
2214 /*
2215 * need to recover version # field, which was overwritten on
2216 * ip_cksum computation.
2217 */
2218 struct ip *sip;
2219 sip = mtod(m, struct ip *);
2220 switch (af) {
2221 #ifdef INET
2222 case AF_INET:
2223 sip->ip_v = 4;
2224 break;
2225 #endif
2226 #ifdef INET6
2227 case AF_INET6:
2228 sip->ip_v = 6;
2229 break;
2230 #endif
2231 }
2232 }
2233 if (tiflags & TH_ACK)
2234 (void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
2235 else {
2236 if (tiflags & TH_SYN)
2237 tlen++;
2238 (void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
2239 TH_RST|TH_ACK);
2240 }
2241 if (tcp_saveti)
2242 m_freem(tcp_saveti);
2243 return;
2244
2245 badcsum:
2246 tcpstat.tcps_rcvbadsum++;
2247 drop:
2248 /*
2249 * Drop space held by incoming segment and return.
2250 */
2251 if (tp) {
2252 if (tp->t_inpcb)
2253 so = tp->t_inpcb->inp_socket;
2254 #ifdef INET6
2255 else if (tp->t_in6pcb)
2256 so = tp->t_in6pcb->in6p_socket;
2257 #endif
2258 else
2259 so = NULL;
2260 #ifdef TCP_DEBUG
2261 if (so && (so->so_options & SO_DEBUG) != 0)
2262 tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
2263 #endif
2264 }
2265 if (tcp_saveti)
2266 m_freem(tcp_saveti);
2267 m_freem(m);
2268 return;
2269 }
2270
2271 void
2272 tcp_dooptions(tp, cp, cnt, th, oi)
2273 struct tcpcb *tp;
2274 u_char *cp;
2275 int cnt;
2276 struct tcphdr *th;
2277 struct tcp_opt_info *oi;
2278 {
2279 u_int16_t mss;
2280 int opt, optlen;
2281
2282 for (; cnt > 0; cnt -= optlen, cp += optlen) {
2283 opt = cp[0];
2284 if (opt == TCPOPT_EOL)
2285 break;
2286 if (opt == TCPOPT_NOP)
2287 optlen = 1;
2288 else {
2289 if (cnt < 2)
2290 break;
2291 optlen = cp[1];
2292 if (optlen < 2 || optlen > cnt)
2293 break;
2294 }
2295 switch (opt) {
2296
2297 default:
2298 continue;
2299
2300 case TCPOPT_MAXSEG:
2301 if (optlen != TCPOLEN_MAXSEG)
2302 continue;
2303 if (!(th->th_flags & TH_SYN))
2304 continue;
2305 bcopy(cp + 2, &mss, sizeof(mss));
2306 oi->maxseg = ntohs(mss);
2307 break;
2308
2309 case TCPOPT_WINDOW:
2310 if (optlen != TCPOLEN_WINDOW)
2311 continue;
2312 if (!(th->th_flags & TH_SYN))
2313 continue;
2314 tp->t_flags |= TF_RCVD_SCALE;
2315 tp->requested_s_scale = cp[2];
2316 if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
2317 #if 0 /*XXX*/
2318 char *p;
2319
2320 if (ip)
2321 p = ntohl(ip->ip_src);
2322 #ifdef INET6
2323 else if (ip6)
2324 p = ip6_sprintf(&ip6->ip6_src);
2325 #endif
2326 else
2327 p = "(unknown)";
2328 log(LOG_ERR, "TCP: invalid wscale %d from %s, "
2329 "assuming %d\n",
2330 tp->requested_s_scale, p,
2331 TCP_MAX_WINSHIFT);
2332 #else
2333 log(LOG_ERR, "TCP: invalid wscale %d, "
2334 "assuming %d\n",
2335 tp->requested_s_scale,
2336 TCP_MAX_WINSHIFT);
2337 #endif
2338 tp->requested_s_scale = TCP_MAX_WINSHIFT;
2339 }
2340 break;
2341
2342 case TCPOPT_TIMESTAMP:
2343 if (optlen != TCPOLEN_TIMESTAMP)
2344 continue;
2345 oi->ts_present = 1;
2346 bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
2347 NTOHL(oi->ts_val);
2348 bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
2349 NTOHL(oi->ts_ecr);
2350
2351 /*
2352 * A timestamp received in a SYN makes
2353 * it ok to send timestamp requests and replies.
2354 */
2355 if (th->th_flags & TH_SYN) {
2356 tp->t_flags |= TF_RCVD_TSTMP;
2357 tp->ts_recent = oi->ts_val;
2358 tp->ts_recent_age = TCP_TIMESTAMP(tp);
2359 }
2360 break;
2361 case TCPOPT_SACK_PERMITTED:
2362 if (optlen != TCPOLEN_SACK_PERMITTED)
2363 continue;
2364 if (!(th->th_flags & TH_SYN))
2365 continue;
2366 tp->t_flags &= ~TF_CANT_TXSACK;
2367 break;
2368
2369 case TCPOPT_SACK:
2370 if (tp->t_flags & TF_IGNR_RXSACK)
2371 continue;
2372 if (optlen % 8 != 2 || optlen < 10)
2373 continue;
2374 cp += 2;
2375 optlen -= 2;
2376 for (; optlen > 0; cp -= 8, optlen -= 8) {
2377 tcp_seq lwe, rwe;
2378 bcopy((char *)cp, (char *) &lwe, sizeof(lwe));
2379 NTOHL(lwe);
2380 bcopy((char *)cp, (char *) &rwe, sizeof(rwe));
2381 NTOHL(rwe);
2382 /* tcp_mark_sacked(tp, lwe, rwe); */
2383 }
2384 break;
2385 }
2386 }
2387 }
2388
2389 /*
2390 * Pull out of band byte out of a segment so
2391 * it doesn't appear in the user's data queue.
2392 * It is still reflected in the segment length for
2393 * sequencing purposes.
