tcp_input.c revision 1.14 1 /* $NetBSD: tcp_input.c,v 1.14 1995/06/04 05:07:14 mycroft Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the University of
18 * California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * @(#)tcp_input.c 8.5 (Berkeley) 4/10/94
36 */
37
38 #ifndef TUBA_INCLUDE
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/malloc.h>
42 #include <sys/mbuf.h>
43 #include <sys/protosw.h>
44 #include <sys/socket.h>
45 #include <sys/socketvar.h>
46 #include <sys/errno.h>
47
48 #include <net/if.h>
49 #include <net/route.h>
50
51 #include <netinet/in.h>
52 #include <netinet/in_systm.h>
53 #include <netinet/ip.h>
54 #include <netinet/in_pcb.h>
55 #include <netinet/ip_var.h>
56 #include <netinet/tcp.h>
57 #include <netinet/tcp_fsm.h>
58 #include <netinet/tcp_seq.h>
59 #include <netinet/tcp_timer.h>
60 #include <netinet/tcp_var.h>
61 #include <netinet/tcpip.h>
62 #include <netinet/tcp_debug.h>
63
64 int tcprexmtthresh = 3;
65 struct tcpiphdr tcp_saveti;
66 struct inpcb *tcp_last_inpcb = &tcb;
67
68 extern u_long sb_max;
69
70 #endif /* TUBA_INCLUDE */
71 #define TCP_PAWS_IDLE (24 * 24 * 60 * 60 * PR_SLOWHZ)
72
73 /* for modulo comparisons of timestamps */
74 #define TSTMP_LT(a,b) ((int)((a)-(b)) < 0)
75 #define TSTMP_GEQ(a,b) ((int)((a)-(b)) >= 0)
76
77
78 /*
79 * Insert segment ti into reassembly queue of tcp with
80 * control block tp. Return TH_FIN if reassembly now includes
81 * a segment with FIN. The macro form does the common case inline
82 * (segment is the next to be received on an established connection,
83 * and the queue is empty), avoiding linkage into and removal
84 * from the queue and repetition of various conversions.
85 * Set DELACK for segments received in order, but ack immediately
86 * when segments are out of order (so fast retransmit can work).
87 */
88 #define TCP_REASS(tp, ti, m, so, flags) { \
89 if ((ti)->ti_seq == (tp)->rcv_nxt && \
90 (tp)->seg_next == (struct tcpiphdr *)(tp) && \
91 (tp)->t_state == TCPS_ESTABLISHED) { \
92 if ((ti)->ti_flags & TH_PUSH) \
93 tp->t_flags |= TF_ACKNOW; \
94 else \
95 tp->t_flags |= TF_DELACK; \
96 (tp)->rcv_nxt += (ti)->ti_len; \
97 flags = (ti)->ti_flags & TH_FIN; \
98 tcpstat.tcps_rcvpack++;\
99 tcpstat.tcps_rcvbyte += (ti)->ti_len;\
100 sbappend(&(so)->so_rcv, (m)); \
101 sorwakeup(so); \
102 } else { \
103 (flags) = tcp_reass((tp), (ti), (m)); \
104 tp->t_flags |= TF_ACKNOW; \
105 } \
106 }
107 #ifndef TUBA_INCLUDE
108
109 int
110 tcp_reass(tp, ti, m)
111 register struct tcpcb *tp;
112 register struct tcpiphdr *ti;
113 struct mbuf *m;
114 {
115 register struct tcpiphdr *q;
116 struct socket *so = tp->t_inpcb->inp_socket;
117 int flags;
118
119 /*
120 * Call with ti==0 after become established to
121 * force pre-ESTABLISHED data up to user socket.
122 */
123 if (ti == 0)
124 goto present;
125
126 /*
127 * Find a segment which begins after this one does.
128 */
129 for (q = tp->seg_next; q != (struct tcpiphdr *)tp;
130 q = (struct tcpiphdr *)q->ti_next)
131 if (SEQ_GT(q->ti_seq, ti->ti_seq))
132 break;
133
134 /*
135 * If there is a preceding segment, it may provide some of
136 * our data already. If so, drop the data from the incoming
137 * segment. If it provides all of our data, drop us.
138 */
139 if ((struct tcpiphdr *)q->ti_prev != (struct tcpiphdr *)tp) {
140 register int i;
141 q = (struct tcpiphdr *)q->ti_prev;
142 /* conversion to int (in i) handles seq wraparound */
143 i = q->ti_seq + q->ti_len - ti->ti_seq;
144 if (i > 0) {
145 if (i >= ti->ti_len) {
146 tcpstat.tcps_rcvduppack++;
147 tcpstat.tcps_rcvdupbyte += ti->ti_len;
148 m_freem(m);
149 return (0);
150 }
151 m_adj(m, i);
152 ti->ti_len -= i;
153 ti->ti_seq += i;
154 }
155 q = (struct tcpiphdr *)(q->ti_next);
156 }
157 tcpstat.tcps_rcvoopack++;
158 tcpstat.tcps_rcvoobyte += ti->ti_len;
159 REASS_MBUF(ti) = m; /* XXX */
160
161 /*
162 * While we overlap succeeding segments trim them or,
163 * if they are completely covered, dequeue them.
164 */
165 while (q != (struct tcpiphdr *)tp) {
166 register int i = (ti->ti_seq + ti->ti_len) - q->ti_seq;
167 if (i <= 0)
168 break;
169 if (i < q->ti_len) {
170 q->ti_seq += i;
171 q->ti_len -= i;
172 m_adj(REASS_MBUF(q), i);
173 break;
174 }
175 q = (struct tcpiphdr *)q->ti_next;
176 m = REASS_MBUF((struct tcpiphdr *)q->ti_prev);
177 remque(q->ti_prev);
178 m_freem(m);
179 }
180
181 /*
182 * Stick new segment in its place.
183 */
184 insque(ti, q->ti_prev);
185
186 present:
187 /*
188 * Present data to user, advancing rcv_nxt through
189 * completed sequence space.
190 */
191 if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
192 return (0);
193 ti = tp->seg_next;
194 if (ti == (struct tcpiphdr *)tp || ti->ti_seq != tp->rcv_nxt)
195 return (0);
196 if (tp->t_state == TCPS_SYN_RECEIVED && ti->ti_len)
197 return (0);
198 do {
199 tp->rcv_nxt += ti->ti_len;
200 flags = ti->ti_flags & TH_FIN;
201 remque(ti);
202 m = REASS_MBUF(ti);
203 ti = (struct tcpiphdr *)ti->ti_next;
204 if (so->so_state & SS_CANTRCVMORE)
205 m_freem(m);
206 else
207 sbappend(&so->so_rcv, m);
208 } while (ti != (struct tcpiphdr *)tp && ti->ti_seq == tp->rcv_nxt);
209 sorwakeup(so);
210 return (flags);
211 }
212
213 /*
214 * TCP input routine, follows pages 65-76 of the
215 * protocol specification dated September, 1981 very closely.
216 */
217 void
218 tcp_input(m, iphlen)
219 register struct mbuf *m;
220 int iphlen;
221 {
222 register struct tcpiphdr *ti;
223 register struct inpcb *inp;
224 caddr_t optp = NULL;
225 int optlen;
226 int len, tlen, off;
227 register struct tcpcb *tp = 0;
228 register int tiflags;
229 struct socket *so;
230 int todrop, acked, ourfinisacked, needoutput = 0;
231 short ostate;
232 struct in_addr laddr;
233 int dropsocket = 0;
234 int iss = 0;
235 u_long tiwin;
236 u_int32_t ts_val, ts_ecr;
237 int ts_present = 0;
238
239 tcpstat.tcps_rcvtotal++;
240 /*
241 * Get IP and TCP header together in first mbuf.
