Home | History | Annotate | Line # | Download | only in netinet
tcp_input.c revision 1.145
      1 /*	$NetBSD: tcp_input.c,v 1.145 2002/06/29 04:13:21 yamt Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  *      @(#)COPYRIGHT   1.1 (NRL) 17 January 1995
     34  *
     35  * NRL grants permission for redistribution and use in source and binary
     36  * forms, with or without modification, of the software and documentation
     37  * created at NRL provided that the following conditions are met:
     38  *
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. All advertising materials mentioning features or use of this software
     45  *    must display the following acknowledgements:
     46  *      This product includes software developed by the University of
     47  *      California, Berkeley and its contributors.
     48  *      This product includes software developed at the Information
     49  *      Technology Division, US Naval Research Laboratory.
     50  * 4. Neither the name of the NRL nor the names of its contributors
     51  *    may be used to endorse or promote products derived from this software
     52  *    without specific prior written permission.
     53  *
     54  * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
     55  * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     56  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
     57  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL NRL OR
     58  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
     59  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     60  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
     61  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
     62  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
     63  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
     64  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     65  *
     66  * The views and conclusions contained in the software and documentation
     67  * are those of the authors and should not be interpreted as representing
     68  * official policies, either expressed or implied, of the US Naval
     69  * Research Laboratory (NRL).
     70  */
     71 
     72 /*-
     73  * Copyright (c) 1997, 1998, 1999, 2001 The NetBSD Foundation, Inc.
     74  * All rights reserved.
     75  *
     76  * This code is derived from software contributed to The NetBSD Foundation
     77  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
     78  * Facility, NASA Ames Research Center.
     79  *
     80  * Redistribution and use in source and binary forms, with or without
     81  * modification, are permitted provided that the following conditions
     82  * are met:
     83  * 1. Redistributions of source code must retain the above copyright
     84  *    notice, this list of conditions and the following disclaimer.
     85  * 2. Redistributions in binary form must reproduce the above copyright
     86  *    notice, this list of conditions and the following disclaimer in the
     87  *    documentation and/or other materials provided with the distribution.
     88  * 3. All advertising materials mentioning features or use of this software
     89  *    must display the following acknowledgement:
     90  *	This product includes software developed by the NetBSD
     91  *	Foundation, Inc. and its contributors.
     92  * 4. Neither the name of The NetBSD Foundation nor the names of its
     93  *    contributors may be used to endorse or promote products derived
     94  *    from this software without specific prior written permission.
     95  *
     96  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     97  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     98  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     99  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
    100  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
    101  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
    102  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
    103  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
    104  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
    105  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
    106  * POSSIBILITY OF SUCH DAMAGE.
    107  */
    108 
    109 /*
    110  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
    111  *	The Regents of the University of California.  All rights reserved.
    112  *
    113  * Redistribution and use in source and binary forms, with or without
    114  * modification, are permitted provided that the following conditions
    115  * are met:
    116  * 1. Redistributions of source code must retain the above copyright
    117  *    notice, this list of conditions and the following disclaimer.
    118  * 2. Redistributions in binary form must reproduce the above copyright
    119  *    notice, this list of conditions and the following disclaimer in the
    120  *    documentation and/or other materials provided with the distribution.
    121  * 3. All advertising materials mentioning features or use of this software
    122  *    must display the following acknowledgement:
    123  *	This product includes software developed by the University of
    124  *	California, Berkeley and its contributors.
    125  * 4. Neither the name of the University nor the names of its contributors
    126  *    may be used to endorse or promote products derived from this software
    127  *    without specific prior written permission.
    128  *
    129  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
    130  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
    131  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
    132  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
    133  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
    134  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
    135  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    136  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    137  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    138  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    139  * SUCH DAMAGE.
    140  *
    141  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
    142  */
    143 
    144 /*
    145  *	TODO list for SYN cache stuff:
    146  *
    147  *	Find room for a "state" field, which is needed to keep a
    148  *	compressed state for TIME_WAIT TCBs.  It's been noted already
    149  *	that this is fairly important for very high-volume web and
    150  *	mail servers, which use a large number of short-lived
    151  *	connections.
    152  */
    153 
    154 #include <sys/cdefs.h>
    155 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.145 2002/06/29 04:13:21 yamt Exp $");
    156 
    157 #include "opt_inet.h"
    158 #include "opt_ipsec.h"
    159 #include "opt_inet_csum.h"
    160 #include "opt_tcp_debug.h"
    161 
    162 #include <sys/param.h>
    163 #include <sys/systm.h>
    164 #include <sys/malloc.h>
    165 #include <sys/mbuf.h>
    166 #include <sys/protosw.h>
    167 #include <sys/socket.h>
    168 #include <sys/socketvar.h>
    169 #include <sys/errno.h>
    170 #include <sys/syslog.h>
    171 #include <sys/pool.h>
    172 #include <sys/domain.h>
    173 #include <sys/kernel.h>
    174 
    175 #include <net/if.h>
    176 #include <net/route.h>
    177 #include <net/if_types.h>
    178 
    179 #include <netinet/in.h>
    180 #include <netinet/in_systm.h>
    181 #include <netinet/ip.h>
    182 #include <netinet/in_pcb.h>
    183 #include <netinet/ip_var.h>
    184 
    185 #ifdef INET6
    186 #ifndef INET
    187 #include <netinet/in.h>
    188 #endif
    189 #include <netinet/ip6.h>
    190 #include <netinet6/ip6_var.h>
    191 #include <netinet6/in6_pcb.h>
    192 #include <netinet6/ip6_var.h>
    193 #include <netinet6/in6_var.h>
    194 #include <netinet/icmp6.h>
    195 #include <netinet6/nd6.h>
    196 #endif
    197 
    198 #ifdef PULLDOWN_TEST
    199 #ifndef INET6
    200 /* always need ip6.h for IP6_EXTHDR_GET */
    201 #include <netinet/ip6.h>
    202 #endif
    203 #endif
    204 
    205 #include <netinet/tcp.h>
    206 #include <netinet/tcp_fsm.h>
    207 #include <netinet/tcp_seq.h>
    208 #include <netinet/tcp_timer.h>
    209 #include <netinet/tcp_var.h>
    210 #include <netinet/tcpip.h>
    211 #include <netinet/tcp_debug.h>
    212 
    213 #include <machine/stdarg.h>
    214 
    215 #ifdef IPSEC
    216 #include <netinet6/ipsec.h>
    217 #include <netkey/key.h>
    218 #endif /*IPSEC*/
    219 #ifdef INET6
    220 #include "faith.h"
    221 #if defined(NFAITH) && NFAITH > 0
    222 #include <net/if_faith.h>
    223 #endif
    224 #endif
    225 
    226 int	tcprexmtthresh = 3;
    227 int	tcp_log_refused;
    228 
    229 static int tcp_rst_ppslim_count = 0;
    230 static struct timeval tcp_rst_ppslim_last;
    231 
    232 #define TCP_PAWS_IDLE	(24 * 24 * 60 * 60 * PR_SLOWHZ)
    233 
    234 /* for modulo comparisons of timestamps */
    235 #define TSTMP_LT(a,b)	((int)((a)-(b)) < 0)
    236 #define TSTMP_GEQ(a,b)	((int)((a)-(b)) >= 0)
    237 
    238 /*
    239  * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
    240  */
    241 #ifdef INET6
    242 #define ND6_HINT(tp) \
    243 do { \
    244 	if (tp && tp->t_in6pcb && tp->t_family == AF_INET6 \
    245 	 && tp->t_in6pcb->in6p_route.ro_rt) { \
    246 		nd6_nud_hint(tp->t_in6pcb->in6p_route.ro_rt, NULL, 0); \
    247 	} \
    248 } while (0)
    249 #else
    250 #define ND6_HINT(tp)
    251 #endif
    252 
    253 /*
    254  * Macro to compute ACK transmission behavior.  Delay the ACK unless
    255  * we have already delayed an ACK (must send an ACK every two segments).
    256  * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
    257  * option is enabled.
    258  */
    259 #define	TCP_SETUP_ACK(tp, th) \
    260 do { \
    261 	if ((tp)->t_flags & TF_DELACK || \
    262 	    (tcp_ack_on_push && (th)->th_flags & TH_PUSH)) \
    263 		tp->t_flags |= TF_ACKNOW; \
    264 	else \
    265 		TCP_SET_DELACK(tp); \
    266 } while (0)
    267 
    268 /*
    269  * Convert TCP protocol fields to host order for easier processing.
    270  */
    271 #define	TCP_FIELDS_TO_HOST(th)						\
    272 do {									\
    273 	NTOHL((th)->th_seq);						\
    274 	NTOHL((th)->th_ack);						\
    275 	NTOHS((th)->th_win);						\
    276 	NTOHS((th)->th_urp);						\
    277 } while (0)
    278 
    279 #ifdef TCP_CSUM_COUNTERS
    280 #include <sys/device.h>
    281 
    282 extern struct evcnt tcp_hwcsum_ok;
    283 extern struct evcnt tcp_hwcsum_bad;
    284 extern struct evcnt tcp_hwcsum_data;
    285 extern struct evcnt tcp_swcsum;
    286 
    287 #define	TCP_CSUM_COUNTER_INCR(ev)	(ev)->ev_count++
    288 
    289 #else
    290 
    291 #define	TCP_CSUM_COUNTER_INCR(ev)	/* nothing */
    292 
    293 #endif /* TCP_CSUM_COUNTERS */
    294 
    295 #ifdef TCP_REASS_COUNTERS
    296 #include <sys/device.h>
    297 
    298 extern struct evcnt tcp_reass_;
    299 extern struct evcnt tcp_reass_empty;
    300 extern struct evcnt tcp_reass_iteration[8];
    301 extern struct evcnt tcp_reass_prependfirst;
    302 extern struct evcnt tcp_reass_prepend;
    303 extern struct evcnt tcp_reass_insert;
    304 extern struct evcnt tcp_reass_inserttail;
    305 extern struct evcnt tcp_reass_append;
    306 extern struct evcnt tcp_reass_appendtail;
    307 extern struct evcnt tcp_reass_overlaptail;
    308 extern struct evcnt tcp_reass_overlapfront;
    309 extern struct evcnt tcp_reass_segdup;
    310 extern struct evcnt tcp_reass_fragdup;
    311 
    312 #define	TCP_REASS_COUNTER_INCR(ev)	(ev)->ev_count++
    313 
    314 #else
    315 
    316 #define	TCP_REASS_COUNTER_INCR(ev)	/* nothing */
    317 
    318 #endif /* TCP_REASS_COUNTERS */
    319 
    320 #ifdef INET
    321 static void tcp4_log_refused __P((const struct ip *, const struct tcphdr *));
    322 #endif
    323 #ifdef INET6
    324 static void tcp6_log_refused
    325     __P((const struct ip6_hdr *, const struct tcphdr *));
    326 #endif
    327 
    328 int
    329 tcp_reass(tp, th, m, tlen)
    330 	struct tcpcb *tp;
    331 	struct tcphdr *th;
    332 	struct mbuf *m;
    333 	int *tlen;
    334 {
    335 	struct ipqent *p, *q, *nq, *tiqe = NULL;
    336 	struct socket *so = NULL;
    337 	int pkt_flags;
    338 	tcp_seq pkt_seq;
    339 	unsigned pkt_len;
    340 	u_long rcvpartdupbyte = 0;
    341 	u_long rcvoobyte;
    342 #ifdef TCP_REASS_COUNTERS
    343 	u_int count = 0;
    344 #endif
    345 
    346 	if (tp->t_inpcb)
    347 		so = tp->t_inpcb->inp_socket;
    348 #ifdef INET6
    349 	else if (tp->t_in6pcb)
    350 		so = tp->t_in6pcb->in6p_socket;
    351 #endif
    352 
    353 	TCP_REASS_LOCK_CHECK(tp);
    354 
    355 	/*
    356 	 * Call with th==0 after become established to
    357 	 * force pre-ESTABLISHED data up to user socket.
