Home | History | Annotate | Line # | Download | only in netinet
tcp_input.c revision 1.136
      1 /*	$NetBSD: tcp_input.c,v 1.136 2002/03/12 04:36:47 itojun Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  *      @(#)COPYRIGHT   1.1 (NRL) 17 January 1995
     34  *
     35  * NRL grants permission for redistribution and use in source and binary
     36  * forms, with or without modification, of the software and documentation
     37  * created at NRL provided that the following conditions are met:
     38  *
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. All advertising materials mentioning features or use of this software
     45  *    must display the following acknowledgements:
     46  *      This product includes software developed by the University of
     47  *      California, Berkeley and its contributors.
     48  *      This product includes software developed at the Information
     49  *      Technology Division, US Naval Research Laboratory.
     50  * 4. Neither the name of the NRL nor the names of its contributors
     51  *    may be used to endorse or promote products derived from this software
     52  *    without specific prior written permission.
     53  *
     54  * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
     55  * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     56  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
     57  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL NRL OR
     58  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
     59  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     60  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
     61  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
     62  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
     63  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
     64  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     65  *
     66  * The views and conclusions contained in the software and documentation
     67  * are those of the authors and should not be interpreted as representing
     68  * official policies, either expressed or implied, of the US Naval
     69  * Research Laboratory (NRL).
     70  */
     71 
     72 /*-
     73  * Copyright (c) 1997, 1998, 1999, 2001 The NetBSD Foundation, Inc.
     74  * All rights reserved.
     75  *
     76  * This code is derived from software contributed to The NetBSD Foundation
     77  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
     78  * Facility, NASA Ames Research Center.
     79  *
     80  * Redistribution and use in source and binary forms, with or without
     81  * modification, are permitted provided that the following conditions
     82  * are met:
     83  * 1. Redistributions of source code must retain the above copyright
     84  *    notice, this list of conditions and the following disclaimer.
     85  * 2. Redistributions in binary form must reproduce the above copyright
     86  *    notice, this list of conditions and the following disclaimer in the
     87  *    documentation and/or other materials provided with the distribution.
     88  * 3. All advertising materials mentioning features or use of this software
     89  *    must display the following acknowledgement:
     90  *	This product includes software developed by the NetBSD
     91  *	Foundation, Inc. and its contributors.
     92  * 4. Neither the name of The NetBSD Foundation nor the names of its
     93  *    contributors may be used to endorse or promote products derived
     94  *    from this software without specific prior written permission.
     95  *
     96  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     97  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     98  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     99  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
    100  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
    101  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
    102  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
    103  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
    104  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
    105  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
    106  * POSSIBILITY OF SUCH DAMAGE.
    107  */
    108 
    109 /*
    110  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
    111  *	The Regents of the University of California.  All rights reserved.
    112  *
    113  * Redistribution and use in source and binary forms, with or without
    114  * modification, are permitted provided that the following conditions
    115  * are met:
    116  * 1. Redistributions of source code must retain the above copyright
    117  *    notice, this list of conditions and the following disclaimer.
    118  * 2. Redistributions in binary form must reproduce the above copyright
    119  *    notice, this list of conditions and the following disclaimer in the
    120  *    documentation and/or other materials provided with the distribution.
    121  * 3. All advertising materials mentioning features or use of this software
    122  *    must display the following acknowledgement:
    123  *	This product includes software developed by the University of
    124  *	California, Berkeley and its contributors.
    125  * 4. Neither the name of the University nor the names of its contributors
    126  *    may be used to endorse or promote products derived from this software
    127  *    without specific prior written permission.
    128  *
    129  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
    130  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
    131  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
    132  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
    133  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
    134  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
    135  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    136  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    137  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    138  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    139  * SUCH DAMAGE.
    140  *
    141  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
    142  */
    143 
    144 /*
    145  *	TODO list for SYN cache stuff:
    146  *
    147  *	Find room for a "state" field, which is needed to keep a
    148  *	compressed state for TIME_WAIT TCBs.  It's been noted already
    149  *	that this is fairly important for very high-volume web and
    150  *	mail servers, which use a large number of short-lived
    151  *	connections.
    152  */
    153 
    154 #include <sys/cdefs.h>
    155 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.136 2002/03/12 04:36:47 itojun Exp $");
    156 
    157 #include "opt_inet.h"
    158 #include "opt_ipsec.h"
    159 #include "opt_inet_csum.h"
    160 #include "opt_tcp_debug.h"
    161 
    162 #include <sys/param.h>
    163 #include <sys/systm.h>
    164 #include <sys/malloc.h>
    165 #include <sys/mbuf.h>
    166 #include <sys/protosw.h>
    167 #include <sys/socket.h>
    168 #include <sys/socketvar.h>
    169 #include <sys/errno.h>
    170 #include <sys/syslog.h>
    171 #include <sys/pool.h>
    172 #include <sys/domain.h>
    173 #include <sys/kernel.h>
    174 
    175 #include <net/if.h>
    176 #include <net/route.h>
    177 #include <net/if_types.h>
    178 
    179 #include <netinet/in.h>
    180 #include <netinet/in_systm.h>
    181 #include <netinet/ip.h>
    182 #include <netinet/in_pcb.h>
    183 #include <netinet/ip_var.h>
    184 
    185 #ifdef INET6
    186 #ifndef INET
    187 #include <netinet/in.h>
    188 #endif
    189 #include <netinet/ip6.h>
    190 #include <netinet6/ip6_var.h>
    191 #include <netinet6/in6_pcb.h>
    192 #include <netinet6/ip6_var.h>
    193 #include <netinet6/in6_var.h>
    194 #include <netinet/icmp6.h>
    195 #include <netinet6/nd6.h>
    196 #endif
    197 
    198 #ifdef PULLDOWN_TEST
    199 #ifndef INET6
    200 /* always need ip6.h for IP6_EXTHDR_GET */
    201 #include <netinet/ip6.h>
    202 #endif
    203 #endif
    204 
    205 #include <netinet/tcp.h>
    206 #include <netinet/tcp_fsm.h>
    207 #include <netinet/tcp_seq.h>
    208 #include <netinet/tcp_timer.h>
    209 #include <netinet/tcp_var.h>
    210 #include <netinet/tcpip.h>
    211 #include <netinet/tcp_debug.h>
    212 
    213 #include <machine/stdarg.h>
    214 
    215 #ifdef IPSEC
    216 #include <netinet6/ipsec.h>
    217 #include <netkey/key.h>
    218 #endif /*IPSEC*/
    219 #ifdef INET6
    220 #include "faith.h"
    221 #if defined(NFAITH) && NFAITH > 0
    222 #include <net/if_faith.h>
    223 #endif
    224 #endif
    225 
    226 int	tcprexmtthresh = 3;
    227 int	tcp_log_refused;
    228 
    229 static int tcp_rst_ppslim_count = 0;
    230 static struct timeval tcp_rst_ppslim_last;
    231 
    232 #define TCP_PAWS_IDLE	(24 * 24 * 60 * 60 * PR_SLOWHZ)
    233 
    234 /* for modulo comparisons of timestamps */
    235 #define TSTMP_LT(a,b)	((int)((a)-(b)) < 0)
    236 #define TSTMP_GEQ(a,b)	((int)((a)-(b)) >= 0)
    237 
    238 /*
    239  * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
    240  */
    241 #ifdef INET6
    242 #define ND6_HINT(tp) \
    243 do { \
    244 	if (tp && tp->t_in6pcb && tp->t_family == AF_INET6 \
    245 	 && tp->t_in6pcb->in6p_route.ro_rt) { \
    246 		nd6_nud_hint(tp->t_in6pcb->in6p_route.ro_rt, NULL, 0); \
    247 	} \
    248 } while (0)
    249 #else
    250 #define ND6_HINT(tp)
    251 #endif
    252 
    253 /*
    254  * Macro to compute ACK transmission behavior.  Delay the ACK unless
    255  * we have already delayed an ACK (must send an ACK every two segments).
    256  * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
    257  * option is enabled.
    258  */
    259 #define	TCP_SETUP_ACK(tp, th) \
    260 do { \
    261 	if ((tp)->t_flags & TF_DELACK || \
    262 	    (tcp_ack_on_push && (th)->th_flags & TH_PUSH)) \
    263 		tp->t_flags |= TF_ACKNOW; \
    264 	else \
    265 		TCP_SET_DELACK(tp); \
    266 } while (0)
    267 
    268 /*
    269  * Convert TCP protocol fields to host order for easier processing.
    270  */
    271 #define	TCP_FIELDS_TO_HOST(th)						\
    272 do {									\
    273 	NTOHL((th)->th_seq);						\
    274 	NTOHL((th)->th_ack);						\
    275 	NTOHS((th)->th_win);						\
    276 	NTOHS((th)->th_urp);						\
    277 } while (0)
    278 
    279 #ifdef TCP_CSUM_COUNTERS
    280 #include <sys/device.h>
    281 
    282 extern struct evcnt tcp_hwcsum_ok;
    283 extern struct evcnt tcp_hwcsum_bad;
    284 extern struct evcnt tcp_hwcsum_data;
    285 extern struct evcnt tcp_swcsum;
    286 
    287 #define	TCP_CSUM_COUNTER_INCR(ev)	(ev)->ev_count++
    288 
    289 #else
    290 
    291 #define	TCP_CSUM_COUNTER_INCR(ev)	/* nothing */
    292 
    293 #endif /* TCP_CSUM_COUNTERS */
    294 
    295 int
    296 tcp_reass(tp, th, m, tlen)
    297 	struct tcpcb *tp;
    298 	struct tcphdr *th;
    299 	struct mbuf *m;
    300 	int *tlen;
    301 {
    302 	struct ipqent *p, *q, *nq, *tiqe = NULL;
    303 	struct socket *so = NULL;
    304 	int pkt_flags;
    305 	tcp_seq pkt_seq;
    306 	unsigned pkt_len;
    307 	u_long rcvpartdupbyte = 0;
    308 	u_long rcvoobyte;
    309 
    310 	if (tp->t_inpcb)
    311 		so = tp->t_inpcb->inp_socket;
    312 #ifdef INET6
    313 	else if (tp->t_in6pcb)
    314 		so = tp->t_in6pcb->in6p_socket;
    315 #endif
    316 
    317 	TCP_REASS_LOCK_CHECK(tp);
    318 
    319 	/*
    320 	 * Call with th==0 after become established to
    321 	 * force pre-ESTABLISHED data up to user socket.
    322 	 */
    323 	if (th == 0)
    324 		goto present;
    325 
    326 	rcvoobyte = *tlen;
    327 	/*
    328 	 * Copy these to local variables because the tcpiphdr
    329 	 * gets munged while we are collapsing mbufs.
    330 	 */
    331 	pkt_seq = th->th_seq;
    332 	pkt_len = *tlen;
    333 	pkt_flags = th->th_flags;
    334 	/*
    335 	 * Find a segment which begins after this one does.
    336 	 */
    337 	for (p = NULL, q = LIST_FIRST(&tp->segq); q != NULL; q = nq) {
    338 		nq = LIST_NEXT(q, ipqe_q);
    339 		/*
    340 		 * If the received segment is just right after this
    341 		 * fragment, merge the two together and then check
    342 		 * for further overlaps.
    343 		 */
    344 		if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
    345 #ifdef TCPREASS_DEBUG
    346 			printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
    347 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
    348 			       q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
    349 #endif
    350 			pkt_len += q->ipqe_len;
    351 			pkt_flags |= q->ipqe_flags;
    352 			pkt_seq = q->ipqe_seq;
    353 			m_cat(q->ipqe_m, m);
    354 			m = q->ipqe_m;
    355 			goto free_ipqe;
    356 		}
    357 		/*
    358 		 * If the received segment is completely past this
    359 		 * fragment, we need to go the next fragment.
    360 		 */
    361 		if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
    362 			p = q;
    363 			continue;
    364 		}
    365 		/*
    366 		 * If the fragment is past the received segment,
    367 		 * it (or any following) can't be concatenated.
    368 		 */
    369 		if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len))
    370 			break;
    371 		/*
    372 		 * We've received all the data in this segment before.
    373 		 * mark it as a duplicate and return.
    374 		 */
    375 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
    376 		    SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
    377 			tcpstat.tcps_rcvduppack++;
    378 			tcpstat.tcps_rcvdupbyte += pkt_len;
    379 			m_freem(m);
    380 			if (tiqe != NULL)
    381 				pool_put(&ipqent_pool, tiqe);
    382 			return (0);
    383 		}
    384 		/*
    385 		 * Received segment completely overlaps this fragment
    386 		 * so we drop the fragment (this keeps the temporal
    387 		 * ordering of segments correct).
    388 		 */
    389 		if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
    390 		    SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
    391 			rcvpartdupbyte += q->ipqe_len;
    392 			m_freem(q->ipqe_m);
    393 			goto free_ipqe;
    394 		}
    395 		/*
    396 		 * RX'ed segment extends past the end of the
    397 		 * fragment.  Drop the overlapping bytes.  Then
    398 		 * merge the fragment and segment then treat as
    399 		 * a longer received packet.
    400 		 */
    401 		if (SEQ_LT(q->ipqe_seq, pkt_seq)
    402 		    && SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq))  {
    403 			int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
    404 #ifdef TCPREASS_DEBUG
    405 			printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
    406 			       tp, overlap,
    407 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
    408 #endif
    409 			m_adj(m, overlap);
    410 			rcvpartdupbyte += overlap;
    411 			m_cat(q->ipqe_m, m);
    412 			m = q->ipqe_m;
    413 			pkt_seq = q->ipqe_seq;
    414 			pkt_len += q->ipqe_len - overlap;
    415 			rcvoobyte -= overlap;
    416 			goto free_ipqe;
    417 		}
    418 		/*
    419 		 * RX'ed segment extends past the front of the
    420 		 * fragment.  Drop the overlapping bytes on the
    421 		 * received packet.  The packet will then be
    422 		 * contatentated with this fragment a bit later.
    423 		 */
    424 		if (SEQ_GT(q->ipqe_seq, pkt_seq)
    425 		    && SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len))  {
    426 			int overlap = pkt_seq + pkt_len - q->ipqe_seq;
    427 #ifdef TCPREASS_DEBUG
    428 			printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
    429 			       tp, overlap,
    430 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
    431 #endif
    432 			m_adj(m, -overlap);
    433 			pkt_len -= overlap;
    434 			rcvpartdupbyte += overlap;
    435 			rcvoobyte -= overlap;
    436 		}
    437 		/*
    438 		 * If the received segment immediates precedes this
    439 		 * fragment then tack the fragment onto this segment
    440 		 * and reinsert the data.
    441 		 */
    442 		if (q->ipqe_seq == pkt_seq + pkt_len) {
    443 #ifdef TCPREASS_DEBUG
    444 			printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
    445 			       tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
    446 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
    447 #endif
    448 			pkt_len += q->ipqe_len;
    449 			pkt_flags |= q->ipqe_flags;
    450 			m_cat(m, q->ipqe_m);
    451 			LIST_REMOVE(q, ipqe_q);
    452 			LIST_REMOVE(q, ipqe_timeq);
    453 			if (tiqe == NULL) {
    454 			    tiqe = q;
    455 			} else {
    456 			    pool_put(&ipqent_pool, q);
    457 			}
    458 			break;
    459 		}
    460 		/*
    461 		 * If the fragment is before the segment, remember it.
    462 		 * When this loop is terminated, p will contain the
    463 		 * pointer to fragment that is right before the received
    464 		 * segment.
    465 		 */
    466 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
    467 			p = q;
    468 
    469 		continue;
    470 
    471 		/*
    472 		 * This is a common operation.  It also will allow
    473 		 * to save doing a malloc/free in most instances.
    474 		 */
    475 	  free_ipqe:
    476 		LIST_REMOVE(q, ipqe_q);
    477 		LIST_REMOVE(q, ipqe_timeq);
    478 		if (tiqe == NULL) {
    479 		    tiqe = q;
    480 		} else {
    481 		    pool_put(&ipqent_pool, q);
    482 		}
    483 	}
    484 
    485 	/*
    486 	 * Allocate a new queue entry since the received segment did not
    487 	 * collapse onto any other out-of-order block; thus we are allocating
    488 	 * a new block.  If it had collapsed, tiqe would not be NULL and
    489 	 * we would be reusing it.
    490 	 * XXX If we can't, just drop the packet.  XXX
    491 	 */
    492 	if (tiqe == NULL) {
    493 		tiqe = pool_get(&ipqent_pool, PR_NOWAIT);
    494 		if (tiqe == NULL) {
    495 			tcpstat.tcps_rcvmemdrop++;
    496 			m_freem(m);
    497 			return (0);
    498 		}
    499 	}
    500 
    501 	/*
    502 	 * Update the counters.
    503 	 */
    504 	tcpstat.tcps_rcvoopack++;
    505 	tcpstat.tcps_rcvoobyte += rcvoobyte;
    506 	if (rcvpartdupbyte) {
    507 	    tcpstat.tcps_rcvpartduppack++;
    508 	    tcpstat.tcps_rcvpartdupbyte += rcvpartdupbyte;
    509 	}
    510 
    511 	/*
    512 	 * Insert the new fragment queue entry into both queues.
