tcp_input.c revision 1.133 1 /* $NetBSD: tcp_input.c,v 1.133 2001/11/13 00:32:40 lukem Exp $ */
2
3 /*
4 %%% portions-copyright-nrl-95
5 Portions of this software are Copyright 1995-1998 by Randall Atkinson,
6 Ronald Lee, Daniel McDonald, Bao Phan, and Chris Winters. All Rights
7 Reserved. All rights under this copyright have been assigned to the US
8 Naval Research Laboratory (NRL). The NRL Copyright Notice and License
9 Agreement Version 1.1 (January 17, 1995) applies to these portions of the
10 software.
11 You should have received a copy of the license with this software. If you
12 didn't get a copy, you may request one from <license (at) ipv6.nrl.navy.mil>.
13
14 */
15
16 /*
17 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
18 * All rights reserved.
19 *
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
23 * 1. Redistributions of source code must retain the above copyright
24 * notice, this list of conditions and the following disclaimer.
25 * 2. Redistributions in binary form must reproduce the above copyright
26 * notice, this list of conditions and the following disclaimer in the
27 * documentation and/or other materials provided with the distribution.
28 * 3. Neither the name of the project nor the names of its contributors
29 * may be used to endorse or promote products derived from this software
30 * without specific prior written permission.
31 *
32 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
33 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
36 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42 * SUCH DAMAGE.
43 */
44
45 /*-
46 * Copyright (c) 1997, 1998, 1999, 2001 The NetBSD Foundation, Inc.
47 * All rights reserved.
48 *
49 * This code is derived from software contributed to The NetBSD Foundation
50 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
51 * Facility, NASA Ames Research Center.
52 *
53 * Redistribution and use in source and binary forms, with or without
54 * modification, are permitted provided that the following conditions
55 * are met:
56 * 1. Redistributions of source code must retain the above copyright
57 * notice, this list of conditions and the following disclaimer.
58 * 2. Redistributions in binary form must reproduce the above copyright
59 * notice, this list of conditions and the following disclaimer in the
60 * documentation and/or other materials provided with the distribution.
61 * 3. All advertising materials mentioning features or use of this software
62 * must display the following acknowledgement:
63 * This product includes software developed by the NetBSD
64 * Foundation, Inc. and its contributors.
65 * 4. Neither the name of The NetBSD Foundation nor the names of its
66 * contributors may be used to endorse or promote products derived
67 * from this software without specific prior written permission.
68 *
69 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
70 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
71 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
72 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
73 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
74 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
75 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
76 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
77 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
78 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
79 * POSSIBILITY OF SUCH DAMAGE.
80 */
81
82 /*
83 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
84 * The Regents of the University of California. All rights reserved.
85 *
86 * Redistribution and use in source and binary forms, with or without
87 * modification, are permitted provided that the following conditions
88 * are met:
89 * 1. Redistributions of source code must retain the above copyright
90 * notice, this list of conditions and the following disclaimer.
91 * 2. Redistributions in binary form must reproduce the above copyright
92 * notice, this list of conditions and the following disclaimer in the
93 * documentation and/or other materials provided with the distribution.
94 * 3. All advertising materials mentioning features or use of this software
95 * must display the following acknowledgement:
96 * This product includes software developed by the University of
97 * California, Berkeley and its contributors.
98 * 4. Neither the name of the University nor the names of its contributors
99 * may be used to endorse or promote products derived from this software
100 * without specific prior written permission.
101 *
102 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
103 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
104 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
105 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
106 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
107 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
108 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
109 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
110 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
111 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
112 * SUCH DAMAGE.
113 *
114 * @(#)tcp_input.c 8.12 (Berkeley) 5/24/95
115 */
116
117 /*
118 * TODO list for SYN cache stuff:
119 *
120 * Find room for a "state" field, which is needed to keep a
121 * compressed state for TIME_WAIT TCBs. It's been noted already
122 * that this is fairly important for very high-volume web and
123 * mail servers, which use a large number of short-lived
124 * connections.
125 */
126
127 #include <sys/cdefs.h>
128 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.133 2001/11/13 00:32:40 lukem Exp $");
129
130 #include "opt_inet.h"
131 #include "opt_ipsec.h"
132 #include "opt_inet_csum.h"
133 #include "opt_tcp_debug.h"
134
135 #include <sys/param.h>
136 #include <sys/systm.h>
137 #include <sys/malloc.h>
138 #include <sys/mbuf.h>
139 #include <sys/protosw.h>
140 #include <sys/socket.h>
141 #include <sys/socketvar.h>
142 #include <sys/errno.h>
143 #include <sys/syslog.h>
144 #include <sys/pool.h>
145 #include <sys/domain.h>
146 #include <sys/kernel.h>
147
148 #include <net/if.h>
149 #include <net/route.h>
150 #include <net/if_types.h>
151
152 #include <netinet/in.h>
153 #include <netinet/in_systm.h>
154 #include <netinet/ip.h>
155 #include <netinet/in_pcb.h>
156 #include <netinet/ip_var.h>
157
158 #ifdef INET6
159 #ifndef INET
160 #include <netinet/in.h>
161 #endif
162 #include <netinet/ip6.h>
163 #include <netinet6/ip6_var.h>
164 #include <netinet6/in6_pcb.h>
165 #include <netinet6/ip6_var.h>
166 #include <netinet6/in6_var.h>
167 #include <netinet/icmp6.h>
168 #include <netinet6/nd6.h>
169 #endif
170
171 #ifdef PULLDOWN_TEST
172 #ifndef INET6
173 /* always need ip6.h for IP6_EXTHDR_GET */
174 #include <netinet/ip6.h>
175 #endif
176 #endif
177
178 #include <netinet/tcp.h>
179 #include <netinet/tcp_fsm.h>
180 #include <netinet/tcp_seq.h>
181 #include <netinet/tcp_timer.h>
182 #include <netinet/tcp_var.h>
183 #include <netinet/tcpip.h>
184 #include <netinet/tcp_debug.h>
185
186 #include <machine/stdarg.h>
187
188 #ifdef IPSEC
189 #include <netinet6/ipsec.h>
190 #include <netkey/key.h>
191 #endif /*IPSEC*/
192 #ifdef INET6
193 #include "faith.h"
194 #if defined(NFAITH) && NFAITH > 0
195 #include <net/if_faith.h>
196 #endif
197 #endif
198
199 int tcprexmtthresh = 3;
200 int tcp_log_refused;
201
202 static int tcp_rst_ppslim_count = 0;
203 static struct timeval tcp_rst_ppslim_last;
204
205 #define TCP_PAWS_IDLE (24 * 24 * 60 * 60 * PR_SLOWHZ)
206
207 /* for modulo comparisons of timestamps */
208 #define TSTMP_LT(a,b) ((int)((a)-(b)) < 0)
209 #define TSTMP_GEQ(a,b) ((int)((a)-(b)) >= 0)
210
211 /*
212 * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
213 */
214 #ifdef INET6
215 #define ND6_HINT(tp) \
216 do { \
217 if (tp && tp->t_in6pcb && tp->t_family == AF_INET6 \
218 && tp->t_in6pcb->in6p_route.ro_rt) { \
219 nd6_nud_hint(tp->t_in6pcb->in6p_route.ro_rt, NULL, 0); \
220 } \
221 } while (0)
222 #else
223 #define ND6_HINT(tp)
224 #endif
225
226 /*
227 * Macro to compute ACK transmission behavior. Delay the ACK unless
228 * we have already delayed an ACK (must send an ACK every two segments).
229 * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
230 * option is enabled.
231 */
232 #define TCP_SETUP_ACK(tp, th) \
233 do { \
234 if ((tp)->t_flags & TF_DELACK || \
235 (tcp_ack_on_push && (th)->th_flags & TH_PUSH)) \
236 tp->t_flags |= TF_ACKNOW; \
237 else \
238 TCP_SET_DELACK(tp); \
239 } while (0)
240
241 /*
242 * Convert TCP protocol fields to host order for easier processing.
243 */
244 #define TCP_FIELDS_TO_HOST(th) \
245 do { \
246 NTOHL((th)->th_seq); \
247 NTOHL((th)->th_ack); \
248 NTOHS((th)->th_win); \
249 NTOHS((th)->th_urp); \
250 } while (0)
251
252 #ifdef TCP_CSUM_COUNTERS
253 #include <sys/device.h>
254
255 extern struct evcnt tcp_hwcsum_ok;
256 extern struct evcnt tcp_hwcsum_bad;
257 extern struct evcnt tcp_hwcsum_data;
258 extern struct evcnt tcp_swcsum;
259
260 #define TCP_CSUM_COUNTER_INCR(ev) (ev)->ev_count++
261
262 #else
263
264 #define TCP_CSUM_COUNTER_INCR(ev) /* nothing */
265
266 #endif /* TCP_CSUM_COUNTERS */
267
268 int
269 tcp_reass(tp, th, m, tlen)
270 struct tcpcb *tp;
271 struct tcphdr *th;
272 struct mbuf *m;
273 int *tlen;
274 {
275 struct ipqent *p, *q, *nq, *tiqe = NULL;
276 struct socket *so = NULL;
277 int pkt_flags;
278 tcp_seq pkt_seq;
279 unsigned pkt_len;
280 u_long rcvpartdupbyte = 0;
281 u_long rcvoobyte;
282
283 if (tp->t_inpcb)
284 so = tp->t_inpcb->inp_socket;
285 #ifdef INET6
286 else if (tp->t_in6pcb)
287 so = tp->t_in6pcb->in6p_socket;
288 #endif
289
290 TCP_REASS_LOCK_CHECK(tp);
291
292 /*
293 * Call with th==0 after become established to
294 * force pre-ESTABLISHED data up to user socket.
295 */
296 if (th == 0)
297 goto present;
298
299 rcvoobyte = *tlen;
300 /*
301 * Copy these to local variables because the tcpiphdr
302 * gets munged while we are collapsing mbufs.
303 */
304 pkt_seq = th->th_seq;
305 pkt_len = *tlen;
306 pkt_flags = th->th_flags;
307 /*
308 * Find a segment which begins after this one does.
309 */
310 for (p = NULL, q = LIST_FIRST(&tp->segq); q != NULL; q = nq) {
311 nq = LIST_NEXT(q, ipqe_q);
312 /*
313 * If the received segment is just right after this
314 * fragment, merge the two together and then check
315 * for further overlaps.
316 */
317 if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
318 #ifdef TCPREASS_DEBUG
319 printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
320 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
321 q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
322 #endif
323 pkt_len += q->ipqe_len;
324 pkt_flags |= q->ipqe_flags;
325 pkt_seq = q->ipqe_seq;
326 m_cat(q->ipqe_m, m);
327 m = q->ipqe_m;
328 goto free_ipqe;
329 }
330 /*
331 * If the received segment is completely past this
332 * fragment, we need to go the next fragment.
333 */
334 if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
335 p = q;
336 continue;
337 }
338 /*
339 * If the fragment is past the received segment,
340 * it (or any following) can't be concatenated.
341 */
342 if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len))
343 break;
344 /*
345 * We've received all the data in this segment before.
346 * mark it as a duplicate and return.
347 */
348 if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
349 SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
350 tcpstat.tcps_rcvduppack++;
351 tcpstat.tcps_rcvdupbyte += pkt_len;
352 m_freem(m);
353 if (tiqe != NULL)
354 pool_put(&ipqent_pool, tiqe);
355 return (0);
356 }
357 /*
358 * Received segment completely overlaps this fragment
359 * so we drop the fragment (this keeps the temporal
360 * ordering of segments correct).
361 */
362 if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
363 SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
364 rcvpartdupbyte += q->ipqe_len;
365 m_freem(q->ipqe_m);
366 goto free_ipqe;
367 }
368 /*
369 * RX'ed segment extends past the end of the
370 * fragment. Drop the overlapping bytes. Then
371 * merge the fragment and segment then treat as
372 * a longer received packet.
373 */
374 if (SEQ_LT(q->ipqe_seq, pkt_seq)
375 && SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
376 int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
377 #ifdef TCPREASS_DEBUG
378 printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
379 tp, overlap,
380 pkt_seq, pkt_seq + pkt_len, pkt_len);
381 #endif
382 m_adj(m, overlap);
383 rcvpartdupbyte += overlap;
384 m_cat(q->ipqe_m, m);
385 m = q->ipqe_m;
386 pkt_seq = q->ipqe_seq;
387 pkt_len += q->ipqe_len - overlap;
388 rcvoobyte -= overlap;
389 goto free_ipqe;
390 }
391 /*
392 * RX'ed segment extends past the front of the
393 * fragment. Drop the overlapping bytes on the
394 * received packet. The packet will then be
395 * contatentated with this fragment a bit later.
396 */
397 if (SEQ_GT(q->ipqe_seq, pkt_seq)
398 && SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len)) {
399 int overlap = pkt_seq + pkt_len - q->ipqe_seq;
400 #ifdef TCPREASS_DEBUG
401 printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
402 tp, overlap,
403 pkt_seq, pkt_seq + pkt_len, pkt_len);
404 #endif
405 m_adj(m, -overlap);
406 pkt_len -= overlap;
407 rcvpartdupbyte += overlap;
408 rcvoobyte -= overlap;
409 }
410 /*
411 * If the received segment immediates precedes this
412 * fragment then tack the fragment onto this segment
413 * and reinsert the data.
414 */
415 if (q->ipqe_seq == pkt_seq + pkt_len) {
416 #ifdef TCPREASS_DEBUG
417 printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
418 tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
419 pkt_seq, pkt_seq + pkt_len, pkt_len);
420 #endif
421 pkt_len += q->ipqe_len;
422 pkt_flags |= q->ipqe_flags;
423 m_cat(m, q->ipqe_m);
424 LIST_REMOVE(q, ipqe_q);
425 LIST_REMOVE(q, ipqe_timeq);
426 if (tiqe == NULL) {
427 tiqe = q;
428 } else {
429 pool_put(&ipqent_pool, q);
430 }
431 break;
432 }
433 /*
434 * If the fragment is before the segment, remember it.
435 * When this loop is terminated, p will contain the
436 * pointer to fragment that is right before the received
437 * segment.
438 */
439 if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
440 p = q;
441
442 continue;
443
444 /*
445 * This is a common operation. It also will allow
446 * to save doing a malloc/free in most instances.
447 */
448 free_ipqe:
449 LIST_REMOVE(q, ipqe_q);
450 LIST_REMOVE(q, ipqe_timeq);
451 if (tiqe == NULL) {
452 tiqe = q;
453 } else {
454 pool_put(&ipqent_pool, q);
455 }
456 }
457
458 /*
459 * Allocate a new queue entry since the received segment did not
460 * collapse onto any other out-of-order block; thus we are allocating
461 * a new block. If it had collapsed, tiqe would not be NULL and
462 * we would be reusing it.
463 * XXX If we can't, just drop the packet. XXX
464 */
465 if (tiqe == NULL) {
466 tiqe = pool_get(&ipqent_pool, PR_NOWAIT);
467 if (tiqe == NULL) {
468 tcpstat.tcps_rcvmemdrop++;
469 m_freem(m);
470 return (0);
471 }
472 }
473
474 /*
475 * Update the counters.