    358 	 */
    359 	if (th == 0)
    360 		goto present;
    361 
    362 	rcvoobyte = *tlen;
    363 	/*
    364 	 * Copy these to local variables because the tcpiphdr
    365 	 * gets munged while we are collapsing mbufs.
    366 	 */
    367 	pkt_seq = th->th_seq;
    368 	pkt_len = *tlen;
    369 	pkt_flags = th->th_flags;
    370 
    371 	TCP_REASS_COUNTER_INCR(&tcp_reass_);
    372 
    373 	if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
    374 		/*
    375 		 * When we miss a packet, the vast majority of time we get
    376 		 * packets that follow it in order.  So optimize for that.
    377 		 */
    378 		if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
    379 			p->ipqe_len += pkt_len;
    380 			p->ipqe_flags |= pkt_flags;
    381 			m_cat(p->ipqe_m, m);
    382 			tiqe = p;
    383 			TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
    384 			TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
    385 			goto skip_replacement;
    386 		}
    387 		/*
    388 		 * While we're here, if the pkt is completely beyond
    389 		 * anything we have, just insert it at the tail.
    390 		 */
    391 		if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
    392 			TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
    393 			goto insert_it;
    394 		}
    395 	}
    396 
    397 	q = TAILQ_FIRST(&tp->segq);
    398 
    399 	if (q != NULL) {
    400 		/*
    401 		 * If this segment immediately precedes the first out-of-order
    402 		 * block, simply slap the segment in front of it and (mostly)
    403 		 * skip the complicated logic.
    404 		 */
    405 		if (pkt_seq + pkt_len == q->ipqe_seq) {
    406 			q->ipqe_seq = pkt_seq;
    407 			q->ipqe_len += pkt_len;
    408 			q->ipqe_flags |= pkt_flags;
    409 			m_cat(m, q->ipqe_m);
    410 			q->ipqe_m = m;
    411 			tiqe = q;
    412 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    413 			TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
    414 			goto skip_replacement;
    415 		}
    416 	} else {
    417 		TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
    418 	}
    419 
    420 	/*
    421 	 * Find a segment which begins after this one does.
    422 	 */
    423 	for (p = NULL; q != NULL; q = nq) {
    424 		nq = TAILQ_NEXT(q, ipqe_q);
    425 #ifdef TCP_REASS_COUNTERS
    426 		count++;
    427 #endif
    428 		/*
    429 		 * If the received segment is just right after this
    430 		 * fragment, merge the two together and then check
    431 		 * for further overlaps.
    432 		 */
    433 		if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
    434 #ifdef TCPREASS_DEBUG
    435 			printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
    436 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
    437 			       q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
    438 #endif
    439 			pkt_len += q->ipqe_len;
    440 			pkt_flags |= q->ipqe_flags;
    441 			pkt_seq = q->ipqe_seq;
    442 			m_cat(q->ipqe_m, m);
    443 			m = q->ipqe_m;
    444 			TCP_REASS_COUNTER_INCR(&tcp_reass_append);
    445 			goto free_ipqe;
    446 		}
    447 		/*
    448 		 * If the received segment is completely past this
    449 		 * fragment, we need to go the next fragment.
    450 		 */
    451 		if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
    452 			p = q;
    453 			continue;
    454 		}
    455 		/*
    456 		 * If the fragment is past the received segment,
    457 		 * it (or any following) can't be concatenated.
    458 		 */
    459 		if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
    460 			TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
    461 			break;
    462 		}
    463 
    464 		/*
    465 		 * We've received all the data in this segment before.
    466 		 * mark it as a duplicate and return.
    467 		 */
    468 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
    469 		    SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
    470 			tcpstat.tcps_rcvduppack++;
    471 			tcpstat.tcps_rcvdupbyte += pkt_len;
    472 			m_freem(m);
    473 			if (tiqe != NULL)
    474 				pool_put(&ipqent_pool, tiqe);
    475 			TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
    476 			return (0);
    477 		}
    478 		/*
    479 		 * Received segment completely overlaps this fragment
    480 		 * so we drop the fragment (this keeps the temporal
    481 		 * ordering of segments correct).
    482 		 */
    483 		if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
    484 		    SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
    485 			rcvpartdupbyte += q->ipqe_len;
    486 			m_freem(q->ipqe_m);
    487 			TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
    488 			goto free_ipqe;
    489 		}
    490 		/*
    491 		 * RX'ed segment extends past the end of the
    492 		 * fragment.  Drop the overlapping bytes.  Then
    493 		 * merge the fragment and segment then treat as
    494 		 * a longer received packet.
    495 		 */
    496 		if (SEQ_LT(q->ipqe_seq, pkt_seq)
    497 		    && SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq))  {
    498 			int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
    499 #ifdef TCPREASS_DEBUG
    500 			printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
    501 			       tp, overlap,
    502 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
    503 #endif
    504 			m_adj(m, overlap);
    505 			rcvpartdupbyte += overlap;
    506 			m_cat(q->ipqe_m, m);
    507 			m = q->ipqe_m;
    508 			pkt_seq = q->ipqe_seq;
    509 			pkt_len += q->ipqe_len - overlap;
    510 			rcvoobyte -= overlap;
    511 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
    512 			goto free_ipqe;
    513 		}
    514 		/*
    515 		 * RX'ed segment extends past the front of the
    516 		 * fragment.  Drop the overlapping bytes on the
    517 		 * received packet.  The packet will then be
    518 		 * contatentated with this fragment a bit later.
    519 		 */
    520 		if (SEQ_GT(q->ipqe_seq, pkt_seq)
    521 		    && SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len))  {
    522 			int overlap = pkt_seq + pkt_len - q->ipqe_seq;
    523 #ifdef TCPREASS_DEBUG
    524 			printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
    525 			       tp, overlap,
    526 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
    527 #endif
    528 			m_adj(m, -overlap);
    529 			pkt_len -= overlap;
    530 			rcvpartdupbyte += overlap;
    531 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
    532 			rcvoobyte -= overlap;
    533 		}
    534 		/*
    535 		 * If the received segment immediates precedes this
    536 		 * fragment then tack the fragment onto this segment
    537 		 * and reinsert the data.
    538 		 */
    539 		if (q->ipqe_seq == pkt_seq + pkt_len) {
    540 #ifdef TCPREASS_DEBUG
    541 			printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
    542 			       tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
    543 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
    544 #endif
    545 			pkt_len += q->ipqe_len;
    546 			pkt_flags |= q->ipqe_flags;
    547 			m_cat(m, q->ipqe_m);
    548 			TAILQ_REMOVE(&tp->segq, q, ipqe_q);
    549 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    550 			if (tiqe == NULL) {
    551 			    tiqe = q;
    552 			} else {
    553 			    pool_put(&ipqent_pool, q);
    554 			}
    555 			TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
    556 			break;
    557 		}
    558 		/*
    559 		 * If the fragment is before the segment, remember it.
    560 		 * When this loop is terminated, p will contain the
    561 		 * pointer to fragment that is right before the received
    562 		 * segment.
    563 		 */
    564 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
    565 			p = q;
    566 
    567 		continue;
    568 
    569 		/*
    570 		 * This is a common operation.  It also will allow
    571 		 * to save doing a malloc/free in most instances.
    572 		 */
    573 	  free_ipqe:
    574 		TAILQ_REMOVE(&tp->segq, q, ipqe_q);
    575 		TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    576 		if (tiqe == NULL) {
    577 		    tiqe = q;
    578 		} else {
    579 		    pool_put(&ipqent_pool, q);
    580 		}
    581 	}
    582 
    583 #ifdef TCP_REASS_COUNTERS
    584 	if (count > 7)
    585 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
    586 	else if (count > 0)
    587 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
    588 #endif
    589 
    590     insert_it:
    591 
    592 	/*
    593 	 * Allocate a new queue entry since the received segment did not
    594 	 * collapse onto any other out-of-order block; thus we are allocating
    595 	 * a new block.  If it had collapsed, tiqe would not be NULL and
    596 	 * we would be reusing it.
    597 	 * XXX If we can't, just drop the packet.  XXX
    598 	 */
    599 	if (tiqe == NULL) {
    600 		tiqe = pool_get(&ipqent_pool, PR_NOWAIT);
    601 		if (tiqe == NULL) {
    602 			tcpstat.tcps_rcvmemdrop++;
    603 			m_freem(m);
    604 			return (0);
    605 		}
    606 	}
    607 
    608 	/*
    609 	 * Update the counters.
    610 	 */
    611 	tcpstat.tcps_rcvoopack++;
    612 	tcpstat.tcps_rcvoobyte += rcvoobyte;
    613 	if (rcvpartdupbyte) {
    614 	    tcpstat.tcps_rcvpartduppack++;
    615 	    tcpstat.tcps_rcvpartdupbyte += rcvpartdupbyte;
    616 	}
    617 
    618 	/*
    619 	 * Insert the new fragment queue entry into both queues.
    620 	 */
    621 	tiqe->ipqe_m = m;
    622 	tiqe->ipqe_seq = pkt_seq;
    623 	tiqe->ipqe_len = pkt_len;
    624 	tiqe->ipqe_flags = pkt_flags;
    625 	if (p == NULL) {
    626 		TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
    627 #ifdef TCPREASS_DEBUG
    628 		if (tiqe->ipqe_seq != tp->rcv_nxt)
    629 			printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
    630 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
    631 #endif
    632 	} else {
    633 		TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
    634 #ifdef TCPREASS_DEBUG
    635 		printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
    636 		       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
    637 		       p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
    638 #endif
    639 	}
    640 
    641 skip_replacement:
    642 
    643 	TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
    644 
    645 present:
    646 	/*
    647 	 * Present data to user, advancing rcv_nxt through
    648 	 * completed sequence space.
    649 	 */
    650 	if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
    651 		return (0);
    652 	q = TAILQ_FIRST(&tp->segq);
    653 	if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
    654 		return (0);
    655 	if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
    656 		return (0);
    657 
    658 	tp->rcv_nxt += q->ipqe_len;
    659 	pkt_flags = q->ipqe_flags & TH_FIN;
    660 	ND6_HINT(tp);
    661 
    662 	TAILQ_REMOVE(&tp->segq, q, ipqe_q);
    663 	TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    664 	if (so->so_state & SS_CANTRCVMORE)
    665 		m_freem(q->ipqe_m);
    666 	else
    667 		sbappend(&so->so_rcv, q->ipqe_m);
    668 	pool_put(&ipqent_pool, q);
    669 	sorwakeup(so);
    670 	return (pkt_flags);
    671 }
    672 
    673 #ifdef INET6
    674 int
    675 tcp6_input(mp, offp, proto)
    676 	struct mbuf **mp;
    677 	int *offp, proto;
    678 {
    679 	struct mbuf *m = *mp;
    680 
    681 	/*
    682 	 * draft-itojun-ipv6-tcp-to-anycast
    683 	 * better place to put this in?
