Home | History | Annotate | Line # | Download | only in netinet
tcp_input.c revision 1.133
      1 /*	$NetBSD: tcp_input.c,v 1.133 2001/11/13 00:32:40 lukem Exp $	*/
      2 
      3 /*
      4 %%% portions-copyright-nrl-95
      5 Portions of this software are Copyright 1995-1998 by Randall Atkinson,
      6 Ronald Lee, Daniel McDonald, Bao Phan, and Chris Winters. All Rights
      7 Reserved. All rights under this copyright have been assigned to the US
      8 Naval Research Laboratory (NRL). The NRL Copyright Notice and License
      9 Agreement Version 1.1 (January 17, 1995) applies to these portions of the
     10 software.
     11 You should have received a copy of the license with this software. If you
     12 didn't get a copy, you may request one from <license (at) ipv6.nrl.navy.mil>.
     13 
     14 */
     15 
     16 /*
     17  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
     18  * All rights reserved.
     19  *
     20  * Redistribution and use in source and binary forms, with or without
     21  * modification, are permitted provided that the following conditions
     22  * are met:
     23  * 1. Redistributions of source code must retain the above copyright
     24  *    notice, this list of conditions and the following disclaimer.
     25  * 2. Redistributions in binary form must reproduce the above copyright
     26  *    notice, this list of conditions and the following disclaimer in the
     27  *    documentation and/or other materials provided with the distribution.
     28  * 3. Neither the name of the project nor the names of its contributors
     29  *    may be used to endorse or promote products derived from this software
     30  *    without specific prior written permission.
     31  *
     32  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     42  * SUCH DAMAGE.
     43  */
     44 
     45 /*-
     46  * Copyright (c) 1997, 1998, 1999, 2001 The NetBSD Foundation, Inc.
     47  * All rights reserved.
     48  *
     49  * This code is derived from software contributed to The NetBSD Foundation
     50  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
     51  * Facility, NASA Ames Research Center.
     52  *
     53  * Redistribution and use in source and binary forms, with or without
     54  * modification, are permitted provided that the following conditions
     55  * are met:
     56  * 1. Redistributions of source code must retain the above copyright
     57  *    notice, this list of conditions and the following disclaimer.
     58  * 2. Redistributions in binary form must reproduce the above copyright
     59  *    notice, this list of conditions and the following disclaimer in the
     60  *    documentation and/or other materials provided with the distribution.
     61  * 3. All advertising materials mentioning features or use of this software
     62  *    must display the following acknowledgement:
     63  *	This product includes software developed by the NetBSD
     64  *	Foundation, Inc. and its contributors.
     65  * 4. Neither the name of The NetBSD Foundation nor the names of its
     66  *    contributors may be used to endorse or promote products derived
     67  *    from this software without specific prior written permission.
     68  *
     69  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     70  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     71  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     72  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     73  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     74  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     75  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     76  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     77  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     78  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     79  * POSSIBILITY OF SUCH DAMAGE.
     80  */
     81 
     82 /*
     83  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
     84  *	The Regents of the University of California.  All rights reserved.
     85  *
     86  * Redistribution and use in source and binary forms, with or without
     87  * modification, are permitted provided that the following conditions
     88  * are met:
     89  * 1. Redistributions of source code must retain the above copyright
     90  *    notice, this list of conditions and the following disclaimer.
     91  * 2. Redistributions in binary form must reproduce the above copyright
     92  *    notice, this list of conditions and the following disclaimer in the
     93  *    documentation and/or other materials provided with the distribution.
     94  * 3. All advertising materials mentioning features or use of this software
     95  *    must display the following acknowledgement:
     96  *	This product includes software developed by the University of
     97  *	California, Berkeley and its contributors.
     98  * 4. Neither the name of the University nor the names of its contributors
     99  *    may be used to endorse or promote products derived from this software
    100  *    without specific prior written permission.
    101  *
    102  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
    103  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
    104  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
    105  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
    106  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
    107  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
    108  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    109  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    110  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    111  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    112  * SUCH DAMAGE.
    113  *
    114  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
    115  */
    116 
    117 /*
    118  *	TODO list for SYN cache stuff:
    119  *
    120  *	Find room for a "state" field, which is needed to keep a
    121  *	compressed state for TIME_WAIT TCBs.  It's been noted already
    122  *	that this is fairly important for very high-volume web and
    123  *	mail servers, which use a large number of short-lived
    124  *	connections.
    125  */
    126 
    127 #include <sys/cdefs.h>
    128 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.133 2001/11/13 00:32:40 lukem Exp $");
    129 
    130 #include "opt_inet.h"
    131 #include "opt_ipsec.h"
    132 #include "opt_inet_csum.h"
    133 #include "opt_tcp_debug.h"
    134 
    135 #include <sys/param.h>
    136 #include <sys/systm.h>
    137 #include <sys/malloc.h>
    138 #include <sys/mbuf.h>
    139 #include <sys/protosw.h>
    140 #include <sys/socket.h>
    141 #include <sys/socketvar.h>
    142 #include <sys/errno.h>
    143 #include <sys/syslog.h>
    144 #include <sys/pool.h>
    145 #include <sys/domain.h>
    146 #include <sys/kernel.h>
    147 
    148 #include <net/if.h>
    149 #include <net/route.h>
    150 #include <net/if_types.h>
    151 
    152 #include <netinet/in.h>
    153 #include <netinet/in_systm.h>
    154 #include <netinet/ip.h>
    155 #include <netinet/in_pcb.h>
    156 #include <netinet/ip_var.h>
    157 
    158 #ifdef INET6
    159 #ifndef INET
    160 #include <netinet/in.h>
    161 #endif
    162 #include <netinet/ip6.h>
    163 #include <netinet6/ip6_var.h>
    164 #include <netinet6/in6_pcb.h>
    165 #include <netinet6/ip6_var.h>
    166 #include <netinet6/in6_var.h>
    167 #include <netinet/icmp6.h>
    168 #include <netinet6/nd6.h>
    169 #endif
    170 
    171 #ifdef PULLDOWN_TEST
    172 #ifndef INET6
    173 /* always need ip6.h for IP6_EXTHDR_GET */
    174 #include <netinet/ip6.h>
    175 #endif
    176 #endif
    177 
    178 #include <netinet/tcp.h>
    179 #include <netinet/tcp_fsm.h>
    180 #include <netinet/tcp_seq.h>
    181 #include <netinet/tcp_timer.h>
    182 #include <netinet/tcp_var.h>
    183 #include <netinet/tcpip.h>
    184 #include <netinet/tcp_debug.h>
    185 
    186 #include <machine/stdarg.h>
    187 
    188 #ifdef IPSEC
    189 #include <netinet6/ipsec.h>
    190 #include <netkey/key.h>
    191 #endif /*IPSEC*/
    192 #ifdef INET6
    193 #include "faith.h"
    194 #if defined(NFAITH) && NFAITH > 0
    195 #include <net/if_faith.h>
    196 #endif
    197 #endif
    198 
    199 int	tcprexmtthresh = 3;
    200 int	tcp_log_refused;
    201 
    202 static int tcp_rst_ppslim_count = 0;
    203 static struct timeval tcp_rst_ppslim_last;
    204 
    205 #define TCP_PAWS_IDLE	(24 * 24 * 60 * 60 * PR_SLOWHZ)
    206 
    207 /* for modulo comparisons of timestamps */
    208 #define TSTMP_LT(a,b)	((int)((a)-(b)) < 0)
    209 #define TSTMP_GEQ(a,b)	((int)((a)-(b)) >= 0)
    210 
    211 /*
    212  * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
    213  */
    214 #ifdef INET6
    215 #define ND6_HINT(tp) \
    216 do { \
    217 	if (tp && tp->t_in6pcb && tp->t_family == AF_INET6 \
    218 	 && tp->t_in6pcb->in6p_route.ro_rt) { \
    219 		nd6_nud_hint(tp->t_in6pcb->in6p_route.ro_rt, NULL, 0); \
    220 	} \
    221 } while (0)
    222 #else
    223 #define ND6_HINT(tp)
    224 #endif
    225 
    226 /*
    227  * Macro to compute ACK transmission behavior.  Delay the ACK unless
    228  * we have already delayed an ACK (must send an ACK every two segments).
    229  * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
    230  * option is enabled.
    231  */
    232 #define	TCP_SETUP_ACK(tp, th) \
    233 do { \
    234 	if ((tp)->t_flags & TF_DELACK || \
    235 	    (tcp_ack_on_push && (th)->th_flags & TH_PUSH)) \
    236 		tp->t_flags |= TF_ACKNOW; \
    237 	else \
    238 		TCP_SET_DELACK(tp); \
    239 } while (0)
    240 
    241 /*
    242  * Convert TCP protocol fields to host order for easier processing.
    243  */
    244 #define	TCP_FIELDS_TO_HOST(th)						\
    245 do {									\
    246 	NTOHL((th)->th_seq);						\
    247 	NTOHL((th)->th_ack);						\
    248 	NTOHS((th)->th_win);						\
    249 	NTOHS((th)->th_urp);						\
    250 } while (0)
    251 
    252 #ifdef TCP_CSUM_COUNTERS
    253 #include <sys/device.h>
    254 
    255 extern struct evcnt tcp_hwcsum_ok;
    256 extern struct evcnt tcp_hwcsum_bad;
    257 extern struct evcnt tcp_hwcsum_data;
    258 extern struct evcnt tcp_swcsum;
    259 
    260 #define	TCP_CSUM_COUNTER_INCR(ev)	(ev)->ev_count++
    261 
    262 #else
    263 
    264 #define	TCP_CSUM_COUNTER_INCR(ev)	/* nothing */
    265 
    266 #endif /* TCP_CSUM_COUNTERS */
    267 
    268 int
    269 tcp_reass(tp, th, m, tlen)
    270 	struct tcpcb *tp;
    271 	struct tcphdr *th;
    272 	struct mbuf *m;
    273 	int *tlen;
    274 {
    275 	struct ipqent *p, *q, *nq, *tiqe = NULL;
    276 	struct socket *so = NULL;
    277 	int pkt_flags;
    278 	tcp_seq pkt_seq;
    279 	unsigned pkt_len;
    280 	u_long rcvpartdupbyte = 0;
    281 	u_long rcvoobyte;
    282 
    283 	if (tp->t_inpcb)
    284 		so = tp->t_inpcb->inp_socket;
    285 #ifdef INET6
    286 	else if (tp->t_in6pcb)
    287 		so = tp->t_in6pcb->in6p_socket;
    288 #endif
    289 
    290 	TCP_REASS_LOCK_CHECK(tp);
    291 
    292 	/*
    293 	 * Call with th==0 after become established to
    294 	 * force pre-ESTABLISHED data up to user socket.
    295 	 */
    296 	if (th == 0)
    297 		goto present;
    298 
    299 	rcvoobyte = *tlen;
    300 	/*
    301 	 * Copy these to local variables because the tcpiphdr
    302 	 * gets munged while we are collapsing mbufs.
    303 	 */
    304 	pkt_seq = th->th_seq;
    305 	pkt_len = *tlen;
    306 	pkt_flags = th->th_flags;
    307 	/*
    308 	 * Find a segment which begins after this one does.
    309 	 */
    310 	for (p = NULL, q = LIST_FIRST(&tp->segq); q != NULL; q = nq) {
    311 		nq = LIST_NEXT(q, ipqe_q);
    312 		/*
    313 		 * If the received segment is just right after this
    314 		 * fragment, merge the two together and then check
    315 		 * for further overlaps.
    316 		 */
    317 		if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
    318 #ifdef TCPREASS_DEBUG
    319 			printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
    320 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
    321 			       q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
    322 #endif
    323 			pkt_len += q->ipqe_len;
    324 			pkt_flags |= q->ipqe_flags;
    325 			pkt_seq = q->ipqe_seq;
    326 			m_cat(q->ipqe_m, m);
    327 			m = q->ipqe_m;
    328 			goto free_ipqe;
    329 		}
    330 		/*
    331 		 * If the received segment is completely past this
    332 		 * fragment, we need to go the next fragment.
    333 		 */
    334 		if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
    335 			p = q;
    336 			continue;
    337 		}
    338 		/*
    339 		 * If the fragment is past the received segment,
    340 		 * it (or any following) can't be concatenated.
    341 		 */
    342 		if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len))
    343 			break;
    344 		/*
    345 		 * We've received all the data in this segment before.
    346 		 * mark it as a duplicate and return.
    347 		 */
    348 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
    349 		    SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
    350 			tcpstat.tcps_rcvduppack++;
    351 			tcpstat.tcps_rcvdupbyte += pkt_len;
    352 			m_freem(m);
    353 			if (tiqe != NULL)
    354 				pool_put(&ipqent_pool, tiqe);
    355 			return (0);
    356 		}
    357 		/*
    358 		 * Received segment completely overlaps this fragment
    359 		 * so we drop the fragment (this keeps the temporal
    360 		 * ordering of segments correct).
    361 		 */
    362 		if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
    363 		    SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
    364 			rcvpartdupbyte += q->ipqe_len;
    365 			m_freem(q->ipqe_m);
    366 			goto free_ipqe;
    367 		}
    368 		/*
    369 		 * RX'ed segment extends past the end of the
    370 		 * fragment.  Drop the overlapping bytes.  Then
    371 		 * merge the fragment and segment then treat as
    372 		 * a longer received packet.
    373 		 */
    374 		if (SEQ_LT(q->ipqe_seq, pkt_seq)
    375 		    && SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq))  {
    376 			int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
    377 #ifdef TCPREASS_DEBUG
    378 			printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
    379 			       tp, overlap,
    380 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
    381 #endif
    382 			m_adj(m, overlap);
    383 			rcvpartdupbyte += overlap;
    384 			m_cat(q->ipqe_m, m);
    385 			m = q->ipqe_m;
    386 			pkt_seq = q->ipqe_seq;
    387 			pkt_len += q->ipqe_len - overlap;
    388 			rcvoobyte -= overlap;
    389 			goto free_ipqe;
    390 		}
    391 		/*
    392 		 * RX'ed segment extends past the front of the
    393 		 * fragment.  Drop the overlapping bytes on the
    394 		 * received packet.  The packet will then be
    395 		 * contatentated with this fragment a bit later.
    396 		 */
    397 		if (SEQ_GT(q->ipqe_seq, pkt_seq)
    398 		    && SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len))  {
    399 			int overlap = pkt_seq + pkt_len - q->ipqe_seq;
    400 #ifdef TCPREASS_DEBUG
    401 			printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
    402 			       tp, overlap,
    403 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
    404 #endif
    405 			m_adj(m, -overlap);
    406 			pkt_len -= overlap;
    407 			rcvpartdupbyte += overlap;
    408 			rcvoobyte -= overlap;
    409 		}
    410 		/*
    411 		 * If the received segment immediates precedes this
    412 		 * fragment then tack the fragment onto this segment
    413 		 * and reinsert the data.
    414 		 */
    415 		if (q->ipqe_seq == pkt_seq + pkt_len) {
    416 #ifdef TCPREASS_DEBUG
    417 			printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
    418 			       tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
    419 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
    420 #endif
    421 			pkt_len += q->ipqe_len;
    422 			pkt_flags |= q->ipqe_flags;
    423 			m_cat(m, q->ipqe_m);
    424 			LIST_REMOVE(q, ipqe_q);
    425 			LIST_REMOVE(q, ipqe_timeq);
    426 			if (tiqe == NULL) {
    427 			    tiqe = q;
    428 			} else {
    429 			    pool_put(&ipqent_pool, q);
    430 			}
    431 			break;
    432 		}
    433 		/*
    434 		 * If the fragment is before the segment, remember it.
    435 		 * When this loop is terminated, p will contain the
    436 		 * pointer to fragment that is right before the received
    437 		 * segment.
    438 		 */
    439 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
    440 			p = q;
    441 
    442 		continue;
    443 
    444 		/*
    445 		 * This is a common operation.  It also will allow
    446 		 * to save doing a malloc/free in most instances.
    447 		 */
    448 	  free_ipqe:
    449 		LIST_REMOVE(q, ipqe_q);
    450 		LIST_REMOVE(q, ipqe_timeq);
    451 		if (tiqe == NULL) {
    452 		    tiqe = q;
    453 		} else {
    454 		    pool_put(&ipqent_pool, q);
    455 		}
    456 	}
    457 
    458 	/*
    459 	 * Allocate a new queue entry since the received segment did not
    460 	 * collapse onto any other out-of-order block; thus we are allocating
    461 	 * a new block.  If it had collapsed, tiqe would not be NULL and
    462 	 * we would be reusing it.
    463 	 * XXX If we can't, just drop the packet.  XXX
    464 	 */
    465 	if (tiqe == NULL) {
    466 		tiqe = pool_get(&ipqent_pool, PR_NOWAIT);
    467 		if (tiqe == NULL) {
    468 			tcpstat.tcps_rcvmemdrop++;
    469 			m_freem(m);
    470 			return (0);
    471 		}
    472 	}
    473 
    474 	/*
    475 	 * Update the counters.
    476 	 */
    477 	tcpstat.tcps_rcvoopack++;
    478 	tcpstat.tcps_rcvoobyte += rcvoobyte;
    479 	if (rcvpartdupbyte) {
    480 	    tcpstat.tcps_rcvpartduppack++;
    481 	    tcpstat.tcps_rcvpartdupbyte += rcvpartdupbyte;
    482 	}
    483 
    484 	/*
    485 	 * Insert the new fragment queue entry into both queues.