242 * Note: IP leaves IP header in first mbuf.
243 */
244 ti = mtod(m, struct tcpiphdr *);
245 if (iphlen > sizeof (struct ip))
246 ip_stripoptions(m, (struct mbuf *)0);
247 if (m->m_len < sizeof (struct tcpiphdr)) {
248 if ((m = m_pullup(m, sizeof (struct tcpiphdr))) == 0) {
249 tcpstat.tcps_rcvshort++;
250 return;
251 }
252 ti = mtod(m, struct tcpiphdr *);
253 }
254
255 /*
256 * Checksum extended TCP header and data.
257 */
258 tlen = ((struct ip *)ti)->ip_len;
259 len = sizeof (struct ip) + tlen;
260 ti->ti_next = ti->ti_prev = 0;
261 ti->ti_x1 = 0;
262 ti->ti_len = (u_int16_t)tlen;
263 HTONS(ti->ti_len);
264 if (ti->ti_sum = in_cksum(m, len)) {
265 tcpstat.tcps_rcvbadsum++;
266 goto drop;
267 }
268 #endif /* TUBA_INCLUDE */
269
270 /*
271 * Check that TCP offset makes sense,
272 * pull out TCP options and adjust length. XXX
273 */
274 off = ti->ti_off << 2;
275 if (off < sizeof (struct tcphdr) || off > tlen) {
276 tcpstat.tcps_rcvbadoff++;
277 goto drop;
278 }
279 tlen -= off;
280 ti->ti_len = tlen;
281 if (off > sizeof (struct tcphdr)) {
282 if (m->m_len < sizeof(struct ip) + off) {
283 if ((m = m_pullup(m, sizeof (struct ip) + off)) == 0) {
284 tcpstat.tcps_rcvshort++;
285 return;
286 }
287 ti = mtod(m, struct tcpiphdr *);
288 }
289 optlen = off - sizeof (struct tcphdr);
290 optp = mtod(m, caddr_t) + sizeof (struct tcpiphdr);
291 /*
292 * Do quick retrieval of timestamp options ("options
293 * prediction?"). If timestamp is the only option and it's
294 * formatted as recommended in RFC 1323 appendix A, we
295 * quickly get the values now and not bother calling
296 * tcp_dooptions(), etc.
297 */
298 if ((optlen == TCPOLEN_TSTAMP_APPA ||
299 (optlen > TCPOLEN_TSTAMP_APPA &&
300 optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
301 *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
302 (ti->ti_flags & TH_SYN) == 0) {
303 ts_present = 1;
304 ts_val = ntohl(*(u_int32_t *)(optp + 4));
305 ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
306 optp = NULL; /* we've parsed the options */
307 }
308 }
309 tiflags = ti->ti_flags;
310
311 /*
312 * Convert TCP protocol specific fields to host format.
313 */
314 NTOHL(ti->ti_seq);
315 NTOHL(ti->ti_ack);
316 NTOHS(ti->ti_win);
317 NTOHS(ti->ti_urp);
318
319 /*
320 * Locate pcb for segment.
321 */
322 findpcb:
323 inp = tcp_last_inpcb;
324 if (inp->inp_lport != ti->ti_dport ||
325 inp->inp_fport != ti->ti_sport ||
326 inp->inp_faddr.s_addr != ti->ti_src.s_addr ||
327 inp->inp_laddr.s_addr != ti->ti_dst.s_addr) {
328 inp = in_pcblookup(&tcb, ti->ti_src, ti->ti_sport,
329 ti->ti_dst, ti->ti_dport, INPLOOKUP_WILDCARD);
330 if (inp)
331 tcp_last_inpcb = inp;
332 ++tcpstat.tcps_pcbcachemiss;
333 }
334
335 /*
336 * If the state is CLOSED (i.e., TCB does not exist) then
337 * all data in the incoming segment is discarded.
338 * If the TCB exists but is in CLOSED state, it is embryonic,
339 * but should either do a listen or a connect soon.
340 */
341 if (inp == 0)
342 goto dropwithreset;
343 tp = intotcpcb(inp);
344 if (tp == 0)
345 goto dropwithreset;
346 if (tp->t_state == TCPS_CLOSED)
347 goto drop;
348
349 /* Unscale the window into a 32-bit value. */
350 if ((tiflags & TH_SYN) == 0)
351 tiwin = ti->ti_win << tp->snd_scale;
352 else
353 tiwin = ti->ti_win;
354
355 so = inp->inp_socket;
356 if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
357 if (so->so_options & SO_DEBUG) {
358 ostate = tp->t_state;
359 tcp_saveti = *ti;
360 }
361 if (so->so_options & SO_ACCEPTCONN) {
362 so = sonewconn(so, 0);
363 if (so == 0)
364 goto drop;
365 /*
366 * This is ugly, but ....
367 *
368 * Mark socket as temporary until we're
369 * committed to keeping it. The code at
370 * ``drop'' and ``dropwithreset'' check the
371 * flag dropsocket to see if the temporary
372 * socket created here should be discarded.
373 * We mark the socket as discardable until
374 * we're committed to it below in TCPS_LISTEN.
375 */
376 dropsocket++;
377 inp = (struct inpcb *)so->so_pcb;
378 inp->inp_laddr = ti->ti_dst;
379 inp->inp_lport = ti->ti_dport;
380 #if BSD>=43
381 inp->inp_options = ip_srcroute();
382 #endif
383 tp = intotcpcb(inp);
384 tp->t_state = TCPS_LISTEN;
385
386 /* Compute proper scaling value from buffer space
387 */
388 while (tp->request_r_scale < TCP_MAX_WINSHIFT &&
389 TCP_MAXWIN << tp->request_r_scale < so->so_rcv.sb_hiwat)
390 tp->request_r_scale++;
391 }
392 }
393
394 /*
395 * Segment received on connection.
396 * Reset idle time and keep-alive timer.
397 */
398 tp->t_idle = 0;
399 tp->t_timer[TCPT_KEEP] = tcp_keepidle;
400
401 /*
402 * Process options if not in LISTEN state,
403 * else do it below (after getting remote address).
404 */
405 if (optp && tp->t_state != TCPS_LISTEN)
406 tcp_dooptions(tp, optp, optlen, ti,
407 &ts_present, &ts_val, &ts_ecr);
408
409 /*
410 * Header prediction: check for the two common cases
411 * of a uni-directional data xfer. If the packet has
412 * no control flags, is in-sequence, the window didn't
413 * change and we're not retransmitting, it's a
414 * candidate. If the length is zero and the ack moved
415 * forward, we're the sender side of the xfer. Just
416 * free the data acked & wake any higher level process
417 * that was blocked waiting for space. If the length
418 * is non-zero and the ack didn't move, we're the
419 * receiver side. If we're getting packets in-order
420 * (the reassembly queue is empty), add the data to
421 * the socket buffer and note that we need a delayed ack.
422 */
423 if (tp->t_state == TCPS_ESTABLISHED &&
424 (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
425 (!ts_present || TSTMP_GEQ(ts_val, tp->ts_recent)) &&
426 ti->ti_seq == tp->rcv_nxt &&
427 tiwin && tiwin == tp->snd_wnd &&
428 tp->snd_nxt == tp->snd_max) {
429
430 /*
431 * If last ACK falls within this segment's sequence numbers,
432 * record the timestamp.