2394 */
2395 void
2396 tcp_pulloutofband(so, th, m, off)
2397 struct socket *so;
2398 struct tcphdr *th;
2399 struct mbuf *m;
2400 int off;
2401 {
2402 int cnt = off + th->th_urp - 1;
2403
2404 while (cnt >= 0) {
2405 if (m->m_len > cnt) {
2406 char *cp = mtod(m, caddr_t) + cnt;
2407 struct tcpcb *tp = sototcpcb(so);
2408
2409 tp->t_iobc = *cp;
2410 tp->t_oobflags |= TCPOOB_HAVEDATA;
2411 bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
2412 m->m_len--;
2413 return;
2414 }
2415 cnt -= m->m_len;
2416 m = m->m_next;
2417 if (m == 0)
2418 break;
2419 }
2420 panic("tcp_pulloutofband");
2421 }
2422
2423 /*
2424 * Collect new round-trip time estimate
2425 * and update averages and current timeout.
2426 */
2427 void
2428 tcp_xmit_timer(tp, rtt)
2429 struct tcpcb *tp;
2430 uint32_t rtt;
2431 {
2432 int32_t delta;
2433
2434 tcpstat.tcps_rttupdated++;
2435 if (tp->t_srtt != 0) {
2436 /*
2437 * srtt is stored as fixed point with 3 bits after the
2438 * binary point (i.e., scaled by 8). The following magic
2439 * is equivalent to the smoothing algorithm in rfc793 with
2440 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2441 * point). Adjust rtt to origin 0.
2442 */
2443 delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
2444 if ((tp->t_srtt += delta) <= 0)
2445 tp->t_srtt = 1 << 2;
2446 /*
2447 * We accumulate a smoothed rtt variance (actually, a
2448 * smoothed mean difference), then set the retransmit
2449 * timer to smoothed rtt + 4 times the smoothed variance.
2450 * rttvar is stored as fixed point with 2 bits after the
2451 * binary point (scaled by 4). The following is
2452 * equivalent to rfc793 smoothing with an alpha of .75
2453 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces
2454 * rfc793's wired-in beta.
2455 */
2456 if (delta < 0)
2457 delta = -delta;
2458 delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
2459 if ((tp->t_rttvar += delta) <= 0)
2460 tp->t_rttvar = 1 << 2;
2461 } else {
2462 /*
2463 * No rtt measurement yet - use the unsmoothed rtt.
2464 * Set the variance to half the rtt (so our first
2465 * retransmit happens at 3*rtt).
2466 */
2467 tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
2468 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
2469 }
2470 tp->t_rtttime = 0;
2471 tp->t_rxtshift = 0;
2472
2473 /*
2474 * the retransmit should happen at rtt + 4 * rttvar.
2475 * Because of the way we do the smoothing, srtt and rttvar
2476 * will each average +1/2 tick of bias. When we compute
2477 * the retransmit timer, we want 1/2 tick of rounding and
2478 * 1 extra tick because of +-1/2 tick uncertainty in the
2479 * firing of the timer. The bias will give us exactly the
2480 * 1.5 tick we need. But, because the bias is
2481 * statistical, we have to test that we don't drop below
2482 * the minimum feasible timer (which is 2 ticks).
2483 */
2484 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
2485 max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
2486
2487 /*
2488 * We received an ack for a packet that wasn't retransmitted;
2489 * it is probably safe to discard any error indications we've
2490 * received recently. This isn't quite right, but close enough
2491 * for now (a route might have failed after we sent a segment,
2492 * and the return path might not be symmetrical).
2493 */
2494 tp->t_softerror = 0;
2495 }
2496
2497 /*
2498 * Checks for partial ack. If partial ack arrives, force the retransmission
2499 * of the next unacknowledged segment, do not clear tp->t_dupacks, and return
2500 * 1. By setting snd_nxt to th_ack, this forces retransmission timer to
2501 * be started again. If the ack advances at least to tp->snd_recover, return 0.
2502 */
2503 int
2504 tcp_newreno(tp, th)
2505 struct tcpcb *tp;
2506 struct tcphdr *th;
2507 {
2508 tcp_seq onxt = tp->snd_nxt;
2509 u_long ocwnd = tp->snd_cwnd;
2510
2511 if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2512 /*
2513 * snd_una has not yet been updated and the socket's send
2514 * buffer has not yet drained off the ACK'd data, so we
2515 * have to leave snd_una as it was to get the correct data
2516 * offset in tcp_output().
2517 */
2518 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2519 tp->t_rtttime = 0;
2520 tp->snd_nxt = th->th_ack;
2521 /*
2522 * Set snd_cwnd to one segment beyond ACK'd offset. snd_una
2523 * is not yet updated when we're called.
2524 */
2525 tp->snd_cwnd = tp->t_segsz + (th->th_ack - tp->snd_una);
2526 (void) tcp_output(tp);
2527 tp->snd_cwnd = ocwnd;
2528 if (SEQ_GT(onxt, tp->snd_nxt))
2529 tp->snd_nxt = onxt;
2530 /*
2531 * Partial window deflation. Relies on fact that tp->snd_una
2532 * not updated yet.
2533 */
2534 tp->snd_cwnd -= (th->th_ack - tp->snd_una - tp->t_segsz);
2535 return 1;
2536 }
2537 return 0;
2538 }
2539
2540
2541 /*
2542 * TCP compressed state engine. Currently used to hold compressed
2543 * state for SYN_RECEIVED.