    486 	 */
    487 	tiqe->ipqe_m = m;
    488 	tiqe->ipqe_seq = pkt_seq;
    489 	tiqe->ipqe_len = pkt_len;
    490 	tiqe->ipqe_flags = pkt_flags;
    491 	if (p == NULL) {
    492 		LIST_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
    493 #ifdef TCPREASS_DEBUG
    494 		if (tiqe->ipqe_seq != tp->rcv_nxt)
    495 			printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
    496 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
    497 #endif
    498 	} else {
    499 		LIST_INSERT_AFTER(p, tiqe, ipqe_q);
    500 #ifdef TCPREASS_DEBUG
    501 		printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
    502 		       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
    503 		       p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
    504 #endif
    505 	}
    506 
    507 	LIST_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
    508 
    509 present:
    510 	/*
    511 	 * Present data to user, advancing rcv_nxt through
    512 	 * completed sequence space.
    513 	 */
    514 	if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
    515 		return (0);
    516 	q = LIST_FIRST(&tp->segq);
    517 	if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
    518 		return (0);
    519 	if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
    520 		return (0);
    521 
    522 	tp->rcv_nxt += q->ipqe_len;
    523 	pkt_flags = q->ipqe_flags & TH_FIN;
    524 	ND6_HINT(tp);
    525 
    526 	LIST_REMOVE(q, ipqe_q);
    527 	LIST_REMOVE(q, ipqe_timeq);
    528 	if (so->so_state & SS_CANTRCVMORE)
    529 		m_freem(q->ipqe_m);
    530 	else
    531 		sbappend(&so->so_rcv, q->ipqe_m);
    532 	pool_put(&ipqent_pool, q);
    533 	sorwakeup(so);
    534 	return (pkt_flags);
    535 }
    536 
    537 #ifdef INET6
    538 int
    539 tcp6_input(mp, offp, proto)
    540 	struct mbuf **mp;
    541 	int *offp, proto;
    542 {
    543 	struct mbuf *m = *mp;
    544 
    545 	/*
    546 	 * draft-itojun-ipv6-tcp-to-anycast
    547 	 * better place to put this in?
    548 	 */
    549 	if (m->m_flags & M_ANYCAST6) {
    550 		struct ip6_hdr *ip6;
    551 		if (m->m_len < sizeof(struct ip6_hdr)) {
    552 			if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
    553 				tcpstat.tcps_rcvshort++;
    554 				return IPPROTO_DONE;
    555 			}
    556 		}
    557 		ip6 = mtod(m, struct ip6_hdr *);
    558 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
    559 		    (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
    560 		return IPPROTO_DONE;
    561 	}
    562 
    563 	tcp_input(m, *offp, proto);
    564 	return IPPROTO_DONE;
    565 }
    566 #endif
    567 
    568 /*
    569  * TCP input routine, follows pages 65-76 of the
    570  * protocol specification dated September, 1981 very closely.
    571  */
    572 void
    573 #if __STDC__
    574 tcp_input(struct mbuf *m, ...)
    575 #else
    576 tcp_input(m, va_alist)
    577 	struct mbuf *m;
    578 #endif
    579 {
    580 	int proto;
    581 	struct tcphdr *th;
    582 	struct ip *ip;
    583 	struct inpcb *inp;
    584 #ifdef INET6
    585 	struct ip6_hdr *ip6;
    586 	struct in6pcb *in6p;
    587 #endif
    588 	caddr_t optp = NULL;
    589 	int optlen = 0;
    590 	int len, tlen, toff, hdroptlen = 0;
    591 	struct tcpcb *tp = 0;
    592 	int tiflags;
    593 	struct socket *so = NULL;
    594 	int todrop, acked, ourfinisacked, needoutput = 0;
    595 	short ostate = 0;
    596 	int iss = 0;
    597 	u_long tiwin;
    598 	struct tcp_opt_info opti;
    599 	int off, iphlen;
    600 	va_list ap;
    601 	int af;		/* af on the wire */
    602 	struct mbuf *tcp_saveti = NULL;
    603 
    604 	va_start(ap, m);
    605 	toff = va_arg(ap, int);
    606 	proto = va_arg(ap, int);
    607 	va_end(ap);
    608 
    609 	tcpstat.tcps_rcvtotal++;
    610 
    611 	bzero(&opti, sizeof(opti));
    612 	opti.ts_present = 0;
    613 	opti.maxseg = 0;
    614 
    615 	/*
    616 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
    617 	 *
    618 	 * TCP is, by definition, unicast, so we reject all
    619 	 * multicast outright.
    620 	 *
    621 	 * Note, there are additional src/dst address checks in
    622 	 * the AF-specific code below.
    623 	 */
    624 	if (m->m_flags & (M_BCAST|M_MCAST)) {
    625 		/* XXX stat */
    626 		goto drop;
    627 	}
    628 #ifdef INET6
    629 	if (m->m_flags & M_ANYCAST6) {
    630 		/* XXX stat */
    631 		goto drop;
    632 	}
    633 #endif
    634 
    635 	/*
    636 	 * Get IP and TCP header together in first mbuf.
    637 	 * Note: IP leaves IP header in first mbuf.
    638 	 */
    639 	ip = mtod(m, struct ip *);
    640 #ifdef INET6
    641 	ip6 = NULL;
    642 #endif
    643 	switch (ip->ip_v) {
    644 #ifdef INET
    645 	case 4:
    646 		af = AF_INET;
    647 		iphlen = sizeof(struct ip);
    648 #ifndef PULLDOWN_TEST
    649 		/* would like to get rid of this... */
    650 		if (toff > sizeof (struct ip)) {
    651 			ip_stripoptions(m, (struct mbuf *)0);
    652 			toff = sizeof(struct ip);
    653 		}
    654 		if (m->m_len < toff + sizeof (struct tcphdr)) {
    655 			if ((m = m_pullup(m, toff + sizeof (struct tcphdr))) == 0) {
    656 				tcpstat.tcps_rcvshort++;
    657 				return;
    658 			}
    659 		}
    660 		ip = mtod(m, struct ip *);
    661 		th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
    662 #else
    663 		ip = mtod(m, struct ip *);
    664 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
    665 			sizeof(struct tcphdr));
    666 		if (th == NULL) {
    667 			tcpstat.tcps_rcvshort++;
    668 			return;
    669 		}
    670 #endif
    671 
    672 		/*
    673 		 * Make sure destination address is not multicast.
    674 		 * Source address checked in ip_input().
    675 		 */
    676 		if (IN_MULTICAST(ip->ip_dst.s_addr)) {
    677 			/* XXX stat */
    678 			goto drop;
    679 		}
    680 
    681 		/* We do the checksum after PCB lookup... */
    682 		len = ip->ip_len;
    683 		tlen = len - toff;
    684 		break;
    685 #endif
    686 #ifdef INET6
    687 	case 6:
    688 		ip = NULL;
    689 		iphlen = sizeof(struct ip6_hdr);
    690 		af = AF_INET6;
    691 #ifndef PULLDOWN_TEST
    692 		if (m->m_len < toff + sizeof(struct tcphdr)) {
    693 			m = m_pullup(m, toff + sizeof(struct tcphdr));	/*XXX*/
    694 			if (m == NULL) {
    695 				tcpstat.tcps_rcvshort++;
    696 				return;
    697 			}
    698 		}
    699 		ip6 = mtod(m, struct ip6_hdr *);
    700 		th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
    701 #else
    702 		ip6 = mtod(m, struct ip6_hdr *);
    703 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
    704 			sizeof(struct tcphdr));
    705 		if (th == NULL) {
    706 			tcpstat.tcps_rcvshort++;
    707 			return;
    708 		}
    709 #endif
    710 
    711 		/* Be proactive about malicious use of IPv4 mapped address */
    712 		if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
    713 		    IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
    714 			/* XXX stat */
    715 			goto drop;
    716 		}
    717 
    718 		/*
    719 		 * Be proactive about unspecified IPv6 address in source.
    720 		 * As we use all-zero to indicate unbounded/unconnected pcb,
    721 		 * unspecified IPv6 address can be used to confuse us.
    722 		 *
    723 		 * Note that packets with unspecified IPv6 destination is
    724 		 * already dropped in ip6_input.
    725 		 */
    726 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
    727 			/* XXX stat */
    728 			goto drop;
    729 		}
    730 
    731 		/*
    732 		 * Make sure destination address is not multicast.
    733 		 * Source address checked in ip6_input().
    734 		 */
    735 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
    736 			/* XXX stat */
    737 			goto drop;
    738 		}
    739 
    740 		/* We do the checksum after PCB lookup... */
    741 		len = m->m_pkthdr.len;
    742 		tlen = len - toff;
    743 		break;
    744 #endif
    745 	default:
    746 		m_freem(m);
    747 		return;
    748 	}
    749 
    750 	/*
    751 	 * Check that TCP offset makes sense,
    752 	 * pull out TCP options and adjust length.		XXX
    753 	 */
    754 	off = th->th_off << 2;
    755 	if (off < sizeof (struct tcphdr) || off > tlen) {
    756 		tcpstat.tcps_rcvbadoff++;
    757 		goto drop;
    758 	}
    759 	tlen -= off;
    760 
    761 	/*
    762 	 * tcp_input() has been modified to use tlen to mean the TCP data
    763 	 * length throughout the function.  Other functions can use
    764 	 * m->m_pkthdr.len as the basis for calculating the TCP data length.
    765 	 * rja
    766 	 */
    767 
    768 	if (off > sizeof (struct tcphdr)) {
    769 #ifndef PULLDOWN_TEST
    770 		if (m->m_len < toff + off) {
    771 			if ((m = m_pullup(m, toff + off)) == 0) {
    772 				tcpstat.tcps_rcvshort++;
    773 				return;
    774 			}
    775 			switch (af) {
    776 #ifdef INET
    777 			case AF_INET:
    778 				ip = mtod(m, struct ip *);
    779 				break;
    780 #endif
    781 #ifdef INET6
    782 			case AF_INET6:
    783 				ip6 = mtod(m, struct ip6_hdr *);
    784 				break;
    785 #endif
    786 			}
    787 			th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
    788 		}
    789 #else
    790 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
    791 		if (th == NULL) {
    792 			tcpstat.tcps_rcvshort++;
    793 			return;
    794 		}
    795 		/*
    796 		 * NOTE: ip/ip6 will not be affected by m_pulldown()
    797 		 * (as they're before toff) and we don't need to update those.
    798 		 */
    799 #endif
    800 		optlen = off - sizeof (struct tcphdr);
    801 		optp = ((caddr_t)th) + sizeof(struct tcphdr);
    802 		/*
    803 		 * Do quick retrieval of timestamp options ("options
    804 		 * prediction?").  If timestamp is the only option and it's
    805 		 * formatted as recommended in RFC 1323 appendix A, we
    806 		 * quickly get the values now and not bother calling
    807 		 * tcp_dooptions(), etc.
    808 		 */
    809 		if ((optlen == TCPOLEN_TSTAMP_APPA ||
    810 		     (optlen > TCPOLEN_TSTAMP_APPA &&
    811 			optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
    812 		     *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
    813 		     (th->th_flags & TH_SYN) == 0) {
    814 			opti.ts_present = 1;
    815 			opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
    816 			opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
    817 			optp = NULL;	/* we've parsed the options */
    818 		}
    819 	}
    820 	tiflags = th->th_flags;
    821 
    822 	/*
    823 	 * Locate pcb for segment.
    824 	 */
    825 findpcb:
    826 	inp = NULL;
    827 #ifdef INET6
    828 	in6p = NULL;
    829 #endif
    830 	switch (af) {
    831 #ifdef INET
    832 	case AF_INET:
    833 		inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
    834 		    ip->ip_dst, th->th_dport);
    835 		if (inp == 0) {
    836 			++tcpstat.tcps_pcbhashmiss;
    837 			inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
    838 		}
    839 #ifdef INET6
    840 		if (inp == 0) {
    841 			struct in6_addr s, d;
    842 
    843 			/* mapped addr case */
    844 			bzero(&s, sizeof(s));
    845 			s.s6_addr16[5] = htons(0xffff);
    846 			bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
    847 			bzero(&d, sizeof(d));
    848 			d.s6_addr16[5] = htons(0xffff);
    849 			bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
    850 			in6p = in6_pcblookup_connect(&tcb6, &s, th->th_sport,
    851 				&d, th->th_dport, 0);
    852 			if (in6p == 0) {
    853 				++tcpstat.tcps_pcbhashmiss;
    854 				in6p = in6_pcblookup_bind(&tcb6, &d,
    855 					th->th_dport, 0);
    856 			}
    857 		}
    858 #endif
    859 #ifndef INET6
    860 		if (inp == 0)
    861 #else
    862 		if (inp == 0 && in6p == 0)
    863 #endif
    864 		{
    865 			++tcpstat.tcps_noport;
    866 			if (tcp_log_refused && (tiflags & TH_SYN)) {
    867 #ifndef INET6
    868 				char src[4*sizeof "123"];
    869 				char dst[4*sizeof "123"];
    870 #else
    871 				char src[INET6_ADDRSTRLEN];
    872 				char dst[INET6_ADDRSTRLEN];
    873 #endif
    874 				if (ip) {
    875 					strcpy(src, inet_ntoa(ip->ip_src));
    876 					strcpy(dst, inet_ntoa(ip->ip_dst));
    877 				}
    878 #ifdef INET6
    879 				else if (ip6) {
    880 					strcpy(src, ip6_sprintf(&ip6->ip6_src));
    881 					strcpy(dst, ip6_sprintf(&ip6->ip6_dst));
    882 				}
    883 #endif
    884 				else {
    885 					strcpy(src, "(unknown)");
    886 					strcpy(dst, "(unknown)");
    887 				}
    888 				log(LOG_INFO,
    889 				    "Connection attempt to TCP %s:%d from %s:%d\n",
    890 				    dst, ntohs(th->th_dport),
    891 				    src, ntohs(th->th_sport));
    892 			}
    893 			TCP_FIELDS_TO_HOST(th);
    894 			goto dropwithreset_ratelim;
    895 		}
    896 #ifdef IPSEC
    897 		if (inp && ipsec4_in_reject(m, inp)) {
    898 			ipsecstat.in_polvio++;
    899 			goto drop;
    900 		}
    901 #ifdef INET6
    902 		else if (in6p && ipsec4_in_reject_so(m, in6p->in6p_socket)) {
    903 			ipsecstat.in_polvio++;
    904 			goto drop;
    905 		}
    906 #endif
    907 #endif /*IPSEC*/
    908 		break;
    909 #endif /*INET*/
    910 #ifdef INET6
    911 	case AF_INET6:
    912 	    {
    913 		int faith;
    914 
    915 #if defined(NFAITH) && NFAITH > 0
    916 		faith = faithprefix(&ip6->ip6_dst);
    917 #else
    918 		faith = 0;
    919 #endif
    920 		in6p = in6_pcblookup_connect(&tcb6, &ip6->ip6_src, th->th_sport,
    921 			&ip6->ip6_dst, th->th_dport, faith);
    922 		if (in6p == NULL) {
    923 			++tcpstat.tcps_pcbhashmiss;
    924 			in6p = in6_pcblookup_bind(&tcb6, &ip6->ip6_dst,
    925 				th->th_dport, faith);
    926 		}
    927 		if (in6p == NULL) {
    928 			++tcpstat.tcps_noport;
    929 			TCP_FIELDS_TO_HOST(th);
    930 			goto dropwithreset_ratelim;
    931 		}
    932 #ifdef IPSEC
    933 		if (ipsec6_in_reject(m, in6p)) {
    934 			ipsec6stat.in_polvio++;
    935 			goto drop;
    936 		}
    937 #endif /*IPSEC*/
    938 		break;
    939 	    }
    940 #endif
    941 	}
    942 
    943 	/*
    944 	 * If the state is CLOSED (i.e., TCB does not exist) then
    945 	 * all data in the incoming segment is discarded.
    946 	 * If the TCB exists but is in CLOSED state, it is embryonic,
    947 	 * but should either do a listen or a connect soon.
    948 	 */
    949 	tp = NULL;
    950 	so = NULL;
    951 	if (inp) {
    952 		tp = intotcpcb(inp);
    953 		so = inp->inp_socket;
    954 	}
    955 #ifdef INET6
    956 	else if (in6p) {
    957 		tp = in6totcpcb(in6p);
    958 		so = in6p->in6p_socket;
    959 	}
    960 #endif
    961 	if (tp == 0) {
    962 		TCP_FIELDS_TO_HOST(th);
    963 		goto dropwithreset_ratelim;
    964 	}
    965 	if (tp->t_state == TCPS_CLOSED)
    966 		goto drop;
    967 
    968 	/*
    969 	 * Checksum extended TCP header and data.
