tcp_input.c revision 1.141 1 /* $NetBSD: tcp_input.c,v 1.141 2002/05/07 02:59:38 matt Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * @(#)COPYRIGHT 1.1 (NRL) 17 January 1995
34 *
35 * NRL grants permission for redistribution and use in source and binary
36 * forms, with or without modification, of the software and documentation
37 * created at NRL provided that the following conditions are met:
38 *
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgements:
46 * This product includes software developed by the University of
47 * California, Berkeley and its contributors.
48 * This product includes software developed at the Information
49 * Technology Division, US Naval Research Laboratory.
50 * 4. Neither the name of the NRL nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
55 * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
57 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NRL OR
58 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
59 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
61 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
62 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
63 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
64 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65 *
66 * The views and conclusions contained in the software and documentation
67 * are those of the authors and should not be interpreted as representing
68 * official policies, either expressed or implied, of the US Naval
69 * Research Laboratory (NRL).
70 */
71
72 /*-
73 * Copyright (c) 1997, 1998, 1999, 2001 The NetBSD Foundation, Inc.
74 * All rights reserved.
75 *
76 * This code is derived from software contributed to The NetBSD Foundation
77 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
78 * Facility, NASA Ames Research Center.
79 *
80 * Redistribution and use in source and binary forms, with or without
81 * modification, are permitted provided that the following conditions
82 * are met:
83 * 1. Redistributions of source code must retain the above copyright
84 * notice, this list of conditions and the following disclaimer.
85 * 2. Redistributions in binary form must reproduce the above copyright
86 * notice, this list of conditions and the following disclaimer in the
87 * documentation and/or other materials provided with the distribution.
88 * 3. All advertising materials mentioning features or use of this software
89 * must display the following acknowledgement:
90 * This product includes software developed by the NetBSD
91 * Foundation, Inc. and its contributors.
92 * 4. Neither the name of The NetBSD Foundation nor the names of its
93 * contributors may be used to endorse or promote products derived
94 * from this software without specific prior written permission.
95 *
96 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
97 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
98 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
99 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
100 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
101 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
102 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
103 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
104 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
105 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
106 * POSSIBILITY OF SUCH DAMAGE.
107 */
108
109 /*
110 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
111 * The Regents of the University of California. All rights reserved.
112 *
113 * Redistribution and use in source and binary forms, with or without
114 * modification, are permitted provided that the following conditions
115 * are met:
116 * 1. Redistributions of source code must retain the above copyright
117 * notice, this list of conditions and the following disclaimer.
118 * 2. Redistributions in binary form must reproduce the above copyright
119 * notice, this list of conditions and the following disclaimer in the
120 * documentation and/or other materials provided with the distribution.
121 * 3. All advertising materials mentioning features or use of this software
122 * must display the following acknowledgement:
123 * This product includes software developed by the University of
124 * California, Berkeley and its contributors.
125 * 4. Neither the name of the University nor the names of its contributors
126 * may be used to endorse or promote products derived from this software
127 * without specific prior written permission.
128 *
129 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
130 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
131 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
132 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
133 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
134 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
135 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
136 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
137 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
138 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
139 * SUCH DAMAGE.
140 *
141 * @(#)tcp_input.c 8.12 (Berkeley) 5/24/95
142 */
143
144 /*
145 * TODO list for SYN cache stuff:
146 *
147 * Find room for a "state" field, which is needed to keep a
148 * compressed state for TIME_WAIT TCBs. It's been noted already
149 * that this is fairly important for very high-volume web and
150 * mail servers, which use a large number of short-lived
151 * connections.
152 */
153
154 #include <sys/cdefs.h>
155 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.141 2002/05/07 02:59:38 matt Exp $");
156
157 #include "opt_inet.h"
158 #include "opt_ipsec.h"
159 #include "opt_inet_csum.h"
160 #include "opt_tcp_debug.h"
161
162 #include <sys/param.h>
163 #include <sys/systm.h>
164 #include <sys/malloc.h>
165 #include <sys/mbuf.h>
166 #include <sys/protosw.h>
167 #include <sys/socket.h>
168 #include <sys/socketvar.h>
169 #include <sys/errno.h>
170 #include <sys/syslog.h>
171 #include <sys/pool.h>
172 #include <sys/domain.h>
173 #include <sys/kernel.h>
174
175 #include <net/if.h>
176 #include <net/route.h>
177 #include <net/if_types.h>
178
179 #include <netinet/in.h>
180 #include <netinet/in_systm.h>
181 #include <netinet/ip.h>
182 #include <netinet/in_pcb.h>
183 #include <netinet/ip_var.h>
184
185 #ifdef INET6
186 #ifndef INET
187 #include <netinet/in.h>
188 #endif
189 #include <netinet/ip6.h>
190 #include <netinet6/ip6_var.h>
191 #include <netinet6/in6_pcb.h>
192 #include <netinet6/ip6_var.h>
193 #include <netinet6/in6_var.h>
194 #include <netinet/icmp6.h>
195 #include <netinet6/nd6.h>
196 #endif
197
198 #ifdef PULLDOWN_TEST
199 #ifndef INET6
200 /* always need ip6.h for IP6_EXTHDR_GET */
201 #include <netinet/ip6.h>
202 #endif
203 #endif
204
205 #include <netinet/tcp.h>
206 #include <netinet/tcp_fsm.h>
207 #include <netinet/tcp_seq.h>
208 #include <netinet/tcp_timer.h>
209 #include <netinet/tcp_var.h>
210 #include <netinet/tcpip.h>
211 #include <netinet/tcp_debug.h>
212
213 #include <machine/stdarg.h>
214
215 #ifdef IPSEC
216 #include <netinet6/ipsec.h>
217 #include <netkey/key.h>
218 #endif /*IPSEC*/
219 #ifdef INET6
220 #include "faith.h"
221 #if defined(NFAITH) && NFAITH > 0
222 #include <net/if_faith.h>
223 #endif
224 #endif
225
226 int tcprexmtthresh = 3;
227 int tcp_log_refused;
228
229 static int tcp_rst_ppslim_count = 0;
230 static struct timeval tcp_rst_ppslim_last;
231
232 #define TCP_PAWS_IDLE (24 * 24 * 60 * 60 * PR_SLOWHZ)
233
234 /* for modulo comparisons of timestamps */
235 #define TSTMP_LT(a,b) ((int)((a)-(b)) < 0)
236 #define TSTMP_GEQ(a,b) ((int)((a)-(b)) >= 0)
237
238 /*
239 * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
240 */
241 #ifdef INET6
242 #define ND6_HINT(tp) \
243 do { \
244 if (tp && tp->t_in6pcb && tp->t_family == AF_INET6 \
245 && tp->t_in6pcb->in6p_route.ro_rt) { \
246 nd6_nud_hint(tp->t_in6pcb->in6p_route.ro_rt, NULL, 0); \
247 } \
248 } while (0)
249 #else
250 #define ND6_HINT(tp)
251 #endif
252
253 /*
254 * Macro to compute ACK transmission behavior. Delay the ACK unless
255 * we have already delayed an ACK (must send an ACK every two segments).
256 * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
257 * option is enabled.
258 */
259 #define TCP_SETUP_ACK(tp, th) \
260 do { \
261 if ((tp)->t_flags & TF_DELACK || \
262 (tcp_ack_on_push && (th)->th_flags & TH_PUSH)) \
263 tp->t_flags |= TF_ACKNOW; \
264 else \
265 TCP_SET_DELACK(tp); \
266 } while (0)
267
268 /*
269 * Convert TCP protocol fields to host order for easier processing.
270 */
271 #define TCP_FIELDS_TO_HOST(th) \
272 do { \
273 NTOHL((th)->th_seq); \
274 NTOHL((th)->th_ack); \
275 NTOHS((th)->th_win); \
276 NTOHS((th)->th_urp); \
277 } while (0)
278
279 #ifdef TCP_CSUM_COUNTERS
280 #include <sys/device.h>
281
282 extern struct evcnt tcp_hwcsum_ok;
283 extern struct evcnt tcp_hwcsum_bad;
284 extern struct evcnt tcp_hwcsum_data;
285 extern struct evcnt tcp_swcsum;
286
287 #define TCP_CSUM_COUNTER_INCR(ev) (ev)->ev_count++
288
289 #else
290
291 #define TCP_CSUM_COUNTER_INCR(ev) /* nothing */
292
293 #endif /* TCP_CSUM_COUNTERS */
294
295 #ifdef TCP_REASS_COUNTERS
296 #include <sys/device.h>
297
298 extern struct evcnt tcp_reass_;
299 extern struct evcnt tcp_reass_empty;
300 extern struct evcnt tcp_reass_iteration[8];
301 extern struct evcnt tcp_reass_prependfirst;
302 extern struct evcnt tcp_reass_prepend;
303 extern struct evcnt tcp_reass_insert;
304 extern struct evcnt tcp_reass_inserttail;
305 extern struct evcnt tcp_reass_append;
306 extern struct evcnt tcp_reass_appendtail;
307 extern struct evcnt tcp_reass_overlaptail;
308 extern struct evcnt tcp_reass_overlapfront;
309 extern struct evcnt tcp_reass_segdup;
310 extern struct evcnt tcp_reass_fragdup;
311
312 #define TCP_REASS_COUNTER_INCR(ev) (ev)->ev_count++
313
314 #else
315
316 #define TCP_REASS_COUNTER_INCR(ev) /* nothing */
317
318 #endif /* TCP_REASS_COUNTERS */
319
320 int
321 tcp_reass(tp, th, m, tlen)
322 struct tcpcb *tp;
323 struct tcphdr *th;
324 struct mbuf *m;
325 int *tlen;
326 {
327 struct ipqent *p, *q, *nq, *tiqe = NULL;
328 struct socket *so = NULL;
329 int pkt_flags;
330 tcp_seq pkt_seq;
331 unsigned pkt_len;
332 u_long rcvpartdupbyte = 0;
333 u_long rcvoobyte;
334 #ifdef TCP_REASS_COUNTERS
335 u_int count = 0;
336 #endif
337
338 if (tp->t_inpcb)
339 so = tp->t_inpcb->inp_socket;
340 #ifdef INET6
341 else if (tp->t_in6pcb)
342 so = tp->t_in6pcb->in6p_socket;
343 #endif
344
345 TCP_REASS_LOCK_CHECK(tp);
346
347 /*
348 * Call with th==0 after become established to
349 * force pre-ESTABLISHED data up to user socket.
350 */
351 if (th == 0)
352 goto present;
353
354 rcvoobyte = *tlen;
355 /*
356 * Copy these to local variables because the tcpiphdr
357 * gets munged while we are collapsing mbufs.
358 */
359 pkt_seq = th->th_seq;
360 pkt_len = *tlen;
361 pkt_flags = th->th_flags;
362
363 TCP_REASS_COUNTER_INCR(&tcp_reass_);
364
365 if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
366 /*
367 * When we miss a packet, the vast majority of time we get
368 * packets that follow it in order. So optimize for that.
369 */
370 if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
371 p->ipqe_len += pkt_len;
372 p->ipqe_flags |= pkt_flags;
373 m_cat(p->ipqe_m, m);
374 tiqe = p;
375 TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
376 TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
377 goto skip_replacement;
378 }
379 /*
380 * While we're here, if the pkt is completely beyond
381 * anything we have, just insert it at the tail.
382 */
383 if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
384 TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
385 goto insert_it;
386 }
387 }
388
389 q = TAILQ_FIRST(&tp->segq);
390
391 if (q != NULL) {
392 /*
393 * If this segment immediately precedes the first out-of-order
394 * block, simply slap the segment in front of it and (mostly)
395 * skip the complicated logic.
396 */
397 if (pkt_seq + pkt_len == q->ipqe_seq) {
398 q->ipqe_seq = pkt_seq;
399 q->ipqe_len += pkt_len;
400 q->ipqe_flags |= pkt_flags;
401 m_cat(m, q->ipqe_m);
402 q->ipqe_m = m;
403 tiqe = q;
404 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
405 TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
406 goto skip_replacement;
407 }
408 } else {
409 TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
410 }
411
412 /*
413 * Find a segment which begins after this one does.
414 */
415 for (p = NULL; q != NULL; q = nq) {
416 nq = TAILQ_NEXT(q, ipqe_q);
417 #ifdef TCP_REASS_COUNTERS
418 count++;
419 #endif
420 /*
421 * If the received segment is just right after this
422 * fragment, merge the two together and then check
423 * for further overlaps.
424 */
425 if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
426 #ifdef TCPREASS_DEBUG
427 printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
428 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
429 q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
430 #endif
431 pkt_len += q->ipqe_len;
432 pkt_flags |= q->ipqe_flags;
433 pkt_seq = q->ipqe_seq;
434 m_cat(q->ipqe_m, m);
435 m = q->ipqe_m;
436 TCP_REASS_COUNTER_INCR(&tcp_reass_append);
437 goto free_ipqe;
438 }
439 /*
440 * If the received segment is completely past this
441 * fragment, we need to go the next fragment.
442 */
443 if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
444 p = q;
445 continue;
446 }
447 /*
448 * If the fragment is past the received segment,
449 * it (or any following) can't be concatenated.
450 */
451 if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
452 TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
453 break;
454 }
455
456 /*
457 * We've received all the data in this segment before.
458 * mark it as a duplicate and return.
459 */
460 if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
461 SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
462 tcpstat.tcps_rcvduppack++;
463 tcpstat.tcps_rcvdupbyte += pkt_len;
464 m_freem(m);
465 if (tiqe != NULL)
466 pool_put(&ipqent_pool, tiqe);
467 TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
468 return (0);
469 }
470 /*
471 * Received segment completely overlaps this fragment
472 * so we drop the fragment (this keeps the temporal
473 * ordering of segments correct).
474 */
475 if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
476 SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
477 rcvpartdupbyte += q->ipqe_len;
478 m_freem(q->ipqe_m);
479 TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
480 goto free_ipqe;
481 }
482 /*
483 * RX'ed segment extends past the end of the
484 * fragment. Drop the overlapping bytes. Then
485 * merge the fragment and segment then treat as
486 * a longer received packet.
487 */
488 if (SEQ_LT(q->ipqe_seq, pkt_seq)
489 && SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
490 int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
491 #ifdef TCPREASS_DEBUG
492 printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
493 tp, overlap,
494 pkt_seq, pkt_seq + pkt_len, pkt_len);
495 #endif
496 m_adj(m, overlap);
497 rcvpartdupbyte += overlap;
498 m_cat(q->ipqe_m, m);
499 m = q->ipqe_m;
500 pkt_seq = q->ipqe_seq;
501 pkt_len += q->ipqe_len - overlap;
502 rcvoobyte -= overlap;
503 TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
504 goto free_ipqe;
505 }
506 /*
507 * RX'ed segment extends past the front of the
508 * fragment. Drop the overlapping bytes on the
509 * received packet. The packet will then be
510 * contatentated with this fragment a bit later.
511 */
512 if (SEQ_GT(q->ipqe_seq, pkt_seq)
513 && SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len)) {
514 int overlap = pkt_seq + pkt_len - q->ipqe_seq;
515 #ifdef TCPREASS_DEBUG
516 printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
517 tp, overlap,
518 pkt_seq, pkt_seq + pkt_len, pkt_len);
519 #endif
520 m_adj(m, -overlap);
521 pkt_len -= overlap;
522 rcvpartdupbyte += overlap;
523 TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
524 rcvoobyte -= overlap;
525 }
526 /*
527 * If the received segment immediates precedes this
528 * fragment then tack the fragment onto this segment
529 * and reinsert the data.