433 */
434 if (ts_present && SEQ_LEQ(ti->ti_seq, tp->last_ack_sent) &&
435 SEQ_LT(tp->last_ack_sent, ti->ti_seq + ti->ti_len)) {
436 tp->ts_recent_age = tcp_now;
437 tp->ts_recent = ts_val;
438 }
439
440 if (ti->ti_len == 0) {
441 if (SEQ_GT(ti->ti_ack, tp->snd_una) &&
442 SEQ_LEQ(ti->ti_ack, tp->snd_max) &&
443 tp->snd_cwnd >= tp->snd_wnd) {
444 /*
445 * this is a pure ack for outstanding data.
446 */
447 ++tcpstat.tcps_predack;
448 if (ts_present)
449 tcp_xmit_timer(tp, tcp_now-ts_ecr+1);
450 else if (tp->t_rtt &&
451 SEQ_GT(ti->ti_ack, tp->t_rtseq))
452 tcp_xmit_timer(tp, tp->t_rtt);
453 acked = ti->ti_ack - tp->snd_una;
454 tcpstat.tcps_rcvackpack++;
455 tcpstat.tcps_rcvackbyte += acked;
456 sbdrop(&so->so_snd, acked);
457 tp->snd_una = ti->ti_ack;
458 m_freem(m);
459
460 /*
461 * If all outstanding data are acked, stop
462 * retransmit timer, otherwise restart timer
463 * using current (possibly backed-off) value.
464 * If process is waiting for space,
465 * wakeup/selwakeup/signal. If data
466 * are ready to send, let tcp_output
467 * decide between more output or persist.
468 */
469 if (tp->snd_una == tp->snd_max)
470 tp->t_timer[TCPT_REXMT] = 0;
471 else if (tp->t_timer[TCPT_PERSIST] == 0)
472 tp->t_timer[TCPT_REXMT] = tp->t_rxtcur;
473
474 if (so->so_snd.sb_flags & SB_NOTIFY)
475 sowwakeup(so);
476 if (so->so_snd.sb_cc)
477 (void) tcp_output(tp);
478 return;
479 }
480 } else if (ti->ti_ack == tp->snd_una &&
481 tp->seg_next == (struct tcpiphdr *)tp &&
482 ti->ti_len <= sbspace(&so->so_rcv)) {
483 /*
484 * this is a pure, in-sequence data packet
485 * with nothing on the reassembly queue and
486 * we have enough buffer space to take it.
487 */
488 ++tcpstat.tcps_preddat;
489 tp->rcv_nxt += ti->ti_len;
490 tcpstat.tcps_rcvpack++;
491 tcpstat.tcps_rcvbyte += ti->ti_len;
492 /*
493 * Drop TCP, IP headers and TCP options then add data
494 * to socket buffer.
495 */
496 m->m_data += sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);
497 m->m_len -= sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);
498 sbappend(&so->so_rcv, m);
499 sorwakeup(so);
500 if (ti->ti_flags & TH_PUSH)
501 tp->t_flags |= TF_ACKNOW;
502 else
503 tp->t_flags |= TF_DELACK;
504 return;
505 }
506 }
507
508 /*
509 * Drop TCP, IP headers and TCP options.
510 */
511 m->m_data += sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);
512 m->m_len -= sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);
513
514 /*
515 * Calculate amount of space in receive window,
516 * and then do TCP input processing.
517 * Receive window is amount of space in rcv queue,
518 * but not less than advertised window.
519 */
520 { int win;
521
522 win = sbspace(&so->so_rcv);
523 if (win < 0)
524 win = 0;
525 tp->rcv_wnd = max(win, (int)(tp->rcv_adv - tp->rcv_nxt));
526 }
527
528 switch (tp->t_state) {
529
530 /*
531 * If the state is LISTEN then ignore segment if it contains an RST.
532 * If the segment contains an ACK then it is bad and send a RST.
533 * If it does not contain a SYN then it is not interesting; drop it.
534 * Don't bother responding if the destination was a broadcast.
535 * Otherwise initialize tp->rcv_nxt, and tp->irs, select an initial
536 * tp->iss, and send a segment:
537 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
538 * Also initialize tp->snd_nxt to tp->iss+1 and tp->snd_una to tp->iss.
539 * Fill in remote peer address fields if not previously specified.
540 * Enter SYN_RECEIVED state, and process any other fields of this
541 * segment in this state.
542 */
543 case TCPS_LISTEN: {
544 struct mbuf *am;
545 register struct sockaddr_in *sin;
546
547 if (tiflags & TH_RST)
548 goto drop;
549 if (tiflags & TH_ACK)
550 goto dropwithreset;
551 if ((tiflags & TH_SYN) == 0)
552 goto drop;
553 /*
554 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
555 * in_broadcast() should never return true on a received
556 * packet with M_BCAST not set.
557 */
558 if (m->m_flags & (M_BCAST|M_MCAST) ||
559 IN_MULTICAST(ti->ti_dst.s_addr))
560 goto drop;
561 am = m_get(M_DONTWAIT, MT_SONAME); /* XXX */
562 if (am == NULL)
563 goto drop;
564 am->m_len = sizeof (struct sockaddr_in);
565 sin = mtod(am, struct sockaddr_in *);
566 sin->sin_family = AF_INET;
567 sin->sin_len = sizeof(*sin);
568 sin->sin_addr = ti->ti_src;
569 sin->sin_port = ti->ti_sport;
570 bzero((caddr_t)sin->sin_zero, sizeof(sin->sin_zero));
571 laddr = inp->inp_laddr;
572 if (inp->inp_laddr.s_addr == INADDR_ANY)
573 inp->inp_laddr = ti->ti_dst;
574 if (in_pcbconnect(inp, am)) {
575 inp->inp_laddr = laddr;
576 (void) m_free(am);
577 goto drop;
578 }
579 (void) m_free(am);
580 tp->t_template = tcp_template(tp);
581 if (tp->t_template == 0) {
582 tp = tcp_drop(tp, ENOBUFS);
583 dropsocket = 0; /* socket is already gone */
584 goto drop;
585 }
586 if (optp)
587 tcp_dooptions(tp, optp, optlen, ti,
588 &ts_present, &ts_val, &ts_ecr);
589 if (iss)
590 tp->iss = iss;
591 else
592 tp->iss = tcp_iss;
593 tcp_iss += TCP_ISSINCR/2;
594 tp->irs = ti->ti_seq;
595 tcp_sendseqinit(tp);
596 tcp_rcvseqinit(tp);
597 tp->t_flags |= TF_ACKNOW;
598 tp->t_state = TCPS_SYN_RECEIVED;
599 tp->t_timer[TCPT_KEEP] = TCPTV_KEEP_INIT;
600 dropsocket = 0; /* committed to socket */
601 tcpstat.tcps_accepts++;
602 goto trimthenstep6;
603 }
604
605 /*
606 * If the state is SYN_SENT:
607 * if seg contains an ACK, but not for our SYN, drop the input.
608 * if seg contains a RST, then drop the connection.
609 * if seg does not contain SYN, then drop it.
610 * Otherwise this is an acceptable SYN segment
611 * initialize tp->rcv_nxt and tp->irs
612 * if seg contains ack then advance tp->snd_una
613 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
614 * arrange for segment to be acked (eventually)
615 * continue processing rest of data/controls, beginning with URG
616 */
617 case TCPS_SYN_SENT:
618 if ((tiflags & TH_ACK) &&
619 (SEQ_LEQ(ti->ti_ack, tp->iss) ||
620 SEQ_GT(ti->ti_ack, tp->snd_max)))
621 goto dropwithreset;
622 if (tiflags & TH_RST) {
623 if (tiflags & TH_ACK)
624 tp = tcp_drop(tp, ECONNREFUSED);
625 goto drop;
626 }
627 if ((tiflags & TH_SYN) == 0)
628 goto drop;
629 if (tiflags & TH_ACK) {
630 tp->snd_una = ti->ti_ack;
631 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
632 tp->snd_nxt = tp->snd_una;
633 }
634 tp->t_timer[TCPT_REXMT] = 0;
635 tp->irs = ti->ti_seq;
636 tcp_rcvseqinit(tp);
637 tp->t_flags |= TF_ACKNOW;
638 if (tiflags & TH_ACK && SEQ_GT(tp->snd_una, tp->iss)) {
639 tcpstat.tcps_connects++;
640 soisconnected(so);
641 tp->t_state = TCPS_ESTABLISHED;
642 /* Do window scaling on this connection? */
643 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
644 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
645 tp->snd_scale = tp->requested_s_scale;
646 tp->rcv_scale = tp->request_r_scale;
647 }
648 (void) tcp_reass(tp, (struct tcpiphdr *)0,
649 (struct mbuf *)0);
650 /*
651 * if we didn't have to retransmit the SYN,
652 * use its rtt as our initial srtt & rtt var.
