tcp_input.c revision 1.140 1 /* $NetBSD: tcp_input.c,v 1.140 2002/03/24 17:09:01 christos Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * @(#)COPYRIGHT 1.1 (NRL) 17 January 1995
34 *
35 * NRL grants permission for redistribution and use in source and binary
36 * forms, with or without modification, of the software and documentation
37 * created at NRL provided that the following conditions are met:
38 *
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgements:
46 * This product includes software developed by the University of
47 * California, Berkeley and its contributors.
48 * This product includes software developed at the Information
49 * Technology Division, US Naval Research Laboratory.
50 * 4. Neither the name of the NRL nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
55 * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
57 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NRL OR
58 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
59 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
61 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
62 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
63 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
64 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65 *
66 * The views and conclusions contained in the software and documentation
67 * are those of the authors and should not be interpreted as representing
68 * official policies, either expressed or implied, of the US Naval
69 * Research Laboratory (NRL).
70 */
71
72 /*-
73 * Copyright (c) 1997, 1998, 1999, 2001 The NetBSD Foundation, Inc.
74 * All rights reserved.
75 *
76 * This code is derived from software contributed to The NetBSD Foundation
77 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
78 * Facility, NASA Ames Research Center.
79 *
80 * Redistribution and use in source and binary forms, with or without
81 * modification, are permitted provided that the following conditions
82 * are met:
83 * 1. Redistributions of source code must retain the above copyright
84 * notice, this list of conditions and the following disclaimer.
85 * 2. Redistributions in binary form must reproduce the above copyright
86 * notice, this list of conditions and the following disclaimer in the
87 * documentation and/or other materials provided with the distribution.
88 * 3. All advertising materials mentioning features or use of this software
89 * must display the following acknowledgement:
90 * This product includes software developed by the NetBSD
91 * Foundation, Inc. and its contributors.
92 * 4. Neither the name of The NetBSD Foundation nor the names of its
93 * contributors may be used to endorse or promote products derived
94 * from this software without specific prior written permission.
95 *
96 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
97 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
98 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
99 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
100 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
101 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
102 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
103 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
104 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
105 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
106 * POSSIBILITY OF SUCH DAMAGE.
107 */
108
109 /*
110 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
111 * The Regents of the University of California. All rights reserved.
112 *
113 * Redistribution and use in source and binary forms, with or without
114 * modification, are permitted provided that the following conditions
115 * are met:
116 * 1. Redistributions of source code must retain the above copyright
117 * notice, this list of conditions and the following disclaimer.
118 * 2. Redistributions in binary form must reproduce the above copyright
119 * notice, this list of conditions and the following disclaimer in the
120 * documentation and/or other materials provided with the distribution.
121 * 3. All advertising materials mentioning features or use of this software
122 * must display the following acknowledgement:
123 * This product includes software developed by the University of
124 * California, Berkeley and its contributors.
125 * 4. Neither the name of the University nor the names of its contributors
126 * may be used to endorse or promote products derived from this software
127 * without specific prior written permission.
128 *
129 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
130 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
131 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
132 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
133 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
134 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
135 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
136 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
137 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
138 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
139 * SUCH DAMAGE.
140 *
141 * @(#)tcp_input.c 8.12 (Berkeley) 5/24/95
142 */
143
144 /*
145 * TODO list for SYN cache stuff:
146 *
147 * Find room for a "state" field, which is needed to keep a
148 * compressed state for TIME_WAIT TCBs. It's been noted already
149 * that this is fairly important for very high-volume web and
150 * mail servers, which use a large number of short-lived
151 * connections.
152 */
153
154 #include <sys/cdefs.h>
155 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.140 2002/03/24 17:09:01 christos Exp $");
156
157 #include "opt_inet.h"
158 #include "opt_ipsec.h"
159 #include "opt_inet_csum.h"
160 #include "opt_tcp_debug.h"
161
162 #include <sys/param.h>
163 #include <sys/systm.h>
164 #include <sys/malloc.h>
165 #include <sys/mbuf.h>
166 #include <sys/protosw.h>
167 #include <sys/socket.h>
168 #include <sys/socketvar.h>
169 #include <sys/errno.h>
170 #include <sys/syslog.h>
171 #include <sys/pool.h>
172 #include <sys/domain.h>
173 #include <sys/kernel.h>
174
175 #include <net/if.h>
176 #include <net/route.h>
177 #include <net/if_types.h>
178
179 #include <netinet/in.h>
180 #include <netinet/in_systm.h>
181 #include <netinet/ip.h>
182 #include <netinet/in_pcb.h>
183 #include <netinet/ip_var.h>
184
185 #ifdef INET6
186 #ifndef INET
187 #include <netinet/in.h>
188 #endif
189 #include <netinet/ip6.h>
190 #include <netinet6/ip6_var.h>
191 #include <netinet6/in6_pcb.h>
192 #include <netinet6/ip6_var.h>
193 #include <netinet6/in6_var.h>
194 #include <netinet/icmp6.h>
195 #include <netinet6/nd6.h>
196 #endif
197
198 #ifdef PULLDOWN_TEST
199 #ifndef INET6
200 /* always need ip6.h for IP6_EXTHDR_GET */
201 #include <netinet/ip6.h>
202 #endif
203 #endif
204
205 #include <netinet/tcp.h>
206 #include <netinet/tcp_fsm.h>
207 #include <netinet/tcp_seq.h>
208 #include <netinet/tcp_timer.h>
209 #include <netinet/tcp_var.h>
210 #include <netinet/tcpip.h>
211 #include <netinet/tcp_debug.h>
212
213 #include <machine/stdarg.h>
214
215 #ifdef IPSEC
216 #include <netinet6/ipsec.h>
217 #include <netkey/key.h>
218 #endif /*IPSEC*/
219 #ifdef INET6
220 #include "faith.h"
221 #if defined(NFAITH) && NFAITH > 0
222 #include <net/if_faith.h>
223 #endif
224 #endif
225
226 int tcprexmtthresh = 3;
227 int tcp_log_refused;
228
229 static int tcp_rst_ppslim_count = 0;
230 static struct timeval tcp_rst_ppslim_last;
231
232 #define TCP_PAWS_IDLE (24 * 24 * 60 * 60 * PR_SLOWHZ)
233
234 /* for modulo comparisons of timestamps */
235 #define TSTMP_LT(a,b) ((int)((a)-(b)) < 0)
236 #define TSTMP_GEQ(a,b) ((int)((a)-(b)) >= 0)
237
238 /*
239 * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
240 */
241 #ifdef INET6
242 #define ND6_HINT(tp) \
243 do { \
244 if (tp && tp->t_in6pcb && tp->t_family == AF_INET6 \
245 && tp->t_in6pcb->in6p_route.ro_rt) { \
246 nd6_nud_hint(tp->t_in6pcb->in6p_route.ro_rt, NULL, 0); \
247 } \
248 } while (0)
249 #else
250 #define ND6_HINT(tp)
251 #endif
252
253 /*
254 * Macro to compute ACK transmission behavior. Delay the ACK unless
255 * we have already delayed an ACK (must send an ACK every two segments).
256 * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
257 * option is enabled.
258 */
259 #define TCP_SETUP_ACK(tp, th) \
260 do { \
261 if ((tp)->t_flags & TF_DELACK || \
262 (tcp_ack_on_push && (th)->th_flags & TH_PUSH)) \
263 tp->t_flags |= TF_ACKNOW; \
264 else \
265 TCP_SET_DELACK(tp); \
266 } while (0)
267
268 /*
269 * Convert TCP protocol fields to host order for easier processing.
270 */
271 #define TCP_FIELDS_TO_HOST(th) \
272 do { \
273 NTOHL((th)->th_seq); \
274 NTOHL((th)->th_ack); \
275 NTOHS((th)->th_win); \
276 NTOHS((th)->th_urp); \
277 } while (0)
278
279 #ifdef TCP_CSUM_COUNTERS
280 #include <sys/device.h>
281
282 extern struct evcnt tcp_hwcsum_ok;
283 extern struct evcnt tcp_hwcsum_bad;
284 extern struct evcnt tcp_hwcsum_data;
285 extern struct evcnt tcp_swcsum;
286
287 #define TCP_CSUM_COUNTER_INCR(ev) (ev)->ev_count++
288
289 #else
290
291 #define TCP_CSUM_COUNTER_INCR(ev) /* nothing */
292
293 #endif /* TCP_CSUM_COUNTERS */
294
295 int
296 tcp_reass(tp, th, m, tlen)
297 struct tcpcb *tp;
298 struct tcphdr *th;
299 struct mbuf *m;
300 int *tlen;
301 {
302 struct ipqent *p, *q, *nq, *tiqe = NULL;
303 struct socket *so = NULL;
304 int pkt_flags;
305 tcp_seq pkt_seq;
306 unsigned pkt_len;
307 u_long rcvpartdupbyte = 0;
308 u_long rcvoobyte;
309
310 if (tp->t_inpcb)
311 so = tp->t_inpcb->inp_socket;
312 #ifdef INET6
313 else if (tp->t_in6pcb)
314 so = tp->t_in6pcb->in6p_socket;
315 #endif
316
317 TCP_REASS_LOCK_CHECK(tp);
318
319 /*
320 * Call with th==0 after become established to
321 * force pre-ESTABLISHED data up to user socket.
322 */
323 if (th == 0)
324 goto present;
325
326 rcvoobyte = *tlen;
327 /*
328 * Copy these to local variables because the tcpiphdr
329 * gets munged while we are collapsing mbufs.
330 */
331 pkt_seq = th->th_seq;
332 pkt_len = *tlen;
333 pkt_flags = th->th_flags;
334 /*
335 * Find a segment which begins after this one does.
336 */
337 for (p = NULL, q = LIST_FIRST(&tp->segq); q != NULL; q = nq) {
338 nq = LIST_NEXT(q, ipqe_q);
339 /*
340 * If the received segment is just right after this
341 * fragment, merge the two together and then check
342 * for further overlaps.
343 */
344 if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
345 #ifdef TCPREASS_DEBUG
346 printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
347 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
348 q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
349 #endif
350 pkt_len += q->ipqe_len;
351 pkt_flags |= q->ipqe_flags;
352 pkt_seq = q->ipqe_seq;
353 m_cat(q->ipqe_m, m);
354 m = q->ipqe_m;
355 goto free_ipqe;
356 }
357 /*
358 * If the received segment is completely past this
359 * fragment, we need to go the next fragment.
360 */
361 if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
362 p = q;
363 continue;
364 }
365 /*
366 * If the fragment is past the received segment,
367 * it (or any following) can't be concatenated.
368 */
369 if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len))
370 break;
371 /*
372 * We've received all the data in this segment before.
373 * mark it as a duplicate and return.
374 */
375 if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
376 SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
377 tcpstat.tcps_rcvduppack++;
378 tcpstat.tcps_rcvdupbyte += pkt_len;
379 m_freem(m);
380 if (tiqe != NULL)
381 pool_put(&ipqent_pool, tiqe);
382 return (0);
383 }
384 /*
385 * Received segment completely overlaps this fragment
386 * so we drop the fragment (this keeps the temporal
387 * ordering of segments correct).
388 */
389 if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
390 SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
391 rcvpartdupbyte += q->ipqe_len;
392 m_freem(q->ipqe_m);
393 goto free_ipqe;
394 }
395 /*
396 * RX'ed segment extends past the end of the
397 * fragment. Drop the overlapping bytes. Then
398 * merge the fragment and segment then treat as
399 * a longer received packet.
400 */
401 if (SEQ_LT(q->ipqe_seq, pkt_seq)
402 && SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
403 int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
404 #ifdef TCPREASS_DEBUG
405 printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
406 tp, overlap,
407 pkt_seq, pkt_seq + pkt_len, pkt_len);
408 #endif
409 m_adj(m, overlap);
410 rcvpartdupbyte += overlap;
411 m_cat(q->ipqe_m, m);
412 m = q->ipqe_m;
413 pkt_seq = q->ipqe_seq;
414 pkt_len += q->ipqe_len - overlap;
415 rcvoobyte -= overlap;
416 goto free_ipqe;
417 }
418 /*
419 * RX'ed segment extends past the front of the
420 * fragment. Drop the overlapping bytes on the
421 * received packet. The packet will then be
422 * contatentated with this fragment a bit later.
423 */
424 if (SEQ_GT(q->ipqe_seq, pkt_seq)
425 && SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len)) {
426 int overlap = pkt_seq + pkt_len - q->ipqe_seq;
427 #ifdef TCPREASS_DEBUG
428 printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
429 tp, overlap,
430 pkt_seq, pkt_seq + pkt_len, pkt_len);
431 #endif
432 m_adj(m, -overlap);
433 pkt_len -= overlap;
434 rcvpartdupbyte += overlap;
435 rcvoobyte -= overlap;
436 }
437 /*
438 * If the received segment immediates precedes this
439 * fragment then tack the fragment onto this segment
440 * and reinsert the data.
441 */
442 if (q->ipqe_seq == pkt_seq + pkt_len) {
443 #ifdef TCPREASS_DEBUG
444 printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
445 tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
446 pkt_seq, pkt_seq + pkt_len, pkt_len);
447 #endif
448 pkt_len += q->ipqe_len;
449 pkt_flags |= q->ipqe_flags;
450 m_cat(m, q->ipqe_m);
451 LIST_REMOVE(q, ipqe_q);
452 LIST_REMOVE(q, ipqe_timeq);
453 if (tiqe == NULL) {
454 tiqe = q;
455 } else {
456 pool_put(&ipqent_pool, q);
457 }
458 break;
459 }
460 /*
461 * If the fragment is before the segment, remember it.
462 * When this loop is terminated, p will contain the
463 * pointer to fragment that is right before the received
464 * segment.
465 */
466 if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
467 p = q;
468
469 continue;
470
471 /*
472 * This is a common operation. It also will allow
473 * to save doing a malloc/free in most instances.
474 */
475 free_ipqe:
476 LIST_REMOVE(q, ipqe_q);
477 LIST_REMOVE(q, ipqe_timeq);
478 if (tiqe == NULL) {
479 tiqe = q;
480 } else {
481 pool_put(&ipqent_pool, q);
482 }
483 }
484
485 /*
486 * Allocate a new queue entry since the received segment did not
487 * collapse onto any other out-of-order block; thus we are allocating
488 * a new block. If it had collapsed, tiqe would not be NULL and
489 * we would be reusing it.
490 * XXX If we can't, just drop the packet. XXX
491 */
492 if (tiqe == NULL) {
493 tiqe = pool_get(&ipqent_pool, PR_NOWAIT);
494 if (tiqe == NULL) {
495 tcpstat.tcps_rcvmemdrop++;
496 m_freem(m);
497 return (0);
498 }
499 }
500
501 /*
502 * Update the counters.
503 */
504 tcpstat.tcps_rcvoopack++;
505 tcpstat.tcps_rcvoobyte += rcvoobyte;
506 if (rcvpartdupbyte) {
507 tcpstat.tcps_rcvpartduppack++;
508 tcpstat.tcps_rcvpartdupbyte += rcvpartdupbyte;
509 }
510
511 /*
512 * Insert the new fragment queue entry into both queues.