530 */
531 if (q->ipqe_seq == pkt_seq + pkt_len) {
532 #ifdef TCPREASS_DEBUG
533 printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
534 tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
535 pkt_seq, pkt_seq + pkt_len, pkt_len);
536 #endif
537 pkt_len += q->ipqe_len;
538 pkt_flags |= q->ipqe_flags;
539 m_cat(m, q->ipqe_m);
540 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
541 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
542 if (tiqe == NULL) {
543 tiqe = q;
544 } else {
545 pool_put(&ipqent_pool, q);
546 }
547 TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
548 break;
549 }
550 /*
551 * If the fragment is before the segment, remember it.
552 * When this loop is terminated, p will contain the
553 * pointer to fragment that is right before the received
554 * segment.
555 */
556 if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
557 p = q;
558
559 continue;
560
561 /*
562 * This is a common operation. It also will allow
563 * to save doing a malloc/free in most instances.
564 */
565 free_ipqe:
566 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
567 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
568 if (tiqe == NULL) {
569 tiqe = q;
570 } else {
571 pool_put(&ipqent_pool, q);
572 }
573 }
574
575 #ifdef TCP_REASS_COUNTERS
576 if (count > 7)
577 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
578 else if (count > 0)
579 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
580 #endif
581
582 insert_it:
583
584 /*
585 * Allocate a new queue entry since the received segment did not
586 * collapse onto any other out-of-order block; thus we are allocating
587 * a new block. If it had collapsed, tiqe would not be NULL and
588 * we would be reusing it.
589 * XXX If we can't, just drop the packet. XXX
590 */
591 if (tiqe == NULL) {
592 tiqe = pool_get(&ipqent_pool, PR_NOWAIT);
593 if (tiqe == NULL) {
594 tcpstat.tcps_rcvmemdrop++;
595 m_freem(m);
596 return (0);
597 }
598 }
599
600 /*
601 * Update the counters.
602 */
603 tcpstat.tcps_rcvoopack++;
604 tcpstat.tcps_rcvoobyte += rcvoobyte;
605 if (rcvpartdupbyte) {
606 tcpstat.tcps_rcvpartduppack++;
607 tcpstat.tcps_rcvpartdupbyte += rcvpartdupbyte;
608 }
609
610 /*
611 * Insert the new fragment queue entry into both queues.
612 */
613 tiqe->ipqe_m = m;
614 tiqe->ipqe_seq = pkt_seq;
615 tiqe->ipqe_len = pkt_len;
616 tiqe->ipqe_flags = pkt_flags;
617 if (p == NULL) {
618 TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
619 #ifdef TCPREASS_DEBUG
620 if (tiqe->ipqe_seq != tp->rcv_nxt)
621 printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
622 tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
623 #endif
624 } else {
625 TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
626 #ifdef TCPREASS_DEBUG
627 printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
628 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
629 p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
630 #endif
631 }
632
633 skip_replacement:
634
635 TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
636
637 present:
638 /*
639 * Present data to user, advancing rcv_nxt through
640 * completed sequence space.
641 */
642 if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
643 return (0);
644 q = TAILQ_FIRST(&tp->segq);
645 if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
646 return (0);
647 if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
648 return (0);
649
650 tp->rcv_nxt += q->ipqe_len;
651 pkt_flags = q->ipqe_flags & TH_FIN;
652 ND6_HINT(tp);
653
654 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
655 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
656 if (so->so_state & SS_CANTRCVMORE)
657 m_freem(q->ipqe_m);
658 else
659 sbappend(&so->so_rcv, q->ipqe_m);
660 pool_put(&ipqent_pool, q);
661 sorwakeup(so);
662 return (pkt_flags);
663 }
664
665 #ifdef INET6
666 int
667 tcp6_input(mp, offp, proto)
668 struct mbuf **mp;
669 int *offp, proto;
670 {
671 struct mbuf *m = *mp;
672
673 /*
674 * draft-itojun-ipv6-tcp-to-anycast
675 * better place to put this in?
676 */
677 if (m->m_flags & M_ANYCAST6) {
678 struct ip6_hdr *ip6;
679 if (m->m_len < sizeof(struct ip6_hdr)) {
680 if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
681 tcpstat.tcps_rcvshort++;
682 return IPPROTO_DONE;
683 }
684 }
685 ip6 = mtod(m, struct ip6_hdr *);
686 icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
687 (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
688 return IPPROTO_DONE;
689 }
690
691 tcp_input(m, *offp, proto);
692 return IPPROTO_DONE;
693 }
694 #endif
695
696 /*
697 * TCP input routine, follows pages 65-76 of the
698 * protocol specification dated September, 1981 very closely.
699 */
700 void
701 #if __STDC__
702 tcp_input(struct mbuf *m, ...)
703 #else
704 tcp_input(m, va_alist)
705 struct mbuf *m;
706 #endif
707 {
708 int proto;
709 struct tcphdr *th;
710 struct ip *ip;
711 struct inpcb *inp;
712 #ifdef INET6
713 struct ip6_hdr *ip6;
714 struct in6pcb *in6p;
715 #endif
716 caddr_t optp = NULL;
717 int optlen = 0;
718 int len, tlen, toff, hdroptlen = 0;
719 struct tcpcb *tp = 0;
720 int tiflags;
721 struct socket *so = NULL;
722 int todrop, acked, ourfinisacked, needoutput = 0;
723 short ostate = 0;
724 int iss = 0;
725 u_long tiwin;
726 struct tcp_opt_info opti;
727 int off, iphlen;
728 va_list ap;
729 int af; /* af on the wire */
730 struct mbuf *tcp_saveti = NULL;
731
732 va_start(ap, m);
733 toff = va_arg(ap, int);
734 proto = va_arg(ap, int);
735 va_end(ap);
736
737 tcpstat.tcps_rcvtotal++;
738
739 bzero(&opti, sizeof(opti));
740 opti.ts_present = 0;
741 opti.maxseg = 0;
742
743 /*
744 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
745 *
746 * TCP is, by definition, unicast, so we reject all
747 * multicast outright.
748 *
749 * Note, there are additional src/dst address checks in
750 * the AF-specific code below.
751 */
752 if (m->m_flags & (M_BCAST|M_MCAST)) {
753 /* XXX stat */
754 goto drop;
755 }
756 #ifdef INET6
757 if (m->m_flags & M_ANYCAST6) {
758 /* XXX stat */
759 goto drop;
760 }
761 #endif
762
763 /*
764 * Get IP and TCP header together in first mbuf.
765 * Note: IP leaves IP header in first mbuf.
766 */
767 ip = mtod(m, struct ip *);
768 #ifdef INET6
769 ip6 = NULL;
770 #endif
771 switch (ip->ip_v) {
772 #ifdef INET
773 case 4:
774 af = AF_INET;
775 iphlen = sizeof(struct ip);
776 #ifndef PULLDOWN_TEST
777 /* would like to get rid of this... */
778 if (toff > sizeof (struct ip)) {
779 ip_stripoptions(m, (struct mbuf *)0);
780 toff = sizeof(struct ip);
781 }
782 if (m->m_len < toff + sizeof (struct tcphdr)) {
783 if ((m = m_pullup(m, toff + sizeof (struct tcphdr))) == 0) {
784 tcpstat.tcps_rcvshort++;
785 return;
786 }
787 }
788 ip = mtod(m, struct ip *);
789 th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
790 #else
791 ip = mtod(m, struct ip *);
792 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
793 sizeof(struct tcphdr));
794 if (th == NULL) {
795 tcpstat.tcps_rcvshort++;
796 return;
797 }
798 #endif
799 /* We do the checksum after PCB lookup... */
800 len = ip->ip_len;
801 tlen = len - toff;
802 break;
803 #endif
804 #ifdef INET6
805 case 6:
806 ip = NULL;
807 iphlen = sizeof(struct ip6_hdr);
808 af = AF_INET6;
809 #ifndef PULLDOWN_TEST
810 if (m->m_len < toff + sizeof(struct tcphdr)) {
811 m = m_pullup(m, toff + sizeof(struct tcphdr)); /*XXX*/
812 if (m == NULL) {
813 tcpstat.tcps_rcvshort++;
814 return;
815 }
816 }
817 ip6 = mtod(m, struct ip6_hdr *);
818 th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
819 #else
820 ip6 = mtod(m, struct ip6_hdr *);
821 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
822 sizeof(struct tcphdr));
823 if (th == NULL) {
824 tcpstat.tcps_rcvshort++;
825 return;
826 }
827 #endif
828
829 /* Be proactive about malicious use of IPv4 mapped address */
830 if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
831 IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
832 /* XXX stat */
833 goto drop;
834 }
835
836 /*
837 * Be proactive about unspecified IPv6 address in source.
838 * As we use all-zero to indicate unbounded/unconnected pcb,
839 * unspecified IPv6 address can be used to confuse us.
840 *
841 * Note that packets with unspecified IPv6 destination is
842 * already dropped in ip6_input.
843 */
844 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
845 /* XXX stat */
846 goto drop;
847 }
848
849 /*
850 * Make sure destination address is not multicast.
851 * Source address checked in ip6_input().
852 */
853 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
854 /* XXX stat */
855 goto drop;
856 }
857
858 /* We do the checksum after PCB lookup... */
859 len = m->m_pkthdr.len;
860 tlen = len - toff;
861 break;
862 #endif
863 default:
864 m_freem(m);
865 return;
866 }
867
868 /*
869 * Check that TCP offset makes sense,
870 * pull out TCP options and adjust length. XXX
871 */
872 off = th->th_off << 2;
873 if (off < sizeof (struct tcphdr) || off > tlen) {
874 tcpstat.tcps_rcvbadoff++;
875 goto drop;
876 }
877 tlen -= off;
878
879 /*
880 * tcp_input() has been modified to use tlen to mean the TCP data
881 * length throughout the function. Other functions can use
882 * m->m_pkthdr.len as the basis for calculating the TCP data length.
883 * rja
884 */
885
886 if (off > sizeof (struct tcphdr)) {
887 #ifndef PULLDOWN_TEST
888 if (m->m_len < toff + off) {
889 if ((m = m_pullup(m, toff + off)) == 0) {
890 tcpstat.tcps_rcvshort++;
891 return;
892 }
893 switch (af) {
894 #ifdef INET
895 case AF_INET:
896 ip = mtod(m, struct ip *);
897 break;
898 #endif
899 #ifdef INET6
900 case AF_INET6:
901 ip6 = mtod(m, struct ip6_hdr *);
902 break;
903 #endif
904 }
905 th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
906 }
907 #else
908 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
909 if (th == NULL) {
910 tcpstat.tcps_rcvshort++;
911 return;
912 }
913 /*
914 * NOTE: ip/ip6 will not be affected by m_pulldown()
915 * (as they're before toff) and we don't need to update those.
916 */
917 #endif
918 optlen = off - sizeof (struct tcphdr);
919 optp = ((caddr_t)th) + sizeof(struct tcphdr);
920 /*
921 * Do quick retrieval of timestamp options ("options
922 * prediction?"). If timestamp is the only option and it's
923 * formatted as recommended in RFC 1323 appendix A, we
924 * quickly get the values now and not bother calling
925 * tcp_dooptions(), etc.
926 */
927 if ((optlen == TCPOLEN_TSTAMP_APPA ||
928 (optlen > TCPOLEN_TSTAMP_APPA &&
929 optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
930 *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
931 (th->th_flags & TH_SYN) == 0) {
932 opti.ts_present = 1;
933 opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
934 opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
935 optp = NULL; /* we've parsed the options */
936 }
937 }
938 tiflags = th->th_flags;
939
940 /*
941 * Locate pcb for segment.
942 */
943 findpcb:
944 inp = NULL;
945 #ifdef INET6
946 in6p = NULL;
947 #endif
948 switch (af) {
949 #ifdef INET
950 case AF_INET:
951 inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
952 ip->ip_dst, th->th_dport);
953 if (inp == 0) {
954 ++tcpstat.tcps_pcbhashmiss;
955 inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
956 }
957 #ifdef INET6
958 if (inp == 0) {
959 struct in6_addr s, d;
960
961 /* mapped addr case */
962 bzero(&s, sizeof(s));
963 s.s6_addr16[5] = htons(0xffff);
964 bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
965 bzero(&d, sizeof(d));
966 d.s6_addr16[5] = htons(0xffff);
967 bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
968 in6p = in6_pcblookup_connect(&tcb6, &s, th->th_sport,
969 &d, th->th_dport, 0);
970 if (in6p == 0) {
971 ++tcpstat.tcps_pcbhashmiss;
972 in6p = in6_pcblookup_bind(&tcb6, &d,
973 th->th_dport, 0);
974 }
975 }
976 #endif
977 #ifndef INET6
978 if (inp == 0)
979 #else
980 if (inp == 0 && in6p == 0)
981 #endif
982 {
983 ++tcpstat.tcps_noport;
984 if (tcp_log_refused && (tiflags & TH_SYN)) {
985 char src[4*sizeof "123"];
986 char dst[4*sizeof "123"];
987
988 if (ip) {
989 strcpy(src, inet_ntoa(ip->ip_src));
990 strcpy(dst, inet_ntoa(ip->ip_dst));
991 }
992 else {
993 strcpy(src, "(unknown)");
994 strcpy(dst, "(unknown)");
995 }
996 log(LOG_INFO,
997 "Connection attempt to TCP %s:%d from %s:%d\n",
998 dst, ntohs(th->th_dport),
999 src, ntohs(th->th_sport));
1000 }
1001 TCP_FIELDS_TO_HOST(th);
1002 goto dropwithreset_ratelim;
1003 }
1004 #ifdef IPSEC
1005 if (inp && ipsec4_in_reject(m, inp)) {
1006 ipsecstat.in_polvio++;
1007 goto drop;
1008 }
1009 #ifdef INET6
1010 else if (in6p && ipsec4_in_reject_so(m, in6p->in6p_socket)) {
1011 ipsecstat.in_polvio++;
1012 goto drop;
1013 }
1014 #endif
1015 #endif /*IPSEC*/
1016 break;
1017 #endif /*INET*/
1018 #ifdef INET6
1019 case AF_INET6:
1020 {
1021 int faith;
1022
1023 #if defined(NFAITH) && NFAITH > 0
1024 faith = faithprefix(&ip6->ip6_dst);
1025 #else
1026 faith = 0;
1027 #endif
1028 in6p = in6_pcblookup_connect(&tcb6, &ip6->ip6_src, th->th_sport,
1029 &ip6->ip6_dst, th->th_dport, faith);
1030 if (in6p == NULL) {
1031 ++tcpstat.tcps_pcbhashmiss;
1032 in6p = in6_pcblookup_bind(&tcb6, &ip6->ip6_dst,
1033 th->th_dport, faith);
1034 }
1035 if (in6p == NULL) {
1036 ++tcpstat.tcps_noport;
1037 if (tcp_log_refused && (tiflags & TH_SYN)) {
1038 char src[INET6_ADDRSTRLEN];
1039 char dst[INET6_ADDRSTRLEN];
1040
1041 if (ip6) {
1042 strcpy(src, ip6_sprintf(&ip6->ip6_src));
1043 strcpy(dst, ip6_sprintf(&ip6->ip6_dst));
1044 }
1045 else {
1046 strcpy(src, "(unknown v6)");
1047 strcpy(dst, "(unknown v6)");
1048 }
1049 log(LOG_INFO,
1050 "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
1051 dst, ntohs(th->th_dport),
1052 src, ntohs(th->th_sport));
1053 }
1054 TCP_FIELDS_TO_HOST(th);
1055 goto dropwithreset_ratelim;
1056 }
1057 #ifdef IPSEC
1058 if (ipsec6_in_reject(m, in6p)) {
1059 ipsec6stat.in_polvio++;
1060 goto drop;
1061 }
1062 #endif /*IPSEC*/
1063 break;
1064 }
1065 #endif
1066 }
1067
1068 /*
1069 * If the state is CLOSED (i.e., TCB does not exist) then
1070 * all data in the incoming segment is discarded.