    684 	 */
    685 	if (m->m_flags & M_ANYCAST6) {
    686 		struct ip6_hdr *ip6;
    687 		if (m->m_len < sizeof(struct ip6_hdr)) {
    688 			if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
    689 				tcpstat.tcps_rcvshort++;
    690 				return IPPROTO_DONE;
    691 			}
    692 		}
    693 		ip6 = mtod(m, struct ip6_hdr *);
    694 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
    695 		    (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
    696 		return IPPROTO_DONE;
    697 	}
    698 
    699 	tcp_input(m, *offp, proto);
    700 	return IPPROTO_DONE;
    701 }
    702 #endif
    703 
    704 #ifdef INET
    705 static void
    706 tcp4_log_refused(ip, th)
    707 	const struct ip *ip;
    708 	const struct tcphdr *th;
    709 {
    710 	char src[4*sizeof "123"];
    711 	char dst[4*sizeof "123"];
    712 
    713 	if (ip) {
    714 		strcpy(src, inet_ntoa(ip->ip_src));
    715 		strcpy(dst, inet_ntoa(ip->ip_dst));
    716 	}
    717 	else {
    718 		strcpy(src, "(unknown)");
    719 		strcpy(dst, "(unknown)");
    720 	}
    721 	log(LOG_INFO,
    722 	    "Connection attempt to TCP %s:%d from %s:%d\n",
    723 	    dst, ntohs(th->th_dport),
    724 	    src, ntohs(th->th_sport));
    725 }
    726 #endif
    727 
    728 #ifdef INET6
    729 static void
    730 tcp6_log_refused(ip6, th)
    731 	const struct ip6_hdr *ip6;
    732 	const struct tcphdr *th;
    733 {
    734 	char src[INET6_ADDRSTRLEN];
    735 	char dst[INET6_ADDRSTRLEN];
    736 
    737 	if (ip6) {
    738 		strcpy(src, ip6_sprintf(&ip6->ip6_src));
    739 		strcpy(dst, ip6_sprintf(&ip6->ip6_dst));
    740 	}
    741 	else {
    742 		strcpy(src, "(unknown v6)");
    743 		strcpy(dst, "(unknown v6)");
    744 	}
    745 	log(LOG_INFO,
    746 	    "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
    747 	    dst, ntohs(th->th_dport),
    748 	    src, ntohs(th->th_sport));
    749 }
    750 #endif
    751 
    752 /*
    753  * TCP input routine, follows pages 65-76 of the
    754  * protocol specification dated September, 1981 very closely.
    755  */
    756 void
    757 #if __STDC__
    758 tcp_input(struct mbuf *m, ...)
    759 #else
    760 tcp_input(m, va_alist)
    761 	struct mbuf *m;
    762 #endif
    763 {
    764 	int proto;
    765 	struct tcphdr *th;
    766 	struct ip *ip;
    767 	struct inpcb *inp;
    768 #ifdef INET6
    769 	struct ip6_hdr *ip6;
    770 	struct in6pcb *in6p;
    771 #endif
    772 	caddr_t optp = NULL;
    773 	int optlen = 0;
    774 	int len, tlen, toff, hdroptlen = 0;
    775 	struct tcpcb *tp = 0;
    776 	int tiflags;
    777 	struct socket *so = NULL;
    778 	int todrop, acked, ourfinisacked, needoutput = 0;
    779 	short ostate = 0;
    780 	int iss = 0;
    781 	u_long tiwin;
    782 	struct tcp_opt_info opti;
    783 	int off, iphlen;
    784 	va_list ap;
    785 	int af;		/* af on the wire */
    786 	struct mbuf *tcp_saveti = NULL;
    787 
    788 	va_start(ap, m);
    789 	toff = va_arg(ap, int);
    790 	proto = va_arg(ap, int);
    791 	va_end(ap);
    792 
    793 	tcpstat.tcps_rcvtotal++;
    794 
    795 	bzero(&opti, sizeof(opti));
    796 	opti.ts_present = 0;
    797 	opti.maxseg = 0;
    798 
    799 	/*
    800 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
    801 	 *
    802 	 * TCP is, by definition, unicast, so we reject all
    803 	 * multicast outright.
    804 	 *
    805 	 * Note, there are additional src/dst address checks in
    806 	 * the AF-specific code below.
    807 	 */
    808 	if (m->m_flags & (M_BCAST|M_MCAST)) {
    809 		/* XXX stat */
    810 		goto drop;
    811 	}
    812 #ifdef INET6
    813 	if (m->m_flags & M_ANYCAST6) {
    814 		/* XXX stat */
    815 		goto drop;
    816 	}
    817 #endif
    818 
    819 	/*
    820 	 * Get IP and TCP header together in first mbuf.
    821 	 * Note: IP leaves IP header in first mbuf.
    822 	 */
    823 	ip = mtod(m, struct ip *);
    824 #ifdef INET6
    825 	ip6 = NULL;
    826 #endif
    827 	switch (ip->ip_v) {
    828 #ifdef INET
    829 	case 4:
    830 		af = AF_INET;
    831 		iphlen = sizeof(struct ip);
    832 #ifndef PULLDOWN_TEST
    833 		/* would like to get rid of this... */
    834 		if (toff > sizeof (struct ip)) {
    835 			ip_stripoptions(m, (struct mbuf *)0);
    836 			toff = sizeof(struct ip);
    837 		}
    838 		if (m->m_len < toff + sizeof (struct tcphdr)) {
    839 			if ((m = m_pullup(m, toff + sizeof (struct tcphdr))) == 0) {
    840 				tcpstat.tcps_rcvshort++;
    841 				return;
    842 			}
    843 		}
    844 		ip = mtod(m, struct ip *);
    845 		th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
    846 #else
    847 		ip = mtod(m, struct ip *);
    848 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
    849 			sizeof(struct tcphdr));
    850 		if (th == NULL) {
    851 			tcpstat.tcps_rcvshort++;
    852 			return;
    853 		}
    854 #endif
    855 		/* We do the checksum after PCB lookup... */
    856 		len = ip->ip_len;
    857 		tlen = len - toff;
    858 		break;
    859 #endif
    860 #ifdef INET6
    861 	case 6:
    862 		ip = NULL;
    863 		iphlen = sizeof(struct ip6_hdr);
    864 		af = AF_INET6;
    865 #ifndef PULLDOWN_TEST
    866 		if (m->m_len < toff + sizeof(struct tcphdr)) {
    867 			m = m_pullup(m, toff + sizeof(struct tcphdr));	/*XXX*/
    868 			if (m == NULL) {
    869 				tcpstat.tcps_rcvshort++;
    870 				return;
    871 			}
    872 		}
    873 		ip6 = mtod(m, struct ip6_hdr *);
    874 		th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
    875 #else
    876 		ip6 = mtod(m, struct ip6_hdr *);
    877 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
    878 			sizeof(struct tcphdr));
    879 		if (th == NULL) {
    880 			tcpstat.tcps_rcvshort++;
    881 			return;
    882 		}
    883 #endif
    884 
    885 		/* Be proactive about malicious use of IPv4 mapped address */
    886 		if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
    887 		    IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
    888 			/* XXX stat */
    889 			goto drop;
    890 		}
    891 
    892 		/*
    893 		 * Be proactive about unspecified IPv6 address in source.
    894 		 * As we use all-zero to indicate unbounded/unconnected pcb,
    895 		 * unspecified IPv6 address can be used to confuse us.
    896 		 *
    897 		 * Note that packets with unspecified IPv6 destination is
    898 		 * already dropped in ip6_input.
    899 		 */
    900 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
    901 			/* XXX stat */
    902 			goto drop;
    903 		}
    904 
    905 		/*
    906 		 * Make sure destination address is not multicast.
    907 		 * Source address checked in ip6_input().
    908 		 */
    909 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
    910 			/* XXX stat */
    911 			goto drop;
    912 		}
    913 
    914 		/* We do the checksum after PCB lookup... */
    915 		len = m->m_pkthdr.len;
    916 		tlen = len - toff;
    917 		break;
    918 #endif
    919 	default:
    920 		m_freem(m);
    921 		return;
    922 	}
    923 
    924 	/*
    925 	 * Check that TCP offset makes sense,
    926 	 * pull out TCP options and adjust length.		XXX
    927 	 */
    928 	off = th->th_off << 2;
    929 	if (off < sizeof (struct tcphdr) || off > tlen) {
    930 		tcpstat.tcps_rcvbadoff++;
    931 		goto drop;
    932 	}
    933 	tlen -= off;
    934 
    935 	/*
    936 	 * tcp_input() has been modified to use tlen to mean the TCP data
    937 	 * length throughout the function.  Other functions can use
    938 	 * m->m_pkthdr.len as the basis for calculating the TCP data length.
    939 	 * rja
    940 	 */
    941 
    942 	if (off > sizeof (struct tcphdr)) {
    943 #ifndef PULLDOWN_TEST
    944 		if (m->m_len < toff + off) {
    945 			if ((m = m_pullup(m, toff + off)) == 0) {
    946 				tcpstat.tcps_rcvshort++;
    947 				return;
    948 			}
    949 			switch (af) {
    950 #ifdef INET
    951 			case AF_INET:
    952 				ip = mtod(m, struct ip *);
    953 				break;
    954 #endif
    955 #ifdef INET6
    956 			case AF_INET6:
    957 				ip6 = mtod(m, struct ip6_hdr *);
    958 				break;
    959 #endif
    960 			}
    961 			th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
    962 		}
    963 #else
    964 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
    965 		if (th == NULL) {
    966 			tcpstat.tcps_rcvshort++;
    967 			return;
    968 		}
    969 		/*
    970 		 * NOTE: ip/ip6 will not be affected by m_pulldown()
    971 		 * (as they're before toff) and we don't need to update those.
    972 		 */
    973 #endif
    974 		optlen = off - sizeof (struct tcphdr);
    975 		optp = ((caddr_t)th) + sizeof(struct tcphdr);
    976 		/*
    977 		 * Do quick retrieval of timestamp options ("options
    978 		 * prediction?").  If timestamp is the only option and it's
    979 		 * formatted as recommended in RFC 1323 appendix A, we
    980 		 * quickly get the values now and not bother calling
    981 		 * tcp_dooptions(), etc.
    982 		 */
    983 		if ((optlen == TCPOLEN_TSTAMP_APPA ||
    984 		     (optlen > TCPOLEN_TSTAMP_APPA &&
    985 			optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
    986 		     *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
    987 		     (th->th_flags & TH_SYN) == 0) {
    988 			opti.ts_present = 1;
    989 			opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
    990 			opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
    991 			optp = NULL;	/* we've parsed the options */
    992 		}
    993 	}
    994 	tiflags = th->th_flags;
    995 
    996 	/*
    997 	 * Locate pcb for segment.
