tcp_input.c revision 1.136 1 /* $NetBSD: tcp_input.c,v 1.136 2002/03/12 04:36:47 itojun Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * @(#)COPYRIGHT 1.1 (NRL) 17 January 1995
34 *
35 * NRL grants permission for redistribution and use in source and binary
36 * forms, with or without modification, of the software and documentation
37 * created at NRL provided that the following conditions are met:
38 *
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgements:
46 * This product includes software developed by the University of
47 * California, Berkeley and its contributors.
48 * This product includes software developed at the Information
49 * Technology Division, US Naval Research Laboratory.
50 * 4. Neither the name of the NRL nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
55 * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
57 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NRL OR
58 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
59 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
61 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
62 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
63 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
64 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65 *
66 * The views and conclusions contained in the software and documentation
67 * are those of the authors and should not be interpreted as representing
68 * official policies, either expressed or implied, of the US Naval
69 * Research Laboratory (NRL).
70 */
71
72 /*-
73 * Copyright (c) 1997, 1998, 1999, 2001 The NetBSD Foundation, Inc.
74 * All rights reserved.
75 *
76 * This code is derived from software contributed to The NetBSD Foundation
77 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
78 * Facility, NASA Ames Research Center.
79 *
80 * Redistribution and use in source and binary forms, with or without
81 * modification, are permitted provided that the following conditions
82 * are met:
83 * 1. Redistributions of source code must retain the above copyright
84 * notice, this list of conditions and the following disclaimer.
85 * 2. Redistributions in binary form must reproduce the above copyright
86 * notice, this list of conditions and the following disclaimer in the
87 * documentation and/or other materials provided with the distribution.
88 * 3. All advertising materials mentioning features or use of this software
89 * must display the following acknowledgement:
90 * This product includes software developed by the NetBSD
91 * Foundation, Inc. and its contributors.
92 * 4. Neither the name of The NetBSD Foundation nor the names of its
93 * contributors may be used to endorse or promote products derived
94 * from this software without specific prior written permission.
95 *
96 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
97 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
98 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
99 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
100 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
101 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
102 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
103 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
104 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
105 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
106 * POSSIBILITY OF SUCH DAMAGE.
107 */
108
109 /*
110 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
111 * The Regents of the University of California. All rights reserved.
112 *
113 * Redistribution and use in source and binary forms, with or without
114 * modification, are permitted provided that the following conditions
115 * are met:
116 * 1. Redistributions of source code must retain the above copyright
117 * notice, this list of conditions and the following disclaimer.
118 * 2. Redistributions in binary form must reproduce the above copyright
119 * notice, this list of conditions and the following disclaimer in the
120 * documentation and/or other materials provided with the distribution.
121 * 3. All advertising materials mentioning features or use of this software
122 * must display the following acknowledgement:
123 * This product includes software developed by the University of
124 * California, Berkeley and its contributors.
125 * 4. Neither the name of the University nor the names of its contributors
126 * may be used to endorse or promote products derived from this software
127 * without specific prior written permission.
128 *
129 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
130 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
131 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
132 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
133 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
134 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
135 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
136 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
137 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
138 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
139 * SUCH DAMAGE.
140 *
141 * @(#)tcp_input.c 8.12 (Berkeley) 5/24/95
142 */
143
144 /*
145 * TODO list for SYN cache stuff:
146 *
147 * Find room for a "state" field, which is needed to keep a
148 * compressed state for TIME_WAIT TCBs. It's been noted already
149 * that this is fairly important for very high-volume web and
150 * mail servers, which use a large number of short-lived
151 * connections.
152 */
153
154 #include <sys/cdefs.h>
155 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.136 2002/03/12 04:36:47 itojun Exp $");
156
157 #include "opt_inet.h"
158 #include "opt_ipsec.h"
159 #include "opt_inet_csum.h"
160 #include "opt_tcp_debug.h"
161
162 #include <sys/param.h>
163 #include <sys/systm.h>
164 #include <sys/malloc.h>
165 #include <sys/mbuf.h>
166 #include <sys/protosw.h>
167 #include <sys/socket.h>
168 #include <sys/socketvar.h>
169 #include <sys/errno.h>
170 #include <sys/syslog.h>
171 #include <sys/pool.h>
172 #include <sys/domain.h>
173 #include <sys/kernel.h>
174
175 #include <net/if.h>
176 #include <net/route.h>
177 #include <net/if_types.h>
178
179 #include <netinet/in.h>
180 #include <netinet/in_systm.h>
181 #include <netinet/ip.h>
182 #include <netinet/in_pcb.h>
183 #include <netinet/ip_var.h>
184
185 #ifdef INET6
186 #ifndef INET
187 #include <netinet/in.h>
188 #endif
189 #include <netinet/ip6.h>
190 #include <netinet6/ip6_var.h>
191 #include <netinet6/in6_pcb.h>
192 #include <netinet6/ip6_var.h>
193 #include <netinet6/in6_var.h>
194 #include <netinet/icmp6.h>
195 #include <netinet6/nd6.h>
196 #endif
197
198 #ifdef PULLDOWN_TEST
199 #ifndef INET6
200 /* always need ip6.h for IP6_EXTHDR_GET */
201 #include <netinet/ip6.h>
202 #endif
203 #endif
204
205 #include <netinet/tcp.h>
206 #include <netinet/tcp_fsm.h>
207 #include <netinet/tcp_seq.h>
208 #include <netinet/tcp_timer.h>
209 #include <netinet/tcp_var.h>
210 #include <netinet/tcpip.h>
211 #include <netinet/tcp_debug.h>
212
213 #include <machine/stdarg.h>
214
215 #ifdef IPSEC
216 #include <netinet6/ipsec.h>
217 #include <netkey/key.h>
218 #endif /*IPSEC*/
219 #ifdef INET6
220 #include "faith.h"
221 #if defined(NFAITH) && NFAITH > 0
222 #include <net/if_faith.h>
223 #endif
224 #endif
225
226 int tcprexmtthresh = 3;
227 int tcp_log_refused;
228
229 static int tcp_rst_ppslim_count = 0;
230 static struct timeval tcp_rst_ppslim_last;
231
232 #define TCP_PAWS_IDLE (24 * 24 * 60 * 60 * PR_SLOWHZ)
233
234 /* for modulo comparisons of timestamps */
235 #define TSTMP_LT(a,b) ((int)((a)-(b)) < 0)
236 #define TSTMP_GEQ(a,b) ((int)((a)-(b)) >= 0)
237
238 /*
239 * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
240 */
241 #ifdef INET6
242 #define ND6_HINT(tp) \
243 do { \
244 if (tp && tp->t_in6pcb && tp->t_family == AF_INET6 \
245 && tp->t_in6pcb->in6p_route.ro_rt) { \
246 nd6_nud_hint(tp->t_in6pcb->in6p_route.ro_rt, NULL, 0); \
247 } \
248 } while (0)
249 #else
250 #define ND6_HINT(tp)
251 #endif
252
253 /*
254 * Macro to compute ACK transmission behavior. Delay the ACK unless
255 * we have already delayed an ACK (must send an ACK every two segments).
256 * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
257 * option is enabled.
258 */
259 #define TCP_SETUP_ACK(tp, th) \
260 do { \
261 if ((tp)->t_flags & TF_DELACK || \
262 (tcp_ack_on_push && (th)->th_flags & TH_PUSH)) \
263 tp->t_flags |= TF_ACKNOW; \
264 else \
265 TCP_SET_DELACK(tp); \
266 } while (0)
267
268 /*
269 * Convert TCP protocol fields to host order for easier processing.
270 */
271 #define TCP_FIELDS_TO_HOST(th) \
272 do { \
273 NTOHL((th)->th_seq); \
274 NTOHL((th)->th_ack); \
275 NTOHS((th)->th_win); \
276 NTOHS((th)->th_urp); \
277 } while (0)
278
279 #ifdef TCP_CSUM_COUNTERS
280 #include <sys/device.h>
281
282 extern struct evcnt tcp_hwcsum_ok;
283 extern struct evcnt tcp_hwcsum_bad;
284 extern struct evcnt tcp_hwcsum_data;
285 extern struct evcnt tcp_swcsum;
286
287 #define TCP_CSUM_COUNTER_INCR(ev) (ev)->ev_count++
288
289 #else
290
291 #define TCP_CSUM_COUNTER_INCR(ev) /* nothing */
292
293 #endif /* TCP_CSUM_COUNTERS */
294
295 int
296 tcp_reass(tp, th, m, tlen)
297 struct tcpcb *tp;
298 struct tcphdr *th;
299 struct mbuf *m;
300 int *tlen;
301 {
302 struct ipqent *p, *q, *nq, *tiqe = NULL;
303 struct socket *so = NULL;
304 int pkt_flags;
305 tcp_seq pkt_seq;
306 unsigned pkt_len;
307 u_long rcvpartdupbyte = 0;
308 u_long rcvoobyte;
309
310 if (tp->t_inpcb)
311 so = tp->t_inpcb->inp_socket;
312 #ifdef INET6
313 else if (tp->t_in6pcb)
314 so = tp->t_in6pcb->in6p_socket;
315 #endif
316
317 TCP_REASS_LOCK_CHECK(tp);
318
319 /*
320 * Call with th==0 after become established to
321 * force pre-ESTABLISHED data up to user socket.
322 */
323 if (th == 0)
324 goto present;
325
326 rcvoobyte = *tlen;
327 /*
328 * Copy these to local variables because the tcpiphdr
329 * gets munged while we are collapsing mbufs.
330 */
331 pkt_seq = th->th_seq;
332 pkt_len = *tlen;
333 pkt_flags = th->th_flags;
334 /*
335 * Find a segment which begins after this one does.
336 */
337 for (p = NULL, q = LIST_FIRST(&tp->segq); q != NULL; q = nq) {
338 nq = LIST_NEXT(q, ipqe_q);
339 /*
340 * If the received segment is just right after this
341 * fragment, merge the two together and then check
342 * for further overlaps.
343 */
344 if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
345 #ifdef TCPREASS_DEBUG
346 printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
347 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
348 q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
349 #endif
350 pkt_len += q->ipqe_len;
351 pkt_flags |= q->ipqe_flags;
352 pkt_seq = q->ipqe_seq;
353 m_cat(q->ipqe_m, m);
354 m = q->ipqe_m;
355 goto free_ipqe;
356 }
357 /*
358 * If the received segment is completely past this
359 * fragment, we need to go the next fragment.
360 */
361 if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
362 p = q;
363 continue;
364 }
365 /*
366 * If the fragment is past the received segment,
367 * it (or any following) can't be concatenated.
368 */
369 if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len))
370 break;
371 /*
372 * We've received all the data in this segment before.
373 * mark it as a duplicate and return.
374 */
375 if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
376 SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
377 tcpstat.tcps_rcvduppack++;
378 tcpstat.tcps_rcvdupbyte += pkt_len;
379 m_freem(m);
380 if (tiqe != NULL)
381 pool_put(&ipqent_pool, tiqe);
382 return (0);
383 }
384 /*
385 * Received segment completely overlaps this fragment
386 * so we drop the fragment (this keeps the temporal
387 * ordering of segments correct).
388 */
389 if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
390 SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
391 rcvpartdupbyte += q->ipqe_len;
392 m_freem(q->ipqe_m);
393 goto free_ipqe;
394 }
395 /*
396 * RX'ed segment extends past the end of the
397 * fragment. Drop the overlapping bytes. Then
398 * merge the fragment and segment then treat as
399 * a longer received packet.
400 */
401 if (SEQ_LT(q->ipqe_seq, pkt_seq)
402 && SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
403 int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
404 #ifdef TCPREASS_DEBUG
405 printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
406 tp, overlap,
407 pkt_seq, pkt_seq + pkt_len, pkt_len);
408 #endif
409 m_adj(m, overlap);
410 rcvpartdupbyte += overlap;
411 m_cat(q->ipqe_m, m);
412 m = q->ipqe_m;
413 pkt_seq = q->ipqe_seq;
414 pkt_len += q->ipqe_len - overlap;
415 rcvoobyte -= overlap;
416 goto free_ipqe;
417 }
418 /*
419 * RX'ed segment extends past the front of the
420 * fragment. Drop the overlapping bytes on the
421 * received packet. The packet will then be
422 * contatentated with this fragment a bit later.
423 */
424 if (SEQ_GT(q->ipqe_seq, pkt_seq)
425 && SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len)) {
426 int overlap = pkt_seq + pkt_len - q->ipqe_seq;
427 #ifdef TCPREASS_DEBUG
428 printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
429 tp, overlap,
430 pkt_seq, pkt_seq + pkt_len, pkt_len);
431 #endif
432 m_adj(m, -overlap);
433 pkt_len -= overlap;
434 rcvpartdupbyte += overlap;
435 rcvoobyte -= overlap;
436 }
437 /*
438 * If the received segment immediates precedes this
439 * fragment then tack the fragment onto this segment
440 * and reinsert the data.
441 */
442 if (q->ipqe_seq == pkt_seq + pkt_len) {
443 #ifdef TCPREASS_DEBUG
444 printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
445 tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
446 pkt_seq, pkt_seq + pkt_len, pkt_len);
447 #endif
448 pkt_len += q->ipqe_len;
449 pkt_flags |= q->ipqe_flags;
450 m_cat(m, q->ipqe_m);
451 LIST_REMOVE(q, ipqe_q);
452 LIST_REMOVE(q, ipqe_timeq);
453 if (tiqe == NULL) {
454 tiqe = q;
455 } else {
456 pool_put(&ipqent_pool, q);
457 }
458 break;
459 }
460 /*
461 * If the fragment is before the segment, remember it.
462 * When this loop is terminated, p will contain the
463 * pointer to fragment that is right before the received
464 * segment.
465 */
466 if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
467 p = q;
468
469 continue;
470
471 /*
472 * This is a common operation. It also will allow
473 * to save doing a malloc/free in most instances.
474 */
475 free_ipqe:
476 LIST_REMOVE(q, ipqe_q);
477 LIST_REMOVE(q, ipqe_timeq);
478 if (tiqe == NULL) {
479 tiqe = q;
480 } else {
481 pool_put(&ipqent_pool, q);
482 }
483 }
484
485 /*
486 * Allocate a new queue entry since the received segment did not
487 * collapse onto any other out-of-order block; thus we are allocating
488 * a new block. If it had collapsed, tiqe would not be NULL and
489 * we would be reusing it.
490 * XXX If we can't, just drop the packet. XXX
491 */
492 if (tiqe == NULL) {
493 tiqe = pool_get(&ipqent_pool, PR_NOWAIT);
494 if (tiqe == NULL) {
495 tcpstat.tcps_rcvmemdrop++;
496 m_freem(m);
497 return (0);
498 }
499 }
500
501 /*
502 * Update the counters.
503 */
504 tcpstat.tcps_rcvoopack++;
505 tcpstat.tcps_rcvoobyte += rcvoobyte;
506 if (rcvpartdupbyte) {
507 tcpstat.tcps_rcvpartduppack++;
508 tcpstat.tcps_rcvpartdupbyte += rcvpartdupbyte;
509 }
510
511 /*
512 * Insert the new fragment queue entry into both queues.