1071 * If the TCB exists but is in CLOSED state, it is embryonic,
1072 * but should either do a listen or a connect soon.
1073 */
1074 tp = NULL;
1075 so = NULL;
1076 if (inp) {
1077 tp = intotcpcb(inp);
1078 so = inp->inp_socket;
1079 }
1080 #ifdef INET6
1081 else if (in6p) {
1082 tp = in6totcpcb(in6p);
1083 so = in6p->in6p_socket;
1084 }
1085 #endif
1086 if (tp == 0) {
1087 TCP_FIELDS_TO_HOST(th);
1088 goto dropwithreset_ratelim;
1089 }
1090 if (tp->t_state == TCPS_CLOSED)
1091 goto drop;
1092
1093 /*
1094 * Checksum extended TCP header and data.
1095 */
1096 switch (af) {
1097 #ifdef INET
1098 case AF_INET:
1099 switch (m->m_pkthdr.csum_flags &
1100 ((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
1101 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
1102 case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
1103 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
1104 goto badcsum;
1105
1106 case M_CSUM_TCPv4|M_CSUM_DATA:
1107 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
1108 if ((m->m_pkthdr.csum_data ^ 0xffff) != 0)
1109 goto badcsum;
1110 break;
1111
1112 case M_CSUM_TCPv4:
1113 /* Checksum was okay. */
1114 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
1115 break;
1116
1117 default:
1118 /* Must compute it ourselves. */
1119 TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
1120 #ifndef PULLDOWN_TEST
1121 {
1122 struct ipovly *ipov;
1123 ipov = (struct ipovly *)ip;
1124 bzero(ipov->ih_x1, sizeof ipov->ih_x1);
1125 ipov->ih_len = htons(tlen + off);
1126
1127 if (in_cksum(m, len) != 0)
1128 goto badcsum;
1129 }
1130 #else
1131 if (in4_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0)
1132 goto badcsum;
1133 #endif /* ! PULLDOWN_TEST */
1134 break;
1135 }
1136 break;
1137 #endif /* INET4 */
1138
1139 #ifdef INET6
1140 case AF_INET6:
1141 if (in6_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0)
1142 goto badcsum;
1143 break;
1144 #endif /* INET6 */
1145 }
1146
1147 TCP_FIELDS_TO_HOST(th);
1148
1149 /* Unscale the window into a 32-bit value. */
1150 if ((tiflags & TH_SYN) == 0)
1151 tiwin = th->th_win << tp->snd_scale;
1152 else
1153 tiwin = th->th_win;
1154
1155 #ifdef INET6
1156 /* save packet options if user wanted */
1157 if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
1158 if (in6p->in6p_options) {
1159 m_freem(in6p->in6p_options);
1160 in6p->in6p_options = 0;
1161 }
1162 ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
1163 }
1164 #endif
1165
1166 if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
1167 union syn_cache_sa src;
1168 union syn_cache_sa dst;
1169
1170 bzero(&src, sizeof(src));
1171 bzero(&dst, sizeof(dst));
1172 switch (af) {
1173 #ifdef INET
1174 case AF_INET:
1175 src.sin.sin_len = sizeof(struct sockaddr_in);
1176 src.sin.sin_family = AF_INET;
1177 src.sin.sin_addr = ip->ip_src;
1178 src.sin.sin_port = th->th_sport;
1179
1180 dst.sin.sin_len = sizeof(struct sockaddr_in);
1181 dst.sin.sin_family = AF_INET;
1182 dst.sin.sin_addr = ip->ip_dst;
1183 dst.sin.sin_port = th->th_dport;
1184 break;
1185 #endif
1186 #ifdef INET6
1187 case AF_INET6:
1188 src.sin6.sin6_len = sizeof(struct sockaddr_in6);
1189 src.sin6.sin6_family = AF_INET6;
1190 src.sin6.sin6_addr = ip6->ip6_src;
1191 src.sin6.sin6_port = th->th_sport;
1192
1193 dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
1194 dst.sin6.sin6_family = AF_INET6;
1195 dst.sin6.sin6_addr = ip6->ip6_dst;
1196 dst.sin6.sin6_port = th->th_dport;
1197 break;
1198 #endif /* INET6 */
1199 default:
1200 goto badsyn; /*sanity*/
1201 }
1202
1203 if (so->so_options & SO_DEBUG) {
1204 ostate = tp->t_state;
1205
1206 tcp_saveti = NULL;
1207 if (iphlen + sizeof(struct tcphdr) > MHLEN)
1208 goto nosave;
1209
1210 if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
1211 tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
1212 if (!tcp_saveti)
1213 goto nosave;
1214 } else {
1215 MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
1216 if (!tcp_saveti)
1217 goto nosave;
1218 tcp_saveti->m_len = iphlen;
1219 m_copydata(m, 0, iphlen,
1220 mtod(tcp_saveti, caddr_t));
1221 }
1222
1223 if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
1224 m_freem(tcp_saveti);
1225 tcp_saveti = NULL;
1226 } else {
1227 tcp_saveti->m_len += sizeof(struct tcphdr);
1228 bcopy(th, mtod(tcp_saveti, caddr_t) + iphlen,
1229 sizeof(struct tcphdr));
1230 }
1231 if (tcp_saveti) {
1232 /*
1233 * need to recover version # field, which was
1234 * overwritten on ip_cksum computation.
1235 */
1236 struct ip *sip;
1237 sip = mtod(tcp_saveti, struct ip *);
1238 switch (af) {
1239 #ifdef INET
1240 case AF_INET:
1241 sip->ip_v = 4;
1242 break;
1243 #endif
1244 #ifdef INET6
1245 case AF_INET6:
1246 sip->ip_v = 6;
1247 break;
1248 #endif
1249 }
1250 }
1251 nosave:;
1252 }
1253 if (so->so_options & SO_ACCEPTCONN) {
1254 if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1255 if (tiflags & TH_RST) {
1256 syn_cache_reset(&src.sa, &dst.sa, th);
1257 } else if ((tiflags & (TH_ACK|TH_SYN)) ==
1258 (TH_ACK|TH_SYN)) {
1259 /*
1260 * Received a SYN,ACK. This should
1261 * never happen while we are in
1262 * LISTEN. Send an RST.
1263 */
1264 goto badsyn;
1265 } else if (tiflags & TH_ACK) {
1266 so = syn_cache_get(&src.sa, &dst.sa,
1267 th, toff, tlen, so, m);
1268 if (so == NULL) {
1269 /*
1270 * We don't have a SYN for
1271 * this ACK; send an RST.
1272 */
1273 goto badsyn;
1274 } else if (so ==
1275 (struct socket *)(-1)) {
1276 /*
1277 * We were unable to create
1278 * the connection. If the
1279 * 3-way handshake was
1280 * completed, and RST has
1281 * been sent to the peer.
1282 * Since the mbuf might be
1283 * in use for the reply,
1284 * do not free it.
1285 */
1286 m = NULL;
1287 } else {
1288 /*
1289 * We have created a
1290 * full-blown connection.
1291 */
1292 tp = NULL;
1293 inp = NULL;
1294 #ifdef INET6
1295 in6p = NULL;
1296 #endif
1297 switch (so->so_proto->pr_domain->dom_family) {
1298 #ifdef INET
1299 case AF_INET:
1300 inp = sotoinpcb(so);
1301 tp = intotcpcb(inp);
1302 break;
1303 #endif
1304 #ifdef INET6
1305 case AF_INET6:
1306 in6p = sotoin6pcb(so);
1307 tp = in6totcpcb(in6p);
1308 break;
1309 #endif
1310 }
1311 if (tp == NULL)
1312 goto badsyn; /*XXX*/
1313 tiwin <<= tp->snd_scale;
1314 goto after_listen;
1315 }
1316 } else {
1317 /*
1318 * None of RST, SYN or ACK was set.
1319 * This is an invalid packet for a
1320 * TCB in LISTEN state. Send a RST.
1321 */
1322 goto badsyn;
1323 }
1324 } else {
1325 /*
1326 * Received a SYN.
1327 */
1328
1329 /*
1330 * LISTEN socket received a SYN
1331 * from itself? This can't possibly
1332 * be valid; drop the packet.
1333 */
1334 if (th->th_sport == th->th_dport) {
1335 int i;
1336
1337 switch (af) {
1338 #ifdef INET
1339 case AF_INET:
1340 i = in_hosteq(ip->ip_src, ip->ip_dst);
1341 break;
1342 #endif
1343 #ifdef INET6
1344 case AF_INET6:
1345 i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
1346 break;
1347 #endif
1348 default:
1349 i = 1;
1350 }
1351 if (i) {
1352 tcpstat.tcps_badsyn++;
1353 goto drop;
1354 }
1355 }
1356
1357 /*
1358 * SYN looks ok; create compressed TCP
1359 * state for it.
1360 */
1361 if (so->so_qlen <= so->so_qlimit &&
1362 syn_cache_add(&src.sa, &dst.sa, th, tlen,
1363 so, m, optp, optlen, &opti))
1364 m = NULL;
1365 }
1366 goto drop;
1367 }
1368 }
1369
1370 after_listen:
1371 #ifdef DIAGNOSTIC
1372 /*
1373 * Should not happen now that all embryonic connections
1374 * are handled with compressed state.
1375 */
1376 if (tp->t_state == TCPS_LISTEN)
1377 panic("tcp_input: TCPS_LISTEN");
1378 #endif
1379
1380 /*
1381 * Segment received on connection.
1382 * Reset idle time and keep-alive timer.
1383 */
1384 tp->t_rcvtime = tcp_now;
1385 if (TCPS_HAVEESTABLISHED(tp->t_state))
1386 TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1387
1388 /*
1389 * Process options.
1390 */
1391 if (optp)
1392 tcp_dooptions(tp, optp, optlen, th, &opti);
1393
1394 /*
1395 * Header prediction: check for the two common cases
1396 * of a uni-directional data xfer. If the packet has
1397 * no control flags, is in-sequence, the window didn't
1398 * change and we're not retransmitting, it's a
1399 * candidate. If the length is zero and the ack moved
1400 * forward, we're the sender side of the xfer. Just
1401 * free the data acked & wake any higher level process
1402 * that was blocked waiting for space. If the length
1403 * is non-zero and the ack didn't move, we're the
1404 * receiver side. If we're getting packets in-order
1405 * (the reassembly queue is empty), add the data to
1406 * the socket buffer and note that we need a delayed ack.
1407 */
1408 if (tp->t_state == TCPS_ESTABLISHED &&
1409 (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1410 (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
1411 th->th_seq == tp->rcv_nxt &&
1412 tiwin && tiwin == tp->snd_wnd &&
1413 tp->snd_nxt == tp->snd_max) {
1414
1415 /*
1416 * If last ACK falls within this segment's sequence numbers,
1417 * record the timestamp.
1418 */
1419 if (opti.ts_present &&
1420 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1421 SEQ_LT(tp->last_ack_sent, th->th_seq + tlen)) {
1422 tp->ts_recent_age = TCP_TIMESTAMP(tp);
1423 tp->ts_recent = opti.ts_val;
1424 }
1425
1426 if (tlen == 0) {
1427 if (SEQ_GT(th->th_ack, tp->snd_una) &&
1428 SEQ_LEQ(th->th_ack, tp->snd_max) &&
1429 tp->snd_cwnd >= tp->snd_wnd &&
1430 tp->t_dupacks < tcprexmtthresh) {
1431 /*
1432 * this is a pure ack for outstanding data.
1433 */
1434 ++tcpstat.tcps_predack;
1435 if (opti.ts_present && opti.ts_ecr)
1436 tcp_xmit_timer(tp,
1437 TCP_TIMESTAMP(tp) - opti.ts_ecr + 1);
1438 else if (tp->t_rtttime &&
1439 SEQ_GT(th->th_ack, tp->t_rtseq))
1440 tcp_xmit_timer(tp,
1441 tcp_now - tp->t_rtttime);
1442 acked = th->th_ack - tp->snd_una;
1443 tcpstat.tcps_rcvackpack++;
1444 tcpstat.tcps_rcvackbyte += acked;
1445 ND6_HINT(tp);
1446 sbdrop(&so->so_snd, acked);
1447 /*
1448 * We want snd_recover to track snd_una to
1449 * avoid sequence wraparound problems for
1450 * very large transfers.
1451 */
1452 tp->snd_una = tp->snd_recover = th->th_ack;
1453 m_freem(m);
1454
1455 /*
1456 * If all outstanding data are acked, stop
1457 * retransmit timer, otherwise restart timer
1458 * using current (possibly backed-off) value.
1459 * If process is waiting for space,
1460 * wakeup/selwakeup/signal. If data
1461 * are ready to send, let tcp_output
1462 * decide between more output or persist.
1463 */
1464 if (tp->snd_una == tp->snd_max)
1465 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1466 else if (TCP_TIMER_ISARMED(tp,
1467 TCPT_PERSIST) == 0)
1468 TCP_TIMER_ARM(tp, TCPT_REXMT,
1469 tp->t_rxtcur);
1470
1471 sowwakeup(so);
1472 if (so->so_snd.sb_cc)
1473 (void) tcp_output(tp);
1474 if (tcp_saveti)
1475 m_freem(tcp_saveti);
1476 return;
1477 }
1478 } else if (th->th_ack == tp->snd_una &&
1479 TAILQ_FIRST(&tp->segq) == NULL &&
1480 tlen <= sbspace(&so->so_rcv)) {
1481 /*
1482 * this is a pure, in-sequence data packet
1483 * with nothing on the reassembly queue and
1484 * we have enough buffer space to take it.
1485 */
1486 ++tcpstat.tcps_preddat;
1487 tp->rcv_nxt += tlen;
1488 tcpstat.tcps_rcvpack++;
1489 tcpstat.tcps_rcvbyte += tlen;
1490 ND6_HINT(tp);
1491 /*
1492 * Drop TCP, IP headers and TCP options then add data
1493 * to socket buffer.
1494 */
1495 m_adj(m, toff + off);
1496 sbappend(&so->so_rcv, m);
1497 sorwakeup(so);
1498 TCP_SETUP_ACK(tp, th);
1499 if (tp->t_flags & TF_ACKNOW)
1500 (void) tcp_output(tp);
1501 if (tcp_saveti)
1502 m_freem(tcp_saveti);
1503 return;
1504 }
1505 }
1506
1507 /*
1508 * Compute mbuf offset to TCP data segment.
1509 */
1510 hdroptlen = toff + off;
1511
1512 /*
1513 * Calculate amount of space in receive window,
1514 * and then do TCP input processing.
1515 * Receive window is amount of space in rcv queue,
1516 * but not less than advertised window.