2544 */
2545
2546 u_long syn_cache_count;
2547 u_int32_t syn_hash1, syn_hash2;
2548
2549 #define SYN_HASH(sa, sp, dp) \
2550 ((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
2551 ((u_int32_t)(sp)))^syn_hash2)))
2552 #ifndef INET6
2553 #define SYN_HASHALL(hash, src, dst) \
2554 do { \
2555 hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
2556 ((struct sockaddr_in *)(src))->sin_port, \
2557 ((struct sockaddr_in *)(dst))->sin_port); \
2558 } while (0)
2559 #else
2560 #define SYN_HASH6(sa, sp, dp) \
2561 ((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
2562 (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
2563 & 0x7fffffff)
2564
2565 #define SYN_HASHALL(hash, src, dst) \
2566 do { \
2567 switch ((src)->sa_family) { \
2568 case AF_INET: \
2569 hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
2570 ((struct sockaddr_in *)(src))->sin_port, \
2571 ((struct sockaddr_in *)(dst))->sin_port); \
2572 break; \
2573 case AF_INET6: \
2574 hash = SYN_HASH6(&((struct sockaddr_in6 *)(src))->sin6_addr, \
2575 ((struct sockaddr_in6 *)(src))->sin6_port, \
2576 ((struct sockaddr_in6 *)(dst))->sin6_port); \
2577 break; \
2578 default: \
2579 hash = 0; \
2580 } \
2581 } while (0)
2582 #endif /* INET6 */
2583
2584 #define SYN_CACHE_RM(sc) \
2585 do { \
2586 LIST_REMOVE((sc), sc_bucketq); \
2587 (sc)->sc_tp = NULL; \
2588 LIST_REMOVE((sc), sc_tpq); \
2589 tcp_syn_cache[(sc)->sc_bucketidx].sch_length--; \
2590 TAILQ_REMOVE(&tcp_syn_cache_timeq[(sc)->sc_rxtshift], (sc), sc_timeq); \
2591 syn_cache_count--; \
2592 } while (0)
2593
2594 #define SYN_CACHE_PUT(sc) \
2595 do { \
2596 if ((sc)->sc_ipopts) \
2597 (void) m_free((sc)->sc_ipopts); \
2598 if ((sc)->sc_route4.ro_rt != NULL) \
2599 RTFREE((sc)->sc_route4.ro_rt); \
2600 pool_put(&syn_cache_pool, (sc)); \
2601 } while (0)
2602
2603 struct pool syn_cache_pool;
2604
2605 /*
2606 * We don't estimate RTT with SYNs, so each packet starts with the default
2607 * RTT and each timer queue has a fixed timeout value. This allows us to
2608 * optimize the timer queues somewhat.
2609 */
2610 #define SYN_CACHE_TIMER_ARM(sc) \
2611 do { \
2612 TCPT_RANGESET((sc)->sc_rxtcur, \
2613 TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN, \
2614 TCPTV_REXMTMAX); \
2615 PRT_SLOW_ARM((sc)->sc_rexmt, (sc)->sc_rxtcur); \
2616 } while (0)
2617
2618 TAILQ_HEAD(, syn_cache) tcp_syn_cache_timeq[TCP_MAXRXTSHIFT + 1];
2619
2620 #define SYN_CACHE_TIMESTAMP(sc) (tcp_now - (sc)->sc_timebase)
2621
2622 void
2623 syn_cache_init()
2624 {
2625 int i;
2626
2627 /* Initialize the hash buckets. */
2628 for (i = 0; i < tcp_syn_cache_size; i++)
2629 LIST_INIT(&tcp_syn_cache[i].sch_bucket);
2630
2631 /* Initialize the timer queues. */
2632 for (i = 0; i <= TCP_MAXRXTSHIFT; i++)
2633 TAILQ_INIT(&tcp_syn_cache_timeq[i]);
2634
2635 /* Initialize the syn cache pool. */
2636 pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
2637 "synpl", 0, NULL, NULL, M_PCB);
2638 }
2639
2640 void
2641 syn_cache_insert(sc, tp)
2642 struct syn_cache *sc;
2643 struct tcpcb *tp;
2644 {
2645 struct syn_cache_head *scp;
2646 struct syn_cache *sc2;
2647 int s, i;
2648
2649 /*
2650 * If there are no entries in the hash table, reinitialize
2651 * the hash secrets.
2652 */
2653 if (syn_cache_count == 0) {
2654 struct timeval tv;
2655 microtime(&tv);
2656 syn_hash1 = random() ^ (u_long)≻
2657 syn_hash2 = random() ^ tv.tv_usec;
2658 }
2659
2660 SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
2661 sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
2662 scp = &tcp_syn_cache[sc->sc_bucketidx];
2663
2664 /*
2665 * Make sure that we don't overflow the per-bucket
2666 * limit or the total cache size limit.
2667 */
2668 s = splsoftnet();
2669 if (scp->sch_length >= tcp_syn_bucket_limit) {
2670 tcpstat.tcps_sc_bucketoverflow++;
2671 /*
2672 * The bucket is full. Toss the oldest element in the
2673 * bucket. This will be the entry with our bucket
2674 * index closest to the front of the timer queue with
2675 * the largest timeout value.
2676 *
2677 * Note: This timer queue traversal may be expensive, so
2678 * we hope that this doesn't happen very often. It is
2679 * much more likely that we'll overflow the entire
2680 * cache, which is much easier to handle; see below.
2681 */
2682 for (i = TCP_MAXRXTSHIFT; i >= 0; i--) {
2683 for (sc2 = TAILQ_FIRST(&tcp_syn_cache_timeq[i]);
2684 sc2 != NULL;
2685 sc2 = TAILQ_NEXT(sc2, sc_timeq)) {
2686 if (sc2->sc_bucketidx == sc->sc_bucketidx) {
2687 SYN_CACHE_RM(sc2);
2688 SYN_CACHE_PUT(sc2);
2689 goto insert; /* 2 level break */
2690 }
2691 }
2692 }
2693 #ifdef DIAGNOSTIC
2694 /*
2695 * This should never happen; we should always find an
2696 * entry in our bucket.
2697 */
2698 panic("syn_cache_insert: bucketoverflow: impossible");
2699 #endif
2700 } else if (syn_cache_count >= tcp_syn_cache_limit) {
2701 tcpstat.tcps_sc_overflowed++;
2702 /*
2703 * The cache is full. Toss the oldest entry in the
2704 * entire cache. This is the front entry in the
2705 * first non-empty timer queue with the largest
2706 * timeout value.
2707 */
2708 for (i = TCP_MAXRXTSHIFT; i >= 0; i--) {
2709 sc2 = TAILQ_FIRST(&tcp_syn_cache_timeq[i]);
2710 if (sc2 == NULL)
2711 continue;
2712 SYN_CACHE_RM(sc2);
2713 SYN_CACHE_PUT(sc2);
2714 goto insert; /* symmetry with above */
2715 }
2716 #ifdef DIAGNOSTIC
2717 /*
2718 * This should never happen; we should always find an
2719 * entry in the cache.
2720 */
2721 panic("syn_cache_insert: cache overflow: impossible");
2722 #endif
2723 }
2724
2725 insert:
2726 /*
2727 * Initialize the entry's timer.