    998 	 */
    999 findpcb:
   1000 	inp = NULL;
   1001 #ifdef INET6
   1002 	in6p = NULL;
   1003 #endif
   1004 	switch (af) {
   1005 #ifdef INET
   1006 	case AF_INET:
   1007 		inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
   1008 		    ip->ip_dst, th->th_dport);
   1009 		if (inp == 0) {
   1010 			++tcpstat.tcps_pcbhashmiss;
   1011 			inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
   1012 		}
   1013 #ifdef INET6
   1014 		if (inp == 0) {
   1015 			struct in6_addr s, d;
   1016 
   1017 			/* mapped addr case */
   1018 			bzero(&s, sizeof(s));
   1019 			s.s6_addr16[5] = htons(0xffff);
   1020 			bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
   1021 			bzero(&d, sizeof(d));
   1022 			d.s6_addr16[5] = htons(0xffff);
   1023 			bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
   1024 			in6p = in6_pcblookup_connect(&tcb6, &s, th->th_sport,
   1025 				&d, th->th_dport, 0);
   1026 			if (in6p == 0) {
   1027 				++tcpstat.tcps_pcbhashmiss;
   1028 				in6p = in6_pcblookup_bind(&tcb6, &d,
   1029 					th->th_dport, 0);
   1030 			}
   1031 		}
   1032 #endif
   1033 #ifndef INET6
   1034 		if (inp == 0)
   1035 #else
   1036 		if (inp == 0 && in6p == 0)
   1037 #endif
   1038 		{
   1039 			++tcpstat.tcps_noport;
   1040 			if (tcp_log_refused && (tiflags & TH_SYN)) {
   1041 				tcp4_log_refused(ip, th);
   1042 			}
   1043 			TCP_FIELDS_TO_HOST(th);
   1044 			goto dropwithreset_ratelim;
   1045 		}
   1046 #ifdef IPSEC
   1047 		if (inp && ipsec4_in_reject(m, inp)) {
   1048 			ipsecstat.in_polvio++;
   1049 			goto drop;
   1050 		}
   1051 #ifdef INET6
   1052 		else if (in6p && ipsec4_in_reject_so(m, in6p->in6p_socket)) {
   1053 			ipsecstat.in_polvio++;
   1054 			goto drop;
   1055 		}
   1056 #endif
   1057 #endif /*IPSEC*/
   1058 		break;
   1059 #endif /*INET*/
   1060 #ifdef INET6
   1061 	case AF_INET6:
   1062 	    {
   1063 		int faith;
   1064 
   1065 #if defined(NFAITH) && NFAITH > 0
   1066 		faith = faithprefix(&ip6->ip6_dst);
   1067 #else
   1068 		faith = 0;
   1069 #endif
   1070 		in6p = in6_pcblookup_connect(&tcb6, &ip6->ip6_src, th->th_sport,
   1071 			&ip6->ip6_dst, th->th_dport, faith);
   1072 		if (in6p == NULL) {
   1073 			++tcpstat.tcps_pcbhashmiss;
   1074 			in6p = in6_pcblookup_bind(&tcb6, &ip6->ip6_dst,
   1075 				th->th_dport, faith);
   1076 		}
   1077 		if (in6p == NULL) {
   1078 			++tcpstat.tcps_noport;
   1079 			if (tcp_log_refused && (tiflags & TH_SYN)) {
   1080 				tcp6_log_refused(ip6, th);
   1081 			}
   1082 			TCP_FIELDS_TO_HOST(th);
   1083 			goto dropwithreset_ratelim;
   1084 		}
   1085 #ifdef IPSEC
   1086 		if (ipsec6_in_reject(m, in6p)) {
   1087 			ipsec6stat.in_polvio++;
   1088 			goto drop;
   1089 		}
   1090 #endif /*IPSEC*/
   1091 		break;
   1092 	    }
   1093 #endif
   1094 	}
   1095 
   1096 	/*
   1097 	 * If the state is CLOSED (i.e., TCB does not exist) then
   1098 	 * all data in the incoming segment is discarded.
   1099 	 * If the TCB exists but is in CLOSED state, it is embryonic,
   1100 	 * but should either do a listen or a connect soon.
   1101 	 */
   1102 	tp = NULL;
   1103 	so = NULL;
   1104 	if (inp) {
   1105 		tp = intotcpcb(inp);
   1106 		so = inp->inp_socket;
   1107 	}
   1108 #ifdef INET6
   1109 	else if (in6p) {
   1110 		tp = in6totcpcb(in6p);
   1111 		so = in6p->in6p_socket;
   1112 	}
   1113 #endif
   1114 	if (tp == 0) {
   1115 		TCP_FIELDS_TO_HOST(th);
   1116 		goto dropwithreset_ratelim;
   1117 	}
   1118 	if (tp->t_state == TCPS_CLOSED)
   1119 		goto drop;
   1120 
   1121 	/*
   1122 	 * Checksum extended TCP header and data.
   1123 	 */
   1124 	switch (af) {
   1125 #ifdef INET
   1126 	case AF_INET:
   1127 		switch (m->m_pkthdr.csum_flags &
   1128 			((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
   1129 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
   1130 		case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
   1131 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
   1132 			goto badcsum;
   1133 
   1134 		case M_CSUM_TCPv4|M_CSUM_DATA:
   1135 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
   1136 			if ((m->m_pkthdr.csum_data ^ 0xffff) != 0)
   1137 				goto badcsum;
   1138 			break;
   1139 
   1140 		case M_CSUM_TCPv4:
   1141 			/* Checksum was okay. */
   1142 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
   1143 			break;
   1144 
   1145 		default:
   1146 			/* Must compute it ourselves. */
   1147 			TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
   1148 #ifndef PULLDOWN_TEST
   1149 		    {
   1150 			struct ipovly *ipov;
   1151 			ipov = (struct ipovly *)ip;
   1152 			bzero(ipov->ih_x1, sizeof ipov->ih_x1);
   1153 			ipov->ih_len = htons(tlen + off);
   1154 
   1155 			if (in_cksum(m, len) != 0)
   1156 				goto badcsum;
   1157 		    }
   1158 #else
   1159 			if (in4_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0)
   1160 				goto badcsum;
   1161 #endif /* ! PULLDOWN_TEST */
   1162 			break;
   1163 		}
   1164 		break;
   1165 #endif /* INET4 */
   1166 
   1167 #ifdef INET6
   1168 	case AF_INET6:
   1169 		if (in6_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0)
   1170 			goto badcsum;
   1171 		break;
   1172 #endif /* INET6 */
   1173 	}
   1174 
   1175 	TCP_FIELDS_TO_HOST(th);
   1176 
   1177 	/* Unscale the window into a 32-bit value. */
   1178 	if ((tiflags & TH_SYN) == 0)
   1179 		tiwin = th->th_win << tp->snd_scale;
   1180 	else
   1181 		tiwin = th->th_win;
   1182 
   1183 #ifdef INET6
   1184 	/* save packet options if user wanted */
   1185 	if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
   1186 		if (in6p->in6p_options) {
   1187 			m_freem(in6p->in6p_options);
   1188 			in6p->in6p_options = 0;
   1189 		}
   1190 		ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
   1191 	}
   1192 #endif
   1193 
   1194 	if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
   1195 		union syn_cache_sa src;
   1196 		union syn_cache_sa dst;
   1197 
   1198 		bzero(&src, sizeof(src));
   1199 		bzero(&dst, sizeof(dst));
   1200 		switch (af) {
   1201 #ifdef INET
   1202 		case AF_INET:
   1203 			src.sin.sin_len = sizeof(struct sockaddr_in);
   1204 			src.sin.sin_family = AF_INET;
   1205 			src.sin.sin_addr = ip->ip_src;
   1206 			src.sin.sin_port = th->th_sport;
   1207 
   1208 			dst.sin.sin_len = sizeof(struct sockaddr_in);
   1209 			dst.sin.sin_family = AF_INET;
   1210 			dst.sin.sin_addr = ip->ip_dst;
   1211 			dst.sin.sin_port = th->th_dport;
   1212 			break;
   1213 #endif
   1214 #ifdef INET6
   1215 		case AF_INET6:
   1216 			src.sin6.sin6_len = sizeof(struct sockaddr_in6);
   1217 			src.sin6.sin6_family = AF_INET6;
   1218 			src.sin6.sin6_addr = ip6->ip6_src;
   1219 			src.sin6.sin6_port = th->th_sport;
   1220 
   1221 			dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
   1222 			dst.sin6.sin6_family = AF_INET6;
   1223 			dst.sin6.sin6_addr = ip6->ip6_dst;
   1224 			dst.sin6.sin6_port = th->th_dport;
   1225 			break;
   1226 #endif /* INET6 */
   1227 		default:
   1228 			goto badsyn;	/*sanity*/
   1229 		}
   1230 
   1231 		if (so->so_options & SO_DEBUG) {
   1232 			ostate = tp->t_state;
   1233 
   1234 			tcp_saveti = NULL;
   1235 			if (iphlen + sizeof(struct tcphdr) > MHLEN)
   1236 				goto nosave;
   1237 
   1238 			if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
   1239 				tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
   1240 				if (!tcp_saveti)
   1241 					goto nosave;
   1242 			} else {
   1243 				MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
   1244 				if (!tcp_saveti)
   1245 					goto nosave;
   1246 				tcp_saveti->m_len = iphlen;
   1247 				m_copydata(m, 0, iphlen,
   1248 				    mtod(tcp_saveti, caddr_t));
   1249 			}
   1250 
   1251 			if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
   1252 				m_freem(tcp_saveti);
   1253 				tcp_saveti = NULL;
   1254 			} else {
   1255 				tcp_saveti->m_len += sizeof(struct tcphdr);
   1256 				bcopy(th, mtod(tcp_saveti, caddr_t) + iphlen,
   1257 				    sizeof(struct tcphdr));
   1258 			}
   1259 			if (tcp_saveti) {
   1260 				/*
   1261 				 * need to recover version # field, which was
   1262 				 * overwritten on ip_cksum computation.
   1263 				 */
   1264 				struct ip *sip;
   1265 				sip = mtod(tcp_saveti, struct ip *);
   1266 				switch (af) {
   1267 #ifdef INET
   1268 				case AF_INET:
   1269 					sip->ip_v = 4;
   1270 					break;
   1271 #endif
   1272 #ifdef INET6
   1273 				case AF_INET6:
   1274 					sip->ip_v = 6;
   1275 					break;
   1276 #endif
   1277 				}
   1278 			}
   1279 	nosave:;
   1280 		}
   1281 		if (so->so_options & SO_ACCEPTCONN) {
   1282 			if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
   1283 				if (tiflags & TH_RST) {
   1284 					syn_cache_reset(&src.sa, &dst.sa, th);
   1285 				} else if ((tiflags & (TH_ACK|TH_SYN)) ==
   1286 				    (TH_ACK|TH_SYN)) {
   1287 					/*
   1288 					 * Received a SYN,ACK.  This should
   1289 					 * never happen while we are in
   1290 					 * LISTEN.  Send an RST.
   1291 					 */
   1292 					goto badsyn;
   1293 				} else if (tiflags & TH_ACK) {
   1294 					so = syn_cache_get(&src.sa, &dst.sa,
   1295 						th, toff, tlen, so, m);
   1296 					if (so == NULL) {
   1297 						/*
   1298 						 * We don't have a SYN for
   1299 						 * this ACK; send an RST.
