Home | History | Annotate | Line # | Download | only in netinet
tcp_input.c revision 1.140
      1 /*	$NetBSD: tcp_input.c,v 1.140 2002/03/24 17:09:01 christos Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  *      @(#)COPYRIGHT   1.1 (NRL) 17 January 1995
     34  *
     35  * NRL grants permission for redistribution and use in source and binary
     36  * forms, with or without modification, of the software and documentation
     37  * created at NRL provided that the following conditions are met:
     38  *
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. All advertising materials mentioning features or use of this software
     45  *    must display the following acknowledgements:
     46  *      This product includes software developed by the University of
     47  *      California, Berkeley and its contributors.
     48  *      This product includes software developed at the Information
     49  *      Technology Division, US Naval Research Laboratory.
     50  * 4. Neither the name of the NRL nor the names of its contributors
     51  *    may be used to endorse or promote products derived from this software
     52  *    without specific prior written permission.
     53  *
     54  * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
     55  * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     56  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
     57  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL NRL OR
     58  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
     59  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     60  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
     61  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
     62  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
     63  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
     64  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     65  *
     66  * The views and conclusions contained in the software and documentation
     67  * are those of the authors and should not be interpreted as representing
     68  * official policies, either expressed or implied, of the US Naval
     69  * Research Laboratory (NRL).
     70  */
     71 
     72 /*-
     73  * Copyright (c) 1997, 1998, 1999, 2001 The NetBSD Foundation, Inc.
     74  * All rights reserved.
     75  *
     76  * This code is derived from software contributed to The NetBSD Foundation
     77  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
     78  * Facility, NASA Ames Research Center.
     79  *
     80  * Redistribution and use in source and binary forms, with or without
     81  * modification, are permitted provided that the following conditions
     82  * are met:
     83  * 1. Redistributions of source code must retain the above copyright
     84  *    notice, this list of conditions and the following disclaimer.
     85  * 2. Redistributions in binary form must reproduce the above copyright
     86  *    notice, this list of conditions and the following disclaimer in the
     87  *    documentation and/or other materials provided with the distribution.
     88  * 3. All advertising materials mentioning features or use of this software
     89  *    must display the following acknowledgement:
     90  *	This product includes software developed by the NetBSD
     91  *	Foundation, Inc. and its contributors.
     92  * 4. Neither the name of The NetBSD Foundation nor the names of its
     93  *    contributors may be used to endorse or promote products derived
     94  *    from this software without specific prior written permission.
     95  *
     96  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     97  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     98  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     99  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
    100  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
    101  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
    102  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
    103  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
    104  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
    105  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
    106  * POSSIBILITY OF SUCH DAMAGE.
    107  */
    108 
    109 /*
    110  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
    111  *	The Regents of the University of California.  All rights reserved.
    112  *
    113  * Redistribution and use in source and binary forms, with or without
    114  * modification, are permitted provided that the following conditions
    115  * are met:
    116  * 1. Redistributions of source code must retain the above copyright
    117  *    notice, this list of conditions and the following disclaimer.
    118  * 2. Redistributions in binary form must reproduce the above copyright
    119  *    notice, this list of conditions and the following disclaimer in the
    120  *    documentation and/or other materials provided with the distribution.
    121  * 3. All advertising materials mentioning features or use of this software
    122  *    must display the following acknowledgement:
    123  *	This product includes software developed by the University of
    124  *	California, Berkeley and its contributors.
    125  * 4. Neither the name of the University nor the names of its contributors
    126  *    may be used to endorse or promote products derived from this software
    127  *    without specific prior written permission.
    128  *
    129  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
    130  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
    131  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
    132  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
    133  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
    134  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
    135  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    136  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    137  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    138  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    139  * SUCH DAMAGE.
    140  *
    141  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
    142  */
    143 
    144 /*
    145  *	TODO list for SYN cache stuff:
    146  *
    147  *	Find room for a "state" field, which is needed to keep a
    148  *	compressed state for TIME_WAIT TCBs.  It's been noted already
    149  *	that this is fairly important for very high-volume web and
    150  *	mail servers, which use a large number of short-lived
    151  *	connections.
    152  */
    153 
    154 #include <sys/cdefs.h>
    155 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.140 2002/03/24 17:09:01 christos Exp $");
    156 
    157 #include "opt_inet.h"
    158 #include "opt_ipsec.h"
    159 #include "opt_inet_csum.h"
    160 #include "opt_tcp_debug.h"
    161 
    162 #include <sys/param.h>
    163 #include <sys/systm.h>
    164 #include <sys/malloc.h>
    165 #include <sys/mbuf.h>
    166 #include <sys/protosw.h>
    167 #include <sys/socket.h>
    168 #include <sys/socketvar.h>
    169 #include <sys/errno.h>
    170 #include <sys/syslog.h>
    171 #include <sys/pool.h>
    172 #include <sys/domain.h>
    173 #include <sys/kernel.h>
    174 
    175 #include <net/if.h>
    176 #include <net/route.h>
    177 #include <net/if_types.h>
    178 
    179 #include <netinet/in.h>
    180 #include <netinet/in_systm.h>
    181 #include <netinet/ip.h>
    182 #include <netinet/in_pcb.h>
    183 #include <netinet/ip_var.h>
    184 
    185 #ifdef INET6
    186 #ifndef INET
    187 #include <netinet/in.h>
    188 #endif
    189 #include <netinet/ip6.h>
    190 #include <netinet6/ip6_var.h>
    191 #include <netinet6/in6_pcb.h>
    192 #include <netinet6/ip6_var.h>
    193 #include <netinet6/in6_var.h>
    194 #include <netinet/icmp6.h>
    195 #include <netinet6/nd6.h>
    196 #endif
    197 
    198 #ifdef PULLDOWN_TEST
    199 #ifndef INET6
    200 /* always need ip6.h for IP6_EXTHDR_GET */
    201 #include <netinet/ip6.h>
    202 #endif
    203 #endif
    204 
    205 #include <netinet/tcp.h>
    206 #include <netinet/tcp_fsm.h>
    207 #include <netinet/tcp_seq.h>
    208 #include <netinet/tcp_timer.h>
    209 #include <netinet/tcp_var.h>
    210 #include <netinet/tcpip.h>
    211 #include <netinet/tcp_debug.h>
    212 
    213 #include <machine/stdarg.h>
    214 
    215 #ifdef IPSEC
    216 #include <netinet6/ipsec.h>
    217 #include <netkey/key.h>
    218 #endif /*IPSEC*/
    219 #ifdef INET6
    220 #include "faith.h"
    221 #if defined(NFAITH) && NFAITH > 0
    222 #include <net/if_faith.h>
    223 #endif
    224 #endif
    225 
    226 int	tcprexmtthresh = 3;
    227 int	tcp_log_refused;
    228 
    229 static int tcp_rst_ppslim_count = 0;
    230 static struct timeval tcp_rst_ppslim_last;
    231 
    232 #define TCP_PAWS_IDLE	(24 * 24 * 60 * 60 * PR_SLOWHZ)
    233 
    234 /* for modulo comparisons of timestamps */
    235 #define TSTMP_LT(a,b)	((int)((a)-(b)) < 0)
    236 #define TSTMP_GEQ(a,b)	((int)((a)-(b)) >= 0)
    237 
    238 /*
    239  * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
    240  */
    241 #ifdef INET6
    242 #define ND6_HINT(tp) \
    243 do { \
    244 	if (tp && tp->t_in6pcb && tp->t_family == AF_INET6 \
    245 	 && tp->t_in6pcb->in6p_route.ro_rt) { \
    246 		nd6_nud_hint(tp->t_in6pcb->in6p_route.ro_rt, NULL, 0); \
    247 	} \
    248 } while (0)
    249 #else
    250 #define ND6_HINT(tp)
    251 #endif
    252 
    253 /*
    254  * Macro to compute ACK transmission behavior.  Delay the ACK unless
    255  * we have already delayed an ACK (must send an ACK every two segments).
    256  * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
    257  * option is enabled.
    258  */
    259 #define	TCP_SETUP_ACK(tp, th) \
    260 do { \
    261 	if ((tp)->t_flags & TF_DELACK || \
    262 	    (tcp_ack_on_push && (th)->th_flags & TH_PUSH)) \
    263 		tp->t_flags |= TF_ACKNOW; \
    264 	else \
    265 		TCP_SET_DELACK(tp); \
    266 } while (0)
    267 
    268 /*
    269  * Convert TCP protocol fields to host order for easier processing.
    270  */
    271 #define	TCP_FIELDS_TO_HOST(th)						\
    272 do {									\
    273 	NTOHL((th)->th_seq);						\
    274 	NTOHL((th)->th_ack);						\
    275 	NTOHS((th)->th_win);						\
    276 	NTOHS((th)->th_urp);						\
    277 } while (0)
    278 
    279 #ifdef TCP_CSUM_COUNTERS
    280 #include <sys/device.h>
    281 
    282 extern struct evcnt tcp_hwcsum_ok;
    283 extern struct evcnt tcp_hwcsum_bad;
    284 extern struct evcnt tcp_hwcsum_data;
    285 extern struct evcnt tcp_swcsum;
    286 
    287 #define	TCP_CSUM_COUNTER_INCR(ev)	(ev)->ev_count++
    288 
    289 #else
    290 
    291 #define	TCP_CSUM_COUNTER_INCR(ev)	/* nothing */
    292 
    293 #endif /* TCP_CSUM_COUNTERS */
    294 
    295 int
    296 tcp_reass(tp, th, m, tlen)
    297 	struct tcpcb *tp;
    298 	struct tcphdr *th;
    299 	struct mbuf *m;
    300 	int *tlen;
    301 {
    302 	struct ipqent *p, *q, *nq, *tiqe = NULL;
    303 	struct socket *so = NULL;
    304 	int pkt_flags;
    305 	tcp_seq pkt_seq;
    306 	unsigned pkt_len;
    307 	u_long rcvpartdupbyte = 0;
    308 	u_long rcvoobyte;
    309 
    310 	if (tp->t_inpcb)
    311 		so = tp->t_inpcb->inp_socket;
    312 #ifdef INET6
    313 	else if (tp->t_in6pcb)
    314 		so = tp->t_in6pcb->in6p_socket;
    315 #endif
    316 
    317 	TCP_REASS_LOCK_CHECK(tp);
    318 
    319 	/*
    320 	 * Call with th==0 after become established to
    321 	 * force pre-ESTABLISHED data up to user socket.
    322 	 */
    323 	if (th == 0)
    324 		goto present;
    325 
    326 	rcvoobyte = *tlen;
    327 	/*
    328 	 * Copy these to local variables because the tcpiphdr
    329 	 * gets munged while we are collapsing mbufs.
    330 	 */
    331 	pkt_seq = th->th_seq;
    332 	pkt_len = *tlen;
    333 	pkt_flags = th->th_flags;
    334 	/*
    335 	 * Find a segment which begins after this one does.
    336 	 */
    337 	for (p = NULL, q = LIST_FIRST(&tp->segq); q != NULL; q = nq) {
    338 		nq = LIST_NEXT(q, ipqe_q);
    339 		/*
    340 		 * If the received segment is just right after this
    341 		 * fragment, merge the two together and then check
    342 		 * for further overlaps.
    343 		 */
    344 		if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
    345 #ifdef TCPREASS_DEBUG
    346 			printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
    347 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
    348 			       q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
    349 #endif
    350 			pkt_len += q->ipqe_len;
    351 			pkt_flags |= q->ipqe_flags;
    352 			pkt_seq = q->ipqe_seq;
    353 			m_cat(q->ipqe_m, m);
    354 			m = q->ipqe_m;
    355 			goto free_ipqe;
    356 		}
    357 		/*
    358 		 * If the received segment is completely past this
    359 		 * fragment, we need to go the next fragment.
    360 		 */
    361 		if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
    362 			p = q;
    363 			continue;
    364 		}
    365 		/*
    366 		 * If the fragment is past the received segment,
    367 		 * it (or any following) can't be concatenated.
    368 		 */
    369 		if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len))
    370 			break;
    371 		/*
    372 		 * We've received all the data in this segment before.
    373 		 * mark it as a duplicate and return.
    374 		 */
    375 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
    376 		    SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
    377 			tcpstat.tcps_rcvduppack++;
    378 			tcpstat.tcps_rcvdupbyte += pkt_len;
    379 			m_freem(m);
    380 			if (tiqe != NULL)
    381 				pool_put(&ipqent_pool, tiqe);
    382 			return (0);
    383 		}
    384 		/*
    385 		 * Received segment completely overlaps this fragment
    386 		 * so we drop the fragment (this keeps the temporal
    387 		 * ordering of segments correct).
    388 		 */
    389 		if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
    390 		    SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
    391 			rcvpartdupbyte += q->ipqe_len;
    392 			m_freem(q->ipqe_m);
    393 			goto free_ipqe;
    394 		}
    395 		/*
    396 		 * RX'ed segment extends past the end of the
    397 		 * fragment.  Drop the overlapping bytes.  Then
    398 		 * merge the fragment and segment then treat as
    399 		 * a longer received packet.
    400 		 */
    401 		if (SEQ_LT(q->ipqe_seq, pkt_seq)
    402 		    && SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq))  {
    403 			int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
    404 #ifdef TCPREASS_DEBUG
    405 			printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
    406 			       tp, overlap,
    407 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
    408 #endif
    409 			m_adj(m, overlap);
    410 			rcvpartdupbyte += overlap;
    411 			m_cat(q->ipqe_m, m);
    412 			m = q->ipqe_m;
    413 			pkt_seq = q->ipqe_seq;
    414 			pkt_len += q->ipqe_len - overlap;
    415 			rcvoobyte -= overlap;
    416 			goto free_ipqe;
    417 		}
    418 		/*
    419 		 * RX'ed segment extends past the front of the
    420 		 * fragment.  Drop the overlapping bytes on the
    421 		 * received packet.  The packet will then be
    422 		 * contatentated with this fragment a bit later.
    423 		 */
    424 		if (SEQ_GT(q->ipqe_seq, pkt_seq)
    425 		    && SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len))  {
    426 			int overlap = pkt_seq + pkt_len - q->ipqe_seq;
    427 #ifdef TCPREASS_DEBUG
    428 			printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
    429 			       tp, overlap,
    430 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
    431 #endif
    432 			m_adj(m, -overlap);
    433 			pkt_len -= overlap;
    434 			rcvpartdupbyte += overlap;
    435 			rcvoobyte -= overlap;
    436 		}
    437 		/*
    438 		 * If the received segment immediates precedes this
    439 		 * fragment then tack the fragment onto this segment
    440 		 * and reinsert the data.
    441 		 */
    442 		if (q->ipqe_seq == pkt_seq + pkt_len) {
    443 #ifdef TCPREASS_DEBUG
    444 			printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
    445 			       tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
    446 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
    447 #endif
    448 			pkt_len += q->ipqe_len;
    449 			pkt_flags |= q->ipqe_flags;
    450 			m_cat(m, q->ipqe_m);
    451 			LIST_REMOVE(q, ipqe_q);
    452 			LIST_REMOVE(q, ipqe_timeq);
    453 			if (tiqe == NULL) {
    454 			    tiqe = q;
    455 			} else {
    456 			    pool_put(&ipqent_pool, q);
    457 			}
    458 			break;
    459 		}
    460 		/*
    461 		 * If the fragment is before the segment, remember it.
    462 		 * When this loop is terminated, p will contain the
    463 		 * pointer to fragment that is right before the received
    464 		 * segment.
    465 		 */
    466 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
    467 			p = q;
    468 
    469 		continue;
    470 
    471 		/*
    472 		 * This is a common operation.  It also will allow
    473 		 * to save doing a malloc/free in most instances.
    474 		 */
    475 	  free_ipqe:
    476 		LIST_REMOVE(q, ipqe_q);
    477 		LIST_REMOVE(q, ipqe_timeq);
    478 		if (tiqe == NULL) {
    479 		    tiqe = q;
    480 		} else {
    481 		    pool_put(&ipqent_pool, q);
    482 		}
    483 	}
    484 
    485 	/*
    486 	 * Allocate a new queue entry since the received segment did not
    487 	 * collapse onto any other out-of-order block; thus we are allocating
    488 	 * a new block.  If it had collapsed, tiqe would not be NULL and
    489 	 * we would be reusing it.
    490 	 * XXX If we can't, just drop the packet.  XXX
    491 	 */
    492 	if (tiqe == NULL) {
    493 		tiqe = pool_get(&ipqent_pool, PR_NOWAIT);
    494 		if (tiqe == NULL) {
    495 			tcpstat.tcps_rcvmemdrop++;
    496 			m_freem(m);
    497 			return (0);
    498 		}
    499 	}
    500 
    501 	/*
    502 	 * Update the counters.
    503 	 */
    504 	tcpstat.tcps_rcvoopack++;
    505 	tcpstat.tcps_rcvoobyte += rcvoobyte;
    506 	if (rcvpartdupbyte) {
    507 	    tcpstat.tcps_rcvpartduppack++;
    508 	    tcpstat.tcps_rcvpartdupbyte += rcvpartdupbyte;
    509 	}
    510 
    511 	/*
    512 	 * Insert the new fragment queue entry into both queues.