    970 	 */
    971 	switch (af) {
    972 #ifdef INET
    973 	case AF_INET:
    974 		switch (m->m_pkthdr.csum_flags &
    975 			((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
    976 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
    977 		case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
    978 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
    979 			goto badcsum;
    980 
    981 		case M_CSUM_TCPv4|M_CSUM_DATA:
    982 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
    983 			if ((m->m_pkthdr.csum_data ^ 0xffff) != 0)
    984 				goto badcsum;
    985 			break;
    986 
    987 		case M_CSUM_TCPv4:
    988 			/* Checksum was okay. */
    989 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
    990 			break;
    991 
    992 		default:
    993 			/* Must compute it ourselves. */
    994 			TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
    995 #ifndef PULLDOWN_TEST
    996 		    {
    997 			struct ipovly *ipov;
    998 			ipov = (struct ipovly *)ip;
    999 			bzero(ipov->ih_x1, sizeof ipov->ih_x1);
   1000 			ipov->ih_len = htons(tlen + off);
   1001 
   1002 			if (in_cksum(m, len) != 0)
   1003 				goto badcsum;
   1004 		    }
   1005 #else
   1006 			if (in4_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0)
   1007 				goto badcsum;
   1008 #endif /* ! PULLDOWN_TEST */
   1009 			break;
   1010 		}
   1011 		break;
   1012 #endif /* INET4 */
   1013 
   1014 #ifdef INET6
   1015 	case AF_INET6:
   1016 		if (in6_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0)
   1017 			goto badcsum;
   1018 		break;
   1019 #endif /* INET6 */
   1020 	}
   1021 
   1022 	TCP_FIELDS_TO_HOST(th);
   1023 
   1024 	/* Unscale the window into a 32-bit value. */
   1025 	if ((tiflags & TH_SYN) == 0)
   1026 		tiwin = th->th_win << tp->snd_scale;
   1027 	else
   1028 		tiwin = th->th_win;
   1029 
   1030 #ifdef INET6
   1031 	/* save packet options if user wanted */
   1032 	if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
   1033 		if (in6p->in6p_options) {
   1034 			m_freem(in6p->in6p_options);
   1035 			in6p->in6p_options = 0;
   1036 		}
   1037 		ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
   1038 	}
   1039 #endif
   1040 
   1041 	if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
   1042 		union syn_cache_sa src;
   1043 		union syn_cache_sa dst;
   1044 
   1045 		bzero(&src, sizeof(src));
   1046 		bzero(&dst, sizeof(dst));
   1047 		switch (af) {
   1048 #ifdef INET
   1049 		case AF_INET:
   1050 			src.sin.sin_len = sizeof(struct sockaddr_in);
   1051 			src.sin.sin_family = AF_INET;
   1052 			src.sin.sin_addr = ip->ip_src;
   1053 			src.sin.sin_port = th->th_sport;
   1054 
   1055 			dst.sin.sin_len = sizeof(struct sockaddr_in);
   1056 			dst.sin.sin_family = AF_INET;
   1057 			dst.sin.sin_addr = ip->ip_dst;
   1058 			dst.sin.sin_port = th->th_dport;
   1059 			break;
   1060 #endif
   1061 #ifdef INET6
   1062 		case AF_INET6:
   1063 			src.sin6.sin6_len = sizeof(struct sockaddr_in6);
   1064 			src.sin6.sin6_family = AF_INET6;
   1065 			src.sin6.sin6_addr = ip6->ip6_src;
   1066 			src.sin6.sin6_port = th->th_sport;
   1067 
   1068 			dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
   1069 			dst.sin6.sin6_family = AF_INET6;
   1070 			dst.sin6.sin6_addr = ip6->ip6_dst;
   1071 			dst.sin6.sin6_port = th->th_dport;
   1072 			break;
   1073 #endif /* INET6 */
   1074 		default:
   1075 			goto badsyn;	/*sanity*/
   1076 		}
   1077 
   1078 		if (so->so_options & SO_DEBUG) {
   1079 			ostate = tp->t_state;
   1080 
   1081 			tcp_saveti = NULL;
   1082 			if (iphlen + sizeof(struct tcphdr) > MHLEN)
   1083 				goto nosave;
   1084 
   1085 			if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
   1086 				tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
   1087 				if (!tcp_saveti)
   1088 					goto nosave;
   1089 			} else {
   1090 				MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
   1091 				if (!tcp_saveti)
   1092 					goto nosave;
   1093 				tcp_saveti->m_len = iphlen;
   1094 				m_copydata(m, 0, iphlen,
   1095 				    mtod(tcp_saveti, caddr_t));
   1096 			}
   1097 
   1098 			if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
   1099 				m_freem(tcp_saveti);
   1100 				tcp_saveti = NULL;
   1101 			} else {
   1102 				tcp_saveti->m_len += sizeof(struct tcphdr);
   1103 				bcopy(th, mtod(tcp_saveti, caddr_t) + iphlen,
   1104 				    sizeof(struct tcphdr));
   1105 			}
   1106 			if (tcp_saveti) {
   1107 				/*
   1108 				 * need to recover version # field, which was
   1109 				 * overwritten on ip_cksum computation.
   1110 				 */
   1111 				struct ip *sip;
   1112 				sip = mtod(tcp_saveti, struct ip *);
   1113 				switch (af) {
   1114 #ifdef INET
   1115 				case AF_INET:
   1116 					sip->ip_v = 4;
   1117 					break;
   1118 #endif
   1119 #ifdef INET6
   1120 				case AF_INET6:
   1121 					sip->ip_v = 6;
   1122 					break;
   1123 #endif
   1124 				}
   1125 			}
   1126 	nosave:;
   1127 		}
   1128 		if (so->so_options & SO_ACCEPTCONN) {
   1129   			if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
   1130 				if (tiflags & TH_RST) {
   1131 					syn_cache_reset(&src.sa, &dst.sa, th);
   1132 				} else if ((tiflags & (TH_ACK|TH_SYN)) ==
   1133 				    (TH_ACK|TH_SYN)) {
   1134 					/*
   1135 					 * Received a SYN,ACK.  This should
   1136 					 * never happen while we are in
   1137 					 * LISTEN.  Send an RST.
   1138 					 */
   1139 					goto badsyn;
   1140 				} else if (tiflags & TH_ACK) {
   1141 					so = syn_cache_get(&src.sa, &dst.sa,
   1142 						th, toff, tlen, so, m);
   1143 					if (so == NULL) {
   1144 						/*
   1145 						 * We don't have a SYN for
   1146 						 * this ACK; send an RST.
   1147 						 */
   1148 						goto badsyn;
   1149 					} else if (so ==
   1150 					    (struct socket *)(-1)) {
   1151 						/*
   1152 						 * We were unable to create
   1153 						 * the connection.  If the
   1154 						 * 3-way handshake was
   1155 						 * completed, and RST has
   1156 						 * been sent to the peer.
   1157 						 * Since the mbuf might be
   1158 						 * in use for the reply,
   1159 						 * do not free it.
   1160 						 */
   1161 						m = NULL;
   1162 					} else {
   1163 						/*
   1164 						 * We have created a
   1165 						 * full-blown connection.
   1166 						 */
   1167 						tp = NULL;
   1168 						inp = NULL;
   1169 #ifdef INET6
   1170 						in6p = NULL;
   1171 #endif
   1172 						switch (so->so_proto->pr_domain->dom_family) {
   1173 #ifdef INET
   1174 						case AF_INET:
   1175 							inp = sotoinpcb(so);
   1176 							tp = intotcpcb(inp);
   1177 							break;
   1178 #endif
   1179 #ifdef INET6
   1180 						case AF_INET6:
   1181 							in6p = sotoin6pcb(so);
   1182 							tp = in6totcpcb(in6p);
   1183 							break;
   1184 #endif
   1185 						}
   1186 						if (tp == NULL)
   1187 							goto badsyn;	/*XXX*/
   1188 						tiwin <<= tp->snd_scale;
   1189 						goto after_listen;
   1190 					}
   1191   				} else {
   1192 					/*
   1193 					 * None of RST, SYN or ACK was set.
   1194 					 * This is an invalid packet for a
   1195 					 * TCB in LISTEN state.  Send a RST.
   1196 					 */
   1197 					goto badsyn;
   1198 				}
   1199   			} else {
   1200 				/*
   1201 				 * Received a SYN.
   1202 				 */
   1203 
   1204 				/*
   1205 				 * LISTEN socket received a SYN
   1206 				 * from itself?  This can't possibly
   1207 				 * be valid; drop the packet.
   1208 				 */
   1209 				if (th->th_sport == th->th_dport) {
   1210 					int i;
   1211 
   1212 					switch (af) {
   1213 #ifdef INET
   1214 					case AF_INET:
   1215 						i = in_hosteq(ip->ip_src, ip->ip_dst);
   1216 						break;
   1217 #endif
   1218 #ifdef INET6
   1219 					case AF_INET6:
   1220 						i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
   1221 						break;
   1222 #endif
   1223 					default:
   1224 						i = 1;
   1225 					}
   1226 					if (i) {
   1227 						tcpstat.tcps_badsyn++;
   1228 						goto drop;
   1229 					}
   1230 				}
   1231 
   1232 				/*
   1233 				 * SYN looks ok; create compressed TCP
   1234 				 * state for it.
   1235 				 */
   1236 				if (so->so_qlen <= so->so_qlimit &&
   1237 				    syn_cache_add(&src.sa, &dst.sa, th, tlen,
   1238 						so, m, optp, optlen, &opti))
   1239 					m = NULL;
   1240 			}
   1241 			goto drop;
   1242 		}
   1243 	}
   1244 
   1245 after_listen:
   1246 #ifdef DIAGNOSTIC
   1247 	/*
   1248 	 * Should not happen now that all embryonic connections
   1249 	 * are handled with compressed state.
   1250 	 */
   1251 	if (tp->t_state == TCPS_LISTEN)
   1252 		panic("tcp_input: TCPS_LISTEN");
   1253 #endif
   1254 
   1255 	/*
   1256 	 * Segment received on connection.
   1257 	 * Reset idle time and keep-alive timer.
   1258 	 */
   1259 	tp->t_rcvtime = tcp_now;
   1260 	if (TCPS_HAVEESTABLISHED(tp->t_state))
   1261 		TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
   1262 
   1263 	/*
   1264 	 * Process options.
   1265 	 */
   1266 	if (optp)
   1267 		tcp_dooptions(tp, optp, optlen, th, &opti);
   1268 
   1269 	/*
   1270 	 * Header prediction: check for the two common cases
   1271 	 * of a uni-directional data xfer.  If the packet has
   1272 	 * no control flags, is in-sequence, the window didn't
   1273 	 * change and we're not retransmitting, it's a
   1274 	 * candidate.  If the length is zero and the ack moved
   1275 	 * forward, we're the sender side of the xfer.  Just
   1276 	 * free the data acked & wake any higher level process
   1277 	 * that was blocked waiting for space.  If the length
   1278 	 * is non-zero and the ack didn't move, we're the
   1279 	 * receiver side.  If we're getting packets in-order
   1280 	 * (the reassembly queue is empty), add the data to
   1281 	 * the socket buffer and note that we need a delayed ack.
   1282 	 */
   1283 	if (tp->t_state == TCPS_ESTABLISHED &&
   1284 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
   1285 	    (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
   1286 	    th->th_seq == tp->rcv_nxt &&
   1287 	    tiwin && tiwin == tp->snd_wnd &&
   1288 	    tp->snd_nxt == tp->snd_max) {
   1289 
   1290 		/*
   1291 		 * If last ACK falls within this segment's sequence numbers,
   1292 		 *  record the timestamp.
   1293 		 */
   1294 		if (opti.ts_present &&
   1295 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
   1296 		    SEQ_LT(tp->last_ack_sent, th->th_seq + tlen)) {
   1297 			tp->ts_recent_age = TCP_TIMESTAMP(tp);
   1298 			tp->ts_recent = opti.ts_val;
   1299 		}
   1300 
   1301 		if (tlen == 0) {
   1302 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
   1303 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
   1304 			    tp->snd_cwnd >= tp->snd_wnd &&
   1305 			    tp->t_dupacks < tcprexmtthresh) {
   1306 				/*
   1307 				 * this is a pure ack for outstanding data.
   1308 				 */
   1309 				++tcpstat.tcps_predack;
   1310 				if (opti.ts_present && opti.ts_ecr)
   1311 					tcp_xmit_timer(tp,
   1312 					  TCP_TIMESTAMP(tp) - opti.ts_ecr + 1);
   1313 				else if (tp->t_rtttime &&
   1314 				    SEQ_GT(th->th_ack, tp->t_rtseq))
   1315 					tcp_xmit_timer(tp,
   1316 					tcp_now - tp->t_rtttime);
   1317 				acked = th->th_ack - tp->snd_una;
   1318 				tcpstat.tcps_rcvackpack++;
   1319 				tcpstat.tcps_rcvackbyte += acked;
   1320 				ND6_HINT(tp);
   1321 				sbdrop(&so->so_snd, acked);
   1322 				/*
   1323 				 * We want snd_recover to track snd_una to
   1324 				 * avoid sequence wraparound problems for
   1325 				 * very large transfers.
   1326 				 */
   1327 				tp->snd_una = tp->snd_recover = th->th_ack;
   1328 				m_freem(m);
   1329 
   1330 				/*
   1331 				 * If all outstanding data are acked, stop
   1332 				 * retransmit timer, otherwise restart timer
   1333 				 * using current (possibly backed-off) value.
   1334 				 * If process is waiting for space,
   1335 				 * wakeup/selwakeup/signal.  If data
   1336 				 * are ready to send, let tcp_output
   1337 				 * decide between more output or persist.
   1338 				 */
   1339 				if (tp->snd_una == tp->snd_max)
   1340 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
   1341 				else if (TCP_TIMER_ISARMED(tp,
   1342 				    TCPT_PERSIST) == 0)
   1343 					TCP_TIMER_ARM(tp, TCPT_REXMT,
   1344 					    tp->t_rxtcur);
   1345 
   1346 				sowwakeup(so);
   1347 				if (so->so_snd.sb_cc)
   1348 					(void) tcp_output(tp);
   1349 				if (tcp_saveti)
   1350 					m_freem(tcp_saveti);
   1351 				return;
   1352 			}
   1353 		} else if (th->th_ack == tp->snd_una &&
   1354 		    LIST_FIRST(&tp->segq) == NULL &&
   1355 		    tlen <= sbspace(&so->so_rcv)) {
   1356 			/*
   1357 			 * this is a pure, in-sequence data packet
   1358 			 * with nothing on the reassembly queue and
   1359 			 * we have enough buffer space to take it.
   1360 			 */
   1361 			++tcpstat.tcps_preddat;
   1362 			tp->rcv_nxt += tlen;
   1363 			tcpstat.tcps_rcvpack++;
   1364 			tcpstat.tcps_rcvbyte += tlen;
   1365 			ND6_HINT(tp);
   1366 			/*
   1367 			 * Drop TCP, IP headers and TCP options then add data
   1368 			 * to socket buffer.
   1369 			 */
   1370 			m_adj(m, toff + off);
   1371 			sbappend(&so->so_rcv, m);
   1372 			sorwakeup(so);
   1373 			TCP_SETUP_ACK(tp, th);
   1374 			if (tp->t_flags & TF_ACKNOW)
   1375 				(void) tcp_output(tp);
   1376 			if (tcp_saveti)
   1377 				m_freem(tcp_saveti);
   1378 			return;
   1379 		}
   1380 	}
   1381 
   1382 	/*
   1383 	 * Compute mbuf offset to TCP data segment.
   1384 	 */
   1385 	hdroptlen = toff + off;
   1386 
   1387 	/*
   1388 	 * Calculate amount of space in receive window,
   1389 	 * and then do TCP input processing.
   1390 	 * Receive window is amount of space in rcv queue,
   1391 	 * but not less than advertised window.
   1392 	 */
   1393 	{ int win;
   1394 
   1395 	win = sbspace(&so->so_rcv);
   1396 	if (win < 0)
   1397 		win = 0;
   1398 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
   1399 	}
   1400 
   1401 	switch (tp->t_state) {
   1402 
   1403 	/*
   1404 	 * If the state is SYN_SENT:
   1405 	 *	if seg contains an ACK, but not for our SYN, drop the input.
   1406 	 *	if seg contains a RST, then drop the connection.
   1407 	 *	if seg does not contain SYN, then drop it.
   1408 	 * Otherwise this is an acceptable SYN segment
   1409 	 *	initialize tp->rcv_nxt and tp->irs
   1410 	 *	if seg contains ack then advance tp->snd_una
   1411 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
   1412 	 *	arrange for segment to be acked (eventually)
   1413 	 *	continue processing rest of data/controls, beginning with URG
   1414 	 */
   1415 	case TCPS_SYN_SENT:
   1416 		if ((tiflags & TH_ACK) &&
   1417 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
   1418 		     SEQ_GT(th->th_ack, tp->snd_max)))
   1419 			goto dropwithreset;
   1420 		if (tiflags & TH_RST) {
   1421 			if (tiflags & TH_ACK)
   1422 				tp = tcp_drop(tp, ECONNREFUSED);
   1423 			goto drop;
   1424 		}
   1425 		if ((tiflags & TH_SYN) == 0)
   1426 			goto drop;
   1427 		if (tiflags & TH_ACK) {
   1428 			tp->snd_una = tp->snd_recover = th->th_ack;
   1429 			if (SEQ_LT(tp->snd_nxt, tp->snd_una))
   1430 				tp->snd_nxt = tp->snd_una;
   1431 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
   1432 		}
   1433 		tp->irs = th->th_seq;
   1434 		tcp_rcvseqinit(tp);
   1435 		tp->t_flags |= TF_ACKNOW;
   1436 		tcp_mss_from_peer(tp, opti.maxseg);
   1437 
   1438 		/*
   1439 		 * Initialize the initial congestion window.  If we
   1440 		 * had to retransmit the SYN, we must initialize cwnd
   1441 		 * to 1 segment (i.e. the Loss Window).