    513 	 */
    514 	tiqe->ipqe_m = m;
    515 	tiqe->ipqe_seq = pkt_seq;
    516 	tiqe->ipqe_len = pkt_len;
    517 	tiqe->ipqe_flags = pkt_flags;
    518 	if (p == NULL) {
    519 		LIST_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
    520 #ifdef TCPREASS_DEBUG
    521 		if (tiqe->ipqe_seq != tp->rcv_nxt)
    522 			printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
    523 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
    524 #endif
    525 	} else {
    526 		LIST_INSERT_AFTER(p, tiqe, ipqe_q);
    527 #ifdef TCPREASS_DEBUG
    528 		printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
    529 		       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
    530 		       p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
    531 #endif
    532 	}
    533 
    534 	LIST_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
    535 
    536 present:
    537 	/*
    538 	 * Present data to user, advancing rcv_nxt through
    539 	 * completed sequence space.
    540 	 */
    541 	if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
    542 		return (0);
    543 	q = LIST_FIRST(&tp->segq);
    544 	if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
    545 		return (0);
    546 	if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
    547 		return (0);
    548 
    549 	tp->rcv_nxt += q->ipqe_len;
    550 	pkt_flags = q->ipqe_flags & TH_FIN;
    551 	ND6_HINT(tp);
    552 
    553 	LIST_REMOVE(q, ipqe_q);
    554 	LIST_REMOVE(q, ipqe_timeq);
    555 	if (so->so_state & SS_CANTRCVMORE)
    556 		m_freem(q->ipqe_m);
    557 	else
    558 		sbappend(&so->so_rcv, q->ipqe_m);
    559 	pool_put(&ipqent_pool, q);
    560 	sorwakeup(so);
    561 	return (pkt_flags);
    562 }
    563 
    564 #ifdef INET6
    565 int
    566 tcp6_input(mp, offp, proto)
    567 	struct mbuf **mp;
    568 	int *offp, proto;
    569 {
    570 	struct mbuf *m = *mp;
    571 
    572 	/*
    573 	 * draft-itojun-ipv6-tcp-to-anycast
    574 	 * better place to put this in?
    575 	 */
    576 	if (m->m_flags & M_ANYCAST6) {
    577 		struct ip6_hdr *ip6;
    578 		if (m->m_len < sizeof(struct ip6_hdr)) {
    579 			if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
    580 				tcpstat.tcps_rcvshort++;
    581 				return IPPROTO_DONE;
    582 			}
    583 		}
    584 		ip6 = mtod(m, struct ip6_hdr *);
    585 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
    586 		    (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
    587 		return IPPROTO_DONE;
    588 	}
    589 
    590 	tcp_input(m, *offp, proto);
    591 	return IPPROTO_DONE;
    592 }
    593 #endif
    594 
    595 /*
    596  * TCP input routine, follows pages 65-76 of the
    597  * protocol specification dated September, 1981 very closely.
    598  */
    599 void
    600 #if __STDC__
    601 tcp_input(struct mbuf *m, ...)
    602 #else
    603 tcp_input(m, va_alist)
    604 	struct mbuf *m;
    605 #endif
    606 {
    607 	int proto;
    608 	struct tcphdr *th;
    609 	struct ip *ip;
    610 	struct inpcb *inp;
    611 #ifdef INET6
    612 	struct ip6_hdr *ip6;
    613 	struct in6pcb *in6p;
    614 #endif
    615 	caddr_t optp = NULL;
    616 	int optlen = 0;
    617 	int len, tlen, toff, hdroptlen = 0;
    618 	struct tcpcb *tp = 0;
    619 	int tiflags;
    620 	struct socket *so = NULL;
    621 	int todrop, acked, ourfinisacked, needoutput = 0;
    622 	short ostate = 0;
    623 	int iss = 0;
    624 	u_long tiwin;
    625 	struct tcp_opt_info opti;
    626 	int off, iphlen;
    627 	va_list ap;
    628 	int af;		/* af on the wire */
    629 	struct mbuf *tcp_saveti = NULL;
    630 
    631 	va_start(ap, m);
    632 	toff = va_arg(ap, int);
    633 	proto = va_arg(ap, int);
    634 	va_end(ap);
    635 
    636 	tcpstat.tcps_rcvtotal++;
    637 
    638 	bzero(&opti, sizeof(opti));
    639 	opti.ts_present = 0;
    640 	opti.maxseg = 0;
    641 
    642 	/*
    643 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
    644 	 *
    645 	 * TCP is, by definition, unicast, so we reject all
    646 	 * multicast outright.
    647 	 *
    648 	 * Note, there are additional src/dst address checks in
    649 	 * the AF-specific code below.
    650 	 */
    651 	if (m->m_flags & (M_BCAST|M_MCAST)) {
    652 		/* XXX stat */
    653 		goto drop;
    654 	}
    655 #ifdef INET6
    656 	if (m->m_flags & M_ANYCAST6) {
    657 		/* XXX stat */
    658 		goto drop;
    659 	}
    660 #endif
    661 
    662 	/*
    663 	 * Get IP and TCP header together in first mbuf.
    664 	 * Note: IP leaves IP header in first mbuf.
    665 	 */
    666 	ip = mtod(m, struct ip *);
    667 #ifdef INET6
    668 	ip6 = NULL;
    669 #endif
    670 	switch (ip->ip_v) {
    671 #ifdef INET
    672 	case 4:
    673 		af = AF_INET;
    674 		iphlen = sizeof(struct ip);
    675 #ifndef PULLDOWN_TEST
    676 		/* would like to get rid of this... */
    677 		if (toff > sizeof (struct ip)) {
    678 			ip_stripoptions(m, (struct mbuf *)0);
    679 			toff = sizeof(struct ip);
    680 		}
    681 		if (m->m_len < toff + sizeof (struct tcphdr)) {
    682 			if ((m = m_pullup(m, toff + sizeof (struct tcphdr))) == 0) {
    683 				tcpstat.tcps_rcvshort++;
    684 				return;
    685 			}
    686 		}
    687 		ip = mtod(m, struct ip *);
    688 		th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
    689 #else
    690 		ip = mtod(m, struct ip *);
    691 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
    692 			sizeof(struct tcphdr));
    693 		if (th == NULL) {
    694 			tcpstat.tcps_rcvshort++;
    695 			return;
    696 		}
    697 #endif
    698 
    699 		/*
    700 		 * Make sure destination address is not multicast.
    701 		 * Source address checked in ip_input().
    702 		 */
    703 		if (IN_MULTICAST(ip->ip_dst.s_addr)) {
    704 			/* XXX stat */
    705 			goto drop;
    706 		}
    707 
    708 		/* We do the checksum after PCB lookup... */
    709 		len = ip->ip_len;
    710 		tlen = len - toff;
    711 		break;
    712 #endif
    713 #ifdef INET6
    714 	case 6:
    715 		ip = NULL;
    716 		iphlen = sizeof(struct ip6_hdr);
    717 		af = AF_INET6;
    718 #ifndef PULLDOWN_TEST
    719 		if (m->m_len < toff + sizeof(struct tcphdr)) {
    720 			m = m_pullup(m, toff + sizeof(struct tcphdr));	/*XXX*/
    721 			if (m == NULL) {
    722 				tcpstat.tcps_rcvshort++;
    723 				return;
    724 			}
    725 		}
    726 		ip6 = mtod(m, struct ip6_hdr *);
    727 		th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
    728 #else
    729 		ip6 = mtod(m, struct ip6_hdr *);
    730 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
    731 			sizeof(struct tcphdr));
    732 		if (th == NULL) {
    733 			tcpstat.tcps_rcvshort++;
    734 			return;
    735 		}
    736 #endif
    737 
    738 		/* Be proactive about malicious use of IPv4 mapped address */
    739 		if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
    740 		    IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
    741 			/* XXX stat */
    742 			goto drop;
    743 		}
    744 
    745 		/*
    746 		 * Be proactive about unspecified IPv6 address in source.
    747 		 * As we use all-zero to indicate unbounded/unconnected pcb,
    748 		 * unspecified IPv6 address can be used to confuse us.
    749 		 *
    750 		 * Note that packets with unspecified IPv6 destination is
    751 		 * already dropped in ip6_input.
    752 		 */
    753 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
    754 			/* XXX stat */
    755 			goto drop;
    756 		}
    757 
    758 		/*
    759 		 * Make sure destination address is not multicast.
    760 		 * Source address checked in ip6_input().
    761 		 */
    762 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
    763 			/* XXX stat */
    764 			goto drop;
    765 		}
    766 
    767 		/* We do the checksum after PCB lookup... */
    768 		len = m->m_pkthdr.len;
    769 		tlen = len - toff;
    770 		break;
    771 #endif
    772 	default:
    773 		m_freem(m);
    774 		return;
    775 	}
    776 
    777 	/*
    778 	 * Check that TCP offset makes sense,
    779 	 * pull out TCP options and adjust length.		XXX
    780 	 */
    781 	off = th->th_off << 2;
    782 	if (off < sizeof (struct tcphdr) || off > tlen) {
    783 		tcpstat.tcps_rcvbadoff++;
    784 		goto drop;
    785 	}
    786 	tlen -= off;
    787 
    788 	/*
    789 	 * tcp_input() has been modified to use tlen to mean the TCP data
    790 	 * length throughout the function.  Other functions can use
    791 	 * m->m_pkthdr.len as the basis for calculating the TCP data length.
    792 	 * rja
    793 	 */
    794 
    795 	if (off > sizeof (struct tcphdr)) {
    796 #ifndef PULLDOWN_TEST
    797 		if (m->m_len < toff + off) {
    798 			if ((m = m_pullup(m, toff + off)) == 0) {
    799 				tcpstat.tcps_rcvshort++;
    800 				return;
    801 			}
    802 			switch (af) {
    803 #ifdef INET
    804 			case AF_INET:
    805 				ip = mtod(m, struct ip *);
    806 				break;
    807 #endif
    808 #ifdef INET6
    809 			case AF_INET6:
    810 				ip6 = mtod(m, struct ip6_hdr *);
    811 				break;
    812 #endif
    813 			}
    814 			th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
    815 		}
    816 #else
    817 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
    818 		if (th == NULL) {
    819 			tcpstat.tcps_rcvshort++;
    820 			return;
    821 		}
    822 		/*
    823 		 * NOTE: ip/ip6 will not be affected by m_pulldown()
    824 		 * (as they're before toff) and we don't need to update those.
    825 		 */
    826 #endif
    827 		optlen = off - sizeof (struct tcphdr);
    828 		optp = ((caddr_t)th) + sizeof(struct tcphdr);
    829 		/*
    830 		 * Do quick retrieval of timestamp options ("options
    831 		 * prediction?").  If timestamp is the only option and it's
    832 		 * formatted as recommended in RFC 1323 appendix A, we
    833 		 * quickly get the values now and not bother calling
    834 		 * tcp_dooptions(), etc.
    835 		 */
    836 		if ((optlen == TCPOLEN_TSTAMP_APPA ||
    837 		     (optlen > TCPOLEN_TSTAMP_APPA &&
    838 			optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
    839 		     *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
    840 		     (th->th_flags & TH_SYN) == 0) {
    841 			opti.ts_present = 1;
    842 			opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
    843 			opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
    844 			optp = NULL;	/* we've parsed the options */
    845 		}
    846 	}
    847 	tiflags = th->th_flags;
    848 
    849 	/*
    850 	 * Locate pcb for segment.
    851 	 */
    852 findpcb:
    853 	inp = NULL;
    854 #ifdef INET6
    855 	in6p = NULL;
    856 #endif
    857 	switch (af) {
    858 #ifdef INET
    859 	case AF_INET:
    860 		inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
    861 		    ip->ip_dst, th->th_dport);
    862 		if (inp == 0) {
    863 			++tcpstat.tcps_pcbhashmiss;
    864 			inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
    865 		}
    866 #ifdef INET6
    867 		if (inp == 0) {
    868 			struct in6_addr s, d;
    869 
    870 			/* mapped addr case */
    871 			bzero(&s, sizeof(s));
    872 			s.s6_addr16[5] = htons(0xffff);
    873 			bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
    874 			bzero(&d, sizeof(d));
    875 			d.s6_addr16[5] = htons(0xffff);
    876 			bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
    877 			in6p = in6_pcblookup_connect(&tcb6, &s, th->th_sport,
    878 				&d, th->th_dport, 0);
    879 			if (in6p == 0) {
    880 				++tcpstat.tcps_pcbhashmiss;
    881 				in6p = in6_pcblookup_bind(&tcb6, &d,
    882 					th->th_dport, 0);
    883 			}
    884 		}
    885 #endif
    886 #ifndef INET6
    887 		if (inp == 0)
    888 #else
    889 		if (inp == 0 && in6p == 0)
    890 #endif
    891 		{
    892 			++tcpstat.tcps_noport;
    893 			if (tcp_log_refused && (tiflags & TH_SYN)) {
    894 				char src[4*sizeof "123"];
    895 				char dst[4*sizeof "123"];
    896 
    897 				if (ip) {
    898 					strcpy(src, inet_ntoa(ip->ip_src));
    899 					strcpy(dst, inet_ntoa(ip->ip_dst));
    900 				}
    901 				else {
    902 					strcpy(src, "(unknown)");
    903 					strcpy(dst, "(unknown)");
    904 				}
    905 				log(LOG_INFO,
    906 				    "Connection attempt to TCP %s:%d from %s:%d\n",
    907 				    dst, ntohs(th->th_dport),
    908 				    src, ntohs(th->th_sport));
    909 			}
    910 			TCP_FIELDS_TO_HOST(th);
    911 			goto dropwithreset_ratelim;
    912 		}
    913 #ifdef IPSEC
    914 		if (inp && ipsec4_in_reject(m, inp)) {
    915 			ipsecstat.in_polvio++;
    916 			goto drop;
    917 		}
    918 #ifdef INET6
    919 		else if (in6p && ipsec4_in_reject_so(m, in6p->in6p_socket)) {
    920 			ipsecstat.in_polvio++;
    921 			goto drop;
    922 		}
    923 #endif
    924 #endif /*IPSEC*/
    925 		break;
    926 #endif /*INET*/
    927 #ifdef INET6
    928 	case AF_INET6:
    929 	    {
    930 		int faith;
    931 
    932 #if defined(NFAITH) && NFAITH > 0
    933 		faith = faithprefix(&ip6->ip6_dst);
    934 #else
    935 		faith = 0;
    936 #endif
    937 		in6p = in6_pcblookup_connect(&tcb6, &ip6->ip6_src, th->th_sport,
    938 			&ip6->ip6_dst, th->th_dport, faith);
    939 		if (in6p == NULL) {
    940 			++tcpstat.tcps_pcbhashmiss;
    941 			in6p = in6_pcblookup_bind(&tcb6, &ip6->ip6_dst,
    942 				th->th_dport, faith);
    943 		}
    944 		if (in6p == NULL) {
    945 			++tcpstat.tcps_noport;
    946 			if (tcp_log_refused && (tiflags & TH_SYN)) {
    947 				char src[INET6_ADDRSTRLEN];
    948 				char dst[INET6_ADDRSTRLEN];
    949 
    950 				if (ip6) {
    951 					strcpy(src, ip6_sprintf(&ip6->ip6_src));
    952 					strcpy(dst, ip6_sprintf(&ip6->ip6_dst));
    953 				}
    954 				else {
    955 					strcpy(src, "(unknown v6)");
    956 					strcpy(dst, "(unknown v6)");
    957 				}
    958 				log(LOG_INFO,
    959 				    "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
    960 				    dst, ntohs(th->th_dport),
    961 				    src, ntohs(th->th_sport));
    962 			}
    963 			TCP_FIELDS_TO_HOST(th);
    964 			goto dropwithreset_ratelim;
    965 		}
    966 #ifdef IPSEC
    967 		if (ipsec6_in_reject(m, in6p)) {
    968 			ipsec6stat.in_polvio++;
    969 			goto drop;
    970 		}
    971 #endif /*IPSEC*/
    972 		break;
    973 	    }
    974 #endif
    975 	}
    976 
    977 	/*
    978 	 * If the state is CLOSED (i.e., TCB does not exist) then
    979 	 * all data in the incoming segment is discarded.
    980 	 * If the TCB exists but is in CLOSED state, it is embryonic,
    981 	 * but should either do a listen or a connect soon.
    982 	 */
    983 	tp = NULL;
    984 	so = NULL;
    985 	if (inp) {
    986 		tp = intotcpcb(inp);
    987 		so = inp->inp_socket;
    988 	}
    989 #ifdef INET6
    990 	else if (in6p) {
    991 		tp = in6totcpcb(in6p);
    992 		so = in6p->in6p_socket;
    993 	}
    994 #endif
    995 	if (tp == 0) {
    996 		TCP_FIELDS_TO_HOST(th);
    997 		goto dropwithreset_ratelim;
    998 	}
    999 	if (tp->t_state == TCPS_CLOSED)
   1000 		goto drop;
   1001 
   1002 	/*
   1003 	 * Checksum extended TCP header and data.