    513 	 */
    514 	tiqe->ipqe_m = m;
    515 	tiqe->ipqe_seq = pkt_seq;
    516 	tiqe->ipqe_len = pkt_len;
    517 	tiqe->ipqe_flags = pkt_flags;
    518 	if (p == NULL) {
    519 		LIST_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
    520 #ifdef TCPREASS_DEBUG
    521 		if (tiqe->ipqe_seq != tp->rcv_nxt)
    522 			printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
    523 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
    524 #endif
    525 	} else {
    526 		LIST_INSERT_AFTER(p, tiqe, ipqe_q);
    527 #ifdef TCPREASS_DEBUG
    528 		printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
    529 		       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
    530 		       p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
    531 #endif
    532 	}
    533 
    534 	LIST_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
    535 
    536 present:
    537 	/*
    538 	 * Present data to user, advancing rcv_nxt through
    539 	 * completed sequence space.
    540 	 */
    541 	if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
    542 		return (0);
    543 	q = LIST_FIRST(&tp->segq);
    544 	if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
    545 		return (0);
    546 	if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
    547 		return (0);
    548 
    549 	tp->rcv_nxt += q->ipqe_len;
    550 	pkt_flags = q->ipqe_flags & TH_FIN;
    551 	ND6_HINT(tp);
    552 
    553 	LIST_REMOVE(q, ipqe_q);
    554 	LIST_REMOVE(q, ipqe_timeq);
    555 	if (so->so_state & SS_CANTRCVMORE)
    556 		m_freem(q->ipqe_m);
    557 	else
    558 		sbappend(&so->so_rcv, q->ipqe_m);
    559 	pool_put(&ipqent_pool, q);
    560 	sorwakeup(so);
    561 	return (pkt_flags);
    562 }
    563 
    564 #ifdef INET6
    565 int
    566 tcp6_input(mp, offp, proto)
    567 	struct mbuf **mp;
    568 	int *offp, proto;
    569 {
    570 	struct mbuf *m = *mp;
    571 
    572 	/*
    573 	 * draft-itojun-ipv6-tcp-to-anycast
    574 	 * better place to put this in?
    575 	 */
    576 	if (m->m_flags & M_ANYCAST6) {
    577 		struct ip6_hdr *ip6;
    578 		if (m->m_len < sizeof(struct ip6_hdr)) {
    579 			if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
    580 				tcpstat.tcps_rcvshort++;
    581 				return IPPROTO_DONE;
    582 			}
    583 		}
    584 		ip6 = mtod(m, struct ip6_hdr *);
    585 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
    586 		    (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
    587 		return IPPROTO_DONE;
    588 	}
    589 
    590 	tcp_input(m, *offp, proto);
    591 	return IPPROTO_DONE;
    592 }
    593 #endif
    594 
    595 /*
    596  * TCP input routine, follows pages 65-76 of the
    597  * protocol specification dated September, 1981 very closely.
    598  */
    599 void
    600 #if __STDC__
    601 tcp_input(struct mbuf *m, ...)
    602 #else
    603 tcp_input(m, va_alist)
    604 	struct mbuf *m;
    605 #endif
    606 {
    607 	int proto;
    608 	struct tcphdr *th;
    609 	struct ip *ip;
    610 	struct inpcb *inp;
    611 #ifdef INET6
    612 	struct ip6_hdr *ip6;
    613 	struct in6pcb *in6p;
    614 #endif
    615 	caddr_t optp = NULL;
    616 	int optlen = 0;
    617 	int len, tlen, toff, hdroptlen = 0;
    618 	struct tcpcb *tp = 0;
    619 	int tiflags;
    620 	struct socket *so = NULL;
    621 	int todrop, acked, ourfinisacked, needoutput = 0;
    622 	short ostate = 0;
    623 	int iss = 0;
    624 	u_long tiwin;
    625 	struct tcp_opt_info opti;
    626 	int off, iphlen;
    627 	va_list ap;
    628 	int af;		/* af on the wire */
    629 	struct mbuf *tcp_saveti = NULL;
    630 
    631 	va_start(ap, m);
    632 	toff = va_arg(ap, int);
    633 	proto = va_arg(ap, int);
    634 	va_end(ap);
    635 
    636 	tcpstat.tcps_rcvtotal++;
    637 
    638 	bzero(&opti, sizeof(opti));
    639 	opti.ts_present = 0;
    640 	opti.maxseg = 0;
    641 
    642 	/*
    643 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
    644 	 *
    645 	 * TCP is, by definition, unicast, so we reject all
    646 	 * multicast outright.
    647 	 *
    648 	 * Note, there are additional src/dst address checks in
    649 	 * the AF-specific code below.
    650 	 */
    651 	if (m->m_flags & (M_BCAST|M_MCAST)) {
    652 		/* XXX stat */
    653 		goto drop;
    654 	}
    655 #ifdef INET6
    656 	if (m->m_flags & M_ANYCAST6) {
    657 		/* XXX stat */
    658 		goto drop;
    659 	}
    660 #endif
    661 
    662 	/*
    663 	 * Get IP and TCP header together in first mbuf.
    664 	 * Note: IP leaves IP header in first mbuf.
    665 	 */
    666 	ip = mtod(m, struct ip *);
    667 #ifdef INET6
    668 	ip6 = NULL;
    669 #endif
    670 	switch (ip->ip_v) {
    671 #ifdef INET
    672 	case 4:
    673 		af = AF_INET;
    674 		iphlen = sizeof(struct ip);
    675 #ifndef PULLDOWN_TEST
    676 		/* would like to get rid of this... */
    677 		if (toff > sizeof (struct ip)) {
    678 			ip_stripoptions(m, (struct mbuf *)0);
    679 			toff = sizeof(struct ip);
    680 		}
    681 		if (m->m_len < toff + sizeof (struct tcphdr)) {
    682 			if ((m = m_pullup(m, toff + sizeof (struct tcphdr))) == 0) {
    683 				tcpstat.tcps_rcvshort++;
    684 				return;
    685 			}
    686 		}
    687 		ip = mtod(m, struct ip *);
    688 		th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
    689 #else
    690 		ip = mtod(m, struct ip *);
    691 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
    692 			sizeof(struct tcphdr));
    693 		if (th == NULL) {
    694 			tcpstat.tcps_rcvshort++;
    695 			return;
    696 		}
    697 #endif
    698 		/* We do the checksum after PCB lookup... */
    699 		len = ip->ip_len;
    700 		tlen = len - toff;
    701 		break;
    702 #endif
    703 #ifdef INET6
    704 	case 6:
    705 		ip = NULL;
    706 		iphlen = sizeof(struct ip6_hdr);
    707 		af = AF_INET6;
    708 #ifndef PULLDOWN_TEST
    709 		if (m->m_len < toff + sizeof(struct tcphdr)) {
    710 			m = m_pullup(m, toff + sizeof(struct tcphdr));	/*XXX*/
    711 			if (m == NULL) {
    712 				tcpstat.tcps_rcvshort++;
    713 				return;
    714 			}
    715 		}
    716 		ip6 = mtod(m, struct ip6_hdr *);
    717 		th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
    718 #else
    719 		ip6 = mtod(m, struct ip6_hdr *);
    720 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
    721 			sizeof(struct tcphdr));
    722 		if (th == NULL) {
    723 			tcpstat.tcps_rcvshort++;
    724 			return;
    725 		}
    726 #endif
    727 
    728 		/* Be proactive about malicious use of IPv4 mapped address */
    729 		if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
    730 		    IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
    731 			/* XXX stat */
    732 			goto drop;
    733 		}
    734 
    735 		/*
    736 		 * Be proactive about unspecified IPv6 address in source.
    737 		 * As we use all-zero to indicate unbounded/unconnected pcb,
    738 		 * unspecified IPv6 address can be used to confuse us.
    739 		 *
    740 		 * Note that packets with unspecified IPv6 destination is
    741 		 * already dropped in ip6_input.
    742 		 */
    743 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
    744 			/* XXX stat */
    745 			goto drop;
    746 		}
    747 
    748 		/*
    749 		 * Make sure destination address is not multicast.
    750 		 * Source address checked in ip6_input().
    751 		 */
    752 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
    753 			/* XXX stat */
    754 			goto drop;
    755 		}
    756 
    757 		/* We do the checksum after PCB lookup... */
    758 		len = m->m_pkthdr.len;
    759 		tlen = len - toff;
    760 		break;
    761 #endif
    762 	default:
    763 		m_freem(m);
    764 		return;
    765 	}
    766 
    767 	/*
    768 	 * Check that TCP offset makes sense,
    769 	 * pull out TCP options and adjust length.		XXX
    770 	 */
    771 	off = th->th_off << 2;
    772 	if (off < sizeof (struct tcphdr) || off > tlen) {
    773 		tcpstat.tcps_rcvbadoff++;
    774 		goto drop;
    775 	}
    776 	tlen -= off;
    777 
    778 	/*
    779 	 * tcp_input() has been modified to use tlen to mean the TCP data
    780 	 * length throughout the function.  Other functions can use
    781 	 * m->m_pkthdr.len as the basis for calculating the TCP data length.
    782 	 * rja
    783 	 */
    784 
    785 	if (off > sizeof (struct tcphdr)) {
    786 #ifndef PULLDOWN_TEST
    787 		if (m->m_len < toff + off) {
    788 			if ((m = m_pullup(m, toff + off)) == 0) {
    789 				tcpstat.tcps_rcvshort++;
    790 				return;
    791 			}
    792 			switch (af) {
    793 #ifdef INET
    794 			case AF_INET:
    795 				ip = mtod(m, struct ip *);
    796 				break;
    797 #endif
    798 #ifdef INET6
    799 			case AF_INET6:
    800 				ip6 = mtod(m, struct ip6_hdr *);
    801 				break;
    802 #endif
    803 			}
    804 			th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
    805 		}
    806 #else
    807 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
    808 		if (th == NULL) {
    809 			tcpstat.tcps_rcvshort++;
    810 			return;
    811 		}
    812 		/*
    813 		 * NOTE: ip/ip6 will not be affected by m_pulldown()
    814 		 * (as they're before toff) and we don't need to update those.
    815 		 */
    816 #endif
    817 		optlen = off - sizeof (struct tcphdr);
    818 		optp = ((caddr_t)th) + sizeof(struct tcphdr);
    819 		/*
    820 		 * Do quick retrieval of timestamp options ("options
    821 		 * prediction?").  If timestamp is the only option and it's
    822 		 * formatted as recommended in RFC 1323 appendix A, we
    823 		 * quickly get the values now and not bother calling
    824 		 * tcp_dooptions(), etc.
    825 		 */
    826 		if ((optlen == TCPOLEN_TSTAMP_APPA ||
    827 		     (optlen > TCPOLEN_TSTAMP_APPA &&
    828 			optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
    829 		     *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
    830 		     (th->th_flags & TH_SYN) == 0) {
    831 			opti.ts_present = 1;
    832 			opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
    833 			opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
    834 			optp = NULL;	/* we've parsed the options */
    835 		}
    836 	}
    837 	tiflags = th->th_flags;
    838 
    839 	/*
    840 	 * Locate pcb for segment.
    841 	 */
    842 findpcb:
    843 	inp = NULL;
    844 #ifdef INET6
    845 	in6p = NULL;
    846 #endif
    847 	switch (af) {
    848 #ifdef INET
    849 	case AF_INET:
    850 		inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
    851 		    ip->ip_dst, th->th_dport);
    852 		if (inp == 0) {
    853 			++tcpstat.tcps_pcbhashmiss;
    854 			inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
    855 		}
    856 #ifdef INET6
    857 		if (inp == 0) {
    858 			struct in6_addr s, d;
    859 
    860 			/* mapped addr case */
    861 			bzero(&s, sizeof(s));
    862 			s.s6_addr16[5] = htons(0xffff);
    863 			bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
    864 			bzero(&d, sizeof(d));
    865 			d.s6_addr16[5] = htons(0xffff);
    866 			bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
    867 			in6p = in6_pcblookup_connect(&tcb6, &s, th->th_sport,
    868 				&d, th->th_dport, 0);
    869 			if (in6p == 0) {
    870 				++tcpstat.tcps_pcbhashmiss;
    871 				in6p = in6_pcblookup_bind(&tcb6, &d,
    872 					th->th_dport, 0);
    873 			}
    874 		}
    875 #endif
    876 #ifndef INET6
    877 		if (inp == 0)
    878 #else
    879 		if (inp == 0 && in6p == 0)
    880 #endif
    881 		{
    882 			++tcpstat.tcps_noport;
    883 			if (tcp_log_refused && (tiflags & TH_SYN)) {
    884 				char src[4*sizeof "123"];
    885 				char dst[4*sizeof "123"];
    886 
    887 				if (ip) {
    888 					strcpy(src, inet_ntoa(ip->ip_src));
    889 					strcpy(dst, inet_ntoa(ip->ip_dst));
    890 				}
    891 				else {
    892 					strcpy(src, "(unknown)");
    893 					strcpy(dst, "(unknown)");
    894 				}
    895 				log(LOG_INFO,
    896 				    "Connection attempt to TCP %s:%d from %s:%d\n",
    897 				    dst, ntohs(th->th_dport),
    898 				    src, ntohs(th->th_sport));
    899 			}
    900 			TCP_FIELDS_TO_HOST(th);
    901 			goto dropwithreset_ratelim;
    902 		}
    903 #ifdef IPSEC
    904 		if (inp && ipsec4_in_reject(m, inp)) {
    905 			ipsecstat.in_polvio++;
    906 			goto drop;
    907 		}
    908 #ifdef INET6
    909 		else if (in6p && ipsec4_in_reject_so(m, in6p->in6p_socket)) {
    910 			ipsecstat.in_polvio++;
    911 			goto drop;
    912 		}
    913 #endif
    914 #endif /*IPSEC*/
    915 		break;
    916 #endif /*INET*/
    917 #ifdef INET6
    918 	case AF_INET6:
    919 	    {
    920 		int faith;
    921 
    922 #if defined(NFAITH) && NFAITH > 0
    923 		faith = faithprefix(&ip6->ip6_dst);
    924 #else
    925 		faith = 0;
    926 #endif
    927 		in6p = in6_pcblookup_connect(&tcb6, &ip6->ip6_src, th->th_sport,
    928 			&ip6->ip6_dst, th->th_dport, faith);
    929 		if (in6p == NULL) {
    930 			++tcpstat.tcps_pcbhashmiss;
    931 			in6p = in6_pcblookup_bind(&tcb6, &ip6->ip6_dst,
    932 				th->th_dport, faith);
    933 		}
    934 		if (in6p == NULL) {
    935 			++tcpstat.tcps_noport;
    936 			if (tcp_log_refused && (tiflags & TH_SYN)) {
    937 				char src[INET6_ADDRSTRLEN];
    938 				char dst[INET6_ADDRSTRLEN];
    939 
    940 				if (ip6) {
    941 					strcpy(src, ip6_sprintf(&ip6->ip6_src));
    942 					strcpy(dst, ip6_sprintf(&ip6->ip6_dst));
    943 				}
    944 				else {
    945 					strcpy(src, "(unknown v6)");
    946 					strcpy(dst, "(unknown v6)");
    947 				}
    948 				log(LOG_INFO,
    949 				    "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
    950 				    dst, ntohs(th->th_dport),
    951 				    src, ntohs(th->th_sport));
    952 			}
    953 			TCP_FIELDS_TO_HOST(th);
    954 			goto dropwithreset_ratelim;
    955 		}
    956 #ifdef IPSEC
    957 		if (ipsec6_in_reject(m, in6p)) {
    958 			ipsec6stat.in_polvio++;
    959 			goto drop;
    960 		}
    961 #endif /*IPSEC*/
    962 		break;
    963 	    }
    964 #endif
    965 	}
    966 
    967 	/*
    968 	 * If the state is CLOSED (i.e., TCB does not exist) then
    969 	 * all data in the incoming segment is discarded.
    970 	 * If the TCB exists but is in CLOSED state, it is embryonic,
    971 	 * but should either do a listen or a connect soon.
    972 	 */
    973 	tp = NULL;
    974 	so = NULL;
    975 	if (inp) {
    976 		tp = intotcpcb(inp);
    977 		so = inp->inp_socket;
    978 	}
    979 #ifdef INET6
    980 	else if (in6p) {
    981 		tp = in6totcpcb(in6p);
    982 		so = in6p->in6p_socket;
    983 	}
    984 #endif
    985 	if (tp == 0) {
    986 		TCP_FIELDS_TO_HOST(th);
    987 		goto dropwithreset_ratelim;
    988 	}
    989 	if (tp->t_state == TCPS_CLOSED)
    990 		goto drop;
    991 
    992 	/*
    993 	 * Checksum extended TCP header and data.