513 */
514 tiqe->ipqe_m = m;
515 tiqe->ipqe_seq = pkt_seq;
516 tiqe->ipqe_len = pkt_len;
517 tiqe->ipqe_flags = pkt_flags;
518 if (p == NULL) {
519 LIST_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
520 #ifdef TCPREASS_DEBUG
521 if (tiqe->ipqe_seq != tp->rcv_nxt)
522 printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
523 tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
524 #endif
525 } else {
526 LIST_INSERT_AFTER(p, tiqe, ipqe_q);
527 #ifdef TCPREASS_DEBUG
528 printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
529 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
530 p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
531 #endif
532 }
533
534 LIST_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
535
536 present:
537 /*
538 * Present data to user, advancing rcv_nxt through
539 * completed sequence space.
540 */
541 if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
542 return (0);
543 q = LIST_FIRST(&tp->segq);
544 if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
545 return (0);
546 if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
547 return (0);
548
549 tp->rcv_nxt += q->ipqe_len;
550 pkt_flags = q->ipqe_flags & TH_FIN;
551 ND6_HINT(tp);
552
553 LIST_REMOVE(q, ipqe_q);
554 LIST_REMOVE(q, ipqe_timeq);
555 if (so->so_state & SS_CANTRCVMORE)
556 m_freem(q->ipqe_m);
557 else
558 sbappend(&so->so_rcv, q->ipqe_m);
559 pool_put(&ipqent_pool, q);
560 sorwakeup(so);
561 return (pkt_flags);
562 }
563
564 #ifdef INET6
565 int
566 tcp6_input(mp, offp, proto)
567 struct mbuf **mp;
568 int *offp, proto;
569 {
570 struct mbuf *m = *mp;
571
572 /*
573 * draft-itojun-ipv6-tcp-to-anycast
574 * better place to put this in?
575 */
576 if (m->m_flags & M_ANYCAST6) {
577 struct ip6_hdr *ip6;
578 if (m->m_len < sizeof(struct ip6_hdr)) {
579 if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
580 tcpstat.tcps_rcvshort++;
581 return IPPROTO_DONE;
582 }
583 }
584 ip6 = mtod(m, struct ip6_hdr *);
585 icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
586 (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
587 return IPPROTO_DONE;
588 }
589
590 tcp_input(m, *offp, proto);
591 return IPPROTO_DONE;
592 }
593 #endif
594
595 /*
596 * TCP input routine, follows pages 65-76 of the
597 * protocol specification dated September, 1981 very closely.
598 */
599 void
600 #if __STDC__
601 tcp_input(struct mbuf *m, ...)
602 #else
603 tcp_input(m, va_alist)
604 struct mbuf *m;
605 #endif
606 {
607 int proto;
608 struct tcphdr *th;
609 struct ip *ip;
610 struct inpcb *inp;
611 #ifdef INET6
612 struct ip6_hdr *ip6;
613 struct in6pcb *in6p;
614 #endif
615 caddr_t optp = NULL;
616 int optlen = 0;
617 int len, tlen, toff, hdroptlen = 0;
618 struct tcpcb *tp = 0;
619 int tiflags;
620 struct socket *so = NULL;
621 int todrop, acked, ourfinisacked, needoutput = 0;
622 short ostate = 0;
623 int iss = 0;
624 u_long tiwin;
625 struct tcp_opt_info opti;
626 int off, iphlen;
627 va_list ap;
628 int af; /* af on the wire */
629 struct mbuf *tcp_saveti = NULL;
630
631 va_start(ap, m);
632 toff = va_arg(ap, int);
633 proto = va_arg(ap, int);
634 va_end(ap);
635
636 tcpstat.tcps_rcvtotal++;
637
638 bzero(&opti, sizeof(opti));
639 opti.ts_present = 0;
640 opti.maxseg = 0;
641
642 /*
643 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
644 *
645 * TCP is, by definition, unicast, so we reject all
646 * multicast outright.
647 *
648 * Note, there are additional src/dst address checks in
649 * the AF-specific code below.
650 */
651 if (m->m_flags & (M_BCAST|M_MCAST)) {
652 /* XXX stat */
653 goto drop;
654 }
655 #ifdef INET6
656 if (m->m_flags & M_ANYCAST6) {
657 /* XXX stat */
658 goto drop;
659 }
660 #endif
661
662 /*
663 * Get IP and TCP header together in first mbuf.
664 * Note: IP leaves IP header in first mbuf.
665 */
666 ip = mtod(m, struct ip *);
667 #ifdef INET6
668 ip6 = NULL;
669 #endif
670 switch (ip->ip_v) {
671 #ifdef INET
672 case 4:
673 af = AF_INET;
674 iphlen = sizeof(struct ip);
675 #ifndef PULLDOWN_TEST
676 /* would like to get rid of this... */
677 if (toff > sizeof (struct ip)) {
678 ip_stripoptions(m, (struct mbuf *)0);
679 toff = sizeof(struct ip);
680 }
681 if (m->m_len < toff + sizeof (struct tcphdr)) {
682 if ((m = m_pullup(m, toff + sizeof (struct tcphdr))) == 0) {
683 tcpstat.tcps_rcvshort++;
684 return;
685 }
686 }
687 ip = mtod(m, struct ip *);
688 th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
689 #else
690 ip = mtod(m, struct ip *);
691 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
692 sizeof(struct tcphdr));
693 if (th == NULL) {
694 tcpstat.tcps_rcvshort++;
695 return;
696 }
697 #endif
698 /* We do the checksum after PCB lookup... */
699 len = ip->ip_len;
700 tlen = len - toff;
701 break;
702 #endif
703 #ifdef INET6
704 case 6:
705 ip = NULL;
706 iphlen = sizeof(struct ip6_hdr);
707 af = AF_INET6;
708 #ifndef PULLDOWN_TEST
709 if (m->m_len < toff + sizeof(struct tcphdr)) {
710 m = m_pullup(m, toff + sizeof(struct tcphdr)); /*XXX*/
711 if (m == NULL) {
712 tcpstat.tcps_rcvshort++;
713 return;
714 }
715 }
716 ip6 = mtod(m, struct ip6_hdr *);
717 th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
718 #else
719 ip6 = mtod(m, struct ip6_hdr *);
720 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
721 sizeof(struct tcphdr));
722 if (th == NULL) {
723 tcpstat.tcps_rcvshort++;
724 return;
725 }
726 #endif
727
728 /* Be proactive about malicious use of IPv4 mapped address */
729 if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
730 IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
731 /* XXX stat */
732 goto drop;
733 }
734
735 /*
736 * Be proactive about unspecified IPv6 address in source.
737 * As we use all-zero to indicate unbounded/unconnected pcb,
738 * unspecified IPv6 address can be used to confuse us.
739 *
740 * Note that packets with unspecified IPv6 destination is
741 * already dropped in ip6_input.
742 */
743 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
744 /* XXX stat */
745 goto drop;
746 }
747
748 /*
749 * Make sure destination address is not multicast.
750 * Source address checked in ip6_input().
751 */
752 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
753 /* XXX stat */
754 goto drop;
755 }
756
757 /* We do the checksum after PCB lookup... */
758 len = m->m_pkthdr.len;
759 tlen = len - toff;
760 break;
761 #endif
762 default:
763 m_freem(m);
764 return;
765 }
766
767 /*
768 * Check that TCP offset makes sense,
769 * pull out TCP options and adjust length. XXX
770 */
771 off = th->th_off << 2;
772 if (off < sizeof (struct tcphdr) || off > tlen) {
773 tcpstat.tcps_rcvbadoff++;
774 goto drop;
775 }
776 tlen -= off;
777
778 /*
779 * tcp_input() has been modified to use tlen to mean the TCP data
780 * length throughout the function. Other functions can use
781 * m->m_pkthdr.len as the basis for calculating the TCP data length.
782 * rja
783 */
784
785 if (off > sizeof (struct tcphdr)) {
786 #ifndef PULLDOWN_TEST
787 if (m->m_len < toff + off) {
788 if ((m = m_pullup(m, toff + off)) == 0) {
789 tcpstat.tcps_rcvshort++;
790 return;
791 }
792 switch (af) {
793 #ifdef INET
794 case AF_INET:
795 ip = mtod(m, struct ip *);
796 break;
797 #endif
798 #ifdef INET6
799 case AF_INET6:
800 ip6 = mtod(m, struct ip6_hdr *);
801 break;
802 #endif
803 }
804 th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
805 }
806 #else
807 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
808 if (th == NULL) {
809 tcpstat.tcps_rcvshort++;
810 return;
811 }
812 /*
813 * NOTE: ip/ip6 will not be affected by m_pulldown()
814 * (as they're before toff) and we don't need to update those.
815 */
816 #endif
817 optlen = off - sizeof (struct tcphdr);
818 optp = ((caddr_t)th) + sizeof(struct tcphdr);
819 /*
820 * Do quick retrieval of timestamp options ("options
821 * prediction?"). If timestamp is the only option and it's
822 * formatted as recommended in RFC 1323 appendix A, we
823 * quickly get the values now and not bother calling
824 * tcp_dooptions(), etc.
825 */
826 if ((optlen == TCPOLEN_TSTAMP_APPA ||
827 (optlen > TCPOLEN_TSTAMP_APPA &&
828 optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
829 *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
830 (th->th_flags & TH_SYN) == 0) {
831 opti.ts_present = 1;
832 opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
833 opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
834 optp = NULL; /* we've parsed the options */
835 }
836 }
837 tiflags = th->th_flags;
838
839 /*
840 * Locate pcb for segment.
841 */
842 findpcb:
843 inp = NULL;
844 #ifdef INET6
845 in6p = NULL;
846 #endif
847 switch (af) {
848 #ifdef INET
849 case AF_INET:
850 inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
851 ip->ip_dst, th->th_dport);
852 if (inp == 0) {
853 ++tcpstat.tcps_pcbhashmiss;
854 inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
855 }
856 #ifdef INET6
857 if (inp == 0) {
858 struct in6_addr s, d;
859
860 /* mapped addr case */
861 bzero(&s, sizeof(s));
862 s.s6_addr16[5] = htons(0xffff);
863 bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
864 bzero(&d, sizeof(d));
865 d.s6_addr16[5] = htons(0xffff);
866 bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
867 in6p = in6_pcblookup_connect(&tcb6, &s, th->th_sport,
868 &d, th->th_dport, 0);
869 if (in6p == 0) {
870 ++tcpstat.tcps_pcbhashmiss;
871 in6p = in6_pcblookup_bind(&tcb6, &d,
872 th->th_dport, 0);
873 }
874 }
875 #endif
876 #ifndef INET6
877 if (inp == 0)
878 #else
879 if (inp == 0 && in6p == 0)
880 #endif
881 {
882 ++tcpstat.tcps_noport;
883 if (tcp_log_refused && (tiflags & TH_SYN)) {
884 char src[4*sizeof "123"];
885 char dst[4*sizeof "123"];
886
887 if (ip) {
888 strcpy(src, inet_ntoa(ip->ip_src));
889 strcpy(dst, inet_ntoa(ip->ip_dst));
890 }
891 else {
892 strcpy(src, "(unknown)");
893 strcpy(dst, "(unknown)");
894 }
895 log(LOG_INFO,
896 "Connection attempt to TCP %s:%d from %s:%d\n",
897 dst, ntohs(th->th_dport),
898 src, ntohs(th->th_sport));
899 }
900 TCP_FIELDS_TO_HOST(th);
901 goto dropwithreset_ratelim;
902 }
903 #ifdef IPSEC
904 if (inp && ipsec4_in_reject(m, inp)) {
905 ipsecstat.in_polvio++;
906 goto drop;
907 }
908 #ifdef INET6
909 else if (in6p && ipsec4_in_reject_so(m, in6p->in6p_socket)) {
910 ipsecstat.in_polvio++;
911 goto drop;
912 }
913 #endif
914 #endif /*IPSEC*/
915 break;
916 #endif /*INET*/
917 #ifdef INET6
918 case AF_INET6:
919 {
920 int faith;
921
922 #if defined(NFAITH) && NFAITH > 0
923 faith = faithprefix(&ip6->ip6_dst);
924 #else
925 faith = 0;
926 #endif
927 in6p = in6_pcblookup_connect(&tcb6, &ip6->ip6_src, th->th_sport,
928 &ip6->ip6_dst, th->th_dport, faith);
929 if (in6p == NULL) {
930 ++tcpstat.tcps_pcbhashmiss;
931 in6p = in6_pcblookup_bind(&tcb6, &ip6->ip6_dst,
932 th->th_dport, faith);
933 }
934 if (in6p == NULL) {
935 ++tcpstat.tcps_noport;
936 if (tcp_log_refused && (tiflags & TH_SYN)) {
937 char src[INET6_ADDRSTRLEN];
938 char dst[INET6_ADDRSTRLEN];
939
940 if (ip6) {
941 strcpy(src, ip6_sprintf(&ip6->ip6_src));
942 strcpy(dst, ip6_sprintf(&ip6->ip6_dst));
943 }
944 else {
945 strcpy(src, "(unknown v6)");
946 strcpy(dst, "(unknown v6)");
947 }
948 log(LOG_INFO,
949 "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
950 dst, ntohs(th->th_dport),
951 src, ntohs(th->th_sport));
952 }
953 TCP_FIELDS_TO_HOST(th);
954 goto dropwithreset_ratelim;
955 }
956 #ifdef IPSEC
957 if (ipsec6_in_reject(m, in6p)) {
958 ipsec6stat.in_polvio++;
959 goto drop;
960 }
961 #endif /*IPSEC*/
962 break;
963 }
964 #endif
965 }
966
967 /*
968 * If the state is CLOSED (i.e., TCB does not exist) then
969 * all data in the incoming segment is discarded.
970 * If the TCB exists but is in CLOSED state, it is embryonic,
971 * but should either do a listen or a connect soon.
972 */
973 tp = NULL;
974 so = NULL;
975 if (inp) {
976 tp = intotcpcb(inp);
977 so = inp->inp_socket;
978 }
979 #ifdef INET6
980 else if (in6p) {
981 tp = in6totcpcb(in6p);
982 so = in6p->in6p_socket;
983 }
984 #endif
985 if (tp == 0) {
986 TCP_FIELDS_TO_HOST(th);
987 goto dropwithreset_ratelim;
988 }
989 if (tp->t_state == TCPS_CLOSED)
990 goto drop;
991
992 /*
993 * Checksum extended TCP header and data.