2728 */
2729 sc->sc_rxttot = 0;
2730 sc->sc_rxtshift = 0;
2731 SYN_CACHE_TIMER_ARM(sc);
2732 TAILQ_INSERT_TAIL(&tcp_syn_cache_timeq[sc->sc_rxtshift], sc, sc_timeq);
2733
2734 /* Link it from tcpcb entry */
2735 LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
2736
2737 /* Put it into the bucket. */
2738 LIST_INSERT_HEAD(&scp->sch_bucket, sc, sc_bucketq);
2739 scp->sch_length++;
2740 syn_cache_count++;
2741
2742 tcpstat.tcps_sc_added++;
2743 splx(s);
2744 }
2745
2746 /*
2747 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
2748 * If we have retransmitted an entry the maximum number of times, expire
2749 * that entry.
2750 */
2751 void
2752 syn_cache_timer()
2753 {
2754 struct syn_cache *sc, *nsc;
2755 int i, s;
2756
2757 s = splsoftnet();
2758
2759 /*
2760 * First, get all the entries that need to be retransmitted, or
2761 * must be expired due to exceeding the initial keepalive time.
2762 */
2763 for (i = 0; i < TCP_MAXRXTSHIFT; i++) {
2764 for (sc = TAILQ_FIRST(&tcp_syn_cache_timeq[i]);
2765 sc != NULL && PRT_SLOW_ISEXPIRED(sc->sc_rexmt);
2766 sc = nsc) {
2767 nsc = TAILQ_NEXT(sc, sc_timeq);
2768
2769 /*
2770 * Compute the total amount of time this entry has
2771 * been on a queue. If this entry has been on longer
2772 * than the keep alive timer would allow, expire it.
2773 */
2774 sc->sc_rxttot += sc->sc_rxtcur;
2775 if (sc->sc_rxttot >= TCPTV_KEEP_INIT) {
2776 tcpstat.tcps_sc_timed_out++;
2777 SYN_CACHE_RM(sc);
2778 SYN_CACHE_PUT(sc);
2779 continue;
2780 }
2781
2782 tcpstat.tcps_sc_retransmitted++;
2783 (void) syn_cache_respond(sc, NULL);
2784
2785 /* Advance this entry onto the next timer queue. */
2786 TAILQ_REMOVE(&tcp_syn_cache_timeq[i], sc, sc_timeq);
2787 sc->sc_rxtshift = i + 1;
2788 SYN_CACHE_TIMER_ARM(sc);
2789 TAILQ_INSERT_TAIL(&tcp_syn_cache_timeq[sc->sc_rxtshift],
2790 sc, sc_timeq);
2791 }
2792 }
2793
2794 /*
2795 * Now get all the entries that are expired due to too many
2796 * retransmissions.
2797 */
2798 for (sc = TAILQ_FIRST(&tcp_syn_cache_timeq[TCP_MAXRXTSHIFT]);
2799 sc != NULL && PRT_SLOW_ISEXPIRED(sc->sc_rexmt);
2800 sc = nsc) {
2801 nsc = TAILQ_NEXT(sc, sc_timeq);
2802 tcpstat.tcps_sc_timed_out++;
2803 SYN_CACHE_RM(sc);
2804 SYN_CACHE_PUT(sc);
2805 }
2806 splx(s);
2807 }
2808
2809 /*
2810 * Remove syn cache created by the specified tcb entry,
2811 * because this does not make sense to keep them
2812 * (if there's no tcb entry, syn cache entry will never be used)
2813 */
2814 void
2815 syn_cache_cleanup(tp)
2816 struct tcpcb *tp;
2817 {
2818 struct syn_cache *sc, *nsc;
2819 int s;
2820
2821 s = splsoftnet();
2822
2823 for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
2824 nsc = LIST_NEXT(sc, sc_tpq);
2825
2826 #ifdef DIAGNOSTIC
2827 if (sc->sc_tp != tp)
2828 panic("invalid sc_tp in syn_cache_cleanup");
2829 #endif
2830 SYN_CACHE_RM(sc);
2831 SYN_CACHE_PUT(sc);
2832 }
2833 /* just for safety */
2834 LIST_INIT(&tp->t_sc);
2835
2836 splx(s);
2837 }
2838
2839 /*
2840 * Find an entry in the syn cache.
2841 */
2842 struct syn_cache *
2843 syn_cache_lookup(src, dst, headp)
2844 struct sockaddr *src;
2845 struct sockaddr *dst;
2846 struct syn_cache_head **headp;
2847 {
2848 struct syn_cache *sc;
2849 struct syn_cache_head *scp;
2850 u_int32_t hash;
2851 int s;
2852
2853 SYN_HASHALL(hash, src, dst);
2854
2855 scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
2856 *headp = scp;
2857 s = splsoftnet();
2858 for (sc = LIST_FIRST(&scp->sch_bucket); sc != NULL;
2859 sc = LIST_NEXT(sc, sc_bucketq)) {
2860 if (sc->sc_hash != hash)
2861 continue;
2862 if (!bcmp(&sc->sc_src, src, src->sa_len) &&
2863 !bcmp(&sc->sc_dst, dst, dst->sa_len)) {
2864 splx(s);
2865 return (sc);
2866 }
2867 }
2868 splx(s);
2869 return (NULL);
2870 }
2871
2872 /*
2873 * This function gets called when we receive an ACK for a
2874 * socket in the LISTEN state. We look up the connection
2875 * in the syn cache, and if its there, we pull it out of
2876 * the cache and turn it into a full-blown connection in
2877 * the SYN-RECEIVED state.
2878 *
2879 * The return values may not be immediately obvious, and their effects
2880 * can be subtle, so here they are:
2881 *
2882 * NULL SYN was not found in cache; caller should drop the
2883 * packet and send an RST.
2884 *
2885 * -1 We were unable to create the new connection, and are
2886 * aborting it. An ACK,RST is being sent to the peer
2887 * (unless we got screwey sequence numbners; see below),
2888 * because the 3-way handshake has been completed. Caller
2889 * should not free the mbuf, since we may be using it. If
2890 * we are not, we will free it.
2891 *
2892 * Otherwise, the return value is a pointer to the new socket
2893 * associated with the connection.