513 */
514 tiqe->ipqe_m = m;
515 tiqe->ipqe_seq = pkt_seq;
516 tiqe->ipqe_len = pkt_len;
517 tiqe->ipqe_flags = pkt_flags;
518 if (p == NULL) {
519 LIST_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
520 #ifdef TCPREASS_DEBUG
521 if (tiqe->ipqe_seq != tp->rcv_nxt)
522 printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
523 tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
524 #endif
525 } else {
526 LIST_INSERT_AFTER(p, tiqe, ipqe_q);
527 #ifdef TCPREASS_DEBUG
528 printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
529 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
530 p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
531 #endif
532 }
533
534 LIST_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
535
536 present:
537 /*
538 * Present data to user, advancing rcv_nxt through
539 * completed sequence space.
540 */
541 if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
542 return (0);
543 q = LIST_FIRST(&tp->segq);
544 if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
545 return (0);
546 if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
547 return (0);
548
549 tp->rcv_nxt += q->ipqe_len;
550 pkt_flags = q->ipqe_flags & TH_FIN;
551 ND6_HINT(tp);
552
553 LIST_REMOVE(q, ipqe_q);
554 LIST_REMOVE(q, ipqe_timeq);
555 if (so->so_state & SS_CANTRCVMORE)
556 m_freem(q->ipqe_m);
557 else
558 sbappend(&so->so_rcv, q->ipqe_m);
559 pool_put(&ipqent_pool, q);
560 sorwakeup(so);
561 return (pkt_flags);
562 }
563
564 #ifdef INET6
565 int
566 tcp6_input(mp, offp, proto)
567 struct mbuf **mp;
568 int *offp, proto;
569 {
570 struct mbuf *m = *mp;
571
572 /*
573 * draft-itojun-ipv6-tcp-to-anycast
574 * better place to put this in?
575 */
576 if (m->m_flags & M_ANYCAST6) {
577 struct ip6_hdr *ip6;
578 if (m->m_len < sizeof(struct ip6_hdr)) {
579 if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
580 tcpstat.tcps_rcvshort++;
581 return IPPROTO_DONE;
582 }
583 }
584 ip6 = mtod(m, struct ip6_hdr *);
585 icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
586 (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
587 return IPPROTO_DONE;
588 }
589
590 tcp_input(m, *offp, proto);
591 return IPPROTO_DONE;
592 }
593 #endif
594
595 /*
596 * TCP input routine, follows pages 65-76 of the
597 * protocol specification dated September, 1981 very closely.
598 */
599 void
600 #if __STDC__
601 tcp_input(struct mbuf *m, ...)
602 #else
603 tcp_input(m, va_alist)
604 struct mbuf *m;
605 #endif
606 {
607 int proto;
608 struct tcphdr *th;
609 struct ip *ip;
610 struct inpcb *inp;
611 #ifdef INET6
612 struct ip6_hdr *ip6;
613 struct in6pcb *in6p;
614 #endif
615 caddr_t optp = NULL;
616 int optlen = 0;
617 int len, tlen, toff, hdroptlen = 0;
618 struct tcpcb *tp = 0;
619 int tiflags;
620 struct socket *so = NULL;
621 int todrop, acked, ourfinisacked, needoutput = 0;
622 short ostate = 0;
623 int iss = 0;
624 u_long tiwin;
625 struct tcp_opt_info opti;
626 int off, iphlen;
627 va_list ap;
628 int af; /* af on the wire */
629 struct mbuf *tcp_saveti = NULL;
630
631 va_start(ap, m);
632 toff = va_arg(ap, int);
633 proto = va_arg(ap, int);
634 va_end(ap);
635
636 tcpstat.tcps_rcvtotal++;
637
638 bzero(&opti, sizeof(opti));
639 opti.ts_present = 0;
640 opti.maxseg = 0;
641
642 /*
643 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
644 *
645 * TCP is, by definition, unicast, so we reject all
646 * multicast outright.
647 *
648 * Note, there are additional src/dst address checks in
649 * the AF-specific code below.
650 */
651 if (m->m_flags & (M_BCAST|M_MCAST)) {
652 /* XXX stat */
653 goto drop;
654 }
655 #ifdef INET6
656 if (m->m_flags & M_ANYCAST6) {
657 /* XXX stat */
658 goto drop;
659 }
660 #endif
661
662 /*
663 * Get IP and TCP header together in first mbuf.
664 * Note: IP leaves IP header in first mbuf.
665 */
666 ip = mtod(m, struct ip *);
667 #ifdef INET6
668 ip6 = NULL;
669 #endif
670 switch (ip->ip_v) {
671 #ifdef INET
672 case 4:
673 af = AF_INET;
674 iphlen = sizeof(struct ip);
675 #ifndef PULLDOWN_TEST
676 /* would like to get rid of this... */
677 if (toff > sizeof (struct ip)) {
678 ip_stripoptions(m, (struct mbuf *)0);
679 toff = sizeof(struct ip);
680 }
681 if (m->m_len < toff + sizeof (struct tcphdr)) {
682 if ((m = m_pullup(m, toff + sizeof (struct tcphdr))) == 0) {
683 tcpstat.tcps_rcvshort++;
684 return;
685 }
686 }
687 ip = mtod(m, struct ip *);
688 th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
689 #else
690 ip = mtod(m, struct ip *);
691 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
692 sizeof(struct tcphdr));
693 if (th == NULL) {
694 tcpstat.tcps_rcvshort++;
695 return;
696 }
697 #endif
698
699 /*
700 * Make sure destination address is not multicast.
701 * Source address checked in ip_input().
702 */
703 if (IN_MULTICAST(ip->ip_dst.s_addr)) {
704 /* XXX stat */
705 goto drop;
706 }
707
708 /* We do the checksum after PCB lookup... */
709 len = ip->ip_len;
710 tlen = len - toff;
711 break;
712 #endif
713 #ifdef INET6
714 case 6:
715 ip = NULL;
716 iphlen = sizeof(struct ip6_hdr);
717 af = AF_INET6;
718 #ifndef PULLDOWN_TEST
719 if (m->m_len < toff + sizeof(struct tcphdr)) {
720 m = m_pullup(m, toff + sizeof(struct tcphdr)); /*XXX*/
721 if (m == NULL) {
722 tcpstat.tcps_rcvshort++;
723 return;
724 }
725 }
726 ip6 = mtod(m, struct ip6_hdr *);
727 th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
728 #else
729 ip6 = mtod(m, struct ip6_hdr *);
730 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
731 sizeof(struct tcphdr));
732 if (th == NULL) {
733 tcpstat.tcps_rcvshort++;
734 return;
735 }
736 #endif
737
738 /* Be proactive about malicious use of IPv4 mapped address */
739 if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
740 IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
741 /* XXX stat */
742 goto drop;
743 }
744
745 /*
746 * Be proactive about unspecified IPv6 address in source.
747 * As we use all-zero to indicate unbounded/unconnected pcb,
748 * unspecified IPv6 address can be used to confuse us.
749 *
750 * Note that packets with unspecified IPv6 destination is
751 * already dropped in ip6_input.
752 */
753 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
754 /* XXX stat */
755 goto drop;
756 }
757
758 /*
759 * Make sure destination address is not multicast.
760 * Source address checked in ip6_input().
761 */
762 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
763 /* XXX stat */
764 goto drop;
765 }
766
767 /* We do the checksum after PCB lookup... */
768 len = m->m_pkthdr.len;
769 tlen = len - toff;
770 break;
771 #endif
772 default:
773 m_freem(m);
774 return;
775 }
776
777 /*
778 * Check that TCP offset makes sense,
779 * pull out TCP options and adjust length. XXX
780 */
781 off = th->th_off << 2;
782 if (off < sizeof (struct tcphdr) || off > tlen) {
783 tcpstat.tcps_rcvbadoff++;
784 goto drop;
785 }
786 tlen -= off;
787
788 /*
789 * tcp_input() has been modified to use tlen to mean the TCP data
790 * length throughout the function. Other functions can use
791 * m->m_pkthdr.len as the basis for calculating the TCP data length.
792 * rja
793 */
794
795 if (off > sizeof (struct tcphdr)) {
796 #ifndef PULLDOWN_TEST
797 if (m->m_len < toff + off) {
798 if ((m = m_pullup(m, toff + off)) == 0) {
799 tcpstat.tcps_rcvshort++;
800 return;
801 }
802 switch (af) {
803 #ifdef INET
804 case AF_INET:
805 ip = mtod(m, struct ip *);
806 break;
807 #endif
808 #ifdef INET6
809 case AF_INET6:
810 ip6 = mtod(m, struct ip6_hdr *);
811 break;
812 #endif
813 }
814 th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
815 }
816 #else
817 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
818 if (th == NULL) {
819 tcpstat.tcps_rcvshort++;
820 return;
821 }
822 /*
823 * NOTE: ip/ip6 will not be affected by m_pulldown()
824 * (as they're before toff) and we don't need to update those.
825 */
826 #endif
827 optlen = off - sizeof (struct tcphdr);
828 optp = ((caddr_t)th) + sizeof(struct tcphdr);
829 /*
830 * Do quick retrieval of timestamp options ("options
831 * prediction?"). If timestamp is the only option and it's
832 * formatted as recommended in RFC 1323 appendix A, we
833 * quickly get the values now and not bother calling
834 * tcp_dooptions(), etc.
835 */
836 if ((optlen == TCPOLEN_TSTAMP_APPA ||
837 (optlen > TCPOLEN_TSTAMP_APPA &&
838 optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
839 *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
840 (th->th_flags & TH_SYN) == 0) {
841 opti.ts_present = 1;
842 opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
843 opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
844 optp = NULL; /* we've parsed the options */
845 }
846 }
847 tiflags = th->th_flags;
848
849 /*
850 * Locate pcb for segment.
851 */
852 findpcb:
853 inp = NULL;
854 #ifdef INET6
855 in6p = NULL;
856 #endif
857 switch (af) {
858 #ifdef INET
859 case AF_INET:
860 inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
861 ip->ip_dst, th->th_dport);
862 if (inp == 0) {
863 ++tcpstat.tcps_pcbhashmiss;
864 inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
865 }
866 #ifdef INET6
867 if (inp == 0) {
868 struct in6_addr s, d;
869
870 /* mapped addr case */
871 bzero(&s, sizeof(s));
872 s.s6_addr16[5] = htons(0xffff);
873 bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
874 bzero(&d, sizeof(d));
875 d.s6_addr16[5] = htons(0xffff);
876 bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
877 in6p = in6_pcblookup_connect(&tcb6, &s, th->th_sport,
878 &d, th->th_dport, 0);
879 if (in6p == 0) {
880 ++tcpstat.tcps_pcbhashmiss;
881 in6p = in6_pcblookup_bind(&tcb6, &d,
882 th->th_dport, 0);
883 }
884 }
885 #endif
886 #ifndef INET6
887 if (inp == 0)
888 #else
889 if (inp == 0 && in6p == 0)
890 #endif
891 {
892 ++tcpstat.tcps_noport;
893 if (tcp_log_refused && (tiflags & TH_SYN)) {
894 char src[4*sizeof "123"];
895 char dst[4*sizeof "123"];
896
897 if (ip) {
898 strcpy(src, inet_ntoa(ip->ip_src));
899 strcpy(dst, inet_ntoa(ip->ip_dst));
900 }
901 else {
902 strcpy(src, "(unknown)");
903 strcpy(dst, "(unknown)");
904 }
905 log(LOG_INFO,
906 "Connection attempt to TCP %s:%d from %s:%d\n",
907 dst, ntohs(th->th_dport),
908 src, ntohs(th->th_sport));
909 }
910 TCP_FIELDS_TO_HOST(th);
911 goto dropwithreset_ratelim;
912 }
913 #ifdef IPSEC
914 if (inp && ipsec4_in_reject(m, inp)) {
915 ipsecstat.in_polvio++;
916 goto drop;
917 }
918 #ifdef INET6
919 else if (in6p && ipsec4_in_reject_so(m, in6p->in6p_socket)) {
920 ipsecstat.in_polvio++;
921 goto drop;
922 }
923 #endif
924 #endif /*IPSEC*/
925 break;
926 #endif /*INET*/
927 #ifdef INET6
928 case AF_INET6:
929 {
930 int faith;
931
932 #if defined(NFAITH) && NFAITH > 0
933 faith = faithprefix(&ip6->ip6_dst);
934 #else
935 faith = 0;
936 #endif
937 in6p = in6_pcblookup_connect(&tcb6, &ip6->ip6_src, th->th_sport,
938 &ip6->ip6_dst, th->th_dport, faith);
939 if (in6p == NULL) {
940 ++tcpstat.tcps_pcbhashmiss;
941 in6p = in6_pcblookup_bind(&tcb6, &ip6->ip6_dst,
942 th->th_dport, faith);
943 }
944 if (in6p == NULL) {
945 ++tcpstat.tcps_noport;
946 if (tcp_log_refused && (tiflags & TH_SYN)) {
947 char src[INET6_ADDRSTRLEN];
948 char dst[INET6_ADDRSTRLEN];
949
950 if (ip6) {
951 strcpy(src, ip6_sprintf(&ip6->ip6_src));
952 strcpy(dst, ip6_sprintf(&ip6->ip6_dst));
953 }
954 else {
955 strcpy(src, "(unknown v6)");
956 strcpy(dst, "(unknown v6)");
957 }
958 log(LOG_INFO,
959 "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
960 dst, ntohs(th->th_dport),
961 src, ntohs(th->th_sport));
962 }
963 TCP_FIELDS_TO_HOST(th);
964 goto dropwithreset_ratelim;
965 }
966 #ifdef IPSEC
967 if (ipsec6_in_reject(m, in6p)) {
968 ipsec6stat.in_polvio++;
969 goto drop;
970 }
971 #endif /*IPSEC*/
972 break;
973 }
974 #endif
975 }
976
977 /*
978 * If the state is CLOSED (i.e., TCB does not exist) then
979 * all data in the incoming segment is discarded.
980 * If the TCB exists but is in CLOSED state, it is embryonic,
981 * but should either do a listen or a connect soon.
982 */
983 tp = NULL;
984 so = NULL;
985 if (inp) {
986 tp = intotcpcb(inp);
987 so = inp->inp_socket;
988 }
989 #ifdef INET6
990 else if (in6p) {
991 tp = in6totcpcb(in6p);
992 so = in6p->in6p_socket;
993 }
994 #endif
995 if (tp == 0) {
996 TCP_FIELDS_TO_HOST(th);
997 goto dropwithreset_ratelim;
998 }
999 if (tp->t_state == TCPS_CLOSED)
1000 goto drop;
1001
1002 /*
1003 * Checksum extended TCP header and data.