1517 */
1518 { int win;
1519
1520 win = sbspace(&so->so_rcv);
1521 if (win < 0)
1522 win = 0;
1523 tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1524 }
1525
1526 switch (tp->t_state) {
1527 case TCPS_LISTEN:
1528 /*
1529 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
1530 */
1531 if (m->m_flags & (M_BCAST|M_MCAST))
1532 goto drop;
1533 switch (af) {
1534 #ifdef INET6
1535 case AF_INET6:
1536 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
1537 goto drop;
1538 break;
1539 #endif /* INET6 */
1540 case AF_INET:
1541 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
1542 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
1543 goto drop;
1544 break;
1545 }
1546 break;
1547
1548 /*
1549 * If the state is SYN_SENT:
1550 * if seg contains an ACK, but not for our SYN, drop the input.
1551 * if seg contains a RST, then drop the connection.
1552 * if seg does not contain SYN, then drop it.
1553 * Otherwise this is an acceptable SYN segment
1554 * initialize tp->rcv_nxt and tp->irs
1555 * if seg contains ack then advance tp->snd_una
1556 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1557 * arrange for segment to be acked (eventually)
1558 * continue processing rest of data/controls, beginning with URG
1559 */
1560 case TCPS_SYN_SENT:
1561 if ((tiflags & TH_ACK) &&
1562 (SEQ_LEQ(th->th_ack, tp->iss) ||
1563 SEQ_GT(th->th_ack, tp->snd_max)))
1564 goto dropwithreset;
1565 if (tiflags & TH_RST) {
1566 if (tiflags & TH_ACK)
1567 tp = tcp_drop(tp, ECONNREFUSED);
1568 goto drop;
1569 }
1570 if ((tiflags & TH_SYN) == 0)
1571 goto drop;
1572 if (tiflags & TH_ACK) {
1573 tp->snd_una = tp->snd_recover = th->th_ack;
1574 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1575 tp->snd_nxt = tp->snd_una;
1576 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1577 }
1578 tp->irs = th->th_seq;
1579 tcp_rcvseqinit(tp);
1580 tp->t_flags |= TF_ACKNOW;
1581 tcp_mss_from_peer(tp, opti.maxseg);
1582
1583 /*
1584 * Initialize the initial congestion window. If we
1585 * had to retransmit the SYN, we must initialize cwnd
1586 * to 1 segment (i.e. the Loss Window).
1587 */
1588 if (tp->t_flags & TF_SYN_REXMT)
1589 tp->snd_cwnd = tp->t_peermss;
1590 else
1591 tp->snd_cwnd = TCP_INITIAL_WINDOW(tcp_init_win,
1592 tp->t_peermss);
1593
1594 tcp_rmx_rtt(tp);
1595 if (tiflags & TH_ACK) {
1596 tcpstat.tcps_connects++;
1597 soisconnected(so);
1598 tcp_established(tp);
1599 /* Do window scaling on this connection? */
1600 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1601 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1602 tp->snd_scale = tp->requested_s_scale;
1603 tp->rcv_scale = tp->request_r_scale;
1604 }
1605 TCP_REASS_LOCK(tp);
1606 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1607 TCP_REASS_UNLOCK(tp);
1608 /*
1609 * if we didn't have to retransmit the SYN,
1610 * use its rtt as our initial srtt & rtt var.
1611 */
1612 if (tp->t_rtttime)
1613 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
1614 } else
1615 tp->t_state = TCPS_SYN_RECEIVED;
1616
1617 /*
1618 * Advance th->th_seq to correspond to first data byte.
1619 * If data, trim to stay within window,
1620 * dropping FIN if necessary.
1621 */
1622 th->th_seq++;
1623 if (tlen > tp->rcv_wnd) {
1624 todrop = tlen - tp->rcv_wnd;
1625 m_adj(m, -todrop);
1626 tlen = tp->rcv_wnd;
1627 tiflags &= ~TH_FIN;
1628 tcpstat.tcps_rcvpackafterwin++;
1629 tcpstat.tcps_rcvbyteafterwin += todrop;
1630 }
1631 tp->snd_wl1 = th->th_seq - 1;
1632 tp->rcv_up = th->th_seq;
1633 goto step6;
1634
1635 /*
1636 * If the state is SYN_RECEIVED:
1637 * If seg contains an ACK, but not for our SYN, drop the input
1638 * and generate an RST. See page 36, rfc793
1639 */
1640 case TCPS_SYN_RECEIVED:
1641 if ((tiflags & TH_ACK) &&
1642 (SEQ_LEQ(th->th_ack, tp->iss) ||
1643 SEQ_GT(th->th_ack, tp->snd_max)))
1644 goto dropwithreset;
1645 break;
1646 }
1647
1648 /*
1649 * States other than LISTEN or SYN_SENT.
1650 * First check timestamp, if present.
1651 * Then check that at least some bytes of segment are within
1652 * receive window. If segment begins before rcv_nxt,
1653 * drop leading data (and SYN); if nothing left, just ack.
1654 *
1655 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1656 * and it's less than ts_recent, drop it.
1657 */
1658 if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
1659 TSTMP_LT(opti.ts_val, tp->ts_recent)) {
1660
1661 /* Check to see if ts_recent is over 24 days old. */
1662 if ((int)(TCP_TIMESTAMP(tp) - tp->ts_recent_age) >
1663 TCP_PAWS_IDLE) {
1664 /*
1665 * Invalidate ts_recent. If this segment updates
1666 * ts_recent, the age will be reset later and ts_recent
1667 * will get a valid value. If it does not, setting
1668 * ts_recent to zero will at least satisfy the
1669 * requirement that zero be placed in the timestamp
1670 * echo reply when ts_recent isn't valid. The
1671 * age isn't reset until we get a valid ts_recent
1672 * because we don't want out-of-order segments to be
1673 * dropped when ts_recent is old.
1674 */
1675 tp->ts_recent = 0;
1676 } else {
1677 tcpstat.tcps_rcvduppack++;
1678 tcpstat.tcps_rcvdupbyte += tlen;
1679 tcpstat.tcps_pawsdrop++;
1680 goto dropafterack;
1681 }
1682 }
1683
1684 todrop = tp->rcv_nxt - th->th_seq;
1685 if (todrop > 0) {
1686 if (tiflags & TH_SYN) {
1687 tiflags &= ~TH_SYN;
1688 th->th_seq++;
1689 if (th->th_urp > 1)
1690 th->th_urp--;
1691 else {
1692 tiflags &= ~TH_URG;
1693 th->th_urp = 0;
1694 }
1695 todrop--;
1696 }
1697 if (todrop > tlen ||
1698 (todrop == tlen && (tiflags & TH_FIN) == 0)) {
1699 /*
1700 * Any valid FIN must be to the left of the window.
1701 * At this point the FIN must be a duplicate or
1702 * out of sequence; drop it.
1703 */
1704 tiflags &= ~TH_FIN;
1705 /*
1706 * Send an ACK to resynchronize and drop any data.
1707 * But keep on processing for RST or ACK.
1708 */
1709 tp->t_flags |= TF_ACKNOW;
1710 todrop = tlen;
1711 tcpstat.tcps_rcvdupbyte += todrop;
1712 tcpstat.tcps_rcvduppack++;
1713 } else {
1714 tcpstat.tcps_rcvpartduppack++;
1715 tcpstat.tcps_rcvpartdupbyte += todrop;
1716 }
1717 hdroptlen += todrop; /*drop from head afterwards*/
1718 th->th_seq += todrop;
1719 tlen -= todrop;
1720 if (th->th_urp > todrop)
1721 th->th_urp -= todrop;
1722 else {
1723 tiflags &= ~TH_URG;
1724 th->th_urp = 0;
1725 }
1726 }
1727
1728 /*
1729 * If new data are received on a connection after the
1730 * user processes are gone, then RST the other end.
1731 */
1732 if ((so->so_state & SS_NOFDREF) &&
1733 tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1734 tp = tcp_close(tp);
1735 tcpstat.tcps_rcvafterclose++;
1736 goto dropwithreset;
1737 }
1738
1739 /*
1740 * If segment ends after window, drop trailing data
1741 * (and PUSH and FIN); if nothing left, just ACK.
1742 */
1743 todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
1744 if (todrop > 0) {
1745 tcpstat.tcps_rcvpackafterwin++;
1746 if (todrop >= tlen) {
1747 tcpstat.tcps_rcvbyteafterwin += tlen;
1748 /*
1749 * If a new connection request is received
1750 * while in TIME_WAIT, drop the old connection
1751 * and start over if the sequence numbers
1752 * are above the previous ones.
1753 */
1754 if (tiflags & TH_SYN &&
1755 tp->t_state == TCPS_TIME_WAIT &&
1756 SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1757 iss = tcp_new_iss(tp, tp->snd_nxt);
1758 tp = tcp_close(tp);
1759 goto findpcb;
1760 }
1761 /*
1762 * If window is closed can only take segments at
1763 * window edge, and have to drop data and PUSH from
1764 * incoming segments. Continue processing, but
1765 * remember to ack. Otherwise, drop segment
1766 * and ack.
1767 */
1768 if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1769 tp->t_flags |= TF_ACKNOW;
1770 tcpstat.tcps_rcvwinprobe++;
1771 } else
1772 goto dropafterack;
1773 } else
1774 tcpstat.tcps_rcvbyteafterwin += todrop;
1775 m_adj(m, -todrop);
1776 tlen -= todrop;
1777 tiflags &= ~(TH_PUSH|TH_FIN);
1778 }
1779
1780 /*
1781 * If last ACK falls within this segment's sequence numbers,
1782 * and the timestamp is newer, record it.
1783 */
1784 if (opti.ts_present && TSTMP_GEQ(opti.ts_val, tp->ts_recent) &&
1785 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1786 SEQ_LT(tp->last_ack_sent, th->th_seq + tlen +
1787 ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
1788 tp->ts_recent_age = TCP_TIMESTAMP(tp);
1789 tp->ts_recent = opti.ts_val;
1790 }
1791
1792 /*
1793 * If the RST bit is set examine the state:
1794 * SYN_RECEIVED STATE:
1795 * If passive open, return to LISTEN state.
1796 * If active open, inform user that connection was refused.
1797 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
1798 * Inform user that connection was reset, and close tcb.
1799 * CLOSING, LAST_ACK, TIME_WAIT STATES
1800 * Close the tcb.
1801 */
1802 if (tiflags&TH_RST) switch (tp->t_state) {
1803
1804 case TCPS_SYN_RECEIVED:
1805 so->so_error = ECONNREFUSED;
1806 goto close;
1807
1808 case TCPS_ESTABLISHED:
1809 case TCPS_FIN_WAIT_1:
1810 case TCPS_FIN_WAIT_2:
1811 case TCPS_CLOSE_WAIT:
1812 so->so_error = ECONNRESET;
1813 close:
1814 tp->t_state = TCPS_CLOSED;
1815 tcpstat.tcps_drops++;
1816 tp = tcp_close(tp);
1817 goto drop;
1818
1819 case TCPS_CLOSING:
1820 case TCPS_LAST_ACK:
1821 case TCPS_TIME_WAIT:
1822 tp = tcp_close(tp);
1823 goto drop;
1824 }
1825
1826 /*
1827 * If a SYN is in the window, then this is an
1828 * error and we send an RST and drop the connection.
1829 */
1830 if (tiflags & TH_SYN) {
1831 tp = tcp_drop(tp, ECONNRESET);
1832 goto dropwithreset;
1833 }
1834
1835 /*
1836 * If the ACK bit is off we drop the segment and return.
1837 */
1838 if ((tiflags & TH_ACK) == 0) {
1839 if (tp->t_flags & TF_ACKNOW)
1840 goto dropafterack;
1841 else
1842 goto drop;
1843 }
1844
1845 /*
1846 * Ack processing.
1847 */
1848 switch (tp->t_state) {
1849
1850 /*
1851 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
1852 * ESTABLISHED state and continue processing, otherwise
1853 * send an RST.
1854 */
1855 case TCPS_SYN_RECEIVED:
1856 if (SEQ_GT(tp->snd_una, th->th_ack) ||
1857 SEQ_GT(th->th_ack, tp->snd_max))
1858 goto dropwithreset;
1859 tcpstat.tcps_connects++;
1860 soisconnected(so);
1861 tcp_established(tp);
1862 /* Do window scaling? */
1863 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1864 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1865 tp->snd_scale = tp->requested_s_scale;
1866 tp->rcv_scale = tp->request_r_scale;
1867 }
1868 TCP_REASS_LOCK(tp);
1869 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1870 TCP_REASS_UNLOCK(tp);
1871 tp->snd_wl1 = th->th_seq - 1;
1872 /* fall into ... */
1873
1874 /*
1875 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1876 * ACKs. If the ack is in the range
1877 * tp->snd_una < th->th_ack <= tp->snd_max
1878 * then advance tp->snd_una to th->th_ack and drop
1879 * data from the retransmission queue. If this ACK reflects
1880 * more up to date window information we update our window information.
1881 */
1882 case TCPS_ESTABLISHED:
1883 case TCPS_FIN_WAIT_1:
1884 case TCPS_FIN_WAIT_2:
1885 case TCPS_CLOSE_WAIT:
1886 case TCPS_CLOSING:
1887 case TCPS_LAST_ACK:
1888 case TCPS_TIME_WAIT:
1889
1890 if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
1891 if (tlen == 0 && tiwin == tp->snd_wnd) {
1892 tcpstat.tcps_rcvdupack++;
1893 /*
1894 * If we have outstanding data (other than
1895 * a window probe), this is a completely
1896 * duplicate ack (ie, window info didn't
1897 * change), the ack is the biggest we've
1898 * seen and we've seen exactly our rexmt
1899 * threshhold of them, assume a packet
1900 * has been dropped and retransmit it.
1901 * Kludge snd_nxt & the congestion
1902 * window so we send only this one
1903 * packet.
1904 *
1905 * We know we're losing at the current
1906 * window size so do congestion avoidance
1907 * (set ssthresh to half the current window
1908 * and pull our congestion window back to
1909 * the new ssthresh).
1910 *
1911 * Dup acks mean that packets have left the
1912 * network (they're now cached at the receiver)
1913 * so bump cwnd by the amount in the receiver
1914 * to keep a constant cwnd packets in the
1915 * network.
1916 */
1917 if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
1918 th->th_ack != tp->snd_una)
1919 tp->t_dupacks = 0;
1920 else if (++tp->t_dupacks == tcprexmtthresh) {
1921 tcp_seq onxt = tp->snd_nxt;
1922 u_int win =
1923 min(tp->snd_wnd, tp->snd_cwnd) /
1924 2 / tp->t_segsz;
1925 if (tcp_do_newreno && SEQ_LT(th->th_ack,
1926 tp->snd_recover)) {
1927 /*
1928 * False fast retransmit after
1929 * timeout. Do not cut window.
1930 */
1931 tp->snd_cwnd += tp->t_segsz;
1932 tp->t_dupacks = 0;
1933 (void) tcp_output(tp);
1934 goto drop;
1935 }
1936
1937 if (win < 2)
1938 win = 2;
1939 tp->snd_ssthresh = win * tp->t_segsz;
1940 tp->snd_recover = tp->snd_max;
1941 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1942 tp->t_rtttime = 0;
1943 tp->snd_nxt = th->th_ack;
1944 tp->snd_cwnd = tp->t_segsz;
1945 (void) tcp_output(tp);
1946 tp->snd_cwnd = tp->snd_ssthresh +
1947 tp->t_segsz * tp->t_dupacks;
1948 if (SEQ_GT(onxt, tp->snd_nxt))
1949 tp->snd_nxt = onxt;
1950 goto drop;
1951 } else if (tp->t_dupacks > tcprexmtthresh) {
1952 tp->snd_cwnd += tp->t_segsz;
1953 (void) tcp_output(tp);
1954 goto drop;
1955 }
1956 } else
1957 tp->t_dupacks = 0;
1958 break;
1959 }
1960 /*
1961 * If the congestion window was inflated to account
1962 * for the other side's cached packets, retract it.