2894 */
2895 struct socket *
2896 syn_cache_get(src, dst, th, hlen, tlen, so, m)
2897 struct sockaddr *src;
2898 struct sockaddr *dst;
2899 struct tcphdr *th;
2900 unsigned int hlen, tlen;
2901 struct socket *so;
2902 struct mbuf *m;
2903 {
2904 struct syn_cache *sc;
2905 struct syn_cache_head *scp;
2906 struct inpcb *inp = NULL;
2907 #ifdef INET6
2908 struct in6pcb *in6p = NULL;
2909 #endif
2910 struct tcpcb *tp = 0;
2911 struct mbuf *am;
2912 int s;
2913 struct socket *oso;
2914
2915 s = splsoftnet();
2916 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
2917 splx(s);
2918 return (NULL);
2919 }
2920
2921 /*
2922 * Verify the sequence and ack numbers. Try getting the correct
2923 * response again.
2924 */
2925 if ((th->th_ack != sc->sc_iss + 1) ||
2926 SEQ_LEQ(th->th_seq, sc->sc_irs) ||
2927 SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
2928 (void) syn_cache_respond(sc, m);
2929 splx(s);
2930 return ((struct socket *)(-1));
2931 }
2932
2933 /* Remove this cache entry */
2934 SYN_CACHE_RM(sc);
2935 splx(s);
2936
2937 /*
2938 * Ok, create the full blown connection, and set things up
2939 * as they would have been set up if we had created the
2940 * connection when the SYN arrived. If we can't create
2941 * the connection, abort it.
2942 */
2943 /*
2944 * inp still has the OLD in_pcb stuff, set the
2945 * v6-related flags on the new guy, too. This is
2946 * done particularly for the case where an AF_INET6
2947 * socket is bound only to a port, and a v4 connection
2948 * comes in on that port.
2949 * we also copy the flowinfo from the original pcb
2950 * to the new one.
2951 */
2952 {
2953 struct inpcb *parentinpcb;
2954
2955 parentinpcb = (struct inpcb *)so->so_pcb;
2956
2957 oso = so;
2958 so = sonewconn(so, SS_ISCONNECTED);
2959 if (so == NULL)
2960 goto resetandabort;
2961
2962 switch (so->so_proto->pr_domain->dom_family) {
2963 #ifdef INET
2964 case AF_INET:
2965 inp = sotoinpcb(so);
2966 break;
2967 #endif
2968 #ifdef INET6
2969 case AF_INET6:
2970 in6p = sotoin6pcb(so);
2971 break;
2972 #endif
2973 }
2974 }
2975 switch (src->sa_family) {
2976 #ifdef INET
2977 case AF_INET:
2978 if (inp) {
2979 inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
2980 inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
2981 inp->inp_options = ip_srcroute();
2982 in_pcbstate(inp, INP_BOUND);
2983 if (inp->inp_options == NULL) {
2984 inp->inp_options = sc->sc_ipopts;
2985 sc->sc_ipopts = NULL;
2986 }
2987 }
2988 #ifdef INET6
2989 else if (in6p) {
2990 /* IPv4 packet to AF_INET6 socket */
2991 bzero(&in6p->in6p_laddr, sizeof(in6p->in6p_laddr));
2992 in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
2993 bcopy(&((struct sockaddr_in *)dst)->sin_addr,
2994 &in6p->in6p_laddr.s6_addr32[3],
2995 sizeof(((struct sockaddr_in *)dst)->sin_addr));
2996 in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
2997 in6totcpcb(in6p)->t_family = AF_INET;
2998 }
2999 #endif
3000 break;
3001 #endif
3002 #ifdef INET6
3003 case AF_INET6:
3004 if (in6p) {
3005 in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
3006 in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
3007 #if 0
3008 in6p->in6p_flowinfo = ip6->ip6_flow & IPV6_FLOWINFO_MASK;
3009 /*inp->inp_options = ip6_srcroute();*/ /* soon. */
3010 #endif
3011 }
3012 break;
3013 #endif
3014 }
3015 #ifdef INET6
3016 if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
3017 struct in6pcb *oin6p = sotoin6pcb(oso);
3018 /* inherit socket options from the listening socket */
3019 in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
3020 if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
3021 m_freem(in6p->in6p_options);
3022 in6p->in6p_options = 0;
3023 }
3024 ip6_savecontrol(in6p, &in6p->in6p_options,
3025 mtod(m, struct ip6_hdr *), m);
3026 }
3027 #endif
3028
3029 #ifdef IPSEC
3030 /*
3031 * we make a copy of policy, instead of sharing the policy,
3032 * for better behavior in terms of SA lookup and dead SA removal.
3033 */
3034 if (inp) {
3035 /* copy old policy into new socket's */
3036 if (ipsec_copy_policy(sotoinpcb(oso)->inp_sp, inp->inp_sp))
3037 printf("tcp_input: could not copy policy\n");
3038 }
3039 #ifdef INET6
3040 else if (in6p) {
3041 /* copy old policy into new socket's */
3042 if (ipsec_copy_policy(sotoin6pcb(oso)->in6p_sp, in6p->in6p_sp))
3043 printf("tcp_input: could not copy policy\n");
3044 }
3045 #endif
3046 #endif
3047
3048 /*
3049 * Give the new socket our cached route reference.