653 */
654 if (tp->t_rtt)
655 tcp_xmit_timer(tp, tp->t_rtt);
656 } else
657 tp->t_state = TCPS_SYN_RECEIVED;
658
659 trimthenstep6:
660 /*
661 * Advance ti->ti_seq to correspond to first data byte.
662 * If data, trim to stay within window,
663 * dropping FIN if necessary.
664 */
665 ti->ti_seq++;
666 if (ti->ti_len > tp->rcv_wnd) {
667 todrop = ti->ti_len - tp->rcv_wnd;
668 m_adj(m, -todrop);
669 ti->ti_len = tp->rcv_wnd;
670 tiflags &= ~TH_FIN;
671 tcpstat.tcps_rcvpackafterwin++;
672 tcpstat.tcps_rcvbyteafterwin += todrop;
673 }
674 tp->snd_wl1 = ti->ti_seq - 1;
675 tp->rcv_up = ti->ti_seq;
676 goto step6;
677 }
678
679 /*
680 * States other than LISTEN or SYN_SENT.
681 * First check timestamp, if present.
682 * Then check that at least some bytes of segment are within
683 * receive window. If segment begins before rcv_nxt,
684 * drop leading data (and SYN); if nothing left, just ack.
685 *
686 * RFC 1323 PAWS: If we have a timestamp reply on this segment
687 * and it's less than ts_recent, drop it.
688 */
689 if (ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
690 TSTMP_LT(ts_val, tp->ts_recent)) {
691
692 /* Check to see if ts_recent is over 24 days old. */
693 if ((int)(tcp_now - tp->ts_recent_age) > TCP_PAWS_IDLE) {
694 /*
695 * Invalidate ts_recent. If this segment updates
696 * ts_recent, the age will be reset later and ts_recent
697 * will get a valid value. If it does not, setting
698 * ts_recent to zero will at least satisfy the
699 * requirement that zero be placed in the timestamp
700 * echo reply when ts_recent isn't valid. The
701 * age isn't reset until we get a valid ts_recent
702 * because we don't want out-of-order segments to be
703 * dropped when ts_recent is old.
704 */
705 tp->ts_recent = 0;
706 } else {
707 tcpstat.tcps_rcvduppack++;
708 tcpstat.tcps_rcvdupbyte += ti->ti_len;
709 tcpstat.tcps_pawsdrop++;
710 goto dropafterack;
711 }
712 }
713
714 todrop = tp->rcv_nxt - ti->ti_seq;
715 if (todrop > 0) {
716 if (tiflags & TH_SYN) {
717 tiflags &= ~TH_SYN;
718 ti->ti_seq++;
719 if (ti->ti_urp > 1)
720 ti->ti_urp--;
721 else
722 tiflags &= ~TH_URG;
723 todrop--;
724 }
725 if (todrop >= ti->ti_len) {
726 /*
727 * Any valid FIN must be to the left of the
728 * window. At this point, FIN must be a
729 * duplicate or out-of-sequence, so drop it.
730 */
731 tiflags &= ~TH_FIN;
732 /*
733 * Send ACK to resynchronize, and drop any data,
734 * but keep on processing for RST or ACK.
735 */
736 tp->t_flags |= TF_ACKNOW;
737 tcpstat.tcps_rcvdupbyte += todrop = ti->ti_len;
738 tcpstat.tcps_rcvduppack++;
739 } else {
740 tcpstat.tcps_rcvpartduppack++;
741 tcpstat.tcps_rcvpartdupbyte += todrop;
742 }
743 m_adj(m, todrop);
744 ti->ti_seq += todrop;
745 ti->ti_len -= todrop;
746 if (ti->ti_urp > todrop)
747 ti->ti_urp -= todrop;
748 else {
749 tiflags &= ~TH_URG;
750 ti->ti_urp = 0;
751 }
752 }
753
754 /*
755 * If new data are received on a connection after the
756 * user processes are gone, then RST the other end.
757 */
758 if ((so->so_state & SS_NOFDREF) &&
759 tp->t_state > TCPS_CLOSE_WAIT && ti->ti_len) {
760 tp = tcp_close(tp);
761 tcpstat.tcps_rcvafterclose++;
762 goto dropwithreset;
763 }
764
765 /*
766 * If segment ends after window, drop trailing data
767 * (and PUSH and FIN); if nothing left, just ACK.
768 */
769 todrop = (ti->ti_seq+ti->ti_len) - (tp->rcv_nxt+tp->rcv_wnd);
770 if (todrop > 0) {
771 tcpstat.tcps_rcvpackafterwin++;
772 if (todrop >= ti->ti_len) {
773 tcpstat.tcps_rcvbyteafterwin += ti->ti_len;
774 /*
775 * If a new connection request is received
776 * while in TIME_WAIT, drop the old connection
777 * and start over if the sequence numbers
778 * are above the previous ones.
779 */
780 if (tiflags & TH_SYN &&
781 tp->t_state == TCPS_TIME_WAIT &&
782 SEQ_GT(ti->ti_seq, tp->rcv_nxt)) {
783 iss = tp->rcv_nxt + TCP_ISSINCR;
784 tp = tcp_close(tp);
785 goto findpcb;
786 }
787 /*
788 * If window is closed can only take segments at
789 * window edge, and have to drop data and PUSH from
790 * incoming segments. Continue processing, but
791 * remember to ack. Otherwise, drop segment
792 * and ack.
793 */
794 if (tp->rcv_wnd == 0 && ti->ti_seq == tp->rcv_nxt) {
795 tp->t_flags |= TF_ACKNOW;
796 tcpstat.tcps_rcvwinprobe++;
797 } else
798 goto dropafterack;
799 } else
800 tcpstat.tcps_rcvbyteafterwin += todrop;
801 m_adj(m, -todrop);
802 ti->ti_len -= todrop;
803 tiflags &= ~(TH_PUSH|TH_FIN);
804 }
805
806 /*
807 * If last ACK falls within this segment's sequence numbers,
808 * record its timestamp.
809 */
810 if (ts_present && SEQ_LEQ(ti->ti_seq, tp->last_ack_sent) &&
811 SEQ_LT(tp->last_ack_sent, ti->ti_seq + ti->ti_len +
812 ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
813 tp->ts_recent_age = tcp_now;
814 tp->ts_recent = ts_val;
815 }
816
817 /*
818 * If the RST bit is set examine the state:
819 * SYN_RECEIVED STATE:
820 * If passive open, return to LISTEN state.
821 * If active open, inform user that connection was refused.
822 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
823 * Inform user that connection was reset, and close tcb.
824 * CLOSING, LAST_ACK, TIME_WAIT STATES
825 * Close the tcb.