   1004 	 */
   1005 	switch (af) {
   1006 #ifdef INET
   1007 	case AF_INET:
   1008 		switch (m->m_pkthdr.csum_flags &
   1009 			((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
   1010 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
   1011 		case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
   1012 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
   1013 			goto badcsum;
   1014 
   1015 		case M_CSUM_TCPv4|M_CSUM_DATA:
   1016 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
   1017 			if ((m->m_pkthdr.csum_data ^ 0xffff) != 0)
   1018 				goto badcsum;
   1019 			break;
   1020 
   1021 		case M_CSUM_TCPv4:
   1022 			/* Checksum was okay. */
   1023 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
   1024 			break;
   1025 
   1026 		default:
   1027 			/* Must compute it ourselves. */
   1028 			TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
   1029 #ifndef PULLDOWN_TEST
   1030 		    {
   1031 			struct ipovly *ipov;
   1032 			ipov = (struct ipovly *)ip;
   1033 			bzero(ipov->ih_x1, sizeof ipov->ih_x1);
   1034 			ipov->ih_len = htons(tlen + off);
   1035 
   1036 			if (in_cksum(m, len) != 0)
   1037 				goto badcsum;
   1038 		    }
   1039 #else
   1040 			if (in4_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0)
   1041 				goto badcsum;
   1042 #endif /* ! PULLDOWN_TEST */
   1043 			break;
   1044 		}
   1045 		break;
   1046 #endif /* INET4 */
   1047 
   1048 #ifdef INET6
   1049 	case AF_INET6:
   1050 		if (in6_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0)
   1051 			goto badcsum;
   1052 		break;
   1053 #endif /* INET6 */
   1054 	}
   1055 
   1056 	TCP_FIELDS_TO_HOST(th);
   1057 
   1058 	/* Unscale the window into a 32-bit value. */
   1059 	if ((tiflags & TH_SYN) == 0)
   1060 		tiwin = th->th_win << tp->snd_scale;
   1061 	else
   1062 		tiwin = th->th_win;
   1063 
   1064 #ifdef INET6
   1065 	/* save packet options if user wanted */
   1066 	if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
   1067 		if (in6p->in6p_options) {
   1068 			m_freem(in6p->in6p_options);
   1069 			in6p->in6p_options = 0;
   1070 		}
   1071 		ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
   1072 	}
   1073 #endif
   1074 
   1075 	if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
   1076 		union syn_cache_sa src;
   1077 		union syn_cache_sa dst;
   1078 
   1079 		bzero(&src, sizeof(src));
   1080 		bzero(&dst, sizeof(dst));
   1081 		switch (af) {
   1082 #ifdef INET
   1083 		case AF_INET:
   1084 			src.sin.sin_len = sizeof(struct sockaddr_in);
   1085 			src.sin.sin_family = AF_INET;
   1086 			src.sin.sin_addr = ip->ip_src;
   1087 			src.sin.sin_port = th->th_sport;
   1088 
   1089 			dst.sin.sin_len = sizeof(struct sockaddr_in);
   1090 			dst.sin.sin_family = AF_INET;
   1091 			dst.sin.sin_addr = ip->ip_dst;
   1092 			dst.sin.sin_port = th->th_dport;
   1093 			break;
   1094 #endif
   1095 #ifdef INET6
   1096 		case AF_INET6:
   1097 			src.sin6.sin6_len = sizeof(struct sockaddr_in6);
   1098 			src.sin6.sin6_family = AF_INET6;
   1099 			src.sin6.sin6_addr = ip6->ip6_src;
   1100 			src.sin6.sin6_port = th->th_sport;
   1101 
   1102 			dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
   1103 			dst.sin6.sin6_family = AF_INET6;
   1104 			dst.sin6.sin6_addr = ip6->ip6_dst;
   1105 			dst.sin6.sin6_port = th->th_dport;
   1106 			break;
   1107 #endif /* INET6 */
   1108 		default:
   1109 			goto badsyn;	/*sanity*/
   1110 		}
   1111 
   1112 		if (so->so_options & SO_DEBUG) {
   1113 			ostate = tp->t_state;
   1114 
   1115 			tcp_saveti = NULL;
   1116 			if (iphlen + sizeof(struct tcphdr) > MHLEN)
   1117 				goto nosave;
   1118 
   1119 			if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
   1120 				tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
   1121 				if (!tcp_saveti)
   1122 					goto nosave;
   1123 			} else {
   1124 				MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
   1125 				if (!tcp_saveti)
   1126 					goto nosave;
   1127 				tcp_saveti->m_len = iphlen;
   1128 				m_copydata(m, 0, iphlen,
   1129 				    mtod(tcp_saveti, caddr_t));
   1130 			}
   1131 
   1132 			if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
   1133 				m_freem(tcp_saveti);
   1134 				tcp_saveti = NULL;
   1135 			} else {
   1136 				tcp_saveti->m_len += sizeof(struct tcphdr);
   1137 				bcopy(th, mtod(tcp_saveti, caddr_t) + iphlen,
   1138 				    sizeof(struct tcphdr));
   1139 			}
   1140 			if (tcp_saveti) {
   1141 				/*
   1142 				 * need to recover version # field, which was
   1143 				 * overwritten on ip_cksum computation.
   1144 				 */
   1145 				struct ip *sip;
   1146 				sip = mtod(tcp_saveti, struct ip *);
   1147 				switch (af) {
   1148 #ifdef INET
   1149 				case AF_INET:
   1150 					sip->ip_v = 4;
   1151 					break;
   1152 #endif
   1153 #ifdef INET6
   1154 				case AF_INET6:
   1155 					sip->ip_v = 6;
   1156 					break;
   1157 #endif
   1158 				}
   1159 			}
   1160 	nosave:;
   1161 		}
   1162 		if (so->so_options & SO_ACCEPTCONN) {
   1163   			if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
   1164 				if (tiflags & TH_RST) {
   1165 					syn_cache_reset(&src.sa, &dst.sa, th);
   1166 				} else if ((tiflags & (TH_ACK|TH_SYN)) ==
   1167 				    (TH_ACK|TH_SYN)) {
   1168 					/*
   1169 					 * Received a SYN,ACK.  This should
   1170 					 * never happen while we are in
   1171 					 * LISTEN.  Send an RST.
   1172 					 */
   1173 					goto badsyn;
   1174 				} else if (tiflags & TH_ACK) {
   1175 					so = syn_cache_get(&src.sa, &dst.sa,
   1176 						th, toff, tlen, so, m);
   1177 					if (so == NULL) {
   1178 						/*
   1179 						 * We don't have a SYN for
   1180 						 * this ACK; send an RST.
   1181 						 */
   1182 						goto badsyn;
   1183 					} else if (so ==
   1184 					    (struct socket *)(-1)) {
   1185 						/*
   1186 						 * We were unable to create
   1187 						 * the connection.  If the
   1188 						 * 3-way handshake was
   1189 						 * completed, and RST has
   1190 						 * been sent to the peer.
   1191 						 * Since the mbuf might be
   1192 						 * in use for the reply,
   1193 						 * do not free it.
   1194 						 */
   1195 						m = NULL;
   1196 					} else {
   1197 						/*
   1198 						 * We have created a
   1199 						 * full-blown connection.
   1200 						 */
   1201 						tp = NULL;
   1202 						inp = NULL;
   1203 #ifdef INET6
   1204 						in6p = NULL;
   1205 #endif
   1206 						switch (so->so_proto->pr_domain->dom_family) {
   1207 #ifdef INET
   1208 						case AF_INET:
   1209 							inp = sotoinpcb(so);
   1210 							tp = intotcpcb(inp);
   1211 							break;
   1212 #endif
   1213 #ifdef INET6
   1214 						case AF_INET6:
   1215 							in6p = sotoin6pcb(so);
   1216 							tp = in6totcpcb(in6p);
   1217 							break;
   1218 #endif
   1219 						}
   1220 						if (tp == NULL)
   1221 							goto badsyn;	/*XXX*/
   1222 						tiwin <<= tp->snd_scale;
   1223 						goto after_listen;
   1224 					}
   1225   				} else {
   1226 					/*
   1227 					 * None of RST, SYN or ACK was set.
   1228 					 * This is an invalid packet for a
   1229 					 * TCB in LISTEN state.  Send a RST.
   1230 					 */
   1231 					goto badsyn;
   1232 				}
   1233   			} else {
   1234 				/*
   1235 				 * Received a SYN.
   1236 				 */
   1237 
   1238 				/*
   1239 				 * LISTEN socket received a SYN
   1240 				 * from itself?  This can't possibly
   1241 				 * be valid; drop the packet.
   1242 				 */
   1243 				if (th->th_sport == th->th_dport) {
   1244 					int i;
   1245 
   1246 					switch (af) {
   1247 #ifdef INET
   1248 					case AF_INET:
   1249 						i = in_hosteq(ip->ip_src, ip->ip_dst);
   1250 						break;
   1251 #endif
   1252 #ifdef INET6
   1253 					case AF_INET6:
   1254 						i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
   1255 						break;
   1256 #endif
   1257 					default:
   1258 						i = 1;
   1259 					}
   1260 					if (i) {
   1261 						tcpstat.tcps_badsyn++;
   1262 						goto drop;
   1263 					}
   1264 				}
   1265 
   1266 				/*
   1267 				 * SYN looks ok; create compressed TCP
   1268 				 * state for it.
   1269 				 */
   1270 				if (so->so_qlen <= so->so_qlimit &&
   1271 				    syn_cache_add(&src.sa, &dst.sa, th, tlen,
   1272 						so, m, optp, optlen, &opti))
   1273 					m = NULL;
   1274 			}
   1275 			goto drop;
   1276 		}
   1277 	}
   1278 
   1279 after_listen:
   1280 #ifdef DIAGNOSTIC
   1281 	/*
   1282 	 * Should not happen now that all embryonic connections
   1283 	 * are handled with compressed state.
   1284 	 */
   1285 	if (tp->t_state == TCPS_LISTEN)
   1286 		panic("tcp_input: TCPS_LISTEN");
   1287 #endif
   1288 
   1289 	/*
   1290 	 * Segment received on connection.
   1291 	 * Reset idle time and keep-alive timer.
   1292 	 */
   1293 	tp->t_rcvtime = tcp_now;
   1294 	if (TCPS_HAVEESTABLISHED(tp->t_state))
   1295 		TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
   1296 
   1297 	/*
   1298 	 * Process options.
   1299 	 */
   1300 	if (optp)
   1301 		tcp_dooptions(tp, optp, optlen, th, &opti);
   1302 
   1303 	/*
   1304 	 * Header prediction: check for the two common cases
   1305 	 * of a uni-directional data xfer.  If the packet has
   1306 	 * no control flags, is in-sequence, the window didn't
   1307 	 * change and we're not retransmitting, it's a
   1308 	 * candidate.  If the length is zero and the ack moved
   1309 	 * forward, we're the sender side of the xfer.  Just
   1310 	 * free the data acked & wake any higher level process
   1311 	 * that was blocked waiting for space.  If the length
   1312 	 * is non-zero and the ack didn't move, we're the
   1313 	 * receiver side.  If we're getting packets in-order
   1314 	 * (the reassembly queue is empty), add the data to
   1315 	 * the socket buffer and note that we need a delayed ack.
   1316 	 */
   1317 	if (tp->t_state == TCPS_ESTABLISHED &&
   1318 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
   1319 	    (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
   1320 	    th->th_seq == tp->rcv_nxt &&
   1321 	    tiwin && tiwin == tp->snd_wnd &&
   1322 	    tp->snd_nxt == tp->snd_max) {
   1323 
   1324 		/*
   1325 		 * If last ACK falls within this segment's sequence numbers,
   1326 		 *  record the timestamp.
   1327 		 */
   1328 		if (opti.ts_present &&
   1329 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
   1330 		    SEQ_LT(tp->last_ack_sent, th->th_seq + tlen)) {
   1331 			tp->ts_recent_age = TCP_TIMESTAMP(tp);
   1332 			tp->ts_recent = opti.ts_val;
   1333 		}
   1334 
   1335 		if (tlen == 0) {
   1336 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
   1337 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
   1338 			    tp->snd_cwnd >= tp->snd_wnd &&
   1339 			    tp->t_dupacks < tcprexmtthresh) {
   1340 				/*
   1341 				 * this is a pure ack for outstanding data.
   1342 				 */
   1343 				++tcpstat.tcps_predack;
   1344 				if (opti.ts_present && opti.ts_ecr)
   1345 					tcp_xmit_timer(tp,
   1346 					  TCP_TIMESTAMP(tp) - opti.ts_ecr + 1);
   1347 				else if (tp->t_rtttime &&
   1348 				    SEQ_GT(th->th_ack, tp->t_rtseq))
   1349 					tcp_xmit_timer(tp,
   1350 					tcp_now - tp->t_rtttime);
   1351 				acked = th->th_ack - tp->snd_una;
   1352 				tcpstat.tcps_rcvackpack++;
   1353 				tcpstat.tcps_rcvackbyte += acked;
   1354 				ND6_HINT(tp);
   1355 				sbdrop(&so->so_snd, acked);
   1356 				/*
   1357 				 * We want snd_recover to track snd_una to
   1358 				 * avoid sequence wraparound problems for
   1359 				 * very large transfers.
   1360 				 */
   1361 				tp->snd_una = tp->snd_recover = th->th_ack;
   1362 				m_freem(m);
   1363 
   1364 				/*
   1365 				 * If all outstanding data are acked, stop
   1366 				 * retransmit timer, otherwise restart timer
   1367 				 * using current (possibly backed-off) value.
   1368 				 * If process is waiting for space,
   1369 				 * wakeup/selwakeup/signal.  If data
   1370 				 * are ready to send, let tcp_output
   1371 				 * decide between more output or persist.
   1372 				 */
   1373 				if (tp->snd_una == tp->snd_max)
   1374 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
   1375 				else if (TCP_TIMER_ISARMED(tp,
   1376 				    TCPT_PERSIST) == 0)
   1377 					TCP_TIMER_ARM(tp, TCPT_REXMT,
   1378 					    tp->t_rxtcur);
   1379 
   1380 				sowwakeup(so);
   1381 				if (so->so_snd.sb_cc)
   1382 					(void) tcp_output(tp);
   1383 				if (tcp_saveti)
   1384 					m_freem(tcp_saveti);
   1385 				return;
   1386 			}
   1387 		} else if (th->th_ack == tp->snd_una &&
   1388 		    LIST_FIRST(&tp->segq) == NULL &&
   1389 		    tlen <= sbspace(&so->so_rcv)) {
   1390 			/*
   1391 			 * this is a pure, in-sequence data packet
   1392 			 * with nothing on the reassembly queue and
   1393 			 * we have enough buffer space to take it.
   1394 			 */
   1395 			++tcpstat.tcps_preddat;
   1396 			tp->rcv_nxt += tlen;
   1397 			tcpstat.tcps_rcvpack++;
   1398 			tcpstat.tcps_rcvbyte += tlen;
   1399 			ND6_HINT(tp);
   1400 			/*
   1401 			 * Drop TCP, IP headers and TCP options then add data
   1402 			 * to socket buffer.
   1403 			 */
   1404 			m_adj(m, toff + off);
   1405 			sbappend(&so->so_rcv, m);
   1406 			sorwakeup(so);
   1407 			TCP_SETUP_ACK(tp, th);
   1408 			if (tp->t_flags & TF_ACKNOW)
   1409 				(void) tcp_output(tp);
   1410 			if (tcp_saveti)
   1411 				m_freem(tcp_saveti);
   1412 			return;
   1413 		}
   1414 	}
   1415 
   1416 	/*
   1417 	 * Compute mbuf offset to TCP data segment.
   1418 	 */
   1419 	hdroptlen = toff + off;
   1420 
   1421 	/*
   1422 	 * Calculate amount of space in receive window,
   1423 	 * and then do TCP input processing.
   1424 	 * Receive window is amount of space in rcv queue,
   1425 	 * but not less than advertised window.
   1426 	 */
   1427 	{ int win;
   1428 
   1429 	win = sbspace(&so->so_rcv);
   1430 	if (win < 0)
   1431 		win = 0;
   1432 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
   1433 	}
   1434 
   1435 	switch (tp->t_state) {
   1436 
   1437 	/*
   1438 	 * If the state is SYN_SENT:
   1439 	 *	if seg contains an ACK, but not for our SYN, drop the input.
   1440 	 *	if seg contains a RST, then drop the connection.
   1441 	 *	if seg does not contain SYN, then drop it.
   1442 	 * Otherwise this is an acceptable SYN segment
   1443 	 *	initialize tp->rcv_nxt and tp->irs
   1444 	 *	if seg contains ack then advance tp->snd_una
   1445 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
   1446 	 *	arrange for segment to be acked (eventually)
   1447 	 *	continue processing rest of data/controls, beginning with URG
   1448 	 */
   1449 	case TCPS_SYN_SENT:
   1450 		if ((tiflags & TH_ACK) &&
   1451 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
   1452 		     SEQ_GT(th->th_ack, tp->snd_max)))
   1453 			goto dropwithreset;
   1454 		if (tiflags & TH_RST) {
   1455 			if (tiflags & TH_ACK)
   1456 				tp = tcp_drop(tp, ECONNREFUSED);
   1457 			goto drop;
   1458 		}
   1459 		if ((tiflags & TH_SYN) == 0)
   1460 			goto drop;
   1461 		if (tiflags & TH_ACK) {
   1462 			tp->snd_una = tp->snd_recover = th->th_ack;
   1463 			if (SEQ_LT(tp->snd_nxt, tp->snd_una))
   1464 				tp->snd_nxt = tp->snd_una;
   1465 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
   1466 		}
   1467 		tp->irs = th->th_seq;
   1468 		tcp_rcvseqinit(tp);
   1469 		tp->t_flags |= TF_ACKNOW;
   1470 		tcp_mss_from_peer(tp, opti.maxseg);
   1471 
   1472 		/*
   1473 		 * Initialize the initial congestion window.  If we
   1474 		 * had to retransmit the SYN, we must initialize cwnd
   1475 		 * to 1 segment (i.e. the Loss Window).