1004 */
1005 switch (af) {
1006 #ifdef INET
1007 case AF_INET:
1008 switch (m->m_pkthdr.csum_flags &
1009 ((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
1010 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
1011 case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
1012 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
1013 goto badcsum;
1014
1015 case M_CSUM_TCPv4|M_CSUM_DATA:
1016 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
1017 if ((m->m_pkthdr.csum_data ^ 0xffff) != 0)
1018 goto badcsum;
1019 break;
1020
1021 case M_CSUM_TCPv4:
1022 /* Checksum was okay. */
1023 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
1024 break;
1025
1026 default:
1027 /* Must compute it ourselves. */
1028 TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
1029 #ifndef PULLDOWN_TEST
1030 {
1031 struct ipovly *ipov;
1032 ipov = (struct ipovly *)ip;
1033 bzero(ipov->ih_x1, sizeof ipov->ih_x1);
1034 ipov->ih_len = htons(tlen + off);
1035
1036 if (in_cksum(m, len) != 0)
1037 goto badcsum;
1038 }
1039 #else
1040 if (in4_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0)
1041 goto badcsum;
1042 #endif /* ! PULLDOWN_TEST */
1043 break;
1044 }
1045 break;
1046 #endif /* INET4 */
1047
1048 #ifdef INET6
1049 case AF_INET6:
1050 if (in6_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0)
1051 goto badcsum;
1052 break;
1053 #endif /* INET6 */
1054 }
1055
1056 TCP_FIELDS_TO_HOST(th);
1057
1058 /* Unscale the window into a 32-bit value. */
1059 if ((tiflags & TH_SYN) == 0)
1060 tiwin = th->th_win << tp->snd_scale;
1061 else
1062 tiwin = th->th_win;
1063
1064 #ifdef INET6
1065 /* save packet options if user wanted */
1066 if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
1067 if (in6p->in6p_options) {
1068 m_freem(in6p->in6p_options);
1069 in6p->in6p_options = 0;
1070 }
1071 ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
1072 }
1073 #endif
1074
1075 if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
1076 union syn_cache_sa src;
1077 union syn_cache_sa dst;
1078
1079 bzero(&src, sizeof(src));
1080 bzero(&dst, sizeof(dst));
1081 switch (af) {
1082 #ifdef INET
1083 case AF_INET:
1084 src.sin.sin_len = sizeof(struct sockaddr_in);
1085 src.sin.sin_family = AF_INET;
1086 src.sin.sin_addr = ip->ip_src;
1087 src.sin.sin_port = th->th_sport;
1088
1089 dst.sin.sin_len = sizeof(struct sockaddr_in);
1090 dst.sin.sin_family = AF_INET;
1091 dst.sin.sin_addr = ip->ip_dst;
1092 dst.sin.sin_port = th->th_dport;
1093 break;
1094 #endif
1095 #ifdef INET6
1096 case AF_INET6:
1097 src.sin6.sin6_len = sizeof(struct sockaddr_in6);
1098 src.sin6.sin6_family = AF_INET6;
1099 src.sin6.sin6_addr = ip6->ip6_src;
1100 src.sin6.sin6_port = th->th_sport;
1101
1102 dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
1103 dst.sin6.sin6_family = AF_INET6;
1104 dst.sin6.sin6_addr = ip6->ip6_dst;
1105 dst.sin6.sin6_port = th->th_dport;
1106 break;
1107 #endif /* INET6 */
1108 default:
1109 goto badsyn; /*sanity*/
1110 }
1111
1112 if (so->so_options & SO_DEBUG) {
1113 ostate = tp->t_state;
1114
1115 tcp_saveti = NULL;
1116 if (iphlen + sizeof(struct tcphdr) > MHLEN)
1117 goto nosave;
1118
1119 if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
1120 tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
1121 if (!tcp_saveti)
1122 goto nosave;
1123 } else {
1124 MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
1125 if (!tcp_saveti)
1126 goto nosave;
1127 tcp_saveti->m_len = iphlen;
1128 m_copydata(m, 0, iphlen,
1129 mtod(tcp_saveti, caddr_t));
1130 }
1131
1132 if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
1133 m_freem(tcp_saveti);
1134 tcp_saveti = NULL;
1135 } else {
1136 tcp_saveti->m_len += sizeof(struct tcphdr);
1137 bcopy(th, mtod(tcp_saveti, caddr_t) + iphlen,
1138 sizeof(struct tcphdr));
1139 }
1140 if (tcp_saveti) {
1141 /*
1142 * need to recover version # field, which was
1143 * overwritten on ip_cksum computation.
1144 */
1145 struct ip *sip;
1146 sip = mtod(tcp_saveti, struct ip *);
1147 switch (af) {
1148 #ifdef INET
1149 case AF_INET:
1150 sip->ip_v = 4;
1151 break;
1152 #endif
1153 #ifdef INET6
1154 case AF_INET6:
1155 sip->ip_v = 6;
1156 break;
1157 #endif
1158 }
1159 }
1160 nosave:;
1161 }
1162 if (so->so_options & SO_ACCEPTCONN) {
1163 if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1164 if (tiflags & TH_RST) {
1165 syn_cache_reset(&src.sa, &dst.sa, th);
1166 } else if ((tiflags & (TH_ACK|TH_SYN)) ==
1167 (TH_ACK|TH_SYN)) {
1168 /*
1169 * Received a SYN,ACK. This should
1170 * never happen while we are in
1171 * LISTEN. Send an RST.
1172 */
1173 goto badsyn;
1174 } else if (tiflags & TH_ACK) {
1175 so = syn_cache_get(&src.sa, &dst.sa,
1176 th, toff, tlen, so, m);
1177 if (so == NULL) {
1178 /*
1179 * We don't have a SYN for
1180 * this ACK; send an RST.
1181 */
1182 goto badsyn;
1183 } else if (so ==
1184 (struct socket *)(-1)) {
1185 /*
1186 * We were unable to create
1187 * the connection. If the
1188 * 3-way handshake was
1189 * completed, and RST has
1190 * been sent to the peer.
1191 * Since the mbuf might be
1192 * in use for the reply,
1193 * do not free it.
1194 */
1195 m = NULL;
1196 } else {
1197 /*
1198 * We have created a
1199 * full-blown connection.
1200 */
1201 tp = NULL;
1202 inp = NULL;
1203 #ifdef INET6
1204 in6p = NULL;
1205 #endif
1206 switch (so->so_proto->pr_domain->dom_family) {
1207 #ifdef INET
1208 case AF_INET:
1209 inp = sotoinpcb(so);
1210 tp = intotcpcb(inp);
1211 break;
1212 #endif
1213 #ifdef INET6
1214 case AF_INET6:
1215 in6p = sotoin6pcb(so);
1216 tp = in6totcpcb(in6p);
1217 break;
1218 #endif
1219 }
1220 if (tp == NULL)
1221 goto badsyn; /*XXX*/
1222 tiwin <<= tp->snd_scale;
1223 goto after_listen;
1224 }
1225 } else {
1226 /*
1227 * None of RST, SYN or ACK was set.
1228 * This is an invalid packet for a
1229 * TCB in LISTEN state. Send a RST.
1230 */
1231 goto badsyn;
1232 }
1233 } else {
1234 /*
1235 * Received a SYN.
1236 */
1237
1238 /*
1239 * LISTEN socket received a SYN
1240 * from itself? This can't possibly
1241 * be valid; drop the packet.
1242 */
1243 if (th->th_sport == th->th_dport) {
1244 int i;
1245
1246 switch (af) {
1247 #ifdef INET
1248 case AF_INET:
1249 i = in_hosteq(ip->ip_src, ip->ip_dst);
1250 break;
1251 #endif
1252 #ifdef INET6
1253 case AF_INET6:
1254 i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
1255 break;
1256 #endif
1257 default:
1258 i = 1;
1259 }
1260 if (i) {
1261 tcpstat.tcps_badsyn++;
1262 goto drop;
1263 }
1264 }
1265
1266 /*
1267 * SYN looks ok; create compressed TCP
1268 * state for it.
1269 */
1270 if (so->so_qlen <= so->so_qlimit &&
1271 syn_cache_add(&src.sa, &dst.sa, th, tlen,
1272 so, m, optp, optlen, &opti))
1273 m = NULL;
1274 }
1275 goto drop;
1276 }
1277 }
1278
1279 after_listen:
1280 #ifdef DIAGNOSTIC
1281 /*
1282 * Should not happen now that all embryonic connections
1283 * are handled with compressed state.
1284 */
1285 if (tp->t_state == TCPS_LISTEN)
1286 panic("tcp_input: TCPS_LISTEN");
1287 #endif
1288
1289 /*
1290 * Segment received on connection.
1291 * Reset idle time and keep-alive timer.
1292 */
1293 tp->t_rcvtime = tcp_now;
1294 if (TCPS_HAVEESTABLISHED(tp->t_state))
1295 TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1296
1297 /*
1298 * Process options.
1299 */
1300 if (optp)
1301 tcp_dooptions(tp, optp, optlen, th, &opti);
1302
1303 /*
1304 * Header prediction: check for the two common cases
1305 * of a uni-directional data xfer. If the packet has
1306 * no control flags, is in-sequence, the window didn't
1307 * change and we're not retransmitting, it's a
1308 * candidate. If the length is zero and the ack moved
1309 * forward, we're the sender side of the xfer. Just
1310 * free the data acked & wake any higher level process
1311 * that was blocked waiting for space. If the length
1312 * is non-zero and the ack didn't move, we're the
1313 * receiver side. If we're getting packets in-order
1314 * (the reassembly queue is empty), add the data to
1315 * the socket buffer and note that we need a delayed ack.
1316 */
1317 if (tp->t_state == TCPS_ESTABLISHED &&
1318 (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1319 (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
1320 th->th_seq == tp->rcv_nxt &&
1321 tiwin && tiwin == tp->snd_wnd &&
1322 tp->snd_nxt == tp->snd_max) {
1323
1324 /*
1325 * If last ACK falls within this segment's sequence numbers,
1326 * record the timestamp.
1327 */
1328 if (opti.ts_present &&
1329 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1330 SEQ_LT(tp->last_ack_sent, th->th_seq + tlen)) {
1331 tp->ts_recent_age = TCP_TIMESTAMP(tp);
1332 tp->ts_recent = opti.ts_val;
1333 }
1334
1335 if (tlen == 0) {
1336 if (SEQ_GT(th->th_ack, tp->snd_una) &&
1337 SEQ_LEQ(th->th_ack, tp->snd_max) &&
1338 tp->snd_cwnd >= tp->snd_wnd &&
1339 tp->t_dupacks < tcprexmtthresh) {
1340 /*
1341 * this is a pure ack for outstanding data.
1342 */
1343 ++tcpstat.tcps_predack;
1344 if (opti.ts_present && opti.ts_ecr)
1345 tcp_xmit_timer(tp,
1346 TCP_TIMESTAMP(tp) - opti.ts_ecr + 1);
1347 else if (tp->t_rtttime &&
1348 SEQ_GT(th->th_ack, tp->t_rtseq))
1349 tcp_xmit_timer(tp,
1350 tcp_now - tp->t_rtttime);
1351 acked = th->th_ack - tp->snd_una;
1352 tcpstat.tcps_rcvackpack++;
1353 tcpstat.tcps_rcvackbyte += acked;
1354 ND6_HINT(tp);
1355 sbdrop(&so->so_snd, acked);
1356 /*
1357 * We want snd_recover to track snd_una to
1358 * avoid sequence wraparound problems for
1359 * very large transfers.
1360 */
1361 tp->snd_una = tp->snd_recover = th->th_ack;
1362 m_freem(m);
1363
1364 /*
1365 * If all outstanding data are acked, stop
1366 * retransmit timer, otherwise restart timer
1367 * using current (possibly backed-off) value.
1368 * If process is waiting for space,
1369 * wakeup/selwakeup/signal. If data
1370 * are ready to send, let tcp_output
1371 * decide between more output or persist.
1372 */
1373 if (tp->snd_una == tp->snd_max)
1374 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1375 else if (TCP_TIMER_ISARMED(tp,
1376 TCPT_PERSIST) == 0)
1377 TCP_TIMER_ARM(tp, TCPT_REXMT,
1378 tp->t_rxtcur);
1379
1380 sowwakeup(so);
1381 if (so->so_snd.sb_cc)
1382 (void) tcp_output(tp);
1383 if (tcp_saveti)
1384 m_freem(tcp_saveti);
1385 return;
1386 }
1387 } else if (th->th_ack == tp->snd_una &&
1388 LIST_FIRST(&tp->segq) == NULL &&
1389 tlen <= sbspace(&so->so_rcv)) {
1390 /*
1391 * this is a pure, in-sequence data packet
1392 * with nothing on the reassembly queue and
1393 * we have enough buffer space to take it.
1394 */
1395 ++tcpstat.tcps_preddat;
1396 tp->rcv_nxt += tlen;
1397 tcpstat.tcps_rcvpack++;
1398 tcpstat.tcps_rcvbyte += tlen;
1399 ND6_HINT(tp);
1400 /*
1401 * Drop TCP, IP headers and TCP options then add data
1402 * to socket buffer.
1403 */
1404 m_adj(m, toff + off);
1405 sbappend(&so->so_rcv, m);
1406 sorwakeup(so);
1407 TCP_SETUP_ACK(tp, th);
1408 if (tp->t_flags & TF_ACKNOW)
1409 (void) tcp_output(tp);
1410 if (tcp_saveti)
1411 m_freem(tcp_saveti);
1412 return;
1413 }
1414 }
1415
1416 /*
1417 * Compute mbuf offset to TCP data segment.
1418 */
1419 hdroptlen = toff + off;
1420
1421 /*
1422 * Calculate amount of space in receive window,
1423 * and then do TCP input processing.
1424 * Receive window is amount of space in rcv queue,
1425 * but not less than advertised window.
1426 */
1427 { int win;
1428
1429 win = sbspace(&so->so_rcv);
1430 if (win < 0)
1431 win = 0;
1432 tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1433 }
1434
1435 switch (tp->t_state) {
1436
1437 /*
1438 * If the state is SYN_SENT:
1439 * if seg contains an ACK, but not for our SYN, drop the input.
1440 * if seg contains a RST, then drop the connection.
1441 * if seg does not contain SYN, then drop it.
1442 * Otherwise this is an acceptable SYN segment
1443 * initialize tp->rcv_nxt and tp->irs
1444 * if seg contains ack then advance tp->snd_una
1445 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1446 * arrange for segment to be acked (eventually)
1447 * continue processing rest of data/controls, beginning with URG
1448 */
1449 case TCPS_SYN_SENT:
1450 if ((tiflags & TH_ACK) &&
1451 (SEQ_LEQ(th->th_ack, tp->iss) ||
1452 SEQ_GT(th->th_ack, tp->snd_max)))
1453 goto dropwithreset;
1454 if (tiflags & TH_RST) {
1455 if (tiflags & TH_ACK)
1456 tp = tcp_drop(tp, ECONNREFUSED);
1457 goto drop;
1458 }
1459 if ((tiflags & TH_SYN) == 0)
1460 goto drop;
1461 if (tiflags & TH_ACK) {
1462 tp->snd_una = tp->snd_recover = th->th_ack;
1463 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1464 tp->snd_nxt = tp->snd_una;
1465 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1466 }
1467 tp->irs = th->th_seq;
1468 tcp_rcvseqinit(tp);
1469 tp->t_flags |= TF_ACKNOW;
1470 tcp_mss_from_peer(tp, opti.maxseg);
1471
1472 /*
1473 * Initialize the initial congestion window. If we
1474 * had to retransmit the SYN, we must initialize cwnd
1475 * to 1 segment (i.e. the Loss Window).