1963 */
1964 if (tcp_do_newreno == 0) {
1965 if (tp->t_dupacks >= tcprexmtthresh &&
1966 tp->snd_cwnd > tp->snd_ssthresh)
1967 tp->snd_cwnd = tp->snd_ssthresh;
1968 tp->t_dupacks = 0;
1969 } else if (tp->t_dupacks >= tcprexmtthresh &&
1970 tcp_newreno(tp, th) == 0) {
1971 tp->snd_cwnd = tp->snd_ssthresh;
1972 /*
1973 * Window inflation should have left us with approx.
1974 * snd_ssthresh outstanding data. But in case we
1975 * would be inclined to send a burst, better to do
1976 * it via the slow start mechanism.
1977 */
1978 if (SEQ_SUB(tp->snd_max, th->th_ack) < tp->snd_ssthresh)
1979 tp->snd_cwnd = SEQ_SUB(tp->snd_max, th->th_ack)
1980 + tp->t_segsz;
1981 tp->t_dupacks = 0;
1982 }
1983 if (SEQ_GT(th->th_ack, tp->snd_max)) {
1984 tcpstat.tcps_rcvacktoomuch++;
1985 goto dropafterack;
1986 }
1987 acked = th->th_ack - tp->snd_una;
1988 tcpstat.tcps_rcvackpack++;
1989 tcpstat.tcps_rcvackbyte += acked;
1990
1991 /*
1992 * If we have a timestamp reply, update smoothed
1993 * round trip time. If no timestamp is present but
1994 * transmit timer is running and timed sequence
1995 * number was acked, update smoothed round trip time.
1996 * Since we now have an rtt measurement, cancel the
1997 * timer backoff (cf., Phil Karn's retransmit alg.).
1998 * Recompute the initial retransmit timer.
1999 */
2000 if (opti.ts_present && opti.ts_ecr)
2001 tcp_xmit_timer(tp, TCP_TIMESTAMP(tp) - opti.ts_ecr + 1);
2002 else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2003 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2004
2005 /*
2006 * If all outstanding data is acked, stop retransmit
2007 * timer and remember to restart (more output or persist).
2008 * If there is more data to be acked, restart retransmit
2009 * timer, using current (possibly backed-off) value.
2010 */
2011 if (th->th_ack == tp->snd_max) {
2012 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2013 needoutput = 1;
2014 } else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
2015 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
2016 /*
2017 * When new data is acked, open the congestion window.
2018 * If the window gives us less than ssthresh packets
2019 * in flight, open exponentially (segsz per packet).
2020 * Otherwise open linearly: segsz per window
2021 * (segsz^2 / cwnd per packet), plus a constant
2022 * fraction of a packet (segsz/8) to help larger windows
2023 * open quickly enough.
2024 */
2025 {
2026 u_int cw = tp->snd_cwnd;
2027 u_int incr = tp->t_segsz;
2028
2029 if (cw > tp->snd_ssthresh)
2030 incr = incr * incr / cw;
2031 if (tcp_do_newreno == 0 || SEQ_GEQ(th->th_ack, tp->snd_recover))
2032 tp->snd_cwnd = min(cw + incr,
2033 TCP_MAXWIN << tp->snd_scale);
2034 }
2035 ND6_HINT(tp);
2036 if (acked > so->so_snd.sb_cc) {
2037 tp->snd_wnd -= so->so_snd.sb_cc;
2038 sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
2039 ourfinisacked = 1;
2040 } else {
2041 sbdrop(&so->so_snd, acked);
2042 tp->snd_wnd -= acked;
2043 ourfinisacked = 0;
2044 }
2045 sowwakeup(so);
2046 /*
2047 * We want snd_recover to track snd_una to
2048 * avoid sequence wraparound problems for
2049 * very large transfers.
2050 */
2051 tp->snd_una = tp->snd_recover = th->th_ack;
2052 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2053 tp->snd_nxt = tp->snd_una;
2054
2055 switch (tp->t_state) {
2056
2057 /*
2058 * In FIN_WAIT_1 STATE in addition to the processing
2059 * for the ESTABLISHED state if our FIN is now acknowledged
2060 * then enter FIN_WAIT_2.
2061 */
2062 case TCPS_FIN_WAIT_1:
2063 if (ourfinisacked) {
2064 /*
2065 * If we can't receive any more
2066 * data, then closing user can proceed.
2067 * Starting the timer is contrary to the
2068 * specification, but if we don't get a FIN
2069 * we'll hang forever.
2070 */
2071 if (so->so_state & SS_CANTRCVMORE) {
2072 soisdisconnected(so);
2073 if (tcp_maxidle > 0)
2074 TCP_TIMER_ARM(tp, TCPT_2MSL,
2075 tcp_maxidle);
2076 }
2077 tp->t_state = TCPS_FIN_WAIT_2;
2078 }
2079 break;
2080
2081 /*
2082 * In CLOSING STATE in addition to the processing for
2083 * the ESTABLISHED state if the ACK acknowledges our FIN
2084 * then enter the TIME-WAIT state, otherwise ignore
2085 * the segment.
2086 */
2087 case TCPS_CLOSING:
2088 if (ourfinisacked) {
2089 tp->t_state = TCPS_TIME_WAIT;
2090 tcp_canceltimers(tp);
2091 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2092 soisdisconnected(so);
2093 }
2094 break;
2095
2096 /*
2097 * In LAST_ACK, we may still be waiting for data to drain
2098 * and/or to be acked, as well as for the ack of our FIN.
2099 * If our FIN is now acknowledged, delete the TCB,
2100 * enter the closed state and return.
2101 */
2102 case TCPS_LAST_ACK:
2103 if (ourfinisacked) {
2104 tp = tcp_close(tp);
2105 goto drop;
2106 }
2107 break;
2108
2109 /*
2110 * In TIME_WAIT state the only thing that should arrive
2111 * is a retransmission of the remote FIN. Acknowledge
2112 * it and restart the finack timer.
2113 */
2114 case TCPS_TIME_WAIT:
2115 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2116 goto dropafterack;
2117 }
2118 }
2119
2120 step6:
2121 /*
2122 * Update window information.
2123 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2124 */
2125 if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2126 (tp->snd_wl1 == th->th_seq && SEQ_LT(tp->snd_wl2, th->th_ack)) ||
2127 (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))) {
2128 /* keep track of pure window updates */
2129 if (tlen == 0 &&
2130 tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2131 tcpstat.tcps_rcvwinupd++;
2132 tp->snd_wnd = tiwin;
2133 tp->snd_wl1 = th->th_seq;
2134 tp->snd_wl2 = th->th_ack;
2135 if (tp->snd_wnd > tp->max_sndwnd)
2136 tp->max_sndwnd = tp->snd_wnd;
2137 needoutput = 1;
2138 }
2139
2140 /*
2141 * Process segments with URG.
2142 */
2143 if ((tiflags & TH_URG) && th->th_urp &&
2144 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2145 /*
2146 * This is a kludge, but if we receive and accept
2147 * random urgent pointers, we'll crash in
2148 * soreceive. It's hard to imagine someone
2149 * actually wanting to send this much urgent data.
2150 */
2151 if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2152 th->th_urp = 0; /* XXX */
2153 tiflags &= ~TH_URG; /* XXX */
2154 goto dodata; /* XXX */
2155 }
2156 /*
2157 * If this segment advances the known urgent pointer,
2158 * then mark the data stream. This should not happen
2159 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2160 * a FIN has been received from the remote side.
2161 * In these states we ignore the URG.
2162 *
2163 * According to RFC961 (Assigned Protocols),
2164 * the urgent pointer points to the last octet
2165 * of urgent data. We continue, however,
2166 * to consider it to indicate the first octet
2167 * of data past the urgent section as the original
2168 * spec states (in one of two places).
2169 */
2170 if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2171 tp->rcv_up = th->th_seq + th->th_urp;
2172 so->so_oobmark = so->so_rcv.sb_cc +
2173 (tp->rcv_up - tp->rcv_nxt) - 1;
2174 if (so->so_oobmark == 0)
2175 so->so_state |= SS_RCVATMARK;
2176 sohasoutofband(so);
2177 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2178 }
2179 /*
2180 * Remove out of band data so doesn't get presented to user.
2181 * This can happen independent of advancing the URG pointer,
2182 * but if two URG's are pending at once, some out-of-band
2183 * data may creep in... ick.
2184 */
2185 if (th->th_urp <= (u_int16_t) tlen
2186 #ifdef SO_OOBINLINE
2187 && (so->so_options & SO_OOBINLINE) == 0
2188 #endif
2189 )
2190 tcp_pulloutofband(so, th, m, hdroptlen);
2191 } else
2192 /*
2193 * If no out of band data is expected,
2194 * pull receive urgent pointer along
2195 * with the receive window.
2196 */
2197 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2198 tp->rcv_up = tp->rcv_nxt;
2199 dodata: /* XXX */
2200
2201 /*
2202 * Process the segment text, merging it into the TCP sequencing queue,
2203 * and arranging for acknowledgement of receipt if necessary.
2204 * This process logically involves adjusting tp->rcv_wnd as data
2205 * is presented to the user (this happens in tcp_usrreq.c,
2206 * case PRU_RCVD). If a FIN has already been received on this
2207 * connection then we just ignore the text.
2208 */
2209 if ((tlen || (tiflags & TH_FIN)) &&
2210 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2211 /*
2212 * Insert segment ti into reassembly queue of tcp with
2213 * control block tp. Return TH_FIN if reassembly now includes
2214 * a segment with FIN. The macro form does the common case
2215 * inline (segment is the next to be received on an
2216 * established connection, and the queue is empty),
2217 * avoiding linkage into and removal from the queue and
2218 * repetition of various conversions.
2219 * Set DELACK for segments received in order, but ack
2220 * immediately when segments are out of order
2221 * (so fast retransmit can work).
2222 */
2223 /* NOTE: this was TCP_REASS() macro, but used only once */
2224 TCP_REASS_LOCK(tp);
2225 if (th->th_seq == tp->rcv_nxt &&
2226 TAILQ_FIRST(&tp->segq) == NULL &&
2227 tp->t_state == TCPS_ESTABLISHED) {
2228 TCP_SETUP_ACK(tp, th);
2229 tp->rcv_nxt += tlen;
2230 tiflags = th->th_flags & TH_FIN;
2231 tcpstat.tcps_rcvpack++;
2232 tcpstat.tcps_rcvbyte += tlen;
2233 ND6_HINT(tp);
2234 m_adj(m, hdroptlen);
2235 sbappend(&(so)->so_rcv, m);
2236 sorwakeup(so);
2237 } else {
2238 m_adj(m, hdroptlen);
2239 tiflags = tcp_reass(tp, th, m, &tlen);
2240 tp->t_flags |= TF_ACKNOW;
2241 }
2242 TCP_REASS_UNLOCK(tp);
2243
2244 /*
2245 * Note the amount of data that peer has sent into
2246 * our window, in order to estimate the sender's
2247 * buffer size.
2248 */
2249 len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2250 } else {
2251 m_freem(m);
2252 m = NULL;
2253 tiflags &= ~TH_FIN;
2254 }
2255
2256 /*
2257 * If FIN is received ACK the FIN and let the user know
2258 * that the connection is closing. Ignore a FIN received before
2259 * the connection is fully established.
2260 */
2261 if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2262 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2263 socantrcvmore(so);
2264 tp->t_flags |= TF_ACKNOW;
2265 tp->rcv_nxt++;
2266 }
2267 switch (tp->t_state) {
2268
2269 /*
2270 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2271 */
2272 case TCPS_ESTABLISHED:
2273 tp->t_state = TCPS_CLOSE_WAIT;
2274 break;
2275
2276 /*
2277 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2278 * enter the CLOSING state.
2279 */
2280 case TCPS_FIN_WAIT_1:
2281 tp->t_state = TCPS_CLOSING;
2282 break;
2283
2284 /*
2285 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2286 * starting the time-wait timer, turning off the other
2287 * standard timers.
2288 */
2289 case TCPS_FIN_WAIT_2:
2290 tp->t_state = TCPS_TIME_WAIT;
2291 tcp_canceltimers(tp);
2292 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2293 soisdisconnected(so);
2294 break;
2295
2296 /*
2297 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2298 */
2299 case TCPS_TIME_WAIT:
2300 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2301 break;
2302 }
2303 }
2304 #ifdef TCP_DEBUG
2305 if (so->so_options & SO_DEBUG)
2306 tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
2307 #endif
2308
2309 /*
2310 * Return any desired output.
2311 */
2312 if (needoutput || (tp->t_flags & TF_ACKNOW))
2313 (void) tcp_output(tp);
2314 if (tcp_saveti)
2315 m_freem(tcp_saveti);
2316 return;
2317
2318 badsyn:
2319 /*
2320 * Received a bad SYN. Increment counters and dropwithreset.
2321 */
2322 tcpstat.tcps_badsyn++;
2323 tp = NULL;
2324 goto dropwithreset;
2325
2326 dropafterack:
2327 /*
2328 * Generate an ACK dropping incoming segment if it occupies
2329 * sequence space, where the ACK reflects our state.
2330 */
2331 if (tiflags & TH_RST)
2332 goto drop;
2333 m_freem(m);
2334 tp->t_flags |= TF_ACKNOW;
2335 (void) tcp_output(tp);
2336 if (tcp_saveti)
2337 m_freem(tcp_saveti);
2338 return;
2339
2340 dropwithreset_ratelim:
2341 /*
2342 * We may want to rate-limit RSTs in certain situations,
2343 * particularly if we are sending an RST in response to
2344 * an attempt to connect to or otherwise communicate with
2345 * a port for which we have no socket.
2346 */
2347 if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
2348 tcp_rst_ppslim) == 0) {
2349 /* XXX stat */
2350 goto drop;
2351 }
2352 /* ...fall into dropwithreset... */
2353
2354 dropwithreset:
2355 /*
2356 * Generate a RST, dropping incoming segment.
2357 * Make ACK acceptable to originator of segment.
2358 */
2359 if (tiflags & TH_RST)
2360 goto drop;
2361
2362 switch (af) {
2363 #ifdef INET6
2364 case AF_INET6:
2365 /* For following calls to tcp_respond */
2366 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
2367 goto drop;
2368 break;
2369 #endif /* INET6 */
2370 case AF_INET:
2371 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
2372 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2373 goto drop;
2374 }
2375
2376 {
2377 /*
2378 * need to recover version # field, which was overwritten on
2379 * ip_cksum computation.
2380 */
2381 struct ip *sip;
2382 sip = mtod(m, struct ip *);
2383 switch (af) {
2384 #ifdef INET
2385 case AF_INET:
2386 sip->ip_v = 4;
2387 break;
2388 #endif
2389 #ifdef INET6
2390 case AF_INET6:
2391 sip->ip_v = 6;
2392 break;
2393 #endif
2394 }
2395 }
2396 if (tiflags & TH_ACK)
2397 (void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
2398 else {
2399 if (tiflags & TH_SYN)
2400 tlen++;
2401 (void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
2402 TH_RST|TH_ACK);
2403 }
2404 if (tcp_saveti)
2405 m_freem(tcp_saveti);
2406 return;
2407
2408 badcsum:
2409 tcpstat.tcps_rcvbadsum++;
2410 drop:
2411 /*
2412 * Drop space held by incoming segment and return.