   1476 		 */
   1477 		if (tp->t_flags & TF_SYN_REXMT)
   1478 			tp->snd_cwnd = tp->t_peermss;
   1479 		else
   1480 			tp->snd_cwnd = TCP_INITIAL_WINDOW(tcp_init_win,
   1481 			    tp->t_peermss);
   1482 
   1483 		tcp_rmx_rtt(tp);
   1484 		if (tiflags & TH_ACK) {
   1485 			tcpstat.tcps_connects++;
   1486 			soisconnected(so);
   1487 			tcp_established(tp);
   1488 			/* Do window scaling on this connection? */
   1489 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   1490 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
   1491 				tp->snd_scale = tp->requested_s_scale;
   1492 				tp->rcv_scale = tp->request_r_scale;
   1493 			}
   1494 			TCP_REASS_LOCK(tp);
   1495 			(void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
   1496 			TCP_REASS_UNLOCK(tp);
   1497 			/*
   1498 			 * if we didn't have to retransmit the SYN,
   1499 			 * use its rtt as our initial srtt & rtt var.
   1500 			 */
   1501 			if (tp->t_rtttime)
   1502 				tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
   1503 		} else
   1504 			tp->t_state = TCPS_SYN_RECEIVED;
   1505 
   1506 		/*
   1507 		 * Advance th->th_seq to correspond to first data byte.
   1508 		 * If data, trim to stay within window,
   1509 		 * dropping FIN if necessary.
   1510 		 */
   1511 		th->th_seq++;
   1512 		if (tlen > tp->rcv_wnd) {
   1513 			todrop = tlen - tp->rcv_wnd;
   1514 			m_adj(m, -todrop);
   1515 			tlen = tp->rcv_wnd;
   1516 			tiflags &= ~TH_FIN;
   1517 			tcpstat.tcps_rcvpackafterwin++;
   1518 			tcpstat.tcps_rcvbyteafterwin += todrop;
   1519 		}
   1520 		tp->snd_wl1 = th->th_seq - 1;
   1521 		tp->rcv_up = th->th_seq;
   1522 		goto step6;
   1523 
   1524 	/*
   1525 	 * If the state is SYN_RECEIVED:
   1526 	 *	If seg contains an ACK, but not for our SYN, drop the input
   1527 	 *	and generate an RST.  See page 36, rfc793
   1528 	 */
   1529 	case TCPS_SYN_RECEIVED:
   1530 		if ((tiflags & TH_ACK) &&
   1531 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
   1532 		     SEQ_GT(th->th_ack, tp->snd_max)))
   1533 			goto dropwithreset;
   1534 		break;
   1535 	}
   1536 
   1537 	/*
   1538 	 * States other than LISTEN or SYN_SENT.
   1539 	 * First check timestamp, if present.
   1540 	 * Then check that at least some bytes of segment are within
   1541 	 * receive window.  If segment begins before rcv_nxt,
   1542 	 * drop leading data (and SYN); if nothing left, just ack.
   1543 	 *
   1544 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
   1545 	 * and it's less than ts_recent, drop it.
   1546 	 */
   1547 	if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
   1548 	    TSTMP_LT(opti.ts_val, tp->ts_recent)) {
   1549 
   1550 		/* Check to see if ts_recent is over 24 days old.  */
   1551 		if ((int)(TCP_TIMESTAMP(tp) - tp->ts_recent_age) >
   1552 		    TCP_PAWS_IDLE) {
   1553 			/*
   1554 			 * Invalidate ts_recent.  If this segment updates
   1555 			 * ts_recent, the age will be reset later and ts_recent
   1556 			 * will get a valid value.  If it does not, setting
   1557 			 * ts_recent to zero will at least satisfy the
   1558 			 * requirement that zero be placed in the timestamp
   1559 			 * echo reply when ts_recent isn't valid.  The
   1560 			 * age isn't reset until we get a valid ts_recent
   1561 			 * because we don't want out-of-order segments to be
   1562 			 * dropped when ts_recent is old.
   1563 			 */
   1564 			tp->ts_recent = 0;
   1565 		} else {
   1566 			tcpstat.tcps_rcvduppack++;
   1567 			tcpstat.tcps_rcvdupbyte += tlen;
   1568 			tcpstat.tcps_pawsdrop++;
   1569 			goto dropafterack;
   1570 		}
   1571 	}
   1572 
   1573 	todrop = tp->rcv_nxt - th->th_seq;
   1574 	if (todrop > 0) {
   1575 		if (tiflags & TH_SYN) {
   1576 			tiflags &= ~TH_SYN;
   1577 			th->th_seq++;
   1578 			if (th->th_urp > 1)
   1579 				th->th_urp--;
   1580 			else {
   1581 				tiflags &= ~TH_URG;
   1582 				th->th_urp = 0;
   1583 			}
   1584 			todrop--;
   1585 		}
   1586 		if (todrop > tlen ||
   1587 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
   1588 			/*
   1589 			 * Any valid FIN must be to the left of the window.
   1590 			 * At this point the FIN must be a duplicate or
   1591 			 * out of sequence; drop it.
   1592 			 */
   1593 			tiflags &= ~TH_FIN;
   1594 			/*
   1595 			 * Send an ACK to resynchronize and drop any data.
   1596 			 * But keep on processing for RST or ACK.
   1597 			 */
   1598 			tp->t_flags |= TF_ACKNOW;
   1599 			todrop = tlen;
   1600 			tcpstat.tcps_rcvdupbyte += todrop;
   1601 			tcpstat.tcps_rcvduppack++;
   1602 		} else {
   1603 			tcpstat.tcps_rcvpartduppack++;
   1604 			tcpstat.tcps_rcvpartdupbyte += todrop;
   1605 		}
   1606 		hdroptlen += todrop;	/*drop from head afterwards*/
   1607 		th->th_seq += todrop;
   1608 		tlen -= todrop;
   1609 		if (th->th_urp > todrop)
   1610 			th->th_urp -= todrop;
   1611 		else {
   1612 			tiflags &= ~TH_URG;
   1613 			th->th_urp = 0;
   1614 		}
   1615 	}
   1616 
   1617 	/*
   1618 	 * If new data are received on a connection after the
   1619 	 * user processes are gone, then RST the other end.
   1620 	 */
   1621 	if ((so->so_state & SS_NOFDREF) &&
   1622 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
   1623 		tp = tcp_close(tp);
   1624 		tcpstat.tcps_rcvafterclose++;
   1625 		goto dropwithreset;
   1626 	}
   1627 
   1628 	/*
   1629 	 * If segment ends after window, drop trailing data
   1630 	 * (and PUSH and FIN); if nothing left, just ACK.
   1631 	 */
   1632 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
   1633 	if (todrop > 0) {
   1634 		tcpstat.tcps_rcvpackafterwin++;
   1635 		if (todrop >= tlen) {
   1636 			tcpstat.tcps_rcvbyteafterwin += tlen;
   1637 			/*
   1638 			 * If a new connection request is received
   1639 			 * while in TIME_WAIT, drop the old connection
   1640 			 * and start over if the sequence numbers
   1641 			 * are above the previous ones.
   1642 			 */
   1643 			if (tiflags & TH_SYN &&
   1644 			    tp->t_state == TCPS_TIME_WAIT &&
   1645 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
   1646 				iss = tcp_new_iss(tp, tp->snd_nxt);
   1647 				tp = tcp_close(tp);
   1648 				goto findpcb;
   1649 			}
   1650 			/*
   1651 			 * If window is closed can only take segments at
   1652 			 * window edge, and have to drop data and PUSH from
   1653 			 * incoming segments.  Continue processing, but
   1654 			 * remember to ack.  Otherwise, drop segment
   1655 			 * and ack.
   1656 			 */
   1657 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
   1658 				tp->t_flags |= TF_ACKNOW;
   1659 				tcpstat.tcps_rcvwinprobe++;
   1660 			} else
   1661 				goto dropafterack;
   1662 		} else
   1663 			tcpstat.tcps_rcvbyteafterwin += todrop;
   1664 		m_adj(m, -todrop);
   1665 		tlen -= todrop;
   1666 		tiflags &= ~(TH_PUSH|TH_FIN);
   1667 	}
   1668 
   1669 	/*
   1670 	 * If last ACK falls within this segment's sequence numbers,
   1671 	 * and the timestamp is newer, record it.
   1672 	 */
   1673 	if (opti.ts_present && TSTMP_GEQ(opti.ts_val, tp->ts_recent) &&
   1674 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
   1675 	    SEQ_LT(tp->last_ack_sent, th->th_seq + tlen +
   1676 		   ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
   1677 		tp->ts_recent_age = TCP_TIMESTAMP(tp);
   1678 		tp->ts_recent = opti.ts_val;
   1679 	}
   1680 
   1681 	/*
   1682 	 * If the RST bit is set examine the state:
   1683 	 *    SYN_RECEIVED STATE:
   1684 	 *	If passive open, return to LISTEN state.
   1685 	 *	If active open, inform user that connection was refused.
   1686 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
   1687 	 *	Inform user that connection was reset, and close tcb.
   1688 	 *    CLOSING, LAST_ACK, TIME_WAIT STATES
   1689 	 *	Close the tcb.
   1690 	 */
   1691 	if (tiflags&TH_RST) switch (tp->t_state) {
   1692 
   1693 	case TCPS_SYN_RECEIVED:
   1694 		so->so_error = ECONNREFUSED;
   1695 		goto close;
   1696 
   1697 	case TCPS_ESTABLISHED:
   1698 	case TCPS_FIN_WAIT_1:
   1699 	case TCPS_FIN_WAIT_2:
   1700 	case TCPS_CLOSE_WAIT:
   1701 		so->so_error = ECONNRESET;
   1702 	close:
   1703 		tp->t_state = TCPS_CLOSED;
   1704 		tcpstat.tcps_drops++;
   1705 		tp = tcp_close(tp);
   1706 		goto drop;
   1707 
   1708 	case TCPS_CLOSING:
   1709 	case TCPS_LAST_ACK:
   1710 	case TCPS_TIME_WAIT:
   1711 		tp = tcp_close(tp);
   1712 		goto drop;
   1713 	}
   1714 
   1715 	/*
   1716 	 * If a SYN is in the window, then this is an
   1717 	 * error and we send an RST and drop the connection.
   1718 	 */
   1719 	if (tiflags & TH_SYN) {
   1720 		tp = tcp_drop(tp, ECONNRESET);
   1721 		goto dropwithreset;
   1722 	}
   1723 
   1724 	/*
   1725 	 * If the ACK bit is off we drop the segment and return.
   1726 	 */
   1727 	if ((tiflags & TH_ACK) == 0) {
   1728 		if (tp->t_flags & TF_ACKNOW)
   1729 			goto dropafterack;
   1730 		else
   1731 			goto drop;
   1732 	}
   1733 
   1734 	/*
   1735 	 * Ack processing.
   1736 	 */
   1737 	switch (tp->t_state) {
   1738 
   1739 	/*
   1740 	 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
   1741 	 * ESTABLISHED state and continue processing, otherwise
   1742 	 * send an RST.
   1743 	 */
   1744 	case TCPS_SYN_RECEIVED:
   1745 		if (SEQ_GT(tp->snd_una, th->th_ack) ||
   1746 		    SEQ_GT(th->th_ack, tp->snd_max))
   1747 			goto dropwithreset;
   1748 		tcpstat.tcps_connects++;
   1749 		soisconnected(so);
   1750 		tcp_established(tp);
   1751 		/* Do window scaling? */
   1752 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   1753 			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
   1754 			tp->snd_scale = tp->requested_s_scale;
   1755 			tp->rcv_scale = tp->request_r_scale;
   1756 		}
   1757 		TCP_REASS_LOCK(tp);
   1758 		(void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
   1759 		TCP_REASS_UNLOCK(tp);
   1760 		tp->snd_wl1 = th->th_seq - 1;
   1761 		/* fall into ... */
   1762 
   1763 	/*
   1764 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
   1765 	 * ACKs.  If the ack is in the range
   1766 	 *	tp->snd_una < th->th_ack <= tp->snd_max
   1767 	 * then advance tp->snd_una to th->th_ack and drop
   1768 	 * data from the retransmission queue.  If this ACK reflects
   1769 	 * more up to date window information we update our window information.
   1770 	 */
   1771 	case TCPS_ESTABLISHED:
   1772 	case TCPS_FIN_WAIT_1:
   1773 	case TCPS_FIN_WAIT_2:
   1774 	case TCPS_CLOSE_WAIT:
   1775 	case TCPS_CLOSING:
   1776 	case TCPS_LAST_ACK:
   1777 	case TCPS_TIME_WAIT:
   1778 
   1779 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
   1780 			if (tlen == 0 && tiwin == tp->snd_wnd) {
   1781 				tcpstat.tcps_rcvdupack++;
   1782 				/*
   1783 				 * If we have outstanding data (other than
   1784 				 * a window probe), this is a completely
   1785 				 * duplicate ack (ie, window info didn't
   1786 				 * change), the ack is the biggest we've
   1787 				 * seen and we've seen exactly our rexmt
   1788 				 * threshhold of them, assume a packet
   1789 				 * has been dropped and retransmit it.
   1790 				 * Kludge snd_nxt & the congestion
   1791 				 * window so we send only this one
   1792 				 * packet.
   1793 				 *
   1794 				 * We know we're losing at the current
   1795 				 * window size so do congestion avoidance
   1796 				 * (set ssthresh to half the current window
   1797 				 * and pull our congestion window back to
   1798 				 * the new ssthresh).
   1799 				 *
   1800 				 * Dup acks mean that packets have left the
   1801 				 * network (they're now cached at the receiver)
   1802 				 * so bump cwnd by the amount in the receiver
   1803 				 * to keep a constant cwnd packets in the
   1804 				 * network.
   1805 				 */
   1806 				if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
   1807 				    th->th_ack != tp->snd_una)
   1808 					tp->t_dupacks = 0;
   1809 				else if (++tp->t_dupacks == tcprexmtthresh) {
   1810 					tcp_seq onxt = tp->snd_nxt;
   1811 					u_int win =
   1812 					    min(tp->snd_wnd, tp->snd_cwnd) /
   1813 					    2 /	tp->t_segsz;
   1814 					if (tcp_do_newreno && SEQ_LT(th->th_ack,
   1815 					    tp->snd_recover)) {
   1816 						/*
   1817 						 * False fast retransmit after
   1818 						 * timeout.  Do not cut window.
   1819 						 */
   1820 						tp->snd_cwnd += tp->t_segsz;
   1821 						tp->t_dupacks = 0;
   1822 						(void) tcp_output(tp);
   1823 						goto drop;
   1824 					}
   1825 
   1826 					if (win < 2)
   1827 						win = 2;
   1828 					tp->snd_ssthresh = win * tp->t_segsz;
   1829 					tp->snd_recover = tp->snd_max;
   1830 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
   1831 					tp->t_rtttime = 0;
   1832 					tp->snd_nxt = th->th_ack;
   1833 					tp->snd_cwnd = tp->t_segsz;
   1834 					(void) tcp_output(tp);
   1835 					tp->snd_cwnd = tp->snd_ssthresh +
   1836 					       tp->t_segsz * tp->t_dupacks;
   1837 					if (SEQ_GT(onxt, tp->snd_nxt))
   1838 						tp->snd_nxt = onxt;
   1839 					goto drop;
   1840 				} else if (tp->t_dupacks > tcprexmtthresh) {
   1841 					tp->snd_cwnd += tp->t_segsz;
   1842 					(void) tcp_output(tp);
   1843 					goto drop;
   1844 				}
   1845 			} else
   1846 				tp->t_dupacks = 0;
   1847 			break;
   1848 		}
   1849 		/*
   1850 		 * If the congestion window was inflated to account
   1851 		 * for the other side's cached packets, retract it.
   1852 		 */
   1853 		if (tcp_do_newreno == 0) {
   1854 			if (tp->t_dupacks >= tcprexmtthresh &&
   1855 			    tp->snd_cwnd > tp->snd_ssthresh)
   1856 				tp->snd_cwnd = tp->snd_ssthresh;
   1857 			tp->t_dupacks = 0;
   1858 		} else if (tp->t_dupacks >= tcprexmtthresh &&
   1859 			   tcp_newreno(tp, th) == 0) {
   1860 			tp->snd_cwnd = tp->snd_ssthresh;
   1861 			/*
   1862 			 * Window inflation should have left us with approx.
   1863 			 * snd_ssthresh outstanding data.  But in case we
   1864 			 * would be inclined to send a burst, better to do
   1865 			 * it via the slow start mechanism.