1476 */
1477 if (tp->t_flags & TF_SYN_REXMT)
1478 tp->snd_cwnd = tp->t_peermss;
1479 else
1480 tp->snd_cwnd = TCP_INITIAL_WINDOW(tcp_init_win,
1481 tp->t_peermss);
1482
1483 tcp_rmx_rtt(tp);
1484 if (tiflags & TH_ACK) {
1485 tcpstat.tcps_connects++;
1486 soisconnected(so);
1487 tcp_established(tp);
1488 /* Do window scaling on this connection? */
1489 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1490 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1491 tp->snd_scale = tp->requested_s_scale;
1492 tp->rcv_scale = tp->request_r_scale;
1493 }
1494 TCP_REASS_LOCK(tp);
1495 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1496 TCP_REASS_UNLOCK(tp);
1497 /*
1498 * if we didn't have to retransmit the SYN,
1499 * use its rtt as our initial srtt & rtt var.
1500 */
1501 if (tp->t_rtttime)
1502 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
1503 } else
1504 tp->t_state = TCPS_SYN_RECEIVED;
1505
1506 /*
1507 * Advance th->th_seq to correspond to first data byte.
1508 * If data, trim to stay within window,
1509 * dropping FIN if necessary.
1510 */
1511 th->th_seq++;
1512 if (tlen > tp->rcv_wnd) {
1513 todrop = tlen - tp->rcv_wnd;
1514 m_adj(m, -todrop);
1515 tlen = tp->rcv_wnd;
1516 tiflags &= ~TH_FIN;
1517 tcpstat.tcps_rcvpackafterwin++;
1518 tcpstat.tcps_rcvbyteafterwin += todrop;
1519 }
1520 tp->snd_wl1 = th->th_seq - 1;
1521 tp->rcv_up = th->th_seq;
1522 goto step6;
1523
1524 /*
1525 * If the state is SYN_RECEIVED:
1526 * If seg contains an ACK, but not for our SYN, drop the input
1527 * and generate an RST. See page 36, rfc793
1528 */
1529 case TCPS_SYN_RECEIVED:
1530 if ((tiflags & TH_ACK) &&
1531 (SEQ_LEQ(th->th_ack, tp->iss) ||
1532 SEQ_GT(th->th_ack, tp->snd_max)))
1533 goto dropwithreset;
1534 break;
1535 }
1536
1537 /*
1538 * States other than LISTEN or SYN_SENT.
1539 * First check timestamp, if present.
1540 * Then check that at least some bytes of segment are within
1541 * receive window. If segment begins before rcv_nxt,
1542 * drop leading data (and SYN); if nothing left, just ack.
1543 *
1544 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1545 * and it's less than ts_recent, drop it.
1546 */
1547 if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
1548 TSTMP_LT(opti.ts_val, tp->ts_recent)) {
1549
1550 /* Check to see if ts_recent is over 24 days old. */
1551 if ((int)(TCP_TIMESTAMP(tp) - tp->ts_recent_age) >
1552 TCP_PAWS_IDLE) {
1553 /*
1554 * Invalidate ts_recent. If this segment updates
1555 * ts_recent, the age will be reset later and ts_recent
1556 * will get a valid value. If it does not, setting
1557 * ts_recent to zero will at least satisfy the
1558 * requirement that zero be placed in the timestamp
1559 * echo reply when ts_recent isn't valid. The
1560 * age isn't reset until we get a valid ts_recent
1561 * because we don't want out-of-order segments to be
1562 * dropped when ts_recent is old.
1563 */
1564 tp->ts_recent = 0;
1565 } else {
1566 tcpstat.tcps_rcvduppack++;
1567 tcpstat.tcps_rcvdupbyte += tlen;
1568 tcpstat.tcps_pawsdrop++;
1569 goto dropafterack;
1570 }
1571 }
1572
1573 todrop = tp->rcv_nxt - th->th_seq;
1574 if (todrop > 0) {
1575 if (tiflags & TH_SYN) {
1576 tiflags &= ~TH_SYN;
1577 th->th_seq++;
1578 if (th->th_urp > 1)
1579 th->th_urp--;
1580 else {
1581 tiflags &= ~TH_URG;
1582 th->th_urp = 0;
1583 }
1584 todrop--;
1585 }
1586 if (todrop > tlen ||
1587 (todrop == tlen && (tiflags & TH_FIN) == 0)) {
1588 /*
1589 * Any valid FIN must be to the left of the window.
1590 * At this point the FIN must be a duplicate or
1591 * out of sequence; drop it.
1592 */
1593 tiflags &= ~TH_FIN;
1594 /*
1595 * Send an ACK to resynchronize and drop any data.
1596 * But keep on processing for RST or ACK.
1597 */
1598 tp->t_flags |= TF_ACKNOW;
1599 todrop = tlen;
1600 tcpstat.tcps_rcvdupbyte += todrop;
1601 tcpstat.tcps_rcvduppack++;
1602 } else {
1603 tcpstat.tcps_rcvpartduppack++;
1604 tcpstat.tcps_rcvpartdupbyte += todrop;
1605 }
1606 hdroptlen += todrop; /*drop from head afterwards*/
1607 th->th_seq += todrop;
1608 tlen -= todrop;
1609 if (th->th_urp > todrop)
1610 th->th_urp -= todrop;
1611 else {
1612 tiflags &= ~TH_URG;
1613 th->th_urp = 0;
1614 }
1615 }
1616
1617 /*
1618 * If new data are received on a connection after the
1619 * user processes are gone, then RST the other end.
1620 */
1621 if ((so->so_state & SS_NOFDREF) &&
1622 tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1623 tp = tcp_close(tp);
1624 tcpstat.tcps_rcvafterclose++;
1625 goto dropwithreset;
1626 }
1627
1628 /*
1629 * If segment ends after window, drop trailing data
1630 * (and PUSH and FIN); if nothing left, just ACK.
1631 */
1632 todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
1633 if (todrop > 0) {
1634 tcpstat.tcps_rcvpackafterwin++;
1635 if (todrop >= tlen) {
1636 tcpstat.tcps_rcvbyteafterwin += tlen;
1637 /*
1638 * If a new connection request is received
1639 * while in TIME_WAIT, drop the old connection
1640 * and start over if the sequence numbers
1641 * are above the previous ones.
1642 */
1643 if (tiflags & TH_SYN &&
1644 tp->t_state == TCPS_TIME_WAIT &&
1645 SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1646 iss = tcp_new_iss(tp, tp->snd_nxt);
1647 tp = tcp_close(tp);
1648 goto findpcb;
1649 }
1650 /*
1651 * If window is closed can only take segments at
1652 * window edge, and have to drop data and PUSH from
1653 * incoming segments. Continue processing, but
1654 * remember to ack. Otherwise, drop segment
1655 * and ack.
1656 */
1657 if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1658 tp->t_flags |= TF_ACKNOW;
1659 tcpstat.tcps_rcvwinprobe++;
1660 } else
1661 goto dropafterack;
1662 } else
1663 tcpstat.tcps_rcvbyteafterwin += todrop;
1664 m_adj(m, -todrop);
1665 tlen -= todrop;
1666 tiflags &= ~(TH_PUSH|TH_FIN);
1667 }
1668
1669 /*
1670 * If last ACK falls within this segment's sequence numbers,
1671 * and the timestamp is newer, record it.
1672 */
1673 if (opti.ts_present && TSTMP_GEQ(opti.ts_val, tp->ts_recent) &&
1674 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1675 SEQ_LT(tp->last_ack_sent, th->th_seq + tlen +
1676 ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
1677 tp->ts_recent_age = TCP_TIMESTAMP(tp);
1678 tp->ts_recent = opti.ts_val;
1679 }
1680
1681 /*
1682 * If the RST bit is set examine the state:
1683 * SYN_RECEIVED STATE:
1684 * If passive open, return to LISTEN state.
1685 * If active open, inform user that connection was refused.
1686 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
1687 * Inform user that connection was reset, and close tcb.
1688 * CLOSING, LAST_ACK, TIME_WAIT STATES
1689 * Close the tcb.
1690 */
1691 if (tiflags&TH_RST) switch (tp->t_state) {
1692
1693 case TCPS_SYN_RECEIVED:
1694 so->so_error = ECONNREFUSED;
1695 goto close;
1696
1697 case TCPS_ESTABLISHED:
1698 case TCPS_FIN_WAIT_1:
1699 case TCPS_FIN_WAIT_2:
1700 case TCPS_CLOSE_WAIT:
1701 so->so_error = ECONNRESET;
1702 close:
1703 tp->t_state = TCPS_CLOSED;
1704 tcpstat.tcps_drops++;
1705 tp = tcp_close(tp);
1706 goto drop;
1707
1708 case TCPS_CLOSING:
1709 case TCPS_LAST_ACK:
1710 case TCPS_TIME_WAIT:
1711 tp = tcp_close(tp);
1712 goto drop;
1713 }
1714
1715 /*
1716 * If a SYN is in the window, then this is an
1717 * error and we send an RST and drop the connection.
1718 */
1719 if (tiflags & TH_SYN) {
1720 tp = tcp_drop(tp, ECONNRESET);
1721 goto dropwithreset;
1722 }
1723
1724 /*
1725 * If the ACK bit is off we drop the segment and return.
1726 */
1727 if ((tiflags & TH_ACK) == 0) {
1728 if (tp->t_flags & TF_ACKNOW)
1729 goto dropafterack;
1730 else
1731 goto drop;
1732 }
1733
1734 /*
1735 * Ack processing.
1736 */
1737 switch (tp->t_state) {
1738
1739 /*
1740 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
1741 * ESTABLISHED state and continue processing, otherwise
1742 * send an RST.
1743 */
1744 case TCPS_SYN_RECEIVED:
1745 if (SEQ_GT(tp->snd_una, th->th_ack) ||
1746 SEQ_GT(th->th_ack, tp->snd_max))
1747 goto dropwithreset;
1748 tcpstat.tcps_connects++;
1749 soisconnected(so);
1750 tcp_established(tp);
1751 /* Do window scaling? */
1752 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1753 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1754 tp->snd_scale = tp->requested_s_scale;
1755 tp->rcv_scale = tp->request_r_scale;
1756 }
1757 TCP_REASS_LOCK(tp);
1758 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1759 TCP_REASS_UNLOCK(tp);
1760 tp->snd_wl1 = th->th_seq - 1;
1761 /* fall into ... */
1762
1763 /*
1764 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1765 * ACKs. If the ack is in the range
1766 * tp->snd_una < th->th_ack <= tp->snd_max
1767 * then advance tp->snd_una to th->th_ack and drop
1768 * data from the retransmission queue. If this ACK reflects
1769 * more up to date window information we update our window information.
1770 */
1771 case TCPS_ESTABLISHED:
1772 case TCPS_FIN_WAIT_1:
1773 case TCPS_FIN_WAIT_2:
1774 case TCPS_CLOSE_WAIT:
1775 case TCPS_CLOSING:
1776 case TCPS_LAST_ACK:
1777 case TCPS_TIME_WAIT:
1778
1779 if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
1780 if (tlen == 0 && tiwin == tp->snd_wnd) {
1781 tcpstat.tcps_rcvdupack++;
1782 /*
1783 * If we have outstanding data (other than
1784 * a window probe), this is a completely
1785 * duplicate ack (ie, window info didn't
1786 * change), the ack is the biggest we've
1787 * seen and we've seen exactly our rexmt
1788 * threshhold of them, assume a packet
1789 * has been dropped and retransmit it.
1790 * Kludge snd_nxt & the congestion
1791 * window so we send only this one
1792 * packet.
1793 *
1794 * We know we're losing at the current
1795 * window size so do congestion avoidance
1796 * (set ssthresh to half the current window
1797 * and pull our congestion window back to
1798 * the new ssthresh).
1799 *
1800 * Dup acks mean that packets have left the
1801 * network (they're now cached at the receiver)
1802 * so bump cwnd by the amount in the receiver
1803 * to keep a constant cwnd packets in the
1804 * network.
1805 */
1806 if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
1807 th->th_ack != tp->snd_una)
1808 tp->t_dupacks = 0;
1809 else if (++tp->t_dupacks == tcprexmtthresh) {
1810 tcp_seq onxt = tp->snd_nxt;
1811 u_int win =
1812 min(tp->snd_wnd, tp->snd_cwnd) /
1813 2 / tp->t_segsz;
1814 if (tcp_do_newreno && SEQ_LT(th->th_ack,
1815 tp->snd_recover)) {
1816 /*
1817 * False fast retransmit after
1818 * timeout. Do not cut window.
1819 */
1820 tp->snd_cwnd += tp->t_segsz;
1821 tp->t_dupacks = 0;
1822 (void) tcp_output(tp);
1823 goto drop;
1824 }
1825
1826 if (win < 2)
1827 win = 2;
1828 tp->snd_ssthresh = win * tp->t_segsz;
1829 tp->snd_recover = tp->snd_max;
1830 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1831 tp->t_rtttime = 0;
1832 tp->snd_nxt = th->th_ack;
1833 tp->snd_cwnd = tp->t_segsz;
1834 (void) tcp_output(tp);
1835 tp->snd_cwnd = tp->snd_ssthresh +
1836 tp->t_segsz * tp->t_dupacks;
1837 if (SEQ_GT(onxt, tp->snd_nxt))
1838 tp->snd_nxt = onxt;
1839 goto drop;
1840 } else if (tp->t_dupacks > tcprexmtthresh) {
1841 tp->snd_cwnd += tp->t_segsz;
1842 (void) tcp_output(tp);
1843 goto drop;
1844 }
1845 } else
1846 tp->t_dupacks = 0;
1847 break;
1848 }
1849 /*
1850 * If the congestion window was inflated to account
1851 * for the other side's cached packets, retract it.
1852 */
1853 if (tcp_do_newreno == 0) {
1854 if (tp->t_dupacks >= tcprexmtthresh &&
1855 tp->snd_cwnd > tp->snd_ssthresh)
1856 tp->snd_cwnd = tp->snd_ssthresh;
1857 tp->t_dupacks = 0;
1858 } else if (tp->t_dupacks >= tcprexmtthresh &&
1859 tcp_newreno(tp, th) == 0) {
1860 tp->snd_cwnd = tp->snd_ssthresh;
1861 /*
1862 * Window inflation should have left us with approx.
1863 * snd_ssthresh outstanding data. But in case we
1864 * would be inclined to send a burst, better to do
1865 * it via the slow start mechanism.