   1442 		 */
   1443 		if (tp->t_flags & TF_SYN_REXMT)
   1444 			tp->snd_cwnd = tp->t_peermss;
   1445 		else
   1446 			tp->snd_cwnd = TCP_INITIAL_WINDOW(tcp_init_win,
   1447 			    tp->t_peermss);
   1448 
   1449 		tcp_rmx_rtt(tp);
   1450 		if (tiflags & TH_ACK) {
   1451 			tcpstat.tcps_connects++;
   1452 			soisconnected(so);
   1453 			tcp_established(tp);
   1454 			/* Do window scaling on this connection? */
   1455 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   1456 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
   1457 				tp->snd_scale = tp->requested_s_scale;
   1458 				tp->rcv_scale = tp->request_r_scale;
   1459 			}
   1460 			TCP_REASS_LOCK(tp);
   1461 			(void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
   1462 			TCP_REASS_UNLOCK(tp);
   1463 			/*
   1464 			 * if we didn't have to retransmit the SYN,
   1465 			 * use its rtt as our initial srtt & rtt var.
   1466 			 */
   1467 			if (tp->t_rtttime)
   1468 				tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
   1469 		} else
   1470 			tp->t_state = TCPS_SYN_RECEIVED;
   1471 
   1472 		/*
   1473 		 * Advance th->th_seq to correspond to first data byte.
   1474 		 * If data, trim to stay within window,
   1475 		 * dropping FIN if necessary.
   1476 		 */
   1477 		th->th_seq++;
   1478 		if (tlen > tp->rcv_wnd) {
   1479 			todrop = tlen - tp->rcv_wnd;
   1480 			m_adj(m, -todrop);
   1481 			tlen = tp->rcv_wnd;
   1482 			tiflags &= ~TH_FIN;
   1483 			tcpstat.tcps_rcvpackafterwin++;
   1484 			tcpstat.tcps_rcvbyteafterwin += todrop;
   1485 		}
   1486 		tp->snd_wl1 = th->th_seq - 1;
   1487 		tp->rcv_up = th->th_seq;
   1488 		goto step6;
   1489 
   1490 	/*
   1491 	 * If the state is SYN_RECEIVED:
   1492 	 *	If seg contains an ACK, but not for our SYN, drop the input
   1493 	 *	and generate an RST.  See page 36, rfc793
   1494 	 */
   1495 	case TCPS_SYN_RECEIVED:
   1496 		if ((tiflags & TH_ACK) &&
   1497 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
   1498 		     SEQ_GT(th->th_ack, tp->snd_max)))
   1499 			goto dropwithreset;
   1500 		break;
   1501 	}
   1502 
   1503 	/*
   1504 	 * States other than LISTEN or SYN_SENT.
   1505 	 * First check timestamp, if present.
   1506 	 * Then check that at least some bytes of segment are within
   1507 	 * receive window.  If segment begins before rcv_nxt,
   1508 	 * drop leading data (and SYN); if nothing left, just ack.
   1509 	 *
   1510 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
   1511 	 * and it's less than ts_recent, drop it.
   1512 	 */
   1513 	if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
   1514 	    TSTMP_LT(opti.ts_val, tp->ts_recent)) {
   1515 
   1516 		/* Check to see if ts_recent is over 24 days old.  */
   1517 		if ((int)(TCP_TIMESTAMP(tp) - tp->ts_recent_age) >
   1518 		    TCP_PAWS_IDLE) {
   1519 			/*
   1520 			 * Invalidate ts_recent.  If this segment updates
   1521 			 * ts_recent, the age will be reset later and ts_recent
   1522 			 * will get a valid value.  If it does not, setting
   1523 			 * ts_recent to zero will at least satisfy the
   1524 			 * requirement that zero be placed in the timestamp
   1525 			 * echo reply when ts_recent isn't valid.  The
   1526 			 * age isn't reset until we get a valid ts_recent
   1527 			 * because we don't want out-of-order segments to be
   1528 			 * dropped when ts_recent is old.
   1529 			 */
   1530 			tp->ts_recent = 0;
   1531 		} else {
   1532 			tcpstat.tcps_rcvduppack++;
   1533 			tcpstat.tcps_rcvdupbyte += tlen;
   1534 			tcpstat.tcps_pawsdrop++;
   1535 			goto dropafterack;
   1536 		}
   1537 	}
   1538 
   1539 	todrop = tp->rcv_nxt - th->th_seq;
   1540 	if (todrop > 0) {
   1541 		if (tiflags & TH_SYN) {
   1542 			tiflags &= ~TH_SYN;
   1543 			th->th_seq++;
   1544 			if (th->th_urp > 1)
   1545 				th->th_urp--;
   1546 			else {
   1547 				tiflags &= ~TH_URG;
   1548 				th->th_urp = 0;
   1549 			}
   1550 			todrop--;
   1551 		}
   1552 		if (todrop > tlen ||
   1553 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
   1554 			/*
   1555 			 * Any valid FIN must be to the left of the window.
   1556 			 * At this point the FIN must be a duplicate or
   1557 			 * out of sequence; drop it.
   1558 			 */
   1559 			tiflags &= ~TH_FIN;
   1560 			/*
   1561 			 * Send an ACK to resynchronize and drop any data.
   1562 			 * But keep on processing for RST or ACK.
   1563 			 */
   1564 			tp->t_flags |= TF_ACKNOW;
   1565 			todrop = tlen;
   1566 			tcpstat.tcps_rcvdupbyte += todrop;
   1567 			tcpstat.tcps_rcvduppack++;
   1568 		} else {
   1569 			tcpstat.tcps_rcvpartduppack++;
   1570 			tcpstat.tcps_rcvpartdupbyte += todrop;
   1571 		}
   1572 		hdroptlen += todrop;	/*drop from head afterwards*/
   1573 		th->th_seq += todrop;
   1574 		tlen -= todrop;
   1575 		if (th->th_urp > todrop)
   1576 			th->th_urp -= todrop;
   1577 		else {
   1578 			tiflags &= ~TH_URG;
   1579 			th->th_urp = 0;
   1580 		}
   1581 	}
   1582 
   1583 	/*
   1584 	 * If new data are received on a connection after the
   1585 	 * user processes are gone, then RST the other end.
   1586 	 */
   1587 	if ((so->so_state & SS_NOFDREF) &&
   1588 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
   1589 		tp = tcp_close(tp);
   1590 		tcpstat.tcps_rcvafterclose++;
   1591 		goto dropwithreset;
   1592 	}
   1593 
   1594 	/*
   1595 	 * If segment ends after window, drop trailing data
   1596 	 * (and PUSH and FIN); if nothing left, just ACK.
   1597 	 */
   1598 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
   1599 	if (todrop > 0) {
   1600 		tcpstat.tcps_rcvpackafterwin++;
   1601 		if (todrop >= tlen) {
   1602 			tcpstat.tcps_rcvbyteafterwin += tlen;
   1603 			/*
   1604 			 * If a new connection request is received
   1605 			 * while in TIME_WAIT, drop the old connection
   1606 			 * and start over if the sequence numbers
   1607 			 * are above the previous ones.
   1608 			 */
   1609 			if (tiflags & TH_SYN &&
   1610 			    tp->t_state == TCPS_TIME_WAIT &&
   1611 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
   1612 				iss = tcp_new_iss(tp, tp->snd_nxt);
   1613 				tp = tcp_close(tp);
   1614 				goto findpcb;
   1615 			}
   1616 			/*
   1617 			 * If window is closed can only take segments at
   1618 			 * window edge, and have to drop data and PUSH from
   1619 			 * incoming segments.  Continue processing, but
   1620 			 * remember to ack.  Otherwise, drop segment
   1621 			 * and ack.
   1622 			 */
   1623 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
   1624 				tp->t_flags |= TF_ACKNOW;
   1625 				tcpstat.tcps_rcvwinprobe++;
   1626 			} else
   1627 				goto dropafterack;
   1628 		} else
   1629 			tcpstat.tcps_rcvbyteafterwin += todrop;
   1630 		m_adj(m, -todrop);
   1631 		tlen -= todrop;
   1632 		tiflags &= ~(TH_PUSH|TH_FIN);
   1633 	}
   1634 
   1635 	/*
   1636 	 * If last ACK falls within this segment's sequence numbers,
   1637 	 * and the timestamp is newer, record it.
   1638 	 */
   1639 	if (opti.ts_present && TSTMP_GEQ(opti.ts_val, tp->ts_recent) &&
   1640 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
   1641 	    SEQ_LT(tp->last_ack_sent, th->th_seq + tlen +
   1642 		   ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
   1643 		tp->ts_recent_age = TCP_TIMESTAMP(tp);
   1644 		tp->ts_recent = opti.ts_val;
   1645 	}
   1646 
   1647 	/*
   1648 	 * If the RST bit is set examine the state:
   1649 	 *    SYN_RECEIVED STATE:
   1650 	 *	If passive open, return to LISTEN state.
   1651 	 *	If active open, inform user that connection was refused.
   1652 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
   1653 	 *	Inform user that connection was reset, and close tcb.
   1654 	 *    CLOSING, LAST_ACK, TIME_WAIT STATES
   1655 	 *	Close the tcb.
   1656 	 */
   1657 	if (tiflags&TH_RST) switch (tp->t_state) {
   1658 
   1659 	case TCPS_SYN_RECEIVED:
   1660 		so->so_error = ECONNREFUSED;
   1661 		goto close;
   1662 
   1663 	case TCPS_ESTABLISHED:
   1664 	case TCPS_FIN_WAIT_1:
   1665 	case TCPS_FIN_WAIT_2:
   1666 	case TCPS_CLOSE_WAIT:
   1667 		so->so_error = ECONNRESET;
   1668 	close:
   1669 		tp->t_state = TCPS_CLOSED;
   1670 		tcpstat.tcps_drops++;
   1671 		tp = tcp_close(tp);
   1672 		goto drop;
   1673 
   1674 	case TCPS_CLOSING:
   1675 	case TCPS_LAST_ACK:
   1676 	case TCPS_TIME_WAIT:
   1677 		tp = tcp_close(tp);
   1678 		goto drop;
   1679 	}
   1680 
   1681 	/*
   1682 	 * If a SYN is in the window, then this is an
   1683 	 * error and we send an RST and drop the connection.
   1684 	 */
   1685 	if (tiflags & TH_SYN) {
   1686 		tp = tcp_drop(tp, ECONNRESET);
   1687 		goto dropwithreset;
   1688 	}
   1689 
   1690 	/*
   1691 	 * If the ACK bit is off we drop the segment and return.
   1692 	 */
   1693 	if ((tiflags & TH_ACK) == 0) {
   1694 		if (tp->t_flags & TF_ACKNOW)
   1695 			goto dropafterack;
   1696 		else
   1697 			goto drop;
   1698 	}
   1699 
   1700 	/*
   1701 	 * Ack processing.
   1702 	 */
   1703 	switch (tp->t_state) {
   1704 
   1705 	/*
   1706 	 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
   1707 	 * ESTABLISHED state and continue processing, otherwise
   1708 	 * send an RST.
   1709 	 */
   1710 	case TCPS_SYN_RECEIVED:
   1711 		if (SEQ_GT(tp->snd_una, th->th_ack) ||
   1712 		    SEQ_GT(th->th_ack, tp->snd_max))
   1713 			goto dropwithreset;
   1714 		tcpstat.tcps_connects++;
   1715 		soisconnected(so);
   1716 		tcp_established(tp);
   1717 		/* Do window scaling? */
   1718 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   1719 			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
   1720 			tp->snd_scale = tp->requested_s_scale;
   1721 			tp->rcv_scale = tp->request_r_scale;
   1722 		}
   1723 		TCP_REASS_LOCK(tp);
   1724 		(void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
   1725 		TCP_REASS_UNLOCK(tp);
   1726 		tp->snd_wl1 = th->th_seq - 1;
   1727 		/* fall into ... */
   1728 
   1729 	/*
   1730 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
   1731 	 * ACKs.  If the ack is in the range
   1732 	 *	tp->snd_una < th->th_ack <= tp->snd_max
   1733 	 * then advance tp->snd_una to th->th_ack and drop
   1734 	 * data from the retransmission queue.  If this ACK reflects
   1735 	 * more up to date window information we update our window information.
   1736 	 */
   1737 	case TCPS_ESTABLISHED:
   1738 	case TCPS_FIN_WAIT_1:
   1739 	case TCPS_FIN_WAIT_2:
   1740 	case TCPS_CLOSE_WAIT:
   1741 	case TCPS_CLOSING:
   1742 	case TCPS_LAST_ACK:
   1743 	case TCPS_TIME_WAIT:
   1744 
   1745 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
   1746 			if (tlen == 0 && tiwin == tp->snd_wnd) {
   1747 				tcpstat.tcps_rcvdupack++;
   1748 				/*
   1749 				 * If we have outstanding data (other than
   1750 				 * a window probe), this is a completely
   1751 				 * duplicate ack (ie, window info didn't
   1752 				 * change), the ack is the biggest we've
   1753 				 * seen and we've seen exactly our rexmt
   1754 				 * threshhold of them, assume a packet
   1755 				 * has been dropped and retransmit it.
   1756 				 * Kludge snd_nxt & the congestion
   1757 				 * window so we send only this one
   1758 				 * packet.
   1759 				 *
   1760 				 * We know we're losing at the current
   1761 				 * window size so do congestion avoidance
   1762 				 * (set ssthresh to half the current window
   1763 				 * and pull our congestion window back to
   1764 				 * the new ssthresh).
   1765 				 *
   1766 				 * Dup acks mean that packets have left the
   1767 				 * network (they're now cached at the receiver)
   1768 				 * so bump cwnd by the amount in the receiver
   1769 				 * to keep a constant cwnd packets in the
   1770 				 * network.
   1771 				 */
   1772 				if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
   1773 				    th->th_ack != tp->snd_una)
   1774 					tp->t_dupacks = 0;
   1775 				else if (++tp->t_dupacks == tcprexmtthresh) {
   1776 					tcp_seq onxt = tp->snd_nxt;
   1777 					u_int win =
   1778 					    min(tp->snd_wnd, tp->snd_cwnd) /
   1779 					    2 /	tp->t_segsz;
   1780 					if (tcp_do_newreno && SEQ_LT(th->th_ack,
   1781 					    tp->snd_recover)) {
   1782 						/*
   1783 						 * False fast retransmit after
   1784 						 * timeout.  Do not cut window.
   1785 						 */
   1786 						tp->snd_cwnd += tp->t_segsz;
   1787 						tp->t_dupacks = 0;
   1788 						(void) tcp_output(tp);
   1789 						goto drop;
   1790 					}
   1791 
   1792 					if (win < 2)
   1793 						win = 2;
   1794 					tp->snd_ssthresh = win * tp->t_segsz;
   1795 					tp->snd_recover = tp->snd_max;
   1796 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
   1797 					tp->t_rtttime = 0;
   1798 					tp->snd_nxt = th->th_ack;
   1799 					tp->snd_cwnd = tp->t_segsz;
   1800 					(void) tcp_output(tp);
   1801 					tp->snd_cwnd = tp->snd_ssthresh +
   1802 					       tp->t_segsz * tp->t_dupacks;
   1803 					if (SEQ_GT(onxt, tp->snd_nxt))
   1804 						tp->snd_nxt = onxt;
   1805 					goto drop;
   1806 				} else if (tp->t_dupacks > tcprexmtthresh) {
   1807 					tp->snd_cwnd += tp->t_segsz;
   1808 					(void) tcp_output(tp);
   1809 					goto drop;
   1810 				}
   1811 			} else
   1812 				tp->t_dupacks = 0;
   1813 			break;
   1814 		}
   1815 		/*
   1816 		 * If the congestion window was inflated to account
   1817 		 * for the other side's cached packets, retract it.
   1818 		 */
   1819 		if (tcp_do_newreno == 0) {
   1820 			if (tp->t_dupacks >= tcprexmtthresh &&
   1821 			    tp->snd_cwnd > tp->snd_ssthresh)
   1822 				tp->snd_cwnd = tp->snd_ssthresh;
   1823 			tp->t_dupacks = 0;
   1824 		} else if (tp->t_dupacks >= tcprexmtthresh &&
   1825 			   tcp_newreno(tp, th) == 0) {
   1826 			tp->snd_cwnd = tp->snd_ssthresh;
   1827 			/*
   1828 			 * Window inflation should have left us with approx.
   1829 			 * snd_ssthresh outstanding data.  But in case we
   1830 			 * would be inclined to send a burst, better to do
   1831 			 * it via the slow start mechanism.