826 */
827 if (tiflags&TH_RST) switch (tp->t_state) {
828
829 case TCPS_SYN_RECEIVED:
830 so->so_error = ECONNREFUSED;
831 goto close;
832
833 case TCPS_ESTABLISHED:
834 case TCPS_FIN_WAIT_1:
835 case TCPS_FIN_WAIT_2:
836 case TCPS_CLOSE_WAIT:
837 so->so_error = ECONNRESET;
838 close:
839 tp->t_state = TCPS_CLOSED;
840 tcpstat.tcps_drops++;
841 tp = tcp_close(tp);
842 goto drop;
843
844 case TCPS_CLOSING:
845 case TCPS_LAST_ACK:
846 case TCPS_TIME_WAIT:
847 tp = tcp_close(tp);
848 goto drop;
849 }
850
851 /*
852 * If a SYN is in the window, then this is an
853 * error and we send an RST and drop the connection.
854 */
855 if (tiflags & TH_SYN) {
856 tp = tcp_drop(tp, ECONNRESET);
857 goto dropwithreset;
858 }
859
860 /*
861 * If the ACK bit is off we drop the segment and return.
862 */
863 if ((tiflags & TH_ACK) == 0)
864 goto drop;
865
866 /*
867 * Ack processing.
868 */
869 switch (tp->t_state) {
870
871 /*
872 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
873 * ESTABLISHED state and continue processing, otherwise
874 * send an RST.
875 */
876 case TCPS_SYN_RECEIVED:
877 if (SEQ_GT(tp->snd_una, ti->ti_ack) ||
878 SEQ_GT(ti->ti_ack, tp->snd_max))
879 goto dropwithreset;
880 tcpstat.tcps_connects++;
881 soisconnected(so);
882 tp->t_state = TCPS_ESTABLISHED;
883 /* Do window scaling? */
884 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
885 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
886 tp->snd_scale = tp->requested_s_scale;
887 tp->rcv_scale = tp->request_r_scale;
888 }
889 (void) tcp_reass(tp, (struct tcpiphdr *)0, (struct mbuf *)0);
890 tp->snd_wl1 = ti->ti_seq - 1;
891 /* fall into ... */
892
893 /*
894 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
895 * ACKs. If the ack is in the range
896 * tp->snd_una < ti->ti_ack <= tp->snd_max
897 * then advance tp->snd_una to ti->ti_ack and drop
898 * data from the retransmission queue. If this ACK reflects
899 * more up to date window information we update our window information.
900 */
901 case TCPS_ESTABLISHED:
902 case TCPS_FIN_WAIT_1:
903 case TCPS_FIN_WAIT_2:
904 case TCPS_CLOSE_WAIT:
905 case TCPS_CLOSING:
906 case TCPS_LAST_ACK:
907 case TCPS_TIME_WAIT:
908
909 if (SEQ_LEQ(ti->ti_ack, tp->snd_una)) {
910 if (ti->ti_len == 0 && tiwin == tp->snd_wnd) {
911 tcpstat.tcps_rcvdupack++;
912 /*
913 * If we have outstanding data (other than
914 * a window probe), this is a completely
915 * duplicate ack (ie, window info didn't
916 * change), the ack is the biggest we've
917 * seen and we've seen exactly our rexmt
918 * threshhold of them, assume a packet
919 * has been dropped and retransmit it.
920 * Kludge snd_nxt & the congestion
921 * window so we send only this one
922 * packet.
923 *
924 * We know we're losing at the current
925 * window size so do congestion avoidance
926 * (set ssthresh to half the current window
927 * and pull our congestion window back to
928 * the new ssthresh).
929 *
930 * Dup acks mean that packets have left the
931 * network (they're now cached at the receiver)
932 * so bump cwnd by the amount in the receiver
933 * to keep a constant cwnd packets in the
934 * network.
935 */
936 if (tp->t_timer[TCPT_REXMT] == 0 ||
937 ti->ti_ack != tp->snd_una)
938 tp->t_dupacks = 0;
939 else if (++tp->t_dupacks == tcprexmtthresh) {
940 tcp_seq onxt = tp->snd_nxt;
941 u_int win =
942 min(tp->snd_wnd, tp->snd_cwnd) / 2 /
943 tp->t_maxseg;
944
945 if (win < 2)
946 win = 2;
947 tp->snd_ssthresh = win * tp->t_maxseg;
948 tp->t_timer[TCPT_REXMT] = 0;
949 tp->t_rtt = 0;
950 tp->snd_nxt = ti->ti_ack;
951 tp->snd_cwnd = tp->t_maxseg;
952 (void) tcp_output(tp);
953 tp->snd_cwnd = tp->snd_ssthresh +
954 tp->t_maxseg * tp->t_dupacks;
955 if (SEQ_GT(onxt, tp->snd_nxt))
956 tp->snd_nxt = onxt;
957 goto drop;
958 } else if (tp->t_dupacks > tcprexmtthresh) {
959 tp->snd_cwnd += tp->t_maxseg;
960 (void) tcp_output(tp);
961 goto drop;
962 }
963 } else
964 tp->t_dupacks = 0;
965 break;
966 }
967 /*
968 * If the congestion window was inflated to account
969 * for the other side's cached packets, retract it.
970 */
971 if (tp->t_dupacks > tcprexmtthresh &&
972 tp->snd_cwnd > tp->snd_ssthresh)
973 tp->snd_cwnd = tp->snd_ssthresh;
974 tp->t_dupacks = 0;
975 if (SEQ_GT(ti->ti_ack, tp->snd_max)) {
976 tcpstat.tcps_rcvacktoomuch++;
977 goto dropafterack;
978 }
979 acked = ti->ti_ack - tp->snd_una;
980 tcpstat.tcps_rcvackpack++;
981 tcpstat.tcps_rcvackbyte += acked;
982
983 /*
984 * If we have a timestamp reply, update smoothed
985 * round trip time. If no timestamp is present but
986 * transmit timer is running and timed sequence
987 * number was acked, update smoothed round trip time.
988 * Since we now have an rtt measurement, cancel the
989 * timer backoff (cf., Phil Karn's retransmit alg.).
990 * Recompute the initial retransmit timer.
991 */
992 if (ts_present)
993 tcp_xmit_timer(tp, tcp_now-ts_ecr+1);
994 else if (tp->t_rtt && SEQ_GT(ti->ti_ack, tp->t_rtseq))
995 tcp_xmit_timer(tp,tp->t_rtt);
996
997 /*
998 * If all outstanding data is acked, stop retransmit
999 * timer and remember to restart (more output or persist).
1000 * If there is more data to be acked, restart retransmit
1001 * timer, using current (possibly backed-off) value.
1002 */
1003 if (ti->ti_ack == tp->snd_max) {
1004 tp->t_timer[TCPT_REXMT] = 0;
1005 needoutput = 1;
1006 } else if (tp->t_timer[TCPT_PERSIST] == 0)
1007 tp->t_timer[TCPT_REXMT] = tp->t_rxtcur;
1008 /*
1009 * When new data is acked, open the congestion window.
1010 * If the window gives us less than ssthresh packets
1011 * in flight, open exponentially (maxseg per packet).
1012 * Otherwise open linearly: maxseg per window
1013 * (maxseg^2 / cwnd per packet), plus a constant
1014 * fraction of a packet (maxseg/8) to help larger windows
1015 * open quickly enough.