    994 	 */
    995 	switch (af) {
    996 #ifdef INET
    997 	case AF_INET:
    998 		switch (m->m_pkthdr.csum_flags &
    999 			((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
   1000 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
   1001 		case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
   1002 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
   1003 			goto badcsum;
   1004 
   1005 		case M_CSUM_TCPv4|M_CSUM_DATA:
   1006 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
   1007 			if ((m->m_pkthdr.csum_data ^ 0xffff) != 0)
   1008 				goto badcsum;
   1009 			break;
   1010 
   1011 		case M_CSUM_TCPv4:
   1012 			/* Checksum was okay. */
   1013 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
   1014 			break;
   1015 
   1016 		default:
   1017 			/* Must compute it ourselves. */
   1018 			TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
   1019 #ifndef PULLDOWN_TEST
   1020 		    {
   1021 			struct ipovly *ipov;
   1022 			ipov = (struct ipovly *)ip;
   1023 			bzero(ipov->ih_x1, sizeof ipov->ih_x1);
   1024 			ipov->ih_len = htons(tlen + off);
   1025 
   1026 			if (in_cksum(m, len) != 0)
   1027 				goto badcsum;
   1028 		    }
   1029 #else
   1030 			if (in4_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0)
   1031 				goto badcsum;
   1032 #endif /* ! PULLDOWN_TEST */
   1033 			break;
   1034 		}
   1035 		break;
   1036 #endif /* INET4 */
   1037 
   1038 #ifdef INET6
   1039 	case AF_INET6:
   1040 		if (in6_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0)
   1041 			goto badcsum;
   1042 		break;
   1043 #endif /* INET6 */
   1044 	}
   1045 
   1046 	TCP_FIELDS_TO_HOST(th);
   1047 
   1048 	/* Unscale the window into a 32-bit value. */
   1049 	if ((tiflags & TH_SYN) == 0)
   1050 		tiwin = th->th_win << tp->snd_scale;
   1051 	else
   1052 		tiwin = th->th_win;
   1053 
   1054 #ifdef INET6
   1055 	/* save packet options if user wanted */
   1056 	if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
   1057 		if (in6p->in6p_options) {
   1058 			m_freem(in6p->in6p_options);
   1059 			in6p->in6p_options = 0;
   1060 		}
   1061 		ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
   1062 	}
   1063 #endif
   1064 
   1065 	if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
   1066 		union syn_cache_sa src;
   1067 		union syn_cache_sa dst;
   1068 
   1069 		bzero(&src, sizeof(src));
   1070 		bzero(&dst, sizeof(dst));
   1071 		switch (af) {
   1072 #ifdef INET
   1073 		case AF_INET:
   1074 			src.sin.sin_len = sizeof(struct sockaddr_in);
   1075 			src.sin.sin_family = AF_INET;
   1076 			src.sin.sin_addr = ip->ip_src;
   1077 			src.sin.sin_port = th->th_sport;
   1078 
   1079 			dst.sin.sin_len = sizeof(struct sockaddr_in);
   1080 			dst.sin.sin_family = AF_INET;
   1081 			dst.sin.sin_addr = ip->ip_dst;
   1082 			dst.sin.sin_port = th->th_dport;
   1083 			break;
   1084 #endif
   1085 #ifdef INET6
   1086 		case AF_INET6:
   1087 			src.sin6.sin6_len = sizeof(struct sockaddr_in6);
   1088 			src.sin6.sin6_family = AF_INET6;
   1089 			src.sin6.sin6_addr = ip6->ip6_src;
   1090 			src.sin6.sin6_port = th->th_sport;
   1091 
   1092 			dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
   1093 			dst.sin6.sin6_family = AF_INET6;
   1094 			dst.sin6.sin6_addr = ip6->ip6_dst;
   1095 			dst.sin6.sin6_port = th->th_dport;
   1096 			break;
   1097 #endif /* INET6 */
   1098 		default:
   1099 			goto badsyn;	/*sanity*/
   1100 		}
   1101 
   1102 		if (so->so_options & SO_DEBUG) {
   1103 			ostate = tp->t_state;
   1104 
   1105 			tcp_saveti = NULL;
   1106 			if (iphlen + sizeof(struct tcphdr) > MHLEN)
   1107 				goto nosave;
   1108 
   1109 			if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
   1110 				tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
   1111 				if (!tcp_saveti)
   1112 					goto nosave;
   1113 			} else {
   1114 				MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
   1115 				if (!tcp_saveti)
   1116 					goto nosave;
   1117 				tcp_saveti->m_len = iphlen;
   1118 				m_copydata(m, 0, iphlen,
   1119 				    mtod(tcp_saveti, caddr_t));
   1120 			}
   1121 
   1122 			if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
   1123 				m_freem(tcp_saveti);
   1124 				tcp_saveti = NULL;
   1125 			} else {
   1126 				tcp_saveti->m_len += sizeof(struct tcphdr);
   1127 				bcopy(th, mtod(tcp_saveti, caddr_t) + iphlen,
   1128 				    sizeof(struct tcphdr));
   1129 			}
   1130 			if (tcp_saveti) {
   1131 				/*
   1132 				 * need to recover version # field, which was
   1133 				 * overwritten on ip_cksum computation.
   1134 				 */
   1135 				struct ip *sip;
   1136 				sip = mtod(tcp_saveti, struct ip *);
   1137 				switch (af) {
   1138 #ifdef INET
   1139 				case AF_INET:
   1140 					sip->ip_v = 4;
   1141 					break;
   1142 #endif
   1143 #ifdef INET6
   1144 				case AF_INET6:
   1145 					sip->ip_v = 6;
   1146 					break;
   1147 #endif
   1148 				}
   1149 			}
   1150 	nosave:;
   1151 		}
   1152 		if (so->so_options & SO_ACCEPTCONN) {
   1153   			if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
   1154 				if (tiflags & TH_RST) {
   1155 					syn_cache_reset(&src.sa, &dst.sa, th);
   1156 				} else if ((tiflags & (TH_ACK|TH_SYN)) ==
   1157 				    (TH_ACK|TH_SYN)) {
   1158 					/*
   1159 					 * Received a SYN,ACK.  This should
   1160 					 * never happen while we are in
   1161 					 * LISTEN.  Send an RST.
   1162 					 */
   1163 					goto badsyn;
   1164 				} else if (tiflags & TH_ACK) {
   1165 					so = syn_cache_get(&src.sa, &dst.sa,
   1166 						th, toff, tlen, so, m);
   1167 					if (so == NULL) {
   1168 						/*
   1169 						 * We don't have a SYN for
   1170 						 * this ACK; send an RST.
   1171 						 */
   1172 						goto badsyn;
   1173 					} else if (so ==
   1174 					    (struct socket *)(-1)) {
   1175 						/*
   1176 						 * We were unable to create
   1177 						 * the connection.  If the
   1178 						 * 3-way handshake was
   1179 						 * completed, and RST has
   1180 						 * been sent to the peer.
   1181 						 * Since the mbuf might be
   1182 						 * in use for the reply,
   1183 						 * do not free it.
   1184 						 */
   1185 						m = NULL;
   1186 					} else {
   1187 						/*
   1188 						 * We have created a
   1189 						 * full-blown connection.
   1190 						 */
   1191 						tp = NULL;
   1192 						inp = NULL;
   1193 #ifdef INET6
   1194 						in6p = NULL;
   1195 #endif
   1196 						switch (so->so_proto->pr_domain->dom_family) {
   1197 #ifdef INET
   1198 						case AF_INET:
   1199 							inp = sotoinpcb(so);
   1200 							tp = intotcpcb(inp);
   1201 							break;
   1202 #endif
   1203 #ifdef INET6
   1204 						case AF_INET6:
   1205 							in6p = sotoin6pcb(so);
   1206 							tp = in6totcpcb(in6p);
   1207 							break;
   1208 #endif
   1209 						}
   1210 						if (tp == NULL)
   1211 							goto badsyn;	/*XXX*/
   1212 						tiwin <<= tp->snd_scale;
   1213 						goto after_listen;
   1214 					}
   1215   				} else {
   1216 					/*
   1217 					 * None of RST, SYN or ACK was set.
   1218 					 * This is an invalid packet for a
   1219 					 * TCB in LISTEN state.  Send a RST.
   1220 					 */
   1221 					goto badsyn;
   1222 				}
   1223   			} else {
   1224 				/*
   1225 				 * Received a SYN.
   1226 				 */
   1227 
   1228 				/*
   1229 				 * LISTEN socket received a SYN
   1230 				 * from itself?  This can't possibly
   1231 				 * be valid; drop the packet.
   1232 				 */
   1233 				if (th->th_sport == th->th_dport) {
   1234 					int i;
   1235 
   1236 					switch (af) {
   1237 #ifdef INET
   1238 					case AF_INET:
   1239 						i = in_hosteq(ip->ip_src, ip->ip_dst);
   1240 						break;
   1241 #endif
   1242 #ifdef INET6
   1243 					case AF_INET6:
   1244 						i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
   1245 						break;
   1246 #endif
   1247 					default:
   1248 						i = 1;
   1249 					}
   1250 					if (i) {
   1251 						tcpstat.tcps_badsyn++;
   1252 						goto drop;
   1253 					}
   1254 				}
   1255 
   1256 				/*
   1257 				 * SYN looks ok; create compressed TCP
   1258 				 * state for it.
   1259 				 */
   1260 				if (so->so_qlen <= so->so_qlimit &&
   1261 				    syn_cache_add(&src.sa, &dst.sa, th, tlen,
   1262 						so, m, optp, optlen, &opti))
   1263 					m = NULL;
   1264 			}
   1265 			goto drop;
   1266 		}
   1267 	}
   1268 
   1269 after_listen:
   1270 #ifdef DIAGNOSTIC
   1271 	/*
   1272 	 * Should not happen now that all embryonic connections
   1273 	 * are handled with compressed state.
   1274 	 */
   1275 	if (tp->t_state == TCPS_LISTEN)
   1276 		panic("tcp_input: TCPS_LISTEN");
   1277 #endif
   1278 
   1279 	/*
   1280 	 * Segment received on connection.
   1281 	 * Reset idle time and keep-alive timer.
   1282 	 */
   1283 	tp->t_rcvtime = tcp_now;
   1284 	if (TCPS_HAVEESTABLISHED(tp->t_state))
   1285 		TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
   1286 
   1287 	/*
   1288 	 * Process options.
   1289 	 */
   1290 	if (optp)
   1291 		tcp_dooptions(tp, optp, optlen, th, &opti);
   1292 
   1293 	/*
   1294 	 * Header prediction: check for the two common cases
   1295 	 * of a uni-directional data xfer.  If the packet has
   1296 	 * no control flags, is in-sequence, the window didn't
   1297 	 * change and we're not retransmitting, it's a
   1298 	 * candidate.  If the length is zero and the ack moved
   1299 	 * forward, we're the sender side of the xfer.  Just
   1300 	 * free the data acked & wake any higher level process
   1301 	 * that was blocked waiting for space.  If the length
   1302 	 * is non-zero and the ack didn't move, we're the
   1303 	 * receiver side.  If we're getting packets in-order
   1304 	 * (the reassembly queue is empty), add the data to
   1305 	 * the socket buffer and note that we need a delayed ack.
   1306 	 */
   1307 	if (tp->t_state == TCPS_ESTABLISHED &&
   1308 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
   1309 	    (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
   1310 	    th->th_seq == tp->rcv_nxt &&
   1311 	    tiwin && tiwin == tp->snd_wnd &&
   1312 	    tp->snd_nxt == tp->snd_max) {
   1313 
   1314 		/*
   1315 		 * If last ACK falls within this segment's sequence numbers,
   1316 		 *  record the timestamp.
   1317 		 */
   1318 		if (opti.ts_present &&
   1319 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
   1320 		    SEQ_LT(tp->last_ack_sent, th->th_seq + tlen)) {
   1321 			tp->ts_recent_age = TCP_TIMESTAMP(tp);
   1322 			tp->ts_recent = opti.ts_val;
   1323 		}
   1324 
   1325 		if (tlen == 0) {
   1326 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
   1327 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
   1328 			    tp->snd_cwnd >= tp->snd_wnd &&
   1329 			    tp->t_dupacks < tcprexmtthresh) {
   1330 				/*
   1331 				 * this is a pure ack for outstanding data.
   1332 				 */
   1333 				++tcpstat.tcps_predack;
   1334 				if (opti.ts_present && opti.ts_ecr)
   1335 					tcp_xmit_timer(tp,
   1336 					  TCP_TIMESTAMP(tp) - opti.ts_ecr + 1);
   1337 				else if (tp->t_rtttime &&
   1338 				    SEQ_GT(th->th_ack, tp->t_rtseq))
   1339 					tcp_xmit_timer(tp,
   1340 					tcp_now - tp->t_rtttime);
   1341 				acked = th->th_ack - tp->snd_una;
   1342 				tcpstat.tcps_rcvackpack++;
   1343 				tcpstat.tcps_rcvackbyte += acked;
   1344 				ND6_HINT(tp);
   1345 				sbdrop(&so->so_snd, acked);
   1346 				/*
   1347 				 * We want snd_recover to track snd_una to
   1348 				 * avoid sequence wraparound problems for
   1349 				 * very large transfers.
   1350 				 */
   1351 				tp->snd_una = tp->snd_recover = th->th_ack;
   1352 				m_freem(m);
   1353 
   1354 				/*
   1355 				 * If all outstanding data are acked, stop
   1356 				 * retransmit timer, otherwise restart timer
   1357 				 * using current (possibly backed-off) value.
   1358 				 * If process is waiting for space,
   1359 				 * wakeup/selwakeup/signal.  If data
   1360 				 * are ready to send, let tcp_output
   1361 				 * decide between more output or persist.
   1362 				 */
   1363 				if (tp->snd_una == tp->snd_max)
   1364 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
   1365 				else if (TCP_TIMER_ISARMED(tp,
   1366 				    TCPT_PERSIST) == 0)
   1367 					TCP_TIMER_ARM(tp, TCPT_REXMT,
   1368 					    tp->t_rxtcur);
   1369 
   1370 				sowwakeup(so);
   1371 				if (so->so_snd.sb_cc)
   1372 					(void) tcp_output(tp);
   1373 				if (tcp_saveti)
   1374 					m_freem(tcp_saveti);
   1375 				return;
   1376 			}
   1377 		} else if (th->th_ack == tp->snd_una &&
   1378 		    LIST_FIRST(&tp->segq) == NULL &&
   1379 		    tlen <= sbspace(&so->so_rcv)) {
   1380 			/*
   1381 			 * this is a pure, in-sequence data packet
   1382 			 * with nothing on the reassembly queue and
   1383 			 * we have enough buffer space to take it.
   1384 			 */
   1385 			++tcpstat.tcps_preddat;
   1386 			tp->rcv_nxt += tlen;
   1387 			tcpstat.tcps_rcvpack++;
   1388 			tcpstat.tcps_rcvbyte += tlen;
   1389 			ND6_HINT(tp);
   1390 			/*
   1391 			 * Drop TCP, IP headers and TCP options then add data
   1392 			 * to socket buffer.
   1393 			 */
   1394 			m_adj(m, toff + off);
   1395 			sbappend(&so->so_rcv, m);
   1396 			sorwakeup(so);
   1397 			TCP_SETUP_ACK(tp, th);
   1398 			if (tp->t_flags & TF_ACKNOW)
   1399 				(void) tcp_output(tp);
   1400 			if (tcp_saveti)
   1401 				m_freem(tcp_saveti);
   1402 			return;
   1403 		}
   1404 	}
   1405 
   1406 	/*
   1407 	 * Compute mbuf offset to TCP data segment.
   1408 	 */
   1409 	hdroptlen = toff + off;
   1410 
   1411 	/*
   1412 	 * Calculate amount of space in receive window,
   1413 	 * and then do TCP input processing.
   1414 	 * Receive window is amount of space in rcv queue,
   1415 	 * but not less than advertised window.
   1416 	 */
   1417 	{ int win;
   1418 
   1419 	win = sbspace(&so->so_rcv);
   1420 	if (win < 0)
   1421 		win = 0;
   1422 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
   1423 	}
   1424 
   1425 	switch (tp->t_state) {
   1426 	case TCPS_LISTEN:
   1427 		/*
   1428 		 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
   1429 		 */
   1430 		if (m->m_flags & (M_BCAST|M_MCAST))
   1431 			goto drop;
   1432 		switch (af) {
   1433 #ifdef INET6
   1434 		case AF_INET6:
   1435 			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
   1436 				goto drop;
   1437 			break;
   1438 #endif /* INET6 */
   1439 		case AF_INET:
   1440 			if (IN_MULTICAST(ip->ip_dst.s_addr) ||
   1441 			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
   1442 				goto drop;
   1443 			break;
   1444 		}
   1445 		break;
   1446 
   1447 	/*
   1448 	 * If the state is SYN_SENT:
   1449 	 *	if seg contains an ACK, but not for our SYN, drop the input.
   1450 	 *	if seg contains a RST, then drop the connection.
   1451 	 *	if seg does not contain SYN, then drop it.
   1452 	 * Otherwise this is an acceptable SYN segment
   1453 	 *	initialize tp->rcv_nxt and tp->irs
   1454 	 *	if seg contains ack then advance tp->snd_una
   1455 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
   1456 	 *	arrange for segment to be acked (eventually)
   1457 	 *	continue processing rest of data/controls, beginning with URG
   1458 	 */
   1459 	case TCPS_SYN_SENT:
   1460 		if ((tiflags & TH_ACK) &&
   1461 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
   1462 		     SEQ_GT(th->th_ack, tp->snd_max)))
   1463 			goto dropwithreset;
   1464 		if (tiflags & TH_RST) {
   1465 			if (tiflags & TH_ACK)
   1466 				tp = tcp_drop(tp, ECONNREFUSED);
   1467 			goto drop;
   1468 		}
   1469 		if ((tiflags & TH_SYN) == 0)
   1470 			goto drop;
   1471 		if (tiflags & TH_ACK) {
   1472 			tp->snd_una = tp->snd_recover = th->th_ack;
   1473 			if (SEQ_LT(tp->snd_nxt, tp->snd_una))
   1474 				tp->snd_nxt = tp->snd_una;
   1475 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
   1476 		}
   1477 		tp->irs = th->th_seq;
   1478 		tcp_rcvseqinit(tp);
   1479 		tp->t_flags |= TF_ACKNOW;
   1480 		tcp_mss_from_peer(tp, opti.maxseg);
   1481 
   1482 		/*
   1483 		 * Initialize the initial congestion window.  If we
   1484 		 * had to retransmit the SYN, we must initialize cwnd
   1485 		 * to 1 segment (i.e. the Loss Window).