   1832 			 */
   1833 			if (SEQ_SUB(tp->snd_max, th->th_ack) < tp->snd_ssthresh)
   1834 				tp->snd_cwnd = SEQ_SUB(tp->snd_max, th->th_ack)
   1835 				    + tp->t_segsz;
   1836 			tp->t_dupacks = 0;
   1837 		}
   1838 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
   1839 			tcpstat.tcps_rcvacktoomuch++;
   1840 			goto dropafterack;
   1841 		}
   1842 		acked = th->th_ack - tp->snd_una;
   1843 		tcpstat.tcps_rcvackpack++;
   1844 		tcpstat.tcps_rcvackbyte += acked;
   1845 
   1846 		/*
   1847 		 * If we have a timestamp reply, update smoothed
   1848 		 * round trip time.  If no timestamp is present but
   1849 		 * transmit timer is running and timed sequence
   1850 		 * number was acked, update smoothed round trip time.
   1851 		 * Since we now have an rtt measurement, cancel the
   1852 		 * timer backoff (cf., Phil Karn's retransmit alg.).
   1853 		 * Recompute the initial retransmit timer.
   1854 		 */
   1855 		if (opti.ts_present && opti.ts_ecr)
   1856 			tcp_xmit_timer(tp, TCP_TIMESTAMP(tp) - opti.ts_ecr + 1);
   1857 		else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
   1858 			tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
   1859 
   1860 		/*
   1861 		 * If all outstanding data is acked, stop retransmit
   1862 		 * timer and remember to restart (more output or persist).
   1863 		 * If there is more data to be acked, restart retransmit
   1864 		 * timer, using current (possibly backed-off) value.
   1865 		 */
   1866 		if (th->th_ack == tp->snd_max) {
   1867 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
   1868 			needoutput = 1;
   1869 		} else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
   1870 			TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
   1871 		/*
   1872 		 * When new data is acked, open the congestion window.
   1873 		 * If the window gives us less than ssthresh packets
   1874 		 * in flight, open exponentially (segsz per packet).
   1875 		 * Otherwise open linearly: segsz per window
   1876 		 * (segsz^2 / cwnd per packet), plus a constant
   1877 		 * fraction of a packet (segsz/8) to help larger windows
   1878 		 * open quickly enough.
   1879 		 */
   1880 		{
   1881 		u_int cw = tp->snd_cwnd;
   1882 		u_int incr = tp->t_segsz;
   1883 
   1884 		if (cw > tp->snd_ssthresh)
   1885 			incr = incr * incr / cw;
   1886 		if (tcp_do_newreno == 0 || SEQ_GEQ(th->th_ack, tp->snd_recover))
   1887 			tp->snd_cwnd = min(cw + incr,
   1888 			    TCP_MAXWIN << tp->snd_scale);
   1889 		}
   1890 		ND6_HINT(tp);
   1891 		if (acked > so->so_snd.sb_cc) {
   1892 			tp->snd_wnd -= so->so_snd.sb_cc;
   1893 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
   1894 			ourfinisacked = 1;
   1895 		} else {
   1896 			sbdrop(&so->so_snd, acked);
   1897 			tp->snd_wnd -= acked;
   1898 			ourfinisacked = 0;
   1899 		}
   1900 		sowwakeup(so);
   1901 		/*
   1902 		 * We want snd_recover to track snd_una to
   1903 		 * avoid sequence wraparound problems for
   1904 		 * very large transfers.
   1905 		 */
   1906 		tp->snd_una = tp->snd_recover = th->th_ack;
   1907 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
   1908 			tp->snd_nxt = tp->snd_una;
   1909 
   1910 		switch (tp->t_state) {
   1911 
   1912 		/*
   1913 		 * In FIN_WAIT_1 STATE in addition to the processing
   1914 		 * for the ESTABLISHED state if our FIN is now acknowledged
   1915 		 * then enter FIN_WAIT_2.
   1916 		 */
   1917 		case TCPS_FIN_WAIT_1:
   1918 			if (ourfinisacked) {
   1919 				/*
   1920 				 * If we can't receive any more
   1921 				 * data, then closing user can proceed.
   1922 				 * Starting the timer is contrary to the
   1923 				 * specification, but if we don't get a FIN
   1924 				 * we'll hang forever.
   1925 				 */
   1926 				if (so->so_state & SS_CANTRCVMORE) {
   1927 					soisdisconnected(so);
   1928 					if (tcp_maxidle > 0)
   1929 						TCP_TIMER_ARM(tp, TCPT_2MSL,
   1930 						    tcp_maxidle);
   1931 				}
   1932 				tp->t_state = TCPS_FIN_WAIT_2;
   1933 			}
   1934 			break;
   1935 
   1936 	 	/*
   1937 		 * In CLOSING STATE in addition to the processing for
   1938 		 * the ESTABLISHED state if the ACK acknowledges our FIN
   1939 		 * then enter the TIME-WAIT state, otherwise ignore
   1940 		 * the segment.
   1941 		 */
   1942 		case TCPS_CLOSING:
   1943 			if (ourfinisacked) {
   1944 				tp->t_state = TCPS_TIME_WAIT;
   1945 				tcp_canceltimers(tp);
   1946 				TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
   1947 				soisdisconnected(so);
   1948 			}
   1949 			break;
   1950 
   1951 		/*
   1952 		 * In LAST_ACK, we may still be waiting for data to drain
   1953 		 * and/or to be acked, as well as for the ack of our FIN.
   1954 		 * If our FIN is now acknowledged, delete the TCB,
   1955 		 * enter the closed state and return.
   1956 		 */
   1957 		case TCPS_LAST_ACK:
   1958 			if (ourfinisacked) {
   1959 				tp = tcp_close(tp);
   1960 				goto drop;
   1961 			}
   1962 			break;
   1963 
   1964 		/*
   1965 		 * In TIME_WAIT state the only thing that should arrive
   1966 		 * is a retransmission of the remote FIN.  Acknowledge
   1967 		 * it and restart the finack timer.
   1968 		 */
   1969 		case TCPS_TIME_WAIT:
   1970 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
   1971 			goto dropafterack;
   1972 		}
   1973 	}
   1974 
   1975 step6:
   1976 	/*
   1977 	 * Update window information.
   1978 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
   1979 	 */
   1980 	if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
   1981 	    (tp->snd_wl1 == th->th_seq && SEQ_LT(tp->snd_wl2, th->th_ack)) ||
   1982 	    (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))) {
   1983 		/* keep track of pure window updates */
   1984 		if (tlen == 0 &&
   1985 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
   1986 			tcpstat.tcps_rcvwinupd++;
   1987 		tp->snd_wnd = tiwin;
   1988 		tp->snd_wl1 = th->th_seq;
   1989 		tp->snd_wl2 = th->th_ack;
   1990 		if (tp->snd_wnd > tp->max_sndwnd)
   1991 			tp->max_sndwnd = tp->snd_wnd;
   1992 		needoutput = 1;
   1993 	}
   1994 
   1995 	/*
   1996 	 * Process segments with URG.
   1997 	 */
   1998 	if ((tiflags & TH_URG) && th->th_urp &&
   1999 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   2000 		/*
   2001 		 * This is a kludge, but if we receive and accept
   2002 		 * random urgent pointers, we'll crash in
   2003 		 * soreceive.  It's hard to imagine someone
   2004 		 * actually wanting to send this much urgent data.
   2005 		 */
   2006 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
   2007 			th->th_urp = 0;			/* XXX */
   2008 			tiflags &= ~TH_URG;		/* XXX */
   2009 			goto dodata;			/* XXX */
   2010 		}
   2011 		/*
   2012 		 * If this segment advances the known urgent pointer,
   2013 		 * then mark the data stream.  This should not happen
   2014 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
   2015 		 * a FIN has been received from the remote side.
   2016 		 * In these states we ignore the URG.
   2017 		 *
   2018 		 * According to RFC961 (Assigned Protocols),
   2019 		 * the urgent pointer points to the last octet
   2020 		 * of urgent data.  We continue, however,
   2021 		 * to consider it to indicate the first octet
   2022 		 * of data past the urgent section as the original
   2023 		 * spec states (in one of two places).
   2024 		 */
   2025 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
   2026 			tp->rcv_up = th->th_seq + th->th_urp;
   2027 			so->so_oobmark = so->so_rcv.sb_cc +
   2028 			    (tp->rcv_up - tp->rcv_nxt) - 1;
   2029 			if (so->so_oobmark == 0)
   2030 				so->so_state |= SS_RCVATMARK;
   2031 			sohasoutofband(so);
   2032 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
   2033 		}
   2034 		/*
   2035 		 * Remove out of band data so doesn't get presented to user.
   2036 		 * This can happen independent of advancing the URG pointer,
   2037 		 * but if two URG's are pending at once, some out-of-band
   2038 		 * data may creep in... ick.
   2039 		 */
   2040 		if (th->th_urp <= (u_int16_t) tlen
   2041 #ifdef SO_OOBINLINE
   2042 		     && (so->so_options & SO_OOBINLINE) == 0
   2043 #endif
   2044 		     )
   2045 			tcp_pulloutofband(so, th, m, hdroptlen);
   2046 	} else
   2047 		/*
   2048 		 * If no out of band data is expected,
   2049 		 * pull receive urgent pointer along
   2050 		 * with the receive window.
   2051 		 */
   2052 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
   2053 			tp->rcv_up = tp->rcv_nxt;
   2054 dodata:							/* XXX */
   2055 
   2056 	/*
   2057 	 * Process the segment text, merging it into the TCP sequencing queue,
   2058 	 * and arranging for acknowledgement of receipt if necessary.
   2059 	 * This process logically involves adjusting tp->rcv_wnd as data
   2060 	 * is presented to the user (this happens in tcp_usrreq.c,
   2061 	 * case PRU_RCVD).  If a FIN has already been received on this
   2062 	 * connection then we just ignore the text.
   2063 	 */
   2064 	if ((tlen || (tiflags & TH_FIN)) &&
   2065 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   2066 		/*
   2067 		 * Insert segment ti into reassembly queue of tcp with
   2068 		 * control block tp.  Return TH_FIN if reassembly now includes
   2069 		 * a segment with FIN.  The macro form does the common case
   2070 		 * inline (segment is the next to be received on an
   2071 		 * established connection, and the queue is empty),
   2072 		 * avoiding linkage into and removal from the queue and
   2073 		 * repetition of various conversions.
   2074 		 * Set DELACK for segments received in order, but ack
   2075 		 * immediately when segments are out of order
   2076 		 * (so fast retransmit can work).
   2077 		 */
   2078 		/* NOTE: this was TCP_REASS() macro, but used only once */
   2079 		TCP_REASS_LOCK(tp);
   2080 		if (th->th_seq == tp->rcv_nxt &&
   2081 		    LIST_FIRST(&tp->segq) == NULL &&
   2082 		    tp->t_state == TCPS_ESTABLISHED) {
   2083 			TCP_SETUP_ACK(tp, th);
   2084 			tp->rcv_nxt += tlen;
   2085 			tiflags = th->th_flags & TH_FIN;
   2086 			tcpstat.tcps_rcvpack++;
   2087 			tcpstat.tcps_rcvbyte += tlen;
   2088 			ND6_HINT(tp);
   2089 			m_adj(m, hdroptlen);
   2090 			sbappend(&(so)->so_rcv, m);
   2091 			sorwakeup(so);
   2092 		} else {
   2093 			m_adj(m, hdroptlen);
   2094 			tiflags = tcp_reass(tp, th, m, &tlen);
   2095 			tp->t_flags |= TF_ACKNOW;
   2096 		}
   2097 		TCP_REASS_UNLOCK(tp);
   2098 
   2099 		/*
   2100 		 * Note the amount of data that peer has sent into
   2101 		 * our window, in order to estimate the sender's
   2102 		 * buffer size.
   2103 		 */
   2104 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
   2105 	} else {
   2106 		m_freem(m);
   2107 		m = NULL;
   2108 		tiflags &= ~TH_FIN;
   2109 	}
   2110 
   2111 	/*
   2112 	 * If FIN is received ACK the FIN and let the user know
   2113 	 * that the connection is closing.  Ignore a FIN received before
   2114 	 * the connection is fully established.
   2115 	 */
   2116 	if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
   2117 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   2118 			socantrcvmore(so);
   2119 			tp->t_flags |= TF_ACKNOW;
   2120 			tp->rcv_nxt++;
   2121 		}
   2122 		switch (tp->t_state) {
   2123 
   2124 	 	/*
   2125 		 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
   2126 		 */
   2127 		case TCPS_ESTABLISHED:
   2128 			tp->t_state = TCPS_CLOSE_WAIT;
   2129 			break;
   2130 
   2131 	 	/*
   2132 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
   2133 		 * enter the CLOSING state.
   2134 		 */
   2135 		case TCPS_FIN_WAIT_1:
   2136 			tp->t_state = TCPS_CLOSING;
   2137 			break;
   2138 
   2139 	 	/*
   2140 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
   2141 		 * starting the time-wait timer, turning off the other
   2142 		 * standard timers.
   2143 		 */
   2144 		case TCPS_FIN_WAIT_2:
   2145 			tp->t_state = TCPS_TIME_WAIT;
   2146 			tcp_canceltimers(tp);
   2147 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
   2148 			soisdisconnected(so);
   2149 			break;
   2150 
   2151 		/*
   2152 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
   2153 		 */
   2154 		case TCPS_TIME_WAIT:
   2155 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
   2156 			break;
   2157 		}
   2158 	}
   2159 #ifdef TCP_DEBUG
   2160 	if (so->so_options & SO_DEBUG)
   2161 		tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
   2162 #endif
   2163 
   2164 	/*
   2165 	 * Return any desired output.
   2166 	 */
   2167 	if (needoutput || (tp->t_flags & TF_ACKNOW))
   2168 		(void) tcp_output(tp);
   2169 	if (tcp_saveti)
   2170 		m_freem(tcp_saveti);
   2171 	return;
   2172 
   2173 badsyn:
   2174 	/*
   2175 	 * Received a bad SYN.  Increment counters and dropwithreset.
   2176 	 */
   2177 	tcpstat.tcps_badsyn++;
   2178 	tp = NULL;
   2179 	goto dropwithreset;
   2180 
   2181 dropafterack:
   2182 	/*
   2183 	 * Generate an ACK dropping incoming segment if it occupies
   2184 	 * sequence space, where the ACK reflects our state.
   2185 	 */
   2186 	if (tiflags & TH_RST)
   2187 		goto drop;
   2188 	m_freem(m);
   2189 	tp->t_flags |= TF_ACKNOW;
   2190 	(void) tcp_output(tp);
   2191 	if (tcp_saveti)
   2192 		m_freem(tcp_saveti);
   2193 	return;
   2194 
   2195 dropwithreset_ratelim:
   2196 	/*
   2197 	 * We may want to rate-limit RSTs in certain situations,
   2198 	 * particularly if we are sending an RST in response to
   2199 	 * an attempt to connect to or otherwise communicate with
   2200 	 * a port for which we have no socket.
   2201 	 */
   2202 	if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
   2203 	    tcp_rst_ppslim) == 0) {
   2204 		/* XXX stat */
   2205 		goto drop;
   2206 	}
   2207 	/* ...fall into dropwithreset... */
   2208 
   2209 dropwithreset:
   2210 	/*
   2211 	 * Generate a RST, dropping incoming segment.
   2212 	 * Make ACK acceptable to originator of segment.
   2213 	 */
   2214 	if (tiflags & TH_RST)
   2215 		goto drop;
   2216     {
   2217 	/*
   2218 	 * need to recover version # field, which was overwritten on
   2219 	 * ip_cksum computation.
   2220 	 */
   2221 	struct ip *sip;
   2222 	sip = mtod(m, struct ip *);
   2223 	switch (af) {
   2224 #ifdef INET
   2225 	case AF_INET:
   2226 		sip->ip_v = 4;
   2227 		break;
   2228 #endif
   2229 #ifdef INET6
   2230 	case AF_INET6:
   2231 		sip->ip_v = 6;
   2232 		break;
   2233 #endif
   2234 	}
   2235     }
   2236 	if (tiflags & TH_ACK)
   2237 		(void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
   2238 	else {
   2239 		if (tiflags & TH_SYN)
   2240 			tlen++;
   2241 		(void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
   2242 		    TH_RST|TH_ACK);
   2243 	}
   2244 	if (tcp_saveti)
   2245 		m_freem(tcp_saveti);
   2246 	return;
   2247 
   2248 badcsum:
   2249 	tcpstat.tcps_rcvbadsum++;
   2250 drop:
   2251 	/*
   2252 	 * Drop space held by incoming segment and return.