994 */
995 switch (af) {
996 #ifdef INET
997 case AF_INET:
998 switch (m->m_pkthdr.csum_flags &
999 ((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
1000 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
1001 case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
1002 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
1003 goto badcsum;
1004
1005 case M_CSUM_TCPv4|M_CSUM_DATA:
1006 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
1007 if ((m->m_pkthdr.csum_data ^ 0xffff) != 0)
1008 goto badcsum;
1009 break;
1010
1011 case M_CSUM_TCPv4:
1012 /* Checksum was okay. */
1013 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
1014 break;
1015
1016 default:
1017 /* Must compute it ourselves. */
1018 TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
1019 #ifndef PULLDOWN_TEST
1020 {
1021 struct ipovly *ipov;
1022 ipov = (struct ipovly *)ip;
1023 bzero(ipov->ih_x1, sizeof ipov->ih_x1);
1024 ipov->ih_len = htons(tlen + off);
1025
1026 if (in_cksum(m, len) != 0)
1027 goto badcsum;
1028 }
1029 #else
1030 if (in4_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0)
1031 goto badcsum;
1032 #endif /* ! PULLDOWN_TEST */
1033 break;
1034 }
1035 break;
1036 #endif /* INET4 */
1037
1038 #ifdef INET6
1039 case AF_INET6:
1040 if (in6_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0)
1041 goto badcsum;
1042 break;
1043 #endif /* INET6 */
1044 }
1045
1046 TCP_FIELDS_TO_HOST(th);
1047
1048 /* Unscale the window into a 32-bit value. */
1049 if ((tiflags & TH_SYN) == 0)
1050 tiwin = th->th_win << tp->snd_scale;
1051 else
1052 tiwin = th->th_win;
1053
1054 #ifdef INET6
1055 /* save packet options if user wanted */
1056 if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
1057 if (in6p->in6p_options) {
1058 m_freem(in6p->in6p_options);
1059 in6p->in6p_options = 0;
1060 }
1061 ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
1062 }
1063 #endif
1064
1065 if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
1066 union syn_cache_sa src;
1067 union syn_cache_sa dst;
1068
1069 bzero(&src, sizeof(src));
1070 bzero(&dst, sizeof(dst));
1071 switch (af) {
1072 #ifdef INET
1073 case AF_INET:
1074 src.sin.sin_len = sizeof(struct sockaddr_in);
1075 src.sin.sin_family = AF_INET;
1076 src.sin.sin_addr = ip->ip_src;
1077 src.sin.sin_port = th->th_sport;
1078
1079 dst.sin.sin_len = sizeof(struct sockaddr_in);
1080 dst.sin.sin_family = AF_INET;
1081 dst.sin.sin_addr = ip->ip_dst;
1082 dst.sin.sin_port = th->th_dport;
1083 break;
1084 #endif
1085 #ifdef INET6
1086 case AF_INET6:
1087 src.sin6.sin6_len = sizeof(struct sockaddr_in6);
1088 src.sin6.sin6_family = AF_INET6;
1089 src.sin6.sin6_addr = ip6->ip6_src;
1090 src.sin6.sin6_port = th->th_sport;
1091
1092 dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
1093 dst.sin6.sin6_family = AF_INET6;
1094 dst.sin6.sin6_addr = ip6->ip6_dst;
1095 dst.sin6.sin6_port = th->th_dport;
1096 break;
1097 #endif /* INET6 */
1098 default:
1099 goto badsyn; /*sanity*/
1100 }
1101
1102 if (so->so_options & SO_DEBUG) {
1103 ostate = tp->t_state;
1104
1105 tcp_saveti = NULL;
1106 if (iphlen + sizeof(struct tcphdr) > MHLEN)
1107 goto nosave;
1108
1109 if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
1110 tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
1111 if (!tcp_saveti)
1112 goto nosave;
1113 } else {
1114 MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
1115 if (!tcp_saveti)
1116 goto nosave;
1117 tcp_saveti->m_len = iphlen;
1118 m_copydata(m, 0, iphlen,
1119 mtod(tcp_saveti, caddr_t));
1120 }
1121
1122 if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
1123 m_freem(tcp_saveti);
1124 tcp_saveti = NULL;
1125 } else {
1126 tcp_saveti->m_len += sizeof(struct tcphdr);
1127 bcopy(th, mtod(tcp_saveti, caddr_t) + iphlen,
1128 sizeof(struct tcphdr));
1129 }
1130 if (tcp_saveti) {
1131 /*
1132 * need to recover version # field, which was
1133 * overwritten on ip_cksum computation.
1134 */
1135 struct ip *sip;
1136 sip = mtod(tcp_saveti, struct ip *);
1137 switch (af) {
1138 #ifdef INET
1139 case AF_INET:
1140 sip->ip_v = 4;
1141 break;
1142 #endif
1143 #ifdef INET6
1144 case AF_INET6:
1145 sip->ip_v = 6;
1146 break;
1147 #endif
1148 }
1149 }
1150 nosave:;
1151 }
1152 if (so->so_options & SO_ACCEPTCONN) {
1153 if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1154 if (tiflags & TH_RST) {
1155 syn_cache_reset(&src.sa, &dst.sa, th);
1156 } else if ((tiflags & (TH_ACK|TH_SYN)) ==
1157 (TH_ACK|TH_SYN)) {
1158 /*
1159 * Received a SYN,ACK. This should
1160 * never happen while we are in
1161 * LISTEN. Send an RST.
1162 */
1163 goto badsyn;
1164 } else if (tiflags & TH_ACK) {
1165 so = syn_cache_get(&src.sa, &dst.sa,
1166 th, toff, tlen, so, m);
1167 if (so == NULL) {
1168 /*
1169 * We don't have a SYN for
1170 * this ACK; send an RST.
1171 */
1172 goto badsyn;
1173 } else if (so ==
1174 (struct socket *)(-1)) {
1175 /*
1176 * We were unable to create
1177 * the connection. If the
1178 * 3-way handshake was
1179 * completed, and RST has
1180 * been sent to the peer.
1181 * Since the mbuf might be
1182 * in use for the reply,
1183 * do not free it.
1184 */
1185 m = NULL;
1186 } else {
1187 /*
1188 * We have created a
1189 * full-blown connection.
1190 */
1191 tp = NULL;
1192 inp = NULL;
1193 #ifdef INET6
1194 in6p = NULL;
1195 #endif
1196 switch (so->so_proto->pr_domain->dom_family) {
1197 #ifdef INET
1198 case AF_INET:
1199 inp = sotoinpcb(so);
1200 tp = intotcpcb(inp);
1201 break;
1202 #endif
1203 #ifdef INET6
1204 case AF_INET6:
1205 in6p = sotoin6pcb(so);
1206 tp = in6totcpcb(in6p);
1207 break;
1208 #endif
1209 }
1210 if (tp == NULL)
1211 goto badsyn; /*XXX*/
1212 tiwin <<= tp->snd_scale;
1213 goto after_listen;
1214 }
1215 } else {
1216 /*
1217 * None of RST, SYN or ACK was set.
1218 * This is an invalid packet for a
1219 * TCB in LISTEN state. Send a RST.
1220 */
1221 goto badsyn;
1222 }
1223 } else {
1224 /*
1225 * Received a SYN.
1226 */
1227
1228 /*
1229 * LISTEN socket received a SYN
1230 * from itself? This can't possibly
1231 * be valid; drop the packet.
1232 */
1233 if (th->th_sport == th->th_dport) {
1234 int i;
1235
1236 switch (af) {
1237 #ifdef INET
1238 case AF_INET:
1239 i = in_hosteq(ip->ip_src, ip->ip_dst);
1240 break;
1241 #endif
1242 #ifdef INET6
1243 case AF_INET6:
1244 i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
1245 break;
1246 #endif
1247 default:
1248 i = 1;
1249 }
1250 if (i) {
1251 tcpstat.tcps_badsyn++;
1252 goto drop;
1253 }
1254 }
1255
1256 /*
1257 * SYN looks ok; create compressed TCP
1258 * state for it.
1259 */
1260 if (so->so_qlen <= so->so_qlimit &&
1261 syn_cache_add(&src.sa, &dst.sa, th, tlen,
1262 so, m, optp, optlen, &opti))
1263 m = NULL;
1264 }
1265 goto drop;
1266 }
1267 }
1268
1269 after_listen:
1270 #ifdef DIAGNOSTIC
1271 /*
1272 * Should not happen now that all embryonic connections
1273 * are handled with compressed state.
1274 */
1275 if (tp->t_state == TCPS_LISTEN)
1276 panic("tcp_input: TCPS_LISTEN");
1277 #endif
1278
1279 /*
1280 * Segment received on connection.
1281 * Reset idle time and keep-alive timer.
1282 */
1283 tp->t_rcvtime = tcp_now;
1284 if (TCPS_HAVEESTABLISHED(tp->t_state))
1285 TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1286
1287 /*
1288 * Process options.
1289 */
1290 if (optp)
1291 tcp_dooptions(tp, optp, optlen, th, &opti);
1292
1293 /*
1294 * Header prediction: check for the two common cases
1295 * of a uni-directional data xfer. If the packet has
1296 * no control flags, is in-sequence, the window didn't
1297 * change and we're not retransmitting, it's a
1298 * candidate. If the length is zero and the ack moved
1299 * forward, we're the sender side of the xfer. Just
1300 * free the data acked & wake any higher level process
1301 * that was blocked waiting for space. If the length
1302 * is non-zero and the ack didn't move, we're the
1303 * receiver side. If we're getting packets in-order
1304 * (the reassembly queue is empty), add the data to
1305 * the socket buffer and note that we need a delayed ack.
1306 */
1307 if (tp->t_state == TCPS_ESTABLISHED &&
1308 (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1309 (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
1310 th->th_seq == tp->rcv_nxt &&
1311 tiwin && tiwin == tp->snd_wnd &&
1312 tp->snd_nxt == tp->snd_max) {
1313
1314 /*
1315 * If last ACK falls within this segment's sequence numbers,
1316 * record the timestamp.
1317 */
1318 if (opti.ts_present &&
1319 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1320 SEQ_LT(tp->last_ack_sent, th->th_seq + tlen)) {
1321 tp->ts_recent_age = TCP_TIMESTAMP(tp);
1322 tp->ts_recent = opti.ts_val;
1323 }
1324
1325 if (tlen == 0) {
1326 if (SEQ_GT(th->th_ack, tp->snd_una) &&
1327 SEQ_LEQ(th->th_ack, tp->snd_max) &&
1328 tp->snd_cwnd >= tp->snd_wnd &&
1329 tp->t_dupacks < tcprexmtthresh) {
1330 /*
1331 * this is a pure ack for outstanding data.
1332 */
1333 ++tcpstat.tcps_predack;
1334 if (opti.ts_present && opti.ts_ecr)
1335 tcp_xmit_timer(tp,
1336 TCP_TIMESTAMP(tp) - opti.ts_ecr + 1);
1337 else if (tp->t_rtttime &&
1338 SEQ_GT(th->th_ack, tp->t_rtseq))
1339 tcp_xmit_timer(tp,
1340 tcp_now - tp->t_rtttime);
1341 acked = th->th_ack - tp->snd_una;
1342 tcpstat.tcps_rcvackpack++;
1343 tcpstat.tcps_rcvackbyte += acked;
1344 ND6_HINT(tp);
1345 sbdrop(&so->so_snd, acked);
1346 /*
1347 * We want snd_recover to track snd_una to
1348 * avoid sequence wraparound problems for
1349 * very large transfers.
1350 */
1351 tp->snd_una = tp->snd_recover = th->th_ack;
1352 m_freem(m);
1353
1354 /*
1355 * If all outstanding data are acked, stop
1356 * retransmit timer, otherwise restart timer
1357 * using current (possibly backed-off) value.
1358 * If process is waiting for space,
1359 * wakeup/selwakeup/signal. If data
1360 * are ready to send, let tcp_output
1361 * decide between more output or persist.
1362 */
1363 if (tp->snd_una == tp->snd_max)
1364 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1365 else if (TCP_TIMER_ISARMED(tp,
1366 TCPT_PERSIST) == 0)
1367 TCP_TIMER_ARM(tp, TCPT_REXMT,
1368 tp->t_rxtcur);
1369
1370 sowwakeup(so);
1371 if (so->so_snd.sb_cc)
1372 (void) tcp_output(tp);
1373 if (tcp_saveti)
1374 m_freem(tcp_saveti);
1375 return;
1376 }
1377 } else if (th->th_ack == tp->snd_una &&
1378 LIST_FIRST(&tp->segq) == NULL &&
1379 tlen <= sbspace(&so->so_rcv)) {
1380 /*
1381 * this is a pure, in-sequence data packet
1382 * with nothing on the reassembly queue and
1383 * we have enough buffer space to take it.
1384 */
1385 ++tcpstat.tcps_preddat;
1386 tp->rcv_nxt += tlen;
1387 tcpstat.tcps_rcvpack++;
1388 tcpstat.tcps_rcvbyte += tlen;
1389 ND6_HINT(tp);
1390 /*
1391 * Drop TCP, IP headers and TCP options then add data
1392 * to socket buffer.
1393 */
1394 m_adj(m, toff + off);
1395 sbappend(&so->so_rcv, m);
1396 sorwakeup(so);
1397 TCP_SETUP_ACK(tp, th);
1398 if (tp->t_flags & TF_ACKNOW)
1399 (void) tcp_output(tp);
1400 if (tcp_saveti)
1401 m_freem(tcp_saveti);
1402 return;
1403 }
1404 }
1405
1406 /*
1407 * Compute mbuf offset to TCP data segment.
1408 */
1409 hdroptlen = toff + off;
1410
1411 /*
1412 * Calculate amount of space in receive window,
1413 * and then do TCP input processing.
1414 * Receive window is amount of space in rcv queue,
1415 * but not less than advertised window.
1416 */
1417 { int win;
1418
1419 win = sbspace(&so->so_rcv);
1420 if (win < 0)
1421 win = 0;
1422 tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1423 }
1424
1425 switch (tp->t_state) {
1426 case TCPS_LISTEN:
1427 /*
1428 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
1429 */
1430 if (m->m_flags & (M_BCAST|M_MCAST))
1431 goto drop;
1432 switch (af) {
1433 #ifdef INET6
1434 case AF_INET6:
1435 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
1436 goto drop;
1437 break;
1438 #endif /* INET6 */
1439 case AF_INET:
1440 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
1441 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
1442 goto drop;
1443 break;
1444 }
1445 break;
1446
1447 /*
1448 * If the state is SYN_SENT:
1449 * if seg contains an ACK, but not for our SYN, drop the input.
1450 * if seg contains a RST, then drop the connection.
1451 * if seg does not contain SYN, then drop it.
1452 * Otherwise this is an acceptable SYN segment
1453 * initialize tp->rcv_nxt and tp->irs
1454 * if seg contains ack then advance tp->snd_una
1455 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1456 * arrange for segment to be acked (eventually)
1457 * continue processing rest of data/controls, beginning with URG
1458 */
1459 case TCPS_SYN_SENT:
1460 if ((tiflags & TH_ACK) &&
1461 (SEQ_LEQ(th->th_ack, tp->iss) ||
1462 SEQ_GT(th->th_ack, tp->snd_max)))
1463 goto dropwithreset;
1464 if (tiflags & TH_RST) {
1465 if (tiflags & TH_ACK)
1466 tp = tcp_drop(tp, ECONNREFUSED);
1467 goto drop;
1468 }
1469 if ((tiflags & TH_SYN) == 0)
1470 goto drop;
1471 if (tiflags & TH_ACK) {
1472 tp->snd_una = tp->snd_recover = th->th_ack;
1473 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1474 tp->snd_nxt = tp->snd_una;
1475 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1476 }
1477 tp->irs = th->th_seq;
1478 tcp_rcvseqinit(tp);
1479 tp->t_flags |= TF_ACKNOW;
1480 tcp_mss_from_peer(tp, opti.maxseg);
1481
1482 /*
1483 * Initialize the initial congestion window. If we
1484 * had to retransmit the SYN, we must initialize cwnd
1485 * to 1 segment (i.e. the Loss Window).