476 */
477 tcpstat.tcps_rcvoopack++;
478 tcpstat.tcps_rcvoobyte += rcvoobyte;
479 if (rcvpartdupbyte) {
480 tcpstat.tcps_rcvpartduppack++;
481 tcpstat.tcps_rcvpartdupbyte += rcvpartdupbyte;
482 }
483
484 /*
485 * Insert the new fragment queue entry into both queues.
486 */
487 tiqe->ipqe_m = m;
488 tiqe->ipqe_seq = pkt_seq;
489 tiqe->ipqe_len = pkt_len;
490 tiqe->ipqe_flags = pkt_flags;
491 if (p == NULL) {
492 LIST_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
493 #ifdef TCPREASS_DEBUG
494 if (tiqe->ipqe_seq != tp->rcv_nxt)
495 printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
496 tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
497 #endif
498 } else {
499 LIST_INSERT_AFTER(p, tiqe, ipqe_q);
500 #ifdef TCPREASS_DEBUG
501 printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
502 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
503 p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
504 #endif
505 }
506
507 LIST_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
508
509 present:
510 /*
511 * Present data to user, advancing rcv_nxt through
512 * completed sequence space.
513 */
514 if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
515 return (0);
516 q = LIST_FIRST(&tp->segq);
517 if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
518 return (0);
519 if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
520 return (0);
521
522 tp->rcv_nxt += q->ipqe_len;
523 pkt_flags = q->ipqe_flags & TH_FIN;
524 ND6_HINT(tp);
525
526 LIST_REMOVE(q, ipqe_q);
527 LIST_REMOVE(q, ipqe_timeq);
528 if (so->so_state & SS_CANTRCVMORE)
529 m_freem(q->ipqe_m);
530 else
531 sbappend(&so->so_rcv, q->ipqe_m);
532 pool_put(&ipqent_pool, q);
533 sorwakeup(so);
534 return (pkt_flags);
535 }
536
537 #ifdef INET6
538 int
539 tcp6_input(mp, offp, proto)
540 struct mbuf **mp;
541 int *offp, proto;
542 {
543 struct mbuf *m = *mp;
544
545 /*
546 * draft-itojun-ipv6-tcp-to-anycast
547 * better place to put this in?
548 */
549 if (m->m_flags & M_ANYCAST6) {
550 struct ip6_hdr *ip6;
551 if (m->m_len < sizeof(struct ip6_hdr)) {
552 if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
553 tcpstat.tcps_rcvshort++;
554 return IPPROTO_DONE;
555 }
556 }
557 ip6 = mtod(m, struct ip6_hdr *);
558 icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
559 (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
560 return IPPROTO_DONE;
561 }
562
563 tcp_input(m, *offp, proto);
564 return IPPROTO_DONE;
565 }
566 #endif
567
568 /*
569 * TCP input routine, follows pages 65-76 of the
570 * protocol specification dated September, 1981 very closely.
571 */
572 void
573 #if __STDC__
574 tcp_input(struct mbuf *m, ...)
575 #else
576 tcp_input(m, va_alist)
577 struct mbuf *m;
578 #endif
579 {
580 int proto;
581 struct tcphdr *th;
582 struct ip *ip;
583 struct inpcb *inp;
584 #ifdef INET6
585 struct ip6_hdr *ip6;
586 struct in6pcb *in6p;
587 #endif
588 caddr_t optp = NULL;
589 int optlen = 0;
590 int len, tlen, toff, hdroptlen = 0;
591 struct tcpcb *tp = 0;
592 int tiflags;
593 struct socket *so = NULL;
594 int todrop, acked, ourfinisacked, needoutput = 0;
595 short ostate = 0;
596 int iss = 0;
597 u_long tiwin;
598 struct tcp_opt_info opti;
599 int off, iphlen;
600 va_list ap;
601 int af; /* af on the wire */
602 struct mbuf *tcp_saveti = NULL;
603
604 va_start(ap, m);
605 toff = va_arg(ap, int);
606 proto = va_arg(ap, int);
607 va_end(ap);
608
609 tcpstat.tcps_rcvtotal++;
610
611 bzero(&opti, sizeof(opti));
612 opti.ts_present = 0;
613 opti.maxseg = 0;
614
615 /*
616 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
617 *
618 * TCP is, by definition, unicast, so we reject all
619 * multicast outright.
620 *
621 * Note, there are additional src/dst address checks in
622 * the AF-specific code below.
623 */
624 if (m->m_flags & (M_BCAST|M_MCAST)) {
625 /* XXX stat */
626 goto drop;
627 }
628 #ifdef INET6
629 if (m->m_flags & M_ANYCAST6) {
630 /* XXX stat */
631 goto drop;
632 }
633 #endif
634
635 /*
636 * Get IP and TCP header together in first mbuf.
637 * Note: IP leaves IP header in first mbuf.
638 */
639 ip = mtod(m, struct ip *);
640 #ifdef INET6
641 ip6 = NULL;
642 #endif
643 switch (ip->ip_v) {
644 #ifdef INET
645 case 4:
646 af = AF_INET;
647 iphlen = sizeof(struct ip);
648 #ifndef PULLDOWN_TEST
649 /* would like to get rid of this... */
650 if (toff > sizeof (struct ip)) {
651 ip_stripoptions(m, (struct mbuf *)0);
652 toff = sizeof(struct ip);
653 }
654 if (m->m_len < toff + sizeof (struct tcphdr)) {
655 if ((m = m_pullup(m, toff + sizeof (struct tcphdr))) == 0) {
656 tcpstat.tcps_rcvshort++;
657 return;
658 }
659 }
660 ip = mtod(m, struct ip *);
661 th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
662 #else
663 ip = mtod(m, struct ip *);
664 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
665 sizeof(struct tcphdr));
666 if (th == NULL) {
667 tcpstat.tcps_rcvshort++;
668 return;
669 }
670 #endif
671
672 /*
673 * Make sure destination address is not multicast.
674 * Source address checked in ip_input().
675 */
676 if (IN_MULTICAST(ip->ip_dst.s_addr)) {
677 /* XXX stat */
678 goto drop;
679 }
680
681 /* We do the checksum after PCB lookup... */
682 len = ip->ip_len;
683 tlen = len - toff;
684 break;
685 #endif
686 #ifdef INET6
687 case 6:
688 ip = NULL;
689 iphlen = sizeof(struct ip6_hdr);
690 af = AF_INET6;
691 #ifndef PULLDOWN_TEST
692 if (m->m_len < toff + sizeof(struct tcphdr)) {
693 m = m_pullup(m, toff + sizeof(struct tcphdr)); /*XXX*/
694 if (m == NULL) {
695 tcpstat.tcps_rcvshort++;
696 return;
697 }
698 }
699 ip6 = mtod(m, struct ip6_hdr *);
700 th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
701 #else
702 ip6 = mtod(m, struct ip6_hdr *);
703 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
704 sizeof(struct tcphdr));
705 if (th == NULL) {
706 tcpstat.tcps_rcvshort++;
707 return;
708 }
709 #endif
710
711 /* Be proactive about malicious use of IPv4 mapped address */
712 if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
713 IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
714 /* XXX stat */
715 goto drop;
716 }
717
718 /*
719 * Be proactive about unspecified IPv6 address in source.
720 * As we use all-zero to indicate unbounded/unconnected pcb,
721 * unspecified IPv6 address can be used to confuse us.
722 *
723 * Note that packets with unspecified IPv6 destination is
724 * already dropped in ip6_input.
725 */
726 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
727 /* XXX stat */
728 goto drop;
729 }
730
731 /*
732 * Make sure destination address is not multicast.
733 * Source address checked in ip6_input().
734 */
735 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
736 /* XXX stat */
737 goto drop;
738 }
739
740 /* We do the checksum after PCB lookup... */
741 len = m->m_pkthdr.len;
742 tlen = len - toff;
743 break;
744 #endif
745 default:
746 m_freem(m);
747 return;
748 }
749
750 /*
751 * Check that TCP offset makes sense,
752 * pull out TCP options and adjust length. XXX
753 */
754 off = th->th_off << 2;
755 if (off < sizeof (struct tcphdr) || off > tlen) {
756 tcpstat.tcps_rcvbadoff++;
757 goto drop;
758 }
759 tlen -= off;
760
761 /*
762 * tcp_input() has been modified to use tlen to mean the TCP data
763 * length throughout the function. Other functions can use
764 * m->m_pkthdr.len as the basis for calculating the TCP data length.
765 * rja
766 */
767
768 if (off > sizeof (struct tcphdr)) {
769 #ifndef PULLDOWN_TEST
770 if (m->m_len < toff + off) {
771 if ((m = m_pullup(m, toff + off)) == 0) {
772 tcpstat.tcps_rcvshort++;
773 return;
774 }
775 switch (af) {
776 #ifdef INET
777 case AF_INET:
778 ip = mtod(m, struct ip *);
779 break;
780 #endif
781 #ifdef INET6
782 case AF_INET6:
783 ip6 = mtod(m, struct ip6_hdr *);
784 break;
785 #endif
786 }
787 th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
788 }
789 #else
790 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
791 if (th == NULL) {
792 tcpstat.tcps_rcvshort++;
793 return;
794 }
795 /*
796 * NOTE: ip/ip6 will not be affected by m_pulldown()
797 * (as they're before toff) and we don't need to update those.
798 */
799 #endif
800 optlen = off - sizeof (struct tcphdr);
801 optp = ((caddr_t)th) + sizeof(struct tcphdr);
802 /*
803 * Do quick retrieval of timestamp options ("options
804 * prediction?"). If timestamp is the only option and it's
805 * formatted as recommended in RFC 1323 appendix A, we
806 * quickly get the values now and not bother calling
807 * tcp_dooptions(), etc.
808 */
809 if ((optlen == TCPOLEN_TSTAMP_APPA ||
810 (optlen > TCPOLEN_TSTAMP_APPA &&
811 optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
812 *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
813 (th->th_flags & TH_SYN) == 0) {
814 opti.ts_present = 1;
815 opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
816 opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
817 optp = NULL; /* we've parsed the options */
818 }
819 }
820 tiflags = th->th_flags;
821
822 /*
823 * Locate pcb for segment.
824 */
825 findpcb:
826 inp = NULL;
827 #ifdef INET6
828 in6p = NULL;
829 #endif
830 switch (af) {
831 #ifdef INET
832 case AF_INET:
833 inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
834 ip->ip_dst, th->th_dport);
835 if (inp == 0) {
836 ++tcpstat.tcps_pcbhashmiss;
837 inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
838 }
839 #ifdef INET6
840 if (inp == 0) {
841 struct in6_addr s, d;
842
843 /* mapped addr case */
844 bzero(&s, sizeof(s));
845 s.s6_addr16[5] = htons(0xffff);
846 bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
847 bzero(&d, sizeof(d));
848 d.s6_addr16[5] = htons(0xffff);
849 bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
850 in6p = in6_pcblookup_connect(&tcb6, &s, th->th_sport,
851 &d, th->th_dport, 0);
852 if (in6p == 0) {
853 ++tcpstat.tcps_pcbhashmiss;
854 in6p = in6_pcblookup_bind(&tcb6, &d,
855 th->th_dport, 0);
856 }
857 }
858 #endif
859 #ifndef INET6
860 if (inp == 0)
861 #else
862 if (inp == 0 && in6p == 0)
863 #endif
864 {
865 ++tcpstat.tcps_noport;
866 if (tcp_log_refused && (tiflags & TH_SYN)) {
867 #ifndef INET6
868 char src[4*sizeof "123"];
869 char dst[4*sizeof "123"];
870 #else
871 char src[INET6_ADDRSTRLEN];
872 char dst[INET6_ADDRSTRLEN];
873 #endif
874 if (ip) {
875 strcpy(src, inet_ntoa(ip->ip_src));
876 strcpy(dst, inet_ntoa(ip->ip_dst));
877 }
878 #ifdef INET6
879 else if (ip6) {
880 strcpy(src, ip6_sprintf(&ip6->ip6_src));
881 strcpy(dst, ip6_sprintf(&ip6->ip6_dst));
882 }
883 #endif
884 else {
885 strcpy(src, "(unknown)");
886 strcpy(dst, "(unknown)");
887 }
888 log(LOG_INFO,
889 "Connection attempt to TCP %s:%d from %s:%d\n",
890 dst, ntohs(th->th_dport),
891 src, ntohs(th->th_sport));
892 }
893 TCP_FIELDS_TO_HOST(th);
894 goto dropwithreset_ratelim;
895 }
896 #ifdef IPSEC
897 if (inp && ipsec4_in_reject(m, inp)) {
898 ipsecstat.in_polvio++;
899 goto drop;
900 }
901 #ifdef INET6
902 else if (in6p && ipsec4_in_reject_so(m, in6p->in6p_socket)) {
903 ipsecstat.in_polvio++;
904 goto drop;
905 }
906 #endif
907 #endif /*IPSEC*/
908 break;
909 #endif /*INET*/
910 #ifdef INET6
911 case AF_INET6:
912 {
913 int faith;
914
915 #if defined(NFAITH) && NFAITH > 0
916 faith = faithprefix(&ip6->ip6_dst);
917 #else
918 faith = 0;
919 #endif
920 in6p = in6_pcblookup_connect(&tcb6, &ip6->ip6_src, th->th_sport,
921 &ip6->ip6_dst, th->th_dport, faith);
922 if (in6p == NULL) {
923 ++tcpstat.tcps_pcbhashmiss;
924 in6p = in6_pcblookup_bind(&tcb6, &ip6->ip6_dst,
925 th->th_dport, faith);
926 }
927 if (in6p == NULL) {
928 ++tcpstat.tcps_noport;
929 TCP_FIELDS_TO_HOST(th);
930 goto dropwithreset_ratelim;
931 }
932 #ifdef IPSEC
933 if (ipsec6_in_reject(m, in6p)) {
934 ipsec6stat.in_polvio++;
935 goto drop;
936 }
937 #endif /*IPSEC*/
938 break;
939 }
940 #endif
941 }
942
943 /*
944 * If the state is CLOSED (i.e., TCB does not exist) then
945 * all data in the incoming segment is discarded.
946 * If the TCB exists but is in CLOSED state, it is embryonic,
947 * but should either do a listen or a connect soon.
948 */
949 tp = NULL;
950 so = NULL;
951 if (inp) {
952 tp = intotcpcb(inp);
953 so = inp->inp_socket;
954 }
955 #ifdef INET6
956 else if (in6p) {
957 tp = in6totcpcb(in6p);
958 so = in6p->in6p_socket;
959 }
960 #endif
961 if (tp == 0) {
962 TCP_FIELDS_TO_HOST(th);
963 goto dropwithreset_ratelim;
964 }
965 if (tp->t_state == TCPS_CLOSED)
966 goto drop;
967
968 /*
969 * Checksum extended TCP header and data.