1866 */
1867 if (SEQ_SUB(tp->snd_max, th->th_ack) < tp->snd_ssthresh)
1868 tp->snd_cwnd = SEQ_SUB(tp->snd_max, th->th_ack)
1869 + tp->t_segsz;
1870 tp->t_dupacks = 0;
1871 }
1872 if (SEQ_GT(th->th_ack, tp->snd_max)) {
1873 tcpstat.tcps_rcvacktoomuch++;
1874 goto dropafterack;
1875 }
1876 acked = th->th_ack - tp->snd_una;
1877 tcpstat.tcps_rcvackpack++;
1878 tcpstat.tcps_rcvackbyte += acked;
1879
1880 /*
1881 * If we have a timestamp reply, update smoothed
1882 * round trip time. If no timestamp is present but
1883 * transmit timer is running and timed sequence
1884 * number was acked, update smoothed round trip time.
1885 * Since we now have an rtt measurement, cancel the
1886 * timer backoff (cf., Phil Karn's retransmit alg.).
1887 * Recompute the initial retransmit timer.
1888 */
1889 if (opti.ts_present && opti.ts_ecr)
1890 tcp_xmit_timer(tp, TCP_TIMESTAMP(tp) - opti.ts_ecr + 1);
1891 else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
1892 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
1893
1894 /*
1895 * If all outstanding data is acked, stop retransmit
1896 * timer and remember to restart (more output or persist).
1897 * If there is more data to be acked, restart retransmit
1898 * timer, using current (possibly backed-off) value.
1899 */
1900 if (th->th_ack == tp->snd_max) {
1901 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1902 needoutput = 1;
1903 } else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
1904 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
1905 /*
1906 * When new data is acked, open the congestion window.
1907 * If the window gives us less than ssthresh packets
1908 * in flight, open exponentially (segsz per packet).
1909 * Otherwise open linearly: segsz per window
1910 * (segsz^2 / cwnd per packet), plus a constant
1911 * fraction of a packet (segsz/8) to help larger windows
1912 * open quickly enough.
1913 */
1914 {
1915 u_int cw = tp->snd_cwnd;
1916 u_int incr = tp->t_segsz;
1917
1918 if (cw > tp->snd_ssthresh)
1919 incr = incr * incr / cw;
1920 if (tcp_do_newreno == 0 || SEQ_GEQ(th->th_ack, tp->snd_recover))
1921 tp->snd_cwnd = min(cw + incr,
1922 TCP_MAXWIN << tp->snd_scale);
1923 }
1924 ND6_HINT(tp);
1925 if (acked > so->so_snd.sb_cc) {
1926 tp->snd_wnd -= so->so_snd.sb_cc;
1927 sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
1928 ourfinisacked = 1;
1929 } else {
1930 sbdrop(&so->so_snd, acked);
1931 tp->snd_wnd -= acked;
1932 ourfinisacked = 0;
1933 }
1934 sowwakeup(so);
1935 /*
1936 * We want snd_recover to track snd_una to
1937 * avoid sequence wraparound problems for
1938 * very large transfers.
1939 */
1940 tp->snd_una = tp->snd_recover = th->th_ack;
1941 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1942 tp->snd_nxt = tp->snd_una;
1943
1944 switch (tp->t_state) {
1945
1946 /*
1947 * In FIN_WAIT_1 STATE in addition to the processing
1948 * for the ESTABLISHED state if our FIN is now acknowledged
1949 * then enter FIN_WAIT_2.
1950 */
1951 case TCPS_FIN_WAIT_1:
1952 if (ourfinisacked) {
1953 /*
1954 * If we can't receive any more
1955 * data, then closing user can proceed.
1956 * Starting the timer is contrary to the
1957 * specification, but if we don't get a FIN
1958 * we'll hang forever.
1959 */
1960 if (so->so_state & SS_CANTRCVMORE) {
1961 soisdisconnected(so);
1962 if (tcp_maxidle > 0)
1963 TCP_TIMER_ARM(tp, TCPT_2MSL,
1964 tcp_maxidle);
1965 }
1966 tp->t_state = TCPS_FIN_WAIT_2;
1967 }
1968 break;
1969
1970 /*
1971 * In CLOSING STATE in addition to the processing for
1972 * the ESTABLISHED state if the ACK acknowledges our FIN
1973 * then enter the TIME-WAIT state, otherwise ignore
1974 * the segment.
1975 */
1976 case TCPS_CLOSING:
1977 if (ourfinisacked) {
1978 tp->t_state = TCPS_TIME_WAIT;
1979 tcp_canceltimers(tp);
1980 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
1981 soisdisconnected(so);
1982 }
1983 break;
1984
1985 /*
1986 * In LAST_ACK, we may still be waiting for data to drain
1987 * and/or to be acked, as well as for the ack of our FIN.
1988 * If our FIN is now acknowledged, delete the TCB,
1989 * enter the closed state and return.
1990 */
1991 case TCPS_LAST_ACK:
1992 if (ourfinisacked) {
1993 tp = tcp_close(tp);
1994 goto drop;
1995 }
1996 break;
1997
1998 /*
1999 * In TIME_WAIT state the only thing that should arrive
2000 * is a retransmission of the remote FIN. Acknowledge
2001 * it and restart the finack timer.
2002 */
2003 case TCPS_TIME_WAIT:
2004 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2005 goto dropafterack;
2006 }
2007 }
2008
2009 step6:
2010 /*
2011 * Update window information.
2012 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2013 */
2014 if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2015 (tp->snd_wl1 == th->th_seq && SEQ_LT(tp->snd_wl2, th->th_ack)) ||
2016 (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))) {
2017 /* keep track of pure window updates */
2018 if (tlen == 0 &&
2019 tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2020 tcpstat.tcps_rcvwinupd++;
2021 tp->snd_wnd = tiwin;
2022 tp->snd_wl1 = th->th_seq;
2023 tp->snd_wl2 = th->th_ack;
2024 if (tp->snd_wnd > tp->max_sndwnd)
2025 tp->max_sndwnd = tp->snd_wnd;
2026 needoutput = 1;
2027 }
2028
2029 /*
2030 * Process segments with URG.
2031 */
2032 if ((tiflags & TH_URG) && th->th_urp &&
2033 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2034 /*
2035 * This is a kludge, but if we receive and accept
2036 * random urgent pointers, we'll crash in
2037 * soreceive. It's hard to imagine someone
2038 * actually wanting to send this much urgent data.
2039 */
2040 if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2041 th->th_urp = 0; /* XXX */
2042 tiflags &= ~TH_URG; /* XXX */
2043 goto dodata; /* XXX */
2044 }
2045 /*
2046 * If this segment advances the known urgent pointer,
2047 * then mark the data stream. This should not happen
2048 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2049 * a FIN has been received from the remote side.
2050 * In these states we ignore the URG.
2051 *
2052 * According to RFC961 (Assigned Protocols),
2053 * the urgent pointer points to the last octet
2054 * of urgent data. We continue, however,
2055 * to consider it to indicate the first octet
2056 * of data past the urgent section as the original
2057 * spec states (in one of two places).
2058 */
2059 if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2060 tp->rcv_up = th->th_seq + th->th_urp;
2061 so->so_oobmark = so->so_rcv.sb_cc +
2062 (tp->rcv_up - tp->rcv_nxt) - 1;
2063 if (so->so_oobmark == 0)
2064 so->so_state |= SS_RCVATMARK;
2065 sohasoutofband(so);
2066 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2067 }
2068 /*
2069 * Remove out of band data so doesn't get presented to user.
2070 * This can happen independent of advancing the URG pointer,
2071 * but if two URG's are pending at once, some out-of-band
2072 * data may creep in... ick.
2073 */
2074 if (th->th_urp <= (u_int16_t) tlen
2075 #ifdef SO_OOBINLINE
2076 && (so->so_options & SO_OOBINLINE) == 0
2077 #endif
2078 )
2079 tcp_pulloutofband(so, th, m, hdroptlen);
2080 } else
2081 /*
2082 * If no out of band data is expected,
2083 * pull receive urgent pointer along
2084 * with the receive window.
2085 */
2086 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2087 tp->rcv_up = tp->rcv_nxt;
2088 dodata: /* XXX */
2089
2090 /*
2091 * Process the segment text, merging it into the TCP sequencing queue,
2092 * and arranging for acknowledgement of receipt if necessary.
2093 * This process logically involves adjusting tp->rcv_wnd as data
2094 * is presented to the user (this happens in tcp_usrreq.c,
2095 * case PRU_RCVD). If a FIN has already been received on this
2096 * connection then we just ignore the text.
2097 */
2098 if ((tlen || (tiflags & TH_FIN)) &&
2099 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2100 /*
2101 * Insert segment ti into reassembly queue of tcp with
2102 * control block tp. Return TH_FIN if reassembly now includes
2103 * a segment with FIN. The macro form does the common case
2104 * inline (segment is the next to be received on an
2105 * established connection, and the queue is empty),
2106 * avoiding linkage into and removal from the queue and
2107 * repetition of various conversions.
2108 * Set DELACK for segments received in order, but ack
2109 * immediately when segments are out of order
2110 * (so fast retransmit can work).
2111 */
2112 /* NOTE: this was TCP_REASS() macro, but used only once */
2113 TCP_REASS_LOCK(tp);
2114 if (th->th_seq == tp->rcv_nxt &&
2115 LIST_FIRST(&tp->segq) == NULL &&
2116 tp->t_state == TCPS_ESTABLISHED) {
2117 TCP_SETUP_ACK(tp, th);
2118 tp->rcv_nxt += tlen;
2119 tiflags = th->th_flags & TH_FIN;
2120 tcpstat.tcps_rcvpack++;
2121 tcpstat.tcps_rcvbyte += tlen;
2122 ND6_HINT(tp);
2123 m_adj(m, hdroptlen);
2124 sbappend(&(so)->so_rcv, m);
2125 sorwakeup(so);
2126 } else {
2127 m_adj(m, hdroptlen);
2128 tiflags = tcp_reass(tp, th, m, &tlen);
2129 tp->t_flags |= TF_ACKNOW;
2130 }
2131 TCP_REASS_UNLOCK(tp);
2132
2133 /*
2134 * Note the amount of data that peer has sent into
2135 * our window, in order to estimate the sender's
2136 * buffer size.
2137 */
2138 len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2139 } else {
2140 m_freem(m);
2141 m = NULL;
2142 tiflags &= ~TH_FIN;
2143 }
2144
2145 /*
2146 * If FIN is received ACK the FIN and let the user know
2147 * that the connection is closing. Ignore a FIN received before
2148 * the connection is fully established.
2149 */
2150 if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2151 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2152 socantrcvmore(so);
2153 tp->t_flags |= TF_ACKNOW;
2154 tp->rcv_nxt++;
2155 }
2156 switch (tp->t_state) {
2157
2158 /*
2159 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2160 */
2161 case TCPS_ESTABLISHED:
2162 tp->t_state = TCPS_CLOSE_WAIT;
2163 break;
2164
2165 /*
2166 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2167 * enter the CLOSING state.
2168 */
2169 case TCPS_FIN_WAIT_1:
2170 tp->t_state = TCPS_CLOSING;
2171 break;
2172
2173 /*
2174 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2175 * starting the time-wait timer, turning off the other
2176 * standard timers.
2177 */
2178 case TCPS_FIN_WAIT_2:
2179 tp->t_state = TCPS_TIME_WAIT;
2180 tcp_canceltimers(tp);
2181 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2182 soisdisconnected(so);
2183 break;
2184
2185 /*
2186 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2187 */
2188 case TCPS_TIME_WAIT:
2189 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2190 break;
2191 }
2192 }
2193 #ifdef TCP_DEBUG
2194 if (so->so_options & SO_DEBUG)
2195 tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
2196 #endif
2197
2198 /*
2199 * Return any desired output.
2200 */
2201 if (needoutput || (tp->t_flags & TF_ACKNOW))
2202 (void) tcp_output(tp);
2203 if (tcp_saveti)
2204 m_freem(tcp_saveti);
2205 return;
2206
2207 badsyn:
2208 /*
2209 * Received a bad SYN. Increment counters and dropwithreset.
2210 */
2211 tcpstat.tcps_badsyn++;
2212 tp = NULL;
2213 goto dropwithreset;
2214
2215 dropafterack:
2216 /*
2217 * Generate an ACK dropping incoming segment if it occupies
2218 * sequence space, where the ACK reflects our state.
2219 */
2220 if (tiflags & TH_RST)
2221 goto drop;
2222 m_freem(m);
2223 tp->t_flags |= TF_ACKNOW;
2224 (void) tcp_output(tp);
2225 if (tcp_saveti)
2226 m_freem(tcp_saveti);
2227 return;
2228
2229 dropwithreset_ratelim:
2230 /*
2231 * We may want to rate-limit RSTs in certain situations,
2232 * particularly if we are sending an RST in response to
2233 * an attempt to connect to or otherwise communicate with
2234 * a port for which we have no socket.
2235 */
2236 if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
2237 tcp_rst_ppslim) == 0) {
2238 /* XXX stat */
2239 goto drop;
2240 }
2241 /* ...fall into dropwithreset... */
2242
2243 dropwithreset:
2244 /*
2245 * Generate a RST, dropping incoming segment.
2246 * Make ACK acceptable to originator of segment.
2247 */
2248 if (tiflags & TH_RST)
2249 goto drop;
2250 {
2251 /*
2252 * need to recover version # field, which was overwritten on
2253 * ip_cksum computation.
2254 */
2255 struct ip *sip;
2256 sip = mtod(m, struct ip *);
2257 switch (af) {
2258 #ifdef INET
2259 case AF_INET:
2260 sip->ip_v = 4;
2261 break;
2262 #endif
2263 #ifdef INET6
2264 case AF_INET6:
2265 sip->ip_v = 6;
2266 break;
2267 #endif
2268 }
2269 }
2270 if (tiflags & TH_ACK)
2271 (void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
2272 else {
2273 if (tiflags & TH_SYN)
2274 tlen++;
2275 (void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
2276 TH_RST|TH_ACK);
2277 }
2278 if (tcp_saveti)
2279 m_freem(tcp_saveti);
2280 return;
2281
2282 badcsum:
2283 tcpstat.tcps_rcvbadsum++;
2284 drop:
2285 /*
2286 * Drop space held by incoming segment and return.