3050 */
3051 if (inp)
3052 inp->inp_route = sc->sc_route4; /* struct assignment */
3053 #ifdef INET6
3054 else
3055 in6p->in6p_route = sc->sc_route6;
3056 #endif
3057 sc->sc_route4.ro_rt = NULL;
3058
3059 am = m_get(M_DONTWAIT, MT_SONAME); /* XXX */
3060 if (am == NULL)
3061 goto resetandabort;
3062 am->m_len = src->sa_len;
3063 bcopy(src, mtod(am, caddr_t), src->sa_len);
3064 if (inp) {
3065 if (in_pcbconnect(inp, am)) {
3066 (void) m_free(am);
3067 goto resetandabort;
3068 }
3069 }
3070 #ifdef INET6
3071 else if (in6p) {
3072 if (src->sa_family == AF_INET) {
3073 /* IPv4 packet to AF_INET6 socket */
3074 struct sockaddr_in6 *sin6;
3075 sin6 = mtod(am, struct sockaddr_in6 *);
3076 am->m_len = sizeof(*sin6);
3077 bzero(sin6, sizeof(*sin6));
3078 sin6->sin6_family = AF_INET6;
3079 sin6->sin6_len = sizeof(*sin6);
3080 sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port;
3081 sin6->sin6_addr.s6_addr16[5] = htons(0xffff);
3082 bcopy(&((struct sockaddr_in *)src)->sin_addr,
3083 &sin6->sin6_addr.s6_addr32[3],
3084 sizeof(sin6->sin6_addr.s6_addr32[3]));
3085 }
3086 if (in6_pcbconnect(in6p, am)) {
3087 (void) m_free(am);
3088 goto resetandabort;
3089 }
3090 }
3091 #endif
3092 else {
3093 (void) m_free(am);
3094 goto resetandabort;
3095 }
3096 (void) m_free(am);
3097
3098 if (inp)
3099 tp = intotcpcb(inp);
3100 #ifdef INET6
3101 else if (in6p)
3102 tp = in6totcpcb(in6p);
3103 #endif
3104 else
3105 tp = NULL;
3106 if (sc->sc_request_r_scale != 15) {
3107 tp->requested_s_scale = sc->sc_requested_s_scale;
3108 tp->request_r_scale = sc->sc_request_r_scale;
3109 tp->snd_scale = sc->sc_requested_s_scale;
3110 tp->rcv_scale = sc->sc_request_r_scale;
3111 tp->t_flags |= TF_RCVD_SCALE;
3112 }
3113 if (sc->sc_flags & SCF_TIMESTAMP)
3114 tp->t_flags |= TF_RCVD_TSTMP;
3115 tp->ts_timebase = sc->sc_timebase;
3116
3117 tp->t_template = tcp_template(tp);
3118 if (tp->t_template == 0) {
3119 tp = tcp_drop(tp, ENOBUFS); /* destroys socket */
3120 so = NULL;
3121 m_freem(m);
3122 goto abort;
3123 }
3124
3125 tp->iss = sc->sc_iss;
3126 tp->irs = sc->sc_irs;
3127 tcp_sendseqinit(tp);
3128 tcp_rcvseqinit(tp);
3129 tp->t_state = TCPS_SYN_RECEIVED;
3130 TCP_TIMER_ARM(tp, TCPT_KEEP, TCPTV_KEEP_INIT);
3131 tcpstat.tcps_accepts++;
3132
3133 /* Initialize tp->t_ourmss before we deal with the peer's! */
3134 tp->t_ourmss = sc->sc_ourmaxseg;
3135 tcp_mss_from_peer(tp, sc->sc_peermaxseg);
3136
3137 /*
3138 * Initialize the initial congestion window. If we
3139 * had to retransmit the SYN,ACK, we must initialize cwnd
3140 * to 1 segment (i.e. the Loss Window).
3141 */
3142 if (sc->sc_rxtshift)
3143 tp->snd_cwnd = tp->t_peermss;
3144 else
3145 tp->snd_cwnd = TCP_INITIAL_WINDOW(tcp_init_win, tp->t_peermss);
3146
3147 tcp_rmx_rtt(tp);
3148 tp->snd_wl1 = sc->sc_irs;
3149 tp->rcv_up = sc->sc_irs + 1;
3150
3151 /*
3152 * This is what whould have happened in tcp_ouput() when
3153 * the SYN,ACK was sent.
3154 */
3155 tp->snd_up = tp->snd_una;
3156 tp->snd_max = tp->snd_nxt = tp->iss+1;
3157 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
3158 if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
3159 tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
3160 tp->last_ack_sent = tp->rcv_nxt;
3161
3162 tcpstat.tcps_sc_completed++;
3163 SYN_CACHE_PUT(sc);
3164 return (so);
3165
3166 resetandabort:
3167 (void) tcp_respond(NULL, m, m, th,
3168 th->th_seq + tlen, (tcp_seq)0, TH_RST|TH_ACK);
3169 abort:
3170 if (so != NULL)
3171 (void) soabort(so);
3172 SYN_CACHE_PUT(sc);
3173 tcpstat.tcps_sc_aborted++;
3174 return ((struct socket *)(-1));
3175 }
3176
3177 /*
3178 * This function is called when we get a RST for a
3179 * non-existent connection, so that we can see if the
3180 * connection is in the syn cache. If it is, zap it.
3181 */
3182
3183 void
3184 syn_cache_reset(src, dst, th)
3185 struct sockaddr *src;
3186 struct sockaddr *dst;
3187 struct tcphdr *th;
3188 {
3189 struct syn_cache *sc;
3190 struct syn_cache_head *scp;
3191 int s = splsoftnet();
3192
3193 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3194 splx(s);
3195 return;
3196 }
3197 if (SEQ_LT(th->th_seq, sc->sc_irs) ||
3198 SEQ_GT(th->th_seq, sc->sc_irs+1)) {
3199 splx(s);
3200 return;
3201 }
3202 SYN_CACHE_RM(sc);
3203 splx(s);
3204 tcpstat.tcps_sc_reset++;
3205 SYN_CACHE_PUT(sc);
3206 }
3207
3208 void
3209 syn_cache_unreach(src, dst, th)
3210 struct sockaddr *src;
3211 struct sockaddr *dst;
3212 struct tcphdr *th;
3213 {
3214 struct syn_cache *sc;
3215 struct syn_cache_head *scp;
3216 int s;
3217
3218 s = splsoftnet();
3219 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3220 splx(s);
3221 return;
3222 }
3223 /* If the sequence number != sc_iss, then it's a bogus ICMP msg */
3224 if (ntohl (th->th_seq) != sc->sc_iss) {
3225 splx(s);
3226 return;
3227 }
3228
3229 /*
3230 * If we've rertransmitted 3 times and this is our second error,
3231 * we remove the entry. Otherwise, we allow it to continue on.
3232 * This prevents us from incorrectly nuking an entry during a
3233 * spurious network outage.
3234 *
3235 * See tcp_notify().
3236 */
3237 if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
3238 sc->sc_flags |= SCF_UNREACH;
3239 splx(s);
3240 return;
3241 }
3242
3243 SYN_CACHE_RM(sc);
3244 splx(s);
3245 tcpstat.tcps_sc_unreach++;
3246 SYN_CACHE_PUT(sc);
3247 }
3248
3249 /*
3250 * Given a LISTEN socket and an inbound SYN request, add
3251 * this to the syn cache, and send back a segment:
3252 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
3253 * to the source.
3254 *
3255 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
3256 * Doing so would require that we hold onto the data and deliver it
3257 * to the application. However, if we are the target of a SYN-flood
3258 * DoS attack, an attacker could send data which would eventually
3259 * consume all available buffer space if it were ACKed. By not ACKing
3260 * the data, we avoid this DoS scenario.