1486 */
1487 if (tp->t_flags & TF_SYN_REXMT)
1488 tp->snd_cwnd = tp->t_peermss;
1489 else
1490 tp->snd_cwnd = TCP_INITIAL_WINDOW(tcp_init_win,
1491 tp->t_peermss);
1492
1493 tcp_rmx_rtt(tp);
1494 if (tiflags & TH_ACK) {
1495 tcpstat.tcps_connects++;
1496 soisconnected(so);
1497 tcp_established(tp);
1498 /* Do window scaling on this connection? */
1499 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1500 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1501 tp->snd_scale = tp->requested_s_scale;
1502 tp->rcv_scale = tp->request_r_scale;
1503 }
1504 TCP_REASS_LOCK(tp);
1505 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1506 TCP_REASS_UNLOCK(tp);
1507 /*
1508 * if we didn't have to retransmit the SYN,
1509 * use its rtt as our initial srtt & rtt var.
1510 */
1511 if (tp->t_rtttime)
1512 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
1513 } else
1514 tp->t_state = TCPS_SYN_RECEIVED;
1515
1516 /*
1517 * Advance th->th_seq to correspond to first data byte.
1518 * If data, trim to stay within window,
1519 * dropping FIN if necessary.
1520 */
1521 th->th_seq++;
1522 if (tlen > tp->rcv_wnd) {
1523 todrop = tlen - tp->rcv_wnd;
1524 m_adj(m, -todrop);
1525 tlen = tp->rcv_wnd;
1526 tiflags &= ~TH_FIN;
1527 tcpstat.tcps_rcvpackafterwin++;
1528 tcpstat.tcps_rcvbyteafterwin += todrop;
1529 }
1530 tp->snd_wl1 = th->th_seq - 1;
1531 tp->rcv_up = th->th_seq;
1532 goto step6;
1533
1534 /*
1535 * If the state is SYN_RECEIVED:
1536 * If seg contains an ACK, but not for our SYN, drop the input
1537 * and generate an RST. See page 36, rfc793
1538 */
1539 case TCPS_SYN_RECEIVED:
1540 if ((tiflags & TH_ACK) &&
1541 (SEQ_LEQ(th->th_ack, tp->iss) ||
1542 SEQ_GT(th->th_ack, tp->snd_max)))
1543 goto dropwithreset;
1544 break;
1545 }
1546
1547 /*
1548 * States other than LISTEN or SYN_SENT.
1549 * First check timestamp, if present.
1550 * Then check that at least some bytes of segment are within
1551 * receive window. If segment begins before rcv_nxt,
1552 * drop leading data (and SYN); if nothing left, just ack.
1553 *
1554 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1555 * and it's less than ts_recent, drop it.
1556 */
1557 if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
1558 TSTMP_LT(opti.ts_val, tp->ts_recent)) {
1559
1560 /* Check to see if ts_recent is over 24 days old. */
1561 if ((int)(TCP_TIMESTAMP(tp) - tp->ts_recent_age) >
1562 TCP_PAWS_IDLE) {
1563 /*
1564 * Invalidate ts_recent. If this segment updates
1565 * ts_recent, the age will be reset later and ts_recent
1566 * will get a valid value. If it does not, setting
1567 * ts_recent to zero will at least satisfy the
1568 * requirement that zero be placed in the timestamp
1569 * echo reply when ts_recent isn't valid. The
1570 * age isn't reset until we get a valid ts_recent
1571 * because we don't want out-of-order segments to be
1572 * dropped when ts_recent is old.
1573 */
1574 tp->ts_recent = 0;
1575 } else {
1576 tcpstat.tcps_rcvduppack++;
1577 tcpstat.tcps_rcvdupbyte += tlen;
1578 tcpstat.tcps_pawsdrop++;
1579 goto dropafterack;
1580 }
1581 }
1582
1583 todrop = tp->rcv_nxt - th->th_seq;
1584 if (todrop > 0) {
1585 if (tiflags & TH_SYN) {
1586 tiflags &= ~TH_SYN;
1587 th->th_seq++;
1588 if (th->th_urp > 1)
1589 th->th_urp--;
1590 else {
1591 tiflags &= ~TH_URG;
1592 th->th_urp = 0;
1593 }
1594 todrop--;
1595 }
1596 if (todrop > tlen ||
1597 (todrop == tlen && (tiflags & TH_FIN) == 0)) {
1598 /*
1599 * Any valid FIN must be to the left of the window.
1600 * At this point the FIN must be a duplicate or
1601 * out of sequence; drop it.
1602 */
1603 tiflags &= ~TH_FIN;
1604 /*
1605 * Send an ACK to resynchronize and drop any data.
1606 * But keep on processing for RST or ACK.
1607 */
1608 tp->t_flags |= TF_ACKNOW;
1609 todrop = tlen;
1610 tcpstat.tcps_rcvdupbyte += todrop;
1611 tcpstat.tcps_rcvduppack++;
1612 } else {
1613 tcpstat.tcps_rcvpartduppack++;
1614 tcpstat.tcps_rcvpartdupbyte += todrop;
1615 }
1616 hdroptlen += todrop; /*drop from head afterwards*/
1617 th->th_seq += todrop;
1618 tlen -= todrop;
1619 if (th->th_urp > todrop)
1620 th->th_urp -= todrop;
1621 else {
1622 tiflags &= ~TH_URG;
1623 th->th_urp = 0;
1624 }
1625 }
1626
1627 /*
1628 * If new data are received on a connection after the
1629 * user processes are gone, then RST the other end.
1630 */
1631 if ((so->so_state & SS_NOFDREF) &&
1632 tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1633 tp = tcp_close(tp);
1634 tcpstat.tcps_rcvafterclose++;
1635 goto dropwithreset;
1636 }
1637
1638 /*
1639 * If segment ends after window, drop trailing data
1640 * (and PUSH and FIN); if nothing left, just ACK.
1641 */
1642 todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
1643 if (todrop > 0) {
1644 tcpstat.tcps_rcvpackafterwin++;
1645 if (todrop >= tlen) {
1646 tcpstat.tcps_rcvbyteafterwin += tlen;
1647 /*
1648 * If a new connection request is received
1649 * while in TIME_WAIT, drop the old connection
1650 * and start over if the sequence numbers
1651 * are above the previous ones.
1652 */
1653 if (tiflags & TH_SYN &&
1654 tp->t_state == TCPS_TIME_WAIT &&
1655 SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1656 iss = tcp_new_iss(tp, tp->snd_nxt);
1657 tp = tcp_close(tp);
1658 goto findpcb;
1659 }
1660 /*
1661 * If window is closed can only take segments at
1662 * window edge, and have to drop data and PUSH from
1663 * incoming segments. Continue processing, but
1664 * remember to ack. Otherwise, drop segment
1665 * and ack.
1666 */
1667 if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1668 tp->t_flags |= TF_ACKNOW;
1669 tcpstat.tcps_rcvwinprobe++;
1670 } else
1671 goto dropafterack;
1672 } else
1673 tcpstat.tcps_rcvbyteafterwin += todrop;
1674 m_adj(m, -todrop);
1675 tlen -= todrop;
1676 tiflags &= ~(TH_PUSH|TH_FIN);
1677 }
1678
1679 /*
1680 * If last ACK falls within this segment's sequence numbers,
1681 * and the timestamp is newer, record it.
1682 */
1683 if (opti.ts_present && TSTMP_GEQ(opti.ts_val, tp->ts_recent) &&
1684 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1685 SEQ_LT(tp->last_ack_sent, th->th_seq + tlen +
1686 ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
1687 tp->ts_recent_age = TCP_TIMESTAMP(tp);
1688 tp->ts_recent = opti.ts_val;
1689 }
1690
1691 /*
1692 * If the RST bit is set examine the state:
1693 * SYN_RECEIVED STATE:
1694 * If passive open, return to LISTEN state.
1695 * If active open, inform user that connection was refused.
1696 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
1697 * Inform user that connection was reset, and close tcb.
1698 * CLOSING, LAST_ACK, TIME_WAIT STATES
1699 * Close the tcb.
1700 */
1701 if (tiflags&TH_RST) switch (tp->t_state) {
1702
1703 case TCPS_SYN_RECEIVED:
1704 so->so_error = ECONNREFUSED;
1705 goto close;
1706
1707 case TCPS_ESTABLISHED:
1708 case TCPS_FIN_WAIT_1:
1709 case TCPS_FIN_WAIT_2:
1710 case TCPS_CLOSE_WAIT:
1711 so->so_error = ECONNRESET;
1712 close:
1713 tp->t_state = TCPS_CLOSED;
1714 tcpstat.tcps_drops++;
1715 tp = tcp_close(tp);
1716 goto drop;
1717
1718 case TCPS_CLOSING:
1719 case TCPS_LAST_ACK:
1720 case TCPS_TIME_WAIT:
1721 tp = tcp_close(tp);
1722 goto drop;
1723 }
1724
1725 /*
1726 * If a SYN is in the window, then this is an
1727 * error and we send an RST and drop the connection.
1728 */
1729 if (tiflags & TH_SYN) {
1730 tp = tcp_drop(tp, ECONNRESET);
1731 goto dropwithreset;
1732 }
1733
1734 /*
1735 * If the ACK bit is off we drop the segment and return.
1736 */
1737 if ((tiflags & TH_ACK) == 0) {
1738 if (tp->t_flags & TF_ACKNOW)
1739 goto dropafterack;
1740 else
1741 goto drop;
1742 }
1743
1744 /*
1745 * Ack processing.
1746 */
1747 switch (tp->t_state) {
1748
1749 /*
1750 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
1751 * ESTABLISHED state and continue processing, otherwise
1752 * send an RST.
1753 */
1754 case TCPS_SYN_RECEIVED:
1755 if (SEQ_GT(tp->snd_una, th->th_ack) ||
1756 SEQ_GT(th->th_ack, tp->snd_max))
1757 goto dropwithreset;
1758 tcpstat.tcps_connects++;
1759 soisconnected(so);
1760 tcp_established(tp);
1761 /* Do window scaling? */
1762 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1763 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1764 tp->snd_scale = tp->requested_s_scale;
1765 tp->rcv_scale = tp->request_r_scale;
1766 }
1767 TCP_REASS_LOCK(tp);
1768 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1769 TCP_REASS_UNLOCK(tp);
1770 tp->snd_wl1 = th->th_seq - 1;
1771 /* fall into ... */
1772
1773 /*
1774 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1775 * ACKs. If the ack is in the range
1776 * tp->snd_una < th->th_ack <= tp->snd_max
1777 * then advance tp->snd_una to th->th_ack and drop
1778 * data from the retransmission queue. If this ACK reflects
1779 * more up to date window information we update our window information.
1780 */
1781 case TCPS_ESTABLISHED:
1782 case TCPS_FIN_WAIT_1:
1783 case TCPS_FIN_WAIT_2:
1784 case TCPS_CLOSE_WAIT:
1785 case TCPS_CLOSING:
1786 case TCPS_LAST_ACK:
1787 case TCPS_TIME_WAIT:
1788
1789 if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
1790 if (tlen == 0 && tiwin == tp->snd_wnd) {
1791 tcpstat.tcps_rcvdupack++;
1792 /*
1793 * If we have outstanding data (other than
1794 * a window probe), this is a completely
1795 * duplicate ack (ie, window info didn't
1796 * change), the ack is the biggest we've
1797 * seen and we've seen exactly our rexmt
1798 * threshhold of them, assume a packet
1799 * has been dropped and retransmit it.
1800 * Kludge snd_nxt & the congestion
1801 * window so we send only this one
1802 * packet.
1803 *
1804 * We know we're losing at the current
1805 * window size so do congestion avoidance
1806 * (set ssthresh to half the current window
1807 * and pull our congestion window back to
1808 * the new ssthresh).
1809 *
1810 * Dup acks mean that packets have left the
1811 * network (they're now cached at the receiver)
1812 * so bump cwnd by the amount in the receiver
1813 * to keep a constant cwnd packets in the
1814 * network.
1815 */
1816 if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
1817 th->th_ack != tp->snd_una)
1818 tp->t_dupacks = 0;
1819 else if (++tp->t_dupacks == tcprexmtthresh) {
1820 tcp_seq onxt = tp->snd_nxt;
1821 u_int win =
1822 min(tp->snd_wnd, tp->snd_cwnd) /
1823 2 / tp->t_segsz;
1824 if (tcp_do_newreno && SEQ_LT(th->th_ack,
1825 tp->snd_recover)) {
1826 /*
1827 * False fast retransmit after
1828 * timeout. Do not cut window.
1829 */
1830 tp->snd_cwnd += tp->t_segsz;
1831 tp->t_dupacks = 0;
1832 (void) tcp_output(tp);
1833 goto drop;
1834 }
1835
1836 if (win < 2)
1837 win = 2;
1838 tp->snd_ssthresh = win * tp->t_segsz;
1839 tp->snd_recover = tp->snd_max;
1840 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1841 tp->t_rtttime = 0;
1842 tp->snd_nxt = th->th_ack;
1843 tp->snd_cwnd = tp->t_segsz;
1844 (void) tcp_output(tp);
1845 tp->snd_cwnd = tp->snd_ssthresh +
1846 tp->t_segsz * tp->t_dupacks;
1847 if (SEQ_GT(onxt, tp->snd_nxt))
1848 tp->snd_nxt = onxt;
1849 goto drop;
1850 } else if (tp->t_dupacks > tcprexmtthresh) {
1851 tp->snd_cwnd += tp->t_segsz;
1852 (void) tcp_output(tp);
1853 goto drop;
1854 }
1855 } else
1856 tp->t_dupacks = 0;
1857 break;
1858 }
1859 /*
1860 * If the congestion window was inflated to account
1861 * for the other side's cached packets, retract it.
1862 */
1863 if (tcp_do_newreno == 0) {
1864 if (tp->t_dupacks >= tcprexmtthresh &&
1865 tp->snd_cwnd > tp->snd_ssthresh)
1866 tp->snd_cwnd = tp->snd_ssthresh;
1867 tp->t_dupacks = 0;
1868 } else if (tp->t_dupacks >= tcprexmtthresh &&
1869 tcp_newreno(tp, th) == 0) {
1870 tp->snd_cwnd = tp->snd_ssthresh;
1871 /*
1872 * Window inflation should have left us with approx.
1873 * snd_ssthresh outstanding data. But in case we
1874 * would be inclined to send a burst, better to do
1875 * it via the slow start mechanism.
1876 */
1877 if (SEQ_SUB(tp->snd_max, th->th_ack) < tp->snd_ssthresh)
1878 tp->snd_cwnd = SEQ_SUB(tp->snd_max, th->th_ack)
1879 + tp->t_segsz;
1880 tp->t_dupacks = 0;
1881 }
1882 if (SEQ_GT(th->th_ack, tp->snd_max)) {
1883 tcpstat.tcps_rcvacktoomuch++;
1884 goto dropafterack;
1885 }
1886 acked = th->th_ack - tp->snd_una;
1887 tcpstat.tcps_rcvackpack++;
1888 tcpstat.tcps_rcvackbyte += acked;
1889
1890 /*
1891 * If we have a timestamp reply, update smoothed
1892 * round trip time. If no timestamp is present but
1893 * transmit timer is running and timed sequence
1894 * number was acked, update smoothed round trip time.