   1486 		 */
   1487 		if (tp->t_flags & TF_SYN_REXMT)
   1488 			tp->snd_cwnd = tp->t_peermss;
   1489 		else
   1490 			tp->snd_cwnd = TCP_INITIAL_WINDOW(tcp_init_win,
   1491 			    tp->t_peermss);
   1492 
   1493 		tcp_rmx_rtt(tp);
   1494 		if (tiflags & TH_ACK) {
   1495 			tcpstat.tcps_connects++;
   1496 			soisconnected(so);
   1497 			tcp_established(tp);
   1498 			/* Do window scaling on this connection? */
   1499 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   1500 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
   1501 				tp->snd_scale = tp->requested_s_scale;
   1502 				tp->rcv_scale = tp->request_r_scale;
   1503 			}
   1504 			TCP_REASS_LOCK(tp);
   1505 			(void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
   1506 			TCP_REASS_UNLOCK(tp);
   1507 			/*
   1508 			 * if we didn't have to retransmit the SYN,
   1509 			 * use its rtt as our initial srtt & rtt var.
   1510 			 */
   1511 			if (tp->t_rtttime)
   1512 				tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
   1513 		} else
   1514 			tp->t_state = TCPS_SYN_RECEIVED;
   1515 
   1516 		/*
   1517 		 * Advance th->th_seq to correspond to first data byte.
   1518 		 * If data, trim to stay within window,
   1519 		 * dropping FIN if necessary.
   1520 		 */
   1521 		th->th_seq++;
   1522 		if (tlen > tp->rcv_wnd) {
   1523 			todrop = tlen - tp->rcv_wnd;
   1524 			m_adj(m, -todrop);
   1525 			tlen = tp->rcv_wnd;
   1526 			tiflags &= ~TH_FIN;
   1527 			tcpstat.tcps_rcvpackafterwin++;
   1528 			tcpstat.tcps_rcvbyteafterwin += todrop;
   1529 		}
   1530 		tp->snd_wl1 = th->th_seq - 1;
   1531 		tp->rcv_up = th->th_seq;
   1532 		goto step6;
   1533 
   1534 	/*
   1535 	 * If the state is SYN_RECEIVED:
   1536 	 *	If seg contains an ACK, but not for our SYN, drop the input
   1537 	 *	and generate an RST.  See page 36, rfc793
   1538 	 */
   1539 	case TCPS_SYN_RECEIVED:
   1540 		if ((tiflags & TH_ACK) &&
   1541 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
   1542 		     SEQ_GT(th->th_ack, tp->snd_max)))
   1543 			goto dropwithreset;
   1544 		break;
   1545 	}
   1546 
   1547 	/*
   1548 	 * States other than LISTEN or SYN_SENT.
   1549 	 * First check timestamp, if present.
   1550 	 * Then check that at least some bytes of segment are within
   1551 	 * receive window.  If segment begins before rcv_nxt,
   1552 	 * drop leading data (and SYN); if nothing left, just ack.
   1553 	 *
   1554 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
   1555 	 * and it's less than ts_recent, drop it.
   1556 	 */
   1557 	if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
   1558 	    TSTMP_LT(opti.ts_val, tp->ts_recent)) {
   1559 
   1560 		/* Check to see if ts_recent is over 24 days old.  */
   1561 		if ((int)(TCP_TIMESTAMP(tp) - tp->ts_recent_age) >
   1562 		    TCP_PAWS_IDLE) {
   1563 			/*
   1564 			 * Invalidate ts_recent.  If this segment updates
   1565 			 * ts_recent, the age will be reset later and ts_recent
   1566 			 * will get a valid value.  If it does not, setting
   1567 			 * ts_recent to zero will at least satisfy the
   1568 			 * requirement that zero be placed in the timestamp
   1569 			 * echo reply when ts_recent isn't valid.  The
   1570 			 * age isn't reset until we get a valid ts_recent
   1571 			 * because we don't want out-of-order segments to be
   1572 			 * dropped when ts_recent is old.
   1573 			 */
   1574 			tp->ts_recent = 0;
   1575 		} else {
   1576 			tcpstat.tcps_rcvduppack++;
   1577 			tcpstat.tcps_rcvdupbyte += tlen;
   1578 			tcpstat.tcps_pawsdrop++;
   1579 			goto dropafterack;
   1580 		}
   1581 	}
   1582 
   1583 	todrop = tp->rcv_nxt - th->th_seq;
   1584 	if (todrop > 0) {
   1585 		if (tiflags & TH_SYN) {
   1586 			tiflags &= ~TH_SYN;
   1587 			th->th_seq++;
   1588 			if (th->th_urp > 1)
   1589 				th->th_urp--;
   1590 			else {
   1591 				tiflags &= ~TH_URG;
   1592 				th->th_urp = 0;
   1593 			}
   1594 			todrop--;
   1595 		}
   1596 		if (todrop > tlen ||
   1597 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
   1598 			/*
   1599 			 * Any valid FIN must be to the left of the window.
   1600 			 * At this point the FIN must be a duplicate or
   1601 			 * out of sequence; drop it.
   1602 			 */
   1603 			tiflags &= ~TH_FIN;
   1604 			/*
   1605 			 * Send an ACK to resynchronize and drop any data.
   1606 			 * But keep on processing for RST or ACK.
   1607 			 */
   1608 			tp->t_flags |= TF_ACKNOW;
   1609 			todrop = tlen;
   1610 			tcpstat.tcps_rcvdupbyte += todrop;
   1611 			tcpstat.tcps_rcvduppack++;
   1612 		} else {
   1613 			tcpstat.tcps_rcvpartduppack++;
   1614 			tcpstat.tcps_rcvpartdupbyte += todrop;
   1615 		}
   1616 		hdroptlen += todrop;	/*drop from head afterwards*/
   1617 		th->th_seq += todrop;
   1618 		tlen -= todrop;
   1619 		if (th->th_urp > todrop)
   1620 			th->th_urp -= todrop;
   1621 		else {
   1622 			tiflags &= ~TH_URG;
   1623 			th->th_urp = 0;
   1624 		}
   1625 	}
   1626 
   1627 	/*
   1628 	 * If new data are received on a connection after the
   1629 	 * user processes are gone, then RST the other end.
   1630 	 */
   1631 	if ((so->so_state & SS_NOFDREF) &&
   1632 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
   1633 		tp = tcp_close(tp);
   1634 		tcpstat.tcps_rcvafterclose++;
   1635 		goto dropwithreset;
   1636 	}
   1637 
   1638 	/*
   1639 	 * If segment ends after window, drop trailing data
   1640 	 * (and PUSH and FIN); if nothing left, just ACK.
   1641 	 */
   1642 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
   1643 	if (todrop > 0) {
   1644 		tcpstat.tcps_rcvpackafterwin++;
   1645 		if (todrop >= tlen) {
   1646 			tcpstat.tcps_rcvbyteafterwin += tlen;
   1647 			/*
   1648 			 * If a new connection request is received
   1649 			 * while in TIME_WAIT, drop the old connection
   1650 			 * and start over if the sequence numbers
   1651 			 * are above the previous ones.
   1652 			 */
   1653 			if (tiflags & TH_SYN &&
   1654 			    tp->t_state == TCPS_TIME_WAIT &&
   1655 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
   1656 				iss = tcp_new_iss(tp, tp->snd_nxt);
   1657 				tp = tcp_close(tp);
   1658 				goto findpcb;
   1659 			}
   1660 			/*
   1661 			 * If window is closed can only take segments at
   1662 			 * window edge, and have to drop data and PUSH from
   1663 			 * incoming segments.  Continue processing, but
   1664 			 * remember to ack.  Otherwise, drop segment
   1665 			 * and ack.
   1666 			 */
   1667 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
   1668 				tp->t_flags |= TF_ACKNOW;
   1669 				tcpstat.tcps_rcvwinprobe++;
   1670 			} else
   1671 				goto dropafterack;
   1672 		} else
   1673 			tcpstat.tcps_rcvbyteafterwin += todrop;
   1674 		m_adj(m, -todrop);
   1675 		tlen -= todrop;
   1676 		tiflags &= ~(TH_PUSH|TH_FIN);
   1677 	}
   1678 
   1679 	/*
   1680 	 * If last ACK falls within this segment's sequence numbers,
   1681 	 * and the timestamp is newer, record it.
   1682 	 */
   1683 	if (opti.ts_present && TSTMP_GEQ(opti.ts_val, tp->ts_recent) &&
   1684 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
   1685 	    SEQ_LT(tp->last_ack_sent, th->th_seq + tlen +
   1686 		   ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
   1687 		tp->ts_recent_age = TCP_TIMESTAMP(tp);
   1688 		tp->ts_recent = opti.ts_val;
   1689 	}
   1690 
   1691 	/*
   1692 	 * If the RST bit is set examine the state:
   1693 	 *    SYN_RECEIVED STATE:
   1694 	 *	If passive open, return to LISTEN state.
   1695 	 *	If active open, inform user that connection was refused.
   1696 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
   1697 	 *	Inform user that connection was reset, and close tcb.
   1698 	 *    CLOSING, LAST_ACK, TIME_WAIT STATES
   1699 	 *	Close the tcb.
   1700 	 */
   1701 	if (tiflags&TH_RST) switch (tp->t_state) {
   1702 
   1703 	case TCPS_SYN_RECEIVED:
   1704 		so->so_error = ECONNREFUSED;
   1705 		goto close;
   1706 
   1707 	case TCPS_ESTABLISHED:
   1708 	case TCPS_FIN_WAIT_1:
   1709 	case TCPS_FIN_WAIT_2:
   1710 	case TCPS_CLOSE_WAIT:
   1711 		so->so_error = ECONNRESET;
   1712 	close:
   1713 		tp->t_state = TCPS_CLOSED;
   1714 		tcpstat.tcps_drops++;
   1715 		tp = tcp_close(tp);
   1716 		goto drop;
   1717 
   1718 	case TCPS_CLOSING:
   1719 	case TCPS_LAST_ACK:
   1720 	case TCPS_TIME_WAIT:
   1721 		tp = tcp_close(tp);
   1722 		goto drop;
   1723 	}
   1724 
   1725 	/*
   1726 	 * If a SYN is in the window, then this is an
   1727 	 * error and we send an RST and drop the connection.
   1728 	 */
   1729 	if (tiflags & TH_SYN) {
   1730 		tp = tcp_drop(tp, ECONNRESET);
   1731 		goto dropwithreset;
   1732 	}
   1733 
   1734 	/*
   1735 	 * If the ACK bit is off we drop the segment and return.
   1736 	 */
   1737 	if ((tiflags & TH_ACK) == 0) {
   1738 		if (tp->t_flags & TF_ACKNOW)
   1739 			goto dropafterack;
   1740 		else
   1741 			goto drop;
   1742 	}
   1743 
   1744 	/*
   1745 	 * Ack processing.
   1746 	 */
   1747 	switch (tp->t_state) {
   1748 
   1749 	/*
   1750 	 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
   1751 	 * ESTABLISHED state and continue processing, otherwise
   1752 	 * send an RST.
   1753 	 */
   1754 	case TCPS_SYN_RECEIVED:
   1755 		if (SEQ_GT(tp->snd_una, th->th_ack) ||
   1756 		    SEQ_GT(th->th_ack, tp->snd_max))
   1757 			goto dropwithreset;
   1758 		tcpstat.tcps_connects++;
   1759 		soisconnected(so);
   1760 		tcp_established(tp);
   1761 		/* Do window scaling? */
   1762 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   1763 			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
   1764 			tp->snd_scale = tp->requested_s_scale;
   1765 			tp->rcv_scale = tp->request_r_scale;
   1766 		}
   1767 		TCP_REASS_LOCK(tp);
   1768 		(void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
   1769 		TCP_REASS_UNLOCK(tp);
   1770 		tp->snd_wl1 = th->th_seq - 1;
   1771 		/* fall into ... */
   1772 
   1773 	/*
   1774 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
   1775 	 * ACKs.  If the ack is in the range
   1776 	 *	tp->snd_una < th->th_ack <= tp->snd_max
   1777 	 * then advance tp->snd_una to th->th_ack and drop
   1778 	 * data from the retransmission queue.  If this ACK reflects
   1779 	 * more up to date window information we update our window information.
   1780 	 */
   1781 	case TCPS_ESTABLISHED:
   1782 	case TCPS_FIN_WAIT_1:
   1783 	case TCPS_FIN_WAIT_2:
   1784 	case TCPS_CLOSE_WAIT:
   1785 	case TCPS_CLOSING:
   1786 	case TCPS_LAST_ACK:
   1787 	case TCPS_TIME_WAIT:
   1788 
   1789 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
   1790 			if (tlen == 0 && tiwin == tp->snd_wnd) {
   1791 				tcpstat.tcps_rcvdupack++;
   1792 				/*
   1793 				 * If we have outstanding data (other than
   1794 				 * a window probe), this is a completely
   1795 				 * duplicate ack (ie, window info didn't
   1796 				 * change), the ack is the biggest we've
   1797 				 * seen and we've seen exactly our rexmt
   1798 				 * threshhold of them, assume a packet
   1799 				 * has been dropped and retransmit it.
   1800 				 * Kludge snd_nxt & the congestion
   1801 				 * window so we send only this one
   1802 				 * packet.
   1803 				 *
   1804 				 * We know we're losing at the current
   1805 				 * window size so do congestion avoidance
   1806 				 * (set ssthresh to half the current window
   1807 				 * and pull our congestion window back to
   1808 				 * the new ssthresh).
   1809 				 *
   1810 				 * Dup acks mean that packets have left the
   1811 				 * network (they're now cached at the receiver)
   1812 				 * so bump cwnd by the amount in the receiver
   1813 				 * to keep a constant cwnd packets in the
   1814 				 * network.
   1815 				 */
   1816 				if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
   1817 				    th->th_ack != tp->snd_una)
   1818 					tp->t_dupacks = 0;
   1819 				else if (++tp->t_dupacks == tcprexmtthresh) {
   1820 					tcp_seq onxt = tp->snd_nxt;
   1821 					u_int win =
   1822 					    min(tp->snd_wnd, tp->snd_cwnd) /
   1823 					    2 /	tp->t_segsz;
   1824 					if (tcp_do_newreno && SEQ_LT(th->th_ack,
   1825 					    tp->snd_recover)) {
   1826 						/*
   1827 						 * False fast retransmit after
   1828 						 * timeout.  Do not cut window.
   1829 						 */
   1830 						tp->snd_cwnd += tp->t_segsz;
   1831 						tp->t_dupacks = 0;
   1832 						(void) tcp_output(tp);
   1833 						goto drop;
   1834 					}
   1835 
   1836 					if (win < 2)
   1837 						win = 2;
   1838 					tp->snd_ssthresh = win * tp->t_segsz;
   1839 					tp->snd_recover = tp->snd_max;
   1840 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
   1841 					tp->t_rtttime = 0;
   1842 					tp->snd_nxt = th->th_ack;
   1843 					tp->snd_cwnd = tp->t_segsz;
   1844 					(void) tcp_output(tp);
   1845 					tp->snd_cwnd = tp->snd_ssthresh +
   1846 					       tp->t_segsz * tp->t_dupacks;
   1847 					if (SEQ_GT(onxt, tp->snd_nxt))
   1848 						tp->snd_nxt = onxt;
   1849 					goto drop;
   1850 				} else if (tp->t_dupacks > tcprexmtthresh) {
   1851 					tp->snd_cwnd += tp->t_segsz;
   1852 					(void) tcp_output(tp);
   1853 					goto drop;
   1854 				}
   1855 			} else
   1856 				tp->t_dupacks = 0;
   1857 			break;
   1858 		}
   1859 		/*
   1860 		 * If the congestion window was inflated to account
   1861 		 * for the other side's cached packets, retract it.
   1862 		 */
   1863 		if (tcp_do_newreno == 0) {
   1864 			if (tp->t_dupacks >= tcprexmtthresh &&
   1865 			    tp->snd_cwnd > tp->snd_ssthresh)
   1866 				tp->snd_cwnd = tp->snd_ssthresh;
   1867 			tp->t_dupacks = 0;
   1868 		} else if (tp->t_dupacks >= tcprexmtthresh &&
   1869 			   tcp_newreno(tp, th) == 0) {
   1870 			tp->snd_cwnd = tp->snd_ssthresh;
   1871 			/*
   1872 			 * Window inflation should have left us with approx.
   1873 			 * snd_ssthresh outstanding data.  But in case we
   1874 			 * would be inclined to send a burst, better to do
   1875 			 * it via the slow start mechanism.