   2253 	 */
   2254 	if (tp) {
   2255 		if (tp->t_inpcb)
   2256 			so = tp->t_inpcb->inp_socket;
   2257 #ifdef INET6
   2258 		else if (tp->t_in6pcb)
   2259 			so = tp->t_in6pcb->in6p_socket;
   2260 #endif
   2261 		else
   2262 			so = NULL;
   2263 #ifdef TCP_DEBUG
   2264 		if (so && (so->so_options & SO_DEBUG) != 0)
   2265 			tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
   2266 #endif
   2267 	}
   2268 	if (tcp_saveti)
   2269 		m_freem(tcp_saveti);
   2270 	m_freem(m);
   2271 	return;
   2272 }
   2273 
   2274 void
   2275 tcp_dooptions(tp, cp, cnt, th, oi)
   2276 	struct tcpcb *tp;
   2277 	u_char *cp;
   2278 	int cnt;
   2279 	struct tcphdr *th;
   2280 	struct tcp_opt_info *oi;
   2281 {
   2282 	u_int16_t mss;
   2283 	int opt, optlen;
   2284 
   2285 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
   2286 		opt = cp[0];
   2287 		if (opt == TCPOPT_EOL)
   2288 			break;
   2289 		if (opt == TCPOPT_NOP)
   2290 			optlen = 1;
   2291 		else {
   2292 			if (cnt < 2)
   2293 				break;
   2294 			optlen = cp[1];
   2295 			if (optlen < 2 || optlen > cnt)
   2296 				break;
   2297 		}
   2298 		switch (opt) {
   2299 
   2300 		default:
   2301 			continue;
   2302 
   2303 		case TCPOPT_MAXSEG:
   2304 			if (optlen != TCPOLEN_MAXSEG)
   2305 				continue;
   2306 			if (!(th->th_flags & TH_SYN))
   2307 				continue;
   2308 			bcopy(cp + 2, &mss, sizeof(mss));
   2309 			oi->maxseg = ntohs(mss);
   2310 			break;
   2311 
   2312 		case TCPOPT_WINDOW:
   2313 			if (optlen != TCPOLEN_WINDOW)
   2314 				continue;
   2315 			if (!(th->th_flags & TH_SYN))
   2316 				continue;
   2317 			tp->t_flags |= TF_RCVD_SCALE;
   2318 			tp->requested_s_scale = cp[2];
   2319 			if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
   2320 #if 0	/*XXX*/
   2321 				char *p;
   2322 
   2323 				if (ip)
   2324 					p = ntohl(ip->ip_src);
   2325 #ifdef INET6
   2326 				else if (ip6)
   2327 					p = ip6_sprintf(&ip6->ip6_src);
   2328 #endif
   2329 				else
   2330 					p = "(unknown)";
   2331 				log(LOG_ERR, "TCP: invalid wscale %d from %s, "
   2332 				    "assuming %d\n",
   2333 				    tp->requested_s_scale, p,
   2334 				    TCP_MAX_WINSHIFT);
   2335 #else
   2336 				log(LOG_ERR, "TCP: invalid wscale %d, "
   2337 				    "assuming %d\n",
   2338 				    tp->requested_s_scale,
   2339 				    TCP_MAX_WINSHIFT);
   2340 #endif
   2341 				tp->requested_s_scale = TCP_MAX_WINSHIFT;
   2342 			}
   2343 			break;
   2344 
   2345 		case TCPOPT_TIMESTAMP:
   2346 			if (optlen != TCPOLEN_TIMESTAMP)
   2347 				continue;
   2348 			oi->ts_present = 1;
   2349 			bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
   2350 			NTOHL(oi->ts_val);
   2351 			bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
   2352 			NTOHL(oi->ts_ecr);
   2353 
   2354 			/*
   2355 			 * A timestamp received in a SYN makes
   2356 			 * it ok to send timestamp requests and replies.
   2357 			 */
   2358 			if (th->th_flags & TH_SYN) {
   2359 				tp->t_flags |= TF_RCVD_TSTMP;
   2360 				tp->ts_recent = oi->ts_val;
   2361 				tp->ts_recent_age = TCP_TIMESTAMP(tp);
   2362 			}
   2363 			break;
   2364 		case TCPOPT_SACK_PERMITTED:
   2365 			if (optlen != TCPOLEN_SACK_PERMITTED)
   2366 				continue;
   2367 			if (!(th->th_flags & TH_SYN))
   2368 				continue;
   2369 			tp->t_flags &= ~TF_CANT_TXSACK;
   2370 			break;
   2371 
   2372 		case TCPOPT_SACK:
   2373 			if (tp->t_flags & TF_IGNR_RXSACK)
   2374 				continue;
   2375 			if (optlen % 8 != 2 || optlen < 10)
   2376 				continue;
   2377 			cp += 2;
   2378 			optlen -= 2;
   2379 			for (; optlen > 0; cp -= 8, optlen -= 8) {
   2380 				tcp_seq lwe, rwe;
   2381 				bcopy((char *)cp, (char *) &lwe, sizeof(lwe));
   2382 				NTOHL(lwe);
   2383 				bcopy((char *)cp, (char *) &rwe, sizeof(rwe));
   2384 				NTOHL(rwe);
   2385 				/* tcp_mark_sacked(tp, lwe, rwe); */
   2386 			}
   2387 			break;
   2388 		}
   2389 	}
   2390 }
   2391 
   2392 /*
   2393  * Pull out of band byte out of a segment so
   2394  * it doesn't appear in the user's data queue.
   2395  * It is still reflected in the segment length for
   2396  * sequencing purposes.
   2397  */
   2398 void
   2399 tcp_pulloutofband(so, th, m, off)
   2400 	struct socket *so;
   2401 	struct tcphdr *th;
   2402 	struct mbuf *m;
   2403 	int off;
   2404 {
   2405 	int cnt = off + th->th_urp - 1;
   2406 
   2407 	while (cnt >= 0) {
   2408 		if (m->m_len > cnt) {
   2409 			char *cp = mtod(m, caddr_t) + cnt;
   2410 			struct tcpcb *tp = sototcpcb(so);
   2411 
   2412 			tp->t_iobc = *cp;
   2413 			tp->t_oobflags |= TCPOOB_HAVEDATA;
   2414 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
   2415 			m->m_len--;
   2416 			return;
   2417 		}
   2418 		cnt -= m->m_len;
   2419 		m = m->m_next;
   2420 		if (m == 0)
   2421 			break;
   2422 	}
   2423 	panic("tcp_pulloutofband");
   2424 }
   2425 
   2426 /*
   2427  * Collect new round-trip time estimate
   2428  * and update averages and current timeout.
   2429  */
   2430 void
   2431 tcp_xmit_timer(tp, rtt)
   2432 	struct tcpcb *tp;
   2433 	uint32_t rtt;
   2434 {
   2435 	int32_t delta;
   2436 
   2437 	tcpstat.tcps_rttupdated++;
   2438 	if (tp->t_srtt != 0) {
   2439 		/*
   2440 		 * srtt is stored as fixed point with 3 bits after the
   2441 		 * binary point (i.e., scaled by 8).  The following magic
   2442 		 * is equivalent to the smoothing algorithm in rfc793 with
   2443 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
   2444 		 * point).  Adjust rtt to origin 0.
   2445 		 */
   2446 		delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
   2447 		if ((tp->t_srtt += delta) <= 0)
   2448 			tp->t_srtt = 1 << 2;
   2449 		/*
   2450 		 * We accumulate a smoothed rtt variance (actually, a
   2451 		 * smoothed mean difference), then set the retransmit
   2452 		 * timer to smoothed rtt + 4 times the smoothed variance.
   2453 		 * rttvar is stored as fixed point with 2 bits after the
   2454 		 * binary point (scaled by 4).  The following is
   2455 		 * equivalent to rfc793 smoothing with an alpha of .75
   2456 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
   2457 		 * rfc793's wired-in beta.
   2458 		 */
   2459 		if (delta < 0)
   2460 			delta = -delta;
   2461 		delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
   2462 		if ((tp->t_rttvar += delta) <= 0)
   2463 			tp->t_rttvar = 1 << 2;
   2464 	} else {
   2465 		/*
   2466 		 * No rtt measurement yet - use the unsmoothed rtt.
   2467 		 * Set the variance to half the rtt (so our first
   2468 		 * retransmit happens at 3*rtt).
   2469 		 */
   2470 		tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
   2471 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
   2472 	}
   2473 	tp->t_rtttime = 0;
   2474 	tp->t_rxtshift = 0;
   2475 
   2476 	/*
   2477 	 * the retransmit should happen at rtt + 4 * rttvar.
   2478 	 * Because of the way we do the smoothing, srtt and rttvar
   2479 	 * will each average +1/2 tick of bias.  When we compute
   2480 	 * the retransmit timer, we want 1/2 tick of rounding and
   2481 	 * 1 extra tick because of +-1/2 tick uncertainty in the
   2482 	 * firing of the timer.  The bias will give us exactly the
   2483 	 * 1.5 tick we need.  But, because the bias is
   2484 	 * statistical, we have to test that we don't drop below
   2485 	 * the minimum feasible timer (which is 2 ticks).
   2486 	 */
   2487 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
   2488 	    max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
   2489 
   2490 	/*
   2491 	 * We received an ack for a packet that wasn't retransmitted;
   2492 	 * it is probably safe to discard any error indications we've
   2493 	 * received recently.  This isn't quite right, but close enough
   2494 	 * for now (a route might have failed after we sent a segment,
   2495 	 * and the return path might not be symmetrical).
   2496 	 */
   2497 	tp->t_softerror = 0;
   2498 }
   2499 
   2500 /*
   2501  * Checks for partial ack.  If partial ack arrives, force the retransmission
   2502  * of the next unacknowledged segment, do not clear tp->t_dupacks, and return
   2503  * 1.  By setting snd_nxt to th_ack, this forces retransmission timer to
   2504  * be started again.  If the ack advances at least to tp->snd_recover, return 0.
   2505  */
   2506 int
   2507 tcp_newreno(tp, th)
   2508 	struct tcpcb *tp;
   2509 	struct tcphdr *th;
   2510 {
   2511 	tcp_seq onxt = tp->snd_nxt;
   2512 	u_long ocwnd = tp->snd_cwnd;
   2513 
   2514 	if (SEQ_LT(th->th_ack, tp->snd_recover)) {
   2515 		/*
   2516 		 * snd_una has not yet been updated and the socket's send
   2517 		 * buffer has not yet drained off the ACK'd data, so we
   2518 		 * have to leave snd_una as it was to get the correct data
   2519 		 * offset in tcp_output().
   2520 		 */
   2521 		TCP_TIMER_DISARM(tp, TCPT_REXMT);
   2522 	        tp->t_rtttime = 0;
   2523 	        tp->snd_nxt = th->th_ack;
   2524 		/*
   2525 		 * Set snd_cwnd to one segment beyond ACK'd offset.  snd_una
   2526 		 * is not yet updated when we're called.
   2527 		 */
   2528 		tp->snd_cwnd = tp->t_segsz + (th->th_ack - tp->snd_una);
   2529 	        (void) tcp_output(tp);
   2530 	        tp->snd_cwnd = ocwnd;
   2531 	        if (SEQ_GT(onxt, tp->snd_nxt))
   2532 	                tp->snd_nxt = onxt;
   2533 	        /*
   2534 	         * Partial window deflation.  Relies on fact that tp->snd_una
   2535 	         * not updated yet.
   2536 	         */
   2537 	        tp->snd_cwnd -= (th->th_ack - tp->snd_una - tp->t_segsz);
   2538 	        return 1;
   2539 	}
   2540 	return 0;
   2541 }
   2542 
   2543 
   2544 /*
   2545  * TCP compressed state engine.  Currently used to hold compressed
   2546  * state for SYN_RECEIVED.
   2547  */
   2548 
   2549 u_long	syn_cache_count;
   2550 u_int32_t syn_hash1, syn_hash2;
   2551 
   2552 #define SYN_HASH(sa, sp, dp) \
   2553 	((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
   2554 				     ((u_int32_t)(sp)))^syn_hash2)))
   2555 #ifndef INET6
   2556 #define	SYN_HASHALL(hash, src, dst) \
   2557 do {									\
   2558 	hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr,	\
   2559 		((struct sockaddr_in *)(src))->sin_port,		\
   2560 		((struct sockaddr_in *)(dst))->sin_port);		\
   2561 } while (0)
   2562 #else
   2563 #define SYN_HASH6(sa, sp, dp) \
   2564 	((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
   2565 	  (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
   2566 	 & 0x7fffffff)
   2567 
   2568 #define SYN_HASHALL(hash, src, dst) \
   2569 do {									\
   2570 	switch ((src)->sa_family) {					\
   2571 	case AF_INET:							\
   2572 		hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
   2573 			((struct sockaddr_in *)(src))->sin_port,	\
   2574 			((struct sockaddr_in *)(dst))->sin_port);	\
   2575 		break;							\
   2576 	case AF_INET6:							\
   2577 		hash = SYN_HASH6(&((struct sockaddr_in6 *)(src))->sin6_addr, \
   2578 			((struct sockaddr_in6 *)(src))->sin6_port,	\
   2579 			((struct sockaddr_in6 *)(dst))->sin6_port);	\
   2580 		break;							\
   2581 	default:							\
   2582 		hash = 0;						\
   2583 	}								\
   2584 } while (/*CONSTCOND*/0)
   2585 #endif /* INET6 */
   2586 
   2587 #define	SYN_CACHE_RM(sc)						\
   2588 do {									\
   2589 	TAILQ_REMOVE(&tcp_syn_cache[(sc)->sc_bucketidx].sch_bucket,	\
   2590 	    (sc), sc_bucketq);						\
   2591 	(sc)->sc_tp = NULL;						\
   2592 	LIST_REMOVE((sc), sc_tpq);					\
   2593 	tcp_syn_cache[(sc)->sc_bucketidx].sch_length--;			\
   2594 	callout_stop(&(sc)->sc_timer);					\
   2595 	syn_cache_count--;						\
   2596 } while (/*CONSTCOND*/0)
   2597 
   2598 #define	SYN_CACHE_PUT(sc)						\
   2599 do {									\
   2600 	if ((sc)->sc_ipopts)						\
   2601 		(void) m_free((sc)->sc_ipopts);				\
   2602 	if ((sc)->sc_route4.ro_rt != NULL)				\
   2603 		RTFREE((sc)->sc_route4.ro_rt);				\
   2604 	pool_put(&syn_cache_pool, (sc));				\
   2605 } while (/*CONSTCOND*/0)
   2606 
   2607 struct pool syn_cache_pool;
   2608 
   2609 /*
   2610  * We don't estimate RTT with SYNs, so each packet starts with the default
   2611  * RTT and each timer step has a fixed timeout value.
   2612  */
   2613 #define	SYN_CACHE_TIMER_ARM(sc)						\
   2614 do {									\
   2615 	TCPT_RANGESET((sc)->sc_rxtcur,					\
   2616 	    TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN,	\
   2617 	    TCPTV_REXMTMAX);						\
   2618 	callout_reset(&(sc)->sc_timer,					\
   2619 	    (sc)->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, (sc));	\
   2620 } while (/*CONSTCOND*/0)
   2621 
   2622 #define	SYN_CACHE_TIMESTAMP(sc)	(tcp_now - (sc)->sc_timebase)
   2623 
   2624 void
   2625 syn_cache_init()
   2626 {
   2627 	int i;
   2628 
   2629 	/* Initialize the hash buckets. */
   2630 	for (i = 0; i < tcp_syn_cache_size; i++)
   2631 		TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
   2632 
   2633 	/* Initialize the syn cache pool. */
   2634 	pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
   2635 	    "synpl", 0, NULL, NULL, M_PCB);
   2636 }
   2637 
   2638 void
   2639 syn_cache_insert(sc, tp)
   2640 	struct syn_cache *sc;
   2641 	struct tcpcb *tp;
   2642 {
   2643 	struct syn_cache_head *scp;
   2644 	struct syn_cache *sc2;
   2645 	int s;
   2646 
   2647 	/*
   2648 	 * If there are no entries in the hash table, reinitialize
   2649 	 * the hash secrets.
   2650 	 */
   2651 	if (syn_cache_count == 0) {
   2652 		struct timeval tv;
   2653 		microtime(&tv);
   2654 		syn_hash1 = random() ^ (u_long)&sc;
   2655 		syn_hash2 = random() ^ tv.tv_usec;
   2656 	}
   2657 
   2658 	SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
   2659 	sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
   2660 	scp = &tcp_syn_cache[sc->sc_bucketidx];
   2661 
   2662 	/*
   2663 	 * Make sure that we don't overflow the per-bucket
   2664 	 * limit or the total cache size limit.
   2665 	 */
   2666 	s = splsoftnet();
   2667 	if (scp->sch_length >= tcp_syn_bucket_limit) {
   2668 		tcpstat.tcps_sc_bucketoverflow++;
   2669 		/*
   2670 		 * The bucket is full.  Toss the oldest element in the
   2671 		 * bucket.  This will be the first entry in the bucket.
   2672 		 */
   2673 		sc2 = TAILQ_FIRST(&scp->sch_bucket);
   2674 #ifdef DIAGNOSTIC
   2675 		/*
   2676 		 * This should never happen; we should always find an
   2677 		 * entry in our bucket.
   2678 		 */
   2679 		if (sc2 == NULL)
   2680 			panic("syn_cache_insert: bucketoverflow: impossible");
   2681 #endif
   2682 		SYN_CACHE_RM(sc2);
   2683 		SYN_CACHE_PUT(sc2);
   2684 	} else if (syn_cache_count >= tcp_syn_cache_limit) {
   2685 		struct syn_cache_head *scp2, *sce;
   2686 
   2687 		tcpstat.tcps_sc_overflowed++;
   2688 		/*
   2689 		 * The cache is full.  Toss the oldest entry in the
   2690 		 * first non-empty bucket we can find.
   2691 		 *
   2692 		 * XXX We would really like to toss the oldest
   2693 		 * entry in the cache, but we hope that this
   2694 		 * condition doesn't happen very often.