970 */
971 switch (af) {
972 #ifdef INET
973 case AF_INET:
974 switch (m->m_pkthdr.csum_flags &
975 ((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
976 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
977 case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
978 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
979 goto badcsum;
980
981 case M_CSUM_TCPv4|M_CSUM_DATA:
982 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
983 if ((m->m_pkthdr.csum_data ^ 0xffff) != 0)
984 goto badcsum;
985 break;
986
987 case M_CSUM_TCPv4:
988 /* Checksum was okay. */
989 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
990 break;
991
992 default:
993 /* Must compute it ourselves. */
994 TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
995 #ifndef PULLDOWN_TEST
996 {
997 struct ipovly *ipov;
998 ipov = (struct ipovly *)ip;
999 bzero(ipov->ih_x1, sizeof ipov->ih_x1);
1000 ipov->ih_len = htons(tlen + off);
1001
1002 if (in_cksum(m, len) != 0)
1003 goto badcsum;
1004 }
1005 #else
1006 if (in4_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0)
1007 goto badcsum;
1008 #endif /* ! PULLDOWN_TEST */
1009 break;
1010 }
1011 break;
1012 #endif /* INET4 */
1013
1014 #ifdef INET6
1015 case AF_INET6:
1016 if (in6_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0)
1017 goto badcsum;
1018 break;
1019 #endif /* INET6 */
1020 }
1021
1022 TCP_FIELDS_TO_HOST(th);
1023
1024 /* Unscale the window into a 32-bit value. */
1025 if ((tiflags & TH_SYN) == 0)
1026 tiwin = th->th_win << tp->snd_scale;
1027 else
1028 tiwin = th->th_win;
1029
1030 #ifdef INET6
1031 /* save packet options if user wanted */
1032 if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
1033 if (in6p->in6p_options) {
1034 m_freem(in6p->in6p_options);
1035 in6p->in6p_options = 0;
1036 }
1037 ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
1038 }
1039 #endif
1040
1041 if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
1042 union syn_cache_sa src;
1043 union syn_cache_sa dst;
1044
1045 bzero(&src, sizeof(src));
1046 bzero(&dst, sizeof(dst));
1047 switch (af) {
1048 #ifdef INET
1049 case AF_INET:
1050 src.sin.sin_len = sizeof(struct sockaddr_in);
1051 src.sin.sin_family = AF_INET;
1052 src.sin.sin_addr = ip->ip_src;
1053 src.sin.sin_port = th->th_sport;
1054
1055 dst.sin.sin_len = sizeof(struct sockaddr_in);
1056 dst.sin.sin_family = AF_INET;
1057 dst.sin.sin_addr = ip->ip_dst;
1058 dst.sin.sin_port = th->th_dport;
1059 break;
1060 #endif
1061 #ifdef INET6
1062 case AF_INET6:
1063 src.sin6.sin6_len = sizeof(struct sockaddr_in6);
1064 src.sin6.sin6_family = AF_INET6;
1065 src.sin6.sin6_addr = ip6->ip6_src;
1066 src.sin6.sin6_port = th->th_sport;
1067
1068 dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
1069 dst.sin6.sin6_family = AF_INET6;
1070 dst.sin6.sin6_addr = ip6->ip6_dst;
1071 dst.sin6.sin6_port = th->th_dport;
1072 break;
1073 #endif /* INET6 */
1074 default:
1075 goto badsyn; /*sanity*/
1076 }
1077
1078 if (so->so_options & SO_DEBUG) {
1079 ostate = tp->t_state;
1080
1081 tcp_saveti = NULL;
1082 if (iphlen + sizeof(struct tcphdr) > MHLEN)
1083 goto nosave;
1084
1085 if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
1086 tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
1087 if (!tcp_saveti)
1088 goto nosave;
1089 } else {
1090 MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
1091 if (!tcp_saveti)
1092 goto nosave;
1093 tcp_saveti->m_len = iphlen;
1094 m_copydata(m, 0, iphlen,
1095 mtod(tcp_saveti, caddr_t));
1096 }
1097
1098 if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
1099 m_freem(tcp_saveti);
1100 tcp_saveti = NULL;
1101 } else {
1102 tcp_saveti->m_len += sizeof(struct tcphdr);
1103 bcopy(th, mtod(tcp_saveti, caddr_t) + iphlen,
1104 sizeof(struct tcphdr));
1105 }
1106 if (tcp_saveti) {
1107 /*
1108 * need to recover version # field, which was
1109 * overwritten on ip_cksum computation.
1110 */
1111 struct ip *sip;
1112 sip = mtod(tcp_saveti, struct ip *);
1113 switch (af) {
1114 #ifdef INET
1115 case AF_INET:
1116 sip->ip_v = 4;
1117 break;
1118 #endif
1119 #ifdef INET6
1120 case AF_INET6:
1121 sip->ip_v = 6;
1122 break;
1123 #endif
1124 }
1125 }
1126 nosave:;
1127 }
1128 if (so->so_options & SO_ACCEPTCONN) {
1129 if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1130 if (tiflags & TH_RST) {
1131 syn_cache_reset(&src.sa, &dst.sa, th);
1132 } else if ((tiflags & (TH_ACK|TH_SYN)) ==
1133 (TH_ACK|TH_SYN)) {
1134 /*
1135 * Received a SYN,ACK. This should
1136 * never happen while we are in
1137 * LISTEN. Send an RST.
1138 */
1139 goto badsyn;
1140 } else if (tiflags & TH_ACK) {
1141 so = syn_cache_get(&src.sa, &dst.sa,
1142 th, toff, tlen, so, m);
1143 if (so == NULL) {
1144 /*
1145 * We don't have a SYN for
1146 * this ACK; send an RST.
1147 */
1148 goto badsyn;
1149 } else if (so ==
1150 (struct socket *)(-1)) {
1151 /*
1152 * We were unable to create
1153 * the connection. If the
1154 * 3-way handshake was
1155 * completed, and RST has
1156 * been sent to the peer.
1157 * Since the mbuf might be
1158 * in use for the reply,
1159 * do not free it.
1160 */
1161 m = NULL;
1162 } else {
1163 /*
1164 * We have created a
1165 * full-blown connection.
1166 */
1167 tp = NULL;
1168 inp = NULL;
1169 #ifdef INET6
1170 in6p = NULL;
1171 #endif
1172 switch (so->so_proto->pr_domain->dom_family) {
1173 #ifdef INET
1174 case AF_INET:
1175 inp = sotoinpcb(so);
1176 tp = intotcpcb(inp);
1177 break;
1178 #endif
1179 #ifdef INET6
1180 case AF_INET6:
1181 in6p = sotoin6pcb(so);
1182 tp = in6totcpcb(in6p);
1183 break;
1184 #endif
1185 }
1186 if (tp == NULL)
1187 goto badsyn; /*XXX*/
1188 tiwin <<= tp->snd_scale;
1189 goto after_listen;
1190 }
1191 } else {
1192 /*
1193 * None of RST, SYN or ACK was set.
1194 * This is an invalid packet for a
1195 * TCB in LISTEN state. Send a RST.
1196 */
1197 goto badsyn;
1198 }
1199 } else {
1200 /*
1201 * Received a SYN.
1202 */
1203
1204 /*
1205 * LISTEN socket received a SYN
1206 * from itself? This can't possibly
1207 * be valid; drop the packet.
1208 */
1209 if (th->th_sport == th->th_dport) {
1210 int i;
1211
1212 switch (af) {
1213 #ifdef INET
1214 case AF_INET:
1215 i = in_hosteq(ip->ip_src, ip->ip_dst);
1216 break;
1217 #endif
1218 #ifdef INET6
1219 case AF_INET6:
1220 i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
1221 break;
1222 #endif
1223 default:
1224 i = 1;
1225 }
1226 if (i) {
1227 tcpstat.tcps_badsyn++;
1228 goto drop;
1229 }
1230 }
1231
1232 /*
1233 * SYN looks ok; create compressed TCP
1234 * state for it.
1235 */
1236 if (so->so_qlen <= so->so_qlimit &&
1237 syn_cache_add(&src.sa, &dst.sa, th, tlen,
1238 so, m, optp, optlen, &opti))
1239 m = NULL;
1240 }
1241 goto drop;
1242 }
1243 }
1244
1245 after_listen:
1246 #ifdef DIAGNOSTIC
1247 /*
1248 * Should not happen now that all embryonic connections
1249 * are handled with compressed state.
1250 */
1251 if (tp->t_state == TCPS_LISTEN)
1252 panic("tcp_input: TCPS_LISTEN");
1253 #endif
1254
1255 /*
1256 * Segment received on connection.
1257 * Reset idle time and keep-alive timer.
1258 */
1259 tp->t_rcvtime = tcp_now;
1260 if (TCPS_HAVEESTABLISHED(tp->t_state))
1261 TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1262
1263 /*
1264 * Process options.
1265 */
1266 if (optp)
1267 tcp_dooptions(tp, optp, optlen, th, &opti);
1268
1269 /*
1270 * Header prediction: check for the two common cases
1271 * of a uni-directional data xfer. If the packet has
1272 * no control flags, is in-sequence, the window didn't
1273 * change and we're not retransmitting, it's a
1274 * candidate. If the length is zero and the ack moved
1275 * forward, we're the sender side of the xfer. Just
1276 * free the data acked & wake any higher level process
1277 * that was blocked waiting for space. If the length
1278 * is non-zero and the ack didn't move, we're the
1279 * receiver side. If we're getting packets in-order
1280 * (the reassembly queue is empty), add the data to
1281 * the socket buffer and note that we need a delayed ack.
1282 */
1283 if (tp->t_state == TCPS_ESTABLISHED &&
1284 (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1285 (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
1286 th->th_seq == tp->rcv_nxt &&
1287 tiwin && tiwin == tp->snd_wnd &&
1288 tp->snd_nxt == tp->snd_max) {
1289
1290 /*
1291 * If last ACK falls within this segment's sequence numbers,
1292 * record the timestamp.
1293 */
1294 if (opti.ts_present &&
1295 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1296 SEQ_LT(tp->last_ack_sent, th->th_seq + tlen)) {
1297 tp->ts_recent_age = TCP_TIMESTAMP(tp);
1298 tp->ts_recent = opti.ts_val;
1299 }
1300
1301 if (tlen == 0) {
1302 if (SEQ_GT(th->th_ack, tp->snd_una) &&
1303 SEQ_LEQ(th->th_ack, tp->snd_max) &&
1304 tp->snd_cwnd >= tp->snd_wnd &&
1305 tp->t_dupacks < tcprexmtthresh) {
1306 /*
1307 * this is a pure ack for outstanding data.
1308 */
1309 ++tcpstat.tcps_predack;
1310 if (opti.ts_present && opti.ts_ecr)
1311 tcp_xmit_timer(tp,
1312 TCP_TIMESTAMP(tp) - opti.ts_ecr + 1);
1313 else if (tp->t_rtttime &&
1314 SEQ_GT(th->th_ack, tp->t_rtseq))
1315 tcp_xmit_timer(tp,
1316 tcp_now - tp->t_rtttime);
1317 acked = th->th_ack - tp->snd_una;
1318 tcpstat.tcps_rcvackpack++;
1319 tcpstat.tcps_rcvackbyte += acked;
1320 ND6_HINT(tp);
1321 sbdrop(&so->so_snd, acked);
1322 /*
1323 * We want snd_recover to track snd_una to
1324 * avoid sequence wraparound problems for
1325 * very large transfers.
1326 */
1327 tp->snd_una = tp->snd_recover = th->th_ack;
1328 m_freem(m);
1329
1330 /*
1331 * If all outstanding data are acked, stop
1332 * retransmit timer, otherwise restart timer
1333 * using current (possibly backed-off) value.
1334 * If process is waiting for space,
1335 * wakeup/selwakeup/signal. If data
1336 * are ready to send, let tcp_output
1337 * decide between more output or persist.
1338 */
1339 if (tp->snd_una == tp->snd_max)
1340 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1341 else if (TCP_TIMER_ISARMED(tp,
1342 TCPT_PERSIST) == 0)
1343 TCP_TIMER_ARM(tp, TCPT_REXMT,
1344 tp->t_rxtcur);
1345
1346 sowwakeup(so);
1347 if (so->so_snd.sb_cc)
1348 (void) tcp_output(tp);
1349 if (tcp_saveti)
1350 m_freem(tcp_saveti);
1351 return;
1352 }
1353 } else if (th->th_ack == tp->snd_una &&
1354 LIST_FIRST(&tp->segq) == NULL &&
1355 tlen <= sbspace(&so->so_rcv)) {
1356 /*
1357 * this is a pure, in-sequence data packet
1358 * with nothing on the reassembly queue and
1359 * we have enough buffer space to take it.
1360 */
1361 ++tcpstat.tcps_preddat;
1362 tp->rcv_nxt += tlen;
1363 tcpstat.tcps_rcvpack++;
1364 tcpstat.tcps_rcvbyte += tlen;
1365 ND6_HINT(tp);
1366 /*
1367 * Drop TCP, IP headers and TCP options then add data
1368 * to socket buffer.
1369 */
1370 m_adj(m, toff + off);
1371 sbappend(&so->so_rcv, m);
1372 sorwakeup(so);
1373 TCP_SETUP_ACK(tp, th);
1374 if (tp->t_flags & TF_ACKNOW)
1375 (void) tcp_output(tp);
1376 if (tcp_saveti)
1377 m_freem(tcp_saveti);
1378 return;
1379 }
1380 }
1381
1382 /*
1383 * Compute mbuf offset to TCP data segment.
1384 */
1385 hdroptlen = toff + off;
1386
1387 /*
1388 * Calculate amount of space in receive window,
1389 * and then do TCP input processing.
1390 * Receive window is amount of space in rcv queue,
1391 * but not less than advertised window.
1392 */
1393 { int win;
1394
1395 win = sbspace(&so->so_rcv);
1396 if (win < 0)
1397 win = 0;
1398 tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1399 }
1400
1401 switch (tp->t_state) {
1402
1403 /*
1404 * If the state is SYN_SENT:
1405 * if seg contains an ACK, but not for our SYN, drop the input.
1406 * if seg contains a RST, then drop the connection.
1407 * if seg does not contain SYN, then drop it.
1408 * Otherwise this is an acceptable SYN segment
1409 * initialize tp->rcv_nxt and tp->irs
1410 * if seg contains ack then advance tp->snd_una
1411 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1412 * arrange for segment to be acked (eventually)
1413 * continue processing rest of data/controls, beginning with URG
1414 */
1415 case TCPS_SYN_SENT:
1416 if ((tiflags & TH_ACK) &&
1417 (SEQ_LEQ(th->th_ack, tp->iss) ||
1418 SEQ_GT(th->th_ack, tp->snd_max)))
1419 goto dropwithreset;
1420 if (tiflags & TH_RST) {
1421 if (tiflags & TH_ACK)
1422 tp = tcp_drop(tp, ECONNREFUSED);
1423 goto drop;
1424 }
1425 if ((tiflags & TH_SYN) == 0)
1426 goto drop;
1427 if (tiflags & TH_ACK) {
1428 tp->snd_una = tp->snd_recover = th->th_ack;
1429 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1430 tp->snd_nxt = tp->snd_una;
1431 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1432 }
1433 tp->irs = th->th_seq;
1434 tcp_rcvseqinit(tp);
1435 tp->t_flags |= TF_ACKNOW;
1436 tcp_mss_from_peer(tp, opti.maxseg);
1437
1438 /*
1439 * Initialize the initial congestion window. If we
1440 * had to retransmit the SYN, we must initialize cwnd
1441 * to 1 segment (i.e. the Loss Window).