   1866 			 */
   1867 			if (SEQ_SUB(tp->snd_max, th->th_ack) < tp->snd_ssthresh)
   1868 				tp->snd_cwnd = SEQ_SUB(tp->snd_max, th->th_ack)
   1869 				    + tp->t_segsz;
   1870 			tp->t_dupacks = 0;
   1871 		}
   1872 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
   1873 			tcpstat.tcps_rcvacktoomuch++;
   1874 			goto dropafterack;
   1875 		}
   1876 		acked = th->th_ack - tp->snd_una;
   1877 		tcpstat.tcps_rcvackpack++;
   1878 		tcpstat.tcps_rcvackbyte += acked;
   1879 
   1880 		/*
   1881 		 * If we have a timestamp reply, update smoothed
   1882 		 * round trip time.  If no timestamp is present but
   1883 		 * transmit timer is running and timed sequence
   1884 		 * number was acked, update smoothed round trip time.
   1885 		 * Since we now have an rtt measurement, cancel the
   1886 		 * timer backoff (cf., Phil Karn's retransmit alg.).
   1887 		 * Recompute the initial retransmit timer.
   1888 		 */
   1889 		if (opti.ts_present && opti.ts_ecr)
   1890 			tcp_xmit_timer(tp, TCP_TIMESTAMP(tp) - opti.ts_ecr + 1);
   1891 		else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
   1892 			tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
   1893 
   1894 		/*
   1895 		 * If all outstanding data is acked, stop retransmit
   1896 		 * timer and remember to restart (more output or persist).
   1897 		 * If there is more data to be acked, restart retransmit
   1898 		 * timer, using current (possibly backed-off) value.
   1899 		 */
   1900 		if (th->th_ack == tp->snd_max) {
   1901 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
   1902 			needoutput = 1;
   1903 		} else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
   1904 			TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
   1905 		/*
   1906 		 * When new data is acked, open the congestion window.
   1907 		 * If the window gives us less than ssthresh packets
   1908 		 * in flight, open exponentially (segsz per packet).
   1909 		 * Otherwise open linearly: segsz per window
   1910 		 * (segsz^2 / cwnd per packet), plus a constant
   1911 		 * fraction of a packet (segsz/8) to help larger windows
   1912 		 * open quickly enough.
   1913 		 */
   1914 		{
   1915 		u_int cw = tp->snd_cwnd;
   1916 		u_int incr = tp->t_segsz;
   1917 
   1918 		if (cw > tp->snd_ssthresh)
   1919 			incr = incr * incr / cw;
   1920 		if (tcp_do_newreno == 0 || SEQ_GEQ(th->th_ack, tp->snd_recover))
   1921 			tp->snd_cwnd = min(cw + incr,
   1922 			    TCP_MAXWIN << tp->snd_scale);
   1923 		}
   1924 		ND6_HINT(tp);
   1925 		if (acked > so->so_snd.sb_cc) {
   1926 			tp->snd_wnd -= so->so_snd.sb_cc;
   1927 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
   1928 			ourfinisacked = 1;
   1929 		} else {
   1930 			sbdrop(&so->so_snd, acked);
   1931 			tp->snd_wnd -= acked;
   1932 			ourfinisacked = 0;
   1933 		}
   1934 		sowwakeup(so);
   1935 		/*
   1936 		 * We want snd_recover to track snd_una to
   1937 		 * avoid sequence wraparound problems for
   1938 		 * very large transfers.
   1939 		 */
   1940 		tp->snd_una = tp->snd_recover = th->th_ack;
   1941 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
   1942 			tp->snd_nxt = tp->snd_una;
   1943 
   1944 		switch (tp->t_state) {
   1945 
   1946 		/*
   1947 		 * In FIN_WAIT_1 STATE in addition to the processing
   1948 		 * for the ESTABLISHED state if our FIN is now acknowledged
   1949 		 * then enter FIN_WAIT_2.
   1950 		 */
   1951 		case TCPS_FIN_WAIT_1:
   1952 			if (ourfinisacked) {
   1953 				/*
   1954 				 * If we can't receive any more
   1955 				 * data, then closing user can proceed.
   1956 				 * Starting the timer is contrary to the
   1957 				 * specification, but if we don't get a FIN
   1958 				 * we'll hang forever.
   1959 				 */
   1960 				if (so->so_state & SS_CANTRCVMORE) {
   1961 					soisdisconnected(so);
   1962 					if (tcp_maxidle > 0)
   1963 						TCP_TIMER_ARM(tp, TCPT_2MSL,
   1964 						    tcp_maxidle);
   1965 				}
   1966 				tp->t_state = TCPS_FIN_WAIT_2;
   1967 			}
   1968 			break;
   1969 
   1970 	 	/*
   1971 		 * In CLOSING STATE in addition to the processing for
   1972 		 * the ESTABLISHED state if the ACK acknowledges our FIN
   1973 		 * then enter the TIME-WAIT state, otherwise ignore
   1974 		 * the segment.
   1975 		 */
   1976 		case TCPS_CLOSING:
   1977 			if (ourfinisacked) {
   1978 				tp->t_state = TCPS_TIME_WAIT;
   1979 				tcp_canceltimers(tp);
   1980 				TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
   1981 				soisdisconnected(so);
   1982 			}
   1983 			break;
   1984 
   1985 		/*
   1986 		 * In LAST_ACK, we may still be waiting for data to drain
   1987 		 * and/or to be acked, as well as for the ack of our FIN.
   1988 		 * If our FIN is now acknowledged, delete the TCB,
   1989 		 * enter the closed state and return.
   1990 		 */
   1991 		case TCPS_LAST_ACK:
   1992 			if (ourfinisacked) {
   1993 				tp = tcp_close(tp);
   1994 				goto drop;
   1995 			}
   1996 			break;
   1997 
   1998 		/*
   1999 		 * In TIME_WAIT state the only thing that should arrive
   2000 		 * is a retransmission of the remote FIN.  Acknowledge
   2001 		 * it and restart the finack timer.
   2002 		 */
   2003 		case TCPS_TIME_WAIT:
   2004 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
   2005 			goto dropafterack;
   2006 		}
   2007 	}
   2008 
   2009 step6:
   2010 	/*
   2011 	 * Update window information.
   2012 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
   2013 	 */
   2014 	if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
   2015 	    (tp->snd_wl1 == th->th_seq && SEQ_LT(tp->snd_wl2, th->th_ack)) ||
   2016 	    (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))) {
   2017 		/* keep track of pure window updates */
   2018 		if (tlen == 0 &&
   2019 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
   2020 			tcpstat.tcps_rcvwinupd++;
   2021 		tp->snd_wnd = tiwin;
   2022 		tp->snd_wl1 = th->th_seq;
   2023 		tp->snd_wl2 = th->th_ack;
   2024 		if (tp->snd_wnd > tp->max_sndwnd)
   2025 			tp->max_sndwnd = tp->snd_wnd;
   2026 		needoutput = 1;
   2027 	}
   2028 
   2029 	/*
   2030 	 * Process segments with URG.
   2031 	 */
   2032 	if ((tiflags & TH_URG) && th->th_urp &&
   2033 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   2034 		/*
   2035 		 * This is a kludge, but if we receive and accept
   2036 		 * random urgent pointers, we'll crash in
   2037 		 * soreceive.  It's hard to imagine someone
   2038 		 * actually wanting to send this much urgent data.
   2039 		 */
   2040 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
   2041 			th->th_urp = 0;			/* XXX */
   2042 			tiflags &= ~TH_URG;		/* XXX */
   2043 			goto dodata;			/* XXX */
   2044 		}
   2045 		/*
   2046 		 * If this segment advances the known urgent pointer,
   2047 		 * then mark the data stream.  This should not happen
   2048 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
   2049 		 * a FIN has been received from the remote side.
   2050 		 * In these states we ignore the URG.
   2051 		 *
   2052 		 * According to RFC961 (Assigned Protocols),
   2053 		 * the urgent pointer points to the last octet
   2054 		 * of urgent data.  We continue, however,
   2055 		 * to consider it to indicate the first octet
   2056 		 * of data past the urgent section as the original
   2057 		 * spec states (in one of two places).
   2058 		 */
   2059 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
   2060 			tp->rcv_up = th->th_seq + th->th_urp;
   2061 			so->so_oobmark = so->so_rcv.sb_cc +
   2062 			    (tp->rcv_up - tp->rcv_nxt) - 1;
   2063 			if (so->so_oobmark == 0)
   2064 				so->so_state |= SS_RCVATMARK;
   2065 			sohasoutofband(so);
   2066 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
   2067 		}
   2068 		/*
   2069 		 * Remove out of band data so doesn't get presented to user.
   2070 		 * This can happen independent of advancing the URG pointer,
   2071 		 * but if two URG's are pending at once, some out-of-band
   2072 		 * data may creep in... ick.
   2073 		 */
   2074 		if (th->th_urp <= (u_int16_t) tlen
   2075 #ifdef SO_OOBINLINE
   2076 		     && (so->so_options & SO_OOBINLINE) == 0
   2077 #endif
   2078 		     )
   2079 			tcp_pulloutofband(so, th, m, hdroptlen);
   2080 	} else
   2081 		/*
   2082 		 * If no out of band data is expected,
   2083 		 * pull receive urgent pointer along
   2084 		 * with the receive window.
   2085 		 */
   2086 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
   2087 			tp->rcv_up = tp->rcv_nxt;
   2088 dodata:							/* XXX */
   2089 
   2090 	/*
   2091 	 * Process the segment text, merging it into the TCP sequencing queue,
   2092 	 * and arranging for acknowledgement of receipt if necessary.
   2093 	 * This process logically involves adjusting tp->rcv_wnd as data
   2094 	 * is presented to the user (this happens in tcp_usrreq.c,
   2095 	 * case PRU_RCVD).  If a FIN has already been received on this
   2096 	 * connection then we just ignore the text.
   2097 	 */
   2098 	if ((tlen || (tiflags & TH_FIN)) &&
   2099 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   2100 		/*
   2101 		 * Insert segment ti into reassembly queue of tcp with
   2102 		 * control block tp.  Return TH_FIN if reassembly now includes
   2103 		 * a segment with FIN.  The macro form does the common case
   2104 		 * inline (segment is the next to be received on an
   2105 		 * established connection, and the queue is empty),
   2106 		 * avoiding linkage into and removal from the queue and
   2107 		 * repetition of various conversions.
   2108 		 * Set DELACK for segments received in order, but ack
   2109 		 * immediately when segments are out of order
   2110 		 * (so fast retransmit can work).
   2111 		 */
   2112 		/* NOTE: this was TCP_REASS() macro, but used only once */
   2113 		TCP_REASS_LOCK(tp);
   2114 		if (th->th_seq == tp->rcv_nxt &&
   2115 		    LIST_FIRST(&tp->segq) == NULL &&
   2116 		    tp->t_state == TCPS_ESTABLISHED) {
   2117 			TCP_SETUP_ACK(tp, th);
   2118 			tp->rcv_nxt += tlen;
   2119 			tiflags = th->th_flags & TH_FIN;
   2120 			tcpstat.tcps_rcvpack++;
   2121 			tcpstat.tcps_rcvbyte += tlen;
   2122 			ND6_HINT(tp);
   2123 			m_adj(m, hdroptlen);
   2124 			sbappend(&(so)->so_rcv, m);
   2125 			sorwakeup(so);
   2126 		} else {
   2127 			m_adj(m, hdroptlen);
   2128 			tiflags = tcp_reass(tp, th, m, &tlen);
   2129 			tp->t_flags |= TF_ACKNOW;
   2130 		}
   2131 		TCP_REASS_UNLOCK(tp);
   2132 
   2133 		/*
   2134 		 * Note the amount of data that peer has sent into
   2135 		 * our window, in order to estimate the sender's
   2136 		 * buffer size.
   2137 		 */
   2138 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
   2139 	} else {
   2140 		m_freem(m);
   2141 		m = NULL;
   2142 		tiflags &= ~TH_FIN;
   2143 	}
   2144 
   2145 	/*
   2146 	 * If FIN is received ACK the FIN and let the user know
   2147 	 * that the connection is closing.  Ignore a FIN received before
   2148 	 * the connection is fully established.
   2149 	 */
   2150 	if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
   2151 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   2152 			socantrcvmore(so);
   2153 			tp->t_flags |= TF_ACKNOW;
   2154 			tp->rcv_nxt++;
   2155 		}
   2156 		switch (tp->t_state) {
   2157 
   2158 	 	/*
   2159 		 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
   2160 		 */
   2161 		case TCPS_ESTABLISHED:
   2162 			tp->t_state = TCPS_CLOSE_WAIT;
   2163 			break;
   2164 
   2165 	 	/*
   2166 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
   2167 		 * enter the CLOSING state.
   2168 		 */
   2169 		case TCPS_FIN_WAIT_1:
   2170 			tp->t_state = TCPS_CLOSING;
   2171 			break;
   2172 
   2173 	 	/*
   2174 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
   2175 		 * starting the time-wait timer, turning off the other
   2176 		 * standard timers.
   2177 		 */
   2178 		case TCPS_FIN_WAIT_2:
   2179 			tp->t_state = TCPS_TIME_WAIT;
   2180 			tcp_canceltimers(tp);
   2181 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
   2182 			soisdisconnected(so);
   2183 			break;
   2184 
   2185 		/*
   2186 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
   2187 		 */
   2188 		case TCPS_TIME_WAIT:
   2189 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
   2190 			break;
   2191 		}
   2192 	}
   2193 #ifdef TCP_DEBUG
   2194 	if (so->so_options & SO_DEBUG)
   2195 		tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
   2196 #endif
   2197 
   2198 	/*
   2199 	 * Return any desired output.
   2200 	 */
   2201 	if (needoutput || (tp->t_flags & TF_ACKNOW))
   2202 		(void) tcp_output(tp);
   2203 	if (tcp_saveti)
   2204 		m_freem(tcp_saveti);
   2205 	return;
   2206 
   2207 badsyn:
   2208 	/*
   2209 	 * Received a bad SYN.  Increment counters and dropwithreset.
   2210 	 */
   2211 	tcpstat.tcps_badsyn++;
   2212 	tp = NULL;
   2213 	goto dropwithreset;
   2214 
   2215 dropafterack:
   2216 	/*
   2217 	 * Generate an ACK dropping incoming segment if it occupies
   2218 	 * sequence space, where the ACK reflects our state.
   2219 	 */
   2220 	if (tiflags & TH_RST)
   2221 		goto drop;
   2222 	m_freem(m);
   2223 	tp->t_flags |= TF_ACKNOW;
   2224 	(void) tcp_output(tp);
   2225 	if (tcp_saveti)
   2226 		m_freem(tcp_saveti);
   2227 	return;
   2228 
   2229 dropwithreset_ratelim:
   2230 	/*
   2231 	 * We may want to rate-limit RSTs in certain situations,
   2232 	 * particularly if we are sending an RST in response to
   2233 	 * an attempt to connect to or otherwise communicate with
   2234 	 * a port for which we have no socket.
   2235 	 */
   2236 	if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
   2237 	    tcp_rst_ppslim) == 0) {
   2238 		/* XXX stat */
   2239 		goto drop;
   2240 	}
   2241 	/* ...fall into dropwithreset... */
   2242 
   2243 dropwithreset:
   2244 	/*
   2245 	 * Generate a RST, dropping incoming segment.
   2246 	 * Make ACK acceptable to originator of segment.
   2247 	 */
   2248 	if (tiflags & TH_RST)
   2249 		goto drop;
   2250     {
   2251 	/*
   2252 	 * need to recover version # field, which was overwritten on
   2253 	 * ip_cksum computation.
   2254 	 */
   2255 	struct ip *sip;
   2256 	sip = mtod(m, struct ip *);
   2257 	switch (af) {
   2258 #ifdef INET
   2259 	case AF_INET:
   2260 		sip->ip_v = 4;
   2261 		break;
   2262 #endif
   2263 #ifdef INET6
   2264 	case AF_INET6:
   2265 		sip->ip_v = 6;
   2266 		break;
   2267 #endif
   2268 	}
   2269     }
   2270 	if (tiflags & TH_ACK)
   2271 		(void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
   2272 	else {
   2273 		if (tiflags & TH_SYN)
   2274 			tlen++;
   2275 		(void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
   2276 		    TH_RST|TH_ACK);
   2277 	}
   2278 	if (tcp_saveti)
   2279 		m_freem(tcp_saveti);
   2280 	return;
   2281 
   2282 badcsum:
   2283 	tcpstat.tcps_rcvbadsum++;
   2284 drop:
   2285 	/*
   2286 	 * Drop space held by incoming segment and return.