3261 */
3262
3263 int
3264 syn_cache_add(src, dst, th, hlen, so, m, optp, optlen, oi)
3265 struct sockaddr *src;
3266 struct sockaddr *dst;
3267 struct tcphdr *th;
3268 unsigned int hlen;
3269 struct socket *so;
3270 struct mbuf *m;
3271 u_char *optp;
3272 int optlen;
3273 struct tcp_opt_info *oi;
3274 {
3275 struct tcpcb tb, *tp;
3276 long win;
3277 struct syn_cache *sc;
3278 struct syn_cache_head *scp;
3279 struct mbuf *ipopts;
3280
3281 tp = sototcpcb(so);
3282
3283 /*
3284 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
3285 *
3286 * Note this check is performed in tcp_input() very early on.
3287 */
3288
3289 /*
3290 * Initialize some local state.
3291 */
3292 win = sbspace(&so->so_rcv);
3293 if (win > TCP_MAXWIN)
3294 win = TCP_MAXWIN;
3295
3296 switch (src->sa_family) {
3297 #ifdef INET
3298 case AF_INET:
3299 /*
3300 * Remember the IP options, if any.
3301 */
3302 ipopts = ip_srcroute();
3303 break;
3304 #endif
3305 default:
3306 ipopts = NULL;
3307 }
3308
3309 if (optp) {
3310 tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
3311 tcp_dooptions(&tb, optp, optlen, th, oi);
3312 } else
3313 tb.t_flags = 0;
3314
3315 /*
3316 * See if we already have an entry for this connection.
3317 * If we do, resend the SYN,ACK. We do not count this
3318 * as a retransmission (XXX though maybe we should).
3319 */
3320 if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
3321 tcpstat.tcps_sc_dupesyn++;
3322 if (ipopts) {
3323 /*
3324 * If we were remembering a previous source route,
3325 * forget it and use the new one we've been given.
3326 */
3327 if (sc->sc_ipopts)
3328 (void) m_free(sc->sc_ipopts);
3329 sc->sc_ipopts = ipopts;
3330 }
3331 sc->sc_timestamp = tb.ts_recent;
3332 if (syn_cache_respond(sc, m) == 0) {
3333 tcpstat.tcps_sndacks++;
3334 tcpstat.tcps_sndtotal++;
3335 }
3336 return (1);
3337 }
3338
3339 sc = pool_get(&syn_cache_pool, PR_NOWAIT);
3340 if (sc == NULL) {
3341 if (ipopts)
3342 (void) m_free(ipopts);
3343 return (0);
3344 }
3345
3346 /*
3347 * Fill in the cache, and put the necessary IP and TCP
3348 * options into the reply.
3349 */
3350 bzero(sc, sizeof(struct syn_cache));
3351 bcopy(src, &sc->sc_src, src->sa_len);
3352 bcopy(dst, &sc->sc_dst, dst->sa_len);
3353 sc->sc_flags = 0;
3354 sc->sc_ipopts = ipopts;
3355 sc->sc_irs = th->th_seq;
3356 switch (src->sa_family) {
3357 #ifdef INET
3358 case AF_INET:
3359 {
3360 struct sockaddr_in *srcin = (void *) src;
3361 struct sockaddr_in *dstin = (void *) dst;
3362
3363 sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
3364 &srcin->sin_addr, dstin->sin_port,
3365 srcin->sin_port, sizeof(dstin->sin_addr), 0);
3366 break;
3367 }
3368 #endif /* INET */
3369 #ifdef INET6
3370 case AF_INET6:
3371 {
3372 struct sockaddr_in6 *srcin6 = (void *) src;
3373 struct sockaddr_in6 *dstin6 = (void *) dst;
3374
3375 sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
3376 &srcin6->sin6_addr, dstin6->sin6_port,
3377 srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
3378 break;
3379 }
3380 #endif /* INET6 */
3381 }
3382 sc->sc_peermaxseg = oi->maxseg;
3383 sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
3384 m->m_pkthdr.rcvif : NULL,
3385 sc->sc_src.sa.sa_family);
3386 sc->sc_win = win;
3387 sc->sc_timebase = tcp_now; /* see tcp_newtcpcb() */
3388 sc->sc_timestamp = tb.ts_recent;
3389 if (tcp_do_rfc1323 && (tb.t_flags & TF_RCVD_TSTMP))
3390 sc->sc_flags |= SCF_TIMESTAMP;
3391 if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
3392 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
3393 sc->sc_requested_s_scale = tb.requested_s_scale;
3394 sc->sc_request_r_scale = 0;
3395 while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
3396 TCP_MAXWIN << sc->sc_request_r_scale <
3397 so->so_rcv.sb_hiwat)
3398 sc->sc_request_r_scale++;
3399 } else {
3400 sc->sc_requested_s_scale = 15;
3401 sc->sc_request_r_scale = 15;
3402 }
3403 sc->sc_tp = tp;
3404 if (syn_cache_respond(sc, m) == 0) {
3405 syn_cache_insert(sc, tp);
3406 tcpstat.tcps_sndacks++;
3407 tcpstat.tcps_sndtotal++;
3408 } else {
3409 SYN_CACHE_PUT(sc);
3410 tcpstat.tcps_sc_dropped++;
3411 }
3412 return (1);
3413 }
3414
3415 int
3416 syn_cache_respond(sc, m)
3417 struct syn_cache *sc;
3418 struct mbuf *m;
3419 {
3420 struct route *ro;
3421 u_int8_t *optp;
3422 int optlen, error;
3423 u_int16_t tlen;
3424 struct ip *ip = NULL;
3425 #ifdef INET6
3426 struct ip6_hdr *ip6 = NULL;
3427 #endif
3428 struct tcphdr *th;
3429 u_int hlen;
3430
3431 switch (sc->sc_src.sa.sa_family) {
3432 case AF_INET:
3433 hlen = sizeof(struct ip);
3434 ro = &sc->sc_route4;
3435 break;
3436 #ifdef INET6
3437 case AF_INET6:
3438 hlen = sizeof(struct ip6_hdr);
3439 ro = (struct route *)&sc->sc_route6;
3440 break;
3441 #endif
3442 default:
3443 if (m)
3444 m_freem(m);
3445 return EAFNOSUPPORT;
3446 }
3447
3448 /* Compute the size of the TCP options. */
3449 optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
3450 ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
3451
3452 tlen = hlen + sizeof(struct tcphdr) + optlen;
3453
3454 /*
3455 * Create the IP+TCP header from scratch.