   1876 			 */
   1877 			if (SEQ_SUB(tp->snd_max, th->th_ack) < tp->snd_ssthresh)
   1878 				tp->snd_cwnd = SEQ_SUB(tp->snd_max, th->th_ack)
   1879 				    + tp->t_segsz;
   1880 			tp->t_dupacks = 0;
   1881 		}
   1882 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
   1883 			tcpstat.tcps_rcvacktoomuch++;
   1884 			goto dropafterack;
   1885 		}
   1886 		acked = th->th_ack - tp->snd_una;
   1887 		tcpstat.tcps_rcvackpack++;
   1888 		tcpstat.tcps_rcvackbyte += acked;
   1889 
   1890 		/*
   1891 		 * If we have a timestamp reply, update smoothed
   1892 		 * round trip time.  If no timestamp is present but
   1893 		 * transmit timer is running and timed sequence
   1894 		 * number was acked, update smoothed round trip time.
   1895 		 * Since we now have an rtt measurement, cancel the
   1896 		 * timer backoff (cf., Phil Karn's retransmit alg.).
   1897 		 * Recompute the initial retransmit timer.
   1898 		 */
   1899 		if (opti.ts_present && opti.ts_ecr)
   1900 			tcp_xmit_timer(tp, TCP_TIMESTAMP(tp) - opti.ts_ecr + 1);
   1901 		else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
   1902 			tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
   1903 
   1904 		/*
   1905 		 * If all outstanding data is acked, stop retransmit
   1906 		 * timer and remember to restart (more output or persist).
   1907 		 * If there is more data to be acked, restart retransmit
   1908 		 * timer, using current (possibly backed-off) value.
   1909 		 */
   1910 		if (th->th_ack == tp->snd_max) {
   1911 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
   1912 			needoutput = 1;
   1913 		} else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
   1914 			TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
   1915 		/*
   1916 		 * When new data is acked, open the congestion window.
   1917 		 * If the window gives us less than ssthresh packets
   1918 		 * in flight, open exponentially (segsz per packet).
   1919 		 * Otherwise open linearly: segsz per window
   1920 		 * (segsz^2 / cwnd per packet), plus a constant
   1921 		 * fraction of a packet (segsz/8) to help larger windows
   1922 		 * open quickly enough.
   1923 		 */
   1924 		{
   1925 		u_int cw = tp->snd_cwnd;
   1926 		u_int incr = tp->t_segsz;
   1927 
   1928 		if (cw > tp->snd_ssthresh)
   1929 			incr = incr * incr / cw;
   1930 		if (tcp_do_newreno == 0 || SEQ_GEQ(th->th_ack, tp->snd_recover))
   1931 			tp->snd_cwnd = min(cw + incr,
   1932 			    TCP_MAXWIN << tp->snd_scale);
   1933 		}
   1934 		ND6_HINT(tp);
   1935 		if (acked > so->so_snd.sb_cc) {
   1936 			tp->snd_wnd -= so->so_snd.sb_cc;
   1937 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
   1938 			ourfinisacked = 1;
   1939 		} else {
   1940 			sbdrop(&so->so_snd, acked);
   1941 			tp->snd_wnd -= acked;
   1942 			ourfinisacked = 0;
   1943 		}
   1944 		sowwakeup(so);
   1945 		/*
   1946 		 * We want snd_recover to track snd_una to
   1947 		 * avoid sequence wraparound problems for
   1948 		 * very large transfers.
   1949 		 */
   1950 		tp->snd_una = tp->snd_recover = th->th_ack;
   1951 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
   1952 			tp->snd_nxt = tp->snd_una;
   1953 
   1954 		switch (tp->t_state) {
   1955 
   1956 		/*
   1957 		 * In FIN_WAIT_1 STATE in addition to the processing
   1958 		 * for the ESTABLISHED state if our FIN is now acknowledged
   1959 		 * then enter FIN_WAIT_2.
   1960 		 */
   1961 		case TCPS_FIN_WAIT_1:
   1962 			if (ourfinisacked) {
   1963 				/*
   1964 				 * If we can't receive any more
   1965 				 * data, then closing user can proceed.
   1966 				 * Starting the timer is contrary to the
   1967 				 * specification, but if we don't get a FIN
   1968 				 * we'll hang forever.
   1969 				 */
   1970 				if (so->so_state & SS_CANTRCVMORE) {
   1971 					soisdisconnected(so);
   1972 					if (tcp_maxidle > 0)
   1973 						TCP_TIMER_ARM(tp, TCPT_2MSL,
   1974 						    tcp_maxidle);
   1975 				}
   1976 				tp->t_state = TCPS_FIN_WAIT_2;
   1977 			}
   1978 			break;
   1979 
   1980 	 	/*
   1981 		 * In CLOSING STATE in addition to the processing for
   1982 		 * the ESTABLISHED state if the ACK acknowledges our FIN
   1983 		 * then enter the TIME-WAIT state, otherwise ignore
   1984 		 * the segment.
   1985 		 */
   1986 		case TCPS_CLOSING:
   1987 			if (ourfinisacked) {
   1988 				tp->t_state = TCPS_TIME_WAIT;
   1989 				tcp_canceltimers(tp);
   1990 				TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
   1991 				soisdisconnected(so);
   1992 			}
   1993 			break;
   1994 
   1995 		/*
   1996 		 * In LAST_ACK, we may still be waiting for data to drain
   1997 		 * and/or to be acked, as well as for the ack of our FIN.
   1998 		 * If our FIN is now acknowledged, delete the TCB,
   1999 		 * enter the closed state and return.
   2000 		 */
   2001 		case TCPS_LAST_ACK:
   2002 			if (ourfinisacked) {
   2003 				tp = tcp_close(tp);
   2004 				goto drop;
   2005 			}
   2006 			break;
   2007 
   2008 		/*
   2009 		 * In TIME_WAIT state the only thing that should arrive
   2010 		 * is a retransmission of the remote FIN.  Acknowledge
   2011 		 * it and restart the finack timer.
   2012 		 */
   2013 		case TCPS_TIME_WAIT:
   2014 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
   2015 			goto dropafterack;
   2016 		}
   2017 	}
   2018 
   2019 step6:
   2020 	/*
   2021 	 * Update window information.
   2022 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
   2023 	 */
   2024 	if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
   2025 	    (tp->snd_wl1 == th->th_seq && SEQ_LT(tp->snd_wl2, th->th_ack)) ||
   2026 	    (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))) {
   2027 		/* keep track of pure window updates */
   2028 		if (tlen == 0 &&
   2029 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
   2030 			tcpstat.tcps_rcvwinupd++;
   2031 		tp->snd_wnd = tiwin;
   2032 		tp->snd_wl1 = th->th_seq;
   2033 		tp->snd_wl2 = th->th_ack;
   2034 		if (tp->snd_wnd > tp->max_sndwnd)
   2035 			tp->max_sndwnd = tp->snd_wnd;
   2036 		needoutput = 1;
   2037 	}
   2038 
   2039 	/*
   2040 	 * Process segments with URG.
   2041 	 */
   2042 	if ((tiflags & TH_URG) && th->th_urp &&
   2043 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   2044 		/*
   2045 		 * This is a kludge, but if we receive and accept
   2046 		 * random urgent pointers, we'll crash in
   2047 		 * soreceive.  It's hard to imagine someone
   2048 		 * actually wanting to send this much urgent data.
   2049 		 */
   2050 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
   2051 			th->th_urp = 0;			/* XXX */
   2052 			tiflags &= ~TH_URG;		/* XXX */
   2053 			goto dodata;			/* XXX */
   2054 		}
   2055 		/*
   2056 		 * If this segment advances the known urgent pointer,
   2057 		 * then mark the data stream.  This should not happen
   2058 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
   2059 		 * a FIN has been received from the remote side.
   2060 		 * In these states we ignore the URG.
   2061 		 *
   2062 		 * According to RFC961 (Assigned Protocols),
   2063 		 * the urgent pointer points to the last octet
   2064 		 * of urgent data.  We continue, however,
   2065 		 * to consider it to indicate the first octet
   2066 		 * of data past the urgent section as the original
   2067 		 * spec states (in one of two places).
   2068 		 */
   2069 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
   2070 			tp->rcv_up = th->th_seq + th->th_urp;
   2071 			so->so_oobmark = so->so_rcv.sb_cc +
   2072 			    (tp->rcv_up - tp->rcv_nxt) - 1;
   2073 			if (so->so_oobmark == 0)
   2074 				so->so_state |= SS_RCVATMARK;
   2075 			sohasoutofband(so);
   2076 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
   2077 		}
   2078 		/*
   2079 		 * Remove out of band data so doesn't get presented to user.
   2080 		 * This can happen independent of advancing the URG pointer,
   2081 		 * but if two URG's are pending at once, some out-of-band
   2082 		 * data may creep in... ick.
   2083 		 */
   2084 		if (th->th_urp <= (u_int16_t) tlen
   2085 #ifdef SO_OOBINLINE
   2086 		     && (so->so_options & SO_OOBINLINE) == 0
   2087 #endif
   2088 		     )
   2089 			tcp_pulloutofband(so, th, m, hdroptlen);
   2090 	} else
   2091 		/*
   2092 		 * If no out of band data is expected,
   2093 		 * pull receive urgent pointer along
   2094 		 * with the receive window.
   2095 		 */
   2096 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
   2097 			tp->rcv_up = tp->rcv_nxt;
   2098 dodata:							/* XXX */
   2099 
   2100 	/*
   2101 	 * Process the segment text, merging it into the TCP sequencing queue,
   2102 	 * and arranging for acknowledgement of receipt if necessary.
   2103 	 * This process logically involves adjusting tp->rcv_wnd as data
   2104 	 * is presented to the user (this happens in tcp_usrreq.c,
   2105 	 * case PRU_RCVD).  If a FIN has already been received on this
   2106 	 * connection then we just ignore the text.
   2107 	 */
   2108 	if ((tlen || (tiflags & TH_FIN)) &&
   2109 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   2110 		/*
   2111 		 * Insert segment ti into reassembly queue of tcp with
   2112 		 * control block tp.  Return TH_FIN if reassembly now includes
   2113 		 * a segment with FIN.  The macro form does the common case
   2114 		 * inline (segment is the next to be received on an
   2115 		 * established connection, and the queue is empty),
   2116 		 * avoiding linkage into and removal from the queue and
   2117 		 * repetition of various conversions.
   2118 		 * Set DELACK for segments received in order, but ack
   2119 		 * immediately when segments are out of order
   2120 		 * (so fast retransmit can work).
   2121 		 */
   2122 		/* NOTE: this was TCP_REASS() macro, but used only once */
   2123 		TCP_REASS_LOCK(tp);
   2124 		if (th->th_seq == tp->rcv_nxt &&
   2125 		    LIST_FIRST(&tp->segq) == NULL &&
   2126 		    tp->t_state == TCPS_ESTABLISHED) {
   2127 			TCP_SETUP_ACK(tp, th);
   2128 			tp->rcv_nxt += tlen;
   2129 			tiflags = th->th_flags & TH_FIN;
   2130 			tcpstat.tcps_rcvpack++;
   2131 			tcpstat.tcps_rcvbyte += tlen;
   2132 			ND6_HINT(tp);
   2133 			m_adj(m, hdroptlen);
   2134 			sbappend(&(so)->so_rcv, m);
   2135 			sorwakeup(so);
   2136 		} else {
   2137 			m_adj(m, hdroptlen);
   2138 			tiflags = tcp_reass(tp, th, m, &tlen);
   2139 			tp->t_flags |= TF_ACKNOW;
   2140 		}
   2141 		TCP_REASS_UNLOCK(tp);
   2142 
   2143 		/*
   2144 		 * Note the amount of data that peer has sent into
   2145 		 * our window, in order to estimate the sender's
   2146 		 * buffer size.
   2147 		 */
   2148 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
   2149 	} else {
   2150 		m_freem(m);
   2151 		m = NULL;
   2152 		tiflags &= ~TH_FIN;
   2153 	}
   2154 
   2155 	/*
   2156 	 * If FIN is received ACK the FIN and let the user know
   2157 	 * that the connection is closing.  Ignore a FIN received before
   2158 	 * the connection is fully established.
   2159 	 */
   2160 	if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
   2161 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   2162 			socantrcvmore(so);
   2163 			tp->t_flags |= TF_ACKNOW;
   2164 			tp->rcv_nxt++;
   2165 		}
   2166 		switch (tp->t_state) {
   2167 
   2168 	 	/*
   2169 		 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
   2170 		 */
   2171 		case TCPS_ESTABLISHED:
   2172 			tp->t_state = TCPS_CLOSE_WAIT;
   2173 			break;
   2174 
   2175 	 	/*
   2176 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
   2177 		 * enter the CLOSING state.
   2178 		 */
   2179 		case TCPS_FIN_WAIT_1:
   2180 			tp->t_state = TCPS_CLOSING;
   2181 			break;
   2182 
   2183 	 	/*
   2184 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
   2185 		 * starting the time-wait timer, turning off the other
   2186 		 * standard timers.
   2187 		 */
   2188 		case TCPS_FIN_WAIT_2:
   2189 			tp->t_state = TCPS_TIME_WAIT;
   2190 			tcp_canceltimers(tp);
   2191 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
   2192 			soisdisconnected(so);
   2193 			break;
   2194 
   2195 		/*
   2196 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
   2197 		 */
   2198 		case TCPS_TIME_WAIT:
   2199 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
   2200 			break;
   2201 		}
   2202 	}
   2203 #ifdef TCP_DEBUG
   2204 	if (so->so_options & SO_DEBUG)
   2205 		tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
   2206 #endif
   2207 
   2208 	/*
   2209 	 * Return any desired output.
   2210 	 */
   2211 	if (needoutput || (tp->t_flags & TF_ACKNOW))
   2212 		(void) tcp_output(tp);
   2213 	if (tcp_saveti)
   2214 		m_freem(tcp_saveti);
   2215 	return;
   2216 
   2217 badsyn:
   2218 	/*
   2219 	 * Received a bad SYN.  Increment counters and dropwithreset.
   2220 	 */
   2221 	tcpstat.tcps_badsyn++;
   2222 	tp = NULL;
   2223 	goto dropwithreset;
   2224 
   2225 dropafterack:
   2226 	/*
   2227 	 * Generate an ACK dropping incoming segment if it occupies
   2228 	 * sequence space, where the ACK reflects our state.
   2229 	 */
   2230 	if (tiflags & TH_RST)
   2231 		goto drop;
   2232 	m_freem(m);
   2233 	tp->t_flags |= TF_ACKNOW;
   2234 	(void) tcp_output(tp);
   2235 	if (tcp_saveti)
   2236 		m_freem(tcp_saveti);
   2237 	return;
   2238 
   2239 dropwithreset_ratelim:
   2240 	/*
   2241 	 * We may want to rate-limit RSTs in certain situations,
   2242 	 * particularly if we are sending an RST in response to
   2243 	 * an attempt to connect to or otherwise communicate with
   2244 	 * a port for which we have no socket.
   2245 	 */
   2246 	if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
   2247 	    tcp_rst_ppslim) == 0) {
   2248 		/* XXX stat */
   2249 		goto drop;
   2250 	}
   2251 	/* ...fall into dropwithreset... */
   2252 
   2253 dropwithreset:
   2254 	/*
   2255 	 * Generate a RST, dropping incoming segment.
   2256 	 * Make ACK acceptable to originator of segment.
   2257 	 */
   2258 	if (tiflags & TH_RST)
   2259 		goto drop;
   2260 
   2261 	switch (af) {
   2262 #ifdef INET6
   2263 	case AF_INET6:
   2264 		/* For following calls to tcp_respond */
   2265 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
   2266 			goto drop;
   2267 		break;
   2268 #endif /* INET6 */
   2269 	case AF_INET:
   2270 		if (IN_MULTICAST(ip->ip_dst.s_addr) ||
   2271 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
   2272 			goto drop;
   2273 	}
   2274 
   2275     {
   2276 	/*
   2277 	 * need to recover version # field, which was overwritten on
   2278 	 * ip_cksum computation.
   2279 	 */
   2280 	struct ip *sip;
   2281 	sip = mtod(m, struct ip *);
   2282 	switch (af) {
   2283 #ifdef INET
   2284 	case AF_INET:
   2285 		sip->ip_v = 4;
   2286 		break;
   2287 #endif
   2288 #ifdef INET6
   2289 	case AF_INET6:
   2290 		sip->ip_v = 6;
   2291 		break;
   2292 #endif
   2293 	}
   2294     }
   2295 	if (tiflags & TH_ACK)
   2296 		(void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
   2297 	else {
   2298 		if (tiflags & TH_SYN)
   2299 			tlen++;
   2300 		(void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
   2301 		    TH_RST|TH_ACK);
   2302 	}
   2303 	if (tcp_saveti)
   2304 		m_freem(tcp_saveti);
   2305 	return;
   2306 
   2307 badcsum:
   2308 	tcpstat.tcps_rcvbadsum++;
   2309 drop:
   2310 	/*
   2311 	 * Drop space held by incoming segment and return.