   2287 	 */
   2288 	if (tp) {
   2289 		if (tp->t_inpcb)
   2290 			so = tp->t_inpcb->inp_socket;
   2291 #ifdef INET6
   2292 		else if (tp->t_in6pcb)
   2293 			so = tp->t_in6pcb->in6p_socket;
   2294 #endif
   2295 		else
   2296 			so = NULL;
   2297 #ifdef TCP_DEBUG
   2298 		if (so && (so->so_options & SO_DEBUG) != 0)
   2299 			tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
   2300 #endif
   2301 	}
   2302 	if (tcp_saveti)
   2303 		m_freem(tcp_saveti);
   2304 	m_freem(m);
   2305 	return;
   2306 }
   2307 
   2308 void
   2309 tcp_dooptions(tp, cp, cnt, th, oi)
   2310 	struct tcpcb *tp;
   2311 	u_char *cp;
   2312 	int cnt;
   2313 	struct tcphdr *th;
   2314 	struct tcp_opt_info *oi;
   2315 {
   2316 	u_int16_t mss;
   2317 	int opt, optlen;
   2318 
   2319 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
   2320 		opt = cp[0];
   2321 		if (opt == TCPOPT_EOL)
   2322 			break;
   2323 		if (opt == TCPOPT_NOP)
   2324 			optlen = 1;
   2325 		else {
   2326 			if (cnt < 2)
   2327 				break;
   2328 			optlen = cp[1];
   2329 			if (optlen < 2 || optlen > cnt)
   2330 				break;
   2331 		}
   2332 		switch (opt) {
   2333 
   2334 		default:
   2335 			continue;
   2336 
   2337 		case TCPOPT_MAXSEG:
   2338 			if (optlen != TCPOLEN_MAXSEG)
   2339 				continue;
   2340 			if (!(th->th_flags & TH_SYN))
   2341 				continue;
   2342 			bcopy(cp + 2, &mss, sizeof(mss));
   2343 			oi->maxseg = ntohs(mss);
   2344 			break;
   2345 
   2346 		case TCPOPT_WINDOW:
   2347 			if (optlen != TCPOLEN_WINDOW)
   2348 				continue;
   2349 			if (!(th->th_flags & TH_SYN))
   2350 				continue;
   2351 			tp->t_flags |= TF_RCVD_SCALE;
   2352 			tp->requested_s_scale = cp[2];
   2353 			if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
   2354 #if 0	/*XXX*/
   2355 				char *p;
   2356 
   2357 				if (ip)
   2358 					p = ntohl(ip->ip_src);
   2359 #ifdef INET6
   2360 				else if (ip6)
   2361 					p = ip6_sprintf(&ip6->ip6_src);
   2362 #endif
   2363 				else
   2364 					p = "(unknown)";
   2365 				log(LOG_ERR, "TCP: invalid wscale %d from %s, "
   2366 				    "assuming %d\n",
   2367 				    tp->requested_s_scale, p,
   2368 				    TCP_MAX_WINSHIFT);
   2369 #else
   2370 				log(LOG_ERR, "TCP: invalid wscale %d, "
   2371 				    "assuming %d\n",
   2372 				    tp->requested_s_scale,
   2373 				    TCP_MAX_WINSHIFT);
   2374 #endif
   2375 				tp->requested_s_scale = TCP_MAX_WINSHIFT;
   2376 			}
   2377 			break;
   2378 
   2379 		case TCPOPT_TIMESTAMP:
   2380 			if (optlen != TCPOLEN_TIMESTAMP)
   2381 				continue;
   2382 			oi->ts_present = 1;
   2383 			bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
   2384 			NTOHL(oi->ts_val);
   2385 			bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
   2386 			NTOHL(oi->ts_ecr);
   2387 
   2388 			/*
   2389 			 * A timestamp received in a SYN makes
   2390 			 * it ok to send timestamp requests and replies.
   2391 			 */
   2392 			if (th->th_flags & TH_SYN) {
   2393 				tp->t_flags |= TF_RCVD_TSTMP;
   2394 				tp->ts_recent = oi->ts_val;
   2395 				tp->ts_recent_age = TCP_TIMESTAMP(tp);
   2396 			}
   2397 			break;
   2398 		case TCPOPT_SACK_PERMITTED:
   2399 			if (optlen != TCPOLEN_SACK_PERMITTED)
   2400 				continue;
   2401 			if (!(th->th_flags & TH_SYN))
   2402 				continue;
   2403 			tp->t_flags &= ~TF_CANT_TXSACK;
   2404 			break;
   2405 
   2406 		case TCPOPT_SACK:
   2407 			if (tp->t_flags & TF_IGNR_RXSACK)
   2408 				continue;
   2409 			if (optlen % 8 != 2 || optlen < 10)
   2410 				continue;
   2411 			cp += 2;
   2412 			optlen -= 2;
   2413 			for (; optlen > 0; cp -= 8, optlen -= 8) {
   2414 				tcp_seq lwe, rwe;
   2415 				bcopy((char *)cp, (char *) &lwe, sizeof(lwe));
   2416 				NTOHL(lwe);
   2417 				bcopy((char *)cp, (char *) &rwe, sizeof(rwe));
   2418 				NTOHL(rwe);
   2419 				/* tcp_mark_sacked(tp, lwe, rwe); */
   2420 			}
   2421 			break;
   2422 		}
   2423 	}
   2424 }
   2425 
   2426 /*
   2427  * Pull out of band byte out of a segment so
   2428  * it doesn't appear in the user's data queue.
   2429  * It is still reflected in the segment length for
   2430  * sequencing purposes.
   2431  */
   2432 void
   2433 tcp_pulloutofband(so, th, m, off)
   2434 	struct socket *so;
   2435 	struct tcphdr *th;
   2436 	struct mbuf *m;
   2437 	int off;
   2438 {
   2439 	int cnt = off + th->th_urp - 1;
   2440 
   2441 	while (cnt >= 0) {
   2442 		if (m->m_len > cnt) {
   2443 			char *cp = mtod(m, caddr_t) + cnt;
   2444 			struct tcpcb *tp = sototcpcb(so);
   2445 
   2446 			tp->t_iobc = *cp;
   2447 			tp->t_oobflags |= TCPOOB_HAVEDATA;
   2448 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
   2449 			m->m_len--;
   2450 			return;
   2451 		}
   2452 		cnt -= m->m_len;
   2453 		m = m->m_next;
   2454 		if (m == 0)
   2455 			break;
   2456 	}
   2457 	panic("tcp_pulloutofband");
   2458 }
   2459 
   2460 /*
   2461  * Collect new round-trip time estimate
   2462  * and update averages and current timeout.
   2463  */
   2464 void
   2465 tcp_xmit_timer(tp, rtt)
   2466 	struct tcpcb *tp;
   2467 	uint32_t rtt;
   2468 {
   2469 	int32_t delta;
   2470 
   2471 	tcpstat.tcps_rttupdated++;
   2472 	if (tp->t_srtt != 0) {
   2473 		/*
   2474 		 * srtt is stored as fixed point with 3 bits after the
   2475 		 * binary point (i.e., scaled by 8).  The following magic
   2476 		 * is equivalent to the smoothing algorithm in rfc793 with
   2477 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
   2478 		 * point).  Adjust rtt to origin 0.
   2479 		 */
   2480 		delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
   2481 		if ((tp->t_srtt += delta) <= 0)
   2482 			tp->t_srtt = 1 << 2;
   2483 		/*
   2484 		 * We accumulate a smoothed rtt variance (actually, a
   2485 		 * smoothed mean difference), then set the retransmit
   2486 		 * timer to smoothed rtt + 4 times the smoothed variance.
   2487 		 * rttvar is stored as fixed point with 2 bits after the
   2488 		 * binary point (scaled by 4).  The following is
   2489 		 * equivalent to rfc793 smoothing with an alpha of .75
   2490 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
   2491 		 * rfc793's wired-in beta.
   2492 		 */
   2493 		if (delta < 0)
   2494 			delta = -delta;
   2495 		delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
   2496 		if ((tp->t_rttvar += delta) <= 0)
   2497 			tp->t_rttvar = 1 << 2;
   2498 	} else {
   2499 		/*
   2500 		 * No rtt measurement yet - use the unsmoothed rtt.
   2501 		 * Set the variance to half the rtt (so our first
   2502 		 * retransmit happens at 3*rtt).
   2503 		 */
   2504 		tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
   2505 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
   2506 	}
   2507 	tp->t_rtttime = 0;
   2508 	tp->t_rxtshift = 0;
   2509 
   2510 	/*
   2511 	 * the retransmit should happen at rtt + 4 * rttvar.
   2512 	 * Because of the way we do the smoothing, srtt and rttvar
   2513 	 * will each average +1/2 tick of bias.  When we compute
   2514 	 * the retransmit timer, we want 1/2 tick of rounding and
   2515 	 * 1 extra tick because of +-1/2 tick uncertainty in the
   2516 	 * firing of the timer.  The bias will give us exactly the
   2517 	 * 1.5 tick we need.  But, because the bias is
   2518 	 * statistical, we have to test that we don't drop below
   2519 	 * the minimum feasible timer (which is 2 ticks).
   2520 	 */
   2521 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
   2522 	    max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
   2523 
   2524 	/*
   2525 	 * We received an ack for a packet that wasn't retransmitted;
   2526 	 * it is probably safe to discard any error indications we've
   2527 	 * received recently.  This isn't quite right, but close enough
   2528 	 * for now (a route might have failed after we sent a segment,
   2529 	 * and the return path might not be symmetrical).
   2530 	 */
   2531 	tp->t_softerror = 0;
   2532 }
   2533 
   2534 /*
   2535  * Checks for partial ack.  If partial ack arrives, force the retransmission
   2536  * of the next unacknowledged segment, do not clear tp->t_dupacks, and return
   2537  * 1.  By setting snd_nxt to th_ack, this forces retransmission timer to
   2538  * be started again.  If the ack advances at least to tp->snd_recover, return 0.
   2539  */
   2540 int
   2541 tcp_newreno(tp, th)
   2542 	struct tcpcb *tp;
   2543 	struct tcphdr *th;
   2544 {
   2545 	tcp_seq onxt = tp->snd_nxt;
   2546 	u_long ocwnd = tp->snd_cwnd;
   2547 
   2548 	if (SEQ_LT(th->th_ack, tp->snd_recover)) {
   2549 		/*
   2550 		 * snd_una has not yet been updated and the socket's send
   2551 		 * buffer has not yet drained off the ACK'd data, so we
   2552 		 * have to leave snd_una as it was to get the correct data
   2553 		 * offset in tcp_output().
   2554 		 */
   2555 		TCP_TIMER_DISARM(tp, TCPT_REXMT);
   2556 	        tp->t_rtttime = 0;
   2557 	        tp->snd_nxt = th->th_ack;
   2558 		/*
   2559 		 * Set snd_cwnd to one segment beyond ACK'd offset.  snd_una
   2560 		 * is not yet updated when we're called.
   2561 		 */
   2562 		tp->snd_cwnd = tp->t_segsz + (th->th_ack - tp->snd_una);
   2563 	        (void) tcp_output(tp);
   2564 	        tp->snd_cwnd = ocwnd;
   2565 	        if (SEQ_GT(onxt, tp->snd_nxt))
   2566 	                tp->snd_nxt = onxt;
   2567 	        /*
   2568 	         * Partial window deflation.  Relies on fact that tp->snd_una
   2569 	         * not updated yet.
   2570 	         */
   2571 	        tp->snd_cwnd -= (th->th_ack - tp->snd_una - tp->t_segsz);
   2572 	        return 1;
   2573 	}
   2574 	return 0;
   2575 }
   2576 
   2577 
   2578 /*
   2579  * TCP compressed state engine.  Currently used to hold compressed
   2580  * state for SYN_RECEIVED.
   2581  */
   2582 
   2583 u_long	syn_cache_count;
   2584 u_int32_t syn_hash1, syn_hash2;
   2585 
   2586 #define SYN_HASH(sa, sp, dp) \
   2587 	((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
   2588 				     ((u_int32_t)(sp)))^syn_hash2)))
   2589 #ifndef INET6
   2590 #define	SYN_HASHALL(hash, src, dst) \
   2591 do {									\
   2592 	hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr,	\
   2593 		((struct sockaddr_in *)(src))->sin_port,		\
   2594 		((struct sockaddr_in *)(dst))->sin_port);		\
   2595 } while (0)
   2596 #else
   2597 #define SYN_HASH6(sa, sp, dp) \
   2598 	((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
   2599 	  (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
   2600 	 & 0x7fffffff)
   2601 
   2602 #define SYN_HASHALL(hash, src, dst) \
   2603 do {									\
   2604 	switch ((src)->sa_family) {					\
   2605 	case AF_INET:							\
   2606 		hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
   2607 			((struct sockaddr_in *)(src))->sin_port,	\
   2608 			((struct sockaddr_in *)(dst))->sin_port);	\
   2609 		break;							\
   2610 	case AF_INET6:							\
   2611 		hash = SYN_HASH6(&((struct sockaddr_in6 *)(src))->sin6_addr, \
   2612 			((struct sockaddr_in6 *)(src))->sin6_port,	\
   2613 			((struct sockaddr_in6 *)(dst))->sin6_port);	\
   2614 		break;							\
   2615 	default:							\
   2616 		hash = 0;						\
   2617 	}								\
   2618 } while (/*CONSTCOND*/0)
   2619 #endif /* INET6 */
   2620 
   2621 #define	SYN_CACHE_RM(sc)						\
   2622 do {									\
   2623 	TAILQ_REMOVE(&tcp_syn_cache[(sc)->sc_bucketidx].sch_bucket,	\
   2624 	    (sc), sc_bucketq);						\
   2625 	(sc)->sc_tp = NULL;						\
   2626 	LIST_REMOVE((sc), sc_tpq);					\
   2627 	tcp_syn_cache[(sc)->sc_bucketidx].sch_length--;			\
   2628 	callout_stop(&(sc)->sc_timer);					\
   2629 	syn_cache_count--;						\
   2630 } while (/*CONSTCOND*/0)
   2631 
   2632 #define	SYN_CACHE_PUT(sc)						\
   2633 do {									\
   2634 	if ((sc)->sc_ipopts)						\
   2635 		(void) m_free((sc)->sc_ipopts);				\
   2636 	if ((sc)->sc_route4.ro_rt != NULL)				\
   2637 		RTFREE((sc)->sc_route4.ro_rt);				\
   2638 	pool_put(&syn_cache_pool, (sc));				\
   2639 } while (/*CONSTCOND*/0)
   2640 
   2641 struct pool syn_cache_pool;
   2642 
   2643 /*
   2644  * We don't estimate RTT with SYNs, so each packet starts with the default
   2645  * RTT and each timer step has a fixed timeout value.
   2646  */
   2647 #define	SYN_CACHE_TIMER_ARM(sc)						\
   2648 do {									\
   2649 	TCPT_RANGESET((sc)->sc_rxtcur,					\
   2650 	    TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN,	\
   2651 	    TCPTV_REXMTMAX);						\
   2652 	callout_reset(&(sc)->sc_timer,					\
   2653 	    (sc)->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, (sc));	\
   2654 } while (/*CONSTCOND*/0)
   2655 
   2656 #define	SYN_CACHE_TIMESTAMP(sc)	(tcp_now - (sc)->sc_timebase)
   2657 
   2658 void
   2659 syn_cache_init()
   2660 {
   2661 	int i;
   2662 
   2663 	/* Initialize the hash buckets. */
   2664 	for (i = 0; i < tcp_syn_cache_size; i++)
   2665 		TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
   2666 
   2667 	/* Initialize the syn cache pool. */
   2668 	pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
   2669 	    "synpl", NULL);
   2670 }
   2671 
   2672 void
   2673 syn_cache_insert(sc, tp)
   2674 	struct syn_cache *sc;
   2675 	struct tcpcb *tp;
   2676 {
   2677 	struct syn_cache_head *scp;
   2678 	struct syn_cache *sc2;
   2679 	int s;
   2680 
   2681 	/*
   2682 	 * If there are no entries in the hash table, reinitialize
   2683 	 * the hash secrets.
   2684 	 */
   2685 	if (syn_cache_count == 0) {
   2686 		struct timeval tv;
   2687 		microtime(&tv);
   2688 		syn_hash1 = random() ^ (u_long)&sc;
   2689 		syn_hash2 = random() ^ tv.tv_usec;
   2690 	}
   2691 
   2692 	SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
   2693 	sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
   2694 	scp = &tcp_syn_cache[sc->sc_bucketidx];
   2695 
   2696 	/*
   2697 	 * Make sure that we don't overflow the per-bucket
   2698 	 * limit or the total cache size limit.
   2699 	 */
   2700 	s = splsoftnet();
   2701 	if (scp->sch_length >= tcp_syn_bucket_limit) {
   2702 		tcpstat.tcps_sc_bucketoverflow++;
   2703 		/*
   2704 		 * The bucket is full.  Toss the oldest element in the
   2705 		 * bucket.  This will be the first entry in the bucket.
   2706 		 */
   2707 		sc2 = TAILQ_FIRST(&scp->sch_bucket);
   2708 #ifdef DIAGNOSTIC
   2709 		/*
   2710 		 * This should never happen; we should always find an
   2711 		 * entry in our bucket.
   2712 		 */
   2713 		if (sc2 == NULL)
   2714 			panic("syn_cache_insert: bucketoverflow: impossible");
   2715 #endif
   2716 		SYN_CACHE_RM(sc2);
   2717 		SYN_CACHE_PUT(sc2);
   2718 	} else if (syn_cache_count >= tcp_syn_cache_limit) {
   2719 		struct syn_cache_head *scp2, *sce;
   2720 
   2721 		tcpstat.tcps_sc_overflowed++;
   2722 		/*
   2723 		 * The cache is full.  Toss the oldest entry in the
   2724 		 * first non-empty bucket we can find.
   2725 		 *
   2726 		 * XXX We would really like to toss the oldest
   2727 		 * entry in the cache, but we hope that this
   2728 		 * condition doesn't happen very often.