1016 */
1017 {
1018 register u_int cw = tp->snd_cwnd;
1019 register u_int incr = tp->t_maxseg;
1020
1021 if (cw > tp->snd_ssthresh)
1022 incr = incr * incr / cw + incr / 8;
1023 tp->snd_cwnd = min(cw + incr, TCP_MAXWIN<<tp->snd_scale);
1024 }
1025 if (acked > so->so_snd.sb_cc) {
1026 tp->snd_wnd -= so->so_snd.sb_cc;
1027 sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
1028 ourfinisacked = 1;
1029 } else {
1030 sbdrop(&so->so_snd, acked);
1031 tp->snd_wnd -= acked;
1032 ourfinisacked = 0;
1033 }
1034 if (so->so_snd.sb_flags & SB_NOTIFY)
1035 sowwakeup(so);
1036 tp->snd_una = ti->ti_ack;
1037 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1038 tp->snd_nxt = tp->snd_una;
1039
1040 switch (tp->t_state) {
1041
1042 /*
1043 * In FIN_WAIT_1 STATE in addition to the processing
1044 * for the ESTABLISHED state if our FIN is now acknowledged
1045 * then enter FIN_WAIT_2.
1046 */
1047 case TCPS_FIN_WAIT_1:
1048 if (ourfinisacked) {
1049 /*
1050 * If we can't receive any more
1051 * data, then closing user can proceed.
1052 * Starting the timer is contrary to the
1053 * specification, but if we don't get a FIN
1054 * we'll hang forever.
1055 */
1056 if (so->so_state & SS_CANTRCVMORE) {
1057 soisdisconnected(so);
1058 tp->t_timer[TCPT_2MSL] = tcp_maxidle;
1059 }
1060 tp->t_state = TCPS_FIN_WAIT_2;
1061 }
1062 break;
1063
1064 /*
1065 * In CLOSING STATE in addition to the processing for
1066 * the ESTABLISHED state if the ACK acknowledges our FIN
1067 * then enter the TIME-WAIT state, otherwise ignore
1068 * the segment.
1069 */
1070 case TCPS_CLOSING:
1071 if (ourfinisacked) {
1072 tp->t_state = TCPS_TIME_WAIT;
1073 tcp_canceltimers(tp);
1074 tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
1075 soisdisconnected(so);
1076 }
1077 break;
1078
1079 /*
1080 * In LAST_ACK, we may still be waiting for data to drain
1081 * and/or to be acked, as well as for the ack of our FIN.
1082 * If our FIN is now acknowledged, delete the TCB,
1083 * enter the closed state and return.
1084 */
1085 case TCPS_LAST_ACK:
1086 if (ourfinisacked) {
1087 tp = tcp_close(tp);
1088 goto drop;
1089 }
1090 break;
1091
1092 /*
1093 * In TIME_WAIT state the only thing that should arrive
1094 * is a retransmission of the remote FIN. Acknowledge
1095 * it and restart the finack timer.
1096 */
1097 case TCPS_TIME_WAIT:
1098 tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
1099 goto dropafterack;
1100 }
1101 }
1102
1103 step6:
1104 /*
1105 * Update window information.
1106 * Don't look at window if no ACK: TAC's send garbage on first SYN.
1107 */
1108 if ((tiflags & TH_ACK) &&
1109 (SEQ_LT(tp->snd_wl1, ti->ti_seq) || tp->snd_wl1 == ti->ti_seq &&
1110 (SEQ_LT(tp->snd_wl2, ti->ti_ack) ||
1111 tp->snd_wl2 == ti->ti_ack && tiwin > tp->snd_wnd))) {
1112 /* keep track of pure window updates */
1113 if (ti->ti_len == 0 &&
1114 tp->snd_wl2 == ti->ti_ack && tiwin > tp->snd_wnd)
1115 tcpstat.tcps_rcvwinupd++;
1116 tp->snd_wnd = tiwin;
1117 tp->snd_wl1 = ti->ti_seq;
1118 tp->snd_wl2 = ti->ti_ack;
1119 if (tp->snd_wnd > tp->max_sndwnd)
1120 tp->max_sndwnd = tp->snd_wnd;
1121 needoutput = 1;
1122 }
1123
1124 /*
1125 * Process segments with URG.
1126 */
1127 if ((tiflags & TH_URG) && ti->ti_urp &&
1128 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1129 /*
1130 * This is a kludge, but if we receive and accept
1131 * random urgent pointers, we'll crash in
1132 * soreceive. It's hard to imagine someone
1133 * actually wanting to send this much urgent data.
1134 */
1135 if (ti->ti_urp + so->so_rcv.sb_cc > sb_max) {
1136 ti->ti_urp = 0; /* XXX */
1137 tiflags &= ~TH_URG; /* XXX */
1138 goto dodata; /* XXX */
1139 }
1140 /*
1141 * If this segment advances the known urgent pointer,
1142 * then mark the data stream. This should not happen
1143 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
1144 * a FIN has been received from the remote side.
1145 * In these states we ignore the URG.
1146 *
1147 * According to RFC961 (Assigned Protocols),
1148 * the urgent pointer points to the last octet
1149 * of urgent data. We continue, however,
1150 * to consider it to indicate the first octet
1151 * of data past the urgent section as the original
1152 * spec states (in one of two places).
1153 */
1154 if (SEQ_GT(ti->ti_seq+ti->ti_urp, tp->rcv_up)) {
1155 tp->rcv_up = ti->ti_seq + ti->ti_urp;
1156 so->so_oobmark = so->so_rcv.sb_cc +
1157 (tp->rcv_up - tp->rcv_nxt) - 1;
1158 if (so->so_oobmark == 0)
1159 so->so_state |= SS_RCVATMARK;
1160 sohasoutofband(so);
1161 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
1162 }
1163 /*
1164 * Remove out of band data so doesn't get presented to user.
1165 * This can happen independent of advancing the URG pointer,
1166 * but if two URG's are pending at once, some out-of-band
1167 * data may creep in... ick.
1168 */
1169 if (ti->ti_urp <= ti->ti_len
1170 #ifdef SO_OOBINLINE
1171 && (so->so_options & SO_OOBINLINE) == 0
1172 #endif
1173 )
1174 tcp_pulloutofband(so, ti, m);
1175 } else
1176 /*
1177 * If no out of band data is expected,
1178 * pull receive urgent pointer along
1179 * with the receive window.
1180 */
1181 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
1182 tp->rcv_up = tp->rcv_nxt;
1183 dodata: /* XXX */
1184
1185 /*
1186 * Process the segment text, merging it into the TCP sequencing queue,
1187 * and arranging for acknowledgment of receipt if necessary.
1188 * This process logically involves adjusting tp->rcv_wnd as data
1189 * is presented to the user (this happens in tcp_usrreq.c,
1190 * case PRU_RCVD). If a FIN has already been received on this
1191 * connection then we just ignore the text.
1192 */
1193 if ((ti->ti_len || (tiflags&TH_FIN)) &&
1194 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1195 TCP_REASS(tp, ti, m, so, tiflags);
1196 /*
1197 * Note the amount of data that peer has sent into
1198 * our window, in order to estimate the sender's
1199 * buffer size.
1200 */
1201 len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
1202 } else {
1203 m_freem(m);
1204 tiflags &= ~TH_FIN;
1205 }
1206
1207 /*
1208 * If FIN is received ACK the FIN and let the user know
1209 * that the connection is closing.
1210 */
1211 if (tiflags & TH_FIN) {
1212 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1213 socantrcvmore(so);
1214 tp->t_flags |= TF_ACKNOW;
1215 tp->rcv_nxt++;
1216 }
1217 switch (tp->t_state) {
1218
1219 /*
1220 * In SYN_RECEIVED and ESTABLISHED STATES
1221 * enter the CLOSE_WAIT state.
1222 */
1223 case TCPS_SYN_RECEIVED:
1224 case TCPS_ESTABLISHED:
1225 tp->t_state = TCPS_CLOSE_WAIT;
1226 break;
1227
1228 /*
1229 * If still in FIN_WAIT_1 STATE FIN has not been acked so
1230 * enter the CLOSING state.