   1300 						 */
   1301 						goto badsyn;
   1302 					} else if (so ==
   1303 					    (struct socket *)(-1)) {
   1304 						/*
   1305 						 * We were unable to create
   1306 						 * the connection.  If the
   1307 						 * 3-way handshake was
   1308 						 * completed, and RST has
   1309 						 * been sent to the peer.
   1310 						 * Since the mbuf might be
   1311 						 * in use for the reply,
   1312 						 * do not free it.
   1313 						 */
   1314 						m = NULL;
   1315 					} else {
   1316 						/*
   1317 						 * We have created a
   1318 						 * full-blown connection.
   1319 						 */
   1320 						tp = NULL;
   1321 						inp = NULL;
   1322 #ifdef INET6
   1323 						in6p = NULL;
   1324 #endif
   1325 						switch (so->so_proto->pr_domain->dom_family) {
   1326 #ifdef INET
   1327 						case AF_INET:
   1328 							inp = sotoinpcb(so);
   1329 							tp = intotcpcb(inp);
   1330 							break;
   1331 #endif
   1332 #ifdef INET6
   1333 						case AF_INET6:
   1334 							in6p = sotoin6pcb(so);
   1335 							tp = in6totcpcb(in6p);
   1336 							break;
   1337 #endif
   1338 						}
   1339 						if (tp == NULL)
   1340 							goto badsyn;	/*XXX*/
   1341 						tiwin <<= tp->snd_scale;
   1342 						goto after_listen;
   1343 					}
   1344 				} else {
   1345 					/*
   1346 					 * None of RST, SYN or ACK was set.
   1347 					 * This is an invalid packet for a
   1348 					 * TCB in LISTEN state.  Send a RST.
   1349 					 */
   1350 					goto badsyn;
   1351 				}
   1352 			} else {
   1353 				/*
   1354 				 * Received a SYN.
   1355 				 */
   1356 
   1357 				/*
   1358 				 * LISTEN socket received a SYN
   1359 				 * from itself?  This can't possibly
   1360 				 * be valid; drop the packet.
   1361 				 */
   1362 				if (th->th_sport == th->th_dport) {
   1363 					int i;
   1364 
   1365 					switch (af) {
   1366 #ifdef INET
   1367 					case AF_INET:
   1368 						i = in_hosteq(ip->ip_src, ip->ip_dst);
   1369 						break;
   1370 #endif
   1371 #ifdef INET6
   1372 					case AF_INET6:
   1373 						i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
   1374 						break;
   1375 #endif
   1376 					default:
   1377 						i = 1;
   1378 					}
   1379 					if (i) {
   1380 						tcpstat.tcps_badsyn++;
   1381 						goto drop;
   1382 					}
   1383 				}
   1384 
   1385 				/*
   1386 				 * SYN looks ok; create compressed TCP
   1387 				 * state for it.
   1388 				 */
   1389 				if (so->so_qlen <= so->so_qlimit &&
   1390 				    syn_cache_add(&src.sa, &dst.sa, th, tlen,
   1391 						so, m, optp, optlen, &opti))
   1392 					m = NULL;
   1393 			}
   1394 			goto drop;
   1395 		}
   1396 	}
   1397 
   1398 after_listen:
   1399 #ifdef DIAGNOSTIC
   1400 	/*
   1401 	 * Should not happen now that all embryonic connections
   1402 	 * are handled with compressed state.
   1403 	 */
   1404 	if (tp->t_state == TCPS_LISTEN)
   1405 		panic("tcp_input: TCPS_LISTEN");
   1406 #endif
   1407 
   1408 	/*
   1409 	 * Segment received on connection.
   1410 	 * Reset idle time and keep-alive timer.
   1411 	 */
   1412 	tp->t_rcvtime = tcp_now;
   1413 	if (TCPS_HAVEESTABLISHED(tp->t_state))
   1414 		TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
   1415 
   1416 	/*
   1417 	 * Process options.
   1418 	 */
   1419 	if (optp)
   1420 		tcp_dooptions(tp, optp, optlen, th, &opti);
   1421 
   1422 	/*
   1423 	 * Header prediction: check for the two common cases
   1424 	 * of a uni-directional data xfer.  If the packet has
   1425 	 * no control flags, is in-sequence, the window didn't
   1426 	 * change and we're not retransmitting, it's a
   1427 	 * candidate.  If the length is zero and the ack moved
   1428 	 * forward, we're the sender side of the xfer.  Just
   1429 	 * free the data acked & wake any higher level process
   1430 	 * that was blocked waiting for space.  If the length
   1431 	 * is non-zero and the ack didn't move, we're the
   1432 	 * receiver side.  If we're getting packets in-order
   1433 	 * (the reassembly queue is empty), add the data to
   1434 	 * the socket buffer and note that we need a delayed ack.
   1435 	 */
   1436 	if (tp->t_state == TCPS_ESTABLISHED &&
   1437 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
   1438 	    (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
   1439 	    th->th_seq == tp->rcv_nxt &&
   1440 	    tiwin && tiwin == tp->snd_wnd &&
   1441 	    tp->snd_nxt == tp->snd_max) {
   1442 
   1443 		/*
   1444 		 * If last ACK falls within this segment's sequence numbers,
   1445 		 *  record the timestamp.
   1446 		 */
   1447 		if (opti.ts_present &&
   1448 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
   1449 		    SEQ_LT(tp->last_ack_sent, th->th_seq + tlen)) {
   1450 			tp->ts_recent_age = TCP_TIMESTAMP(tp);
   1451 			tp->ts_recent = opti.ts_val;
   1452 		}
   1453 
   1454 		if (tlen == 0) {
   1455 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
   1456 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
   1457 			    tp->snd_cwnd >= tp->snd_wnd &&
   1458 			    tp->t_dupacks < tcprexmtthresh) {
   1459 				/*
   1460 				 * this is a pure ack for outstanding data.
   1461 				 */
   1462 				++tcpstat.tcps_predack;
   1463 				if (opti.ts_present && opti.ts_ecr)
   1464 					tcp_xmit_timer(tp,
   1465 					  TCP_TIMESTAMP(tp) - opti.ts_ecr + 1);
   1466 				else if (tp->t_rtttime &&
   1467 				    SEQ_GT(th->th_ack, tp->t_rtseq))
   1468 					tcp_xmit_timer(tp,
   1469 					tcp_now - tp->t_rtttime);
   1470 				acked = th->th_ack - tp->snd_una;
   1471 				tcpstat.tcps_rcvackpack++;
   1472 				tcpstat.tcps_rcvackbyte += acked;
   1473 				ND6_HINT(tp);
   1474 				sbdrop(&so->so_snd, acked);
   1475 				/*
   1476 				 * We want snd_recover to track snd_una to
   1477 				 * avoid sequence wraparound problems for
   1478 				 * very large transfers.
   1479 				 */
   1480 				tp->snd_una = tp->snd_recover = th->th_ack;
   1481 				m_freem(m);
   1482 
   1483 				/*
   1484 				 * If all outstanding data are acked, stop
   1485 				 * retransmit timer, otherwise restart timer
   1486 				 * using current (possibly backed-off) value.
   1487 				 * If process is waiting for space,
   1488 				 * wakeup/selwakeup/signal.  If data
   1489 				 * are ready to send, let tcp_output
   1490 				 * decide between more output or persist.
   1491 				 */
   1492 				if (tp->snd_una == tp->snd_max)
   1493 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
   1494 				else if (TCP_TIMER_ISARMED(tp,
   1495 				    TCPT_PERSIST) == 0)
   1496 					TCP_TIMER_ARM(tp, TCPT_REXMT,
   1497 					    tp->t_rxtcur);
   1498 
   1499 				sowwakeup(so);
   1500 				if (so->so_snd.sb_cc)
   1501 					(void) tcp_output(tp);
   1502 				if (tcp_saveti)
   1503 					m_freem(tcp_saveti);
   1504 				return;
   1505 			}
   1506 		} else if (th->th_ack == tp->snd_una &&
   1507 		    TAILQ_FIRST(&tp->segq) == NULL &&
   1508 		    tlen <= sbspace(&so->so_rcv)) {
   1509 			/*
   1510 			 * this is a pure, in-sequence data packet
   1511 			 * with nothing on the reassembly queue and
   1512 			 * we have enough buffer space to take it.
   1513 			 */
   1514 			++tcpstat.tcps_preddat;
   1515 			tp->rcv_nxt += tlen;
   1516 			tcpstat.tcps_rcvpack++;
   1517 			tcpstat.tcps_rcvbyte += tlen;
   1518 			ND6_HINT(tp);
   1519 			/*
   1520 			 * Drop TCP, IP headers and TCP options then add data
   1521 			 * to socket buffer.
   1522 			 */
   1523 			m_adj(m, toff + off);
   1524 			sbappend(&so->so_rcv, m);
   1525 			sorwakeup(so);
   1526 			TCP_SETUP_ACK(tp, th);
   1527 			if (tp->t_flags & TF_ACKNOW)
   1528 				(void) tcp_output(tp);
   1529 			if (tcp_saveti)
   1530 				m_freem(tcp_saveti);
   1531 			return;
   1532 		}
   1533 	}
   1534 
   1535 	/*
   1536 	 * Compute mbuf offset to TCP data segment.
   1537 	 */
   1538 	hdroptlen = toff + off;
   1539 
   1540 	/*
   1541 	 * Calculate amount of space in receive window,
   1542 	 * and then do TCP input processing.
   1543 	 * Receive window is amount of space in rcv queue,
   1544 	 * but not less than advertised window.
   1545 	 */
   1546 	{ int win;
   1547 
   1548 	win = sbspace(&so->so_rcv);
   1549 	if (win < 0)
   1550 		win = 0;
   1551 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
   1552 	}
   1553 
   1554 	switch (tp->t_state) {
   1555 	case TCPS_LISTEN:
   1556 		/*
   1557 		 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
   1558 		 */
   1559 		if (m->m_flags & (M_BCAST|M_MCAST))
   1560 			goto drop;
   1561 		switch (af) {
   1562 #ifdef INET6
   1563 		case AF_INET6:
   1564 			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
   1565 				goto drop;
   1566 			break;
   1567 #endif /* INET6 */
   1568 		case AF_INET:
   1569 			if (IN_MULTICAST(ip->ip_dst.s_addr) ||
   1570 			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
   1571 				goto drop;
   1572 			break;
   1573 		}
   1574 		break;
   1575 
   1576 	/*
   1577 	 * If the state is SYN_SENT:
   1578 	 *	if seg contains an ACK, but not for our SYN, drop the input.
   1579 	 *	if seg contains a RST, then drop the connection.
   1580 	 *	if seg does not contain SYN, then drop it.