1895 * Since we now have an rtt measurement, cancel the
1896 * timer backoff (cf., Phil Karn's retransmit alg.).
1897 * Recompute the initial retransmit timer.
1898 */
1899 if (opti.ts_present && opti.ts_ecr)
1900 tcp_xmit_timer(tp, TCP_TIMESTAMP(tp) - opti.ts_ecr + 1);
1901 else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
1902 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
1903
1904 /*
1905 * If all outstanding data is acked, stop retransmit
1906 * timer and remember to restart (more output or persist).
1907 * If there is more data to be acked, restart retransmit
1908 * timer, using current (possibly backed-off) value.
1909 */
1910 if (th->th_ack == tp->snd_max) {
1911 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1912 needoutput = 1;
1913 } else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
1914 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
1915 /*
1916 * When new data is acked, open the congestion window.
1917 * If the window gives us less than ssthresh packets
1918 * in flight, open exponentially (segsz per packet).
1919 * Otherwise open linearly: segsz per window
1920 * (segsz^2 / cwnd per packet), plus a constant
1921 * fraction of a packet (segsz/8) to help larger windows
1922 * open quickly enough.
1923 */
1924 {
1925 u_int cw = tp->snd_cwnd;
1926 u_int incr = tp->t_segsz;
1927
1928 if (cw > tp->snd_ssthresh)
1929 incr = incr * incr / cw;
1930 if (tcp_do_newreno == 0 || SEQ_GEQ(th->th_ack, tp->snd_recover))
1931 tp->snd_cwnd = min(cw + incr,
1932 TCP_MAXWIN << tp->snd_scale);
1933 }
1934 ND6_HINT(tp);
1935 if (acked > so->so_snd.sb_cc) {
1936 tp->snd_wnd -= so->so_snd.sb_cc;
1937 sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
1938 ourfinisacked = 1;
1939 } else {
1940 sbdrop(&so->so_snd, acked);
1941 tp->snd_wnd -= acked;
1942 ourfinisacked = 0;
1943 }
1944 sowwakeup(so);
1945 /*
1946 * We want snd_recover to track snd_una to
1947 * avoid sequence wraparound problems for
1948 * very large transfers.
1949 */
1950 tp->snd_una = tp->snd_recover = th->th_ack;
1951 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1952 tp->snd_nxt = tp->snd_una;
1953
1954 switch (tp->t_state) {
1955
1956 /*
1957 * In FIN_WAIT_1 STATE in addition to the processing
1958 * for the ESTABLISHED state if our FIN is now acknowledged
1959 * then enter FIN_WAIT_2.
1960 */
1961 case TCPS_FIN_WAIT_1:
1962 if (ourfinisacked) {
1963 /*
1964 * If we can't receive any more
1965 * data, then closing user can proceed.
1966 * Starting the timer is contrary to the
1967 * specification, but if we don't get a FIN
1968 * we'll hang forever.
1969 */
1970 if (so->so_state & SS_CANTRCVMORE) {
1971 soisdisconnected(so);
1972 if (tcp_maxidle > 0)
1973 TCP_TIMER_ARM(tp, TCPT_2MSL,
1974 tcp_maxidle);
1975 }
1976 tp->t_state = TCPS_FIN_WAIT_2;
1977 }
1978 break;
1979
1980 /*
1981 * In CLOSING STATE in addition to the processing for
1982 * the ESTABLISHED state if the ACK acknowledges our FIN
1983 * then enter the TIME-WAIT state, otherwise ignore
1984 * the segment.
1985 */
1986 case TCPS_CLOSING:
1987 if (ourfinisacked) {
1988 tp->t_state = TCPS_TIME_WAIT;
1989 tcp_canceltimers(tp);
1990 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
1991 soisdisconnected(so);
1992 }
1993 break;
1994
1995 /*
1996 * In LAST_ACK, we may still be waiting for data to drain
1997 * and/or to be acked, as well as for the ack of our FIN.
1998 * If our FIN is now acknowledged, delete the TCB,
1999 * enter the closed state and return.
2000 */
2001 case TCPS_LAST_ACK:
2002 if (ourfinisacked) {
2003 tp = tcp_close(tp);
2004 goto drop;
2005 }
2006 break;
2007
2008 /*
2009 * In TIME_WAIT state the only thing that should arrive
2010 * is a retransmission of the remote FIN. Acknowledge
2011 * it and restart the finack timer.
2012 */
2013 case TCPS_TIME_WAIT:
2014 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2015 goto dropafterack;
2016 }
2017 }
2018
2019 step6:
2020 /*
2021 * Update window information.
2022 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2023 */
2024 if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2025 (tp->snd_wl1 == th->th_seq && SEQ_LT(tp->snd_wl2, th->th_ack)) ||
2026 (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))) {
2027 /* keep track of pure window updates */
2028 if (tlen == 0 &&
2029 tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2030 tcpstat.tcps_rcvwinupd++;
2031 tp->snd_wnd = tiwin;
2032 tp->snd_wl1 = th->th_seq;
2033 tp->snd_wl2 = th->th_ack;
2034 if (tp->snd_wnd > tp->max_sndwnd)
2035 tp->max_sndwnd = tp->snd_wnd;
2036 needoutput = 1;
2037 }
2038
2039 /*
2040 * Process segments with URG.
2041 */
2042 if ((tiflags & TH_URG) && th->th_urp &&
2043 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2044 /*
2045 * This is a kludge, but if we receive and accept
2046 * random urgent pointers, we'll crash in
2047 * soreceive. It's hard to imagine someone
2048 * actually wanting to send this much urgent data.
2049 */
2050 if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2051 th->th_urp = 0; /* XXX */
2052 tiflags &= ~TH_URG; /* XXX */
2053 goto dodata; /* XXX */
2054 }
2055 /*
2056 * If this segment advances the known urgent pointer,
2057 * then mark the data stream. This should not happen
2058 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2059 * a FIN has been received from the remote side.
2060 * In these states we ignore the URG.
2061 *
2062 * According to RFC961 (Assigned Protocols),
2063 * the urgent pointer points to the last octet
2064 * of urgent data. We continue, however,
2065 * to consider it to indicate the first octet
2066 * of data past the urgent section as the original
2067 * spec states (in one of two places).
2068 */
2069 if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2070 tp->rcv_up = th->th_seq + th->th_urp;
2071 so->so_oobmark = so->so_rcv.sb_cc +
2072 (tp->rcv_up - tp->rcv_nxt) - 1;
2073 if (so->so_oobmark == 0)
2074 so->so_state |= SS_RCVATMARK;
2075 sohasoutofband(so);
2076 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2077 }
2078 /*
2079 * Remove out of band data so doesn't get presented to user.
2080 * This can happen independent of advancing the URG pointer,
2081 * but if two URG's are pending at once, some out-of-band
2082 * data may creep in... ick.
2083 */
2084 if (th->th_urp <= (u_int16_t) tlen
2085 #ifdef SO_OOBINLINE
2086 && (so->so_options & SO_OOBINLINE) == 0
2087 #endif
2088 )
2089 tcp_pulloutofband(so, th, m, hdroptlen);
2090 } else
2091 /*
2092 * If no out of band data is expected,
2093 * pull receive urgent pointer along
2094 * with the receive window.
2095 */
2096 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2097 tp->rcv_up = tp->rcv_nxt;
2098 dodata: /* XXX */
2099
2100 /*
2101 * Process the segment text, merging it into the TCP sequencing queue,
2102 * and arranging for acknowledgement of receipt if necessary.
2103 * This process logically involves adjusting tp->rcv_wnd as data
2104 * is presented to the user (this happens in tcp_usrreq.c,
2105 * case PRU_RCVD). If a FIN has already been received on this
2106 * connection then we just ignore the text.
2107 */
2108 if ((tlen || (tiflags & TH_FIN)) &&
2109 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2110 /*
2111 * Insert segment ti into reassembly queue of tcp with
2112 * control block tp. Return TH_FIN if reassembly now includes
2113 * a segment with FIN. The macro form does the common case
2114 * inline (segment is the next to be received on an
2115 * established connection, and the queue is empty),
2116 * avoiding linkage into and removal from the queue and
2117 * repetition of various conversions.
2118 * Set DELACK for segments received in order, but ack
2119 * immediately when segments are out of order
2120 * (so fast retransmit can work).
2121 */
2122 /* NOTE: this was TCP_REASS() macro, but used only once */
2123 TCP_REASS_LOCK(tp);
2124 if (th->th_seq == tp->rcv_nxt &&
2125 LIST_FIRST(&tp->segq) == NULL &&
2126 tp->t_state == TCPS_ESTABLISHED) {
2127 TCP_SETUP_ACK(tp, th);
2128 tp->rcv_nxt += tlen;
2129 tiflags = th->th_flags & TH_FIN;
2130 tcpstat.tcps_rcvpack++;
2131 tcpstat.tcps_rcvbyte += tlen;
2132 ND6_HINT(tp);
2133 m_adj(m, hdroptlen);
2134 sbappend(&(so)->so_rcv, m);
2135 sorwakeup(so);
2136 } else {
2137 m_adj(m, hdroptlen);
2138 tiflags = tcp_reass(tp, th, m, &tlen);
2139 tp->t_flags |= TF_ACKNOW;
2140 }
2141 TCP_REASS_UNLOCK(tp);
2142
2143 /*
2144 * Note the amount of data that peer has sent into
2145 * our window, in order to estimate the sender's
2146 * buffer size.
2147 */
2148 len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2149 } else {
2150 m_freem(m);
2151 m = NULL;
2152 tiflags &= ~TH_FIN;
2153 }
2154
2155 /*
2156 * If FIN is received ACK the FIN and let the user know
2157 * that the connection is closing. Ignore a FIN received before
2158 * the connection is fully established.
2159 */
2160 if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2161 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2162 socantrcvmore(so);
2163 tp->t_flags |= TF_ACKNOW;
2164 tp->rcv_nxt++;
2165 }
2166 switch (tp->t_state) {
2167
2168 /*
2169 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2170 */
2171 case TCPS_ESTABLISHED:
2172 tp->t_state = TCPS_CLOSE_WAIT;
2173 break;
2174
2175 /*
2176 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2177 * enter the CLOSING state.
2178 */
2179 case TCPS_FIN_WAIT_1:
2180 tp->t_state = TCPS_CLOSING;
2181 break;
2182
2183 /*
2184 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2185 * starting the time-wait timer, turning off the other
2186 * standard timers.
2187 */
2188 case TCPS_FIN_WAIT_2:
2189 tp->t_state = TCPS_TIME_WAIT;
2190 tcp_canceltimers(tp);
2191 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2192 soisdisconnected(so);
2193 break;
2194
2195 /*
2196 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2197 */
2198 case TCPS_TIME_WAIT:
2199 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2200 break;
2201 }
2202 }
2203 #ifdef TCP_DEBUG
2204 if (so->so_options & SO_DEBUG)
2205 tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
2206 #endif
2207
2208 /*
2209 * Return any desired output.
2210 */
2211 if (needoutput || (tp->t_flags & TF_ACKNOW))
2212 (void) tcp_output(tp);
2213 if (tcp_saveti)
2214 m_freem(tcp_saveti);
2215 return;
2216
2217 badsyn:
2218 /*
2219 * Received a bad SYN. Increment counters and dropwithreset.
2220 */
2221 tcpstat.tcps_badsyn++;
2222 tp = NULL;
2223 goto dropwithreset;
2224
2225 dropafterack:
2226 /*
2227 * Generate an ACK dropping incoming segment if it occupies
2228 * sequence space, where the ACK reflects our state.
2229 */
2230 if (tiflags & TH_RST)
2231 goto drop;
2232 m_freem(m);
2233 tp->t_flags |= TF_ACKNOW;
2234 (void) tcp_output(tp);
2235 if (tcp_saveti)
2236 m_freem(tcp_saveti);
2237 return;
2238
2239 dropwithreset_ratelim:
2240 /*
2241 * We may want to rate-limit RSTs in certain situations,
2242 * particularly if we are sending an RST in response to
2243 * an attempt to connect to or otherwise communicate with
2244 * a port for which we have no socket.
2245 */
2246 if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
2247 tcp_rst_ppslim) == 0) {
2248 /* XXX stat */
2249 goto drop;
2250 }
2251 /* ...fall into dropwithreset... */
2252
2253 dropwithreset:
2254 /*
2255 * Generate a RST, dropping incoming segment.
2256 * Make ACK acceptable to originator of segment.
2257 */
2258 if (tiflags & TH_RST)
2259 goto drop;
2260
2261 switch (af) {
2262 #ifdef INET6
2263 case AF_INET6:
2264 /* For following calls to tcp_respond */
2265 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
2266 goto drop;
2267 break;
2268 #endif /* INET6 */
2269 case AF_INET:
2270 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
2271 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2272 goto drop;
2273 }
2274
2275 {
2276 /*
2277 * need to recover version # field, which was overwritten on
2278 * ip_cksum computation.
2279 */
2280 struct ip *sip;
2281 sip = mtod(m, struct ip *);
2282 switch (af) {
2283 #ifdef INET
2284 case AF_INET:
2285 sip->ip_v = 4;
2286 break;
2287 #endif
2288 #ifdef INET6
2289 case AF_INET6:
2290 sip->ip_v = 6;
2291 break;
2292 #endif
2293 }
2294 }
2295 if (tiflags & TH_ACK)
2296 (void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
2297 else {
2298 if (tiflags & TH_SYN)
2299 tlen++;
2300 (void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
2301 TH_RST|TH_ACK);
2302 }
2303 if (tcp_saveti)
2304 m_freem(tcp_saveti);
2305 return;
2306
2307 badcsum:
2308 tcpstat.tcps_rcvbadsum++;
2309 drop:
2310 /*
2311 * Drop space held by incoming segment and return.