1231 */
1232 case TCPS_FIN_WAIT_1:
1233 tp->t_state = TCPS_CLOSING;
1234 break;
1235
1236 /*
1237 * In FIN_WAIT_2 state enter the TIME_WAIT state,
1238 * starting the time-wait timer, turning off the other
1239 * standard timers.
1240 */
1241 case TCPS_FIN_WAIT_2:
1242 tp->t_state = TCPS_TIME_WAIT;
1243 tcp_canceltimers(tp);
1244 tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
1245 soisdisconnected(so);
1246 break;
1247
1248 /*
1249 * In TIME_WAIT state restart the 2 MSL time_wait timer.
1250 */
1251 case TCPS_TIME_WAIT:
1252 tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
1253 break;
1254 }
1255 }
1256 if (so->so_options & SO_DEBUG)
1257 tcp_trace(TA_INPUT, ostate, tp, &tcp_saveti, 0);
1258
1259 /*
1260 * Return any desired output.
1261 */
1262 if (needoutput || (tp->t_flags & TF_ACKNOW))
1263 (void) tcp_output(tp);
1264 return;
1265
1266 dropafterack:
1267 /*
1268 * Generate an ACK dropping incoming segment if it occupies
1269 * sequence space, where the ACK reflects our state.
1270 */
1271 if (tiflags & TH_RST)
1272 goto drop;
1273 m_freem(m);
1274 tp->t_flags |= TF_ACKNOW;
1275 (void) tcp_output(tp);
1276 return;
1277
1278 dropwithreset:
1279 /*
1280 * Generate a RST, dropping incoming segment.
1281 * Make ACK acceptable to originator of segment.
1282 * Don't bother to respond if destination was broadcast/multicast.
1283 */
1284 if ((tiflags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST) ||
1285 IN_MULTICAST(ti->ti_dst.s_addr))
1286 goto drop;
1287 if (tiflags & TH_ACK)
1288 tcp_respond(tp, ti, m, (tcp_seq)0, ti->ti_ack, TH_RST);
1289 else {
1290 if (tiflags & TH_SYN)
1291 ti->ti_len++;
1292 tcp_respond(tp, ti, m, ti->ti_seq+ti->ti_len, (tcp_seq)0,
1293 TH_RST|TH_ACK);
1294 }
1295 /* destroy temporarily created socket */
1296 if (dropsocket)
1297 (void) soabort(so);
1298 return;
1299
1300 drop:
1301 /*
1302 * Drop space held by incoming segment and return.
1303 */
1304 if (tp && (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
1305 tcp_trace(TA_DROP, ostate, tp, &tcp_saveti, 0);
1306 m_freem(m);
1307 /* destroy temporarily created socket */
1308 if (dropsocket)
1309 (void) soabort(so);
1310 return;
1311 #ifndef TUBA_INCLUDE
1312 }
1313
1314 void
1315 tcp_dooptions(tp, cp, cnt, ti, ts_present, ts_val, ts_ecr)
1316 struct tcpcb *tp;
1317 u_char *cp;
1318 int cnt;
1319 struct tcpiphdr *ti;
1320 int *ts_present;
1321 u_int32_t *ts_val, *ts_ecr;
1322 {
1323 u_int16_t mss;
1324 int opt, optlen;
1325
1326 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1327 opt = cp[0];
1328 if (opt == TCPOPT_EOL)
1329 break;
1330 if (opt == TCPOPT_NOP)
1331 optlen = 1;
1332 else {
1333 optlen = cp[1];
1334 if (optlen <= 0)
1335 break;
1336 }
1337 switch (opt) {
1338
1339 default:
1340 continue;
1341
1342 case TCPOPT_MAXSEG:
1343 if (optlen != TCPOLEN_MAXSEG)
1344 continue;
1345 if (!(ti->ti_flags & TH_SYN))
1346 continue;
1347 bcopy((char *) cp + 2, (char *) &mss, sizeof(mss));
1348 NTOHS(mss);
1349 (void) tcp_mss(tp, mss); /* sets t_maxseg */
1350 break;
1351
1352 case TCPOPT_WINDOW:
1353 if (optlen != TCPOLEN_WINDOW)
1354 continue;
1355 if (!(ti->ti_flags & TH_SYN))
1356 continue;
1357 tp->t_flags |= TF_RCVD_SCALE;
1358 tp->requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT);
1359 break;
1360
1361 case TCPOPT_TIMESTAMP:
1362 if (optlen != TCPOLEN_TIMESTAMP)
1363 continue;
1364 *ts_present = 1;
1365 bcopy((char *)cp + 2, (char *) ts_val, sizeof(*ts_val));
1366 NTOHL(*ts_val);
1367 bcopy((char *)cp + 6, (char *) ts_ecr, sizeof(*ts_ecr));
1368 NTOHL(*ts_ecr);
1369
1370 /*
1371 * A timestamp received in a SYN makes
1372 * it ok to send timestamp requests and replies.
1373 */
1374 if (ti->ti_flags & TH_SYN) {
1375 tp->t_flags |= TF_RCVD_TSTMP;
1376 tp->ts_recent = *ts_val;
1377 tp->ts_recent_age = tcp_now;
1378 }
1379 break;
1380 }
1381 }
1382 }
1383
1384 /*
1385 * Pull out of band byte out of a segment so
1386 * it doesn't appear in the user's data queue.
1387 * It is still reflected in the segment length for
1388 * sequencing purposes.
1389 */
1390 void
1391 tcp_pulloutofband(so, ti, m)
1392 struct socket *so;
1393 struct tcpiphdr *ti;
1394 register struct mbuf *m;
1395 {
1396 int cnt = ti->ti_urp - 1;
1397
1398 while (cnt >= 0) {
1399 if (m->m_len > cnt) {
1400 char *cp = mtod(m, caddr_t) + cnt;
1401 struct tcpcb *tp = sototcpcb(so);
1402
1403 tp->t_iobc = *cp;
1404 tp->t_oobflags |= TCPOOB_HAVEDATA;
1405 bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
1406 m->m_len--;
1407 return;
1408 }
1409 cnt -= m->m_len;
1410 m = m->m_next;
1411 if (m == 0)
1412 break;
1413 }
1414 panic("tcp_pulloutofband");
1415 }
1416
1417 /*
1418 * Collect new round-trip time estimate
1419 * and update averages and current timeout.
1420 */
1421 void
1422 tcp_xmit_timer(tp, rtt)
1423 register struct tcpcb *tp;
1424 short rtt;
1425 {
1426 register short delta;
1427
1428 tcpstat.tcps_rttupdated++;
1429 if (tp->t_srtt != 0) {
1430 /*
1431 * srtt is stored as fixed point with 3 bits after the
1432 * binary point (i.e., scaled by 8). The following magic
1433 * is equivalent to the smoothing algorithm in rfc793 with
1434 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
1435 * point). Adjust rtt to origin 0.
1436 */
1437 delta = rtt - 1 - (tp->t_srtt >> TCP_RTT_SHIFT);
1438 if ((tp->t_srtt += delta) <= 0)
1439 tp->t_srtt = 1;
1440 /*
1441 * We accumulate a smoothed rtt variance (actually, a
1442 * smoothed mean difference), then set the retransmit
1443 * timer to smoothed rtt + 4 times the smoothed variance.
1444 * rttvar is stored as fixed point with 2 bits after the
1445 * binary point (scaled by 4). The following is
1446 * equivalent to rfc793 smoothing with an alpha of .75
1447 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces
1448 * rfc793's wired-in beta.
1449 */
1450 if (delta < 0)
1451 delta = -delta;
1452 delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
1453 if ((tp->t_rttvar += delta) <= 0)
1454 tp->t_rttvar = 1;
1455 } else {
1456 /*
1457 * No rtt measurement yet - use the unsmoothed rtt.