3456 */
3457 if (m)
3458 m_freem(m);
3459 #ifdef DIAGNOSTIC
3460 if (max_linkhdr + tlen > MCLBYTES)
3461 return (ENOBUFS);
3462 #endif
3463 MGETHDR(m, M_DONTWAIT, MT_DATA);
3464 if (m && tlen > MHLEN) {
3465 MCLGET(m, M_DONTWAIT);
3466 if ((m->m_flags & M_EXT) == 0) {
3467 m_freem(m);
3468 m = NULL;
3469 }
3470 }
3471 if (m == NULL)
3472 return (ENOBUFS);
3473
3474 /* Fixup the mbuf. */
3475 m->m_data += max_linkhdr;
3476 m->m_len = m->m_pkthdr.len = tlen;
3477 #ifdef IPSEC
3478 if (sc->sc_tp) {
3479 struct tcpcb *tp;
3480 struct socket *so;
3481
3482 tp = sc->sc_tp;
3483 if (tp->t_inpcb)
3484 so = tp->t_inpcb->inp_socket;
3485 #ifdef INET6
3486 else if (tp->t_in6pcb)
3487 so = tp->t_in6pcb->in6p_socket;
3488 #endif
3489 else
3490 so = NULL;
3491 /* use IPsec policy on listening socket, on SYN ACK */
3492 if (ipsec_setsocket(m, so) != 0) {
3493 m_freem(m);
3494 return ENOBUFS;
3495 }
3496 }
3497 #endif
3498 m->m_pkthdr.rcvif = NULL;
3499 memset(mtod(m, u_char *), 0, tlen);
3500
3501 switch (sc->sc_src.sa.sa_family) {
3502 case AF_INET:
3503 ip = mtod(m, struct ip *);
3504 ip->ip_dst = sc->sc_src.sin.sin_addr;
3505 ip->ip_src = sc->sc_dst.sin.sin_addr;
3506 ip->ip_p = IPPROTO_TCP;
3507 th = (struct tcphdr *)(ip + 1);
3508 th->th_dport = sc->sc_src.sin.sin_port;
3509 th->th_sport = sc->sc_dst.sin.sin_port;
3510 break;
3511 #ifdef INET6
3512 case AF_INET6:
3513 ip6 = mtod(m, struct ip6_hdr *);
3514 ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
3515 ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
3516 ip6->ip6_nxt = IPPROTO_TCP;
3517 /* ip6_plen will be updated in ip6_output() */
3518 th = (struct tcphdr *)(ip6 + 1);
3519 th->th_dport = sc->sc_src.sin6.sin6_port;
3520 th->th_sport = sc->sc_dst.sin6.sin6_port;
3521 break;
3522 #endif
3523 default:
3524 th = NULL;
3525 }
3526
3527 th->th_seq = htonl(sc->sc_iss);
3528 th->th_ack = htonl(sc->sc_irs + 1);
3529 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
3530 th->th_flags = TH_SYN|TH_ACK;
3531 th->th_win = htons(sc->sc_win);
3532 /* th_sum already 0 */
3533 /* th_urp already 0 */
3534
3535 /* Tack on the TCP options. */
3536 optp = (u_int8_t *)(th + 1);
3537 *optp++ = TCPOPT_MAXSEG;
3538 *optp++ = 4;
3539 *optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
3540 *optp++ = sc->sc_ourmaxseg & 0xff;
3541
3542 if (sc->sc_request_r_scale != 15) {
3543 *((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
3544 TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
3545 sc->sc_request_r_scale);
3546 optp += 4;
3547 }
3548
3549 if (sc->sc_flags & SCF_TIMESTAMP) {
3550 u_int32_t *lp = (u_int32_t *)(optp);
3551 /* Form timestamp option as shown in appendix A of RFC 1323. */
3552 *lp++ = htonl(TCPOPT_TSTAMP_HDR);
3553 *lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
3554 *lp = htonl(sc->sc_timestamp);
3555 optp += TCPOLEN_TSTAMP_APPA;
3556 }
3557
3558 /* Compute the packet's checksum. */
3559 switch (sc->sc_src.sa.sa_family) {
3560 case AF_INET:
3561 ip->ip_len = htons(tlen - hlen);
3562 th->th_sum = 0;
3563 th->th_sum = in_cksum(m, tlen);
3564 break;
3565 #ifdef INET6
3566 case AF_INET6:
3567 ip6->ip6_plen = htons(tlen - hlen);
3568 th->th_sum = 0;
3569 th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
3570 break;
3571 #endif
3572 }
3573
3574 /*
3575 * Fill in some straggling IP bits. Note the stack expects
3576 * ip_len to be in host order, for convenience.
3577 */
3578 switch (sc->sc_src.sa.sa_family) {
3579 #ifdef INET
3580 case AF_INET:
3581 ip->ip_len = tlen;
3582 ip->ip_ttl = ip_defttl;
3583 /* XXX tos? */
3584 break;
3585 #endif
3586 #ifdef INET6
3587 case AF_INET6:
3588 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
3589 ip6->ip6_vfc |= IPV6_VERSION;
3590 ip6->ip6_plen = htons(tlen - hlen);
3591 /* ip6_hlim will be initialized afterwards */
3592 /* XXX flowlabel? */
3593 break;
3594 #endif
3595 }
3596
3597 switch (sc->sc_src.sa.sa_family) {
3598 #ifdef INET
3599 case AF_INET:
3600 error = ip_output(m, sc->sc_ipopts, ro,
3601 (ip_mtudisc ? IP_MTUDISC : 0),
3602 NULL);
3603 break;
3604 #endif
3605 #ifdef INET6
3606 case AF_INET6:
3607 ip6->ip6_hlim = in6_selecthlim(NULL,
3608 ro->ro_rt ? ro->ro_rt->rt_ifp : NULL);
3609
3610 error = ip6_output(m, NULL /*XXX*/, (struct route_in6 *)ro,
3611 0, NULL, NULL);
3612 break;
3613 #endif
3614 default:
3615 error = EAFNOSUPPORT;
3616 break;
3617 }
3618 return (error);
3619 }
3620