   1581 	 * Otherwise this is an acceptable SYN segment
   1582 	 *	initialize tp->rcv_nxt and tp->irs
   1583 	 *	if seg contains ack then advance tp->snd_una
   1584 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
   1585 	 *	arrange for segment to be acked (eventually)
   1586 	 *	continue processing rest of data/controls, beginning with URG
   1587 	 */
   1588 	case TCPS_SYN_SENT:
   1589 		if ((tiflags & TH_ACK) &&
   1590 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
   1591 		     SEQ_GT(th->th_ack, tp->snd_max)))
   1592 			goto dropwithreset;
   1593 		if (tiflags & TH_RST) {
   1594 			if (tiflags & TH_ACK)
   1595 				tp = tcp_drop(tp, ECONNREFUSED);
   1596 			goto drop;
   1597 		}
   1598 		if ((tiflags & TH_SYN) == 0)
   1599 			goto drop;
   1600 		if (tiflags & TH_ACK) {
   1601 			tp->snd_una = tp->snd_recover = th->th_ack;
   1602 			if (SEQ_LT(tp->snd_nxt, tp->snd_una))
   1603 				tp->snd_nxt = tp->snd_una;
   1604 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
   1605 		}
   1606 		tp->irs = th->th_seq;
   1607 		tcp_rcvseqinit(tp);
   1608 		tp->t_flags |= TF_ACKNOW;
   1609 		tcp_mss_from_peer(tp, opti.maxseg);
   1610 
   1611 		/*
   1612 		 * Initialize the initial congestion window.  If we
   1613 		 * had to retransmit the SYN, we must initialize cwnd
   1614 		 * to 1 segment (i.e. the Loss Window).
   1615 		 */
   1616 		if (tp->t_flags & TF_SYN_REXMT)
   1617 			tp->snd_cwnd = tp->t_peermss;
   1618 		else
   1619 			tp->snd_cwnd = TCP_INITIAL_WINDOW(tcp_init_win,
   1620 			    tp->t_peermss);
   1621 
   1622 		tcp_rmx_rtt(tp);
   1623 		if (tiflags & TH_ACK) {
   1624 			tcpstat.tcps_connects++;
   1625 			soisconnected(so);
   1626 			tcp_established(tp);
   1627 			/* Do window scaling on this connection? */
   1628 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   1629 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
   1630 				tp->snd_scale = tp->requested_s_scale;
   1631 				tp->rcv_scale = tp->request_r_scale;
   1632 			}
   1633 			TCP_REASS_LOCK(tp);
   1634 			(void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
   1635 			TCP_REASS_UNLOCK(tp);
   1636 			/*
   1637 			 * if we didn't have to retransmit the SYN,
   1638 			 * use its rtt as our initial srtt & rtt var.
   1639 			 */
   1640 			if (tp->t_rtttime)
   1641 				tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
   1642 		} else
   1643 			tp->t_state = TCPS_SYN_RECEIVED;
   1644 
   1645 		/*
   1646 		 * Advance th->th_seq to correspond to first data byte.
   1647 		 * If data, trim to stay within window,
   1648 		 * dropping FIN if necessary.
   1649 		 */
   1650 		th->th_seq++;
   1651 		if (tlen > tp->rcv_wnd) {
   1652 			todrop = tlen - tp->rcv_wnd;
   1653 			m_adj(m, -todrop);
   1654 			tlen = tp->rcv_wnd;
   1655 			tiflags &= ~TH_FIN;
   1656 			tcpstat.tcps_rcvpackafterwin++;
   1657 			tcpstat.tcps_rcvbyteafterwin += todrop;
   1658 		}
   1659 		tp->snd_wl1 = th->th_seq - 1;
   1660 		tp->rcv_up = th->th_seq;
   1661 		goto step6;
   1662 
   1663 	/*
   1664 	 * If the state is SYN_RECEIVED:
   1665 	 *	If seg contains an ACK, but not for our SYN, drop the input
   1666 	 *	and generate an RST.  See page 36, rfc793
   1667 	 */
   1668 	case TCPS_SYN_RECEIVED:
   1669 		if ((tiflags & TH_ACK) &&
   1670 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
   1671 		     SEQ_GT(th->th_ack, tp->snd_max)))
   1672 			goto dropwithreset;
   1673 		break;
   1674 	}
   1675 
   1676 	/*
   1677 	 * States other than LISTEN or SYN_SENT.
   1678 	 * First check timestamp, if present.
   1679 	 * Then check that at least some bytes of segment are within
   1680 	 * receive window.  If segment begins before rcv_nxt,
   1681 	 * drop leading data (and SYN); if nothing left, just ack.
   1682 	 *
   1683 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
   1684 	 * and it's less than ts_recent, drop it.
   1685 	 */
   1686 	if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
   1687 	    TSTMP_LT(opti.ts_val, tp->ts_recent)) {
   1688 
   1689 		/* Check to see if ts_recent is over 24 days old.  */
   1690 		if ((int)(TCP_TIMESTAMP(tp) - tp->ts_recent_age) >
   1691 		    TCP_PAWS_IDLE) {
   1692 			/*
   1693 			 * Invalidate ts_recent.  If this segment updates
   1694 			 * ts_recent, the age will be reset later and ts_recent
   1695 			 * will get a valid value.  If it does not, setting
   1696 			 * ts_recent to zero will at least satisfy the
   1697 			 * requirement that zero be placed in the timestamp
   1698 			 * echo reply when ts_recent isn't valid.  The
   1699 			 * age isn't reset until we get a valid ts_recent
   1700 			 * because we don't want out-of-order segments to be
   1701 			 * dropped when ts_recent is old.
   1702 			 */
   1703 			tp->ts_recent = 0;
   1704 		} else {
   1705 			tcpstat.tcps_rcvduppack++;
   1706 			tcpstat.tcps_rcvdupbyte += tlen;
   1707 			tcpstat.tcps_pawsdrop++;
   1708 			goto dropafterack;
   1709 		}
   1710 	}
   1711 
   1712 	todrop = tp->rcv_nxt - th->th_seq;
   1713 	if (todrop > 0) {
   1714 		if (tiflags & TH_SYN) {
   1715 			tiflags &= ~TH_SYN;
   1716 			th->th_seq++;
   1717 			if (th->th_urp > 1)
   1718 				th->th_urp--;
   1719 			else {
   1720 				tiflags &= ~TH_URG;
   1721 				th->th_urp = 0;
   1722 			}
   1723 			todrop--;
   1724 		}
   1725 		if (todrop > tlen ||
   1726 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
   1727 			/*
   1728 			 * Any valid FIN must be to the left of the window.
   1729 			 * At this point the FIN must be a duplicate or
   1730 			 * out of sequence; drop it.
   1731 			 */
   1732 			tiflags &= ~TH_FIN;
   1733 			/*
   1734 			 * Send an ACK to resynchronize and drop any data.
   1735 			 * But keep on processing for RST or ACK.
   1736 			 */
   1737 			tp->t_flags |= TF_ACKNOW;
   1738 			todrop = tlen;
   1739 			tcpstat.tcps_rcvdupbyte += todrop;
   1740 			tcpstat.tcps_rcvduppack++;
   1741 		} else {
   1742 			tcpstat.tcps_rcvpartduppack++;
   1743 			tcpstat.tcps_rcvpartdupbyte += todrop;
   1744 		}
   1745 		hdroptlen += todrop;	/*drop from head afterwards*/
   1746 		th->th_seq += todrop;
   1747 		tlen -= todrop;
   1748 		if (th->th_urp > todrop)
   1749 			th->th_urp -= todrop;
   1750 		else {
   1751 			tiflags &= ~TH_URG;
   1752 			th->th_urp = 0;
   1753 		}
   1754 	}
   1755 
   1756 	/*
   1757 	 * If new data are received on a connection after the
   1758 	 * user processes are gone, then RST the other end.
   1759 	 */
   1760 	if ((so->so_state & SS_NOFDREF) &&
   1761 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
   1762 		tp = tcp_close(tp);
   1763 		tcpstat.tcps_rcvafterclose++;
   1764 		goto dropwithreset;
   1765 	}
   1766 
   1767 	/*
   1768 	 * If segment ends after window, drop trailing data
   1769 	 * (and PUSH and FIN); if nothing left, just ACK.
   1770 	 */
   1771 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
   1772 	if (todrop > 0) {
   1773 		tcpstat.tcps_rcvpackafterwin++;
   1774 		if (todrop >= tlen) {
   1775 			tcpstat.tcps_rcvbyteafterwin += tlen;
   1776 			/*
   1777 			 * If a new connection request is received
   1778 			 * while in TIME_WAIT, drop the old connection
   1779 			 * and start over if the sequence numbers
   1780 			 * are above the previous ones.
   1781 			 */
   1782 			if (tiflags & TH_SYN &&
   1783 			    tp->t_state == TCPS_TIME_WAIT &&
   1784 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
   1785 				iss = tcp_new_iss(tp, tp->snd_nxt);
   1786 				tp = tcp_close(tp);
   1787 				goto findpcb;
   1788 			}
   1789 			/*
   1790 			 * If window is closed can only take segments at
   1791 			 * window edge, and have to drop data and PUSH from
   1792 			 * incoming segments.  Continue processing, but
   1793 			 * remember to ack.  Otherwise, drop segment
   1794 			 * and ack.
   1795 			 */
   1796 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
   1797 				tp->t_flags |= TF_ACKNOW;
   1798 				tcpstat.tcps_rcvwinprobe++;
   1799 			} else
   1800 				goto dropafterack;
   1801 		} else
   1802 			tcpstat.tcps_rcvbyteafterwin += todrop;
   1803 		m_adj(m, -todrop);
   1804 		tlen -= todrop;
   1805 		tiflags &= ~(TH_PUSH|TH_FIN);
   1806 	}
   1807 
   1808 	/*
   1809 	 * If last ACK falls within this segment's sequence numbers,
   1810 	 * and the timestamp is newer, record it.
   1811 	 */
   1812 	if (opti.ts_present && TSTMP_GEQ(opti.ts_val, tp->ts_recent) &&
   1813 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
   1814 	    SEQ_LT(tp->last_ack_sent, th->th_seq + tlen +
   1815 		   ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
   1816 		tp->ts_recent_age = TCP_TIMESTAMP(tp);
   1817 		tp->ts_recent = opti.ts_val;
   1818 	}
   1819 
   1820 	/*
   1821 	 * If the RST bit is set examine the state:
   1822 	 *    SYN_RECEIVED STATE:
   1823 	 *	If passive open, return to LISTEN state.
   1824 	 *	If active open, inform user that connection was refused.
   1825 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
   1826 	 *	Inform user that connection was reset, and close tcb.
   1827 	 *    CLOSING, LAST_ACK, TIME_WAIT STATES
   1828 	 *	Close the tcb.
   1829 	 */
   1830 	if (tiflags&TH_RST) switch (tp->t_state) {
   1831 
   1832 	case TCPS_SYN_RECEIVED:
   1833 		so->so_error = ECONNREFUSED;
   1834 		goto close;
   1835 
   1836 	case TCPS_ESTABLISHED:
   1837 	case TCPS_FIN_WAIT_1:
   1838 	case TCPS_FIN_WAIT_2:
   1839 	case TCPS_CLOSE_WAIT:
   1840 		so->so_error = ECONNRESET;
   1841 	close:
   1842 		tp->t_state = TCPS_CLOSED;
   1843 		tcpstat.tcps_drops++;
   1844 		tp = tcp_close(tp);
   1845 		goto drop;
   1846 
   1847 	case TCPS_CLOSING:
   1848 	case TCPS_LAST_ACK:
   1849 	case TCPS_TIME_WAIT:
   1850 		tp = tcp_close(tp);
   1851 		goto drop;
   1852 	}
   1853 
   1854 	/*
   1855 	 * If a SYN is in the window, then this is an
   1856 	 * error and we send an RST and drop the connection.