1442 */
1443 if (tp->t_flags & TF_SYN_REXMT)
1444 tp->snd_cwnd = tp->t_peermss;
1445 else
1446 tp->snd_cwnd = TCP_INITIAL_WINDOW(tcp_init_win,
1447 tp->t_peermss);
1448
1449 tcp_rmx_rtt(tp);
1450 if (tiflags & TH_ACK) {
1451 tcpstat.tcps_connects++;
1452 soisconnected(so);
1453 tcp_established(tp);
1454 /* Do window scaling on this connection? */
1455 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1456 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1457 tp->snd_scale = tp->requested_s_scale;
1458 tp->rcv_scale = tp->request_r_scale;
1459 }
1460 TCP_REASS_LOCK(tp);
1461 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1462 TCP_REASS_UNLOCK(tp);
1463 /*
1464 * if we didn't have to retransmit the SYN,
1465 * use its rtt as our initial srtt & rtt var.
1466 */
1467 if (tp->t_rtttime)
1468 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
1469 } else
1470 tp->t_state = TCPS_SYN_RECEIVED;
1471
1472 /*
1473 * Advance th->th_seq to correspond to first data byte.
1474 * If data, trim to stay within window,
1475 * dropping FIN if necessary.
1476 */
1477 th->th_seq++;
1478 if (tlen > tp->rcv_wnd) {
1479 todrop = tlen - tp->rcv_wnd;
1480 m_adj(m, -todrop);
1481 tlen = tp->rcv_wnd;
1482 tiflags &= ~TH_FIN;
1483 tcpstat.tcps_rcvpackafterwin++;
1484 tcpstat.tcps_rcvbyteafterwin += todrop;
1485 }
1486 tp->snd_wl1 = th->th_seq - 1;
1487 tp->rcv_up = th->th_seq;
1488 goto step6;
1489
1490 /*
1491 * If the state is SYN_RECEIVED:
1492 * If seg contains an ACK, but not for our SYN, drop the input
1493 * and generate an RST. See page 36, rfc793
1494 */
1495 case TCPS_SYN_RECEIVED:
1496 if ((tiflags & TH_ACK) &&
1497 (SEQ_LEQ(th->th_ack, tp->iss) ||
1498 SEQ_GT(th->th_ack, tp->snd_max)))
1499 goto dropwithreset;
1500 break;
1501 }
1502
1503 /*
1504 * States other than LISTEN or SYN_SENT.
1505 * First check timestamp, if present.
1506 * Then check that at least some bytes of segment are within
1507 * receive window. If segment begins before rcv_nxt,
1508 * drop leading data (and SYN); if nothing left, just ack.
1509 *
1510 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1511 * and it's less than ts_recent, drop it.
1512 */
1513 if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
1514 TSTMP_LT(opti.ts_val, tp->ts_recent)) {
1515
1516 /* Check to see if ts_recent is over 24 days old. */
1517 if ((int)(TCP_TIMESTAMP(tp) - tp->ts_recent_age) >
1518 TCP_PAWS_IDLE) {
1519 /*
1520 * Invalidate ts_recent. If this segment updates
1521 * ts_recent, the age will be reset later and ts_recent
1522 * will get a valid value. If it does not, setting
1523 * ts_recent to zero will at least satisfy the
1524 * requirement that zero be placed in the timestamp
1525 * echo reply when ts_recent isn't valid. The
1526 * age isn't reset until we get a valid ts_recent
1527 * because we don't want out-of-order segments to be
1528 * dropped when ts_recent is old.
1529 */
1530 tp->ts_recent = 0;
1531 } else {
1532 tcpstat.tcps_rcvduppack++;
1533 tcpstat.tcps_rcvdupbyte += tlen;
1534 tcpstat.tcps_pawsdrop++;
1535 goto dropafterack;
1536 }
1537 }
1538
1539 todrop = tp->rcv_nxt - th->th_seq;
1540 if (todrop > 0) {
1541 if (tiflags & TH_SYN) {
1542 tiflags &= ~TH_SYN;
1543 th->th_seq++;
1544 if (th->th_urp > 1)
1545 th->th_urp--;
1546 else {
1547 tiflags &= ~TH_URG;
1548 th->th_urp = 0;
1549 }
1550 todrop--;
1551 }
1552 if (todrop > tlen ||
1553 (todrop == tlen && (tiflags & TH_FIN) == 0)) {
1554 /*
1555 * Any valid FIN must be to the left of the window.
1556 * At this point the FIN must be a duplicate or
1557 * out of sequence; drop it.
1558 */
1559 tiflags &= ~TH_FIN;
1560 /*
1561 * Send an ACK to resynchronize and drop any data.
1562 * But keep on processing for RST or ACK.
1563 */
1564 tp->t_flags |= TF_ACKNOW;
1565 todrop = tlen;
1566 tcpstat.tcps_rcvdupbyte += todrop;
1567 tcpstat.tcps_rcvduppack++;
1568 } else {
1569 tcpstat.tcps_rcvpartduppack++;
1570 tcpstat.tcps_rcvpartdupbyte += todrop;
1571 }
1572 hdroptlen += todrop; /*drop from head afterwards*/
1573 th->th_seq += todrop;
1574 tlen -= todrop;
1575 if (th->th_urp > todrop)
1576 th->th_urp -= todrop;
1577 else {
1578 tiflags &= ~TH_URG;
1579 th->th_urp = 0;
1580 }
1581 }
1582
1583 /*
1584 * If new data are received on a connection after the
1585 * user processes are gone, then RST the other end.
1586 */
1587 if ((so->so_state & SS_NOFDREF) &&
1588 tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1589 tp = tcp_close(tp);
1590 tcpstat.tcps_rcvafterclose++;
1591 goto dropwithreset;
1592 }
1593
1594 /*
1595 * If segment ends after window, drop trailing data
1596 * (and PUSH and FIN); if nothing left, just ACK.
1597 */
1598 todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
1599 if (todrop > 0) {
1600 tcpstat.tcps_rcvpackafterwin++;
1601 if (todrop >= tlen) {
1602 tcpstat.tcps_rcvbyteafterwin += tlen;
1603 /*
1604 * If a new connection request is received
1605 * while in TIME_WAIT, drop the old connection
1606 * and start over if the sequence numbers
1607 * are above the previous ones.
1608 */
1609 if (tiflags & TH_SYN &&
1610 tp->t_state == TCPS_TIME_WAIT &&
1611 SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1612 iss = tcp_new_iss(tp, tp->snd_nxt);
1613 tp = tcp_close(tp);
1614 goto findpcb;
1615 }
1616 /*
1617 * If window is closed can only take segments at
1618 * window edge, and have to drop data and PUSH from
1619 * incoming segments. Continue processing, but
1620 * remember to ack. Otherwise, drop segment
1621 * and ack.
1622 */
1623 if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1624 tp->t_flags |= TF_ACKNOW;
1625 tcpstat.tcps_rcvwinprobe++;
1626 } else
1627 goto dropafterack;
1628 } else
1629 tcpstat.tcps_rcvbyteafterwin += todrop;
1630 m_adj(m, -todrop);
1631 tlen -= todrop;
1632 tiflags &= ~(TH_PUSH|TH_FIN);
1633 }
1634
1635 /*
1636 * If last ACK falls within this segment's sequence numbers,
1637 * and the timestamp is newer, record it.
1638 */
1639 if (opti.ts_present && TSTMP_GEQ(opti.ts_val, tp->ts_recent) &&
1640 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1641 SEQ_LT(tp->last_ack_sent, th->th_seq + tlen +
1642 ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
1643 tp->ts_recent_age = TCP_TIMESTAMP(tp);
1644 tp->ts_recent = opti.ts_val;
1645 }
1646
1647 /*
1648 * If the RST bit is set examine the state:
1649 * SYN_RECEIVED STATE:
1650 * If passive open, return to LISTEN state.
1651 * If active open, inform user that connection was refused.
1652 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
1653 * Inform user that connection was reset, and close tcb.
1654 * CLOSING, LAST_ACK, TIME_WAIT STATES
1655 * Close the tcb.
1656 */
1657 if (tiflags&TH_RST) switch (tp->t_state) {
1658
1659 case TCPS_SYN_RECEIVED:
1660 so->so_error = ECONNREFUSED;
1661 goto close;
1662
1663 case TCPS_ESTABLISHED:
1664 case TCPS_FIN_WAIT_1:
1665 case TCPS_FIN_WAIT_2:
1666 case TCPS_CLOSE_WAIT:
1667 so->so_error = ECONNRESET;
1668 close:
1669 tp->t_state = TCPS_CLOSED;
1670 tcpstat.tcps_drops++;
1671 tp = tcp_close(tp);
1672 goto drop;
1673
1674 case TCPS_CLOSING:
1675 case TCPS_LAST_ACK:
1676 case TCPS_TIME_WAIT:
1677 tp = tcp_close(tp);
1678 goto drop;
1679 }
1680
1681 /*
1682 * If a SYN is in the window, then this is an
1683 * error and we send an RST and drop the connection.
1684 */
1685 if (tiflags & TH_SYN) {
1686 tp = tcp_drop(tp, ECONNRESET);
1687 goto dropwithreset;
1688 }
1689
1690 /*
1691 * If the ACK bit is off we drop the segment and return.
1692 */
1693 if ((tiflags & TH_ACK) == 0) {
1694 if (tp->t_flags & TF_ACKNOW)
1695 goto dropafterack;
1696 else
1697 goto drop;
1698 }
1699
1700 /*
1701 * Ack processing.
1702 */
1703 switch (tp->t_state) {
1704
1705 /*
1706 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
1707 * ESTABLISHED state and continue processing, otherwise
1708 * send an RST.
1709 */
1710 case TCPS_SYN_RECEIVED:
1711 if (SEQ_GT(tp->snd_una, th->th_ack) ||
1712 SEQ_GT(th->th_ack, tp->snd_max))
1713 goto dropwithreset;
1714 tcpstat.tcps_connects++;
1715 soisconnected(so);
1716 tcp_established(tp);
1717 /* Do window scaling? */
1718 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1719 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1720 tp->snd_scale = tp->requested_s_scale;
1721 tp->rcv_scale = tp->request_r_scale;
1722 }
1723 TCP_REASS_LOCK(tp);
1724 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1725 TCP_REASS_UNLOCK(tp);
1726 tp->snd_wl1 = th->th_seq - 1;
1727 /* fall into ... */
1728
1729 /*
1730 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1731 * ACKs. If the ack is in the range
1732 * tp->snd_una < th->th_ack <= tp->snd_max
1733 * then advance tp->snd_una to th->th_ack and drop
1734 * data from the retransmission queue. If this ACK reflects
1735 * more up to date window information we update our window information.
1736 */
1737 case TCPS_ESTABLISHED:
1738 case TCPS_FIN_WAIT_1:
1739 case TCPS_FIN_WAIT_2:
1740 case TCPS_CLOSE_WAIT:
1741 case TCPS_CLOSING:
1742 case TCPS_LAST_ACK:
1743 case TCPS_TIME_WAIT:
1744
1745 if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
1746 if (tlen == 0 && tiwin == tp->snd_wnd) {
1747 tcpstat.tcps_rcvdupack++;
1748 /*
1749 * If we have outstanding data (other than
1750 * a window probe), this is a completely
1751 * duplicate ack (ie, window info didn't
1752 * change), the ack is the biggest we've
1753 * seen and we've seen exactly our rexmt
1754 * threshhold of them, assume a packet
1755 * has been dropped and retransmit it.
1756 * Kludge snd_nxt & the congestion
1757 * window so we send only this one
1758 * packet.
1759 *
1760 * We know we're losing at the current
1761 * window size so do congestion avoidance
1762 * (set ssthresh to half the current window
1763 * and pull our congestion window back to
1764 * the new ssthresh).
1765 *
1766 * Dup acks mean that packets have left the
1767 * network (they're now cached at the receiver)
1768 * so bump cwnd by the amount in the receiver
1769 * to keep a constant cwnd packets in the
1770 * network.
1771 */
1772 if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
1773 th->th_ack != tp->snd_una)
1774 tp->t_dupacks = 0;
1775 else if (++tp->t_dupacks == tcprexmtthresh) {
1776 tcp_seq onxt = tp->snd_nxt;
1777 u_int win =
1778 min(tp->snd_wnd, tp->snd_cwnd) /
1779 2 / tp->t_segsz;
1780 if (tcp_do_newreno && SEQ_LT(th->th_ack,
1781 tp->snd_recover)) {
1782 /*
1783 * False fast retransmit after
1784 * timeout. Do not cut window.
1785 */
1786 tp->snd_cwnd += tp->t_segsz;
1787 tp->t_dupacks = 0;
1788 (void) tcp_output(tp);
1789 goto drop;
1790 }
1791
1792 if (win < 2)
1793 win = 2;
1794 tp->snd_ssthresh = win * tp->t_segsz;
1795 tp->snd_recover = tp->snd_max;
1796 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1797 tp->t_rtttime = 0;
1798 tp->snd_nxt = th->th_ack;
1799 tp->snd_cwnd = tp->t_segsz;
1800 (void) tcp_output(tp);
1801 tp->snd_cwnd = tp->snd_ssthresh +
1802 tp->t_segsz * tp->t_dupacks;
1803 if (SEQ_GT(onxt, tp->snd_nxt))
1804 tp->snd_nxt = onxt;
1805 goto drop;
1806 } else if (tp->t_dupacks > tcprexmtthresh) {
1807 tp->snd_cwnd += tp->t_segsz;
1808 (void) tcp_output(tp);
1809 goto drop;
1810 }
1811 } else
1812 tp->t_dupacks = 0;
1813 break;
1814 }
1815 /*
1816 * If the congestion window was inflated to account
1817 * for the other side's cached packets, retract it.
1818 */
1819 if (tcp_do_newreno == 0) {
1820 if (tp->t_dupacks >= tcprexmtthresh &&
1821 tp->snd_cwnd > tp->snd_ssthresh)
1822 tp->snd_cwnd = tp->snd_ssthresh;
1823 tp->t_dupacks = 0;
1824 } else if (tp->t_dupacks >= tcprexmtthresh &&
1825 tcp_newreno(tp, th) == 0) {
1826 tp->snd_cwnd = tp->snd_ssthresh;
1827 /*
1828 * Window inflation should have left us with approx.
1829 * snd_ssthresh outstanding data. But in case we
1830 * would be inclined to send a burst, better to do
1831 * it via the slow start mechanism.
1832 */
1833 if (SEQ_SUB(tp->snd_max, th->th_ack) < tp->snd_ssthresh)
1834 tp->snd_cwnd = SEQ_SUB(tp->snd_max, th->th_ack)
1835 + tp->t_segsz;
1836 tp->t_dupacks = 0;
1837 }
1838 if (SEQ_GT(th->th_ack, tp->snd_max)) {
1839 tcpstat.tcps_rcvacktoomuch++;
1840 goto dropafterack;
1841 }
1842 acked = th->th_ack - tp->snd_una;
1843 tcpstat.tcps_rcvackpack++;
1844 tcpstat.tcps_rcvackbyte += acked;
1845
1846 /*
1847 * If we have a timestamp reply, update smoothed
1848 * round trip time. If no timestamp is present but
1849 * transmit timer is running and timed sequence
1850 * number was acked, update smoothed round trip time.