   2729 		 */
   2730 		scp2 = scp;
   2731 		if (TAILQ_EMPTY(&scp2->sch_bucket)) {
   2732 			sce = &tcp_syn_cache[tcp_syn_cache_size];
   2733 			for (++scp2; scp2 != scp; scp2++) {
   2734 				if (scp2 >= sce)
   2735 					scp2 = &tcp_syn_cache[0];
   2736 				if (! TAILQ_EMPTY(&scp2->sch_bucket))
   2737 					break;
   2738 			}
   2739 #ifdef DIAGNOSTIC
   2740 			/*
   2741 			 * This should never happen; we should always find a
   2742 			 * non-empty bucket.
   2743 			 */
   2744 			if (scp2 == scp)
   2745 				panic("syn_cache_insert: cacheoverflow: "
   2746 				    "impossible");
   2747 #endif
   2748 		}
   2749 		sc2 = TAILQ_FIRST(&scp2->sch_bucket);
   2750 		SYN_CACHE_RM(sc2);
   2751 		SYN_CACHE_PUT(sc2);
   2752 	}
   2753 
   2754 	/*
   2755 	 * Initialize the entry's timer.
   2756 	 */
   2757 	sc->sc_rxttot = 0;
   2758 	sc->sc_rxtshift = 0;
   2759 	SYN_CACHE_TIMER_ARM(sc);
   2760 
   2761 	/* Link it from tcpcb entry */
   2762 	LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
   2763 
   2764 	/* Put it into the bucket. */
   2765 	TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
   2766 	scp->sch_length++;
   2767 	syn_cache_count++;
   2768 
   2769 	tcpstat.tcps_sc_added++;
   2770 	splx(s);
   2771 }
   2772 
   2773 /*
   2774  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
   2775  * If we have retransmitted an entry the maximum number of times, expire
   2776  * that entry.
   2777  */
   2778 void
   2779 syn_cache_timer(void *arg)
   2780 {
   2781 	struct syn_cache *sc = arg;
   2782 	int s;
   2783 
   2784 	s = splsoftnet();
   2785 
   2786 	if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
   2787 		/* Drop it -- too many retransmissions. */
   2788 		goto dropit;
   2789 	}
   2790 
   2791 	/*
   2792 	 * Compute the total amount of time this entry has
   2793 	 * been on a queue.  If this entry has been on longer
   2794 	 * than the keep alive timer would allow, expire it.
   2795 	 */
   2796 	sc->sc_rxttot += sc->sc_rxtcur;
   2797 	if (sc->sc_rxttot >= TCPTV_KEEP_INIT)
   2798 		goto dropit;
   2799 
   2800 	tcpstat.tcps_sc_retransmitted++;
   2801 	(void) syn_cache_respond(sc, NULL);
   2802 
   2803 	/* Advance the timer back-off. */
   2804 	sc->sc_rxtshift++;
   2805 	SYN_CACHE_TIMER_ARM(sc);
   2806 
   2807 	splx(s);
   2808 	return;
   2809 
   2810  dropit:
   2811 	tcpstat.tcps_sc_timed_out++;
   2812 	SYN_CACHE_RM(sc);
   2813 	SYN_CACHE_PUT(sc);
   2814 	splx(s);
   2815 }
   2816 
   2817 /*
   2818  * Remove syn cache created by the specified tcb entry,
   2819  * because this does not make sense to keep them
   2820  * (if there's no tcb entry, syn cache entry will never be used)
   2821  */
   2822 void
   2823 syn_cache_cleanup(tp)
   2824 	struct tcpcb *tp;
   2825 {
   2826 	struct syn_cache *sc, *nsc;
   2827 	int s;
   2828 
   2829 	s = splsoftnet();
   2830 
   2831 	for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
   2832 		nsc = LIST_NEXT(sc, sc_tpq);
   2833 
   2834 #ifdef DIAGNOSTIC
   2835 		if (sc->sc_tp != tp)
   2836 			panic("invalid sc_tp in syn_cache_cleanup");
   2837 #endif
   2838 		SYN_CACHE_RM(sc);
   2839 		SYN_CACHE_PUT(sc);
   2840 	}
   2841 	/* just for safety */
   2842 	LIST_INIT(&tp->t_sc);
   2843 
   2844 	splx(s);
   2845 }
   2846 
   2847 /*
   2848  * Find an entry in the syn cache.
   2849  */
   2850 struct syn_cache *
   2851 syn_cache_lookup(src, dst, headp)
   2852 	struct sockaddr *src;
   2853 	struct sockaddr *dst;
   2854 	struct syn_cache_head **headp;
   2855 {
   2856 	struct syn_cache *sc;
   2857 	struct syn_cache_head *scp;
   2858 	u_int32_t hash;
   2859 	int s;
   2860 
   2861 	SYN_HASHALL(hash, src, dst);
   2862 
   2863 	scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
   2864 	*headp = scp;
   2865 	s = splsoftnet();
   2866 	for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
   2867 	     sc = TAILQ_NEXT(sc, sc_bucketq)) {
   2868 		if (sc->sc_hash != hash)
   2869 			continue;
   2870 		if (!bcmp(&sc->sc_src, src, src->sa_len) &&
   2871 		    !bcmp(&sc->sc_dst, dst, dst->sa_len)) {
   2872 			splx(s);
   2873 			return (sc);
   2874 		}
   2875 	}
   2876 	splx(s);
   2877 	return (NULL);
   2878 }
   2879 
   2880 /*
   2881  * This function gets called when we receive an ACK for a
   2882  * socket in the LISTEN state.  We look up the connection
   2883  * in the syn cache, and if its there, we pull it out of
   2884  * the cache and turn it into a full-blown connection in
   2885  * the SYN-RECEIVED state.
   2886  *
   2887  * The return values may not be immediately obvious, and their effects
   2888  * can be subtle, so here they are:
   2889  *
   2890  *	NULL	SYN was not found in cache; caller should drop the
   2891  *		packet and send an RST.
   2892  *
   2893  *	-1	We were unable to create the new connection, and are
   2894  *		aborting it.  An ACK,RST is being sent to the peer
   2895  *		(unless we got screwey sequence numbners; see below),
   2896  *		because the 3-way handshake has been completed.  Caller
   2897  *		should not free the mbuf, since we may be using it.  If
   2898  *		we are not, we will free it.
   2899  *
   2900  *	Otherwise, the return value is a pointer to the new socket
   2901  *	associated with the connection.
   2902  */
   2903 struct socket *
   2904 syn_cache_get(src, dst, th, hlen, tlen, so, m)
   2905 	struct sockaddr *src;
   2906 	struct sockaddr *dst;
   2907 	struct tcphdr *th;
   2908 	unsigned int hlen, tlen;
   2909 	struct socket *so;
   2910 	struct mbuf *m;
   2911 {
   2912 	struct syn_cache *sc;
   2913 	struct syn_cache_head *scp;
   2914 	struct inpcb *inp = NULL;
   2915 #ifdef INET6
   2916 	struct in6pcb *in6p = NULL;
   2917 #endif
   2918 	struct tcpcb *tp = 0;
   2919 	struct mbuf *am;
   2920 	int s;
   2921 	struct socket *oso;
   2922 
   2923 	s = splsoftnet();
   2924 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
   2925 		splx(s);
   2926 		return (NULL);
   2927 	}
   2928 
   2929 	/*
   2930 	 * Verify the sequence and ack numbers.  Try getting the correct
   2931 	 * response again.
   2932 	 */
   2933 	if ((th->th_ack != sc->sc_iss + 1) ||
   2934 	    SEQ_LEQ(th->th_seq, sc->sc_irs) ||
   2935 	    SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
   2936 		(void) syn_cache_respond(sc, m);
   2937 		splx(s);
   2938 		return ((struct socket *)(-1));
   2939 	}
   2940 
   2941 	/* Remove this cache entry */
   2942 	SYN_CACHE_RM(sc);
   2943 	splx(s);
   2944 
   2945 	/*
   2946 	 * Ok, create the full blown connection, and set things up
   2947 	 * as they would have been set up if we had created the
   2948 	 * connection when the SYN arrived.  If we can't create
   2949 	 * the connection, abort it.
   2950 	 */
   2951 	/*
   2952 	 * inp still has the OLD in_pcb stuff, set the
   2953 	 * v6-related flags on the new guy, too.   This is
   2954 	 * done particularly for the case where an AF_INET6
   2955 	 * socket is bound only to a port, and a v4 connection
   2956 	 * comes in on that port.
   2957 	 * we also copy the flowinfo from the original pcb
   2958 	 * to the new one.
   2959 	 */
   2960     {
   2961 	struct inpcb *parentinpcb;
   2962 
   2963 	parentinpcb = (struct inpcb *)so->so_pcb;
   2964 
   2965 	oso = so;
   2966 	so = sonewconn(so, SS_ISCONNECTED);
   2967 	if (so == NULL)
   2968 		goto resetandabort;
   2969 
   2970 	switch (so->so_proto->pr_domain->dom_family) {
   2971 #ifdef INET
   2972 	case AF_INET:
   2973 		inp = sotoinpcb(so);
   2974 		break;
   2975 #endif
   2976 #ifdef INET6
   2977 	case AF_INET6:
   2978 		in6p = sotoin6pcb(so);
   2979 		break;
   2980 #endif
   2981 	}
   2982     }
   2983 	switch (src->sa_family) {
   2984 #ifdef INET
   2985 	case AF_INET:
   2986 		if (inp) {
   2987 			inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
   2988 			inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
   2989 			inp->inp_options = ip_srcroute();
   2990 			in_pcbstate(inp, INP_BOUND);
   2991 			if (inp->inp_options == NULL) {
   2992 				inp->inp_options = sc->sc_ipopts;
   2993 				sc->sc_ipopts = NULL;
   2994 			}
   2995 		}
   2996 #ifdef INET6
   2997 		else if (in6p) {
   2998 			/* IPv4 packet to AF_INET6 socket */
   2999 			bzero(&in6p->in6p_laddr, sizeof(in6p->in6p_laddr));
   3000 			in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
   3001 			bcopy(&((struct sockaddr_in *)dst)->sin_addr,
   3002 				&in6p->in6p_laddr.s6_addr32[3],
   3003 				sizeof(((struct sockaddr_in *)dst)->sin_addr));
   3004 			in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
   3005 			in6totcpcb(in6p)->t_family = AF_INET;
   3006 		}
   3007 #endif
   3008 		break;
   3009 #endif
   3010 #ifdef INET6
   3011 	case AF_INET6:
   3012 		if (in6p) {
   3013 			in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
   3014 			in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
   3015 #if 0
   3016 			in6p->in6p_flowinfo = ip6->ip6_flow & IPV6_FLOWINFO_MASK;
   3017 			/*inp->inp_options = ip6_srcroute();*/ /* soon. */
   3018 #endif
   3019 		}
   3020 		break;
   3021 #endif
   3022 	}
   3023 #ifdef INET6
   3024 	if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
   3025 		struct in6pcb *oin6p = sotoin6pcb(oso);
   3026 		/* inherit socket options from the listening socket */
   3027 		in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
   3028 		if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
   3029 			m_freem(in6p->in6p_options);
   3030 			in6p->in6p_options = 0;
   3031 		}
   3032 		ip6_savecontrol(in6p, &in6p->in6p_options,
   3033 			mtod(m, struct ip6_hdr *), m);
   3034 	}
   3035 #endif
   3036 
   3037 #ifdef IPSEC
   3038 	/*
   3039 	 * we make a copy of policy, instead of sharing the policy,
   3040 	 * for better behavior in terms of SA lookup and dead SA removal.
   3041 	 */
   3042 	if (inp) {
   3043 		/* copy old policy into new socket's */
   3044 		if (ipsec_copy_policy(sotoinpcb(oso)->inp_sp, inp->inp_sp))
   3045 			printf("tcp_input: could not copy policy\n");
   3046 	}
   3047 #ifdef INET6
   3048 	else if (in6p) {
   3049 		/* copy old policy into new socket's */
   3050 		if (ipsec_copy_policy(sotoin6pcb(oso)->in6p_sp, in6p->in6p_sp))
   3051 			printf("tcp_input: could not copy policy\n");
   3052 	}
   3053 #endif
   3054 #endif
   3055 
   3056 	/*
   3057 	 * Give the new socket our cached route reference.
   3058 	 */
   3059 	if (inp)
   3060 		inp->inp_route = sc->sc_route4;		/* struct assignment */
   3061 #ifdef INET6
   3062 	else
   3063 		in6p->in6p_route = sc->sc_route6;
   3064 #endif
   3065 	sc->sc_route4.ro_rt = NULL;
   3066 
   3067 	am = m_get(M_DONTWAIT, MT_SONAME);	/* XXX */
   3068 	if (am == NULL)
   3069 		goto resetandabort;
   3070 	am->m_len = src->sa_len;
   3071 	bcopy(src, mtod(am, caddr_t), src->sa_len);
   3072 	if (inp) {
   3073 		if (in_pcbconnect(inp, am)) {
   3074 			(void) m_free(am);
   3075 			goto resetandabort;
   3076 		}
   3077 	}
   3078 #ifdef INET6
   3079 	else if (in6p) {
   3080 		if (src->sa_family == AF_INET) {
   3081 			/* IPv4 packet to AF_INET6 socket */
   3082 			struct sockaddr_in6 *sin6;
   3083 			sin6 = mtod(am, struct sockaddr_in6 *);
   3084 			am->m_len = sizeof(*sin6);
   3085 			bzero(sin6, sizeof(*sin6));
   3086 			sin6->sin6_family = AF_INET6;
   3087 			sin6->sin6_len = sizeof(*sin6);
   3088 			sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port;
   3089 			sin6->sin6_addr.s6_addr16[5] = htons(0xffff);
   3090 			bcopy(&((struct sockaddr_in *)src)->sin_addr,
   3091 				&sin6->sin6_addr.s6_addr32[3],
   3092 				sizeof(sin6->sin6_addr.s6_addr32[3]));
   3093 		}
   3094 		if (in6_pcbconnect(in6p, am)) {
   3095 			(void) m_free(am);
   3096 			goto resetandabort;
   3097 		}
   3098 	}
   3099 #endif
   3100 	else {
   3101 		(void) m_free(am);
   3102 		goto resetandabort;
   3103 	}
   3104 	(void) m_free(am);
   3105 
   3106 	if (inp)
   3107 		tp = intotcpcb(inp);
   3108 #ifdef INET6
   3109 	else if (in6p)
   3110 		tp = in6totcpcb(in6p);
   3111 #endif
   3112 	else
   3113 		tp = NULL;
   3114 	if (sc->sc_request_r_scale != 15) {
   3115 		tp->requested_s_scale = sc->sc_requested_s_scale;
   3116 		tp->request_r_scale = sc->sc_request_r_scale;
   3117 		tp->snd_scale = sc->sc_requested_s_scale;
   3118 		tp->rcv_scale = sc->sc_request_r_scale;
   3119 		tp->t_flags |= TF_RCVD_SCALE;
   3120 	}
   3121 	if (sc->sc_flags & SCF_TIMESTAMP)
   3122 		tp->t_flags |= TF_RCVD_TSTMP;
   3123 	tp->ts_timebase = sc->sc_timebase;
   3124 
   3125 	tp->t_template = tcp_template(tp);
   3126 	if (tp->t_template == 0) {
   3127 		tp = tcp_drop(tp, ENOBUFS);	/* destroys socket */
   3128 		so = NULL;
   3129 		m_freem(m);
   3130 		goto abort;
   3131 	}
   3132 
   3133 	tp->iss = sc->sc_iss;
   3134 	tp->irs = sc->sc_irs;
   3135 	tcp_sendseqinit(tp);
   3136 	tcp_rcvseqinit(tp);
   3137 	tp->t_state = TCPS_SYN_RECEIVED;
   3138 	TCP_TIMER_ARM(tp, TCPT_KEEP, TCPTV_KEEP_INIT);
   3139 	tcpstat.tcps_accepts++;
   3140 
   3141 	/* Initialize tp->t_ourmss before we deal with the peer's! */
   3142 	tp->t_ourmss = sc->sc_ourmaxseg;
   3143 	tcp_mss_from_peer(tp, sc->sc_peermaxseg);
   3144 
   3145 	/*
   3146 	 * Initialize the initial congestion window.  If we
   3147 	 * had to retransmit the SYN,ACK, we must initialize cwnd
   3148 	 * to 1 segment (i.e. the Loss Window).
   3149 	 */
   3150 	if (sc->sc_rxtshift)
   3151 		tp->snd_cwnd = tp->t_peermss;
   3152 	else
   3153 		tp->snd_cwnd = TCP_INITIAL_WINDOW(tcp_init_win, tp->t_peermss);
   3154 
   3155 	tcp_rmx_rtt(tp);
   3156 	tp->snd_wl1 = sc->sc_irs;
   3157 	tp->rcv_up = sc->sc_irs + 1;
   3158 
   3159 	/*
   3160 	 * This is what whould have happened in tcp_ouput() when
   3161 	 * the SYN,ACK was sent.