   2695 		 */
   2696 		scp2 = scp;
   2697 		if (TAILQ_EMPTY(&scp2->sch_bucket)) {
   2698 			sce = &tcp_syn_cache[tcp_syn_cache_size];
   2699 			for (++scp2; scp2 != scp; scp2++) {
   2700 				if (scp2 >= sce)
   2701 					scp2 = &tcp_syn_cache[0];
   2702 				if (! TAILQ_EMPTY(&scp2->sch_bucket))
   2703 					break;
   2704 			}
   2705 #ifdef DIAGNOSTIC
   2706 			/*
   2707 			 * This should never happen; we should always find a
   2708 			 * non-empty bucket.
   2709 			 */
   2710 			if (scp2 == scp)
   2711 				panic("syn_cache_insert: cacheoverflow: "
   2712 				    "impossible");
   2713 #endif
   2714 		}
   2715 		sc2 = TAILQ_FIRST(&scp2->sch_bucket);
   2716 		SYN_CACHE_RM(sc2);
   2717 		SYN_CACHE_PUT(sc2);
   2718 	}
   2719 
   2720 	/*
   2721 	 * Initialize the entry's timer.
   2722 	 */
   2723 	sc->sc_rxttot = 0;
   2724 	sc->sc_rxtshift = 0;
   2725 	SYN_CACHE_TIMER_ARM(sc);
   2726 
   2727 	/* Link it from tcpcb entry */
   2728 	LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
   2729 
   2730 	/* Put it into the bucket. */
   2731 	TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
   2732 	scp->sch_length++;
   2733 	syn_cache_count++;
   2734 
   2735 	tcpstat.tcps_sc_added++;
   2736 	splx(s);
   2737 }
   2738 
   2739 /*
   2740  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
   2741  * If we have retransmitted an entry the maximum number of times, expire
   2742  * that entry.
   2743  */
   2744 void
   2745 syn_cache_timer(void *arg)
   2746 {
   2747 	struct syn_cache *sc = arg;
   2748 	int s;
   2749 
   2750 	s = splsoftnet();
   2751 
   2752 	if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
   2753 		/* Drop it -- too many retransmissions. */
   2754 		goto dropit;
   2755 	}
   2756 
   2757 	/*
   2758 	 * Compute the total amount of time this entry has
   2759 	 * been on a queue.  If this entry has been on longer
   2760 	 * than the keep alive timer would allow, expire it.
   2761 	 */
   2762 	sc->sc_rxttot += sc->sc_rxtcur;
   2763 	if (sc->sc_rxttot >= TCPTV_KEEP_INIT)
   2764 		goto dropit;
   2765 
   2766 	tcpstat.tcps_sc_retransmitted++;
   2767 	(void) syn_cache_respond(sc, NULL);
   2768 
   2769 	/* Advance the timer back-off. */
   2770 	sc->sc_rxtshift++;
   2771 	SYN_CACHE_TIMER_ARM(sc);
   2772 
   2773 	splx(s);
   2774 	return;
   2775 
   2776  dropit:
   2777 	tcpstat.tcps_sc_timed_out++;
   2778 	SYN_CACHE_RM(sc);
   2779 	SYN_CACHE_PUT(sc);
   2780 	splx(s);
   2781 }
   2782 
   2783 /*
   2784  * Remove syn cache created by the specified tcb entry,
   2785  * because this does not make sense to keep them
   2786  * (if there's no tcb entry, syn cache entry will never be used)
   2787  */
   2788 void
   2789 syn_cache_cleanup(tp)
   2790 	struct tcpcb *tp;
   2791 {
   2792 	struct syn_cache *sc, *nsc;
   2793 	int s;
   2794 
   2795 	s = splsoftnet();
   2796 
   2797 	for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
   2798 		nsc = LIST_NEXT(sc, sc_tpq);
   2799 
   2800 #ifdef DIAGNOSTIC
   2801 		if (sc->sc_tp != tp)
   2802 			panic("invalid sc_tp in syn_cache_cleanup");
   2803 #endif
   2804 		SYN_CACHE_RM(sc);
   2805 		SYN_CACHE_PUT(sc);
   2806 	}
   2807 	/* just for safety */
   2808 	LIST_INIT(&tp->t_sc);
   2809 
   2810 	splx(s);
   2811 }
   2812 
   2813 /*
   2814  * Find an entry in the syn cache.
   2815  */
   2816 struct syn_cache *
   2817 syn_cache_lookup(src, dst, headp)
   2818 	struct sockaddr *src;
   2819 	struct sockaddr *dst;
   2820 	struct syn_cache_head **headp;
   2821 {
   2822 	struct syn_cache *sc;
   2823 	struct syn_cache_head *scp;
   2824 	u_int32_t hash;
   2825 	int s;
   2826 
   2827 	SYN_HASHALL(hash, src, dst);
   2828 
   2829 	scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
   2830 	*headp = scp;
   2831 	s = splsoftnet();
   2832 	for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
   2833 	     sc = TAILQ_NEXT(sc, sc_bucketq)) {
   2834 		if (sc->sc_hash != hash)
   2835 			continue;
   2836 		if (!bcmp(&sc->sc_src, src, src->sa_len) &&
   2837 		    !bcmp(&sc->sc_dst, dst, dst->sa_len)) {
   2838 			splx(s);
   2839 			return (sc);
   2840 		}
   2841 	}
   2842 	splx(s);
   2843 	return (NULL);
   2844 }
   2845 
   2846 /*
   2847  * This function gets called when we receive an ACK for a
   2848  * socket in the LISTEN state.  We look up the connection
   2849  * in the syn cache, and if its there, we pull it out of
   2850  * the cache and turn it into a full-blown connection in
   2851  * the SYN-RECEIVED state.
   2852  *
   2853  * The return values may not be immediately obvious, and their effects
   2854  * can be subtle, so here they are:
   2855  *
   2856  *	NULL	SYN was not found in cache; caller should drop the
   2857  *		packet and send an RST.
   2858  *
   2859  *	-1	We were unable to create the new connection, and are
   2860  *		aborting it.  An ACK,RST is being sent to the peer
   2861  *		(unless we got screwey sequence numbners; see below),
   2862  *		because the 3-way handshake has been completed.  Caller
   2863  *		should not free the mbuf, since we may be using it.  If
   2864  *		we are not, we will free it.
   2865  *
   2866  *	Otherwise, the return value is a pointer to the new socket
   2867  *	associated with the connection.
   2868  */
   2869 struct socket *
   2870 syn_cache_get(src, dst, th, hlen, tlen, so, m)
   2871 	struct sockaddr *src;
   2872 	struct sockaddr *dst;
   2873 	struct tcphdr *th;
   2874 	unsigned int hlen, tlen;
   2875 	struct socket *so;
   2876 	struct mbuf *m;
   2877 {
   2878 	struct syn_cache *sc;
   2879 	struct syn_cache_head *scp;
   2880 	struct inpcb *inp = NULL;
   2881 #ifdef INET6
   2882 	struct in6pcb *in6p = NULL;
   2883 #endif
   2884 	struct tcpcb *tp = 0;
   2885 	struct mbuf *am;
   2886 	int s;
   2887 	struct socket *oso;
   2888 
   2889 	s = splsoftnet();
   2890 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
   2891 		splx(s);
   2892 		return (NULL);
   2893 	}
   2894 
   2895 	/*
   2896 	 * Verify the sequence and ack numbers.  Try getting the correct
   2897 	 * response again.
   2898 	 */
   2899 	if ((th->th_ack != sc->sc_iss + 1) ||
   2900 	    SEQ_LEQ(th->th_seq, sc->sc_irs) ||
   2901 	    SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
   2902 		(void) syn_cache_respond(sc, m);
   2903 		splx(s);
   2904 		return ((struct socket *)(-1));
   2905 	}
   2906 
   2907 	/* Remove this cache entry */
   2908 	SYN_CACHE_RM(sc);
   2909 	splx(s);
   2910 
   2911 	/*
   2912 	 * Ok, create the full blown connection, and set things up
   2913 	 * as they would have been set up if we had created the
   2914 	 * connection when the SYN arrived.  If we can't create
   2915 	 * the connection, abort it.
   2916 	 */
   2917 	/*
   2918 	 * inp still has the OLD in_pcb stuff, set the
   2919 	 * v6-related flags on the new guy, too.   This is
   2920 	 * done particularly for the case where an AF_INET6
   2921 	 * socket is bound only to a port, and a v4 connection
   2922 	 * comes in on that port.
   2923 	 * we also copy the flowinfo from the original pcb
   2924 	 * to the new one.
   2925 	 */
   2926     {
   2927 	struct inpcb *parentinpcb;
   2928 
   2929 	parentinpcb = (struct inpcb *)so->so_pcb;
   2930 
   2931 	oso = so;
   2932 	so = sonewconn(so, SS_ISCONNECTED);
   2933 	if (so == NULL)
   2934 		goto resetandabort;
   2935 
   2936 	switch (so->so_proto->pr_domain->dom_family) {
   2937 #ifdef INET
   2938 	case AF_INET:
   2939 		inp = sotoinpcb(so);
   2940 		break;
   2941 #endif
   2942 #ifdef INET6
   2943 	case AF_INET6:
   2944 		in6p = sotoin6pcb(so);
   2945 		break;
   2946 #endif
   2947 	}
   2948     }
   2949 	switch (src->sa_family) {
   2950 #ifdef INET
   2951 	case AF_INET:
   2952 		if (inp) {
   2953 			inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
   2954 			inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
   2955 			inp->inp_options = ip_srcroute();
   2956 			in_pcbstate(inp, INP_BOUND);
   2957 			if (inp->inp_options == NULL) {
   2958 				inp->inp_options = sc->sc_ipopts;
   2959 				sc->sc_ipopts = NULL;
   2960 			}
   2961 		}
   2962 #ifdef INET6
   2963 		else if (in6p) {
   2964 			/* IPv4 packet to AF_INET6 socket */
   2965 			bzero(&in6p->in6p_laddr, sizeof(in6p->in6p_laddr));
   2966 			in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
   2967 			bcopy(&((struct sockaddr_in *)dst)->sin_addr,
   2968 				&in6p->in6p_laddr.s6_addr32[3],
   2969 				sizeof(((struct sockaddr_in *)dst)->sin_addr));
   2970 			in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
   2971 			in6totcpcb(in6p)->t_family = AF_INET;
   2972 		}
   2973 #endif
   2974 		break;
   2975 #endif
   2976 #ifdef INET6
   2977 	case AF_INET6:
   2978 		if (in6p) {
   2979 			in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
   2980 			in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
   2981 #if 0
   2982 			in6p->in6p_flowinfo = ip6->ip6_flow & IPV6_FLOWINFO_MASK;
   2983 			/*inp->inp_options = ip6_srcroute();*/ /* soon. */
   2984 #endif
   2985 		}
   2986 		break;
   2987 #endif
   2988 	}
   2989 #ifdef INET6
   2990 	if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
   2991 		struct in6pcb *oin6p = sotoin6pcb(oso);
   2992 		/* inherit socket options from the listening socket */
   2993 		in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
   2994 		if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
   2995 			m_freem(in6p->in6p_options);
   2996 			in6p->in6p_options = 0;
   2997 		}
   2998 		ip6_savecontrol(in6p, &in6p->in6p_options,
   2999 			mtod(m, struct ip6_hdr *), m);
   3000 	}
   3001 #endif
   3002 
   3003 #ifdef IPSEC
   3004 	/*
   3005 	 * we make a copy of policy, instead of sharing the policy,
   3006 	 * for better behavior in terms of SA lookup and dead SA removal.
   3007 	 */
   3008 	if (inp) {
   3009 		/* copy old policy into new socket's */
   3010 		if (ipsec_copy_policy(sotoinpcb(oso)->inp_sp, inp->inp_sp))
   3011 			printf("tcp_input: could not copy policy\n");
   3012 	}
   3013 #ifdef INET6
   3014 	else if (in6p) {
   3015 		/* copy old policy into new socket's */
   3016 		if (ipsec_copy_policy(sotoin6pcb(oso)->in6p_sp, in6p->in6p_sp))
   3017 			printf("tcp_input: could not copy policy\n");
   3018 	}
   3019 #endif
   3020 #endif
   3021 
   3022 	/*
   3023 	 * Give the new socket our cached route reference.
   3024 	 */
   3025 	if (inp)
   3026 		inp->inp_route = sc->sc_route4;		/* struct assignment */
   3027 #ifdef INET6
   3028 	else
   3029 		in6p->in6p_route = sc->sc_route6;
   3030 #endif
   3031 	sc->sc_route4.ro_rt = NULL;
   3032 
   3033 	am = m_get(M_DONTWAIT, MT_SONAME);	/* XXX */
   3034 	if (am == NULL)
   3035 		goto resetandabort;
   3036 	am->m_len = src->sa_len;
   3037 	bcopy(src, mtod(am, caddr_t), src->sa_len);
   3038 	if (inp) {
   3039 		if (in_pcbconnect(inp, am)) {
   3040 			(void) m_free(am);
   3041 			goto resetandabort;
   3042 		}
   3043 	}
   3044 #ifdef INET6
   3045 	else if (in6p) {
   3046 		if (src->sa_family == AF_INET) {
   3047 			/* IPv4 packet to AF_INET6 socket */
   3048 			struct sockaddr_in6 *sin6;
   3049 			sin6 = mtod(am, struct sockaddr_in6 *);
   3050 			am->m_len = sizeof(*sin6);
   3051 			bzero(sin6, sizeof(*sin6));
   3052 			sin6->sin6_family = AF_INET6;
   3053 			sin6->sin6_len = sizeof(*sin6);
   3054 			sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port;
   3055 			sin6->sin6_addr.s6_addr16[5] = htons(0xffff);
   3056 			bcopy(&((struct sockaddr_in *)src)->sin_addr,
   3057 				&sin6->sin6_addr.s6_addr32[3],
   3058 				sizeof(sin6->sin6_addr.s6_addr32[3]));
   3059 		}
   3060 		if (in6_pcbconnect(in6p, am)) {
   3061 			(void) m_free(am);
   3062 			goto resetandabort;
   3063 		}
   3064 	}
   3065 #endif
   3066 	else {
   3067 		(void) m_free(am);
   3068 		goto resetandabort;
   3069 	}
   3070 	(void) m_free(am);
   3071 
   3072 	if (inp)
   3073 		tp = intotcpcb(inp);
   3074 #ifdef INET6
   3075 	else if (in6p)
   3076 		tp = in6totcpcb(in6p);
   3077 #endif
   3078 	else
   3079 		tp = NULL;
   3080 	if (sc->sc_request_r_scale != 15) {
   3081 		tp->requested_s_scale = sc->sc_requested_s_scale;
   3082 		tp->request_r_scale = sc->sc_request_r_scale;
   3083 		tp->snd_scale = sc->sc_requested_s_scale;
   3084 		tp->rcv_scale = sc->sc_request_r_scale;
   3085 		tp->t_flags |= TF_RCVD_SCALE;
   3086 	}
   3087 	if (sc->sc_flags & SCF_TIMESTAMP)
   3088 		tp->t_flags |= TF_RCVD_TSTMP;
   3089 	tp->ts_timebase = sc->sc_timebase;
   3090 
   3091 	tp->t_template = tcp_template(tp);
   3092 	if (tp->t_template == 0) {
   3093 		tp = tcp_drop(tp, ENOBUFS);	/* destroys socket */
   3094 		so = NULL;
   3095 		m_freem(m);
   3096 		goto abort;
   3097 	}
   3098 
   3099 	tp->iss = sc->sc_iss;
   3100 	tp->irs = sc->sc_irs;
   3101 	tcp_sendseqinit(tp);
   3102 	tcp_rcvseqinit(tp);
   3103 	tp->t_state = TCPS_SYN_RECEIVED;
   3104 	TCP_TIMER_ARM(tp, TCPT_KEEP, TCPTV_KEEP_INIT);
   3105 	tcpstat.tcps_accepts++;
   3106 
   3107 	/* Initialize tp->t_ourmss before we deal with the peer's! */
   3108 	tp->t_ourmss = sc->sc_ourmaxseg;
   3109 	tcp_mss_from_peer(tp, sc->sc_peermaxseg);
   3110 
   3111 	/*
   3112 	 * Initialize the initial congestion window.  If we
   3113 	 * had to retransmit the SYN,ACK, we must initialize cwnd
   3114 	 * to 1 segment (i.e. the Loss Window).
   3115 	 */
   3116 	if (sc->sc_rxtshift)
   3117 		tp->snd_cwnd = tp->t_peermss;
   3118 	else
   3119 		tp->snd_cwnd = TCP_INITIAL_WINDOW(tcp_init_win, tp->t_peermss);
   3120 
   3121 	tcp_rmx_rtt(tp);
   3122 	tp->snd_wl1 = sc->sc_irs;
   3123 	tp->rcv_up = sc->sc_irs + 1;
   3124 
   3125 	/*
   3126 	 * This is what whould have happened in tcp_ouput() when
   3127 	 * the SYN,ACK was sent.