1851 * Since we now have an rtt measurement, cancel the
1852 * timer backoff (cf., Phil Karn's retransmit alg.).
1853 * Recompute the initial retransmit timer.
1854 */
1855 if (opti.ts_present && opti.ts_ecr)
1856 tcp_xmit_timer(tp, TCP_TIMESTAMP(tp) - opti.ts_ecr + 1);
1857 else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
1858 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
1859
1860 /*
1861 * If all outstanding data is acked, stop retransmit
1862 * timer and remember to restart (more output or persist).
1863 * If there is more data to be acked, restart retransmit
1864 * timer, using current (possibly backed-off) value.
1865 */
1866 if (th->th_ack == tp->snd_max) {
1867 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1868 needoutput = 1;
1869 } else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
1870 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
1871 /*
1872 * When new data is acked, open the congestion window.
1873 * If the window gives us less than ssthresh packets
1874 * in flight, open exponentially (segsz per packet).
1875 * Otherwise open linearly: segsz per window
1876 * (segsz^2 / cwnd per packet), plus a constant
1877 * fraction of a packet (segsz/8) to help larger windows
1878 * open quickly enough.
1879 */
1880 {
1881 u_int cw = tp->snd_cwnd;
1882 u_int incr = tp->t_segsz;
1883
1884 if (cw > tp->snd_ssthresh)
1885 incr = incr * incr / cw;
1886 if (tcp_do_newreno == 0 || SEQ_GEQ(th->th_ack, tp->snd_recover))
1887 tp->snd_cwnd = min(cw + incr,
1888 TCP_MAXWIN << tp->snd_scale);
1889 }
1890 ND6_HINT(tp);
1891 if (acked > so->so_snd.sb_cc) {
1892 tp->snd_wnd -= so->so_snd.sb_cc;
1893 sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
1894 ourfinisacked = 1;
1895 } else {
1896 sbdrop(&so->so_snd, acked);
1897 tp->snd_wnd -= acked;
1898 ourfinisacked = 0;
1899 }
1900 sowwakeup(so);
1901 /*
1902 * We want snd_recover to track snd_una to
1903 * avoid sequence wraparound problems for
1904 * very large transfers.
1905 */
1906 tp->snd_una = tp->snd_recover = th->th_ack;
1907 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1908 tp->snd_nxt = tp->snd_una;
1909
1910 switch (tp->t_state) {
1911
1912 /*
1913 * In FIN_WAIT_1 STATE in addition to the processing
1914 * for the ESTABLISHED state if our FIN is now acknowledged
1915 * then enter FIN_WAIT_2.
1916 */
1917 case TCPS_FIN_WAIT_1:
1918 if (ourfinisacked) {
1919 /*
1920 * If we can't receive any more
1921 * data, then closing user can proceed.
1922 * Starting the timer is contrary to the
1923 * specification, but if we don't get a FIN
1924 * we'll hang forever.
1925 */
1926 if (so->so_state & SS_CANTRCVMORE) {
1927 soisdisconnected(so);
1928 if (tcp_maxidle > 0)
1929 TCP_TIMER_ARM(tp, TCPT_2MSL,
1930 tcp_maxidle);
1931 }
1932 tp->t_state = TCPS_FIN_WAIT_2;
1933 }
1934 break;
1935
1936 /*
1937 * In CLOSING STATE in addition to the processing for
1938 * the ESTABLISHED state if the ACK acknowledges our FIN
1939 * then enter the TIME-WAIT state, otherwise ignore
1940 * the segment.
1941 */
1942 case TCPS_CLOSING:
1943 if (ourfinisacked) {
1944 tp->t_state = TCPS_TIME_WAIT;
1945 tcp_canceltimers(tp);
1946 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
1947 soisdisconnected(so);
1948 }
1949 break;
1950
1951 /*
1952 * In LAST_ACK, we may still be waiting for data to drain
1953 * and/or to be acked, as well as for the ack of our FIN.
1954 * If our FIN is now acknowledged, delete the TCB,
1955 * enter the closed state and return.
1956 */
1957 case TCPS_LAST_ACK:
1958 if (ourfinisacked) {
1959 tp = tcp_close(tp);
1960 goto drop;
1961 }
1962 break;
1963
1964 /*
1965 * In TIME_WAIT state the only thing that should arrive
1966 * is a retransmission of the remote FIN. Acknowledge
1967 * it and restart the finack timer.
1968 */
1969 case TCPS_TIME_WAIT:
1970 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
1971 goto dropafterack;
1972 }
1973 }
1974
1975 step6:
1976 /*
1977 * Update window information.
1978 * Don't look at window if no ACK: TAC's send garbage on first SYN.
1979 */
1980 if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
1981 (tp->snd_wl1 == th->th_seq && SEQ_LT(tp->snd_wl2, th->th_ack)) ||
1982 (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))) {
1983 /* keep track of pure window updates */
1984 if (tlen == 0 &&
1985 tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
1986 tcpstat.tcps_rcvwinupd++;
1987 tp->snd_wnd = tiwin;
1988 tp->snd_wl1 = th->th_seq;
1989 tp->snd_wl2 = th->th_ack;
1990 if (tp->snd_wnd > tp->max_sndwnd)
1991 tp->max_sndwnd = tp->snd_wnd;
1992 needoutput = 1;
1993 }
1994
1995 /*
1996 * Process segments with URG.
1997 */
1998 if ((tiflags & TH_URG) && th->th_urp &&
1999 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2000 /*
2001 * This is a kludge, but if we receive and accept
2002 * random urgent pointers, we'll crash in
2003 * soreceive. It's hard to imagine someone
2004 * actually wanting to send this much urgent data.
2005 */
2006 if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2007 th->th_urp = 0; /* XXX */
2008 tiflags &= ~TH_URG; /* XXX */
2009 goto dodata; /* XXX */
2010 }
2011 /*
2012 * If this segment advances the known urgent pointer,
2013 * then mark the data stream. This should not happen
2014 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2015 * a FIN has been received from the remote side.
2016 * In these states we ignore the URG.
2017 *
2018 * According to RFC961 (Assigned Protocols),
2019 * the urgent pointer points to the last octet
2020 * of urgent data. We continue, however,
2021 * to consider it to indicate the first octet
2022 * of data past the urgent section as the original
2023 * spec states (in one of two places).
2024 */
2025 if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2026 tp->rcv_up = th->th_seq + th->th_urp;
2027 so->so_oobmark = so->so_rcv.sb_cc +
2028 (tp->rcv_up - tp->rcv_nxt) - 1;
2029 if (so->so_oobmark == 0)
2030 so->so_state |= SS_RCVATMARK;
2031 sohasoutofband(so);
2032 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2033 }
2034 /*
2035 * Remove out of band data so doesn't get presented to user.
2036 * This can happen independent of advancing the URG pointer,
2037 * but if two URG's are pending at once, some out-of-band
2038 * data may creep in... ick.
2039 */
2040 if (th->th_urp <= (u_int16_t) tlen
2041 #ifdef SO_OOBINLINE
2042 && (so->so_options & SO_OOBINLINE) == 0
2043 #endif
2044 )
2045 tcp_pulloutofband(so, th, m, hdroptlen);
2046 } else
2047 /*
2048 * If no out of band data is expected,
2049 * pull receive urgent pointer along
2050 * with the receive window.
2051 */
2052 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2053 tp->rcv_up = tp->rcv_nxt;
2054 dodata: /* XXX */
2055
2056 /*
2057 * Process the segment text, merging it into the TCP sequencing queue,
2058 * and arranging for acknowledgement of receipt if necessary.
2059 * This process logically involves adjusting tp->rcv_wnd as data
2060 * is presented to the user (this happens in tcp_usrreq.c,
2061 * case PRU_RCVD). If a FIN has already been received on this
2062 * connection then we just ignore the text.
2063 */
2064 if ((tlen || (tiflags & TH_FIN)) &&
2065 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2066 /*
2067 * Insert segment ti into reassembly queue of tcp with
2068 * control block tp. Return TH_FIN if reassembly now includes
2069 * a segment with FIN. The macro form does the common case
2070 * inline (segment is the next to be received on an
2071 * established connection, and the queue is empty),
2072 * avoiding linkage into and removal from the queue and
2073 * repetition of various conversions.
2074 * Set DELACK for segments received in order, but ack
2075 * immediately when segments are out of order
2076 * (so fast retransmit can work).
2077 */
2078 /* NOTE: this was TCP_REASS() macro, but used only once */
2079 TCP_REASS_LOCK(tp);
2080 if (th->th_seq == tp->rcv_nxt &&
2081 LIST_FIRST(&tp->segq) == NULL &&
2082 tp->t_state == TCPS_ESTABLISHED) {
2083 TCP_SETUP_ACK(tp, th);
2084 tp->rcv_nxt += tlen;
2085 tiflags = th->th_flags & TH_FIN;
2086 tcpstat.tcps_rcvpack++;
2087 tcpstat.tcps_rcvbyte += tlen;
2088 ND6_HINT(tp);
2089 m_adj(m, hdroptlen);
2090 sbappend(&(so)->so_rcv, m);
2091 sorwakeup(so);
2092 } else {
2093 m_adj(m, hdroptlen);
2094 tiflags = tcp_reass(tp, th, m, &tlen);
2095 tp->t_flags |= TF_ACKNOW;
2096 }
2097 TCP_REASS_UNLOCK(tp);
2098
2099 /*
2100 * Note the amount of data that peer has sent into
2101 * our window, in order to estimate the sender's
2102 * buffer size.
2103 */
2104 len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2105 } else {
2106 m_freem(m);
2107 m = NULL;
2108 tiflags &= ~TH_FIN;
2109 }
2110
2111 /*
2112 * If FIN is received ACK the FIN and let the user know
2113 * that the connection is closing. Ignore a FIN received before
2114 * the connection is fully established.
2115 */
2116 if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2117 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2118 socantrcvmore(so);
2119 tp->t_flags |= TF_ACKNOW;
2120 tp->rcv_nxt++;
2121 }
2122 switch (tp->t_state) {
2123
2124 /*
2125 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2126 */
2127 case TCPS_ESTABLISHED:
2128 tp->t_state = TCPS_CLOSE_WAIT;
2129 break;
2130
2131 /*
2132 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2133 * enter the CLOSING state.
2134 */
2135 case TCPS_FIN_WAIT_1:
2136 tp->t_state = TCPS_CLOSING;
2137 break;
2138
2139 /*
2140 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2141 * starting the time-wait timer, turning off the other
2142 * standard timers.
2143 */
2144 case TCPS_FIN_WAIT_2:
2145 tp->t_state = TCPS_TIME_WAIT;
2146 tcp_canceltimers(tp);
2147 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2148 soisdisconnected(so);
2149 break;
2150
2151 /*
2152 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2153 */
2154 case TCPS_TIME_WAIT:
2155 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2156 break;
2157 }
2158 }
2159 #ifdef TCP_DEBUG
2160 if (so->so_options & SO_DEBUG)
2161 tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
2162 #endif
2163
2164 /*
2165 * Return any desired output.
2166 */
2167 if (needoutput || (tp->t_flags & TF_ACKNOW))
2168 (void) tcp_output(tp);
2169 if (tcp_saveti)
2170 m_freem(tcp_saveti);
2171 return;
2172
2173 badsyn:
2174 /*
2175 * Received a bad SYN. Increment counters and dropwithreset.
2176 */
2177 tcpstat.tcps_badsyn++;
2178 tp = NULL;
2179 goto dropwithreset;
2180
2181 dropafterack:
2182 /*
2183 * Generate an ACK dropping incoming segment if it occupies
2184 * sequence space, where the ACK reflects our state.
2185 */
2186 if (tiflags & TH_RST)
2187 goto drop;
2188 m_freem(m);
2189 tp->t_flags |= TF_ACKNOW;
2190 (void) tcp_output(tp);
2191 if (tcp_saveti)
2192 m_freem(tcp_saveti);
2193 return;
2194
2195 dropwithreset_ratelim:
2196 /*
2197 * We may want to rate-limit RSTs in certain situations,
2198 * particularly if we are sending an RST in response to
2199 * an attempt to connect to or otherwise communicate with
2200 * a port for which we have no socket.
2201 */
2202 if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
2203 tcp_rst_ppslim) == 0) {
2204 /* XXX stat */
2205 goto drop;
2206 }
2207 /* ...fall into dropwithreset... */
2208
2209 dropwithreset:
2210 /*
2211 * Generate a RST, dropping incoming segment.
2212 * Make ACK acceptable to originator of segment.
2213 */
2214 if (tiflags & TH_RST)
2215 goto drop;
2216 {
2217 /*
2218 * need to recover version # field, which was overwritten on
2219 * ip_cksum computation.
2220 */
2221 struct ip *sip;
2222 sip = mtod(m, struct ip *);
2223 switch (af) {
2224 #ifdef INET
2225 case AF_INET:
2226 sip->ip_v = 4;
2227 break;
2228 #endif
2229 #ifdef INET6
2230 case AF_INET6:
2231 sip->ip_v = 6;
2232 break;
2233 #endif
2234 }
2235 }
2236 if (tiflags & TH_ACK)
2237 (void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
2238 else {
2239 if (tiflags & TH_SYN)
2240 tlen++;
2241 (void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
2242 TH_RST|TH_ACK);
2243 }
2244 if (tcp_saveti)
2245 m_freem(tcp_saveti);
2246 return;
2247
2248 badcsum:
2249 tcpstat.tcps_rcvbadsum++;
2250 drop:
2251 /*
2252 * Drop space held by incoming segment and return.