2287 */
2288 if (tp) {
2289 if (tp->t_inpcb)
2290 so = tp->t_inpcb->inp_socket;
2291 #ifdef INET6
2292 else if (tp->t_in6pcb)
2293 so = tp->t_in6pcb->in6p_socket;
2294 #endif
2295 else
2296 so = NULL;
2297 #ifdef TCP_DEBUG
2298 if (so && (so->so_options & SO_DEBUG) != 0)
2299 tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
2300 #endif
2301 }
2302 if (tcp_saveti)
2303 m_freem(tcp_saveti);
2304 m_freem(m);
2305 return;
2306 }
2307
2308 void
2309 tcp_dooptions(tp, cp, cnt, th, oi)
2310 struct tcpcb *tp;
2311 u_char *cp;
2312 int cnt;
2313 struct tcphdr *th;
2314 struct tcp_opt_info *oi;
2315 {
2316 u_int16_t mss;
2317 int opt, optlen;
2318
2319 for (; cnt > 0; cnt -= optlen, cp += optlen) {
2320 opt = cp[0];
2321 if (opt == TCPOPT_EOL)
2322 break;
2323 if (opt == TCPOPT_NOP)
2324 optlen = 1;
2325 else {
2326 if (cnt < 2)
2327 break;
2328 optlen = cp[1];
2329 if (optlen < 2 || optlen > cnt)
2330 break;
2331 }
2332 switch (opt) {
2333
2334 default:
2335 continue;
2336
2337 case TCPOPT_MAXSEG:
2338 if (optlen != TCPOLEN_MAXSEG)
2339 continue;
2340 if (!(th->th_flags & TH_SYN))
2341 continue;
2342 bcopy(cp + 2, &mss, sizeof(mss));
2343 oi->maxseg = ntohs(mss);
2344 break;
2345
2346 case TCPOPT_WINDOW:
2347 if (optlen != TCPOLEN_WINDOW)
2348 continue;
2349 if (!(th->th_flags & TH_SYN))
2350 continue;
2351 tp->t_flags |= TF_RCVD_SCALE;
2352 tp->requested_s_scale = cp[2];
2353 if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
2354 #if 0 /*XXX*/
2355 char *p;
2356
2357 if (ip)
2358 p = ntohl(ip->ip_src);
2359 #ifdef INET6
2360 else if (ip6)
2361 p = ip6_sprintf(&ip6->ip6_src);
2362 #endif
2363 else
2364 p = "(unknown)";
2365 log(LOG_ERR, "TCP: invalid wscale %d from %s, "
2366 "assuming %d\n",
2367 tp->requested_s_scale, p,
2368 TCP_MAX_WINSHIFT);
2369 #else
2370 log(LOG_ERR, "TCP: invalid wscale %d, "
2371 "assuming %d\n",
2372 tp->requested_s_scale,
2373 TCP_MAX_WINSHIFT);
2374 #endif
2375 tp->requested_s_scale = TCP_MAX_WINSHIFT;
2376 }
2377 break;
2378
2379 case TCPOPT_TIMESTAMP:
2380 if (optlen != TCPOLEN_TIMESTAMP)
2381 continue;
2382 oi->ts_present = 1;
2383 bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
2384 NTOHL(oi->ts_val);
2385 bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
2386 NTOHL(oi->ts_ecr);
2387
2388 /*
2389 * A timestamp received in a SYN makes
2390 * it ok to send timestamp requests and replies.
2391 */
2392 if (th->th_flags & TH_SYN) {
2393 tp->t_flags |= TF_RCVD_TSTMP;
2394 tp->ts_recent = oi->ts_val;
2395 tp->ts_recent_age = TCP_TIMESTAMP(tp);
2396 }
2397 break;
2398 case TCPOPT_SACK_PERMITTED:
2399 if (optlen != TCPOLEN_SACK_PERMITTED)
2400 continue;
2401 if (!(th->th_flags & TH_SYN))
2402 continue;
2403 tp->t_flags &= ~TF_CANT_TXSACK;
2404 break;
2405
2406 case TCPOPT_SACK:
2407 if (tp->t_flags & TF_IGNR_RXSACK)
2408 continue;
2409 if (optlen % 8 != 2 || optlen < 10)
2410 continue;
2411 cp += 2;
2412 optlen -= 2;
2413 for (; optlen > 0; cp -= 8, optlen -= 8) {
2414 tcp_seq lwe, rwe;
2415 bcopy((char *)cp, (char *) &lwe, sizeof(lwe));
2416 NTOHL(lwe);
2417 bcopy((char *)cp, (char *) &rwe, sizeof(rwe));
2418 NTOHL(rwe);
2419 /* tcp_mark_sacked(tp, lwe, rwe); */
2420 }
2421 break;
2422 }
2423 }
2424 }
2425
2426 /*
2427 * Pull out of band byte out of a segment so
2428 * it doesn't appear in the user's data queue.
2429 * It is still reflected in the segment length for
2430 * sequencing purposes.
2431 */
2432 void
2433 tcp_pulloutofband(so, th, m, off)
2434 struct socket *so;
2435 struct tcphdr *th;
2436 struct mbuf *m;
2437 int off;
2438 {
2439 int cnt = off + th->th_urp - 1;
2440
2441 while (cnt >= 0) {
2442 if (m->m_len > cnt) {
2443 char *cp = mtod(m, caddr_t) + cnt;
2444 struct tcpcb *tp = sototcpcb(so);
2445
2446 tp->t_iobc = *cp;
2447 tp->t_oobflags |= TCPOOB_HAVEDATA;
2448 bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
2449 m->m_len--;
2450 return;
2451 }
2452 cnt -= m->m_len;
2453 m = m->m_next;
2454 if (m == 0)
2455 break;
2456 }
2457 panic("tcp_pulloutofband");
2458 }
2459
2460 /*
2461 * Collect new round-trip time estimate
2462 * and update averages and current timeout.
2463 */
2464 void
2465 tcp_xmit_timer(tp, rtt)
2466 struct tcpcb *tp;
2467 uint32_t rtt;
2468 {
2469 int32_t delta;
2470
2471 tcpstat.tcps_rttupdated++;
2472 if (tp->t_srtt != 0) {
2473 /*
2474 * srtt is stored as fixed point with 3 bits after the
2475 * binary point (i.e., scaled by 8). The following magic
2476 * is equivalent to the smoothing algorithm in rfc793 with
2477 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2478 * point). Adjust rtt to origin 0.
2479 */
2480 delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
2481 if ((tp->t_srtt += delta) <= 0)
2482 tp->t_srtt = 1 << 2;
2483 /*
2484 * We accumulate a smoothed rtt variance (actually, a
2485 * smoothed mean difference), then set the retransmit
2486 * timer to smoothed rtt + 4 times the smoothed variance.
2487 * rttvar is stored as fixed point with 2 bits after the
2488 * binary point (scaled by 4). The following is
2489 * equivalent to rfc793 smoothing with an alpha of .75
2490 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces
2491 * rfc793's wired-in beta.
2492 */
2493 if (delta < 0)
2494 delta = -delta;
2495 delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
2496 if ((tp->t_rttvar += delta) <= 0)
2497 tp->t_rttvar = 1 << 2;
2498 } else {
2499 /*
2500 * No rtt measurement yet - use the unsmoothed rtt.
2501 * Set the variance to half the rtt (so our first
2502 * retransmit happens at 3*rtt).
2503 */
2504 tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
2505 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
2506 }
2507 tp->t_rtttime = 0;
2508 tp->t_rxtshift = 0;
2509
2510 /*
2511 * the retransmit should happen at rtt + 4 * rttvar.
2512 * Because of the way we do the smoothing, srtt and rttvar
2513 * will each average +1/2 tick of bias. When we compute
2514 * the retransmit timer, we want 1/2 tick of rounding and
2515 * 1 extra tick because of +-1/2 tick uncertainty in the
2516 * firing of the timer. The bias will give us exactly the
2517 * 1.5 tick we need. But, because the bias is
2518 * statistical, we have to test that we don't drop below
2519 * the minimum feasible timer (which is 2 ticks).
2520 */
2521 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
2522 max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
2523
2524 /*
2525 * We received an ack for a packet that wasn't retransmitted;
2526 * it is probably safe to discard any error indications we've
2527 * received recently. This isn't quite right, but close enough
2528 * for now (a route might have failed after we sent a segment,
2529 * and the return path might not be symmetrical).
2530 */
2531 tp->t_softerror = 0;
2532 }
2533
2534 /*
2535 * Checks for partial ack. If partial ack arrives, force the retransmission
2536 * of the next unacknowledged segment, do not clear tp->t_dupacks, and return
2537 * 1. By setting snd_nxt to th_ack, this forces retransmission timer to
2538 * be started again. If the ack advances at least to tp->snd_recover, return 0.
2539 */
2540 int
2541 tcp_newreno(tp, th)
2542 struct tcpcb *tp;
2543 struct tcphdr *th;
2544 {
2545 tcp_seq onxt = tp->snd_nxt;
2546 u_long ocwnd = tp->snd_cwnd;
2547
2548 if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2549 /*
2550 * snd_una has not yet been updated and the socket's send
2551 * buffer has not yet drained off the ACK'd data, so we
2552 * have to leave snd_una as it was to get the correct data
2553 * offset in tcp_output().
2554 */
2555 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2556 tp->t_rtttime = 0;
2557 tp->snd_nxt = th->th_ack;
2558 /*
2559 * Set snd_cwnd to one segment beyond ACK'd offset. snd_una
2560 * is not yet updated when we're called.
2561 */
2562 tp->snd_cwnd = tp->t_segsz + (th->th_ack - tp->snd_una);
2563 (void) tcp_output(tp);
2564 tp->snd_cwnd = ocwnd;
2565 if (SEQ_GT(onxt, tp->snd_nxt))
2566 tp->snd_nxt = onxt;
2567 /*
2568 * Partial window deflation. Relies on fact that tp->snd_una
2569 * not updated yet.
2570 */
2571 tp->snd_cwnd -= (th->th_ack - tp->snd_una - tp->t_segsz);
2572 return 1;
2573 }
2574 return 0;
2575 }
2576
2577
2578 /*
2579 * TCP compressed state engine. Currently used to hold compressed
2580 * state for SYN_RECEIVED.
2581 */
2582
2583 u_long syn_cache_count;
2584 u_int32_t syn_hash1, syn_hash2;
2585
2586 #define SYN_HASH(sa, sp, dp) \
2587 ((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
2588 ((u_int32_t)(sp)))^syn_hash2)))
2589 #ifndef INET6
2590 #define SYN_HASHALL(hash, src, dst) \
2591 do { \
2592 hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
2593 ((struct sockaddr_in *)(src))->sin_port, \
2594 ((struct sockaddr_in *)(dst))->sin_port); \
2595 } while (0)
2596 #else
2597 #define SYN_HASH6(sa, sp, dp) \
2598 ((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
2599 (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
2600 & 0x7fffffff)
2601
2602 #define SYN_HASHALL(hash, src, dst) \
2603 do { \
2604 switch ((src)->sa_family) { \
2605 case AF_INET: \
2606 hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
2607 ((struct sockaddr_in *)(src))->sin_port, \
2608 ((struct sockaddr_in *)(dst))->sin_port); \
2609 break; \
2610 case AF_INET6: \
2611 hash = SYN_HASH6(&((struct sockaddr_in6 *)(src))->sin6_addr, \
2612 ((struct sockaddr_in6 *)(src))->sin6_port, \
2613 ((struct sockaddr_in6 *)(dst))->sin6_port); \
2614 break; \
2615 default: \
2616 hash = 0; \
2617 } \
2618 } while (/*CONSTCOND*/0)
2619 #endif /* INET6 */
2620
2621 #define SYN_CACHE_RM(sc) \
2622 do { \
2623 TAILQ_REMOVE(&tcp_syn_cache[(sc)->sc_bucketidx].sch_bucket, \
2624 (sc), sc_bucketq); \
2625 (sc)->sc_tp = NULL; \
2626 LIST_REMOVE((sc), sc_tpq); \
2627 tcp_syn_cache[(sc)->sc_bucketidx].sch_length--; \
2628 callout_stop(&(sc)->sc_timer); \
2629 syn_cache_count--; \
2630 } while (/*CONSTCOND*/0)
2631
2632 #define SYN_CACHE_PUT(sc) \
2633 do { \
2634 if ((sc)->sc_ipopts) \
2635 (void) m_free((sc)->sc_ipopts); \
2636 if ((sc)->sc_route4.ro_rt != NULL) \
2637 RTFREE((sc)->sc_route4.ro_rt); \
2638 pool_put(&syn_cache_pool, (sc)); \
2639 } while (/*CONSTCOND*/0)
2640
2641 struct pool syn_cache_pool;
2642
2643 /*
2644 * We don't estimate RTT with SYNs, so each packet starts with the default
2645 * RTT and each timer step has a fixed timeout value.
2646 */
2647 #define SYN_CACHE_TIMER_ARM(sc) \
2648 do { \
2649 TCPT_RANGESET((sc)->sc_rxtcur, \
2650 TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN, \
2651 TCPTV_REXMTMAX); \
2652 callout_reset(&(sc)->sc_timer, \
2653 (sc)->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, (sc)); \
2654 } while (/*CONSTCOND*/0)
2655
2656 #define SYN_CACHE_TIMESTAMP(sc) (tcp_now - (sc)->sc_timebase)
2657
2658 void
2659 syn_cache_init()
2660 {
2661 int i;
2662
2663 /* Initialize the hash buckets. */
2664 for (i = 0; i < tcp_syn_cache_size; i++)
2665 TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
2666
2667 /* Initialize the syn cache pool. */
2668 pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
2669 "synpl", NULL);
2670 }
2671
2672 void
2673 syn_cache_insert(sc, tp)
2674 struct syn_cache *sc;
2675 struct tcpcb *tp;
2676 {
2677 struct syn_cache_head *scp;
2678 struct syn_cache *sc2;
2679 int s;
2680
2681 /*
2682 * If there are no entries in the hash table, reinitialize
2683 * the hash secrets.
2684 */
2685 if (syn_cache_count == 0) {
2686 struct timeval tv;
2687 microtime(&tv);
2688 syn_hash1 = random() ^ (u_long)≻
2689 syn_hash2 = random() ^ tv.tv_usec;
2690 }
2691
2692 SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
2693 sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
2694 scp = &tcp_syn_cache[sc->sc_bucketidx];
2695
2696 /*
2697 * Make sure that we don't overflow the per-bucket
2698 * limit or the total cache size limit.
2699 */
2700 s = splsoftnet();
2701 if (scp->sch_length >= tcp_syn_bucket_limit) {
2702 tcpstat.tcps_sc_bucketoverflow++;
2703 /*
2704 * The bucket is full. Toss the oldest element in the
2705 * bucket. This will be the first entry in the bucket.
2706 */
2707 sc2 = TAILQ_FIRST(&scp->sch_bucket);
2708 #ifdef DIAGNOSTIC
2709 /*
2710 * This should never happen; we should always find an
2711 * entry in our bucket.
2712 */
2713 if (sc2 == NULL)
2714 panic("syn_cache_insert: bucketoverflow: impossible");
2715 #endif
2716 SYN_CACHE_RM(sc2);
2717 SYN_CACHE_PUT(sc2);
2718 } else if (syn_cache_count >= tcp_syn_cache_limit) {
2719 struct syn_cache_head *scp2, *sce;
2720
2721 tcpstat.tcps_sc_overflowed++;
2722 /*
2723 * The cache is full. Toss the oldest entry in the
2724 * first non-empty bucket we can find.
2725 *
2726 * XXX We would really like to toss the oldest
2727 * entry in the cache, but we hope that this
2728 * condition doesn't happen very often.
2729 */
2730 scp2 = scp;
2731 if (TAILQ_EMPTY(&scp2->sch_bucket)) {
2732 sce = &tcp_syn_cache[tcp_syn_cache_size];
2733 for (++scp2; scp2 != scp; scp2++) {
2734 if (scp2 >= sce)
2735 scp2 = &tcp_syn_cache[0];
2736 if (! TAILQ_EMPTY(&scp2->sch_bucket))
2737 break;
2738 }
2739 #ifdef DIAGNOSTIC
2740 /*
2741 * This should never happen; we should always find a
2742 * non-empty bucket.