   3128 	 */
   3129 	tp->snd_up = tp->snd_una;
   3130 	tp->snd_max = tp->snd_nxt = tp->iss+1;
   3131 	TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
   3132 	if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
   3133 		tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
   3134 	tp->last_ack_sent = tp->rcv_nxt;
   3135 
   3136 	tcpstat.tcps_sc_completed++;
   3137 	SYN_CACHE_PUT(sc);
   3138 	return (so);
   3139 
   3140 resetandabort:
   3141 	(void) tcp_respond(NULL, m, m, th,
   3142 			   th->th_seq + tlen, (tcp_seq)0, TH_RST|TH_ACK);
   3143 abort:
   3144 	if (so != NULL)
   3145 		(void) soabort(so);
   3146 	SYN_CACHE_PUT(sc);
   3147 	tcpstat.tcps_sc_aborted++;
   3148 	return ((struct socket *)(-1));
   3149 }
   3150 
   3151 /*
   3152  * This function is called when we get a RST for a
   3153  * non-existent connection, so that we can see if the
   3154  * connection is in the syn cache.  If it is, zap it.
   3155  */
   3156 
   3157 void
   3158 syn_cache_reset(src, dst, th)
   3159 	struct sockaddr *src;
   3160 	struct sockaddr *dst;
   3161 	struct tcphdr *th;
   3162 {
   3163 	struct syn_cache *sc;
   3164 	struct syn_cache_head *scp;
   3165 	int s = splsoftnet();
   3166 
   3167 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
   3168 		splx(s);
   3169 		return;
   3170 	}
   3171 	if (SEQ_LT(th->th_seq, sc->sc_irs) ||
   3172 	    SEQ_GT(th->th_seq, sc->sc_irs+1)) {
   3173 		splx(s);
   3174 		return;
   3175 	}
   3176 	SYN_CACHE_RM(sc);
   3177 	splx(s);
   3178 	tcpstat.tcps_sc_reset++;
   3179 	SYN_CACHE_PUT(sc);
   3180 }
   3181 
   3182 void
   3183 syn_cache_unreach(src, dst, th)
   3184 	struct sockaddr *src;
   3185 	struct sockaddr *dst;
   3186 	struct tcphdr *th;
   3187 {
   3188 	struct syn_cache *sc;
   3189 	struct syn_cache_head *scp;
   3190 	int s;
   3191 
   3192 	s = splsoftnet();
   3193 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
   3194 		splx(s);
   3195 		return;
   3196 	}
   3197 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
   3198 	if (ntohl (th->th_seq) != sc->sc_iss) {
   3199 		splx(s);
   3200 		return;
   3201 	}
   3202 
   3203 	/*
   3204 	 * If we've rertransmitted 3 times and this is our second error,
   3205 	 * we remove the entry.  Otherwise, we allow it to continue on.
   3206 	 * This prevents us from incorrectly nuking an entry during a
   3207 	 * spurious network outage.
   3208 	 *
   3209 	 * See tcp_notify().
   3210 	 */
   3211 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
   3212 		sc->sc_flags |= SCF_UNREACH;
   3213 		splx(s);
   3214 		return;
   3215 	}
   3216 
   3217 	SYN_CACHE_RM(sc);
   3218 	splx(s);
   3219 	tcpstat.tcps_sc_unreach++;
   3220 	SYN_CACHE_PUT(sc);
   3221 }
   3222 
   3223 /*
   3224  * Given a LISTEN socket and an inbound SYN request, add
   3225  * this to the syn cache, and send back a segment:
   3226  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
   3227  * to the source.
   3228  *
   3229  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
   3230  * Doing so would require that we hold onto the data and deliver it
   3231  * to the application.  However, if we are the target of a SYN-flood
   3232  * DoS attack, an attacker could send data which would eventually
   3233  * consume all available buffer space if it were ACKed.  By not ACKing
   3234  * the data, we avoid this DoS scenario.
   3235  */
   3236 
   3237 int
   3238 syn_cache_add(src, dst, th, hlen, so, m, optp, optlen, oi)
   3239 	struct sockaddr *src;
   3240 	struct sockaddr *dst;
   3241 	struct tcphdr *th;
   3242 	unsigned int hlen;
   3243 	struct socket *so;
   3244 	struct mbuf *m;
   3245 	u_char *optp;
   3246 	int optlen;
   3247 	struct tcp_opt_info *oi;
   3248 {
   3249 	struct tcpcb tb, *tp;
   3250 	long win;
   3251 	struct syn_cache *sc;
   3252 	struct syn_cache_head *scp;
   3253 	struct mbuf *ipopts;
   3254 
   3255 	tp = sototcpcb(so);
   3256 
   3257 	/*
   3258 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
   3259 	 *
   3260 	 * Note this check is performed in tcp_input() very early on.
   3261 	 */
   3262 
   3263 	/*
   3264 	 * Initialize some local state.
   3265 	 */
   3266 	win = sbspace(&so->so_rcv);
   3267 	if (win > TCP_MAXWIN)
   3268 		win = TCP_MAXWIN;
   3269 
   3270 	switch (src->sa_family) {
   3271 #ifdef INET
   3272 	case AF_INET:
   3273 		/*
   3274 		 * Remember the IP options, if any.
   3275 		 */
   3276 		ipopts = ip_srcroute();
   3277 		break;
   3278 #endif
   3279 	default:
   3280 		ipopts = NULL;
   3281 	}
   3282 
   3283 	if (optp) {
   3284 		tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
   3285 		tcp_dooptions(&tb, optp, optlen, th, oi);
   3286 	} else
   3287 		tb.t_flags = 0;
   3288 
   3289 	/*
   3290 	 * See if we already have an entry for this connection.
   3291 	 * If we do, resend the SYN,ACK.  We do not count this
   3292 	 * as a retransmission (XXX though maybe we should).
   3293 	 */
   3294 	if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
   3295 		tcpstat.tcps_sc_dupesyn++;
   3296 		if (ipopts) {
   3297 			/*
   3298 			 * If we were remembering a previous source route,
   3299 			 * forget it and use the new one we've been given.
   3300 			 */
   3301 			if (sc->sc_ipopts)
   3302 				(void) m_free(sc->sc_ipopts);
   3303 			sc->sc_ipopts = ipopts;
   3304 		}
   3305 		sc->sc_timestamp = tb.ts_recent;
   3306 		if (syn_cache_respond(sc, m) == 0) {
   3307 			tcpstat.tcps_sndacks++;
   3308 			tcpstat.tcps_sndtotal++;
   3309 		}
   3310 		return (1);
   3311 	}
   3312 
   3313 	sc = pool_get(&syn_cache_pool, PR_NOWAIT);
   3314 	if (sc == NULL) {
   3315 		if (ipopts)
   3316 			(void) m_free(ipopts);
   3317 		return (0);
   3318 	}
   3319 
   3320 	/*
   3321 	 * Fill in the cache, and put the necessary IP and TCP
   3322 	 * options into the reply.
   3323 	 */
   3324 	callout_init(&sc->sc_timer);
   3325 	bzero(sc, sizeof(struct syn_cache));
   3326 	bcopy(src, &sc->sc_src, src->sa_len);
   3327 	bcopy(dst, &sc->sc_dst, dst->sa_len);
   3328 	sc->sc_flags = 0;
   3329 	sc->sc_ipopts = ipopts;
   3330 	sc->sc_irs = th->th_seq;
   3331 	switch (src->sa_family) {
   3332 #ifdef INET
   3333 	case AF_INET:
   3334 	    {
   3335 		struct sockaddr_in *srcin = (void *) src;
   3336 		struct sockaddr_in *dstin = (void *) dst;
   3337 
   3338 		sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
   3339 		    &srcin->sin_addr, dstin->sin_port,
   3340 		    srcin->sin_port, sizeof(dstin->sin_addr), 0);
   3341 		break;
   3342 	    }
   3343 #endif /* INET */
   3344 #ifdef INET6
   3345 	case AF_INET6:
   3346 	    {
   3347 		struct sockaddr_in6 *srcin6 = (void *) src;
   3348 		struct sockaddr_in6 *dstin6 = (void *) dst;
   3349 
   3350 		sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
   3351 		    &srcin6->sin6_addr, dstin6->sin6_port,
   3352 		    srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
   3353 		break;
   3354 	    }
   3355 #endif /* INET6 */
   3356 	}
   3357 	sc->sc_peermaxseg = oi->maxseg;
   3358 	sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
   3359 						m->m_pkthdr.rcvif : NULL,
   3360 						sc->sc_src.sa.sa_family);
   3361 	sc->sc_win = win;
   3362 	sc->sc_timebase = tcp_now;	/* see tcp_newtcpcb() */
   3363 	sc->sc_timestamp = tb.ts_recent;
   3364 	if (tcp_do_rfc1323 && (tb.t_flags & TF_RCVD_TSTMP))
   3365 		sc->sc_flags |= SCF_TIMESTAMP;
   3366 	if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   3367 	    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
   3368 		sc->sc_requested_s_scale = tb.requested_s_scale;
   3369 		sc->sc_request_r_scale = 0;
   3370 		while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
   3371 		    TCP_MAXWIN << sc->sc_request_r_scale <
   3372 		    so->so_rcv.sb_hiwat)
   3373 			sc->sc_request_r_scale++;
   3374 	} else {
   3375 		sc->sc_requested_s_scale = 15;
   3376 		sc->sc_request_r_scale = 15;
   3377 	}
   3378 	sc->sc_tp = tp;
   3379 	if (syn_cache_respond(sc, m) == 0) {
   3380 		syn_cache_insert(sc, tp);
   3381 		tcpstat.tcps_sndacks++;
   3382 		tcpstat.tcps_sndtotal++;
   3383 	} else {
   3384 		SYN_CACHE_PUT(sc);
   3385 		tcpstat.tcps_sc_dropped++;
   3386 	}
   3387 	return (1);
   3388 }
   3389 
   3390 int
   3391 syn_cache_respond(sc, m)
   3392 	struct syn_cache *sc;
   3393 	struct mbuf *m;
   3394 {
   3395 	struct route *ro;
   3396 	u_int8_t *optp;
   3397 	int optlen, error;
   3398 	u_int16_t tlen;
   3399 	struct ip *ip = NULL;
   3400 #ifdef INET6
   3401 	struct ip6_hdr *ip6 = NULL;
   3402 #endif
   3403 	struct tcphdr *th;
   3404 	u_int hlen;
   3405 
   3406 	switch (sc->sc_src.sa.sa_family) {
   3407 	case AF_INET:
   3408 		hlen = sizeof(struct ip);
   3409 		ro = &sc->sc_route4;
   3410 		break;
   3411 #ifdef INET6
   3412 	case AF_INET6:
   3413 		hlen = sizeof(struct ip6_hdr);
   3414 		ro = (struct route *)&sc->sc_route6;
   3415 		break;
   3416 #endif
   3417 	default:
   3418 		if (m)
   3419 			m_freem(m);
   3420 		return EAFNOSUPPORT;
   3421 	}
   3422 
   3423 	/* Compute the size of the TCP options. */
   3424 	optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
   3425 	    ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
   3426 
   3427 	tlen = hlen + sizeof(struct tcphdr) + optlen;
   3428 
   3429 	/*
   3430 	 * Create the IP+TCP header from scratch.
   3431 	 */
   3432 	if (m)
   3433 		m_freem(m);
   3434 #ifdef DIAGNOSTIC
   3435 	if (max_linkhdr + tlen > MCLBYTES)
   3436 		return (ENOBUFS);
   3437 #endif
   3438 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   3439 	if (m && tlen > MHLEN) {
   3440 		MCLGET(m, M_DONTWAIT);
   3441 		if ((m->m_flags & M_EXT) == 0) {
   3442 			m_freem(m);
   3443 			m = NULL;
   3444 		}
   3445 	}
   3446 	if (m == NULL)
   3447 		return (ENOBUFS);
   3448 
   3449 	/* Fixup the mbuf. */
   3450 	m->m_data += max_linkhdr;
   3451 	m->m_len = m->m_pkthdr.len = tlen;
   3452 #ifdef IPSEC
   3453 	if (sc->sc_tp) {
   3454 		struct tcpcb *tp;
   3455 		struct socket *so;
   3456 
   3457 		tp = sc->sc_tp;
   3458 		if (tp->t_inpcb)
   3459 			so = tp->t_inpcb->inp_socket;
   3460 #ifdef INET6
   3461 		else if (tp->t_in6pcb)
   3462 			so = tp->t_in6pcb->in6p_socket;
   3463 #endif
   3464 		else
   3465 			so = NULL;
   3466 		/* use IPsec policy on listening socket, on SYN ACK */
   3467 		if (ipsec_setsocket(m, so) != 0) {
   3468 			m_freem(m);
   3469 			return ENOBUFS;
   3470 		}
   3471 	}
   3472 #endif
   3473 	m->m_pkthdr.rcvif = NULL;
   3474 	memset(mtod(m, u_char *), 0, tlen);
   3475 
   3476 	switch (sc->sc_src.sa.sa_family) {
   3477 	case AF_INET:
   3478 		ip = mtod(m, struct ip *);
   3479 		ip->ip_dst = sc->sc_src.sin.sin_addr;
   3480 		ip->ip_src = sc->sc_dst.sin.sin_addr;
   3481 		ip->ip_p = IPPROTO_TCP;
   3482 		th = (struct tcphdr *)(ip + 1);
   3483 		th->th_dport = sc->sc_src.sin.sin_port;
   3484 		th->th_sport = sc->sc_dst.sin.sin_port;
   3485 		break;
   3486 #ifdef INET6
   3487 	case AF_INET6:
   3488 		ip6 = mtod(m, struct ip6_hdr *);
   3489 		ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
   3490 		ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
   3491 		ip6->ip6_nxt = IPPROTO_TCP;
   3492 		/* ip6_plen will be updated in ip6_output() */
   3493 		th = (struct tcphdr *)(ip6 + 1);
   3494 		th->th_dport = sc->sc_src.sin6.sin6_port;
   3495 		th->th_sport = sc->sc_dst.sin6.sin6_port;
   3496 		break;
   3497 #endif
   3498 	default:
   3499 		th = NULL;
   3500 	}
   3501 
   3502 	th->th_seq = htonl(sc->sc_iss);
   3503 	th->th_ack = htonl(sc->sc_irs + 1);
   3504 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
   3505 	th->th_flags = TH_SYN|TH_ACK;
   3506 	th->th_win = htons(sc->sc_win);
   3507 	/* th_sum already 0 */
   3508 	/* th_urp already 0 */
   3509 
   3510 	/* Tack on the TCP options. */
   3511 	optp = (u_int8_t *)(th + 1);
   3512 	*optp++ = TCPOPT_MAXSEG;
   3513 	*optp++ = 4;
   3514 	*optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
   3515 	*optp++ = sc->sc_ourmaxseg & 0xff;
   3516 
   3517 	if (sc->sc_request_r_scale != 15) {
   3518 		*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
   3519 		    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
   3520 		    sc->sc_request_r_scale);
   3521 		optp += 4;
   3522 	}
   3523 
   3524 	if (sc->sc_flags & SCF_TIMESTAMP) {
   3525 		u_int32_t *lp = (u_int32_t *)(optp);
   3526 		/* Form timestamp option as shown in appendix A of RFC 1323. */
   3527 		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
   3528 		*lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
   3529 		*lp   = htonl(sc->sc_timestamp);
   3530 		optp += TCPOLEN_TSTAMP_APPA;
   3531 	}
   3532 
   3533 	/* Compute the packet's checksum. */
   3534 	switch (sc->sc_src.sa.sa_family) {
   3535 	case AF_INET:
   3536 		ip->ip_len = htons(tlen - hlen);
   3537 		th->th_sum = 0;
   3538 		th->th_sum = in_cksum(m, tlen);
   3539 		break;
   3540 #ifdef INET6
   3541 	case AF_INET6:
   3542 		ip6->ip6_plen = htons(tlen - hlen);
   3543 		th->th_sum = 0;
   3544 		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
   3545 		break;
   3546 #endif
   3547 	}
   3548 
   3549 	/*
   3550 	 * Fill in some straggling IP bits.  Note the stack expects
   3551 	 * ip_len to be in host order, for convenience.
   3552 	 */
   3553 	switch (sc->sc_src.sa.sa_family) {
   3554 #ifdef INET
   3555 	case AF_INET:
   3556 		ip->ip_len = tlen;
   3557 		ip->ip_ttl = ip_defttl;
   3558 		/* XXX tos? */
   3559 		break;
   3560 #endif
   3561 #ifdef INET6
   3562 	case AF_INET6:
   3563 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
   3564 		ip6->ip6_vfc |= IPV6_VERSION;
   3565 		ip6->ip6_plen = htons(tlen - hlen);
   3566 		/* ip6_hlim will be initialized afterwards */
   3567 		/* XXX flowlabel? */
   3568 		break;
   3569 #endif
   3570 	}
   3571 
   3572 	switch (sc->sc_src.sa.sa_family) {
   3573 #ifdef INET
   3574 	case AF_INET:
   3575 		error = ip_output(m, sc->sc_ipopts, ro,
   3576 		    (ip_mtudisc ? IP_MTUDISC : 0),
   3577 		    NULL);
   3578 		break;
   3579 #endif
   3580 #ifdef INET6
   3581 	case AF_INET6:
   3582 		ip6->ip6_hlim = in6_selecthlim(NULL,
   3583 				ro->ro_rt ? ro->ro_rt->rt_ifp : NULL);
   3584 
   3585 		error = ip6_output(m, NULL /*XXX*/, (struct route_in6 *)ro,
   3586 			0, NULL, NULL);
   3587 		break;
   3588 #endif
   3589 	default:
   3590 		error = EAFNOSUPPORT;
   3591 		break;
   3592 	}
   3593 	return (error);
   3594 }
   3595