   1857 	 */
   1858 	if (tiflags & TH_SYN) {
   1859 		tp = tcp_drop(tp, ECONNRESET);
   1860 		goto dropwithreset;
   1861 	}
   1862 
   1863 	/*
   1864 	 * If the ACK bit is off we drop the segment and return.
   1865 	 */
   1866 	if ((tiflags & TH_ACK) == 0) {
   1867 		if (tp->t_flags & TF_ACKNOW)
   1868 			goto dropafterack;
   1869 		else
   1870 			goto drop;
   1871 	}
   1872 
   1873 	/*
   1874 	 * Ack processing.
   1875 	 */
   1876 	switch (tp->t_state) {
   1877 
   1878 	/*
   1879 	 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
   1880 	 * ESTABLISHED state and continue processing, otherwise
   1881 	 * send an RST.
   1882 	 */
   1883 	case TCPS_SYN_RECEIVED:
   1884 		if (SEQ_GT(tp->snd_una, th->th_ack) ||
   1885 		    SEQ_GT(th->th_ack, tp->snd_max))
   1886 			goto dropwithreset;
   1887 		tcpstat.tcps_connects++;
   1888 		soisconnected(so);
   1889 		tcp_established(tp);
   1890 		/* Do window scaling? */
   1891 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   1892 			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
   1893 			tp->snd_scale = tp->requested_s_scale;
   1894 			tp->rcv_scale = tp->request_r_scale;
   1895 		}
   1896 		TCP_REASS_LOCK(tp);
   1897 		(void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
   1898 		TCP_REASS_UNLOCK(tp);
   1899 		tp->snd_wl1 = th->th_seq - 1;
   1900 		/* fall into ... */
   1901 
   1902 	/*
   1903 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
   1904 	 * ACKs.  If the ack is in the range
   1905 	 *	tp->snd_una < th->th_ack <= tp->snd_max
   1906 	 * then advance tp->snd_una to th->th_ack and drop
   1907 	 * data from the retransmission queue.  If this ACK reflects
   1908 	 * more up to date window information we update our window information.
   1909 	 */
   1910 	case TCPS_ESTABLISHED:
   1911 	case TCPS_FIN_WAIT_1:
   1912 	case TCPS_FIN_WAIT_2:
   1913 	case TCPS_CLOSE_WAIT:
   1914 	case TCPS_CLOSING:
   1915 	case TCPS_LAST_ACK:
   1916 	case TCPS_TIME_WAIT:
   1917 
   1918 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
   1919 			if (tlen == 0 && tiwin == tp->snd_wnd) {
   1920 				tcpstat.tcps_rcvdupack++;
   1921 				/*
   1922 				 * If we have outstanding data (other than
   1923 				 * a window probe), this is a completely
   1924 				 * duplicate ack (ie, window info didn't
   1925 				 * change), the ack is the biggest we've
   1926 				 * seen and we've seen exactly our rexmt
   1927 				 * threshhold of them, assume a packet
   1928 				 * has been dropped and retransmit it.
   1929 				 * Kludge snd_nxt & the congestion
   1930 				 * window so we send only this one
   1931 				 * packet.
   1932 				 *
   1933 				 * We know we're losing at the current
   1934 				 * window size so do congestion avoidance
   1935 				 * (set ssthresh to half the current window
   1936 				 * and pull our congestion window back to
   1937 				 * the new ssthresh).
   1938 				 *
   1939 				 * Dup acks mean that packets have left the
   1940 				 * network (they're now cached at the receiver)
   1941 				 * so bump cwnd by the amount in the receiver
   1942 				 * to keep a constant cwnd packets in the
   1943 				 * network.
   1944 				 */
   1945 				if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
   1946 				    th->th_ack != tp->snd_una)
   1947 					tp->t_dupacks = 0;
   1948 				else if (++tp->t_dupacks == tcprexmtthresh) {
   1949 					tcp_seq onxt = tp->snd_nxt;
   1950 					u_int win =
   1951 					    min(tp->snd_wnd, tp->snd_cwnd) /
   1952 					    2 /	tp->t_segsz;
   1953 					if (tcp_do_newreno && SEQ_LT(th->th_ack,
   1954 					    tp->snd_recover)) {
   1955 						/*
   1956 						 * False fast retransmit after
   1957 						 * timeout.  Do not cut window.
   1958 						 */
   1959 						tp->snd_cwnd += tp->t_segsz;
   1960 						tp->t_dupacks = 0;
   1961 						(void) tcp_output(tp);
   1962 						goto drop;
   1963 					}
   1964 
   1965 					if (win < 2)
   1966 						win = 2;
   1967 					tp->snd_ssthresh = win * tp->t_segsz;
   1968 					tp->snd_recover = tp->snd_max;
   1969 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
   1970 					tp->t_rtttime = 0;
   1971 					tp->snd_nxt = th->th_ack;
   1972 					tp->snd_cwnd = tp->t_segsz;
   1973 					(void) tcp_output(tp);
   1974 					tp->snd_cwnd = tp->snd_ssthresh +
   1975 					       tp->t_segsz * tp->t_dupacks;
   1976 					if (SEQ_GT(onxt, tp->snd_nxt))
   1977 						tp->snd_nxt = onxt;
   1978 					goto drop;
   1979 				} else if (tp->t_dupacks > tcprexmtthresh) {
   1980 					tp->snd_cwnd += tp->t_segsz;
   1981 					(void) tcp_output(tp);
   1982 					goto drop;
   1983 				}
   1984 			} else
   1985 				tp->t_dupacks = 0;
   1986 			break;
   1987 		}
   1988 		/*
   1989 		 * If the congestion window was inflated to account
   1990 		 * for the other side's cached packets, retract it.
   1991 		 */
   1992 		if (tcp_do_newreno == 0) {
   1993 			if (tp->t_dupacks >= tcprexmtthresh &&
   1994 			    tp->snd_cwnd > tp->snd_ssthresh)
   1995 				tp->snd_cwnd = tp->snd_ssthresh;
   1996 			tp->t_dupacks = 0;
   1997 		} else if (tp->t_dupacks >= tcprexmtthresh &&
   1998 			   tcp_newreno(tp, th) == 0) {
   1999 			tp->snd_cwnd = tp->snd_ssthresh;
   2000 			/*
   2001 			 * Window inflation should have left us with approx.
   2002 			 * snd_ssthresh outstanding data.  But in case we
   2003 			 * would be inclined to send a burst, better to do
   2004 			 * it via the slow start mechanism.
   2005 			 */
   2006 			if (SEQ_SUB(tp->snd_max, th->th_ack) < tp->snd_ssthresh)
   2007 				tp->snd_cwnd = SEQ_SUB(tp->snd_max, th->th_ack)
   2008 				    + tp->t_segsz;
   2009 			tp->t_dupacks = 0;
   2010 		}
   2011 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
   2012 			tcpstat.tcps_rcvacktoomuch++;
   2013 			goto dropafterack;
   2014 		}
   2015 		acked = th->th_ack - tp->snd_una;
   2016 		tcpstat.tcps_rcvackpack++;
   2017 		tcpstat.tcps_rcvackbyte += acked;
   2018 
   2019 		/*
   2020 		 * If we have a timestamp reply, update smoothed
   2021 		 * round trip time.  If no timestamp is present but
   2022 		 * transmit timer is running and timed sequence
   2023 		 * number was acked, update smoothed round trip time.
   2024 		 * Since we now have an rtt measurement, cancel the
   2025 		 * timer backoff (cf., Phil Karn's retransmit alg.).
   2026 		 * Recompute the initial retransmit timer.
   2027 		 */
   2028 		if (opti.ts_present && opti.ts_ecr)
   2029 			tcp_xmit_timer(tp, TCP_TIMESTAMP(tp) - opti.ts_ecr + 1);
   2030 		else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
   2031 			tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
   2032 
   2033 		/*
   2034 		 * If all outstanding data is acked, stop retransmit
   2035 		 * timer and remember to restart (more output or persist).
   2036 		 * If there is more data to be acked, restart retransmit
   2037 		 * timer, using current (possibly backed-off) value.
   2038 		 */
   2039 		if (th->th_ack == tp->snd_max) {
   2040 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
   2041 			needoutput = 1;
   2042 		} else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
   2043 			TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
   2044 		/*
   2045 		 * When new data is acked, open the congestion window.
   2046 		 * If the window gives us less than ssthresh packets
   2047 		 * in flight, open exponentially (segsz per packet).
   2048 		 * Otherwise open linearly: segsz per window
   2049 		 * (segsz^2 / cwnd per packet), plus a constant
   2050 		 * fraction of a packet (segsz/8) to help larger windows
   2051 		 * open quickly enough.
   2052 		 */
   2053 		{
   2054 		u_int cw = tp->snd_cwnd;
   2055 		u_int incr = tp->t_segsz;
   2056 
   2057 		if (cw > tp->snd_ssthresh)
   2058 			incr = incr * incr / cw;
   2059 		if (tcp_do_newreno == 0 || SEQ_GEQ(th->th_ack, tp->snd_recover))
   2060 			tp->snd_cwnd = min(cw + incr,
   2061 			    TCP_MAXWIN << tp->snd_scale);
   2062 		}
   2063 		ND6_HINT(tp);
   2064 		if (acked > so->so_snd.sb_cc) {
   2065 			tp->snd_wnd -= so->so_snd.sb_cc;
   2066 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
   2067 			ourfinisacked = 1;
   2068 		} else {
   2069 			sbdrop(&so->so_snd, acked);
   2070 			tp->snd_wnd -= acked;
   2071 			ourfinisacked = 0;
   2072 		}
   2073 		sowwakeup(so);
   2074 		/*
   2075 		 * We want snd_recover to track snd_una to
   2076 		 * avoid sequence wraparound problems for
   2077 		 * very large transfers.
   2078 		 */
   2079 		tp->snd_una = tp->snd_recover = th->th_ack;
   2080 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
   2081 			tp->snd_nxt = tp->snd_una;
   2082 
   2083 		switch (tp->t_state) {
   2084 
   2085 		/*
   2086 		 * In FIN_WAIT_1 STATE in addition to the processing
   2087 		 * for the ESTABLISHED state if our FIN is now acknowledged
   2088 		 * then enter FIN_WAIT_2.
   2089 		 */
   2090 		case TCPS_FIN_WAIT_1:
   2091 			if (ourfinisacked) {
   2092 				/*
   2093 				 * If we can't receive any more
   2094 				 * data, then closing user can proceed.
   2095 				 * Starting the timer is contrary to the
   2096 				 * specification, but if we don't get a FIN
   2097 				 * we'll hang forever.
   2098 				 */
   2099 				if (so->so_state & SS_CANTRCVMORE) {
   2100 					soisdisconnected(so);
   2101 					if (tcp_maxidle > 0)
   2102 						TCP_TIMER_ARM(tp, TCPT_2MSL,
   2103 						    tcp_maxidle);
   2104 				}
   2105 				tp->t_state = TCPS_FIN_WAIT_2;
   2106 			}
   2107 			break;
   2108 
   2109 	 	/*
   2110 		 * In CLOSING STATE in addition to the processing for
   2111 		 * the ESTABLISHED state if the ACK acknowledges our FIN
   2112 		 * then enter the TIME-WAIT state, otherwise ignore
   2113 		 * the segment.