2743 */
2744 if (scp2 == scp)
2745 panic("syn_cache_insert: cacheoverflow: "
2746 "impossible");
2747 #endif
2748 }
2749 sc2 = TAILQ_FIRST(&scp2->sch_bucket);
2750 SYN_CACHE_RM(sc2);
2751 SYN_CACHE_PUT(sc2);
2752 }
2753
2754 /*
2755 * Initialize the entry's timer.
2756 */
2757 sc->sc_rxttot = 0;
2758 sc->sc_rxtshift = 0;
2759 SYN_CACHE_TIMER_ARM(sc);
2760
2761 /* Link it from tcpcb entry */
2762 LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
2763
2764 /* Put it into the bucket. */
2765 TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
2766 scp->sch_length++;
2767 syn_cache_count++;
2768
2769 tcpstat.tcps_sc_added++;
2770 splx(s);
2771 }
2772
2773 /*
2774 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
2775 * If we have retransmitted an entry the maximum number of times, expire
2776 * that entry.
2777 */
2778 void
2779 syn_cache_timer(void *arg)
2780 {
2781 struct syn_cache *sc = arg;
2782 int s;
2783
2784 s = splsoftnet();
2785
2786 if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
2787 /* Drop it -- too many retransmissions. */
2788 goto dropit;
2789 }
2790
2791 /*
2792 * Compute the total amount of time this entry has
2793 * been on a queue. If this entry has been on longer
2794 * than the keep alive timer would allow, expire it.
2795 */
2796 sc->sc_rxttot += sc->sc_rxtcur;
2797 if (sc->sc_rxttot >= TCPTV_KEEP_INIT)
2798 goto dropit;
2799
2800 tcpstat.tcps_sc_retransmitted++;
2801 (void) syn_cache_respond(sc, NULL);
2802
2803 /* Advance the timer back-off. */
2804 sc->sc_rxtshift++;
2805 SYN_CACHE_TIMER_ARM(sc);
2806
2807 splx(s);
2808 return;
2809
2810 dropit:
2811 tcpstat.tcps_sc_timed_out++;
2812 SYN_CACHE_RM(sc);
2813 SYN_CACHE_PUT(sc);
2814 splx(s);
2815 }
2816
2817 /*
2818 * Remove syn cache created by the specified tcb entry,
2819 * because this does not make sense to keep them
2820 * (if there's no tcb entry, syn cache entry will never be used)
2821 */
2822 void
2823 syn_cache_cleanup(tp)
2824 struct tcpcb *tp;
2825 {
2826 struct syn_cache *sc, *nsc;
2827 int s;
2828
2829 s = splsoftnet();
2830
2831 for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
2832 nsc = LIST_NEXT(sc, sc_tpq);
2833
2834 #ifdef DIAGNOSTIC
2835 if (sc->sc_tp != tp)
2836 panic("invalid sc_tp in syn_cache_cleanup");
2837 #endif
2838 SYN_CACHE_RM(sc);
2839 SYN_CACHE_PUT(sc);
2840 }
2841 /* just for safety */
2842 LIST_INIT(&tp->t_sc);
2843
2844 splx(s);
2845 }
2846
2847 /*
2848 * Find an entry in the syn cache.
2849 */
2850 struct syn_cache *
2851 syn_cache_lookup(src, dst, headp)
2852 struct sockaddr *src;
2853 struct sockaddr *dst;
2854 struct syn_cache_head **headp;
2855 {
2856 struct syn_cache *sc;
2857 struct syn_cache_head *scp;
2858 u_int32_t hash;
2859 int s;
2860
2861 SYN_HASHALL(hash, src, dst);
2862
2863 scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
2864 *headp = scp;
2865 s = splsoftnet();
2866 for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
2867 sc = TAILQ_NEXT(sc, sc_bucketq)) {
2868 if (sc->sc_hash != hash)
2869 continue;
2870 if (!bcmp(&sc->sc_src, src, src->sa_len) &&
2871 !bcmp(&sc->sc_dst, dst, dst->sa_len)) {
2872 splx(s);
2873 return (sc);
2874 }
2875 }
2876 splx(s);
2877 return (NULL);
2878 }
2879
2880 /*
2881 * This function gets called when we receive an ACK for a
2882 * socket in the LISTEN state. We look up the connection
2883 * in the syn cache, and if its there, we pull it out of
2884 * the cache and turn it into a full-blown connection in
2885 * the SYN-RECEIVED state.
2886 *
2887 * The return values may not be immediately obvious, and their effects
2888 * can be subtle, so here they are:
2889 *
2890 * NULL SYN was not found in cache; caller should drop the
2891 * packet and send an RST.
2892 *
2893 * -1 We were unable to create the new connection, and are
2894 * aborting it. An ACK,RST is being sent to the peer
2895 * (unless we got screwey sequence numbners; see below),
2896 * because the 3-way handshake has been completed. Caller
2897 * should not free the mbuf, since we may be using it. If
2898 * we are not, we will free it.
2899 *
2900 * Otherwise, the return value is a pointer to the new socket
2901 * associated with the connection.
2902 */
2903 struct socket *
2904 syn_cache_get(src, dst, th, hlen, tlen, so, m)
2905 struct sockaddr *src;
2906 struct sockaddr *dst;
2907 struct tcphdr *th;
2908 unsigned int hlen, tlen;
2909 struct socket *so;
2910 struct mbuf *m;
2911 {
2912 struct syn_cache *sc;
2913 struct syn_cache_head *scp;
2914 struct inpcb *inp = NULL;
2915 #ifdef INET6
2916 struct in6pcb *in6p = NULL;
2917 #endif
2918 struct tcpcb *tp = 0;
2919 struct mbuf *am;
2920 int s;
2921 struct socket *oso;
2922
2923 s = splsoftnet();
2924 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
2925 splx(s);
2926 return (NULL);
2927 }
2928
2929 /*
2930 * Verify the sequence and ack numbers. Try getting the correct
2931 * response again.
2932 */
2933 if ((th->th_ack != sc->sc_iss + 1) ||
2934 SEQ_LEQ(th->th_seq, sc->sc_irs) ||
2935 SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
2936 (void) syn_cache_respond(sc, m);
2937 splx(s);
2938 return ((struct socket *)(-1));
2939 }
2940
2941 /* Remove this cache entry */
2942 SYN_CACHE_RM(sc);
2943 splx(s);
2944
2945 /*
2946 * Ok, create the full blown connection, and set things up
2947 * as they would have been set up if we had created the
2948 * connection when the SYN arrived. If we can't create
2949 * the connection, abort it.
2950 */
2951 /*
2952 * inp still has the OLD in_pcb stuff, set the
2953 * v6-related flags on the new guy, too. This is
2954 * done particularly for the case where an AF_INET6
2955 * socket is bound only to a port, and a v4 connection
2956 * comes in on that port.
2957 * we also copy the flowinfo from the original pcb
2958 * to the new one.
2959 */
2960 {
2961 struct inpcb *parentinpcb;
2962
2963 parentinpcb = (struct inpcb *)so->so_pcb;
2964
2965 oso = so;
2966 so = sonewconn(so, SS_ISCONNECTED);
2967 if (so == NULL)
2968 goto resetandabort;
2969
2970 switch (so->so_proto->pr_domain->dom_family) {
2971 #ifdef INET
2972 case AF_INET:
2973 inp = sotoinpcb(so);
2974 break;
2975 #endif
2976 #ifdef INET6
2977 case AF_INET6:
2978 in6p = sotoin6pcb(so);
2979 break;
2980 #endif
2981 }
2982 }
2983 switch (src->sa_family) {
2984 #ifdef INET
2985 case AF_INET:
2986 if (inp) {
2987 inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
2988 inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
2989 inp->inp_options = ip_srcroute();
2990 in_pcbstate(inp, INP_BOUND);
2991 if (inp->inp_options == NULL) {
2992 inp->inp_options = sc->sc_ipopts;
2993 sc->sc_ipopts = NULL;
2994 }
2995 }
2996 #ifdef INET6
2997 else if (in6p) {
2998 /* IPv4 packet to AF_INET6 socket */
2999 bzero(&in6p->in6p_laddr, sizeof(in6p->in6p_laddr));
3000 in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
3001 bcopy(&((struct sockaddr_in *)dst)->sin_addr,
3002 &in6p->in6p_laddr.s6_addr32[3],
3003 sizeof(((struct sockaddr_in *)dst)->sin_addr));
3004 in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
3005 in6totcpcb(in6p)->t_family = AF_INET;
3006 }
3007 #endif
3008 break;
3009 #endif
3010 #ifdef INET6
3011 case AF_INET6:
3012 if (in6p) {
3013 in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
3014 in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
3015 #if 0
3016 in6p->in6p_flowinfo = ip6->ip6_flow & IPV6_FLOWINFO_MASK;
3017 /*inp->inp_options = ip6_srcroute();*/ /* soon. */
3018 #endif
3019 }
3020 break;
3021 #endif
3022 }
3023 #ifdef INET6
3024 if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
3025 struct in6pcb *oin6p = sotoin6pcb(oso);
3026 /* inherit socket options from the listening socket */
3027 in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
3028 if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
3029 m_freem(in6p->in6p_options);
3030 in6p->in6p_options = 0;
3031 }
3032 ip6_savecontrol(in6p, &in6p->in6p_options,
3033 mtod(m, struct ip6_hdr *), m);
3034 }
3035 #endif
3036
3037 #ifdef IPSEC
3038 /*
3039 * we make a copy of policy, instead of sharing the policy,
3040 * for better behavior in terms of SA lookup and dead SA removal.
3041 */
3042 if (inp) {
3043 /* copy old policy into new socket's */
3044 if (ipsec_copy_policy(sotoinpcb(oso)->inp_sp, inp->inp_sp))
3045 printf("tcp_input: could not copy policy\n");
3046 }
3047 #ifdef INET6
3048 else if (in6p) {
3049 /* copy old policy into new socket's */
3050 if (ipsec_copy_policy(sotoin6pcb(oso)->in6p_sp, in6p->in6p_sp))
3051 printf("tcp_input: could not copy policy\n");
3052 }
3053 #endif
3054 #endif
3055
3056 /*
3057 * Give the new socket our cached route reference.
3058 */
3059 if (inp)
3060 inp->inp_route = sc->sc_route4; /* struct assignment */
3061 #ifdef INET6
3062 else
3063 in6p->in6p_route = sc->sc_route6;
3064 #endif
3065 sc->sc_route4.ro_rt = NULL;
3066
3067 am = m_get(M_DONTWAIT, MT_SONAME); /* XXX */
3068 if (am == NULL)
3069 goto resetandabort;
3070 am->m_len = src->sa_len;
3071 bcopy(src, mtod(am, caddr_t), src->sa_len);
3072 if (inp) {
3073 if (in_pcbconnect(inp, am)) {
3074 (void) m_free(am);
3075 goto resetandabort;
3076 }
3077 }
3078 #ifdef INET6
3079 else if (in6p) {
3080 if (src->sa_family == AF_INET) {
3081 /* IPv4 packet to AF_INET6 socket */
3082 struct sockaddr_in6 *sin6;
3083 sin6 = mtod(am, struct sockaddr_in6 *);
3084 am->m_len = sizeof(*sin6);
3085 bzero(sin6, sizeof(*sin6));
3086 sin6->sin6_family = AF_INET6;
3087 sin6->sin6_len = sizeof(*sin6);
3088 sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port;
3089 sin6->sin6_addr.s6_addr16[5] = htons(0xffff);
3090 bcopy(&((struct sockaddr_in *)src)->sin_addr,
3091 &sin6->sin6_addr.s6_addr32[3],
3092 sizeof(sin6->sin6_addr.s6_addr32[3]));
3093 }
3094 if (in6_pcbconnect(in6p, am)) {
3095 (void) m_free(am);
3096 goto resetandabort;
3097 }
3098 }
3099 #endif
3100 else {
3101 (void) m_free(am);
3102 goto resetandabort;
3103 }
3104 (void) m_free(am);
3105
3106 if (inp)
3107 tp = intotcpcb(inp);
3108 #ifdef INET6
3109 else if (in6p)
3110 tp = in6totcpcb(in6p);
3111 #endif
3112 else
3113 tp = NULL;
3114 if (sc->sc_request_r_scale != 15) {
3115 tp->requested_s_scale = sc->sc_requested_s_scale;
3116 tp->request_r_scale = sc->sc_request_r_scale;
3117 tp->snd_scale = sc->sc_requested_s_scale;
3118 tp->rcv_scale = sc->sc_request_r_scale;
3119 tp->t_flags |= TF_RCVD_SCALE;
3120 }
3121 if (sc->sc_flags & SCF_TIMESTAMP)
3122 tp->t_flags |= TF_RCVD_TSTMP;
3123 tp->ts_timebase = sc->sc_timebase;
3124
3125 tp->t_template = tcp_template(tp);
3126 if (tp->t_template == 0) {
3127 tp = tcp_drop(tp, ENOBUFS); /* destroys socket */
3128 so = NULL;
3129 m_freem(m);
3130 goto abort;
3131 }
3132
3133 tp->iss = sc->sc_iss;
3134 tp->irs = sc->sc_irs;
3135 tcp_sendseqinit(tp);
3136 tcp_rcvseqinit(tp);
3137 tp->t_state = TCPS_SYN_RECEIVED;
3138 TCP_TIMER_ARM(tp, TCPT_KEEP, TCPTV_KEEP_INIT);
3139 tcpstat.tcps_accepts++;
3140
3141 /* Initialize tp->t_ourmss before we deal with the peer's! */
3142 tp->t_ourmss = sc->sc_ourmaxseg;
3143 tcp_mss_from_peer(tp, sc->sc_peermaxseg);
3144
3145 /*
3146 * Initialize the initial congestion window. If we
3147 * had to retransmit the SYN,ACK, we must initialize cwnd
3148 * to 1 segment (i.e. the Loss Window).
3149 */
3150 if (sc->sc_rxtshift)
3151 tp->snd_cwnd = tp->t_peermss;
3152 else
3153 tp->snd_cwnd = TCP_INITIAL_WINDOW(tcp_init_win, tp->t_peermss);
3154
3155 tcp_rmx_rtt(tp);
3156 tp->snd_wl1 = sc->sc_irs;
3157 tp->rcv_up = sc->sc_irs + 1;
3158
3159 /*
3160 * This is what whould have happened in tcp_ouput() when
3161 * the SYN,ACK was sent.
3162 */
3163 tp->snd_up = tp->snd_una;
3164 tp->snd_max = tp->snd_nxt = tp->iss+1;
3165 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
3166 if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
3167 tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
3168 tp->last_ack_sent = tp->rcv_nxt;
3169
3170 tcpstat.tcps_sc_completed++;
3171 SYN_CACHE_PUT(sc);
3172 return (so);
3173
3174 resetandabort:
3175 (void) tcp_respond(NULL, m, m, th,
3176 th->th_seq + tlen, (tcp_seq)0, TH_RST|TH_ACK);
3177 abort:
3178 if (so != NULL)
3179 (void) soabort(so);
3180 SYN_CACHE_PUT(sc);
3181 tcpstat.tcps_sc_aborted++;
3182 return ((struct socket *)(-1));
3183 }
3184
3185 /*
3186 * This function is called when we get a RST for a
3187 * non-existent connection, so that we can see if the
3188 * connection is in the syn cache. If it is, zap it.