2253 */
2254 if (tp) {
2255 if (tp->t_inpcb)
2256 so = tp->t_inpcb->inp_socket;
2257 #ifdef INET6
2258 else if (tp->t_in6pcb)
2259 so = tp->t_in6pcb->in6p_socket;
2260 #endif
2261 else
2262 so = NULL;
2263 #ifdef TCP_DEBUG
2264 if (so && (so->so_options & SO_DEBUG) != 0)
2265 tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
2266 #endif
2267 }
2268 if (tcp_saveti)
2269 m_freem(tcp_saveti);
2270 m_freem(m);
2271 return;
2272 }
2273
2274 void
2275 tcp_dooptions(tp, cp, cnt, th, oi)
2276 struct tcpcb *tp;
2277 u_char *cp;
2278 int cnt;
2279 struct tcphdr *th;
2280 struct tcp_opt_info *oi;
2281 {
2282 u_int16_t mss;
2283 int opt, optlen;
2284
2285 for (; cnt > 0; cnt -= optlen, cp += optlen) {
2286 opt = cp[0];
2287 if (opt == TCPOPT_EOL)
2288 break;
2289 if (opt == TCPOPT_NOP)
2290 optlen = 1;
2291 else {
2292 if (cnt < 2)
2293 break;
2294 optlen = cp[1];
2295 if (optlen < 2 || optlen > cnt)
2296 break;
2297 }
2298 switch (opt) {
2299
2300 default:
2301 continue;
2302
2303 case TCPOPT_MAXSEG:
2304 if (optlen != TCPOLEN_MAXSEG)
2305 continue;
2306 if (!(th->th_flags & TH_SYN))
2307 continue;
2308 bcopy(cp + 2, &mss, sizeof(mss));
2309 oi->maxseg = ntohs(mss);
2310 break;
2311
2312 case TCPOPT_WINDOW:
2313 if (optlen != TCPOLEN_WINDOW)
2314 continue;
2315 if (!(th->th_flags & TH_SYN))
2316 continue;
2317 tp->t_flags |= TF_RCVD_SCALE;
2318 tp->requested_s_scale = cp[2];
2319 if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
2320 #if 0 /*XXX*/
2321 char *p;
2322
2323 if (ip)
2324 p = ntohl(ip->ip_src);
2325 #ifdef INET6
2326 else if (ip6)
2327 p = ip6_sprintf(&ip6->ip6_src);
2328 #endif
2329 else
2330 p = "(unknown)";
2331 log(LOG_ERR, "TCP: invalid wscale %d from %s, "
2332 "assuming %d\n",
2333 tp->requested_s_scale, p,
2334 TCP_MAX_WINSHIFT);
2335 #else
2336 log(LOG_ERR, "TCP: invalid wscale %d, "
2337 "assuming %d\n",
2338 tp->requested_s_scale,
2339 TCP_MAX_WINSHIFT);
2340 #endif
2341 tp->requested_s_scale = TCP_MAX_WINSHIFT;
2342 }
2343 break;
2344
2345 case TCPOPT_TIMESTAMP:
2346 if (optlen != TCPOLEN_TIMESTAMP)
2347 continue;
2348 oi->ts_present = 1;
2349 bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
2350 NTOHL(oi->ts_val);
2351 bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
2352 NTOHL(oi->ts_ecr);
2353
2354 /*
2355 * A timestamp received in a SYN makes
2356 * it ok to send timestamp requests and replies.
2357 */
2358 if (th->th_flags & TH_SYN) {
2359 tp->t_flags |= TF_RCVD_TSTMP;
2360 tp->ts_recent = oi->ts_val;
2361 tp->ts_recent_age = TCP_TIMESTAMP(tp);
2362 }
2363 break;
2364 case TCPOPT_SACK_PERMITTED:
2365 if (optlen != TCPOLEN_SACK_PERMITTED)
2366 continue;
2367 if (!(th->th_flags & TH_SYN))
2368 continue;
2369 tp->t_flags &= ~TF_CANT_TXSACK;
2370 break;
2371
2372 case TCPOPT_SACK:
2373 if (tp->t_flags & TF_IGNR_RXSACK)
2374 continue;
2375 if (optlen % 8 != 2 || optlen < 10)
2376 continue;
2377 cp += 2;
2378 optlen -= 2;
2379 for (; optlen > 0; cp -= 8, optlen -= 8) {
2380 tcp_seq lwe, rwe;
2381 bcopy((char *)cp, (char *) &lwe, sizeof(lwe));
2382 NTOHL(lwe);
2383 bcopy((char *)cp, (char *) &rwe, sizeof(rwe));
2384 NTOHL(rwe);
2385 /* tcp_mark_sacked(tp, lwe, rwe); */
2386 }
2387 break;
2388 }
2389 }
2390 }
2391
2392 /*
2393 * Pull out of band byte out of a segment so
2394 * it doesn't appear in the user's data queue.
2395 * It is still reflected in the segment length for
2396 * sequencing purposes.
2397 */
2398 void
2399 tcp_pulloutofband(so, th, m, off)
2400 struct socket *so;
2401 struct tcphdr *th;
2402 struct mbuf *m;
2403 int off;
2404 {
2405 int cnt = off + th->th_urp - 1;
2406
2407 while (cnt >= 0) {
2408 if (m->m_len > cnt) {
2409 char *cp = mtod(m, caddr_t) + cnt;
2410 struct tcpcb *tp = sototcpcb(so);
2411
2412 tp->t_iobc = *cp;
2413 tp->t_oobflags |= TCPOOB_HAVEDATA;
2414 bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
2415 m->m_len--;
2416 return;
2417 }
2418 cnt -= m->m_len;
2419 m = m->m_next;
2420 if (m == 0)
2421 break;
2422 }
2423 panic("tcp_pulloutofband");
2424 }
2425
2426 /*
2427 * Collect new round-trip time estimate
2428 * and update averages and current timeout.
2429 */
2430 void
2431 tcp_xmit_timer(tp, rtt)
2432 struct tcpcb *tp;
2433 uint32_t rtt;
2434 {
2435 int32_t delta;
2436
2437 tcpstat.tcps_rttupdated++;
2438 if (tp->t_srtt != 0) {
2439 /*
2440 * srtt is stored as fixed point with 3 bits after the
2441 * binary point (i.e., scaled by 8). The following magic
2442 * is equivalent to the smoothing algorithm in rfc793 with
2443 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2444 * point). Adjust rtt to origin 0.
2445 */
2446 delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
2447 if ((tp->t_srtt += delta) <= 0)
2448 tp->t_srtt = 1 << 2;
2449 /*
2450 * We accumulate a smoothed rtt variance (actually, a
2451 * smoothed mean difference), then set the retransmit
2452 * timer to smoothed rtt + 4 times the smoothed variance.
2453 * rttvar is stored as fixed point with 2 bits after the
2454 * binary point (scaled by 4). The following is
2455 * equivalent to rfc793 smoothing with an alpha of .75
2456 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces
2457 * rfc793's wired-in beta.
2458 */
2459 if (delta < 0)
2460 delta = -delta;
2461 delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
2462 if ((tp->t_rttvar += delta) <= 0)
2463 tp->t_rttvar = 1 << 2;
2464 } else {
2465 /*
2466 * No rtt measurement yet - use the unsmoothed rtt.
2467 * Set the variance to half the rtt (so our first
2468 * retransmit happens at 3*rtt).
2469 */
2470 tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
2471 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
2472 }
2473 tp->t_rtttime = 0;
2474 tp->t_rxtshift = 0;
2475
2476 /*
2477 * the retransmit should happen at rtt + 4 * rttvar.
2478 * Because of the way we do the smoothing, srtt and rttvar
2479 * will each average +1/2 tick of bias. When we compute
2480 * the retransmit timer, we want 1/2 tick of rounding and
2481 * 1 extra tick because of +-1/2 tick uncertainty in the
2482 * firing of the timer. The bias will give us exactly the
2483 * 1.5 tick we need. But, because the bias is
2484 * statistical, we have to test that we don't drop below
2485 * the minimum feasible timer (which is 2 ticks).
2486 */
2487 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
2488 max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
2489
2490 /*
2491 * We received an ack for a packet that wasn't retransmitted;
2492 * it is probably safe to discard any error indications we've
2493 * received recently. This isn't quite right, but close enough
2494 * for now (a route might have failed after we sent a segment,
2495 * and the return path might not be symmetrical).
2496 */
2497 tp->t_softerror = 0;
2498 }
2499
2500 /*
2501 * Checks for partial ack. If partial ack arrives, force the retransmission
2502 * of the next unacknowledged segment, do not clear tp->t_dupacks, and return
2503 * 1. By setting snd_nxt to th_ack, this forces retransmission timer to
2504 * be started again. If the ack advances at least to tp->snd_recover, return 0.
2505 */
2506 int
2507 tcp_newreno(tp, th)
2508 struct tcpcb *tp;
2509 struct tcphdr *th;
2510 {
2511 tcp_seq onxt = tp->snd_nxt;
2512 u_long ocwnd = tp->snd_cwnd;
2513
2514 if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2515 /*
2516 * snd_una has not yet been updated and the socket's send
2517 * buffer has not yet drained off the ACK'd data, so we
2518 * have to leave snd_una as it was to get the correct data
2519 * offset in tcp_output().
2520 */
2521 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2522 tp->t_rtttime = 0;
2523 tp->snd_nxt = th->th_ack;
2524 /*
2525 * Set snd_cwnd to one segment beyond ACK'd offset. snd_una
2526 * is not yet updated when we're called.
2527 */
2528 tp->snd_cwnd = tp->t_segsz + (th->th_ack - tp->snd_una);
2529 (void) tcp_output(tp);
2530 tp->snd_cwnd = ocwnd;
2531 if (SEQ_GT(onxt, tp->snd_nxt))
2532 tp->snd_nxt = onxt;
2533 /*
2534 * Partial window deflation. Relies on fact that tp->snd_una
2535 * not updated yet.
2536 */
2537 tp->snd_cwnd -= (th->th_ack - tp->snd_una - tp->t_segsz);
2538 return 1;
2539 }
2540 return 0;
2541 }
2542
2543
2544 /*
2545 * TCP compressed state engine. Currently used to hold compressed
2546 * state for SYN_RECEIVED.
2547 */
2548
2549 u_long syn_cache_count;
2550 u_int32_t syn_hash1, syn_hash2;
2551
2552 #define SYN_HASH(sa, sp, dp) \
2553 ((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
2554 ((u_int32_t)(sp)))^syn_hash2)))
2555 #ifndef INET6
2556 #define SYN_HASHALL(hash, src, dst) \
2557 do { \
2558 hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
2559 ((struct sockaddr_in *)(src))->sin_port, \
2560 ((struct sockaddr_in *)(dst))->sin_port); \
2561 } while (0)
2562 #else
2563 #define SYN_HASH6(sa, sp, dp) \
2564 ((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
2565 (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
2566 & 0x7fffffff)
2567
2568 #define SYN_HASHALL(hash, src, dst) \
2569 do { \
2570 switch ((src)->sa_family) { \
2571 case AF_INET: \
2572 hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
2573 ((struct sockaddr_in *)(src))->sin_port, \
2574 ((struct sockaddr_in *)(dst))->sin_port); \
2575 break; \
2576 case AF_INET6: \
2577 hash = SYN_HASH6(&((struct sockaddr_in6 *)(src))->sin6_addr, \
2578 ((struct sockaddr_in6 *)(src))->sin6_port, \
2579 ((struct sockaddr_in6 *)(dst))->sin6_port); \
2580 break; \
2581 default: \
2582 hash = 0; \
2583 } \
2584 } while (/*CONSTCOND*/0)
2585 #endif /* INET6 */
2586
2587 #define SYN_CACHE_RM(sc) \
2588 do { \
2589 TAILQ_REMOVE(&tcp_syn_cache[(sc)->sc_bucketidx].sch_bucket, \
2590 (sc), sc_bucketq); \
2591 (sc)->sc_tp = NULL; \
2592 LIST_REMOVE((sc), sc_tpq); \
2593 tcp_syn_cache[(sc)->sc_bucketidx].sch_length--; \
2594 callout_stop(&(sc)->sc_timer); \
2595 syn_cache_count--; \
2596 } while (/*CONSTCOND*/0)
2597
2598 #define SYN_CACHE_PUT(sc) \
2599 do { \
2600 if ((sc)->sc_ipopts) \
2601 (void) m_free((sc)->sc_ipopts); \
2602 if ((sc)->sc_route4.ro_rt != NULL) \
2603 RTFREE((sc)->sc_route4.ro_rt); \
2604 pool_put(&syn_cache_pool, (sc)); \
2605 } while (/*CONSTCOND*/0)
2606
2607 struct pool syn_cache_pool;
2608
2609 /*
2610 * We don't estimate RTT with SYNs, so each packet starts with the default
2611 * RTT and each timer step has a fixed timeout value.
2612 */
2613 #define SYN_CACHE_TIMER_ARM(sc) \
2614 do { \
2615 TCPT_RANGESET((sc)->sc_rxtcur, \
2616 TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN, \
2617 TCPTV_REXMTMAX); \
2618 callout_reset(&(sc)->sc_timer, \
2619 (sc)->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, (sc)); \
2620 } while (/*CONSTCOND*/0)
2621
2622 #define SYN_CACHE_TIMESTAMP(sc) (tcp_now - (sc)->sc_timebase)
2623
2624 void
2625 syn_cache_init()
2626 {
2627 int i;
2628
2629 /* Initialize the hash buckets. */
2630 for (i = 0; i < tcp_syn_cache_size; i++)
2631 TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
2632
2633 /* Initialize the syn cache pool. */
2634 pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
2635 "synpl", 0, NULL, NULL, M_PCB);
2636 }
2637
2638 void
2639 syn_cache_insert(sc, tp)
2640 struct syn_cache *sc;
2641 struct tcpcb *tp;
2642 {
2643 struct syn_cache_head *scp;
2644 struct syn_cache *sc2;
2645 int s;
2646
2647 /*
2648 * If there are no entries in the hash table, reinitialize
2649 * the hash secrets.
2650 */
2651 if (syn_cache_count == 0) {
2652 struct timeval tv;
2653 microtime(&tv);
2654 syn_hash1 = random() ^ (u_long)≻
2655 syn_hash2 = random() ^ tv.tv_usec;
2656 }
2657
2658 SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
2659 sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
2660 scp = &tcp_syn_cache[sc->sc_bucketidx];
2661
2662 /*
2663 * Make sure that we don't overflow the per-bucket
2664 * limit or the total cache size limit.
2665 */
2666 s = splsoftnet();
2667 if (scp->sch_length >= tcp_syn_bucket_limit) {
2668 tcpstat.tcps_sc_bucketoverflow++;
2669 /*
2670 * The bucket is full. Toss the oldest element in the
2671 * bucket. This will be the first entry in the bucket.
2672 */
2673 sc2 = TAILQ_FIRST(&scp->sch_bucket);
2674 #ifdef DIAGNOSTIC
2675 /*
2676 * This should never happen; we should always find an
2677 * entry in our bucket.
2678 */
2679 if (sc2 == NULL)
2680 panic("syn_cache_insert: bucketoverflow: impossible");
2681 #endif
2682 SYN_CACHE_RM(sc2);
2683 SYN_CACHE_PUT(sc2);
2684 } else if (syn_cache_count >= tcp_syn_cache_limit) {
2685 struct syn_cache_head *scp2, *sce;
2686
2687 tcpstat.tcps_sc_overflowed++;
2688 /*
2689 * The cache is full. Toss the oldest entry in the
2690 * first non-empty bucket we can find.
2691 *
2692 * XXX We would really like to toss the oldest
2693 * entry in the cache, but we hope that this
2694 * condition doesn't happen very often.
2695 */
2696 scp2 = scp;
2697 if (TAILQ_EMPTY(&scp2->sch_bucket)) {
2698 sce = &tcp_syn_cache[tcp_syn_cache_size];
2699 for (++scp2; scp2 != scp; scp2++) {
2700 if (scp2 >= sce)
2701 scp2 = &tcp_syn_cache[0];
2702 if (! TAILQ_EMPTY(&scp2->sch_bucket))
2703 break;
2704 }
2705 #ifdef DIAGNOSTIC
2706 /*
2707 * This should never happen; we should always find a
2708 * non-empty bucket.