2413 */
2414 if (tp) {
2415 if (tp->t_inpcb)
2416 so = tp->t_inpcb->inp_socket;
2417 #ifdef INET6
2418 else if (tp->t_in6pcb)
2419 so = tp->t_in6pcb->in6p_socket;
2420 #endif
2421 else
2422 so = NULL;
2423 #ifdef TCP_DEBUG
2424 if (so && (so->so_options & SO_DEBUG) != 0)
2425 tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
2426 #endif
2427 }
2428 if (tcp_saveti)
2429 m_freem(tcp_saveti);
2430 m_freem(m);
2431 return;
2432 }
2433
2434 void
2435 tcp_dooptions(tp, cp, cnt, th, oi)
2436 struct tcpcb *tp;
2437 u_char *cp;
2438 int cnt;
2439 struct tcphdr *th;
2440 struct tcp_opt_info *oi;
2441 {
2442 u_int16_t mss;
2443 int opt, optlen;
2444
2445 for (; cnt > 0; cnt -= optlen, cp += optlen) {
2446 opt = cp[0];
2447 if (opt == TCPOPT_EOL)
2448 break;
2449 if (opt == TCPOPT_NOP)
2450 optlen = 1;
2451 else {
2452 if (cnt < 2)
2453 break;
2454 optlen = cp[1];
2455 if (optlen < 2 || optlen > cnt)
2456 break;
2457 }
2458 switch (opt) {
2459
2460 default:
2461 continue;
2462
2463 case TCPOPT_MAXSEG:
2464 if (optlen != TCPOLEN_MAXSEG)
2465 continue;
2466 if (!(th->th_flags & TH_SYN))
2467 continue;
2468 bcopy(cp + 2, &mss, sizeof(mss));
2469 oi->maxseg = ntohs(mss);
2470 break;
2471
2472 case TCPOPT_WINDOW:
2473 if (optlen != TCPOLEN_WINDOW)
2474 continue;
2475 if (!(th->th_flags & TH_SYN))
2476 continue;
2477 tp->t_flags |= TF_RCVD_SCALE;
2478 tp->requested_s_scale = cp[2];
2479 if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
2480 #if 0 /*XXX*/
2481 char *p;
2482
2483 if (ip)
2484 p = ntohl(ip->ip_src);
2485 #ifdef INET6
2486 else if (ip6)
2487 p = ip6_sprintf(&ip6->ip6_src);
2488 #endif
2489 else
2490 p = "(unknown)";
2491 log(LOG_ERR, "TCP: invalid wscale %d from %s, "
2492 "assuming %d\n",
2493 tp->requested_s_scale, p,
2494 TCP_MAX_WINSHIFT);
2495 #else
2496 log(LOG_ERR, "TCP: invalid wscale %d, "
2497 "assuming %d\n",
2498 tp->requested_s_scale,
2499 TCP_MAX_WINSHIFT);
2500 #endif
2501 tp->requested_s_scale = TCP_MAX_WINSHIFT;
2502 }
2503 break;
2504
2505 case TCPOPT_TIMESTAMP:
2506 if (optlen != TCPOLEN_TIMESTAMP)
2507 continue;
2508 oi->ts_present = 1;
2509 bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
2510 NTOHL(oi->ts_val);
2511 bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
2512 NTOHL(oi->ts_ecr);
2513
2514 /*
2515 * A timestamp received in a SYN makes
2516 * it ok to send timestamp requests and replies.
2517 */
2518 if (th->th_flags & TH_SYN) {
2519 tp->t_flags |= TF_RCVD_TSTMP;
2520 tp->ts_recent = oi->ts_val;
2521 tp->ts_recent_age = TCP_TIMESTAMP(tp);
2522 }
2523 break;
2524 case TCPOPT_SACK_PERMITTED:
2525 if (optlen != TCPOLEN_SACK_PERMITTED)
2526 continue;
2527 if (!(th->th_flags & TH_SYN))
2528 continue;
2529 tp->t_flags &= ~TF_CANT_TXSACK;
2530 break;
2531
2532 case TCPOPT_SACK:
2533 if (tp->t_flags & TF_IGNR_RXSACK)
2534 continue;
2535 if (optlen % 8 != 2 || optlen < 10)
2536 continue;
2537 cp += 2;
2538 optlen -= 2;
2539 for (; optlen > 0; cp -= 8, optlen -= 8) {
2540 tcp_seq lwe, rwe;
2541 bcopy((char *)cp, (char *) &lwe, sizeof(lwe));
2542 NTOHL(lwe);
2543 bcopy((char *)cp, (char *) &rwe, sizeof(rwe));
2544 NTOHL(rwe);
2545 /* tcp_mark_sacked(tp, lwe, rwe); */
2546 }
2547 break;
2548 }
2549 }
2550 }
2551
2552 /*
2553 * Pull out of band byte out of a segment so
2554 * it doesn't appear in the user's data queue.
2555 * It is still reflected in the segment length for
2556 * sequencing purposes.
2557 */
2558 void
2559 tcp_pulloutofband(so, th, m, off)
2560 struct socket *so;
2561 struct tcphdr *th;
2562 struct mbuf *m;
2563 int off;
2564 {
2565 int cnt = off + th->th_urp - 1;
2566
2567 while (cnt >= 0) {
2568 if (m->m_len > cnt) {
2569 char *cp = mtod(m, caddr_t) + cnt;
2570 struct tcpcb *tp = sototcpcb(so);
2571
2572 tp->t_iobc = *cp;
2573 tp->t_oobflags |= TCPOOB_HAVEDATA;
2574 bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
2575 m->m_len--;
2576 return;
2577 }
2578 cnt -= m->m_len;
2579 m = m->m_next;
2580 if (m == 0)
2581 break;
2582 }
2583 panic("tcp_pulloutofband");
2584 }
2585
2586 /*
2587 * Collect new round-trip time estimate
2588 * and update averages and current timeout.
2589 */
2590 void
2591 tcp_xmit_timer(tp, rtt)
2592 struct tcpcb *tp;
2593 uint32_t rtt;
2594 {
2595 int32_t delta;
2596
2597 tcpstat.tcps_rttupdated++;
2598 if (tp->t_srtt != 0) {
2599 /*
2600 * srtt is stored as fixed point with 3 bits after the
2601 * binary point (i.e., scaled by 8). The following magic
2602 * is equivalent to the smoothing algorithm in rfc793 with
2603 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2604 * point). Adjust rtt to origin 0.
2605 */
2606 delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
2607 if ((tp->t_srtt += delta) <= 0)
2608 tp->t_srtt = 1 << 2;
2609 /*
2610 * We accumulate a smoothed rtt variance (actually, a
2611 * smoothed mean difference), then set the retransmit
2612 * timer to smoothed rtt + 4 times the smoothed variance.
2613 * rttvar is stored as fixed point with 2 bits after the
2614 * binary point (scaled by 4). The following is
2615 * equivalent to rfc793 smoothing with an alpha of .75
2616 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces
2617 * rfc793's wired-in beta.
2618 */
2619 if (delta < 0)
2620 delta = -delta;
2621 delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
2622 if ((tp->t_rttvar += delta) <= 0)
2623 tp->t_rttvar = 1 << 2;
2624 } else {
2625 /*
2626 * No rtt measurement yet - use the unsmoothed rtt.
2627 * Set the variance to half the rtt (so our first
2628 * retransmit happens at 3*rtt).
2629 */
2630 tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
2631 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
2632 }
2633 tp->t_rtttime = 0;
2634 tp->t_rxtshift = 0;
2635
2636 /*
2637 * the retransmit should happen at rtt + 4 * rttvar.
2638 * Because of the way we do the smoothing, srtt and rttvar
2639 * will each average +1/2 tick of bias. When we compute
2640 * the retransmit timer, we want 1/2 tick of rounding and
2641 * 1 extra tick because of +-1/2 tick uncertainty in the
2642 * firing of the timer. The bias will give us exactly the
2643 * 1.5 tick we need. But, because the bias is
2644 * statistical, we have to test that we don't drop below
2645 * the minimum feasible timer (which is 2 ticks).
2646 */
2647 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
2648 max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
2649
2650 /*
2651 * We received an ack for a packet that wasn't retransmitted;
2652 * it is probably safe to discard any error indications we've
2653 * received recently. This isn't quite right, but close enough
2654 * for now (a route might have failed after we sent a segment,
2655 * and the return path might not be symmetrical).
2656 */
2657 tp->t_softerror = 0;
2658 }
2659
2660 /*
2661 * Checks for partial ack. If partial ack arrives, force the retransmission
2662 * of the next unacknowledged segment, do not clear tp->t_dupacks, and return
2663 * 1. By setting snd_nxt to th_ack, this forces retransmission timer to
2664 * be started again. If the ack advances at least to tp->snd_recover, return 0.
2665 */
2666 int
2667 tcp_newreno(tp, th)
2668 struct tcpcb *tp;
2669 struct tcphdr *th;
2670 {
2671 tcp_seq onxt = tp->snd_nxt;
2672 u_long ocwnd = tp->snd_cwnd;
2673
2674 if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2675 /*
2676 * snd_una has not yet been updated and the socket's send
2677 * buffer has not yet drained off the ACK'd data, so we
2678 * have to leave snd_una as it was to get the correct data
2679 * offset in tcp_output().
2680 */
2681 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2682 tp->t_rtttime = 0;
2683 tp->snd_nxt = th->th_ack;
2684 /*
2685 * Set snd_cwnd to one segment beyond ACK'd offset. snd_una
2686 * is not yet updated when we're called.
2687 */
2688 tp->snd_cwnd = tp->t_segsz + (th->th_ack - tp->snd_una);
2689 (void) tcp_output(tp);
2690 tp->snd_cwnd = ocwnd;
2691 if (SEQ_GT(onxt, tp->snd_nxt))
2692 tp->snd_nxt = onxt;
2693 /*
2694 * Partial window deflation. Relies on fact that tp->snd_una
2695 * not updated yet.
2696 */
2697 tp->snd_cwnd -= (th->th_ack - tp->snd_una - tp->t_segsz);
2698 return 1;
2699 }
2700 return 0;
2701 }
2702
2703
2704 /*
2705 * TCP compressed state engine. Currently used to hold compressed
2706 * state for SYN_RECEIVED.
2707 */
2708
2709 u_long syn_cache_count;
2710 u_int32_t syn_hash1, syn_hash2;
2711
2712 #define SYN_HASH(sa, sp, dp) \
2713 ((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
2714 ((u_int32_t)(sp)))^syn_hash2)))
2715 #ifndef INET6
2716 #define SYN_HASHALL(hash, src, dst) \
2717 do { \
2718 hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
2719 ((struct sockaddr_in *)(src))->sin_port, \
2720 ((struct sockaddr_in *)(dst))->sin_port); \
2721 } while (0)
2722 #else
2723 #define SYN_HASH6(sa, sp, dp) \
2724 ((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
2725 (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
2726 & 0x7fffffff)
2727
2728 #define SYN_HASHALL(hash, src, dst) \
2729 do { \
2730 switch ((src)->sa_family) { \
2731 case AF_INET: \
2732 hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
2733 ((struct sockaddr_in *)(src))->sin_port, \
2734 ((struct sockaddr_in *)(dst))->sin_port); \
2735 break; \
2736 case AF_INET6: \
2737 hash = SYN_HASH6(&((struct sockaddr_in6 *)(src))->sin6_addr, \
2738 ((struct sockaddr_in6 *)(src))->sin6_port, \
2739 ((struct sockaddr_in6 *)(dst))->sin6_port); \
2740 break; \
2741 default: \
2742 hash = 0; \
2743 } \
2744 } while (/*CONSTCOND*/0)
2745 #endif /* INET6 */
2746
2747 #define SYN_CACHE_RM(sc) \
2748 do { \
2749 TAILQ_REMOVE(&tcp_syn_cache[(sc)->sc_bucketidx].sch_bucket, \
2750 (sc), sc_bucketq); \
2751 (sc)->sc_tp = NULL; \
2752 LIST_REMOVE((sc), sc_tpq); \
2753 tcp_syn_cache[(sc)->sc_bucketidx].sch_length--; \
2754 callout_stop(&(sc)->sc_timer); \
2755 syn_cache_count--; \
2756 } while (/*CONSTCOND*/0)
2757
2758 #define SYN_CACHE_PUT(sc) \
2759 do { \
2760 if ((sc)->sc_ipopts) \
2761 (void) m_free((sc)->sc_ipopts); \
2762 if ((sc)->sc_route4.ro_rt != NULL) \
2763 RTFREE((sc)->sc_route4.ro_rt); \
2764 pool_put(&syn_cache_pool, (sc)); \
2765 } while (/*CONSTCOND*/0)
2766
2767 struct pool syn_cache_pool;
2768
2769 /*
2770 * We don't estimate RTT with SYNs, so each packet starts with the default
2771 * RTT and each timer step has a fixed timeout value.
2772 */
2773 #define SYN_CACHE_TIMER_ARM(sc) \
2774 do { \
2775 TCPT_RANGESET((sc)->sc_rxtcur, \
2776 TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN, \
2777 TCPTV_REXMTMAX); \
2778 callout_reset(&(sc)->sc_timer, \
2779 (sc)->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, (sc)); \
2780 } while (/*CONSTCOND*/0)
2781
2782 #define SYN_CACHE_TIMESTAMP(sc) (tcp_now - (sc)->sc_timebase)
2783
2784 void
2785 syn_cache_init()
2786 {
2787 int i;
2788
2789 /* Initialize the hash buckets. */
2790 for (i = 0; i < tcp_syn_cache_size; i++)
2791 TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
2792
2793 /* Initialize the syn cache pool. */
2794 pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
2795 "synpl", NULL);
2796 }
2797
2798 void
2799 syn_cache_insert(sc, tp)
2800 struct syn_cache *sc;
2801 struct tcpcb *tp;
2802 {
2803 struct syn_cache_head *scp;
2804 struct syn_cache *sc2;
2805 int s;
2806
2807 /*
2808 * If there are no entries in the hash table, reinitialize
2809 * the hash secrets.
2810 */
2811 if (syn_cache_count == 0) {
2812 struct timeval tv;
2813 microtime(&tv);
2814 syn_hash1 = random() ^ (u_long)≻
2815 syn_hash2 = random() ^ tv.tv_usec;
2816 }
2817
2818 SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
2819 sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
2820 scp = &tcp_syn_cache[sc->sc_bucketidx];
2821
2822 /*
2823 * Make sure that we don't overflow the per-bucket
2824 * limit or the total cache size limit.
2825 */
2826 s = splsoftnet();
2827 if (scp->sch_length >= tcp_syn_bucket_limit) {
2828 tcpstat.tcps_sc_bucketoverflow++;
2829 /*
2830 * The bucket is full. Toss the oldest element in the
2831 * bucket. This will be the first entry in the bucket.
2832 */
2833 sc2 = TAILQ_FIRST(&scp->sch_bucket);
2834 #ifdef DIAGNOSTIC
2835 /*
2836 * This should never happen; we should always find an
2837 * entry in our bucket.
2838 */
2839 if (sc2 == NULL)
2840 panic("syn_cache_insert: bucketoverflow: impossible");
2841 #endif
2842 SYN_CACHE_RM(sc2);
2843 SYN_CACHE_PUT(sc2);
2844 } else if (syn_cache_count >= tcp_syn_cache_limit) {
2845 struct syn_cache_head *scp2, *sce;
2846
2847 tcpstat.tcps_sc_overflowed++;
2848 /*
2849 * The cache is full. Toss the oldest entry in the
2850 * first non-empty bucket we can find.