1458 * Set the variance to half the rtt (so our first
1459 * retransmit happens at 3*rtt).
1460 */
1461 tp->t_srtt = rtt << TCP_RTT_SHIFT;
1462 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
1463 }
1464 tp->t_rtt = 0;
1465 tp->t_rxtshift = 0;
1466
1467 /*
1468 * the retransmit should happen at rtt + 4 * rttvar.
1469 * Because of the way we do the smoothing, srtt and rttvar
1470 * will each average +1/2 tick of bias. When we compute
1471 * the retransmit timer, we want 1/2 tick of rounding and
1472 * 1 extra tick because of +-1/2 tick uncertainty in the
1473 * firing of the timer. The bias will give us exactly the
1474 * 1.5 tick we need. But, because the bias is
1475 * statistical, we have to test that we don't drop below
1476 * the minimum feasible timer (which is 2 ticks).
1477 */
1478 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
1479 tp->t_rttmin, TCPTV_REXMTMAX);
1480
1481 /*
1482 * We received an ack for a packet that wasn't retransmitted;
1483 * it is probably safe to discard any error indications we've
1484 * received recently. This isn't quite right, but close enough
1485 * for now (a route might have failed after we sent a segment,
1486 * and the return path might not be symmetrical).
1487 */
1488 tp->t_softerror = 0;
1489 }
1490
1491 /*
1492 * Determine a reasonable value for maxseg size.
1493 * If the route is known, check route for mtu.
1494 * If none, use an mss that can be handled on the outgoing
1495 * interface without forcing IP to fragment; if bigger than
1496 * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
1497 * to utilize large mbufs. If no route is found, route has no mtu,
1498 * or the destination isn't local, use a default, hopefully conservative
1499 * size (usually 512 or the default IP max size, but no more than the mtu
1500 * of the interface), as we can't discover anything about intervening
1501 * gateways or networks. We also initialize the congestion/slow start
1502 * window to be a single segment if the destination isn't local.
1503 * While looking at the routing entry, we also initialize other path-dependent
1504 * parameters from pre-set or cached values in the routing entry.
1505 */
1506 int
1507 tcp_mss(tp, offer)
1508 register struct tcpcb *tp;
1509 u_int offer;
1510 {
1511 struct route *ro;
1512 register struct rtentry *rt;
1513 struct ifnet *ifp;
1514 register int rtt, mss;
1515 u_long bufsize;
1516 struct inpcb *inp;
1517 struct socket *so;
1518 extern int tcp_mssdflt;
1519
1520 inp = tp->t_inpcb;
1521 ro = &inp->inp_route;
1522
1523 if ((rt = ro->ro_rt) == (struct rtentry *)0) {
1524 /* No route yet, so try to acquire one */
1525 if (inp->inp_faddr.s_addr != INADDR_ANY) {
1526 ro->ro_dst.sa_family = AF_INET;
1527 ro->ro_dst.sa_len = sizeof(ro->ro_dst);
1528 satosin(&ro->ro_dst)->sin_addr = inp->inp_faddr;
1529 rtalloc(ro);
1530 }
1531 if ((rt = ro->ro_rt) == (struct rtentry *)0)
1532 return (tcp_mssdflt);
1533 }
1534 ifp = rt->rt_ifp;
1535 so = inp->inp_socket;
1536
1537 #ifdef RTV_MTU /* if route characteristics exist ... */
1538 /*
1539 * While we're here, check if there's an initial rtt
1540 * or rttvar. Convert from the route-table units
1541 * to scaled multiples of the slow timeout timer.
1542 */
1543 if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
1544 /*
1545 * XXX the lock bit for MTU indicates that the value
1546 * is also a minimum value; this is subject to time.
1547 */
1548 if (rt->rt_rmx.rmx_locks & RTV_RTT)
1549 tp->t_rttmin = rtt / (RTM_RTTUNIT / PR_SLOWHZ);
1550 tp->t_srtt = rtt / (RTM_RTTUNIT / (PR_SLOWHZ * TCP_RTT_SCALE));
1551 if (rt->rt_rmx.rmx_rttvar)
1552 tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
1553 (RTM_RTTUNIT / (PR_SLOWHZ * TCP_RTTVAR_SCALE));
1554 else
1555 /* default variation is +- 1 rtt */
1556 tp->t_rttvar =
1557 tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
1558 TCPT_RANGESET(tp->t_rxtcur,
1559 ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
1560 tp->t_rttmin, TCPTV_REXMTMAX);
1561 }
1562 /*
1563 * if there's an mtu associated with the route, use it
1564 */
1565 if (rt->rt_rmx.rmx_mtu)
1566 mss = rt->rt_rmx.rmx_mtu - sizeof(struct tcpiphdr);
1567 else
1568 #endif /* RTV_MTU */
1569 {
1570 mss = ifp->if_mtu - sizeof(struct tcpiphdr);
1571 #if (MCLBYTES & (MCLBYTES - 1)) == 0
1572 if (mss > MCLBYTES)
1573 mss &= ~(MCLBYTES-1);
1574 #else
1575 if (mss > MCLBYTES)
1576 mss = mss / MCLBYTES * MCLBYTES;
1577 #endif
1578 if (!in_localaddr(inp->inp_faddr))
1579 mss = min(mss, tcp_mssdflt);
1580 }
1581 /*
1582 * The current mss, t_maxseg, is initialized to the default value.
1583 * If we compute a smaller value, reduce the current mss.
1584 * If we compute a larger value, return it for use in sending
1585 * a max seg size option, but don't store it for use
1586 * unless we received an offer at least that large from peer.
1587 * However, do not accept offers under 32 bytes.
1588 */
1589 if (offer)
1590 mss = min(mss, offer);
1591 mss = max(mss, 32); /* sanity */
1592 if (mss < tp->t_maxseg || offer != 0) {
1593 /*
1594 * If there's a pipesize, change the socket buffer
1595 * to that size. Make the socket buffers an integral
1596 * number of mss units; if the mss is larger than
1597 * the socket buffer, decrease the mss.
1598 */
1599 #ifdef RTV_SPIPE
1600 if ((bufsize = rt->rt_rmx.rmx_sendpipe) == 0)
1601 #endif
1602 bufsize = so->so_snd.sb_hiwat;
1603 if (bufsize < mss)
1604 mss = bufsize;
1605 else {
1606 bufsize = roundup(bufsize, mss);
1607 if (bufsize > sb_max)
1608 bufsize = sb_max;
1609 (void)sbreserve(&so->so_snd, bufsize);
1610 }
1611 tp->t_maxseg = mss;
1612
1613 #ifdef RTV_RPIPE
1614 if ((bufsize = rt->rt_rmx.rmx_recvpipe) == 0)
1615 #endif
1616 bufsize = so->so_rcv.sb_hiwat;
1617 if (bufsize > mss) {
1618 bufsize = roundup(bufsize, mss);
1619 if (bufsize > sb_max)
1620 bufsize = sb_max;
1621 (void)sbreserve(&so->so_rcv, bufsize);
1622 }
1623 }
1624 tp->snd_cwnd = mss;
1625
1626 #ifdef RTV_SSTHRESH
1627 if (rt->rt_rmx.rmx_ssthresh) {
1628 /*
1629 * There's some sort of gateway or interface
1630 * buffer limit on the path. Use this to set
1631 * the slow start threshhold, but set the
1632 * threshold to no less than 2*mss.
1633 */
1634 tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
1635 }
1636 #endif /* RTV_MTU */
1637 return (mss);
1638 }
1639 #endif /* TUBA_INCLUDE */
1640