2709 */
2710 if (scp2 == scp)
2711 panic("syn_cache_insert: cacheoverflow: "
2712 "impossible");
2713 #endif
2714 }
2715 sc2 = TAILQ_FIRST(&scp2->sch_bucket);
2716 SYN_CACHE_RM(sc2);
2717 SYN_CACHE_PUT(sc2);
2718 }
2719
2720 /*
2721 * Initialize the entry's timer.
2722 */
2723 sc->sc_rxttot = 0;
2724 sc->sc_rxtshift = 0;
2725 SYN_CACHE_TIMER_ARM(sc);
2726
2727 /* Link it from tcpcb entry */
2728 LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
2729
2730 /* Put it into the bucket. */
2731 TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
2732 scp->sch_length++;
2733 syn_cache_count++;
2734
2735 tcpstat.tcps_sc_added++;
2736 splx(s);
2737 }
2738
2739 /*
2740 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
2741 * If we have retransmitted an entry the maximum number of times, expire
2742 * that entry.
2743 */
2744 void
2745 syn_cache_timer(void *arg)
2746 {
2747 struct syn_cache *sc = arg;
2748 int s;
2749
2750 s = splsoftnet();
2751
2752 if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
2753 /* Drop it -- too many retransmissions. */
2754 goto dropit;
2755 }
2756
2757 /*
2758 * Compute the total amount of time this entry has
2759 * been on a queue. If this entry has been on longer
2760 * than the keep alive timer would allow, expire it.
2761 */
2762 sc->sc_rxttot += sc->sc_rxtcur;
2763 if (sc->sc_rxttot >= TCPTV_KEEP_INIT)
2764 goto dropit;
2765
2766 tcpstat.tcps_sc_retransmitted++;
2767 (void) syn_cache_respond(sc, NULL);
2768
2769 /* Advance the timer back-off. */
2770 sc->sc_rxtshift++;
2771 SYN_CACHE_TIMER_ARM(sc);
2772
2773 splx(s);
2774 return;
2775
2776 dropit:
2777 tcpstat.tcps_sc_timed_out++;
2778 SYN_CACHE_RM(sc);
2779 SYN_CACHE_PUT(sc);
2780 splx(s);
2781 }
2782
2783 /*
2784 * Remove syn cache created by the specified tcb entry,
2785 * because this does not make sense to keep them
2786 * (if there's no tcb entry, syn cache entry will never be used)
2787 */
2788 void
2789 syn_cache_cleanup(tp)
2790 struct tcpcb *tp;
2791 {
2792 struct syn_cache *sc, *nsc;
2793 int s;
2794
2795 s = splsoftnet();
2796
2797 for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
2798 nsc = LIST_NEXT(sc, sc_tpq);
2799
2800 #ifdef DIAGNOSTIC
2801 if (sc->sc_tp != tp)
2802 panic("invalid sc_tp in syn_cache_cleanup");
2803 #endif
2804 SYN_CACHE_RM(sc);
2805 SYN_CACHE_PUT(sc);
2806 }
2807 /* just for safety */
2808 LIST_INIT(&tp->t_sc);
2809
2810 splx(s);
2811 }
2812
2813 /*
2814 * Find an entry in the syn cache.
2815 */
2816 struct syn_cache *
2817 syn_cache_lookup(src, dst, headp)
2818 struct sockaddr *src;
2819 struct sockaddr *dst;
2820 struct syn_cache_head **headp;
2821 {
2822 struct syn_cache *sc;
2823 struct syn_cache_head *scp;
2824 u_int32_t hash;
2825 int s;
2826
2827 SYN_HASHALL(hash, src, dst);
2828
2829 scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
2830 *headp = scp;
2831 s = splsoftnet();
2832 for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
2833 sc = TAILQ_NEXT(sc, sc_bucketq)) {
2834 if (sc->sc_hash != hash)
2835 continue;
2836 if (!bcmp(&sc->sc_src, src, src->sa_len) &&
2837 !bcmp(&sc->sc_dst, dst, dst->sa_len)) {
2838 splx(s);
2839 return (sc);
2840 }
2841 }
2842 splx(s);
2843 return (NULL);
2844 }
2845
2846 /*
2847 * This function gets called when we receive an ACK for a
2848 * socket in the LISTEN state. We look up the connection
2849 * in the syn cache, and if its there, we pull it out of
2850 * the cache and turn it into a full-blown connection in
2851 * the SYN-RECEIVED state.
2852 *
2853 * The return values may not be immediately obvious, and their effects
2854 * can be subtle, so here they are:
2855 *
2856 * NULL SYN was not found in cache; caller should drop the
2857 * packet and send an RST.
2858 *
2859 * -1 We were unable to create the new connection, and are
2860 * aborting it. An ACK,RST is being sent to the peer
2861 * (unless we got screwey sequence numbners; see below),
2862 * because the 3-way handshake has been completed. Caller
2863 * should not free the mbuf, since we may be using it. If
2864 * we are not, we will free it.
2865 *
2866 * Otherwise, the return value is a pointer to the new socket
2867 * associated with the connection.
2868 */
2869 struct socket *
2870 syn_cache_get(src, dst, th, hlen, tlen, so, m)
2871 struct sockaddr *src;
2872 struct sockaddr *dst;
2873 struct tcphdr *th;
2874 unsigned int hlen, tlen;
2875 struct socket *so;
2876 struct mbuf *m;
2877 {
2878 struct syn_cache *sc;
2879 struct syn_cache_head *scp;
2880 struct inpcb *inp = NULL;
2881 #ifdef INET6
2882 struct in6pcb *in6p = NULL;
2883 #endif
2884 struct tcpcb *tp = 0;
2885 struct mbuf *am;
2886 int s;
2887 struct socket *oso;
2888
2889 s = splsoftnet();
2890 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
2891 splx(s);
2892 return (NULL);
2893 }
2894
2895 /*
2896 * Verify the sequence and ack numbers. Try getting the correct
2897 * response again.
2898 */
2899 if ((th->th_ack != sc->sc_iss + 1) ||
2900 SEQ_LEQ(th->th_seq, sc->sc_irs) ||
2901 SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
2902 (void) syn_cache_respond(sc, m);
2903 splx(s);
2904 return ((struct socket *)(-1));
2905 }
2906
2907 /* Remove this cache entry */
2908 SYN_CACHE_RM(sc);
2909 splx(s);
2910
2911 /*
2912 * Ok, create the full blown connection, and set things up
2913 * as they would have been set up if we had created the
2914 * connection when the SYN arrived. If we can't create
2915 * the connection, abort it.
2916 */
2917 /*
2918 * inp still has the OLD in_pcb stuff, set the
2919 * v6-related flags on the new guy, too. This is
2920 * done particularly for the case where an AF_INET6
2921 * socket is bound only to a port, and a v4 connection
2922 * comes in on that port.
2923 * we also copy the flowinfo from the original pcb
2924 * to the new one.
2925 */
2926 {
2927 struct inpcb *parentinpcb;
2928
2929 parentinpcb = (struct inpcb *)so->so_pcb;
2930
2931 oso = so;
2932 so = sonewconn(so, SS_ISCONNECTED);
2933 if (so == NULL)
2934 goto resetandabort;
2935
2936 switch (so->so_proto->pr_domain->dom_family) {
2937 #ifdef INET
2938 case AF_INET:
2939 inp = sotoinpcb(so);
2940 break;
2941 #endif
2942 #ifdef INET6
2943 case AF_INET6:
2944 in6p = sotoin6pcb(so);
2945 break;
2946 #endif
2947 }
2948 }
2949 switch (src->sa_family) {
2950 #ifdef INET
2951 case AF_INET:
2952 if (inp) {
2953 inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
2954 inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
2955 inp->inp_options = ip_srcroute();
2956 in_pcbstate(inp, INP_BOUND);
2957 if (inp->inp_options == NULL) {
2958 inp->inp_options = sc->sc_ipopts;
2959 sc->sc_ipopts = NULL;
2960 }
2961 }
2962 #ifdef INET6
2963 else if (in6p) {
2964 /* IPv4 packet to AF_INET6 socket */
2965 bzero(&in6p->in6p_laddr, sizeof(in6p->in6p_laddr));
2966 in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
2967 bcopy(&((struct sockaddr_in *)dst)->sin_addr,
2968 &in6p->in6p_laddr.s6_addr32[3],
2969 sizeof(((struct sockaddr_in *)dst)->sin_addr));
2970 in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
2971 in6totcpcb(in6p)->t_family = AF_INET;
2972 }
2973 #endif
2974 break;
2975 #endif
2976 #ifdef INET6
2977 case AF_INET6:
2978 if (in6p) {
2979 in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
2980 in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
2981 #if 0
2982 in6p->in6p_flowinfo = ip6->ip6_flow & IPV6_FLOWINFO_MASK;
2983 /*inp->inp_options = ip6_srcroute();*/ /* soon. */
2984 #endif
2985 }
2986 break;
2987 #endif
2988 }
2989 #ifdef INET6
2990 if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
2991 struct in6pcb *oin6p = sotoin6pcb(oso);
2992 /* inherit socket options from the listening socket */
2993 in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
2994 if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
2995 m_freem(in6p->in6p_options);
2996 in6p->in6p_options = 0;
2997 }
2998 ip6_savecontrol(in6p, &in6p->in6p_options,
2999 mtod(m, struct ip6_hdr *), m);
3000 }
3001 #endif
3002
3003 #ifdef IPSEC
3004 /*
3005 * we make a copy of policy, instead of sharing the policy,
3006 * for better behavior in terms of SA lookup and dead SA removal.
3007 */
3008 if (inp) {
3009 /* copy old policy into new socket's */
3010 if (ipsec_copy_policy(sotoinpcb(oso)->inp_sp, inp->inp_sp))
3011 printf("tcp_input: could not copy policy\n");
3012 }
3013 #ifdef INET6
3014 else if (in6p) {
3015 /* copy old policy into new socket's */
3016 if (ipsec_copy_policy(sotoin6pcb(oso)->in6p_sp, in6p->in6p_sp))
3017 printf("tcp_input: could not copy policy\n");
3018 }
3019 #endif
3020 #endif
3021
3022 /*
3023 * Give the new socket our cached route reference.
3024 */
3025 if (inp)
3026 inp->inp_route = sc->sc_route4; /* struct assignment */
3027 #ifdef INET6
3028 else
3029 in6p->in6p_route = sc->sc_route6;
3030 #endif
3031 sc->sc_route4.ro_rt = NULL;
3032
3033 am = m_get(M_DONTWAIT, MT_SONAME); /* XXX */
3034 if (am == NULL)
3035 goto resetandabort;
3036 am->m_len = src->sa_len;
3037 bcopy(src, mtod(am, caddr_t), src->sa_len);
3038 if (inp) {
3039 if (in_pcbconnect(inp, am)) {
3040 (void) m_free(am);
3041 goto resetandabort;
3042 }
3043 }
3044 #ifdef INET6
3045 else if (in6p) {
3046 if (src->sa_family == AF_INET) {
3047 /* IPv4 packet to AF_INET6 socket */
3048 struct sockaddr_in6 *sin6;
3049 sin6 = mtod(am, struct sockaddr_in6 *);
3050 am->m_len = sizeof(*sin6);
3051 bzero(sin6, sizeof(*sin6));
3052 sin6->sin6_family = AF_INET6;
3053 sin6->sin6_len = sizeof(*sin6);
3054 sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port;
3055 sin6->sin6_addr.s6_addr16[5] = htons(0xffff);
3056 bcopy(&((struct sockaddr_in *)src)->sin_addr,
3057 &sin6->sin6_addr.s6_addr32[3],
3058 sizeof(sin6->sin6_addr.s6_addr32[3]));
3059 }
3060 if (in6_pcbconnect(in6p, am)) {
3061 (void) m_free(am);
3062 goto resetandabort;
3063 }
3064 }
3065 #endif
3066 else {
3067 (void) m_free(am);
3068 goto resetandabort;
3069 }
3070 (void) m_free(am);
3071
3072 if (inp)
3073 tp = intotcpcb(inp);
3074 #ifdef INET6
3075 else if (in6p)
3076 tp = in6totcpcb(in6p);
3077 #endif
3078 else
3079 tp = NULL;
3080 if (sc->sc_request_r_scale != 15) {
3081 tp->requested_s_scale = sc->sc_requested_s_scale;
3082 tp->request_r_scale = sc->sc_request_r_scale;
3083 tp->snd_scale = sc->sc_requested_s_scale;
3084 tp->rcv_scale = sc->sc_request_r_scale;
3085 tp->t_flags |= TF_RCVD_SCALE;
3086 }
3087 if (sc->sc_flags & SCF_TIMESTAMP)
3088 tp->t_flags |= TF_RCVD_TSTMP;
3089 tp->ts_timebase = sc->sc_timebase;
3090
3091 tp->t_template = tcp_template(tp);
3092 if (tp->t_template == 0) {
3093 tp = tcp_drop(tp, ENOBUFS); /* destroys socket */
3094 so = NULL;
3095 m_freem(m);
3096 goto abort;
3097 }
3098
3099 tp->iss = sc->sc_iss;
3100 tp->irs = sc->sc_irs;
3101 tcp_sendseqinit(tp);
3102 tcp_rcvseqinit(tp);
3103 tp->t_state = TCPS_SYN_RECEIVED;
3104 TCP_TIMER_ARM(tp, TCPT_KEEP, TCPTV_KEEP_INIT);
3105 tcpstat.tcps_accepts++;
3106
3107 /* Initialize tp->t_ourmss before we deal with the peer's! */
3108 tp->t_ourmss = sc->sc_ourmaxseg;
3109 tcp_mss_from_peer(tp, sc->sc_peermaxseg);
3110
3111 /*
3112 * Initialize the initial congestion window. If we
3113 * had to retransmit the SYN,ACK, we must initialize cwnd
3114 * to 1 segment (i.e. the Loss Window).
3115 */
3116 if (sc->sc_rxtshift)
3117 tp->snd_cwnd = tp->t_peermss;
3118 else
3119 tp->snd_cwnd = TCP_INITIAL_WINDOW(tcp_init_win, tp->t_peermss);
3120
3121 tcp_rmx_rtt(tp);
3122 tp->snd_wl1 = sc->sc_irs;
3123 tp->rcv_up = sc->sc_irs + 1;
3124
3125 /*
3126 * This is what whould have happened in tcp_ouput() when
3127 * the SYN,ACK was sent.
3128 */
3129 tp->snd_up = tp->snd_una;
3130 tp->snd_max = tp->snd_nxt = tp->iss+1;
3131 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
3132 if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
3133 tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
3134 tp->last_ack_sent = tp->rcv_nxt;
3135
3136 tcpstat.tcps_sc_completed++;
3137 SYN_CACHE_PUT(sc);
3138 return (so);
3139
3140 resetandabort:
3141 (void) tcp_respond(NULL, m, m, th,
3142 th->th_seq + tlen, (tcp_seq)0, TH_RST|TH_ACK);
3143 abort:
3144 if (so != NULL)
3145 (void) soabort(so);
3146 SYN_CACHE_PUT(sc);
3147 tcpstat.tcps_sc_aborted++;
3148 return ((struct socket *)(-1));
3149 }
3150
3151 /*
3152 * This function is called when we get a RST for a
3153 * non-existent connection, so that we can see if the
3154 * connection is in the syn cache. If it is, zap it.