2851 *
2852 * XXX We would really like to toss the oldest
2853 * entry in the cache, but we hope that this
2854 * condition doesn't happen very often.
2855 */
2856 scp2 = scp;
2857 if (TAILQ_EMPTY(&scp2->sch_bucket)) {
2858 sce = &tcp_syn_cache[tcp_syn_cache_size];
2859 for (++scp2; scp2 != scp; scp2++) {
2860 if (scp2 >= sce)
2861 scp2 = &tcp_syn_cache[0];
2862 if (! TAILQ_EMPTY(&scp2->sch_bucket))
2863 break;
2864 }
2865 #ifdef DIAGNOSTIC
2866 /*
2867 * This should never happen; we should always find a
2868 * non-empty bucket.
2869 */
2870 if (scp2 == scp)
2871 panic("syn_cache_insert: cacheoverflow: "
2872 "impossible");
2873 #endif
2874 }
2875 sc2 = TAILQ_FIRST(&scp2->sch_bucket);
2876 SYN_CACHE_RM(sc2);
2877 SYN_CACHE_PUT(sc2);
2878 }
2879
2880 /*
2881 * Initialize the entry's timer.
2882 */
2883 sc->sc_rxttot = 0;
2884 sc->sc_rxtshift = 0;
2885 SYN_CACHE_TIMER_ARM(sc);
2886
2887 /* Link it from tcpcb entry */
2888 LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
2889
2890 /* Put it into the bucket. */
2891 TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
2892 scp->sch_length++;
2893 syn_cache_count++;
2894
2895 tcpstat.tcps_sc_added++;
2896 splx(s);
2897 }
2898
2899 /*
2900 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
2901 * If we have retransmitted an entry the maximum number of times, expire
2902 * that entry.
2903 */
2904 void
2905 syn_cache_timer(void *arg)
2906 {
2907 struct syn_cache *sc = arg;
2908 int s;
2909
2910 s = splsoftnet();
2911
2912 if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
2913 /* Drop it -- too many retransmissions. */
2914 goto dropit;
2915 }
2916
2917 /*
2918 * Compute the total amount of time this entry has
2919 * been on a queue. If this entry has been on longer
2920 * than the keep alive timer would allow, expire it.
2921 */
2922 sc->sc_rxttot += sc->sc_rxtcur;
2923 if (sc->sc_rxttot >= TCPTV_KEEP_INIT)
2924 goto dropit;
2925
2926 tcpstat.tcps_sc_retransmitted++;
2927 (void) syn_cache_respond(sc, NULL);
2928
2929 /* Advance the timer back-off. */
2930 sc->sc_rxtshift++;
2931 SYN_CACHE_TIMER_ARM(sc);
2932
2933 splx(s);
2934 return;
2935
2936 dropit:
2937 tcpstat.tcps_sc_timed_out++;
2938 SYN_CACHE_RM(sc);
2939 SYN_CACHE_PUT(sc);
2940 splx(s);
2941 }
2942
2943 /*
2944 * Remove syn cache created by the specified tcb entry,
2945 * because this does not make sense to keep them
2946 * (if there's no tcb entry, syn cache entry will never be used)
2947 */
2948 void
2949 syn_cache_cleanup(tp)
2950 struct tcpcb *tp;
2951 {
2952 struct syn_cache *sc, *nsc;
2953 int s;
2954
2955 s = splsoftnet();
2956
2957 for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
2958 nsc = LIST_NEXT(sc, sc_tpq);
2959
2960 #ifdef DIAGNOSTIC
2961 if (sc->sc_tp != tp)
2962 panic("invalid sc_tp in syn_cache_cleanup");
2963 #endif
2964 SYN_CACHE_RM(sc);
2965 SYN_CACHE_PUT(sc);
2966 }
2967 /* just for safety */
2968 LIST_INIT(&tp->t_sc);
2969
2970 splx(s);
2971 }
2972
2973 /*
2974 * Find an entry in the syn cache.
2975 */
2976 struct syn_cache *
2977 syn_cache_lookup(src, dst, headp)
2978 struct sockaddr *src;
2979 struct sockaddr *dst;
2980 struct syn_cache_head **headp;
2981 {
2982 struct syn_cache *sc;
2983 struct syn_cache_head *scp;
2984 u_int32_t hash;
2985 int s;
2986
2987 SYN_HASHALL(hash, src, dst);
2988
2989 scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
2990 *headp = scp;
2991 s = splsoftnet();
2992 for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
2993 sc = TAILQ_NEXT(sc, sc_bucketq)) {
2994 if (sc->sc_hash != hash)
2995 continue;
2996 if (!bcmp(&sc->sc_src, src, src->sa_len) &&
2997 !bcmp(&sc->sc_dst, dst, dst->sa_len)) {
2998 splx(s);
2999 return (sc);
3000 }
3001 }
3002 splx(s);
3003 return (NULL);
3004 }
3005
3006 /*
3007 * This function gets called when we receive an ACK for a
3008 * socket in the LISTEN state. We look up the connection
3009 * in the syn cache, and if its there, we pull it out of
3010 * the cache and turn it into a full-blown connection in
3011 * the SYN-RECEIVED state.
3012 *
3013 * The return values may not be immediately obvious, and their effects
3014 * can be subtle, so here they are:
3015 *
3016 * NULL SYN was not found in cache; caller should drop the
3017 * packet and send an RST.
3018 *
3019 * -1 We were unable to create the new connection, and are
3020 * aborting it. An ACK,RST is being sent to the peer
3021 * (unless we got screwey sequence numbners; see below),
3022 * because the 3-way handshake has been completed. Caller
3023 * should not free the mbuf, since we may be using it. If
3024 * we are not, we will free it.
3025 *
3026 * Otherwise, the return value is a pointer to the new socket
3027 * associated with the connection.
3028 */
3029 struct socket *
3030 syn_cache_get(src, dst, th, hlen, tlen, so, m)
3031 struct sockaddr *src;
3032 struct sockaddr *dst;
3033 struct tcphdr *th;
3034 unsigned int hlen, tlen;
3035 struct socket *so;
3036 struct mbuf *m;
3037 {
3038 struct syn_cache *sc;
3039 struct syn_cache_head *scp;
3040 struct inpcb *inp = NULL;
3041 #ifdef INET6
3042 struct in6pcb *in6p = NULL;
3043 #endif
3044 struct tcpcb *tp = 0;
3045 struct mbuf *am;
3046 int s;
3047 struct socket *oso;
3048
3049 s = splsoftnet();
3050 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3051 splx(s);
3052 return (NULL);
3053 }
3054
3055 /*
3056 * Verify the sequence and ack numbers. Try getting the correct
3057 * response again.
3058 */
3059 if ((th->th_ack != sc->sc_iss + 1) ||
3060 SEQ_LEQ(th->th_seq, sc->sc_irs) ||
3061 SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
3062 (void) syn_cache_respond(sc, m);
3063 splx(s);
3064 return ((struct socket *)(-1));
3065 }
3066
3067 /* Remove this cache entry */
3068 SYN_CACHE_RM(sc);
3069 splx(s);
3070
3071 /*
3072 * Ok, create the full blown connection, and set things up
3073 * as they would have been set up if we had created the
3074 * connection when the SYN arrived. If we can't create
3075 * the connection, abort it.
3076 */
3077 /*
3078 * inp still has the OLD in_pcb stuff, set the
3079 * v6-related flags on the new guy, too. This is
3080 * done particularly for the case where an AF_INET6
3081 * socket is bound only to a port, and a v4 connection
3082 * comes in on that port.
3083 * we also copy the flowinfo from the original pcb
3084 * to the new one.
3085 */
3086 {
3087 struct inpcb *parentinpcb;
3088
3089 parentinpcb = (struct inpcb *)so->so_pcb;
3090
3091 oso = so;
3092 so = sonewconn(so, SS_ISCONNECTED);
3093 if (so == NULL)
3094 goto resetandabort;
3095
3096 switch (so->so_proto->pr_domain->dom_family) {
3097 #ifdef INET
3098 case AF_INET:
3099 inp = sotoinpcb(so);
3100 break;
3101 #endif
3102 #ifdef INET6
3103 case AF_INET6:
3104 in6p = sotoin6pcb(so);
3105 break;
3106 #endif
3107 }
3108 }
3109 switch (src->sa_family) {
3110 #ifdef INET
3111 case AF_INET:
3112 if (inp) {
3113 inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
3114 inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
3115 inp->inp_options = ip_srcroute();
3116 in_pcbstate(inp, INP_BOUND);
3117 if (inp->inp_options == NULL) {
3118 inp->inp_options = sc->sc_ipopts;
3119 sc->sc_ipopts = NULL;
3120 }
3121 }
3122 #ifdef INET6
3123 else if (in6p) {
3124 /* IPv4 packet to AF_INET6 socket */
3125 bzero(&in6p->in6p_laddr, sizeof(in6p->in6p_laddr));
3126 in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
3127 bcopy(&((struct sockaddr_in *)dst)->sin_addr,
3128 &in6p->in6p_laddr.s6_addr32[3],
3129 sizeof(((struct sockaddr_in *)dst)->sin_addr));
3130 in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
3131 in6totcpcb(in6p)->t_family = AF_INET;
3132 }
3133 #endif
3134 break;
3135 #endif
3136 #ifdef INET6
3137 case AF_INET6:
3138 if (in6p) {
3139 in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
3140 in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
3141 #if 0
3142 in6p->in6p_flowinfo = ip6->ip6_flow & IPV6_FLOWINFO_MASK;
3143 /*inp->inp_options = ip6_srcroute();*/ /* soon. */
3144 #endif
3145 }
3146 break;
3147 #endif
3148 }
3149 #ifdef INET6
3150 if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
3151 struct in6pcb *oin6p = sotoin6pcb(oso);
3152 /* inherit socket options from the listening socket */
3153 in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
3154 if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
3155 m_freem(in6p->in6p_options);
3156 in6p->in6p_options = 0;
3157 }
3158 ip6_savecontrol(in6p, &in6p->in6p_options,
3159 mtod(m, struct ip6_hdr *), m);
3160 }
3161 #endif
3162
3163 #ifdef IPSEC
3164 /*
3165 * we make a copy of policy, instead of sharing the policy,
3166 * for better behavior in terms of SA lookup and dead SA removal.
3167 */
3168 if (inp) {
3169 /* copy old policy into new socket's */
3170 if (ipsec_copy_policy(sotoinpcb(oso)->inp_sp, inp->inp_sp))
3171 printf("tcp_input: could not copy policy\n");
3172 }
3173 #ifdef INET6
3174 else if (in6p) {
3175 /* copy old policy into new socket's */
3176 if (ipsec_copy_policy(sotoin6pcb(oso)->in6p_sp, in6p->in6p_sp))
3177 printf("tcp_input: could not copy policy\n");
3178 }
3179 #endif
3180 #endif
3181
3182 /*
3183 * Give the new socket our cached route reference.
3184 */
3185 if (inp)
3186 inp->inp_route = sc->sc_route4; /* struct assignment */
3187 #ifdef INET6
3188 else
3189 in6p->in6p_route = sc->sc_route6;
3190 #endif
3191 sc->sc_route4.ro_rt = NULL;
3192
3193 am = m_get(M_DONTWAIT, MT_SONAME); /* XXX */
3194 if (am == NULL)
3195 goto resetandabort;
3196 am->m_len = src->sa_len;
3197 bcopy(src, mtod(am, caddr_t), src->sa_len);
3198 if (inp) {
3199 if (in_pcbconnect(inp, am)) {
3200 (void) m_free(am);
3201 goto resetandabort;
3202 }
3203 }
3204 #ifdef INET6
3205 else if (in6p) {
3206 if (src->sa_family == AF_INET) {
3207 /* IPv4 packet to AF_INET6 socket */
3208 struct sockaddr_in6 *sin6;
3209 sin6 = mtod(am, struct sockaddr_in6 *);
3210 am->m_len = sizeof(*sin6);
3211 bzero(sin6, sizeof(*sin6));
3212 sin6->sin6_family = AF_INET6;
3213 sin6->sin6_len = sizeof(*sin6);
3214 sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port;
3215 sin6->sin6_addr.s6_addr16[5] = htons(0xffff);
3216 bcopy(&((struct sockaddr_in *)src)->sin_addr,
3217 &sin6->sin6_addr.s6_addr32[3],
3218 sizeof(sin6->sin6_addr.s6_addr32[3]));
3219 }
3220 if (in6_pcbconnect(in6p, am)) {
3221 (void) m_free(am);
3222 goto resetandabort;
3223 }
3224 }
3225 #endif
3226 else {
3227 (void) m_free(am);
3228 goto resetandabort;
3229 }
3230 (void) m_free(am);
3231
3232 if (inp)
3233 tp = intotcpcb(inp);
3234 #ifdef INET6
3235 else if (in6p)
3236 tp = in6totcpcb(in6p);
3237 #endif
3238 else
3239 tp = NULL;
3240 if (sc->sc_request_r_scale != 15) {
3241 tp->requested_s_scale = sc->sc_requested_s_scale;
3242 tp->request_r_scale = sc->sc_request_r_scale;
3243 tp->snd_scale = sc->sc_requested_s_scale;
3244 tp->rcv_scale = sc->sc_request_r_scale;
3245 tp->t_flags |= TF_RCVD_SCALE;
3246 }
3247 if (sc->sc_flags & SCF_TIMESTAMP)
3248 tp->t_flags |= TF_RCVD_TSTMP;
3249 tp->ts_timebase = sc->sc_timebase;
3250
3251 tp->t_template = tcp_template(tp);
3252 if (tp->t_template == 0) {
3253 tp = tcp_drop(tp, ENOBUFS); /* destroys socket */
3254 so = NULL;
3255 m_freem(m);
3256 goto abort;
3257 }
3258
3259 tp->iss = sc->sc_iss;
3260 tp->irs = sc->sc_irs;
3261 tcp_sendseqinit(tp);
3262 tcp_rcvseqinit(tp);
3263 tp->t_state = TCPS_SYN_RECEIVED;
3264 TCP_TIMER_ARM(tp, TCPT_KEEP, TCPTV_KEEP_INIT);
3265 tcpstat.tcps_accepts++;
3266
3267 /* Initialize tp->t_ourmss before we deal with the peer's! */
3268 tp->t_ourmss = sc->sc_ourmaxseg;
3269 tcp_mss_from_peer(tp, sc->sc_peermaxseg);
3270
3271 /*
3272 * Initialize the initial congestion window. If we
3273 * had to retransmit the SYN,ACK, we must initialize cwnd
3274 * to 1 segment (i.e. the Loss Window).
3275 */
3276 if (sc->sc_rxtshift)
3277 tp->snd_cwnd = tp->t_peermss;
3278 else
3279 tp->snd_cwnd = TCP_INITIAL_WINDOW(tcp_init_win, tp->t_peermss);
3280
3281 tcp_rmx_rtt(tp);
3282 tp->snd_wl1 = sc->sc_irs;
3283 tp->rcv_up = sc->sc_irs + 1;
3284
3285 /*
3286 * This is what whould have happened in tcp_ouput() when
3287 * the SYN,ACK was sent.