2312 */
2313 if (tp) {
2314 if (tp->t_inpcb)
2315 so = tp->t_inpcb->inp_socket;
2316 #ifdef INET6
2317 else if (tp->t_in6pcb)
2318 so = tp->t_in6pcb->in6p_socket;
2319 #endif
2320 else
2321 so = NULL;
2322 #ifdef TCP_DEBUG
2323 if (so && (so->so_options & SO_DEBUG) != 0)
2324 tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
2325 #endif
2326 }
2327 if (tcp_saveti)
2328 m_freem(tcp_saveti);
2329 m_freem(m);
2330 return;
2331 }
2332
2333 void
2334 tcp_dooptions(tp, cp, cnt, th, oi)
2335 struct tcpcb *tp;
2336 u_char *cp;
2337 int cnt;
2338 struct tcphdr *th;
2339 struct tcp_opt_info *oi;
2340 {
2341 u_int16_t mss;
2342 int opt, optlen;
2343
2344 for (; cnt > 0; cnt -= optlen, cp += optlen) {
2345 opt = cp[0];
2346 if (opt == TCPOPT_EOL)
2347 break;
2348 if (opt == TCPOPT_NOP)
2349 optlen = 1;
2350 else {
2351 if (cnt < 2)
2352 break;
2353 optlen = cp[1];
2354 if (optlen < 2 || optlen > cnt)
2355 break;
2356 }
2357 switch (opt) {
2358
2359 default:
2360 continue;
2361
2362 case TCPOPT_MAXSEG:
2363 if (optlen != TCPOLEN_MAXSEG)
2364 continue;
2365 if (!(th->th_flags & TH_SYN))
2366 continue;
2367 bcopy(cp + 2, &mss, sizeof(mss));
2368 oi->maxseg = ntohs(mss);
2369 break;
2370
2371 case TCPOPT_WINDOW:
2372 if (optlen != TCPOLEN_WINDOW)
2373 continue;
2374 if (!(th->th_flags & TH_SYN))
2375 continue;
2376 tp->t_flags |= TF_RCVD_SCALE;
2377 tp->requested_s_scale = cp[2];
2378 if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
2379 #if 0 /*XXX*/
2380 char *p;
2381
2382 if (ip)
2383 p = ntohl(ip->ip_src);
2384 #ifdef INET6
2385 else if (ip6)
2386 p = ip6_sprintf(&ip6->ip6_src);
2387 #endif
2388 else
2389 p = "(unknown)";
2390 log(LOG_ERR, "TCP: invalid wscale %d from %s, "
2391 "assuming %d\n",
2392 tp->requested_s_scale, p,
2393 TCP_MAX_WINSHIFT);
2394 #else
2395 log(LOG_ERR, "TCP: invalid wscale %d, "
2396 "assuming %d\n",
2397 tp->requested_s_scale,
2398 TCP_MAX_WINSHIFT);
2399 #endif
2400 tp->requested_s_scale = TCP_MAX_WINSHIFT;
2401 }
2402 break;
2403
2404 case TCPOPT_TIMESTAMP:
2405 if (optlen != TCPOLEN_TIMESTAMP)
2406 continue;
2407 oi->ts_present = 1;
2408 bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
2409 NTOHL(oi->ts_val);
2410 bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
2411 NTOHL(oi->ts_ecr);
2412
2413 /*
2414 * A timestamp received in a SYN makes
2415 * it ok to send timestamp requests and replies.
2416 */
2417 if (th->th_flags & TH_SYN) {
2418 tp->t_flags |= TF_RCVD_TSTMP;
2419 tp->ts_recent = oi->ts_val;
2420 tp->ts_recent_age = TCP_TIMESTAMP(tp);
2421 }
2422 break;
2423 case TCPOPT_SACK_PERMITTED:
2424 if (optlen != TCPOLEN_SACK_PERMITTED)
2425 continue;
2426 if (!(th->th_flags & TH_SYN))
2427 continue;
2428 tp->t_flags &= ~TF_CANT_TXSACK;
2429 break;
2430
2431 case TCPOPT_SACK:
2432 if (tp->t_flags & TF_IGNR_RXSACK)
2433 continue;
2434 if (optlen % 8 != 2 || optlen < 10)
2435 continue;
2436 cp += 2;
2437 optlen -= 2;
2438 for (; optlen > 0; cp -= 8, optlen -= 8) {
2439 tcp_seq lwe, rwe;
2440 bcopy((char *)cp, (char *) &lwe, sizeof(lwe));
2441 NTOHL(lwe);
2442 bcopy((char *)cp, (char *) &rwe, sizeof(rwe));
2443 NTOHL(rwe);
2444 /* tcp_mark_sacked(tp, lwe, rwe); */
2445 }
2446 break;
2447 }
2448 }
2449 }
2450
2451 /*
2452 * Pull out of band byte out of a segment so
2453 * it doesn't appear in the user's data queue.
2454 * It is still reflected in the segment length for
2455 * sequencing purposes.
2456 */
2457 void
2458 tcp_pulloutofband(so, th, m, off)
2459 struct socket *so;
2460 struct tcphdr *th;
2461 struct mbuf *m;
2462 int off;
2463 {
2464 int cnt = off + th->th_urp - 1;
2465
2466 while (cnt >= 0) {
2467 if (m->m_len > cnt) {
2468 char *cp = mtod(m, caddr_t) + cnt;
2469 struct tcpcb *tp = sototcpcb(so);
2470
2471 tp->t_iobc = *cp;
2472 tp->t_oobflags |= TCPOOB_HAVEDATA;
2473 bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
2474 m->m_len--;
2475 return;
2476 }
2477 cnt -= m->m_len;
2478 m = m->m_next;
2479 if (m == 0)
2480 break;
2481 }
2482 panic("tcp_pulloutofband");
2483 }
2484
2485 /*
2486 * Collect new round-trip time estimate
2487 * and update averages and current timeout.
2488 */
2489 void
2490 tcp_xmit_timer(tp, rtt)
2491 struct tcpcb *tp;
2492 uint32_t rtt;
2493 {
2494 int32_t delta;
2495
2496 tcpstat.tcps_rttupdated++;
2497 if (tp->t_srtt != 0) {
2498 /*
2499 * srtt is stored as fixed point with 3 bits after the
2500 * binary point (i.e., scaled by 8). The following magic
2501 * is equivalent to the smoothing algorithm in rfc793 with
2502 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2503 * point). Adjust rtt to origin 0.
2504 */
2505 delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
2506 if ((tp->t_srtt += delta) <= 0)
2507 tp->t_srtt = 1 << 2;
2508 /*
2509 * We accumulate a smoothed rtt variance (actually, a
2510 * smoothed mean difference), then set the retransmit
2511 * timer to smoothed rtt + 4 times the smoothed variance.
2512 * rttvar is stored as fixed point with 2 bits after the
2513 * binary point (scaled by 4). The following is
2514 * equivalent to rfc793 smoothing with an alpha of .75
2515 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces
2516 * rfc793's wired-in beta.
2517 */
2518 if (delta < 0)
2519 delta = -delta;
2520 delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
2521 if ((tp->t_rttvar += delta) <= 0)
2522 tp->t_rttvar = 1 << 2;
2523 } else {
2524 /*
2525 * No rtt measurement yet - use the unsmoothed rtt.
2526 * Set the variance to half the rtt (so our first
2527 * retransmit happens at 3*rtt).
2528 */
2529 tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
2530 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
2531 }
2532 tp->t_rtttime = 0;
2533 tp->t_rxtshift = 0;
2534
2535 /*
2536 * the retransmit should happen at rtt + 4 * rttvar.
2537 * Because of the way we do the smoothing, srtt and rttvar
2538 * will each average +1/2 tick of bias. When we compute
2539 * the retransmit timer, we want 1/2 tick of rounding and
2540 * 1 extra tick because of +-1/2 tick uncertainty in the
2541 * firing of the timer. The bias will give us exactly the
2542 * 1.5 tick we need. But, because the bias is
2543 * statistical, we have to test that we don't drop below
2544 * the minimum feasible timer (which is 2 ticks).
2545 */
2546 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
2547 max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
2548
2549 /*
2550 * We received an ack for a packet that wasn't retransmitted;
2551 * it is probably safe to discard any error indications we've
2552 * received recently. This isn't quite right, but close enough
2553 * for now (a route might have failed after we sent a segment,
2554 * and the return path might not be symmetrical).
2555 */
2556 tp->t_softerror = 0;
2557 }
2558
2559 /*
2560 * Checks for partial ack. If partial ack arrives, force the retransmission
2561 * of the next unacknowledged segment, do not clear tp->t_dupacks, and return
2562 * 1. By setting snd_nxt to th_ack, this forces retransmission timer to
2563 * be started again. If the ack advances at least to tp->snd_recover, return 0.
2564 */
2565 int
2566 tcp_newreno(tp, th)
2567 struct tcpcb *tp;
2568 struct tcphdr *th;
2569 {
2570 tcp_seq onxt = tp->snd_nxt;
2571 u_long ocwnd = tp->snd_cwnd;
2572
2573 if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2574 /*
2575 * snd_una has not yet been updated and the socket's send
2576 * buffer has not yet drained off the ACK'd data, so we
2577 * have to leave snd_una as it was to get the correct data
2578 * offset in tcp_output().
2579 */
2580 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2581 tp->t_rtttime = 0;
2582 tp->snd_nxt = th->th_ack;
2583 /*
2584 * Set snd_cwnd to one segment beyond ACK'd offset. snd_una
2585 * is not yet updated when we're called.
2586 */
2587 tp->snd_cwnd = tp->t_segsz + (th->th_ack - tp->snd_una);
2588 (void) tcp_output(tp);
2589 tp->snd_cwnd = ocwnd;
2590 if (SEQ_GT(onxt, tp->snd_nxt))
2591 tp->snd_nxt = onxt;
2592 /*
2593 * Partial window deflation. Relies on fact that tp->snd_una
2594 * not updated yet.
2595 */
2596 tp->snd_cwnd -= (th->th_ack - tp->snd_una - tp->t_segsz);
2597 return 1;
2598 }
2599 return 0;
2600 }
2601
2602
2603 /*
2604 * TCP compressed state engine. Currently used to hold compressed
2605 * state for SYN_RECEIVED.
2606 */
2607
2608 u_long syn_cache_count;
2609 u_int32_t syn_hash1, syn_hash2;
2610
2611 #define SYN_HASH(sa, sp, dp) \
2612 ((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
2613 ((u_int32_t)(sp)))^syn_hash2)))
2614 #ifndef INET6
2615 #define SYN_HASHALL(hash, src, dst) \
2616 do { \
2617 hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
2618 ((struct sockaddr_in *)(src))->sin_port, \
2619 ((struct sockaddr_in *)(dst))->sin_port); \
2620 } while (0)
2621 #else
2622 #define SYN_HASH6(sa, sp, dp) \
2623 ((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
2624 (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
2625 & 0x7fffffff)
2626
2627 #define SYN_HASHALL(hash, src, dst) \
2628 do { \
2629 switch ((src)->sa_family) { \
2630 case AF_INET: \
2631 hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
2632 ((struct sockaddr_in *)(src))->sin_port, \
2633 ((struct sockaddr_in *)(dst))->sin_port); \
2634 break; \
2635 case AF_INET6: \
2636 hash = SYN_HASH6(&((struct sockaddr_in6 *)(src))->sin6_addr, \
2637 ((struct sockaddr_in6 *)(src))->sin6_port, \
2638 ((struct sockaddr_in6 *)(dst))->sin6_port); \
2639 break; \
2640 default: \
2641 hash = 0; \
2642 } \
2643 } while (/*CONSTCOND*/0)
2644 #endif /* INET6 */
2645
2646 #define SYN_CACHE_RM(sc) \
2647 do { \
2648 TAILQ_REMOVE(&tcp_syn_cache[(sc)->sc_bucketidx].sch_bucket, \
2649 (sc), sc_bucketq); \
2650 (sc)->sc_tp = NULL; \
2651 LIST_REMOVE((sc), sc_tpq); \
2652 tcp_syn_cache[(sc)->sc_bucketidx].sch_length--; \
2653 callout_stop(&(sc)->sc_timer); \
2654 syn_cache_count--; \
2655 } while (/*CONSTCOND*/0)
2656
2657 #define SYN_CACHE_PUT(sc) \
2658 do { \
2659 if ((sc)->sc_ipopts) \
2660 (void) m_free((sc)->sc_ipopts); \
2661 if ((sc)->sc_route4.ro_rt != NULL) \
2662 RTFREE((sc)->sc_route4.ro_rt); \
2663 pool_put(&syn_cache_pool, (sc)); \
2664 } while (/*CONSTCOND*/0)
2665
2666 struct pool syn_cache_pool;
2667
2668 /*
2669 * We don't estimate RTT with SYNs, so each packet starts with the default
2670 * RTT and each timer step has a fixed timeout value.
2671 */
2672 #define SYN_CACHE_TIMER_ARM(sc) \
2673 do { \
2674 TCPT_RANGESET((sc)->sc_rxtcur, \
2675 TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN, \
2676 TCPTV_REXMTMAX); \
2677 callout_reset(&(sc)->sc_timer, \
2678 (sc)->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, (sc)); \
2679 } while (/*CONSTCOND*/0)
2680
2681 #define SYN_CACHE_TIMESTAMP(sc) (tcp_now - (sc)->sc_timebase)
2682
2683 void
2684 syn_cache_init()
2685 {
2686 int i;
2687
2688 /* Initialize the hash buckets. */
2689 for (i = 0; i < tcp_syn_cache_size; i++)
2690 TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
2691
2692 /* Initialize the syn cache pool. */
2693 pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
2694 "synpl", NULL);
2695 }
2696
2697 void
2698 syn_cache_insert(sc, tp)
2699 struct syn_cache *sc;
2700 struct tcpcb *tp;
2701 {
2702 struct syn_cache_head *scp;
2703 struct syn_cache *sc2;
2704 int s;
2705
2706 /*
2707 * If there are no entries in the hash table, reinitialize
2708 * the hash secrets.
2709 */
2710 if (syn_cache_count == 0) {
2711 struct timeval tv;
2712 microtime(&tv);
2713 syn_hash1 = random() ^ (u_long)≻
2714 syn_hash2 = random() ^ tv.tv_usec;
2715 }
2716
2717 SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
2718 sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
2719 scp = &tcp_syn_cache[sc->sc_bucketidx];
2720
2721 /*
2722 * Make sure that we don't overflow the per-bucket
2723 * limit or the total cache size limit.
2724 */
2725 s = splsoftnet();
2726 if (scp->sch_length >= tcp_syn_bucket_limit) {
2727 tcpstat.tcps_sc_bucketoverflow++;
2728 /*
2729 * The bucket is full. Toss the oldest element in the
2730 * bucket. This will be the first entry in the bucket.
2731 */
2732 sc2 = TAILQ_FIRST(&scp->sch_bucket);
2733 #ifdef DIAGNOSTIC
2734 /*
2735 * This should never happen; we should always find an
2736 * entry in our bucket.
2737 */
2738 if (sc2 == NULL)
2739 panic("syn_cache_insert: bucketoverflow: impossible");
2740 #endif
2741 SYN_CACHE_RM(sc2);
2742 SYN_CACHE_PUT(sc2);
2743 } else if (syn_cache_count >= tcp_syn_cache_limit) {
2744 struct syn_cache_head *scp2, *sce;
2745
2746 tcpstat.tcps_sc_overflowed++;
2747 /*
2748 * The cache is full. Toss the oldest entry in the
2749 * first non-empty bucket we can find.
2750 *
2751 * XXX We would really like to toss the oldest
2752 * entry in the cache, but we hope that this
2753 * condition doesn't happen very often.
2754 */
2755 scp2 = scp;
2756 if (TAILQ_EMPTY(&scp2->sch_bucket)) {
2757 sce = &tcp_syn_cache[tcp_syn_cache_size];
2758 for (++scp2; scp2 != scp; scp2++) {
2759 if (scp2 >= sce)
2760 scp2 = &tcp_syn_cache[0];
2761 if (! TAILQ_EMPTY(&scp2->sch_bucket))
2762 break;
2763 }
2764 #ifdef DIAGNOSTIC
2765 /*
2766 * This should never happen; we should always find a
2767 * non-empty bucket.