3155 */
3156
3157 void
3158 syn_cache_reset(src, dst, th)
3159 struct sockaddr *src;
3160 struct sockaddr *dst;
3161 struct tcphdr *th;
3162 {
3163 struct syn_cache *sc;
3164 struct syn_cache_head *scp;
3165 int s = splsoftnet();
3166
3167 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3168 splx(s);
3169 return;
3170 }
3171 if (SEQ_LT(th->th_seq, sc->sc_irs) ||
3172 SEQ_GT(th->th_seq, sc->sc_irs+1)) {
3173 splx(s);
3174 return;
3175 }
3176 SYN_CACHE_RM(sc);
3177 splx(s);
3178 tcpstat.tcps_sc_reset++;
3179 SYN_CACHE_PUT(sc);
3180 }
3181
3182 void
3183 syn_cache_unreach(src, dst, th)
3184 struct sockaddr *src;
3185 struct sockaddr *dst;
3186 struct tcphdr *th;
3187 {
3188 struct syn_cache *sc;
3189 struct syn_cache_head *scp;
3190 int s;
3191
3192 s = splsoftnet();
3193 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3194 splx(s);
3195 return;
3196 }
3197 /* If the sequence number != sc_iss, then it's a bogus ICMP msg */
3198 if (ntohl (th->th_seq) != sc->sc_iss) {
3199 splx(s);
3200 return;
3201 }
3202
3203 /*
3204 * If we've rertransmitted 3 times and this is our second error,
3205 * we remove the entry. Otherwise, we allow it to continue on.
3206 * This prevents us from incorrectly nuking an entry during a
3207 * spurious network outage.
3208 *
3209 * See tcp_notify().
3210 */
3211 if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
3212 sc->sc_flags |= SCF_UNREACH;
3213 splx(s);
3214 return;
3215 }
3216
3217 SYN_CACHE_RM(sc);
3218 splx(s);
3219 tcpstat.tcps_sc_unreach++;
3220 SYN_CACHE_PUT(sc);
3221 }
3222
3223 /*
3224 * Given a LISTEN socket and an inbound SYN request, add
3225 * this to the syn cache, and send back a segment:
3226 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
3227 * to the source.
3228 *
3229 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
3230 * Doing so would require that we hold onto the data and deliver it
3231 * to the application. However, if we are the target of a SYN-flood
3232 * DoS attack, an attacker could send data which would eventually
3233 * consume all available buffer space if it were ACKed. By not ACKing
3234 * the data, we avoid this DoS scenario.
3235 */
3236
3237 int
3238 syn_cache_add(src, dst, th, hlen, so, m, optp, optlen, oi)
3239 struct sockaddr *src;
3240 struct sockaddr *dst;
3241 struct tcphdr *th;
3242 unsigned int hlen;
3243 struct socket *so;
3244 struct mbuf *m;
3245 u_char *optp;
3246 int optlen;
3247 struct tcp_opt_info *oi;
3248 {
3249 struct tcpcb tb, *tp;
3250 long win;
3251 struct syn_cache *sc;
3252 struct syn_cache_head *scp;
3253 struct mbuf *ipopts;
3254
3255 tp = sototcpcb(so);
3256
3257 /*
3258 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
3259 *
3260 * Note this check is performed in tcp_input() very early on.
3261 */
3262
3263 /*
3264 * Initialize some local state.
3265 */
3266 win = sbspace(&so->so_rcv);
3267 if (win > TCP_MAXWIN)
3268 win = TCP_MAXWIN;
3269
3270 switch (src->sa_family) {
3271 #ifdef INET
3272 case AF_INET:
3273 /*
3274 * Remember the IP options, if any.
3275 */
3276 ipopts = ip_srcroute();
3277 break;
3278 #endif
3279 default:
3280 ipopts = NULL;
3281 }
3282
3283 if (optp) {
3284 tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
3285 tcp_dooptions(&tb, optp, optlen, th, oi);
3286 } else
3287 tb.t_flags = 0;
3288
3289 /*
3290 * See if we already have an entry for this connection.
3291 * If we do, resend the SYN,ACK. We do not count this
3292 * as a retransmission (XXX though maybe we should).
3293 */
3294 if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
3295 tcpstat.tcps_sc_dupesyn++;
3296 if (ipopts) {
3297 /*
3298 * If we were remembering a previous source route,
3299 * forget it and use the new one we've been given.
3300 */
3301 if (sc->sc_ipopts)
3302 (void) m_free(sc->sc_ipopts);
3303 sc->sc_ipopts = ipopts;
3304 }
3305 sc->sc_timestamp = tb.ts_recent;
3306 if (syn_cache_respond(sc, m) == 0) {
3307 tcpstat.tcps_sndacks++;
3308 tcpstat.tcps_sndtotal++;
3309 }
3310 return (1);
3311 }
3312
3313 sc = pool_get(&syn_cache_pool, PR_NOWAIT);
3314 if (sc == NULL) {
3315 if (ipopts)
3316 (void) m_free(ipopts);
3317 return (0);
3318 }
3319
3320 /*
3321 * Fill in the cache, and put the necessary IP and TCP
3322 * options into the reply.
3323 */
3324 callout_init(&sc->sc_timer);
3325 bzero(sc, sizeof(struct syn_cache));
3326 bcopy(src, &sc->sc_src, src->sa_len);
3327 bcopy(dst, &sc->sc_dst, dst->sa_len);
3328 sc->sc_flags = 0;
3329 sc->sc_ipopts = ipopts;
3330 sc->sc_irs = th->th_seq;
3331 switch (src->sa_family) {
3332 #ifdef INET
3333 case AF_INET:
3334 {
3335 struct sockaddr_in *srcin = (void *) src;
3336 struct sockaddr_in *dstin = (void *) dst;
3337
3338 sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
3339 &srcin->sin_addr, dstin->sin_port,
3340 srcin->sin_port, sizeof(dstin->sin_addr), 0);
3341 break;
3342 }
3343 #endif /* INET */
3344 #ifdef INET6
3345 case AF_INET6:
3346 {
3347 struct sockaddr_in6 *srcin6 = (void *) src;
3348 struct sockaddr_in6 *dstin6 = (void *) dst;
3349
3350 sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
3351 &srcin6->sin6_addr, dstin6->sin6_port,
3352 srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
3353 break;
3354 }
3355 #endif /* INET6 */
3356 }
3357 sc->sc_peermaxseg = oi->maxseg;
3358 sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
3359 m->m_pkthdr.rcvif : NULL,
3360 sc->sc_src.sa.sa_family);
3361 sc->sc_win = win;
3362 sc->sc_timebase = tcp_now; /* see tcp_newtcpcb() */
3363 sc->sc_timestamp = tb.ts_recent;
3364 if (tcp_do_rfc1323 && (tb.t_flags & TF_RCVD_TSTMP))
3365 sc->sc_flags |= SCF_TIMESTAMP;
3366 if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
3367 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
3368 sc->sc_requested_s_scale = tb.requested_s_scale;
3369 sc->sc_request_r_scale = 0;
3370 while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
3371 TCP_MAXWIN << sc->sc_request_r_scale <
3372 so->so_rcv.sb_hiwat)
3373 sc->sc_request_r_scale++;
3374 } else {
3375 sc->sc_requested_s_scale = 15;
3376 sc->sc_request_r_scale = 15;
3377 }
3378 sc->sc_tp = tp;
3379 if (syn_cache_respond(sc, m) == 0) {
3380 syn_cache_insert(sc, tp);
3381 tcpstat.tcps_sndacks++;
3382 tcpstat.tcps_sndtotal++;
3383 } else {
3384 SYN_CACHE_PUT(sc);
3385 tcpstat.tcps_sc_dropped++;
3386 }
3387 return (1);
3388 }
3389
3390 int
3391 syn_cache_respond(sc, m)
3392 struct syn_cache *sc;
3393 struct mbuf *m;
3394 {
3395 struct route *ro;
3396 u_int8_t *optp;
3397 int optlen, error;
3398 u_int16_t tlen;
3399 struct ip *ip = NULL;
3400 #ifdef INET6
3401 struct ip6_hdr *ip6 = NULL;
3402 #endif
3403 struct tcphdr *th;
3404 u_int hlen;
3405
3406 switch (sc->sc_src.sa.sa_family) {
3407 case AF_INET:
3408 hlen = sizeof(struct ip);
3409 ro = &sc->sc_route4;
3410 break;
3411 #ifdef INET6
3412 case AF_INET6:
3413 hlen = sizeof(struct ip6_hdr);
3414 ro = (struct route *)&sc->sc_route6;
3415 break;
3416 #endif
3417 default:
3418 if (m)
3419 m_freem(m);
3420 return EAFNOSUPPORT;
3421 }
3422
3423 /* Compute the size of the TCP options. */
3424 optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
3425 ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
3426
3427 tlen = hlen + sizeof(struct tcphdr) + optlen;
3428
3429 /*
3430 * Create the IP+TCP header from scratch.
3431 */
3432 if (m)
3433 m_freem(m);
3434 #ifdef DIAGNOSTIC
3435 if (max_linkhdr + tlen > MCLBYTES)
3436 return (ENOBUFS);
3437 #endif
3438 MGETHDR(m, M_DONTWAIT, MT_DATA);
3439 if (m && tlen > MHLEN) {
3440 MCLGET(m, M_DONTWAIT);
3441 if ((m->m_flags & M_EXT) == 0) {
3442 m_freem(m);
3443 m = NULL;
3444 }
3445 }
3446 if (m == NULL)
3447 return (ENOBUFS);
3448
3449 /* Fixup the mbuf. */
3450 m->m_data += max_linkhdr;
3451 m->m_len = m->m_pkthdr.len = tlen;
3452 #ifdef IPSEC
3453 if (sc->sc_tp) {
3454 struct tcpcb *tp;
3455 struct socket *so;
3456
3457 tp = sc->sc_tp;
3458 if (tp->t_inpcb)
3459 so = tp->t_inpcb->inp_socket;
3460 #ifdef INET6
3461 else if (tp->t_in6pcb)
3462 so = tp->t_in6pcb->in6p_socket;
3463 #endif
3464 else
3465 so = NULL;
3466 /* use IPsec policy on listening socket, on SYN ACK */
3467 if (ipsec_setsocket(m, so) != 0) {
3468 m_freem(m);
3469 return ENOBUFS;
3470 }
3471 }
3472 #endif
3473 m->m_pkthdr.rcvif = NULL;
3474 memset(mtod(m, u_char *), 0, tlen);
3475
3476 switch (sc->sc_src.sa.sa_family) {
3477 case AF_INET:
3478 ip = mtod(m, struct ip *);
3479 ip->ip_dst = sc->sc_src.sin.sin_addr;
3480 ip->ip_src = sc->sc_dst.sin.sin_addr;
3481 ip->ip_p = IPPROTO_TCP;
3482 th = (struct tcphdr *)(ip + 1);
3483 th->th_dport = sc->sc_src.sin.sin_port;
3484 th->th_sport = sc->sc_dst.sin.sin_port;
3485 break;
3486 #ifdef INET6
3487 case AF_INET6:
3488 ip6 = mtod(m, struct ip6_hdr *);
3489 ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
3490 ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
3491 ip6->ip6_nxt = IPPROTO_TCP;
3492 /* ip6_plen will be updated in ip6_output() */
3493 th = (struct tcphdr *)(ip6 + 1);
3494 th->th_dport = sc->sc_src.sin6.sin6_port;
3495 th->th_sport = sc->sc_dst.sin6.sin6_port;
3496 break;
3497 #endif
3498 default:
3499 th = NULL;
3500 }
3501
3502 th->th_seq = htonl(sc->sc_iss);
3503 th->th_ack = htonl(sc->sc_irs + 1);
3504 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
3505 th->th_flags = TH_SYN|TH_ACK;
3506 th->th_win = htons(sc->sc_win);
3507 /* th_sum already 0 */
3508 /* th_urp already 0 */
3509
3510 /* Tack on the TCP options. */
3511 optp = (u_int8_t *)(th + 1);
3512 *optp++ = TCPOPT_MAXSEG;
3513 *optp++ = 4;
3514 *optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
3515 *optp++ = sc->sc_ourmaxseg & 0xff;
3516
3517 if (sc->sc_request_r_scale != 15) {
3518 *((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
3519 TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
3520 sc->sc_request_r_scale);
3521 optp += 4;
3522 }
3523
3524 if (sc->sc_flags & SCF_TIMESTAMP) {
3525 u_int32_t *lp = (u_int32_t *)(optp);
3526 /* Form timestamp option as shown in appendix A of RFC 1323. */
3527 *lp++ = htonl(TCPOPT_TSTAMP_HDR);
3528 *lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
3529 *lp = htonl(sc->sc_timestamp);
3530 optp += TCPOLEN_TSTAMP_APPA;
3531 }
3532
3533 /* Compute the packet's checksum. */
3534 switch (sc->sc_src.sa.sa_family) {
3535 case AF_INET:
3536 ip->ip_len = htons(tlen - hlen);
3537 th->th_sum = 0;
3538 th->th_sum = in_cksum(m, tlen);
3539 break;
3540 #ifdef INET6
3541 case AF_INET6:
3542 ip6->ip6_plen = htons(tlen - hlen);
3543 th->th_sum = 0;
3544 th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
3545 break;
3546 #endif
3547 }
3548
3549 /*
3550 * Fill in some straggling IP bits. Note the stack expects
3551 * ip_len to be in host order, for convenience.
3552 */
3553 switch (sc->sc_src.sa.sa_family) {
3554 #ifdef INET
3555 case AF_INET:
3556 ip->ip_len = tlen;
3557 ip->ip_ttl = ip_defttl;
3558 /* XXX tos? */
3559 break;
3560 #endif
3561 #ifdef INET6
3562 case AF_INET6:
3563 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
3564 ip6->ip6_vfc |= IPV6_VERSION;
3565 ip6->ip6_plen = htons(tlen - hlen);
3566 /* ip6_hlim will be initialized afterwards */
3567 /* XXX flowlabel? */
3568 break;
3569 #endif
3570 }
3571
3572 switch (sc->sc_src.sa.sa_family) {
3573 #ifdef INET
3574 case AF_INET:
3575 error = ip_output(m, sc->sc_ipopts, ro,
3576 (ip_mtudisc ? IP_MTUDISC : 0),
3577 NULL);
3578 break;
3579 #endif
3580 #ifdef INET6
3581 case AF_INET6:
3582 ip6->ip6_hlim = in6_selecthlim(NULL,
3583 ro->ro_rt ? ro->ro_rt->rt_ifp : NULL);
3584
3585 error = ip6_output(m, NULL /*XXX*/, (struct route_in6 *)ro,
3586 0, NULL, NULL);
3587 break;
3588 #endif
3589 default:
3590 error = EAFNOSUPPORT;
3591 break;
3592 }
3593 return (error);
3594 }
3595