   2312 	 */
   2313 	if (tp) {
   2314 		if (tp->t_inpcb)
   2315 			so = tp->t_inpcb->inp_socket;
   2316 #ifdef INET6
   2317 		else if (tp->t_in6pcb)
   2318 			so = tp->t_in6pcb->in6p_socket;
   2319 #endif
   2320 		else
   2321 			so = NULL;
   2322 #ifdef TCP_DEBUG
   2323 		if (so && (so->so_options & SO_DEBUG) != 0)
   2324 			tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
   2325 #endif
   2326 	}
   2327 	if (tcp_saveti)
   2328 		m_freem(tcp_saveti);
   2329 	m_freem(m);
   2330 	return;
   2331 }
   2332 
   2333 void
   2334 tcp_dooptions(tp, cp, cnt, th, oi)
   2335 	struct tcpcb *tp;
   2336 	u_char *cp;
   2337 	int cnt;
   2338 	struct tcphdr *th;
   2339 	struct tcp_opt_info *oi;
   2340 {
   2341 	u_int16_t mss;
   2342 	int opt, optlen;
   2343 
   2344 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
   2345 		opt = cp[0];
   2346 		if (opt == TCPOPT_EOL)
   2347 			break;
   2348 		if (opt == TCPOPT_NOP)
   2349 			optlen = 1;
   2350 		else {
   2351 			if (cnt < 2)
   2352 				break;
   2353 			optlen = cp[1];
   2354 			if (optlen < 2 || optlen > cnt)
   2355 				break;
   2356 		}
   2357 		switch (opt) {
   2358 
   2359 		default:
   2360 			continue;
   2361 
   2362 		case TCPOPT_MAXSEG:
   2363 			if (optlen != TCPOLEN_MAXSEG)
   2364 				continue;
   2365 			if (!(th->th_flags & TH_SYN))
   2366 				continue;
   2367 			bcopy(cp + 2, &mss, sizeof(mss));
   2368 			oi->maxseg = ntohs(mss);
   2369 			break;
   2370 
   2371 		case TCPOPT_WINDOW:
   2372 			if (optlen != TCPOLEN_WINDOW)
   2373 				continue;
   2374 			if (!(th->th_flags & TH_SYN))
   2375 				continue;
   2376 			tp->t_flags |= TF_RCVD_SCALE;
   2377 			tp->requested_s_scale = cp[2];
   2378 			if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
   2379 #if 0	/*XXX*/
   2380 				char *p;
   2381 
   2382 				if (ip)
   2383 					p = ntohl(ip->ip_src);
   2384 #ifdef INET6
   2385 				else if (ip6)
   2386 					p = ip6_sprintf(&ip6->ip6_src);
   2387 #endif
   2388 				else
   2389 					p = "(unknown)";
   2390 				log(LOG_ERR, "TCP: invalid wscale %d from %s, "
   2391 				    "assuming %d\n",
   2392 				    tp->requested_s_scale, p,
   2393 				    TCP_MAX_WINSHIFT);
   2394 #else
   2395 				log(LOG_ERR, "TCP: invalid wscale %d, "
   2396 				    "assuming %d\n",
   2397 				    tp->requested_s_scale,
   2398 				    TCP_MAX_WINSHIFT);
   2399 #endif
   2400 				tp->requested_s_scale = TCP_MAX_WINSHIFT;
   2401 			}
   2402 			break;
   2403 
   2404 		case TCPOPT_TIMESTAMP:
   2405 			if (optlen != TCPOLEN_TIMESTAMP)
   2406 				continue;
   2407 			oi->ts_present = 1;
   2408 			bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
   2409 			NTOHL(oi->ts_val);
   2410 			bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
   2411 			NTOHL(oi->ts_ecr);
   2412 
   2413 			/*
   2414 			 * A timestamp received in a SYN makes
   2415 			 * it ok to send timestamp requests and replies.
   2416 			 */
   2417 			if (th->th_flags & TH_SYN) {
   2418 				tp->t_flags |= TF_RCVD_TSTMP;
   2419 				tp->ts_recent = oi->ts_val;
   2420 				tp->ts_recent_age = TCP_TIMESTAMP(tp);
   2421 			}
   2422 			break;
   2423 		case TCPOPT_SACK_PERMITTED:
   2424 			if (optlen != TCPOLEN_SACK_PERMITTED)
   2425 				continue;
   2426 			if (!(th->th_flags & TH_SYN))
   2427 				continue;
   2428 			tp->t_flags &= ~TF_CANT_TXSACK;
   2429 			break;
   2430 
   2431 		case TCPOPT_SACK:
   2432 			if (tp->t_flags & TF_IGNR_RXSACK)
   2433 				continue;
   2434 			if (optlen % 8 != 2 || optlen < 10)
   2435 				continue;
   2436 			cp += 2;
   2437 			optlen -= 2;
   2438 			for (; optlen > 0; cp -= 8, optlen -= 8) {
   2439 				tcp_seq lwe, rwe;
   2440 				bcopy((char *)cp, (char *) &lwe, sizeof(lwe));
   2441 				NTOHL(lwe);
   2442 				bcopy((char *)cp, (char *) &rwe, sizeof(rwe));
   2443 				NTOHL(rwe);
   2444 				/* tcp_mark_sacked(tp, lwe, rwe); */
   2445 			}
   2446 			break;
   2447 		}
   2448 	}
   2449 }
   2450 
   2451 /*
   2452  * Pull out of band byte out of a segment so
   2453  * it doesn't appear in the user's data queue.
   2454  * It is still reflected in the segment length for
   2455  * sequencing purposes.
   2456  */
   2457 void
   2458 tcp_pulloutofband(so, th, m, off)
   2459 	struct socket *so;
   2460 	struct tcphdr *th;
   2461 	struct mbuf *m;
   2462 	int off;
   2463 {
   2464 	int cnt = off + th->th_urp - 1;
   2465 
   2466 	while (cnt >= 0) {
   2467 		if (m->m_len > cnt) {
   2468 			char *cp = mtod(m, caddr_t) + cnt;
   2469 			struct tcpcb *tp = sototcpcb(so);
   2470 
   2471 			tp->t_iobc = *cp;
   2472 			tp->t_oobflags |= TCPOOB_HAVEDATA;
   2473 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
   2474 			m->m_len--;
   2475 			return;
   2476 		}
   2477 		cnt -= m->m_len;
   2478 		m = m->m_next;
   2479 		if (m == 0)
   2480 			break;
   2481 	}
   2482 	panic("tcp_pulloutofband");
   2483 }
   2484 
   2485 /*
   2486  * Collect new round-trip time estimate
   2487  * and update averages and current timeout.
   2488  */
   2489 void
   2490 tcp_xmit_timer(tp, rtt)
   2491 	struct tcpcb *tp;
   2492 	uint32_t rtt;
   2493 {
   2494 	int32_t delta;
   2495 
   2496 	tcpstat.tcps_rttupdated++;
   2497 	if (tp->t_srtt != 0) {
   2498 		/*
   2499 		 * srtt is stored as fixed point with 3 bits after the
   2500 		 * binary point (i.e., scaled by 8).  The following magic
   2501 		 * is equivalent to the smoothing algorithm in rfc793 with
   2502 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
   2503 		 * point).  Adjust rtt to origin 0.
   2504 		 */
   2505 		delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
   2506 		if ((tp->t_srtt += delta) <= 0)
   2507 			tp->t_srtt = 1 << 2;
   2508 		/*
   2509 		 * We accumulate a smoothed rtt variance (actually, a
   2510 		 * smoothed mean difference), then set the retransmit
   2511 		 * timer to smoothed rtt + 4 times the smoothed variance.
   2512 		 * rttvar is stored as fixed point with 2 bits after the
   2513 		 * binary point (scaled by 4).  The following is
   2514 		 * equivalent to rfc793 smoothing with an alpha of .75
   2515 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
   2516 		 * rfc793's wired-in beta.
   2517 		 */
   2518 		if (delta < 0)
   2519 			delta = -delta;
   2520 		delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
   2521 		if ((tp->t_rttvar += delta) <= 0)
   2522 			tp->t_rttvar = 1 << 2;
   2523 	} else {
   2524 		/*
   2525 		 * No rtt measurement yet - use the unsmoothed rtt.
   2526 		 * Set the variance to half the rtt (so our first
   2527 		 * retransmit happens at 3*rtt).
   2528 		 */
   2529 		tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
   2530 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
   2531 	}
   2532 	tp->t_rtttime = 0;
   2533 	tp->t_rxtshift = 0;
   2534 
   2535 	/*
   2536 	 * the retransmit should happen at rtt + 4 * rttvar.
   2537 	 * Because of the way we do the smoothing, srtt and rttvar
   2538 	 * will each average +1/2 tick of bias.  When we compute
   2539 	 * the retransmit timer, we want 1/2 tick of rounding and
   2540 	 * 1 extra tick because of +-1/2 tick uncertainty in the
   2541 	 * firing of the timer.  The bias will give us exactly the
   2542 	 * 1.5 tick we need.  But, because the bias is
   2543 	 * statistical, we have to test that we don't drop below
   2544 	 * the minimum feasible timer (which is 2 ticks).
   2545 	 */
   2546 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
   2547 	    max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
   2548 
   2549 	/*
   2550 	 * We received an ack for a packet that wasn't retransmitted;
   2551 	 * it is probably safe to discard any error indications we've
   2552 	 * received recently.  This isn't quite right, but close enough
   2553 	 * for now (a route might have failed after we sent a segment,
   2554 	 * and the return path might not be symmetrical).
   2555 	 */
   2556 	tp->t_softerror = 0;
   2557 }
   2558 
   2559 /*
   2560  * Checks for partial ack.  If partial ack arrives, force the retransmission
   2561  * of the next unacknowledged segment, do not clear tp->t_dupacks, and return
   2562  * 1.  By setting snd_nxt to th_ack, this forces retransmission timer to
   2563  * be started again.  If the ack advances at least to tp->snd_recover, return 0.
   2564  */
   2565 int
   2566 tcp_newreno(tp, th)
   2567 	struct tcpcb *tp;
   2568 	struct tcphdr *th;
   2569 {
   2570 	tcp_seq onxt = tp->snd_nxt;
   2571 	u_long ocwnd = tp->snd_cwnd;
   2572 
   2573 	if (SEQ_LT(th->th_ack, tp->snd_recover)) {
   2574 		/*
   2575 		 * snd_una has not yet been updated and the socket's send
   2576 		 * buffer has not yet drained off the ACK'd data, so we
   2577 		 * have to leave snd_una as it was to get the correct data
   2578 		 * offset in tcp_output().
   2579 		 */
   2580 		TCP_TIMER_DISARM(tp, TCPT_REXMT);
   2581 	        tp->t_rtttime = 0;
   2582 	        tp->snd_nxt = th->th_ack;
   2583 		/*
   2584 		 * Set snd_cwnd to one segment beyond ACK'd offset.  snd_una
   2585 		 * is not yet updated when we're called.
   2586 		 */
   2587 		tp->snd_cwnd = tp->t_segsz + (th->th_ack - tp->snd_una);
   2588 	        (void) tcp_output(tp);
   2589 	        tp->snd_cwnd = ocwnd;
   2590 	        if (SEQ_GT(onxt, tp->snd_nxt))
   2591 	                tp->snd_nxt = onxt;
   2592 	        /*
   2593 	         * Partial window deflation.  Relies on fact that tp->snd_una
   2594 	         * not updated yet.
   2595 	         */
   2596 	        tp->snd_cwnd -= (th->th_ack - tp->snd_una - tp->t_segsz);
   2597 	        return 1;
   2598 	}
   2599 	return 0;
   2600 }
   2601 
   2602 
   2603 /*
   2604  * TCP compressed state engine.  Currently used to hold compressed
   2605  * state for SYN_RECEIVED.
   2606  */
   2607 
   2608 u_long	syn_cache_count;
   2609 u_int32_t syn_hash1, syn_hash2;
   2610 
   2611 #define SYN_HASH(sa, sp, dp) \
   2612 	((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
   2613 				     ((u_int32_t)(sp)))^syn_hash2)))
   2614 #ifndef INET6
   2615 #define	SYN_HASHALL(hash, src, dst) \
   2616 do {									\
   2617 	hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr,	\
   2618 		((struct sockaddr_in *)(src))->sin_port,		\
   2619 		((struct sockaddr_in *)(dst))->sin_port);		\
   2620 } while (0)
   2621 #else
   2622 #define SYN_HASH6(sa, sp, dp) \
   2623 	((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
   2624 	  (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
   2625 	 & 0x7fffffff)
   2626 
   2627 #define SYN_HASHALL(hash, src, dst) \
   2628 do {									\
   2629 	switch ((src)->sa_family) {					\
   2630 	case AF_INET:							\
   2631 		hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
   2632 			((struct sockaddr_in *)(src))->sin_port,	\
   2633 			((struct sockaddr_in *)(dst))->sin_port);	\
   2634 		break;							\
   2635 	case AF_INET6:							\
   2636 		hash = SYN_HASH6(&((struct sockaddr_in6 *)(src))->sin6_addr, \
   2637 			((struct sockaddr_in6 *)(src))->sin6_port,	\
   2638 			((struct sockaddr_in6 *)(dst))->sin6_port);	\
   2639 		break;							\
   2640 	default:							\
   2641 		hash = 0;						\
   2642 	}								\
   2643 } while (/*CONSTCOND*/0)
   2644 #endif /* INET6 */
   2645 
   2646 #define	SYN_CACHE_RM(sc)						\
   2647 do {									\
   2648 	TAILQ_REMOVE(&tcp_syn_cache[(sc)->sc_bucketidx].sch_bucket,	\
   2649 	    (sc), sc_bucketq);						\
   2650 	(sc)->sc_tp = NULL;						\
   2651 	LIST_REMOVE((sc), sc_tpq);					\
   2652 	tcp_syn_cache[(sc)->sc_bucketidx].sch_length--;			\
   2653 	callout_stop(&(sc)->sc_timer);					\
   2654 	syn_cache_count--;						\
   2655 } while (/*CONSTCOND*/0)
   2656 
   2657 #define	SYN_CACHE_PUT(sc)						\
   2658 do {									\
   2659 	if ((sc)->sc_ipopts)						\
   2660 		(void) m_free((sc)->sc_ipopts);				\
   2661 	if ((sc)->sc_route4.ro_rt != NULL)				\
   2662 		RTFREE((sc)->sc_route4.ro_rt);				\
   2663 	pool_put(&syn_cache_pool, (sc));				\
   2664 } while (/*CONSTCOND*/0)
   2665 
   2666 struct pool syn_cache_pool;
   2667 
   2668 /*
   2669  * We don't estimate RTT with SYNs, so each packet starts with the default
   2670  * RTT and each timer step has a fixed timeout value.
   2671  */
   2672 #define	SYN_CACHE_TIMER_ARM(sc)						\
   2673 do {									\
   2674 	TCPT_RANGESET((sc)->sc_rxtcur,					\
   2675 	    TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN,	\
   2676 	    TCPTV_REXMTMAX);						\
   2677 	callout_reset(&(sc)->sc_timer,					\
   2678 	    (sc)->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, (sc));	\
   2679 } while (/*CONSTCOND*/0)
   2680 
   2681 #define	SYN_CACHE_TIMESTAMP(sc)	(tcp_now - (sc)->sc_timebase)
   2682 
   2683 void
   2684 syn_cache_init()
   2685 {
   2686 	int i;
   2687 
   2688 	/* Initialize the hash buckets. */
   2689 	for (i = 0; i < tcp_syn_cache_size; i++)
   2690 		TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
   2691 
   2692 	/* Initialize the syn cache pool. */
   2693 	pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
   2694 	    "synpl", NULL);
   2695 }
   2696 
   2697 void
   2698 syn_cache_insert(sc, tp)
   2699 	struct syn_cache *sc;
   2700 	struct tcpcb *tp;
   2701 {
   2702 	struct syn_cache_head *scp;
   2703 	struct syn_cache *sc2;
   2704 	int s;
   2705 
   2706 	/*
   2707 	 * If there are no entries in the hash table, reinitialize
   2708 	 * the hash secrets.
   2709 	 */
   2710 	if (syn_cache_count == 0) {
   2711 		struct timeval tv;
   2712 		microtime(&tv);
   2713 		syn_hash1 = random() ^ (u_long)&sc;
   2714 		syn_hash2 = random() ^ tv.tv_usec;
   2715 	}
   2716 
   2717 	SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
   2718 	sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
   2719 	scp = &tcp_syn_cache[sc->sc_bucketidx];
   2720 
   2721 	/*
   2722 	 * Make sure that we don't overflow the per-bucket
   2723 	 * limit or the total cache size limit.
   2724 	 */
   2725 	s = splsoftnet();
   2726 	if (scp->sch_length >= tcp_syn_bucket_limit) {
   2727 		tcpstat.tcps_sc_bucketoverflow++;
   2728 		/*
   2729 		 * The bucket is full.  Toss the oldest element in the
   2730 		 * bucket.  This will be the first entry in the bucket.
   2731 		 */
   2732 		sc2 = TAILQ_FIRST(&scp->sch_bucket);
   2733 #ifdef DIAGNOSTIC
   2734 		/*
   2735 		 * This should never happen; we should always find an
   2736 		 * entry in our bucket.
   2737 		 */
   2738 		if (sc2 == NULL)
   2739 			panic("syn_cache_insert: bucketoverflow: impossible");
   2740 #endif
   2741 		SYN_CACHE_RM(sc2);
   2742 		SYN_CACHE_PUT(sc2);
   2743 	} else if (syn_cache_count >= tcp_syn_cache_limit) {
   2744 		struct syn_cache_head *scp2, *sce;
   2745 
   2746 		tcpstat.tcps_sc_overflowed++;
   2747 		/*
   2748 		 * The cache is full.  Toss the oldest entry in the
   2749 		 * first non-empty bucket we can find.
   2750 		 *
   2751 		 * XXX We would really like to toss the oldest
   2752 		 * entry in the cache, but we hope that this
   2753 		 * condition doesn't happen very often.