3189 */
3190
3191 void
3192 syn_cache_reset(src, dst, th)
3193 struct sockaddr *src;
3194 struct sockaddr *dst;
3195 struct tcphdr *th;
3196 {
3197 struct syn_cache *sc;
3198 struct syn_cache_head *scp;
3199 int s = splsoftnet();
3200
3201 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3202 splx(s);
3203 return;
3204 }
3205 if (SEQ_LT(th->th_seq, sc->sc_irs) ||
3206 SEQ_GT(th->th_seq, sc->sc_irs+1)) {
3207 splx(s);
3208 return;
3209 }
3210 SYN_CACHE_RM(sc);
3211 splx(s);
3212 tcpstat.tcps_sc_reset++;
3213 SYN_CACHE_PUT(sc);
3214 }
3215
3216 void
3217 syn_cache_unreach(src, dst, th)
3218 struct sockaddr *src;
3219 struct sockaddr *dst;
3220 struct tcphdr *th;
3221 {
3222 struct syn_cache *sc;
3223 struct syn_cache_head *scp;
3224 int s;
3225
3226 s = splsoftnet();
3227 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3228 splx(s);
3229 return;
3230 }
3231 /* If the sequence number != sc_iss, then it's a bogus ICMP msg */
3232 if (ntohl (th->th_seq) != sc->sc_iss) {
3233 splx(s);
3234 return;
3235 }
3236
3237 /*
3238 * If we've rertransmitted 3 times and this is our second error,
3239 * we remove the entry. Otherwise, we allow it to continue on.
3240 * This prevents us from incorrectly nuking an entry during a
3241 * spurious network outage.
3242 *
3243 * See tcp_notify().
3244 */
3245 if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
3246 sc->sc_flags |= SCF_UNREACH;
3247 splx(s);
3248 return;
3249 }
3250
3251 SYN_CACHE_RM(sc);
3252 splx(s);
3253 tcpstat.tcps_sc_unreach++;
3254 SYN_CACHE_PUT(sc);
3255 }
3256
3257 /*
3258 * Given a LISTEN socket and an inbound SYN request, add
3259 * this to the syn cache, and send back a segment:
3260 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
3261 * to the source.
3262 *
3263 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
3264 * Doing so would require that we hold onto the data and deliver it
3265 * to the application. However, if we are the target of a SYN-flood
3266 * DoS attack, an attacker could send data which would eventually
3267 * consume all available buffer space if it were ACKed. By not ACKing
3268 * the data, we avoid this DoS scenario.
3269 */
3270
3271 int
3272 syn_cache_add(src, dst, th, hlen, so, m, optp, optlen, oi)
3273 struct sockaddr *src;
3274 struct sockaddr *dst;
3275 struct tcphdr *th;
3276 unsigned int hlen;
3277 struct socket *so;
3278 struct mbuf *m;
3279 u_char *optp;
3280 int optlen;
3281 struct tcp_opt_info *oi;
3282 {
3283 struct tcpcb tb, *tp;
3284 long win;
3285 struct syn_cache *sc;
3286 struct syn_cache_head *scp;
3287 struct mbuf *ipopts;
3288
3289 tp = sototcpcb(so);
3290
3291 /*
3292 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
3293 *
3294 * Note this check is performed in tcp_input() very early on.
3295 */
3296
3297 /*
3298 * Initialize some local state.
3299 */
3300 win = sbspace(&so->so_rcv);
3301 if (win > TCP_MAXWIN)
3302 win = TCP_MAXWIN;
3303
3304 switch (src->sa_family) {
3305 #ifdef INET
3306 case AF_INET:
3307 /*
3308 * Remember the IP options, if any.
3309 */
3310 ipopts = ip_srcroute();
3311 break;
3312 #endif
3313 default:
3314 ipopts = NULL;
3315 }
3316
3317 if (optp) {
3318 tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
3319 tcp_dooptions(&tb, optp, optlen, th, oi);
3320 } else
3321 tb.t_flags = 0;
3322
3323 /*
3324 * See if we already have an entry for this connection.
3325 * If we do, resend the SYN,ACK. We do not count this
3326 * as a retransmission (XXX though maybe we should).
3327 */
3328 if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
3329 tcpstat.tcps_sc_dupesyn++;
3330 if (ipopts) {
3331 /*
3332 * If we were remembering a previous source route,
3333 * forget it and use the new one we've been given.
3334 */
3335 if (sc->sc_ipopts)
3336 (void) m_free(sc->sc_ipopts);
3337 sc->sc_ipopts = ipopts;
3338 }
3339 sc->sc_timestamp = tb.ts_recent;
3340 if (syn_cache_respond(sc, m) == 0) {
3341 tcpstat.tcps_sndacks++;
3342 tcpstat.tcps_sndtotal++;
3343 }
3344 return (1);
3345 }
3346
3347 sc = pool_get(&syn_cache_pool, PR_NOWAIT);
3348 if (sc == NULL) {
3349 if (ipopts)
3350 (void) m_free(ipopts);
3351 return (0);
3352 }
3353
3354 /*
3355 * Fill in the cache, and put the necessary IP and TCP
3356 * options into the reply.
3357 */
3358 callout_init(&sc->sc_timer);
3359 bzero(sc, sizeof(struct syn_cache));
3360 bcopy(src, &sc->sc_src, src->sa_len);
3361 bcopy(dst, &sc->sc_dst, dst->sa_len);
3362 sc->sc_flags = 0;
3363 sc->sc_ipopts = ipopts;
3364 sc->sc_irs = th->th_seq;
3365 switch (src->sa_family) {
3366 #ifdef INET
3367 case AF_INET:
3368 {
3369 struct sockaddr_in *srcin = (void *) src;
3370 struct sockaddr_in *dstin = (void *) dst;
3371
3372 sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
3373 &srcin->sin_addr, dstin->sin_port,
3374 srcin->sin_port, sizeof(dstin->sin_addr), 0);
3375 break;
3376 }
3377 #endif /* INET */
3378 #ifdef INET6
3379 case AF_INET6:
3380 {
3381 struct sockaddr_in6 *srcin6 = (void *) src;
3382 struct sockaddr_in6 *dstin6 = (void *) dst;
3383
3384 sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
3385 &srcin6->sin6_addr, dstin6->sin6_port,
3386 srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
3387 break;
3388 }
3389 #endif /* INET6 */
3390 }
3391 sc->sc_peermaxseg = oi->maxseg;
3392 sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
3393 m->m_pkthdr.rcvif : NULL,
3394 sc->sc_src.sa.sa_family);
3395 sc->sc_win = win;
3396 sc->sc_timebase = tcp_now; /* see tcp_newtcpcb() */
3397 sc->sc_timestamp = tb.ts_recent;
3398 if (tcp_do_rfc1323 && (tb.t_flags & TF_RCVD_TSTMP))
3399 sc->sc_flags |= SCF_TIMESTAMP;
3400 if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
3401 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
3402 sc->sc_requested_s_scale = tb.requested_s_scale;
3403 sc->sc_request_r_scale = 0;
3404 while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
3405 TCP_MAXWIN << sc->sc_request_r_scale <
3406 so->so_rcv.sb_hiwat)
3407 sc->sc_request_r_scale++;
3408 } else {
3409 sc->sc_requested_s_scale = 15;
3410 sc->sc_request_r_scale = 15;
3411 }
3412 sc->sc_tp = tp;
3413 if (syn_cache_respond(sc, m) == 0) {
3414 syn_cache_insert(sc, tp);
3415 tcpstat.tcps_sndacks++;
3416 tcpstat.tcps_sndtotal++;
3417 } else {
3418 SYN_CACHE_PUT(sc);
3419 tcpstat.tcps_sc_dropped++;
3420 }
3421 return (1);
3422 }
3423
3424 int
3425 syn_cache_respond(sc, m)
3426 struct syn_cache *sc;
3427 struct mbuf *m;
3428 {
3429 struct route *ro;
3430 u_int8_t *optp;
3431 int optlen, error;
3432 u_int16_t tlen;
3433 struct ip *ip = NULL;
3434 #ifdef INET6
3435 struct ip6_hdr *ip6 = NULL;
3436 #endif
3437 struct tcphdr *th;
3438 u_int hlen;
3439
3440 switch (sc->sc_src.sa.sa_family) {
3441 case AF_INET:
3442 hlen = sizeof(struct ip);
3443 ro = &sc->sc_route4;
3444 break;
3445 #ifdef INET6
3446 case AF_INET6:
3447 hlen = sizeof(struct ip6_hdr);
3448 ro = (struct route *)&sc->sc_route6;
3449 break;
3450 #endif
3451 default:
3452 if (m)
3453 m_freem(m);
3454 return EAFNOSUPPORT;
3455 }
3456
3457 /* Compute the size of the TCP options. */
3458 optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
3459 ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
3460
3461 tlen = hlen + sizeof(struct tcphdr) + optlen;
3462
3463 /*
3464 * Create the IP+TCP header from scratch.
3465 */
3466 if (m)
3467 m_freem(m);
3468 #ifdef DIAGNOSTIC
3469 if (max_linkhdr + tlen > MCLBYTES)
3470 return (ENOBUFS);
3471 #endif
3472 MGETHDR(m, M_DONTWAIT, MT_DATA);
3473 if (m && tlen > MHLEN) {
3474 MCLGET(m, M_DONTWAIT);
3475 if ((m->m_flags & M_EXT) == 0) {
3476 m_freem(m);
3477 m = NULL;
3478 }
3479 }
3480 if (m == NULL)
3481 return (ENOBUFS);
3482
3483 /* Fixup the mbuf. */
3484 m->m_data += max_linkhdr;
3485 m->m_len = m->m_pkthdr.len = tlen;
3486 #ifdef IPSEC
3487 if (sc->sc_tp) {
3488 struct tcpcb *tp;
3489 struct socket *so;
3490
3491 tp = sc->sc_tp;
3492 if (tp->t_inpcb)
3493 so = tp->t_inpcb->inp_socket;
3494 #ifdef INET6
3495 else if (tp->t_in6pcb)
3496 so = tp->t_in6pcb->in6p_socket;
3497 #endif
3498 else
3499 so = NULL;
3500 /* use IPsec policy on listening socket, on SYN ACK */
3501 if (ipsec_setsocket(m, so) != 0) {
3502 m_freem(m);
3503 return ENOBUFS;
3504 }
3505 }
3506 #endif
3507 m->m_pkthdr.rcvif = NULL;
3508 memset(mtod(m, u_char *), 0, tlen);
3509
3510 switch (sc->sc_src.sa.sa_family) {
3511 case AF_INET:
3512 ip = mtod(m, struct ip *);
3513 ip->ip_dst = sc->sc_src.sin.sin_addr;
3514 ip->ip_src = sc->sc_dst.sin.sin_addr;
3515 ip->ip_p = IPPROTO_TCP;
3516 th = (struct tcphdr *)(ip + 1);
3517 th->th_dport = sc->sc_src.sin.sin_port;
3518 th->th_sport = sc->sc_dst.sin.sin_port;
3519 break;
3520 #ifdef INET6
3521 case AF_INET6:
3522 ip6 = mtod(m, struct ip6_hdr *);
3523 ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
3524 ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
3525 ip6->ip6_nxt = IPPROTO_TCP;
3526 /* ip6_plen will be updated in ip6_output() */
3527 th = (struct tcphdr *)(ip6 + 1);
3528 th->th_dport = sc->sc_src.sin6.sin6_port;
3529 th->th_sport = sc->sc_dst.sin6.sin6_port;
3530 break;
3531 #endif
3532 default:
3533 th = NULL;
3534 }
3535
3536 th->th_seq = htonl(sc->sc_iss);
3537 th->th_ack = htonl(sc->sc_irs + 1);
3538 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
3539 th->th_flags = TH_SYN|TH_ACK;
3540 th->th_win = htons(sc->sc_win);
3541 /* th_sum already 0 */
3542 /* th_urp already 0 */
3543
3544 /* Tack on the TCP options. */
3545 optp = (u_int8_t *)(th + 1);
3546 *optp++ = TCPOPT_MAXSEG;
3547 *optp++ = 4;
3548 *optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
3549 *optp++ = sc->sc_ourmaxseg & 0xff;
3550
3551 if (sc->sc_request_r_scale != 15) {
3552 *((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
3553 TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
3554 sc->sc_request_r_scale);
3555 optp += 4;
3556 }
3557
3558 if (sc->sc_flags & SCF_TIMESTAMP) {
3559 u_int32_t *lp = (u_int32_t *)(optp);
3560 /* Form timestamp option as shown in appendix A of RFC 1323. */
3561 *lp++ = htonl(TCPOPT_TSTAMP_HDR);
3562 *lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
3563 *lp = htonl(sc->sc_timestamp);
3564 optp += TCPOLEN_TSTAMP_APPA;
3565 }
3566
3567 /* Compute the packet's checksum. */
3568 switch (sc->sc_src.sa.sa_family) {
3569 case AF_INET:
3570 ip->ip_len = htons(tlen - hlen);
3571 th->th_sum = 0;
3572 th->th_sum = in_cksum(m, tlen);
3573 break;
3574 #ifdef INET6
3575 case AF_INET6:
3576 ip6->ip6_plen = htons(tlen - hlen);
3577 th->th_sum = 0;
3578 th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
3579 break;
3580 #endif
3581 }
3582
3583 /*
3584 * Fill in some straggling IP bits. Note the stack expects
3585 * ip_len to be in host order, for convenience.
3586 */
3587 switch (sc->sc_src.sa.sa_family) {
3588 #ifdef INET
3589 case AF_INET:
3590 ip->ip_len = tlen;
3591 ip->ip_ttl = ip_defttl;
3592 /* XXX tos? */
3593 break;
3594 #endif
3595 #ifdef INET6
3596 case AF_INET6:
3597 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
3598 ip6->ip6_vfc |= IPV6_VERSION;
3599 ip6->ip6_plen = htons(tlen - hlen);
3600 /* ip6_hlim will be initialized afterwards */
3601 /* XXX flowlabel? */
3602 break;
3603 #endif
3604 }
3605
3606 switch (sc->sc_src.sa.sa_family) {
3607 #ifdef INET
3608 case AF_INET:
3609 error = ip_output(m, sc->sc_ipopts, ro,
3610 (ip_mtudisc ? IP_MTUDISC : 0),
3611 NULL);
3612 break;
3613 #endif
3614 #ifdef INET6
3615 case AF_INET6:
3616 ip6->ip6_hlim = in6_selecthlim(NULL,
3617 ro->ro_rt ? ro->ro_rt->rt_ifp : NULL);
3618
3619 error = ip6_output(m, NULL /*XXX*/, (struct route_in6 *)ro,
3620 0, NULL, NULL);
3621 break;
3622 #endif
3623 default:
3624 error = EAFNOSUPPORT;
3625 break;
3626 }
3627 return (error);
3628 }
3629