3288 */
3289 tp->snd_up = tp->snd_una;
3290 tp->snd_max = tp->snd_nxt = tp->iss+1;
3291 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
3292 if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
3293 tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
3294 tp->last_ack_sent = tp->rcv_nxt;
3295
3296 tcpstat.tcps_sc_completed++;
3297 SYN_CACHE_PUT(sc);
3298 return (so);
3299
3300 resetandabort:
3301 (void) tcp_respond(NULL, m, m, th,
3302 th->th_seq + tlen, (tcp_seq)0, TH_RST|TH_ACK);
3303 abort:
3304 if (so != NULL)
3305 (void) soabort(so);
3306 SYN_CACHE_PUT(sc);
3307 tcpstat.tcps_sc_aborted++;
3308 return ((struct socket *)(-1));
3309 }
3310
3311 /*
3312 * This function is called when we get a RST for a
3313 * non-existent connection, so that we can see if the
3314 * connection is in the syn cache. If it is, zap it.
3315 */
3316
3317 void
3318 syn_cache_reset(src, dst, th)
3319 struct sockaddr *src;
3320 struct sockaddr *dst;
3321 struct tcphdr *th;
3322 {
3323 struct syn_cache *sc;
3324 struct syn_cache_head *scp;
3325 int s = splsoftnet();
3326
3327 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3328 splx(s);
3329 return;
3330 }
3331 if (SEQ_LT(th->th_seq, sc->sc_irs) ||
3332 SEQ_GT(th->th_seq, sc->sc_irs+1)) {
3333 splx(s);
3334 return;
3335 }
3336 SYN_CACHE_RM(sc);
3337 splx(s);
3338 tcpstat.tcps_sc_reset++;
3339 SYN_CACHE_PUT(sc);
3340 }
3341
3342 void
3343 syn_cache_unreach(src, dst, th)
3344 struct sockaddr *src;
3345 struct sockaddr *dst;
3346 struct tcphdr *th;
3347 {
3348 struct syn_cache *sc;
3349 struct syn_cache_head *scp;
3350 int s;
3351
3352 s = splsoftnet();
3353 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3354 splx(s);
3355 return;
3356 }
3357 /* If the sequence number != sc_iss, then it's a bogus ICMP msg */
3358 if (ntohl (th->th_seq) != sc->sc_iss) {
3359 splx(s);
3360 return;
3361 }
3362
3363 /*
3364 * If we've rertransmitted 3 times and this is our second error,
3365 * we remove the entry. Otherwise, we allow it to continue on.
3366 * This prevents us from incorrectly nuking an entry during a
3367 * spurious network outage.
3368 *
3369 * See tcp_notify().
3370 */
3371 if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
3372 sc->sc_flags |= SCF_UNREACH;
3373 splx(s);
3374 return;
3375 }
3376
3377 SYN_CACHE_RM(sc);
3378 splx(s);
3379 tcpstat.tcps_sc_unreach++;
3380 SYN_CACHE_PUT(sc);
3381 }
3382
3383 /*
3384 * Given a LISTEN socket and an inbound SYN request, add
3385 * this to the syn cache, and send back a segment:
3386 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
3387 * to the source.
3388 *
3389 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
3390 * Doing so would require that we hold onto the data and deliver it
3391 * to the application. However, if we are the target of a SYN-flood
3392 * DoS attack, an attacker could send data which would eventually
3393 * consume all available buffer space if it were ACKed. By not ACKing
3394 * the data, we avoid this DoS scenario.
3395 */
3396
3397 int
3398 syn_cache_add(src, dst, th, hlen, so, m, optp, optlen, oi)
3399 struct sockaddr *src;
3400 struct sockaddr *dst;
3401 struct tcphdr *th;
3402 unsigned int hlen;
3403 struct socket *so;
3404 struct mbuf *m;
3405 u_char *optp;
3406 int optlen;
3407 struct tcp_opt_info *oi;
3408 {
3409 struct tcpcb tb, *tp;
3410 long win;
3411 struct syn_cache *sc;
3412 struct syn_cache_head *scp;
3413 struct mbuf *ipopts;
3414
3415 tp = sototcpcb(so);
3416
3417 /*
3418 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
3419 *
3420 * Note this check is performed in tcp_input() very early on.
3421 */
3422
3423 /*
3424 * Initialize some local state.
3425 */
3426 win = sbspace(&so->so_rcv);
3427 if (win > TCP_MAXWIN)
3428 win = TCP_MAXWIN;
3429
3430 switch (src->sa_family) {
3431 #ifdef INET
3432 case AF_INET:
3433 /*
3434 * Remember the IP options, if any.
3435 */
3436 ipopts = ip_srcroute();
3437 break;
3438 #endif
3439 default:
3440 ipopts = NULL;
3441 }
3442
3443 if (optp) {
3444 tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
3445 tcp_dooptions(&tb, optp, optlen, th, oi);
3446 } else
3447 tb.t_flags = 0;
3448
3449 /*
3450 * See if we already have an entry for this connection.
3451 * If we do, resend the SYN,ACK. We do not count this
3452 * as a retransmission (XXX though maybe we should).
3453 */
3454 if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
3455 tcpstat.tcps_sc_dupesyn++;
3456 if (ipopts) {
3457 /*
3458 * If we were remembering a previous source route,
3459 * forget it and use the new one we've been given.
3460 */
3461 if (sc->sc_ipopts)
3462 (void) m_free(sc->sc_ipopts);
3463 sc->sc_ipopts = ipopts;
3464 }
3465 sc->sc_timestamp = tb.ts_recent;
3466 if (syn_cache_respond(sc, m) == 0) {
3467 tcpstat.tcps_sndacks++;
3468 tcpstat.tcps_sndtotal++;
3469 }
3470 return (1);
3471 }
3472
3473 sc = pool_get(&syn_cache_pool, PR_NOWAIT);
3474 if (sc == NULL) {
3475 if (ipopts)
3476 (void) m_free(ipopts);
3477 return (0);
3478 }
3479
3480 /*
3481 * Fill in the cache, and put the necessary IP and TCP
3482 * options into the reply.
3483 */
3484 callout_init(&sc->sc_timer);
3485 bzero(sc, sizeof(struct syn_cache));
3486 bcopy(src, &sc->sc_src, src->sa_len);
3487 bcopy(dst, &sc->sc_dst, dst->sa_len);
3488 sc->sc_flags = 0;
3489 sc->sc_ipopts = ipopts;
3490 sc->sc_irs = th->th_seq;
3491 switch (src->sa_family) {
3492 #ifdef INET
3493 case AF_INET:
3494 {
3495 struct sockaddr_in *srcin = (void *) src;
3496 struct sockaddr_in *dstin = (void *) dst;
3497
3498 sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
3499 &srcin->sin_addr, dstin->sin_port,
3500 srcin->sin_port, sizeof(dstin->sin_addr), 0);
3501 break;
3502 }
3503 #endif /* INET */
3504 #ifdef INET6
3505 case AF_INET6:
3506 {
3507 struct sockaddr_in6 *srcin6 = (void *) src;
3508 struct sockaddr_in6 *dstin6 = (void *) dst;
3509
3510 sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
3511 &srcin6->sin6_addr, dstin6->sin6_port,
3512 srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
3513 break;
3514 }
3515 #endif /* INET6 */
3516 }
3517 sc->sc_peermaxseg = oi->maxseg;
3518 sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
3519 m->m_pkthdr.rcvif : NULL,
3520 sc->sc_src.sa.sa_family);
3521 sc->sc_win = win;
3522 sc->sc_timebase = tcp_now; /* see tcp_newtcpcb() */
3523 sc->sc_timestamp = tb.ts_recent;
3524 if (tcp_do_rfc1323 && (tb.t_flags & TF_RCVD_TSTMP))
3525 sc->sc_flags |= SCF_TIMESTAMP;
3526 if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
3527 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
3528 sc->sc_requested_s_scale = tb.requested_s_scale;
3529 sc->sc_request_r_scale = 0;
3530 while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
3531 TCP_MAXWIN << sc->sc_request_r_scale <
3532 so->so_rcv.sb_hiwat)
3533 sc->sc_request_r_scale++;
3534 } else {
3535 sc->sc_requested_s_scale = 15;
3536 sc->sc_request_r_scale = 15;
3537 }
3538 sc->sc_tp = tp;
3539 if (syn_cache_respond(sc, m) == 0) {
3540 syn_cache_insert(sc, tp);
3541 tcpstat.tcps_sndacks++;
3542 tcpstat.tcps_sndtotal++;
3543 } else {
3544 SYN_CACHE_PUT(sc);
3545 tcpstat.tcps_sc_dropped++;
3546 }
3547 return (1);
3548 }
3549
3550 int
3551 syn_cache_respond(sc, m)
3552 struct syn_cache *sc;
3553 struct mbuf *m;
3554 {
3555 struct route *ro;
3556 u_int8_t *optp;
3557 int optlen, error;
3558 u_int16_t tlen;
3559 struct ip *ip = NULL;
3560 #ifdef INET6
3561 struct ip6_hdr *ip6 = NULL;
3562 #endif
3563 struct tcphdr *th;
3564 u_int hlen;
3565
3566 switch (sc->sc_src.sa.sa_family) {
3567 case AF_INET:
3568 hlen = sizeof(struct ip);
3569 ro = &sc->sc_route4;
3570 break;
3571 #ifdef INET6
3572 case AF_INET6:
3573 hlen = sizeof(struct ip6_hdr);
3574 ro = (struct route *)&sc->sc_route6;
3575 break;
3576 #endif
3577 default:
3578 if (m)
3579 m_freem(m);
3580 return EAFNOSUPPORT;
3581 }
3582
3583 /* Compute the size of the TCP options. */
3584 optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
3585 ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
3586
3587 tlen = hlen + sizeof(struct tcphdr) + optlen;
3588
3589 /*
3590 * Create the IP+TCP header from scratch.
3591 */
3592 if (m)
3593 m_freem(m);
3594 #ifdef DIAGNOSTIC
3595 if (max_linkhdr + tlen > MCLBYTES)
3596 return (ENOBUFS);
3597 #endif
3598 MGETHDR(m, M_DONTWAIT, MT_DATA);
3599 if (m && tlen > MHLEN) {
3600 MCLGET(m, M_DONTWAIT);
3601 if ((m->m_flags & M_EXT) == 0) {
3602 m_freem(m);
3603 m = NULL;
3604 }
3605 }
3606 if (m == NULL)
3607 return (ENOBUFS);
3608
3609 /* Fixup the mbuf. */
3610 m->m_data += max_linkhdr;
3611 m->m_len = m->m_pkthdr.len = tlen;
3612 #ifdef IPSEC
3613 if (sc->sc_tp) {
3614 struct tcpcb *tp;
3615 struct socket *so;
3616
3617 tp = sc->sc_tp;
3618 if (tp->t_inpcb)
3619 so = tp->t_inpcb->inp_socket;
3620 #ifdef INET6
3621 else if (tp->t_in6pcb)
3622 so = tp->t_in6pcb->in6p_socket;
3623 #endif
3624 else
3625 so = NULL;
3626 /* use IPsec policy on listening socket, on SYN ACK */
3627 if (ipsec_setsocket(m, so) != 0) {
3628 m_freem(m);
3629 return ENOBUFS;
3630 }
3631 }
3632 #endif
3633 m->m_pkthdr.rcvif = NULL;
3634 memset(mtod(m, u_char *), 0, tlen);
3635
3636 switch (sc->sc_src.sa.sa_family) {
3637 case AF_INET:
3638 ip = mtod(m, struct ip *);
3639 ip->ip_dst = sc->sc_src.sin.sin_addr;
3640 ip->ip_src = sc->sc_dst.sin.sin_addr;
3641 ip->ip_p = IPPROTO_TCP;
3642 th = (struct tcphdr *)(ip + 1);
3643 th->th_dport = sc->sc_src.sin.sin_port;
3644 th->th_sport = sc->sc_dst.sin.sin_port;
3645 break;
3646 #ifdef INET6
3647 case AF_INET6:
3648 ip6 = mtod(m, struct ip6_hdr *);
3649 ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
3650 ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
3651 ip6->ip6_nxt = IPPROTO_TCP;
3652 /* ip6_plen will be updated in ip6_output() */
3653 th = (struct tcphdr *)(ip6 + 1);
3654 th->th_dport = sc->sc_src.sin6.sin6_port;
3655 th->th_sport = sc->sc_dst.sin6.sin6_port;
3656 break;
3657 #endif
3658 default:
3659 th = NULL;
3660 }
3661
3662 th->th_seq = htonl(sc->sc_iss);
3663 th->th_ack = htonl(sc->sc_irs + 1);
3664 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
3665 th->th_flags = TH_SYN|TH_ACK;
3666 th->th_win = htons(sc->sc_win);
3667 /* th_sum already 0 */
3668 /* th_urp already 0 */
3669
3670 /* Tack on the TCP options. */
3671 optp = (u_int8_t *)(th + 1);
3672 *optp++ = TCPOPT_MAXSEG;
3673 *optp++ = 4;
3674 *optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
3675 *optp++ = sc->sc_ourmaxseg & 0xff;
3676
3677 if (sc->sc_request_r_scale != 15) {
3678 *((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
3679 TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
3680 sc->sc_request_r_scale);
3681 optp += 4;
3682 }
3683
3684 if (sc->sc_flags & SCF_TIMESTAMP) {
3685 u_int32_t *lp = (u_int32_t *)(optp);
3686 /* Form timestamp option as shown in appendix A of RFC 1323. */
3687 *lp++ = htonl(TCPOPT_TSTAMP_HDR);
3688 *lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
3689 *lp = htonl(sc->sc_timestamp);
3690 optp += TCPOLEN_TSTAMP_APPA;
3691 }
3692
3693 /* Compute the packet's checksum. */
3694 switch (sc->sc_src.sa.sa_family) {
3695 case AF_INET:
3696 ip->ip_len = htons(tlen - hlen);
3697 th->th_sum = 0;
3698 th->th_sum = in_cksum(m, tlen);
3699 break;
3700 #ifdef INET6
3701 case AF_INET6:
3702 ip6->ip6_plen = htons(tlen - hlen);
3703 th->th_sum = 0;
3704 th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
3705 break;
3706 #endif
3707 }
3708
3709 /*
3710 * Fill in some straggling IP bits. Note the stack expects
3711 * ip_len to be in host order, for convenience.
3712 */
3713 switch (sc->sc_src.sa.sa_family) {
3714 #ifdef INET
3715 case AF_INET:
3716 ip->ip_len = tlen;
3717 ip->ip_ttl = ip_defttl;
3718 /* XXX tos? */
3719 break;
3720 #endif
3721 #ifdef INET6
3722 case AF_INET6:
3723 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
3724 ip6->ip6_vfc |= IPV6_VERSION;
3725 ip6->ip6_plen = htons(tlen - hlen);
3726 /* ip6_hlim will be initialized afterwards */
3727 /* XXX flowlabel? */
3728 break;
3729 #endif
3730 }
3731
3732 switch (sc->sc_src.sa.sa_family) {
3733 #ifdef INET
3734 case AF_INET:
3735 error = ip_output(m, sc->sc_ipopts, ro,
3736 (ip_mtudisc ? IP_MTUDISC : 0),
3737 NULL);
3738 break;
3739 #endif
3740 #ifdef INET6
3741 case AF_INET6:
3742 ip6->ip6_hlim = in6_selecthlim(NULL,
3743 ro->ro_rt ? ro->ro_rt->rt_ifp : NULL);
3744
3745 error = ip6_output(m, NULL /*XXX*/, (struct route_in6 *)ro,
3746 0, NULL, NULL);
3747 break;
3748 #endif
3749 default:
3750 error = EAFNOSUPPORT;
3751 break;
3752 }
3753 return (error);
3754 }
3755