   2754 		 */
   2755 		scp2 = scp;
   2756 		if (TAILQ_EMPTY(&scp2->sch_bucket)) {
   2757 			sce = &tcp_syn_cache[tcp_syn_cache_size];
   2758 			for (++scp2; scp2 != scp; scp2++) {
   2759 				if (scp2 >= sce)
   2760 					scp2 = &tcp_syn_cache[0];
   2761 				if (! TAILQ_EMPTY(&scp2->sch_bucket))
   2762 					break;
   2763 			}
   2764 #ifdef DIAGNOSTIC
   2765 			/*
   2766 			 * This should never happen; we should always find a
   2767 			 * non-empty bucket.
   2768 			 */
   2769 			if (scp2 == scp)
   2770 				panic("syn_cache_insert: cacheoverflow: "
   2771 				    "impossible");
   2772 #endif
   2773 		}
   2774 		sc2 = TAILQ_FIRST(&scp2->sch_bucket);
   2775 		SYN_CACHE_RM(sc2);
   2776 		SYN_CACHE_PUT(sc2);
   2777 	}
   2778 
   2779 	/*
   2780 	 * Initialize the entry's timer.
   2781 	 */
   2782 	sc->sc_rxttot = 0;
   2783 	sc->sc_rxtshift = 0;
   2784 	SYN_CACHE_TIMER_ARM(sc);
   2785 
   2786 	/* Link it from tcpcb entry */
   2787 	LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
   2788 
   2789 	/* Put it into the bucket. */
   2790 	TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
   2791 	scp->sch_length++;
   2792 	syn_cache_count++;
   2793 
   2794 	tcpstat.tcps_sc_added++;
   2795 	splx(s);
   2796 }
   2797 
   2798 /*
   2799  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
   2800  * If we have retransmitted an entry the maximum number of times, expire
   2801  * that entry.
   2802  */
   2803 void
   2804 syn_cache_timer(void *arg)
   2805 {
   2806 	struct syn_cache *sc = arg;
   2807 	int s;
   2808 
   2809 	s = splsoftnet();
   2810 
   2811 	if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
   2812 		/* Drop it -- too many retransmissions. */
   2813 		goto dropit;
   2814 	}
   2815 
   2816 	/*
   2817 	 * Compute the total amount of time this entry has
   2818 	 * been on a queue.  If this entry has been on longer
   2819 	 * than the keep alive timer would allow, expire it.
   2820 	 */
   2821 	sc->sc_rxttot += sc->sc_rxtcur;
   2822 	if (sc->sc_rxttot >= TCPTV_KEEP_INIT)
   2823 		goto dropit;
   2824 
   2825 	tcpstat.tcps_sc_retransmitted++;
   2826 	(void) syn_cache_respond(sc, NULL);
   2827 
   2828 	/* Advance the timer back-off. */
   2829 	sc->sc_rxtshift++;
   2830 	SYN_CACHE_TIMER_ARM(sc);
   2831 
   2832 	splx(s);
   2833 	return;
   2834 
   2835  dropit:
   2836 	tcpstat.tcps_sc_timed_out++;
   2837 	SYN_CACHE_RM(sc);
   2838 	SYN_CACHE_PUT(sc);
   2839 	splx(s);
   2840 }
   2841 
   2842 /*
   2843  * Remove syn cache created by the specified tcb entry,
   2844  * because this does not make sense to keep them
   2845  * (if there's no tcb entry, syn cache entry will never be used)
   2846  */
   2847 void
   2848 syn_cache_cleanup(tp)
   2849 	struct tcpcb *tp;
   2850 {
   2851 	struct syn_cache *sc, *nsc;
   2852 	int s;
   2853 
   2854 	s = splsoftnet();
   2855 
   2856 	for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
   2857 		nsc = LIST_NEXT(sc, sc_tpq);
   2858 
   2859 #ifdef DIAGNOSTIC
   2860 		if (sc->sc_tp != tp)
   2861 			panic("invalid sc_tp in syn_cache_cleanup");
   2862 #endif
   2863 		SYN_CACHE_RM(sc);
   2864 		SYN_CACHE_PUT(sc);
   2865 	}
   2866 	/* just for safety */
   2867 	LIST_INIT(&tp->t_sc);
   2868 
   2869 	splx(s);
   2870 }
   2871 
   2872 /*
   2873  * Find an entry in the syn cache.
   2874  */
   2875 struct syn_cache *
   2876 syn_cache_lookup(src, dst, headp)
   2877 	struct sockaddr *src;
   2878 	struct sockaddr *dst;
   2879 	struct syn_cache_head **headp;
   2880 {
   2881 	struct syn_cache *sc;
   2882 	struct syn_cache_head *scp;
   2883 	u_int32_t hash;
   2884 	int s;
   2885 
   2886 	SYN_HASHALL(hash, src, dst);
   2887 
   2888 	scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
   2889 	*headp = scp;
   2890 	s = splsoftnet();
   2891 	for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
   2892 	     sc = TAILQ_NEXT(sc, sc_bucketq)) {
   2893 		if (sc->sc_hash != hash)
   2894 			continue;
   2895 		if (!bcmp(&sc->sc_src, src, src->sa_len) &&
   2896 		    !bcmp(&sc->sc_dst, dst, dst->sa_len)) {
   2897 			splx(s);
   2898 			return (sc);
   2899 		}
   2900 	}
   2901 	splx(s);
   2902 	return (NULL);
   2903 }
   2904 
   2905 /*
   2906  * This function gets called when we receive an ACK for a
   2907  * socket in the LISTEN state.  We look up the connection
   2908  * in the syn cache, and if its there, we pull it out of
   2909  * the cache and turn it into a full-blown connection in
   2910  * the SYN-RECEIVED state.
   2911  *
   2912  * The return values may not be immediately obvious, and their effects
   2913  * can be subtle, so here they are:
   2914  *
   2915  *	NULL	SYN was not found in cache; caller should drop the
   2916  *		packet and send an RST.
   2917  *
   2918  *	-1	We were unable to create the new connection, and are
   2919  *		aborting it.  An ACK,RST is being sent to the peer
   2920  *		(unless we got screwey sequence numbners; see below),
   2921  *		because the 3-way handshake has been completed.  Caller
   2922  *		should not free the mbuf, since we may be using it.  If
   2923  *		we are not, we will free it.
   2924  *
   2925  *	Otherwise, the return value is a pointer to the new socket
   2926  *	associated with the connection.
   2927  */
   2928 struct socket *
   2929 syn_cache_get(src, dst, th, hlen, tlen, so, m)
   2930 	struct sockaddr *src;
   2931 	struct sockaddr *dst;
   2932 	struct tcphdr *th;
   2933 	unsigned int hlen, tlen;
   2934 	struct socket *so;
   2935 	struct mbuf *m;
   2936 {
   2937 	struct syn_cache *sc;
   2938 	struct syn_cache_head *scp;
   2939 	struct inpcb *inp = NULL;
   2940 #ifdef INET6
   2941 	struct in6pcb *in6p = NULL;
   2942 #endif
   2943 	struct tcpcb *tp = 0;
   2944 	struct mbuf *am;
   2945 	int s;
   2946 	struct socket *oso;
   2947 
   2948 	s = splsoftnet();
   2949 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
   2950 		splx(s);
   2951 		return (NULL);
   2952 	}
   2953 
   2954 	/*
   2955 	 * Verify the sequence and ack numbers.  Try getting the correct
   2956 	 * response again.
   2957 	 */
   2958 	if ((th->th_ack != sc->sc_iss + 1) ||
   2959 	    SEQ_LEQ(th->th_seq, sc->sc_irs) ||
   2960 	    SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
   2961 		(void) syn_cache_respond(sc, m);
   2962 		splx(s);
   2963 		return ((struct socket *)(-1));
   2964 	}
   2965 
   2966 	/* Remove this cache entry */
   2967 	SYN_CACHE_RM(sc);
   2968 	splx(s);
   2969 
   2970 	/*
   2971 	 * Ok, create the full blown connection, and set things up
   2972 	 * as they would have been set up if we had created the
   2973 	 * connection when the SYN arrived.  If we can't create
   2974 	 * the connection, abort it.
   2975 	 */
   2976 	/*
   2977 	 * inp still has the OLD in_pcb stuff, set the
   2978 	 * v6-related flags on the new guy, too.   This is
   2979 	 * done particularly for the case where an AF_INET6
   2980 	 * socket is bound only to a port, and a v4 connection
   2981 	 * comes in on that port.
   2982 	 * we also copy the flowinfo from the original pcb
   2983 	 * to the new one.
   2984 	 */
   2985     {
   2986 	struct inpcb *parentinpcb;
   2987 
   2988 	parentinpcb = (struct inpcb *)so->so_pcb;
   2989 
   2990 	oso = so;
   2991 	so = sonewconn(so, SS_ISCONNECTED);
   2992 	if (so == NULL)
   2993 		goto resetandabort;
   2994 
   2995 	switch (so->so_proto->pr_domain->dom_family) {
   2996 #ifdef INET
   2997 	case AF_INET:
   2998 		inp = sotoinpcb(so);
   2999 		break;
   3000 #endif
   3001 #ifdef INET6
   3002 	case AF_INET6:
   3003 		in6p = sotoin6pcb(so);
   3004 		break;
   3005 #endif
   3006 	}
   3007     }
   3008 	switch (src->sa_family) {
   3009 #ifdef INET
   3010 	case AF_INET:
   3011 		if (inp) {
   3012 			inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
   3013 			inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
   3014 			inp->inp_options = ip_srcroute();
   3015 			in_pcbstate(inp, INP_BOUND);
   3016 			if (inp->inp_options == NULL) {
   3017 				inp->inp_options = sc->sc_ipopts;
   3018 				sc->sc_ipopts = NULL;
   3019 			}
   3020 		}
   3021 #ifdef INET6
   3022 		else if (in6p) {
   3023 			/* IPv4 packet to AF_INET6 socket */
   3024 			bzero(&in6p->in6p_laddr, sizeof(in6p->in6p_laddr));
   3025 			in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
   3026 			bcopy(&((struct sockaddr_in *)dst)->sin_addr,
   3027 				&in6p->in6p_laddr.s6_addr32[3],
   3028 				sizeof(((struct sockaddr_in *)dst)->sin_addr));
   3029 			in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
   3030 			in6totcpcb(in6p)->t_family = AF_INET;
   3031 		}
   3032 #endif
   3033 		break;
   3034 #endif
   3035 #ifdef INET6
   3036 	case AF_INET6:
   3037 		if (in6p) {
   3038 			in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
   3039 			in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
   3040 #if 0
   3041 			in6p->in6p_flowinfo = ip6->ip6_flow & IPV6_FLOWINFO_MASK;
   3042 			/*inp->inp_options = ip6_srcroute();*/ /* soon. */
   3043 #endif
   3044 		}
   3045 		break;
   3046 #endif
   3047 	}
   3048 #ifdef INET6
   3049 	if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
   3050 		struct in6pcb *oin6p = sotoin6pcb(oso);
   3051 		/* inherit socket options from the listening socket */
   3052 		in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
   3053 		if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
   3054 			m_freem(in6p->in6p_options);
   3055 			in6p->in6p_options = 0;
   3056 		}
   3057 		ip6_savecontrol(in6p, &in6p->in6p_options,
   3058 			mtod(m, struct ip6_hdr *), m);
   3059 	}
   3060 #endif
   3061 
   3062 #ifdef IPSEC
   3063 	/*
   3064 	 * we make a copy of policy, instead of sharing the policy,
   3065 	 * for better behavior in terms of SA lookup and dead SA removal.
   3066 	 */
   3067 	if (inp) {
   3068 		/* copy old policy into new socket's */
   3069 		if (ipsec_copy_policy(sotoinpcb(oso)->inp_sp, inp->inp_sp))
   3070 			printf("tcp_input: could not copy policy\n");
   3071 	}
   3072 #ifdef INET6
   3073 	else if (in6p) {
   3074 		/* copy old policy into new socket's */
   3075 		if (ipsec_copy_policy(sotoin6pcb(oso)->in6p_sp, in6p->in6p_sp))
   3076 			printf("tcp_input: could not copy policy\n");
   3077 	}
   3078 #endif
   3079 #endif
   3080 
   3081 	/*
   3082 	 * Give the new socket our cached route reference.
   3083 	 */
   3084 	if (inp)
   3085 		inp->inp_route = sc->sc_route4;		/* struct assignment */
   3086 #ifdef INET6
   3087 	else
   3088 		in6p->in6p_route = sc->sc_route6;
   3089 #endif
   3090 	sc->sc_route4.ro_rt = NULL;
   3091 
   3092 	am = m_get(M_DONTWAIT, MT_SONAME);	/* XXX */
   3093 	if (am == NULL)
   3094 		goto resetandabort;
   3095 	am->m_len = src->sa_len;
   3096 	bcopy(src, mtod(am, caddr_t), src->sa_len);
   3097 	if (inp) {
   3098 		if (in_pcbconnect(inp, am)) {
   3099 			(void) m_free(am);
   3100 			goto resetandabort;
   3101 		}
   3102 	}
   3103 #ifdef INET6
   3104 	else if (in6p) {
   3105 		if (src->sa_family == AF_INET) {
   3106 			/* IPv4 packet to AF_INET6 socket */
   3107 			struct sockaddr_in6 *sin6;
   3108 			sin6 = mtod(am, struct sockaddr_in6 *);
   3109 			am->m_len = sizeof(*sin6);
   3110 			bzero(sin6, sizeof(*sin6));
   3111 			sin6->sin6_family = AF_INET6;
   3112 			sin6->sin6_len = sizeof(*sin6);
   3113 			sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port;
   3114 			sin6->sin6_addr.s6_addr16[5] = htons(0xffff);
   3115 			bcopy(&((struct sockaddr_in *)src)->sin_addr,
   3116 				&sin6->sin6_addr.s6_addr32[3],
   3117 				sizeof(sin6->sin6_addr.s6_addr32[3]));
   3118 		}
   3119 		if (in6_pcbconnect(in6p, am)) {
   3120 			(void) m_free(am);
   3121 			goto resetandabort;
   3122 		}
   3123 	}
   3124 #endif
   3125 	else {
   3126 		(void) m_free(am);
   3127 		goto resetandabort;
   3128 	}
   3129 	(void) m_free(am);
   3130 
   3131 	if (inp)
   3132 		tp = intotcpcb(inp);
   3133 #ifdef INET6
   3134 	else if (in6p)
   3135 		tp = in6totcpcb(in6p);
   3136 #endif
   3137 	else
   3138 		tp = NULL;
   3139 	if (sc->sc_request_r_scale != 15) {
   3140 		tp->requested_s_scale = sc->sc_requested_s_scale;
   3141 		tp->request_r_scale = sc->sc_request_r_scale;
   3142 		tp->snd_scale = sc->sc_requested_s_scale;
   3143 		tp->rcv_scale = sc->sc_request_r_scale;
   3144 		tp->t_flags |= TF_RCVD_SCALE;
   3145 	}
   3146 	if (sc->sc_flags & SCF_TIMESTAMP)
   3147 		tp->t_flags |= TF_RCVD_TSTMP;
   3148 	tp->ts_timebase = sc->sc_timebase;
   3149 
   3150 	tp->t_template = tcp_template(tp);
   3151 	if (tp->t_template == 0) {
   3152 		tp = tcp_drop(tp, ENOBUFS);	/* destroys socket */
   3153 		so = NULL;
   3154 		m_freem(m);
   3155 		goto abort;
   3156 	}
   3157 
   3158 	tp->iss = sc->sc_iss;
   3159 	tp->irs = sc->sc_irs;
   3160 	tcp_sendseqinit(tp);
   3161 	tcp_rcvseqinit(tp);
   3162 	tp->t_state = TCPS_SYN_RECEIVED;
   3163 	TCP_TIMER_ARM(tp, TCPT_KEEP, TCPTV_KEEP_INIT);
   3164 	tcpstat.tcps_accepts++;
   3165 
   3166 	/* Initialize tp->t_ourmss before we deal with the peer's! */
   3167 	tp->t_ourmss = sc->sc_ourmaxseg;
   3168 	tcp_mss_from_peer(tp, sc->sc_peermaxseg);
   3169 
   3170 	/*
   3171 	 * Initialize the initial congestion window.  If we
   3172 	 * had to retransmit the SYN,ACK, we must initialize cwnd
   3173 	 * to 1 segment (i.e. the Loss Window).
   3174 	 */
   3175 	if (sc->sc_rxtshift)
   3176 		tp->snd_cwnd = tp->t_peermss;
   3177 	else
   3178 		tp->snd_cwnd = TCP_INITIAL_WINDOW(tcp_init_win, tp->t_peermss);
   3179 
   3180 	tcp_rmx_rtt(tp);
   3181 	tp->snd_wl1 = sc->sc_irs;
   3182 	tp->rcv_up = sc->sc_irs + 1;
   3183 
   3184 	/*
   3185 	 * This is what whould have happened in tcp_ouput() when
   3186 	 * the SYN,ACK was sent.