2768 */
2769 if (scp2 == scp)
2770 panic("syn_cache_insert: cacheoverflow: "
2771 "impossible");
2772 #endif
2773 }
2774 sc2 = TAILQ_FIRST(&scp2->sch_bucket);
2775 SYN_CACHE_RM(sc2);
2776 SYN_CACHE_PUT(sc2);
2777 }
2778
2779 /*
2780 * Initialize the entry's timer.
2781 */
2782 sc->sc_rxttot = 0;
2783 sc->sc_rxtshift = 0;
2784 SYN_CACHE_TIMER_ARM(sc);
2785
2786 /* Link it from tcpcb entry */
2787 LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
2788
2789 /* Put it into the bucket. */
2790 TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
2791 scp->sch_length++;
2792 syn_cache_count++;
2793
2794 tcpstat.tcps_sc_added++;
2795 splx(s);
2796 }
2797
2798 /*
2799 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
2800 * If we have retransmitted an entry the maximum number of times, expire
2801 * that entry.
2802 */
2803 void
2804 syn_cache_timer(void *arg)
2805 {
2806 struct syn_cache *sc = arg;
2807 int s;
2808
2809 s = splsoftnet();
2810
2811 if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
2812 /* Drop it -- too many retransmissions. */
2813 goto dropit;
2814 }
2815
2816 /*
2817 * Compute the total amount of time this entry has
2818 * been on a queue. If this entry has been on longer
2819 * than the keep alive timer would allow, expire it.
2820 */
2821 sc->sc_rxttot += sc->sc_rxtcur;
2822 if (sc->sc_rxttot >= TCPTV_KEEP_INIT)
2823 goto dropit;
2824
2825 tcpstat.tcps_sc_retransmitted++;
2826 (void) syn_cache_respond(sc, NULL);
2827
2828 /* Advance the timer back-off. */
2829 sc->sc_rxtshift++;
2830 SYN_CACHE_TIMER_ARM(sc);
2831
2832 splx(s);
2833 return;
2834
2835 dropit:
2836 tcpstat.tcps_sc_timed_out++;
2837 SYN_CACHE_RM(sc);
2838 SYN_CACHE_PUT(sc);
2839 splx(s);
2840 }
2841
2842 /*
2843 * Remove syn cache created by the specified tcb entry,
2844 * because this does not make sense to keep them
2845 * (if there's no tcb entry, syn cache entry will never be used)
2846 */
2847 void
2848 syn_cache_cleanup(tp)
2849 struct tcpcb *tp;
2850 {
2851 struct syn_cache *sc, *nsc;
2852 int s;
2853
2854 s = splsoftnet();
2855
2856 for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
2857 nsc = LIST_NEXT(sc, sc_tpq);
2858
2859 #ifdef DIAGNOSTIC
2860 if (sc->sc_tp != tp)
2861 panic("invalid sc_tp in syn_cache_cleanup");
2862 #endif
2863 SYN_CACHE_RM(sc);
2864 SYN_CACHE_PUT(sc);
2865 }
2866 /* just for safety */
2867 LIST_INIT(&tp->t_sc);
2868
2869 splx(s);
2870 }
2871
2872 /*
2873 * Find an entry in the syn cache.
2874 */
2875 struct syn_cache *
2876 syn_cache_lookup(src, dst, headp)
2877 struct sockaddr *src;
2878 struct sockaddr *dst;
2879 struct syn_cache_head **headp;
2880 {
2881 struct syn_cache *sc;
2882 struct syn_cache_head *scp;
2883 u_int32_t hash;
2884 int s;
2885
2886 SYN_HASHALL(hash, src, dst);
2887
2888 scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
2889 *headp = scp;
2890 s = splsoftnet();
2891 for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
2892 sc = TAILQ_NEXT(sc, sc_bucketq)) {
2893 if (sc->sc_hash != hash)
2894 continue;
2895 if (!bcmp(&sc->sc_src, src, src->sa_len) &&
2896 !bcmp(&sc->sc_dst, dst, dst->sa_len)) {
2897 splx(s);
2898 return (sc);
2899 }
2900 }
2901 splx(s);
2902 return (NULL);
2903 }
2904
2905 /*
2906 * This function gets called when we receive an ACK for a
2907 * socket in the LISTEN state. We look up the connection
2908 * in the syn cache, and if its there, we pull it out of
2909 * the cache and turn it into a full-blown connection in
2910 * the SYN-RECEIVED state.
2911 *
2912 * The return values may not be immediately obvious, and their effects
2913 * can be subtle, so here they are:
2914 *
2915 * NULL SYN was not found in cache; caller should drop the
2916 * packet and send an RST.
2917 *
2918 * -1 We were unable to create the new connection, and are
2919 * aborting it. An ACK,RST is being sent to the peer
2920 * (unless we got screwey sequence numbners; see below),
2921 * because the 3-way handshake has been completed. Caller
2922 * should not free the mbuf, since we may be using it. If
2923 * we are not, we will free it.
2924 *
2925 * Otherwise, the return value is a pointer to the new socket
2926 * associated with the connection.
2927 */
2928 struct socket *
2929 syn_cache_get(src, dst, th, hlen, tlen, so, m)
2930 struct sockaddr *src;
2931 struct sockaddr *dst;
2932 struct tcphdr *th;
2933 unsigned int hlen, tlen;
2934 struct socket *so;
2935 struct mbuf *m;
2936 {
2937 struct syn_cache *sc;
2938 struct syn_cache_head *scp;
2939 struct inpcb *inp = NULL;
2940 #ifdef INET6
2941 struct in6pcb *in6p = NULL;
2942 #endif
2943 struct tcpcb *tp = 0;
2944 struct mbuf *am;
2945 int s;
2946 struct socket *oso;
2947
2948 s = splsoftnet();
2949 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
2950 splx(s);
2951 return (NULL);
2952 }
2953
2954 /*
2955 * Verify the sequence and ack numbers. Try getting the correct
2956 * response again.
2957 */
2958 if ((th->th_ack != sc->sc_iss + 1) ||
2959 SEQ_LEQ(th->th_seq, sc->sc_irs) ||
2960 SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
2961 (void) syn_cache_respond(sc, m);
2962 splx(s);
2963 return ((struct socket *)(-1));
2964 }
2965
2966 /* Remove this cache entry */
2967 SYN_CACHE_RM(sc);
2968 splx(s);
2969
2970 /*
2971 * Ok, create the full blown connection, and set things up
2972 * as they would have been set up if we had created the
2973 * connection when the SYN arrived. If we can't create
2974 * the connection, abort it.
2975 */
2976 /*
2977 * inp still has the OLD in_pcb stuff, set the
2978 * v6-related flags on the new guy, too. This is
2979 * done particularly for the case where an AF_INET6
2980 * socket is bound only to a port, and a v4 connection
2981 * comes in on that port.
2982 * we also copy the flowinfo from the original pcb
2983 * to the new one.
2984 */
2985 {
2986 struct inpcb *parentinpcb;
2987
2988 parentinpcb = (struct inpcb *)so->so_pcb;
2989
2990 oso = so;
2991 so = sonewconn(so, SS_ISCONNECTED);
2992 if (so == NULL)
2993 goto resetandabort;
2994
2995 switch (so->so_proto->pr_domain->dom_family) {
2996 #ifdef INET
2997 case AF_INET:
2998 inp = sotoinpcb(so);
2999 break;
3000 #endif
3001 #ifdef INET6
3002 case AF_INET6:
3003 in6p = sotoin6pcb(so);
3004 break;
3005 #endif
3006 }
3007 }
3008 switch (src->sa_family) {
3009 #ifdef INET
3010 case AF_INET:
3011 if (inp) {
3012 inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
3013 inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
3014 inp->inp_options = ip_srcroute();
3015 in_pcbstate(inp, INP_BOUND);
3016 if (inp->inp_options == NULL) {
3017 inp->inp_options = sc->sc_ipopts;
3018 sc->sc_ipopts = NULL;
3019 }
3020 }
3021 #ifdef INET6
3022 else if (in6p) {
3023 /* IPv4 packet to AF_INET6 socket */
3024 bzero(&in6p->in6p_laddr, sizeof(in6p->in6p_laddr));
3025 in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
3026 bcopy(&((struct sockaddr_in *)dst)->sin_addr,
3027 &in6p->in6p_laddr.s6_addr32[3],
3028 sizeof(((struct sockaddr_in *)dst)->sin_addr));
3029 in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
3030 in6totcpcb(in6p)->t_family = AF_INET;
3031 }
3032 #endif
3033 break;
3034 #endif
3035 #ifdef INET6
3036 case AF_INET6:
3037 if (in6p) {
3038 in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
3039 in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
3040 #if 0
3041 in6p->in6p_flowinfo = ip6->ip6_flow & IPV6_FLOWINFO_MASK;
3042 /*inp->inp_options = ip6_srcroute();*/ /* soon. */
3043 #endif
3044 }
3045 break;
3046 #endif
3047 }
3048 #ifdef INET6
3049 if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
3050 struct in6pcb *oin6p = sotoin6pcb(oso);
3051 /* inherit socket options from the listening socket */
3052 in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
3053 if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
3054 m_freem(in6p->in6p_options);
3055 in6p->in6p_options = 0;
3056 }
3057 ip6_savecontrol(in6p, &in6p->in6p_options,
3058 mtod(m, struct ip6_hdr *), m);
3059 }
3060 #endif
3061
3062 #ifdef IPSEC
3063 /*
3064 * we make a copy of policy, instead of sharing the policy,
3065 * for better behavior in terms of SA lookup and dead SA removal.
3066 */
3067 if (inp) {
3068 /* copy old policy into new socket's */
3069 if (ipsec_copy_policy(sotoinpcb(oso)->inp_sp, inp->inp_sp))
3070 printf("tcp_input: could not copy policy\n");
3071 }
3072 #ifdef INET6
3073 else if (in6p) {
3074 /* copy old policy into new socket's */
3075 if (ipsec_copy_policy(sotoin6pcb(oso)->in6p_sp, in6p->in6p_sp))
3076 printf("tcp_input: could not copy policy\n");
3077 }
3078 #endif
3079 #endif
3080
3081 /*
3082 * Give the new socket our cached route reference.
3083 */
3084 if (inp)
3085 inp->inp_route = sc->sc_route4; /* struct assignment */
3086 #ifdef INET6
3087 else
3088 in6p->in6p_route = sc->sc_route6;
3089 #endif
3090 sc->sc_route4.ro_rt = NULL;
3091
3092 am = m_get(M_DONTWAIT, MT_SONAME); /* XXX */
3093 if (am == NULL)
3094 goto resetandabort;
3095 am->m_len = src->sa_len;
3096 bcopy(src, mtod(am, caddr_t), src->sa_len);
3097 if (inp) {
3098 if (in_pcbconnect(inp, am)) {
3099 (void) m_free(am);
3100 goto resetandabort;
3101 }
3102 }
3103 #ifdef INET6
3104 else if (in6p) {
3105 if (src->sa_family == AF_INET) {
3106 /* IPv4 packet to AF_INET6 socket */
3107 struct sockaddr_in6 *sin6;
3108 sin6 = mtod(am, struct sockaddr_in6 *);
3109 am->m_len = sizeof(*sin6);
3110 bzero(sin6, sizeof(*sin6));
3111 sin6->sin6_family = AF_INET6;
3112 sin6->sin6_len = sizeof(*sin6);
3113 sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port;
3114 sin6->sin6_addr.s6_addr16[5] = htons(0xffff);
3115 bcopy(&((struct sockaddr_in *)src)->sin_addr,
3116 &sin6->sin6_addr.s6_addr32[3],
3117 sizeof(sin6->sin6_addr.s6_addr32[3]));
3118 }
3119 if (in6_pcbconnect(in6p, am)) {
3120 (void) m_free(am);
3121 goto resetandabort;
3122 }
3123 }
3124 #endif
3125 else {
3126 (void) m_free(am);
3127 goto resetandabort;
3128 }
3129 (void) m_free(am);
3130
3131 if (inp)
3132 tp = intotcpcb(inp);
3133 #ifdef INET6
3134 else if (in6p)
3135 tp = in6totcpcb(in6p);
3136 #endif
3137 else
3138 tp = NULL;
3139 if (sc->sc_request_r_scale != 15) {
3140 tp->requested_s_scale = sc->sc_requested_s_scale;
3141 tp->request_r_scale = sc->sc_request_r_scale;
3142 tp->snd_scale = sc->sc_requested_s_scale;
3143 tp->rcv_scale = sc->sc_request_r_scale;
3144 tp->t_flags |= TF_RCVD_SCALE;
3145 }
3146 if (sc->sc_flags & SCF_TIMESTAMP)
3147 tp->t_flags |= TF_RCVD_TSTMP;
3148 tp->ts_timebase = sc->sc_timebase;
3149
3150 tp->t_template = tcp_template(tp);
3151 if (tp->t_template == 0) {
3152 tp = tcp_drop(tp, ENOBUFS); /* destroys socket */
3153 so = NULL;
3154 m_freem(m);
3155 goto abort;
3156 }
3157
3158 tp->iss = sc->sc_iss;
3159 tp->irs = sc->sc_irs;
3160 tcp_sendseqinit(tp);
3161 tcp_rcvseqinit(tp);
3162 tp->t_state = TCPS_SYN_RECEIVED;
3163 TCP_TIMER_ARM(tp, TCPT_KEEP, TCPTV_KEEP_INIT);
3164 tcpstat.tcps_accepts++;
3165
3166 /* Initialize tp->t_ourmss before we deal with the peer's! */
3167 tp->t_ourmss = sc->sc_ourmaxseg;
3168 tcp_mss_from_peer(tp, sc->sc_peermaxseg);
3169
3170 /*
3171 * Initialize the initial congestion window. If we
3172 * had to retransmit the SYN,ACK, we must initialize cwnd
3173 * to 1 segment (i.e. the Loss Window).
3174 */
3175 if (sc->sc_rxtshift)
3176 tp->snd_cwnd = tp->t_peermss;
3177 else
3178 tp->snd_cwnd = TCP_INITIAL_WINDOW(tcp_init_win, tp->t_peermss);
3179
3180 tcp_rmx_rtt(tp);
3181 tp->snd_wl1 = sc->sc_irs;
3182 tp->rcv_up = sc->sc_irs + 1;
3183
3184 /*
3185 * This is what whould have happened in tcp_ouput() when
3186 * the SYN,ACK was sent.
3187 */
3188 tp->snd_up = tp->snd_una;
3189 tp->snd_max = tp->snd_nxt = tp->iss+1;
3190 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
3191 if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
3192 tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
3193 tp->last_ack_sent = tp->rcv_nxt;
3194
3195 tcpstat.tcps_sc_completed++;
3196 SYN_CACHE_PUT(sc);
3197 return (so);
3198
3199 resetandabort:
3200 (void) tcp_respond(NULL, m, m, th,
3201 th->th_seq + tlen, (tcp_seq)0, TH_RST|TH_ACK);
3202 abort:
3203 if (so != NULL)
3204 (void) soabort(so);
3205 SYN_CACHE_PUT(sc);
3206 tcpstat.tcps_sc_aborted++;
3207 return ((struct socket *)(-1));
3208 }
3209
3210 /*
3211 * This function is called when we get a RST for a
3212 * non-existent connection, so that we can see if the
3213 * connection is in the syn cache. If it is, zap it.