   3162 	 */
   3163 	tp->snd_up = tp->snd_una;
   3164 	tp->snd_max = tp->snd_nxt = tp->iss+1;
   3165 	TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
   3166 	if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
   3167 		tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
   3168 	tp->last_ack_sent = tp->rcv_nxt;
   3169 
   3170 	tcpstat.tcps_sc_completed++;
   3171 	SYN_CACHE_PUT(sc);
   3172 	return (so);
   3173 
   3174 resetandabort:
   3175 	(void) tcp_respond(NULL, m, m, th,
   3176 			   th->th_seq + tlen, (tcp_seq)0, TH_RST|TH_ACK);
   3177 abort:
   3178 	if (so != NULL)
   3179 		(void) soabort(so);
   3180 	SYN_CACHE_PUT(sc);
   3181 	tcpstat.tcps_sc_aborted++;
   3182 	return ((struct socket *)(-1));
   3183 }
   3184 
   3185 /*
   3186  * This function is called when we get a RST for a
   3187  * non-existent connection, so that we can see if the
   3188  * connection is in the syn cache.  If it is, zap it.
   3189  */
   3190 
   3191 void
   3192 syn_cache_reset(src, dst, th)
   3193 	struct sockaddr *src;
   3194 	struct sockaddr *dst;
   3195 	struct tcphdr *th;
   3196 {
   3197 	struct syn_cache *sc;
   3198 	struct syn_cache_head *scp;
   3199 	int s = splsoftnet();
   3200 
   3201 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
   3202 		splx(s);
   3203 		return;
   3204 	}
   3205 	if (SEQ_LT(th->th_seq, sc->sc_irs) ||
   3206 	    SEQ_GT(th->th_seq, sc->sc_irs+1)) {
   3207 		splx(s);
   3208 		return;
   3209 	}
   3210 	SYN_CACHE_RM(sc);
   3211 	splx(s);
   3212 	tcpstat.tcps_sc_reset++;
   3213 	SYN_CACHE_PUT(sc);
   3214 }
   3215 
   3216 void
   3217 syn_cache_unreach(src, dst, th)
   3218 	struct sockaddr *src;
   3219 	struct sockaddr *dst;
   3220 	struct tcphdr *th;
   3221 {
   3222 	struct syn_cache *sc;
   3223 	struct syn_cache_head *scp;
   3224 	int s;
   3225 
   3226 	s = splsoftnet();
   3227 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
   3228 		splx(s);
   3229 		return;
   3230 	}
   3231 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
   3232 	if (ntohl (th->th_seq) != sc->sc_iss) {
   3233 		splx(s);
   3234 		return;
   3235 	}
   3236 
   3237 	/*
   3238 	 * If we've rertransmitted 3 times and this is our second error,
   3239 	 * we remove the entry.  Otherwise, we allow it to continue on.
   3240 	 * This prevents us from incorrectly nuking an entry during a
   3241 	 * spurious network outage.
   3242 	 *
   3243 	 * See tcp_notify().
   3244 	 */
   3245 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
   3246 		sc->sc_flags |= SCF_UNREACH;
   3247 		splx(s);
   3248 		return;
   3249 	}
   3250 
   3251 	SYN_CACHE_RM(sc);
   3252 	splx(s);
   3253 	tcpstat.tcps_sc_unreach++;
   3254 	SYN_CACHE_PUT(sc);
   3255 }
   3256 
   3257 /*
   3258  * Given a LISTEN socket and an inbound SYN request, add
   3259  * this to the syn cache, and send back a segment:
   3260  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
   3261  * to the source.
   3262  *
   3263  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
   3264  * Doing so would require that we hold onto the data and deliver it
   3265  * to the application.  However, if we are the target of a SYN-flood
   3266  * DoS attack, an attacker could send data which would eventually
   3267  * consume all available buffer space if it were ACKed.  By not ACKing
   3268  * the data, we avoid this DoS scenario.
   3269  */
   3270 
   3271 int
   3272 syn_cache_add(src, dst, th, hlen, so, m, optp, optlen, oi)
   3273 	struct sockaddr *src;
   3274 	struct sockaddr *dst;
   3275 	struct tcphdr *th;
   3276 	unsigned int hlen;
   3277 	struct socket *so;
   3278 	struct mbuf *m;
   3279 	u_char *optp;
   3280 	int optlen;
   3281 	struct tcp_opt_info *oi;
   3282 {
   3283 	struct tcpcb tb, *tp;
   3284 	long win;
   3285 	struct syn_cache *sc;
   3286 	struct syn_cache_head *scp;
   3287 	struct mbuf *ipopts;
   3288 
   3289 	tp = sototcpcb(so);
   3290 
   3291 	/*
   3292 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
   3293 	 *
   3294 	 * Note this check is performed in tcp_input() very early on.
   3295 	 */
   3296 
   3297 	/*
   3298 	 * Initialize some local state.
   3299 	 */
   3300 	win = sbspace(&so->so_rcv);
   3301 	if (win > TCP_MAXWIN)
   3302 		win = TCP_MAXWIN;
   3303 
   3304 	switch (src->sa_family) {
   3305 #ifdef INET
   3306 	case AF_INET:
   3307 		/*
   3308 		 * Remember the IP options, if any.
   3309 		 */
   3310 		ipopts = ip_srcroute();
   3311 		break;
   3312 #endif
   3313 	default:
   3314 		ipopts = NULL;
   3315 	}
   3316 
   3317 	if (optp) {
   3318 		tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
   3319 		tcp_dooptions(&tb, optp, optlen, th, oi);
   3320 	} else
   3321 		tb.t_flags = 0;
   3322 
   3323 	/*
   3324 	 * See if we already have an entry for this connection.
   3325 	 * If we do, resend the SYN,ACK.  We do not count this
   3326 	 * as a retransmission (XXX though maybe we should).
   3327 	 */
   3328 	if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
   3329 		tcpstat.tcps_sc_dupesyn++;
   3330 		if (ipopts) {
   3331 			/*
   3332 			 * If we were remembering a previous source route,
   3333 			 * forget it and use the new one we've been given.
   3334 			 */
   3335 			if (sc->sc_ipopts)
   3336 				(void) m_free(sc->sc_ipopts);
   3337 			sc->sc_ipopts = ipopts;
   3338 		}
   3339 		sc->sc_timestamp = tb.ts_recent;
   3340 		if (syn_cache_respond(sc, m) == 0) {
   3341 			tcpstat.tcps_sndacks++;
   3342 			tcpstat.tcps_sndtotal++;
   3343 		}
   3344 		return (1);
   3345 	}
   3346 
   3347 	sc = pool_get(&syn_cache_pool, PR_NOWAIT);
   3348 	if (sc == NULL) {
   3349 		if (ipopts)
   3350 			(void) m_free(ipopts);
   3351 		return (0);
   3352 	}
   3353 
   3354 	/*
   3355 	 * Fill in the cache, and put the necessary IP and TCP
   3356 	 * options into the reply.
   3357 	 */
   3358 	callout_init(&sc->sc_timer);
   3359 	bzero(sc, sizeof(struct syn_cache));
   3360 	bcopy(src, &sc->sc_src, src->sa_len);
   3361 	bcopy(dst, &sc->sc_dst, dst->sa_len);
   3362 	sc->sc_flags = 0;
   3363 	sc->sc_ipopts = ipopts;
   3364 	sc->sc_irs = th->th_seq;
   3365 	switch (src->sa_family) {
   3366 #ifdef INET
   3367 	case AF_INET:
   3368 	    {
   3369 		struct sockaddr_in *srcin = (void *) src;
   3370 		struct sockaddr_in *dstin = (void *) dst;
   3371 
   3372 		sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
   3373 		    &srcin->sin_addr, dstin->sin_port,
   3374 		    srcin->sin_port, sizeof(dstin->sin_addr), 0);
   3375 		break;
   3376 	    }
   3377 #endif /* INET */
   3378 #ifdef INET6
   3379 	case AF_INET6:
   3380 	    {
   3381 		struct sockaddr_in6 *srcin6 = (void *) src;
   3382 		struct sockaddr_in6 *dstin6 = (void *) dst;
   3383 
   3384 		sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
   3385 		    &srcin6->sin6_addr, dstin6->sin6_port,
   3386 		    srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
   3387 		break;
   3388 	    }
   3389 #endif /* INET6 */
   3390 	}
   3391 	sc->sc_peermaxseg = oi->maxseg;
   3392 	sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
   3393 						m->m_pkthdr.rcvif : NULL,
   3394 						sc->sc_src.sa.sa_family);
   3395 	sc->sc_win = win;
   3396 	sc->sc_timebase = tcp_now;	/* see tcp_newtcpcb() */
   3397 	sc->sc_timestamp = tb.ts_recent;
   3398 	if (tcp_do_rfc1323 && (tb.t_flags & TF_RCVD_TSTMP))
   3399 		sc->sc_flags |= SCF_TIMESTAMP;
   3400 	if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   3401 	    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
   3402 		sc->sc_requested_s_scale = tb.requested_s_scale;
   3403 		sc->sc_request_r_scale = 0;
   3404 		while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
   3405 		    TCP_MAXWIN << sc->sc_request_r_scale <
   3406 		    so->so_rcv.sb_hiwat)
   3407 			sc->sc_request_r_scale++;
   3408 	} else {
   3409 		sc->sc_requested_s_scale = 15;
   3410 		sc->sc_request_r_scale = 15;
   3411 	}
   3412 	sc->sc_tp = tp;
   3413 	if (syn_cache_respond(sc, m) == 0) {
   3414 		syn_cache_insert(sc, tp);
   3415 		tcpstat.tcps_sndacks++;
   3416 		tcpstat.tcps_sndtotal++;
   3417 	} else {
   3418 		SYN_CACHE_PUT(sc);
   3419 		tcpstat.tcps_sc_dropped++;
   3420 	}
   3421 	return (1);
   3422 }
   3423 
   3424 int
   3425 syn_cache_respond(sc, m)
   3426 	struct syn_cache *sc;
   3427 	struct mbuf *m;
   3428 {
   3429 	struct route *ro;
   3430 	u_int8_t *optp;
   3431 	int optlen, error;
   3432 	u_int16_t tlen;
   3433 	struct ip *ip = NULL;
   3434 #ifdef INET6
   3435 	struct ip6_hdr *ip6 = NULL;
   3436 #endif
   3437 	struct tcphdr *th;
   3438 	u_int hlen;
   3439 
   3440 	switch (sc->sc_src.sa.sa_family) {
   3441 	case AF_INET:
   3442 		hlen = sizeof(struct ip);
   3443 		ro = &sc->sc_route4;
   3444 		break;
   3445 #ifdef INET6
   3446 	case AF_INET6:
   3447 		hlen = sizeof(struct ip6_hdr);
   3448 		ro = (struct route *)&sc->sc_route6;
   3449 		break;
   3450 #endif
   3451 	default:
   3452 		if (m)
   3453 			m_freem(m);
   3454 		return EAFNOSUPPORT;
   3455 	}
   3456 
   3457 	/* Compute the size of the TCP options. */
   3458 	optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
   3459 	    ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
   3460 
   3461 	tlen = hlen + sizeof(struct tcphdr) + optlen;
   3462 
   3463 	/*
   3464 	 * Create the IP+TCP header from scratch.
   3465 	 */
   3466 	if (m)
   3467 		m_freem(m);
   3468 #ifdef DIAGNOSTIC
   3469 	if (max_linkhdr + tlen > MCLBYTES)
   3470 		return (ENOBUFS);
   3471 #endif
   3472 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   3473 	if (m && tlen > MHLEN) {
   3474 		MCLGET(m, M_DONTWAIT);
   3475 		if ((m->m_flags & M_EXT) == 0) {
   3476 			m_freem(m);
   3477 			m = NULL;
   3478 		}
   3479 	}
   3480 	if (m == NULL)
   3481 		return (ENOBUFS);
   3482 
   3483 	/* Fixup the mbuf. */
   3484 	m->m_data += max_linkhdr;
   3485 	m->m_len = m->m_pkthdr.len = tlen;
   3486 #ifdef IPSEC
   3487 	if (sc->sc_tp) {
   3488 		struct tcpcb *tp;
   3489 		struct socket *so;
   3490 
   3491 		tp = sc->sc_tp;
   3492 		if (tp->t_inpcb)
   3493 			so = tp->t_inpcb->inp_socket;
   3494 #ifdef INET6
   3495 		else if (tp->t_in6pcb)
   3496 			so = tp->t_in6pcb->in6p_socket;
   3497 #endif
   3498 		else
   3499 			so = NULL;
   3500 		/* use IPsec policy on listening socket, on SYN ACK */
   3501 		if (ipsec_setsocket(m, so) != 0) {
   3502 			m_freem(m);
   3503 			return ENOBUFS;
   3504 		}
   3505 	}
   3506 #endif
   3507 	m->m_pkthdr.rcvif = NULL;
   3508 	memset(mtod(m, u_char *), 0, tlen);
   3509 
   3510 	switch (sc->sc_src.sa.sa_family) {
   3511 	case AF_INET:
   3512 		ip = mtod(m, struct ip *);
   3513 		ip->ip_dst = sc->sc_src.sin.sin_addr;
   3514 		ip->ip_src = sc->sc_dst.sin.sin_addr;
   3515 		ip->ip_p = IPPROTO_TCP;
   3516 		th = (struct tcphdr *)(ip + 1);
   3517 		th->th_dport = sc->sc_src.sin.sin_port;
   3518 		th->th_sport = sc->sc_dst.sin.sin_port;
   3519 		break;
   3520 #ifdef INET6
   3521 	case AF_INET6:
   3522 		ip6 = mtod(m, struct ip6_hdr *);
   3523 		ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
   3524 		ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
   3525 		ip6->ip6_nxt = IPPROTO_TCP;
   3526 		/* ip6_plen will be updated in ip6_output() */
   3527 		th = (struct tcphdr *)(ip6 + 1);
   3528 		th->th_dport = sc->sc_src.sin6.sin6_port;
   3529 		th->th_sport = sc->sc_dst.sin6.sin6_port;
   3530 		break;
   3531 #endif
   3532 	default:
   3533 		th = NULL;
   3534 	}
   3535 
   3536 	th->th_seq = htonl(sc->sc_iss);
   3537 	th->th_ack = htonl(sc->sc_irs + 1);
   3538 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
   3539 	th->th_flags = TH_SYN|TH_ACK;
   3540 	th->th_win = htons(sc->sc_win);
   3541 	/* th_sum already 0 */
   3542 	/* th_urp already 0 */
   3543 
   3544 	/* Tack on the TCP options. */
   3545 	optp = (u_int8_t *)(th + 1);
   3546 	*optp++ = TCPOPT_MAXSEG;
   3547 	*optp++ = 4;
   3548 	*optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
   3549 	*optp++ = sc->sc_ourmaxseg & 0xff;
   3550 
   3551 	if (sc->sc_request_r_scale != 15) {
   3552 		*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
   3553 		    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
   3554 		    sc->sc_request_r_scale);
   3555 		optp += 4;
   3556 	}
   3557 
   3558 	if (sc->sc_flags & SCF_TIMESTAMP) {
   3559 		u_int32_t *lp = (u_int32_t *)(optp);
   3560 		/* Form timestamp option as shown in appendix A of RFC 1323. */
   3561 		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
   3562 		*lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
   3563 		*lp   = htonl(sc->sc_timestamp);
   3564 		optp += TCPOLEN_TSTAMP_APPA;
   3565 	}
   3566 
   3567 	/* Compute the packet's checksum. */
   3568 	switch (sc->sc_src.sa.sa_family) {
   3569 	case AF_INET:
   3570 		ip->ip_len = htons(tlen - hlen);
   3571 		th->th_sum = 0;
   3572 		th->th_sum = in_cksum(m, tlen);
   3573 		break;
   3574 #ifdef INET6
   3575 	case AF_INET6:
   3576 		ip6->ip6_plen = htons(tlen - hlen);
   3577 		th->th_sum = 0;
   3578 		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
   3579 		break;
   3580 #endif
   3581 	}
   3582 
   3583 	/*
   3584 	 * Fill in some straggling IP bits.  Note the stack expects
   3585 	 * ip_len to be in host order, for convenience.
   3586 	 */
   3587 	switch (sc->sc_src.sa.sa_family) {
   3588 #ifdef INET
   3589 	case AF_INET:
   3590 		ip->ip_len = tlen;
   3591 		ip->ip_ttl = ip_defttl;
   3592 		/* XXX tos? */
   3593 		break;
   3594 #endif
   3595 #ifdef INET6
   3596 	case AF_INET6:
   3597 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
   3598 		ip6->ip6_vfc |= IPV6_VERSION;
   3599 		ip6->ip6_plen = htons(tlen - hlen);
   3600 		/* ip6_hlim will be initialized afterwards */
   3601 		/* XXX flowlabel? */
   3602 		break;
   3603 #endif
   3604 	}
   3605 
   3606 	switch (sc->sc_src.sa.sa_family) {
   3607 #ifdef INET
   3608 	case AF_INET:
   3609 		error = ip_output(m, sc->sc_ipopts, ro,
   3610 		    (ip_mtudisc ? IP_MTUDISC : 0),
   3611 		    NULL);
   3612 		break;
   3613 #endif
   3614 #ifdef INET6
   3615 	case AF_INET6:
   3616 		ip6->ip6_hlim = in6_selecthlim(NULL,
   3617 				ro->ro_rt ? ro->ro_rt->rt_ifp : NULL);
   3618 
   3619 		error = ip6_output(m, NULL /*XXX*/, (struct route_in6 *)ro,
   3620 			0, NULL, NULL);
   3621 		break;
   3622 #endif
   3623 	default:
   3624 		error = EAFNOSUPPORT;
   3625 		break;
   3626 	}
   3627 	return (error);
   3628 }
   3629