   3187 	 */
   3188 	tp->snd_up = tp->snd_una;
   3189 	tp->snd_max = tp->snd_nxt = tp->iss+1;
   3190 	TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
   3191 	if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
   3192 		tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
   3193 	tp->last_ack_sent = tp->rcv_nxt;
   3194 
   3195 	tcpstat.tcps_sc_completed++;
   3196 	SYN_CACHE_PUT(sc);
   3197 	return (so);
   3198 
   3199 resetandabort:
   3200 	(void) tcp_respond(NULL, m, m, th,
   3201 			   th->th_seq + tlen, (tcp_seq)0, TH_RST|TH_ACK);
   3202 abort:
   3203 	if (so != NULL)
   3204 		(void) soabort(so);
   3205 	SYN_CACHE_PUT(sc);
   3206 	tcpstat.tcps_sc_aborted++;
   3207 	return ((struct socket *)(-1));
   3208 }
   3209 
   3210 /*
   3211  * This function is called when we get a RST for a
   3212  * non-existent connection, so that we can see if the
   3213  * connection is in the syn cache.  If it is, zap it.
   3214  */
   3215 
   3216 void
   3217 syn_cache_reset(src, dst, th)
   3218 	struct sockaddr *src;
   3219 	struct sockaddr *dst;
   3220 	struct tcphdr *th;
   3221 {
   3222 	struct syn_cache *sc;
   3223 	struct syn_cache_head *scp;
   3224 	int s = splsoftnet();
   3225 
   3226 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
   3227 		splx(s);
   3228 		return;
   3229 	}
   3230 	if (SEQ_LT(th->th_seq, sc->sc_irs) ||
   3231 	    SEQ_GT(th->th_seq, sc->sc_irs+1)) {
   3232 		splx(s);
   3233 		return;
   3234 	}
   3235 	SYN_CACHE_RM(sc);
   3236 	splx(s);
   3237 	tcpstat.tcps_sc_reset++;
   3238 	SYN_CACHE_PUT(sc);
   3239 }
   3240 
   3241 void
   3242 syn_cache_unreach(src, dst, th)
   3243 	struct sockaddr *src;
   3244 	struct sockaddr *dst;
   3245 	struct tcphdr *th;
   3246 {
   3247 	struct syn_cache *sc;
   3248 	struct syn_cache_head *scp;
   3249 	int s;
   3250 
   3251 	s = splsoftnet();
   3252 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
   3253 		splx(s);
   3254 		return;
   3255 	}
   3256 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
   3257 	if (ntohl (th->th_seq) != sc->sc_iss) {
   3258 		splx(s);
   3259 		return;
   3260 	}
   3261 
   3262 	/*
   3263 	 * If we've rertransmitted 3 times and this is our second error,
   3264 	 * we remove the entry.  Otherwise, we allow it to continue on.
   3265 	 * This prevents us from incorrectly nuking an entry during a
   3266 	 * spurious network outage.
   3267 	 *
   3268 	 * See tcp_notify().
   3269 	 */
   3270 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
   3271 		sc->sc_flags |= SCF_UNREACH;
   3272 		splx(s);
   3273 		return;
   3274 	}
   3275 
   3276 	SYN_CACHE_RM(sc);
   3277 	splx(s);
   3278 	tcpstat.tcps_sc_unreach++;
   3279 	SYN_CACHE_PUT(sc);
   3280 }
   3281 
   3282 /*
   3283  * Given a LISTEN socket and an inbound SYN request, add
   3284  * this to the syn cache, and send back a segment:
   3285  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
   3286  * to the source.
   3287  *
   3288  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
   3289  * Doing so would require that we hold onto the data and deliver it
   3290  * to the application.  However, if we are the target of a SYN-flood
   3291  * DoS attack, an attacker could send data which would eventually
   3292  * consume all available buffer space if it were ACKed.  By not ACKing
   3293  * the data, we avoid this DoS scenario.
   3294  */
   3295 
   3296 int
   3297 syn_cache_add(src, dst, th, hlen, so, m, optp, optlen, oi)
   3298 	struct sockaddr *src;
   3299 	struct sockaddr *dst;
   3300 	struct tcphdr *th;
   3301 	unsigned int hlen;
   3302 	struct socket *so;
   3303 	struct mbuf *m;
   3304 	u_char *optp;
   3305 	int optlen;
   3306 	struct tcp_opt_info *oi;
   3307 {
   3308 	struct tcpcb tb, *tp;
   3309 	long win;
   3310 	struct syn_cache *sc;
   3311 	struct syn_cache_head *scp;
   3312 	struct mbuf *ipopts;
   3313 
   3314 	tp = sototcpcb(so);
   3315 
   3316 	/*
   3317 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
   3318 	 *
   3319 	 * Note this check is performed in tcp_input() very early on.
   3320 	 */
   3321 
   3322 	/*
   3323 	 * Initialize some local state.
   3324 	 */
   3325 	win = sbspace(&so->so_rcv);
   3326 	if (win > TCP_MAXWIN)
   3327 		win = TCP_MAXWIN;
   3328 
   3329 	switch (src->sa_family) {
   3330 #ifdef INET
   3331 	case AF_INET:
   3332 		/*
   3333 		 * Remember the IP options, if any.
   3334 		 */
   3335 		ipopts = ip_srcroute();
   3336 		break;
   3337 #endif
   3338 	default:
   3339 		ipopts = NULL;
   3340 	}
   3341 
   3342 	if (optp) {
   3343 		tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
   3344 		tcp_dooptions(&tb, optp, optlen, th, oi);
   3345 	} else
   3346 		tb.t_flags = 0;
   3347 
   3348 	/*
   3349 	 * See if we already have an entry for this connection.
   3350 	 * If we do, resend the SYN,ACK.  We do not count this
   3351 	 * as a retransmission (XXX though maybe we should).
   3352 	 */
   3353 	if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
   3354 		tcpstat.tcps_sc_dupesyn++;
   3355 		if (ipopts) {
   3356 			/*
   3357 			 * If we were remembering a previous source route,
   3358 			 * forget it and use the new one we've been given.
   3359 			 */
   3360 			if (sc->sc_ipopts)
   3361 				(void) m_free(sc->sc_ipopts);
   3362 			sc->sc_ipopts = ipopts;
   3363 		}
   3364 		sc->sc_timestamp = tb.ts_recent;
   3365 		if (syn_cache_respond(sc, m) == 0) {
   3366 			tcpstat.tcps_sndacks++;
   3367 			tcpstat.tcps_sndtotal++;
   3368 		}
   3369 		return (1);
   3370 	}
   3371 
   3372 	sc = pool_get(&syn_cache_pool, PR_NOWAIT);
   3373 	if (sc == NULL) {
   3374 		if (ipopts)
   3375 			(void) m_free(ipopts);
   3376 		return (0);
   3377 	}
   3378 
   3379 	/*
   3380 	 * Fill in the cache, and put the necessary IP and TCP
   3381 	 * options into the reply.
   3382 	 */
   3383 	callout_init(&sc->sc_timer);
   3384 	bzero(sc, sizeof(struct syn_cache));
   3385 	bcopy(src, &sc->sc_src, src->sa_len);
   3386 	bcopy(dst, &sc->sc_dst, dst->sa_len);
   3387 	sc->sc_flags = 0;
   3388 	sc->sc_ipopts = ipopts;
   3389 	sc->sc_irs = th->th_seq;
   3390 	switch (src->sa_family) {
   3391 #ifdef INET
   3392 	case AF_INET:
   3393 	    {
   3394 		struct sockaddr_in *srcin = (void *) src;
   3395 		struct sockaddr_in *dstin = (void *) dst;
   3396 
   3397 		sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
   3398 		    &srcin->sin_addr, dstin->sin_port,
   3399 		    srcin->sin_port, sizeof(dstin->sin_addr), 0);
   3400 		break;
   3401 	    }
   3402 #endif /* INET */
   3403 #ifdef INET6
   3404 	case AF_INET6:
   3405 	    {
   3406 		struct sockaddr_in6 *srcin6 = (void *) src;
   3407 		struct sockaddr_in6 *dstin6 = (void *) dst;
   3408 
   3409 		sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
   3410 		    &srcin6->sin6_addr, dstin6->sin6_port,
   3411 		    srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
   3412 		break;
   3413 	    }
   3414 #endif /* INET6 */
   3415 	}
   3416 	sc->sc_peermaxseg = oi->maxseg;
   3417 	sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
   3418 						m->m_pkthdr.rcvif : NULL,
   3419 						sc->sc_src.sa.sa_family);
   3420 	sc->sc_win = win;
   3421 	sc->sc_timebase = tcp_now;	/* see tcp_newtcpcb() */
   3422 	sc->sc_timestamp = tb.ts_recent;
   3423 	if (tcp_do_rfc1323 && (tb.t_flags & TF_RCVD_TSTMP))
   3424 		sc->sc_flags |= SCF_TIMESTAMP;
   3425 	if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   3426 	    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
   3427 		sc->sc_requested_s_scale = tb.requested_s_scale;
   3428 		sc->sc_request_r_scale = 0;
   3429 		while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
   3430 		    TCP_MAXWIN << sc->sc_request_r_scale <
   3431 		    so->so_rcv.sb_hiwat)
   3432 			sc->sc_request_r_scale++;
   3433 	} else {
   3434 		sc->sc_requested_s_scale = 15;
   3435 		sc->sc_request_r_scale = 15;
   3436 	}
   3437 	sc->sc_tp = tp;
   3438 	if (syn_cache_respond(sc, m) == 0) {
   3439 		syn_cache_insert(sc, tp);
   3440 		tcpstat.tcps_sndacks++;
   3441 		tcpstat.tcps_sndtotal++;
   3442 	} else {
   3443 		SYN_CACHE_PUT(sc);
   3444 		tcpstat.tcps_sc_dropped++;
   3445 	}
   3446 	return (1);
   3447 }
   3448 
   3449 int
   3450 syn_cache_respond(sc, m)
   3451 	struct syn_cache *sc;
   3452 	struct mbuf *m;
   3453 {
   3454 	struct route *ro;
   3455 	u_int8_t *optp;
   3456 	int optlen, error;
   3457 	u_int16_t tlen;
   3458 	struct ip *ip = NULL;
   3459 #ifdef INET6
   3460 	struct ip6_hdr *ip6 = NULL;
   3461 #endif
   3462 	struct tcphdr *th;
   3463 	u_int hlen;
   3464 
   3465 	switch (sc->sc_src.sa.sa_family) {
   3466 	case AF_INET:
   3467 		hlen = sizeof(struct ip);
   3468 		ro = &sc->sc_route4;
   3469 		break;
   3470 #ifdef INET6
   3471 	case AF_INET6:
   3472 		hlen = sizeof(struct ip6_hdr);
   3473 		ro = (struct route *)&sc->sc_route6;
   3474 		break;
   3475 #endif
   3476 	default:
   3477 		if (m)
   3478 			m_freem(m);
   3479 		return EAFNOSUPPORT;
   3480 	}
   3481 
   3482 	/* Compute the size of the TCP options. */
   3483 	optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
   3484 	    ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
   3485 
   3486 	tlen = hlen + sizeof(struct tcphdr) + optlen;
   3487 
   3488 	/*
   3489 	 * Create the IP+TCP header from scratch.
   3490 	 */
   3491 	if (m)
   3492 		m_freem(m);
   3493 #ifdef DIAGNOSTIC
   3494 	if (max_linkhdr + tlen > MCLBYTES)
   3495 		return (ENOBUFS);
   3496 #endif
   3497 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   3498 	if (m && tlen > MHLEN) {
   3499 		MCLGET(m, M_DONTWAIT);
   3500 		if ((m->m_flags & M_EXT) == 0) {
   3501 			m_freem(m);
   3502 			m = NULL;
   3503 		}
   3504 	}
   3505 	if (m == NULL)
   3506 		return (ENOBUFS);
   3507 
   3508 	/* Fixup the mbuf. */
   3509 	m->m_data += max_linkhdr;
   3510 	m->m_len = m->m_pkthdr.len = tlen;
   3511 #ifdef IPSEC
   3512 	if (sc->sc_tp) {
   3513 		struct tcpcb *tp;
   3514 		struct socket *so;
   3515 
   3516 		tp = sc->sc_tp;
   3517 		if (tp->t_inpcb)
   3518 			so = tp->t_inpcb->inp_socket;
   3519 #ifdef INET6
   3520 		else if (tp->t_in6pcb)
   3521 			so = tp->t_in6pcb->in6p_socket;
   3522 #endif
   3523 		else
   3524 			so = NULL;
   3525 		/* use IPsec policy on listening socket, on SYN ACK */
   3526 		if (ipsec_setsocket(m, so) != 0) {
   3527 			m_freem(m);
   3528 			return ENOBUFS;
   3529 		}
   3530 	}
   3531 #endif
   3532 	m->m_pkthdr.rcvif = NULL;
   3533 	memset(mtod(m, u_char *), 0, tlen);
   3534 
   3535 	switch (sc->sc_src.sa.sa_family) {
   3536 	case AF_INET:
   3537 		ip = mtod(m, struct ip *);
   3538 		ip->ip_dst = sc->sc_src.sin.sin_addr;
   3539 		ip->ip_src = sc->sc_dst.sin.sin_addr;
   3540 		ip->ip_p = IPPROTO_TCP;
   3541 		th = (struct tcphdr *)(ip + 1);
   3542 		th->th_dport = sc->sc_src.sin.sin_port;
   3543 		th->th_sport = sc->sc_dst.sin.sin_port;
   3544 		break;
   3545 #ifdef INET6
   3546 	case AF_INET6:
   3547 		ip6 = mtod(m, struct ip6_hdr *);
   3548 		ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
   3549 		ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
   3550 		ip6->ip6_nxt = IPPROTO_TCP;
   3551 		/* ip6_plen will be updated in ip6_output() */
   3552 		th = (struct tcphdr *)(ip6 + 1);
   3553 		th->th_dport = sc->sc_src.sin6.sin6_port;
   3554 		th->th_sport = sc->sc_dst.sin6.sin6_port;
   3555 		break;
   3556 #endif
   3557 	default:
   3558 		th = NULL;
   3559 	}
   3560 
   3561 	th->th_seq = htonl(sc->sc_iss);
   3562 	th->th_ack = htonl(sc->sc_irs + 1);
   3563 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
   3564 	th->th_flags = TH_SYN|TH_ACK;
   3565 	th->th_win = htons(sc->sc_win);
   3566 	/* th_sum already 0 */
   3567 	/* th_urp already 0 */
   3568 
   3569 	/* Tack on the TCP options. */
   3570 	optp = (u_int8_t *)(th + 1);
   3571 	*optp++ = TCPOPT_MAXSEG;
   3572 	*optp++ = 4;
   3573 	*optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
   3574 	*optp++ = sc->sc_ourmaxseg & 0xff;
   3575 
   3576 	if (sc->sc_request_r_scale != 15) {
   3577 		*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
   3578 		    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
   3579 		    sc->sc_request_r_scale);
   3580 		optp += 4;
   3581 	}
   3582 
   3583 	if (sc->sc_flags & SCF_TIMESTAMP) {
   3584 		u_int32_t *lp = (u_int32_t *)(optp);
   3585 		/* Form timestamp option as shown in appendix A of RFC 1323. */
   3586 		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
   3587 		*lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
   3588 		*lp   = htonl(sc->sc_timestamp);
   3589 		optp += TCPOLEN_TSTAMP_APPA;
   3590 	}
   3591 
   3592 	/* Compute the packet's checksum. */
   3593 	switch (sc->sc_src.sa.sa_family) {
   3594 	case AF_INET:
   3595 		ip->ip_len = htons(tlen - hlen);
   3596 		th->th_sum = 0;
   3597 		th->th_sum = in_cksum(m, tlen);
   3598 		break;
   3599 #ifdef INET6
   3600 	case AF_INET6:
   3601 		ip6->ip6_plen = htons(tlen - hlen);
   3602 		th->th_sum = 0;
   3603 		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
   3604 		break;
   3605 #endif
   3606 	}
   3607 
   3608 	/*
   3609 	 * Fill in some straggling IP bits.  Note the stack expects
   3610 	 * ip_len to be in host order, for convenience.
   3611 	 */
   3612 	switch (sc->sc_src.sa.sa_family) {
   3613 #ifdef INET
   3614 	case AF_INET:
   3615 		ip->ip_len = tlen;
   3616 		ip->ip_ttl = ip_defttl;
   3617 		/* XXX tos? */
   3618 		break;
   3619 #endif
   3620 #ifdef INET6
   3621 	case AF_INET6:
   3622 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
   3623 		ip6->ip6_vfc |= IPV6_VERSION;
   3624 		ip6->ip6_plen = htons(tlen - hlen);
   3625 		/* ip6_hlim will be initialized afterwards */
   3626 		/* XXX flowlabel? */
   3627 		break;
   3628 #endif
   3629 	}
   3630 
   3631 	switch (sc->sc_src.sa.sa_family) {
   3632 #ifdef INET
   3633 	case AF_INET:
   3634 		error = ip_output(m, sc->sc_ipopts, ro,
   3635 		    (ip_mtudisc ? IP_MTUDISC : 0),
   3636 		    NULL);
   3637 		break;
   3638 #endif
   3639 #ifdef INET6
   3640 	case AF_INET6:
   3641 		ip6->ip6_hlim = in6_selecthlim(NULL,
   3642 				ro->ro_rt ? ro->ro_rt->rt_ifp : NULL);
   3643 
   3644 		error = ip6_output(m, NULL /*XXX*/, (struct route_in6 *)ro,
   3645 			0, NULL, NULL);
   3646 		break;
   3647 #endif
   3648 	default:
   3649 		error = EAFNOSUPPORT;
   3650 		break;
   3651 	}
   3652 	return (error);
   3653 }
   3654