3214 */
3215
3216 void
3217 syn_cache_reset(src, dst, th)
3218 struct sockaddr *src;
3219 struct sockaddr *dst;
3220 struct tcphdr *th;
3221 {
3222 struct syn_cache *sc;
3223 struct syn_cache_head *scp;
3224 int s = splsoftnet();
3225
3226 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3227 splx(s);
3228 return;
3229 }
3230 if (SEQ_LT(th->th_seq, sc->sc_irs) ||
3231 SEQ_GT(th->th_seq, sc->sc_irs+1)) {
3232 splx(s);
3233 return;
3234 }
3235 SYN_CACHE_RM(sc);
3236 splx(s);
3237 tcpstat.tcps_sc_reset++;
3238 SYN_CACHE_PUT(sc);
3239 }
3240
3241 void
3242 syn_cache_unreach(src, dst, th)
3243 struct sockaddr *src;
3244 struct sockaddr *dst;
3245 struct tcphdr *th;
3246 {
3247 struct syn_cache *sc;
3248 struct syn_cache_head *scp;
3249 int s;
3250
3251 s = splsoftnet();
3252 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3253 splx(s);
3254 return;
3255 }
3256 /* If the sequence number != sc_iss, then it's a bogus ICMP msg */
3257 if (ntohl (th->th_seq) != sc->sc_iss) {
3258 splx(s);
3259 return;
3260 }
3261
3262 /*
3263 * If we've rertransmitted 3 times and this is our second error,
3264 * we remove the entry. Otherwise, we allow it to continue on.
3265 * This prevents us from incorrectly nuking an entry during a
3266 * spurious network outage.
3267 *
3268 * See tcp_notify().
3269 */
3270 if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
3271 sc->sc_flags |= SCF_UNREACH;
3272 splx(s);
3273 return;
3274 }
3275
3276 SYN_CACHE_RM(sc);
3277 splx(s);
3278 tcpstat.tcps_sc_unreach++;
3279 SYN_CACHE_PUT(sc);
3280 }
3281
3282 /*
3283 * Given a LISTEN socket and an inbound SYN request, add
3284 * this to the syn cache, and send back a segment:
3285 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
3286 * to the source.
3287 *
3288 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
3289 * Doing so would require that we hold onto the data and deliver it
3290 * to the application. However, if we are the target of a SYN-flood
3291 * DoS attack, an attacker could send data which would eventually
3292 * consume all available buffer space if it were ACKed. By not ACKing
3293 * the data, we avoid this DoS scenario.
3294 */
3295
3296 int
3297 syn_cache_add(src, dst, th, hlen, so, m, optp, optlen, oi)
3298 struct sockaddr *src;
3299 struct sockaddr *dst;
3300 struct tcphdr *th;
3301 unsigned int hlen;
3302 struct socket *so;
3303 struct mbuf *m;
3304 u_char *optp;
3305 int optlen;
3306 struct tcp_opt_info *oi;
3307 {
3308 struct tcpcb tb, *tp;
3309 long win;
3310 struct syn_cache *sc;
3311 struct syn_cache_head *scp;
3312 struct mbuf *ipopts;
3313
3314 tp = sototcpcb(so);
3315
3316 /*
3317 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
3318 *
3319 * Note this check is performed in tcp_input() very early on.
3320 */
3321
3322 /*
3323 * Initialize some local state.
3324 */
3325 win = sbspace(&so->so_rcv);
3326 if (win > TCP_MAXWIN)
3327 win = TCP_MAXWIN;
3328
3329 switch (src->sa_family) {
3330 #ifdef INET
3331 case AF_INET:
3332 /*
3333 * Remember the IP options, if any.
3334 */
3335 ipopts = ip_srcroute();
3336 break;
3337 #endif
3338 default:
3339 ipopts = NULL;
3340 }
3341
3342 if (optp) {
3343 tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
3344 tcp_dooptions(&tb, optp, optlen, th, oi);
3345 } else
3346 tb.t_flags = 0;
3347
3348 /*
3349 * See if we already have an entry for this connection.
3350 * If we do, resend the SYN,ACK. We do not count this
3351 * as a retransmission (XXX though maybe we should).
3352 */
3353 if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
3354 tcpstat.tcps_sc_dupesyn++;
3355 if (ipopts) {
3356 /*
3357 * If we were remembering a previous source route,
3358 * forget it and use the new one we've been given.
3359 */
3360 if (sc->sc_ipopts)
3361 (void) m_free(sc->sc_ipopts);
3362 sc->sc_ipopts = ipopts;
3363 }
3364 sc->sc_timestamp = tb.ts_recent;
3365 if (syn_cache_respond(sc, m) == 0) {
3366 tcpstat.tcps_sndacks++;
3367 tcpstat.tcps_sndtotal++;
3368 }
3369 return (1);
3370 }
3371
3372 sc = pool_get(&syn_cache_pool, PR_NOWAIT);
3373 if (sc == NULL) {
3374 if (ipopts)
3375 (void) m_free(ipopts);
3376 return (0);
3377 }
3378
3379 /*
3380 * Fill in the cache, and put the necessary IP and TCP
3381 * options into the reply.
3382 */
3383 callout_init(&sc->sc_timer);
3384 bzero(sc, sizeof(struct syn_cache));
3385 bcopy(src, &sc->sc_src, src->sa_len);
3386 bcopy(dst, &sc->sc_dst, dst->sa_len);
3387 sc->sc_flags = 0;
3388 sc->sc_ipopts = ipopts;
3389 sc->sc_irs = th->th_seq;
3390 switch (src->sa_family) {
3391 #ifdef INET
3392 case AF_INET:
3393 {
3394 struct sockaddr_in *srcin = (void *) src;
3395 struct sockaddr_in *dstin = (void *) dst;
3396
3397 sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
3398 &srcin->sin_addr, dstin->sin_port,
3399 srcin->sin_port, sizeof(dstin->sin_addr), 0);
3400 break;
3401 }
3402 #endif /* INET */
3403 #ifdef INET6
3404 case AF_INET6:
3405 {
3406 struct sockaddr_in6 *srcin6 = (void *) src;
3407 struct sockaddr_in6 *dstin6 = (void *) dst;
3408
3409 sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
3410 &srcin6->sin6_addr, dstin6->sin6_port,
3411 srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
3412 break;
3413 }
3414 #endif /* INET6 */
3415 }
3416 sc->sc_peermaxseg = oi->maxseg;
3417 sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
3418 m->m_pkthdr.rcvif : NULL,
3419 sc->sc_src.sa.sa_family);
3420 sc->sc_win = win;
3421 sc->sc_timebase = tcp_now; /* see tcp_newtcpcb() */
3422 sc->sc_timestamp = tb.ts_recent;
3423 if (tcp_do_rfc1323 && (tb.t_flags & TF_RCVD_TSTMP))
3424 sc->sc_flags |= SCF_TIMESTAMP;
3425 if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
3426 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
3427 sc->sc_requested_s_scale = tb.requested_s_scale;
3428 sc->sc_request_r_scale = 0;
3429 while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
3430 TCP_MAXWIN << sc->sc_request_r_scale <
3431 so->so_rcv.sb_hiwat)
3432 sc->sc_request_r_scale++;
3433 } else {
3434 sc->sc_requested_s_scale = 15;
3435 sc->sc_request_r_scale = 15;
3436 }
3437 sc->sc_tp = tp;
3438 if (syn_cache_respond(sc, m) == 0) {
3439 syn_cache_insert(sc, tp);
3440 tcpstat.tcps_sndacks++;
3441 tcpstat.tcps_sndtotal++;
3442 } else {
3443 SYN_CACHE_PUT(sc);
3444 tcpstat.tcps_sc_dropped++;
3445 }
3446 return (1);
3447 }
3448
3449 int
3450 syn_cache_respond(sc, m)
3451 struct syn_cache *sc;
3452 struct mbuf *m;
3453 {
3454 struct route *ro;
3455 u_int8_t *optp;
3456 int optlen, error;
3457 u_int16_t tlen;
3458 struct ip *ip = NULL;
3459 #ifdef INET6
3460 struct ip6_hdr *ip6 = NULL;
3461 #endif
3462 struct tcphdr *th;
3463 u_int hlen;
3464
3465 switch (sc->sc_src.sa.sa_family) {
3466 case AF_INET:
3467 hlen = sizeof(struct ip);
3468 ro = &sc->sc_route4;
3469 break;
3470 #ifdef INET6
3471 case AF_INET6:
3472 hlen = sizeof(struct ip6_hdr);
3473 ro = (struct route *)&sc->sc_route6;
3474 break;
3475 #endif
3476 default:
3477 if (m)
3478 m_freem(m);
3479 return EAFNOSUPPORT;
3480 }
3481
3482 /* Compute the size of the TCP options. */
3483 optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
3484 ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
3485
3486 tlen = hlen + sizeof(struct tcphdr) + optlen;
3487
3488 /*
3489 * Create the IP+TCP header from scratch.
3490 */
3491 if (m)
3492 m_freem(m);
3493 #ifdef DIAGNOSTIC
3494 if (max_linkhdr + tlen > MCLBYTES)
3495 return (ENOBUFS);
3496 #endif
3497 MGETHDR(m, M_DONTWAIT, MT_DATA);
3498 if (m && tlen > MHLEN) {
3499 MCLGET(m, M_DONTWAIT);
3500 if ((m->m_flags & M_EXT) == 0) {
3501 m_freem(m);
3502 m = NULL;
3503 }
3504 }
3505 if (m == NULL)
3506 return (ENOBUFS);
3507
3508 /* Fixup the mbuf. */
3509 m->m_data += max_linkhdr;
3510 m->m_len = m->m_pkthdr.len = tlen;
3511 #ifdef IPSEC
3512 if (sc->sc_tp) {
3513 struct tcpcb *tp;
3514 struct socket *so;
3515
3516 tp = sc->sc_tp;
3517 if (tp->t_inpcb)
3518 so = tp->t_inpcb->inp_socket;
3519 #ifdef INET6
3520 else if (tp->t_in6pcb)
3521 so = tp->t_in6pcb->in6p_socket;
3522 #endif
3523 else
3524 so = NULL;
3525 /* use IPsec policy on listening socket, on SYN ACK */
3526 if (ipsec_setsocket(m, so) != 0) {
3527 m_freem(m);
3528 return ENOBUFS;
3529 }
3530 }
3531 #endif
3532 m->m_pkthdr.rcvif = NULL;
3533 memset(mtod(m, u_char *), 0, tlen);
3534
3535 switch (sc->sc_src.sa.sa_family) {
3536 case AF_INET:
3537 ip = mtod(m, struct ip *);
3538 ip->ip_dst = sc->sc_src.sin.sin_addr;
3539 ip->ip_src = sc->sc_dst.sin.sin_addr;
3540 ip->ip_p = IPPROTO_TCP;
3541 th = (struct tcphdr *)(ip + 1);
3542 th->th_dport = sc->sc_src.sin.sin_port;
3543 th->th_sport = sc->sc_dst.sin.sin_port;
3544 break;
3545 #ifdef INET6
3546 case AF_INET6:
3547 ip6 = mtod(m, struct ip6_hdr *);
3548 ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
3549 ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
3550 ip6->ip6_nxt = IPPROTO_TCP;
3551 /* ip6_plen will be updated in ip6_output() */
3552 th = (struct tcphdr *)(ip6 + 1);
3553 th->th_dport = sc->sc_src.sin6.sin6_port;
3554 th->th_sport = sc->sc_dst.sin6.sin6_port;
3555 break;
3556 #endif
3557 default:
3558 th = NULL;
3559 }
3560
3561 th->th_seq = htonl(sc->sc_iss);
3562 th->th_ack = htonl(sc->sc_irs + 1);
3563 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
3564 th->th_flags = TH_SYN|TH_ACK;
3565 th->th_win = htons(sc->sc_win);
3566 /* th_sum already 0 */
3567 /* th_urp already 0 */
3568
3569 /* Tack on the TCP options. */
3570 optp = (u_int8_t *)(th + 1);
3571 *optp++ = TCPOPT_MAXSEG;
3572 *optp++ = 4;
3573 *optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
3574 *optp++ = sc->sc_ourmaxseg & 0xff;
3575
3576 if (sc->sc_request_r_scale != 15) {
3577 *((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
3578 TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
3579 sc->sc_request_r_scale);
3580 optp += 4;
3581 }
3582
3583 if (sc->sc_flags & SCF_TIMESTAMP) {
3584 u_int32_t *lp = (u_int32_t *)(optp);
3585 /* Form timestamp option as shown in appendix A of RFC 1323. */
3586 *lp++ = htonl(TCPOPT_TSTAMP_HDR);
3587 *lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
3588 *lp = htonl(sc->sc_timestamp);
3589 optp += TCPOLEN_TSTAMP_APPA;
3590 }
3591
3592 /* Compute the packet's checksum. */
3593 switch (sc->sc_src.sa.sa_family) {
3594 case AF_INET:
3595 ip->ip_len = htons(tlen - hlen);
3596 th->th_sum = 0;
3597 th->th_sum = in_cksum(m, tlen);
3598 break;
3599 #ifdef INET6
3600 case AF_INET6:
3601 ip6->ip6_plen = htons(tlen - hlen);
3602 th->th_sum = 0;
3603 th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
3604 break;
3605 #endif
3606 }
3607
3608 /*
3609 * Fill in some straggling IP bits. Note the stack expects
3610 * ip_len to be in host order, for convenience.
3611 */
3612 switch (sc->sc_src.sa.sa_family) {
3613 #ifdef INET
3614 case AF_INET:
3615 ip->ip_len = tlen;
3616 ip->ip_ttl = ip_defttl;
3617 /* XXX tos? */
3618 break;
3619 #endif
3620 #ifdef INET6
3621 case AF_INET6:
3622 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
3623 ip6->ip6_vfc |= IPV6_VERSION;
3624 ip6->ip6_plen = htons(tlen - hlen);
3625 /* ip6_hlim will be initialized afterwards */
3626 /* XXX flowlabel? */
3627 break;
3628 #endif
3629 }
3630
3631 switch (sc->sc_src.sa.sa_family) {
3632 #ifdef INET
3633 case AF_INET:
3634 error = ip_output(m, sc->sc_ipopts, ro,
3635 (ip_mtudisc ? IP_MTUDISC : 0),
3636 NULL);
3637 break;
3638 #endif
3639 #ifdef INET6
3640 case AF_INET6:
3641 ip6->ip6_hlim = in6_selecthlim(NULL,
3642 ro->ro_rt ? ro->ro_rt->rt_ifp : NULL);
3643
3644 error = ip6_output(m, NULL /*XXX*/, (struct route_in6 *)ro,
3645 0, NULL, NULL);
3646 break;
3647 #endif
3648 default:
3649 error = EAFNOSUPPORT;
3650 break;
3651 }
3652 return (error);
3653 }
3654