   2114 		 */
   2115 		case TCPS_CLOSING:
   2116 			if (ourfinisacked) {
   2117 				tp->t_state = TCPS_TIME_WAIT;
   2118 				tcp_canceltimers(tp);
   2119 				TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
   2120 				soisdisconnected(so);
   2121 			}
   2122 			break;
   2123 
   2124 		/*
   2125 		 * In LAST_ACK, we may still be waiting for data to drain
   2126 		 * and/or to be acked, as well as for the ack of our FIN.
   2127 		 * If our FIN is now acknowledged, delete the TCB,
   2128 		 * enter the closed state and return.
   2129 		 */
   2130 		case TCPS_LAST_ACK:
   2131 			if (ourfinisacked) {
   2132 				tp = tcp_close(tp);
   2133 				goto drop;
   2134 			}
   2135 			break;
   2136 
   2137 		/*
   2138 		 * In TIME_WAIT state the only thing that should arrive
   2139 		 * is a retransmission of the remote FIN.  Acknowledge
   2140 		 * it and restart the finack timer.
   2141 		 */
   2142 		case TCPS_TIME_WAIT:
   2143 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
   2144 			goto dropafterack;
   2145 		}
   2146 	}
   2147 
   2148 step6:
   2149 	/*
   2150 	 * Update window information.
   2151 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
   2152 	 */
   2153 	if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
   2154 	    (tp->snd_wl1 == th->th_seq && SEQ_LT(tp->snd_wl2, th->th_ack)) ||
   2155 	    (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))) {
   2156 		/* keep track of pure window updates */
   2157 		if (tlen == 0 &&
   2158 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
   2159 			tcpstat.tcps_rcvwinupd++;
   2160 		tp->snd_wnd = tiwin;
   2161 		tp->snd_wl1 = th->th_seq;
   2162 		tp->snd_wl2 = th->th_ack;
   2163 		if (tp->snd_wnd > tp->max_sndwnd)
   2164 			tp->max_sndwnd = tp->snd_wnd;
   2165 		needoutput = 1;
   2166 	}
   2167 
   2168 	/*
   2169 	 * Process segments with URG.
   2170 	 */
   2171 	if ((tiflags & TH_URG) && th->th_urp &&
   2172 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   2173 		/*
   2174 		 * This is a kludge, but if we receive and accept
   2175 		 * random urgent pointers, we'll crash in
   2176 		 * soreceive.  It's hard to imagine someone
   2177 		 * actually wanting to send this much urgent data.
   2178 		 */
   2179 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
   2180 			th->th_urp = 0;			/* XXX */
   2181 			tiflags &= ~TH_URG;		/* XXX */
   2182 			goto dodata;			/* XXX */
   2183 		}
   2184 		/*
   2185 		 * If this segment advances the known urgent pointer,
   2186 		 * then mark the data stream.  This should not happen
   2187 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
   2188 		 * a FIN has been received from the remote side.
   2189 		 * In these states we ignore the URG.
   2190 		 *
   2191 		 * According to RFC961 (Assigned Protocols),
   2192 		 * the urgent pointer points to the last octet
   2193 		 * of urgent data.  We continue, however,
   2194 		 * to consider it to indicate the first octet
   2195 		 * of data past the urgent section as the original
   2196 		 * spec states (in one of two places).
   2197 		 */
   2198 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
   2199 			tp->rcv_up = th->th_seq + th->th_urp;
   2200 			so->so_oobmark = so->so_rcv.sb_cc +
   2201 			    (tp->rcv_up - tp->rcv_nxt) - 1;
   2202 			if (so->so_oobmark == 0)
   2203 				so->so_state |= SS_RCVATMARK;
   2204 			sohasoutofband(so);
   2205 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
   2206 		}
   2207 		/*
   2208 		 * Remove out of band data so doesn't get presented to user.
   2209 		 * This can happen independent of advancing the URG pointer,
   2210 		 * but if two URG's are pending at once, some out-of-band
   2211 		 * data may creep in... ick.
   2212 		 */
   2213 		if (th->th_urp <= (u_int16_t) tlen
   2214 #ifdef SO_OOBINLINE
   2215 		     && (so->so_options & SO_OOBINLINE) == 0
   2216 #endif
   2217 		     )
   2218 			tcp_pulloutofband(so, th, m, hdroptlen);
   2219 	} else
   2220 		/*
   2221 		 * If no out of band data is expected,
   2222 		 * pull receive urgent pointer along
   2223 		 * with the receive window.
   2224 		 */
   2225 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
   2226 			tp->rcv_up = tp->rcv_nxt;
   2227 dodata:							/* XXX */
   2228 
   2229 	/*
   2230 	 * Process the segment text, merging it into the TCP sequencing queue,
   2231 	 * and arranging for acknowledgement of receipt if necessary.
   2232 	 * This process logically involves adjusting tp->rcv_wnd as data
   2233 	 * is presented to the user (this happens in tcp_usrreq.c,
   2234 	 * case PRU_RCVD).  If a FIN has already been received on this
   2235 	 * connection then we just ignore the text.
   2236 	 */
   2237 	if ((tlen || (tiflags & TH_FIN)) &&
   2238 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   2239 		/*
   2240 		 * Insert segment ti into reassembly queue of tcp with
   2241 		 * control block tp.  Return TH_FIN if reassembly now includes
   2242 		 * a segment with FIN.  The macro form does the common case
   2243 		 * inline (segment is the next to be received on an
   2244 		 * established connection, and the queue is empty),
   2245 		 * avoiding linkage into and removal from the queue and
   2246 		 * repetition of various conversions.
   2247 		 * Set DELACK for segments received in order, but ack
   2248 		 * immediately when segments are out of order
   2249 		 * (so fast retransmit can work).
   2250 		 */
   2251 		/* NOTE: this was TCP_REASS() macro, but used only once */
   2252 		TCP_REASS_LOCK(tp);
   2253 		if (th->th_seq == tp->rcv_nxt &&
   2254 		    TAILQ_FIRST(&tp->segq) == NULL &&
   2255 		    tp->t_state == TCPS_ESTABLISHED) {
   2256 			TCP_SETUP_ACK(tp, th);
   2257 			tp->rcv_nxt += tlen;
   2258 			tiflags = th->th_flags & TH_FIN;
   2259 			tcpstat.tcps_rcvpack++;
   2260 			tcpstat.tcps_rcvbyte += tlen;
   2261 			ND6_HINT(tp);
   2262 			m_adj(m, hdroptlen);
   2263 			sbappend(&(so)->so_rcv, m);
   2264 			sorwakeup(so);
   2265 		} else {
   2266 			m_adj(m, hdroptlen);
   2267 			tiflags = tcp_reass(tp, th, m, &tlen);
   2268 			tp->t_flags |= TF_ACKNOW;
   2269 		}
   2270 		TCP_REASS_UNLOCK(tp);
   2271 
   2272 		/*
   2273 		 * Note the amount of data that peer has sent into
   2274 		 * our window, in order to estimate the sender's
   2275 		 * buffer size.
   2276 		 */
   2277 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
   2278 	} else {
   2279 		m_freem(m);
   2280 		m = NULL;
   2281 		tiflags &= ~TH_FIN;
   2282 	}
   2283 
   2284 	/*
   2285 	 * If FIN is received ACK the FIN and let the user know
   2286 	 * that the connection is closing.  Ignore a FIN received before
   2287 	 * the connection is fully established.
   2288 	 */
   2289 	if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
   2290 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   2291 			socantrcvmore(so);
   2292 			tp->t_flags |= TF_ACKNOW;
   2293 			tp->rcv_nxt++;
   2294 		}
   2295 		switch (tp->t_state) {
   2296 
   2297 	 	/*
   2298 		 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
   2299 		 */
   2300 		case TCPS_ESTABLISHED:
   2301 			tp->t_state = TCPS_CLOSE_WAIT;
   2302 			break;
   2303 
   2304 	 	/*
   2305 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
   2306 		 * enter the CLOSING state.
   2307 		 */
   2308 		case TCPS_FIN_WAIT_1:
   2309 			tp->t_state = TCPS_CLOSING;
   2310 			break;
   2311 
   2312 	 	/*
   2313 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
   2314 		 * starting the time-wait timer, turning off the other
   2315 		 * standard timers.
   2316 		 */
   2317 		case TCPS_FIN_WAIT_2:
   2318 			tp->t_state = TCPS_TIME_WAIT;
   2319 			tcp_canceltimers(tp);
   2320 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
   2321 			soisdisconnected(so);
   2322 			break;
   2323 
   2324 		/*
   2325 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
   2326 		 */
   2327 		case TCPS_TIME_WAIT:
   2328 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
   2329 			break;
   2330 		}
   2331 	}
   2332 #ifdef TCP_DEBUG
   2333 	if (so->so_options & SO_DEBUG)
   2334 		tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
   2335 #endif
   2336 
   2337 	/*
   2338 	 * Return any desired output.
   2339 	 */
   2340 	if (needoutput || (tp->t_flags & TF_ACKNOW))
   2341 		(void) tcp_output(tp);
   2342 	if (tcp_saveti)
   2343 		m_freem(tcp_saveti);
   2344 	return;
   2345 
   2346 badsyn:
   2347 	/*
   2348 	 * Received a bad SYN.  Increment counters and dropwithreset.
   2349 	 */
   2350 	tcpstat.tcps_badsyn++;
   2351 	tp = NULL;
   2352 	goto dropwithreset;
   2353 
   2354 dropafterack:
   2355 	/*
   2356 	 * Generate an ACK dropping incoming segment if it occupies
   2357 	 * sequence space, where the ACK reflects our state.
   2358 	 */
   2359 	if (tiflags & TH_RST)
   2360 		goto drop;
   2361 	m_freem(m);
   2362 	tp->t_flags |= TF_ACKNOW;
   2363 	(void) tcp_output(tp);
   2364 	if (tcp_saveti)
   2365 		m_freem(tcp_saveti);
   2366 	return;
   2367 
   2368 dropwithreset_ratelim:
   2369 	/*
   2370 	 * We may want to rate-limit RSTs in certain situations,
   2371 	 * particularly if we are sending an RST in response to
   2372 	 * an attempt to connect to or otherwise communicate with
   2373 	 * a port for which we have no socket.
   2374 	 */
   2375 	if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
   2376 	    tcp_rst_ppslim) == 0) {
   2377 		/* XXX stat */
   2378 		goto drop;
   2379 	}
   2380 	/* ...fall into dropwithreset... */
   2381 
   2382 dropwithreset:
   2383 	/*
   2384 	 * Generate a RST, dropping incoming segment.
   2385 	 * Make ACK acceptable to originator of segment.
   2386 	 */
   2387 	if (tiflags & TH_RST)
   2388 		goto drop;
   2389 
   2390 	switch (af) {
   2391 #ifdef INET6
   2392 	case AF_INET6:
   2393 		/* For following calls to tcp_respond */
   2394 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
   2395 			goto drop;
   2396 		break;
   2397 #endif /* INET6 */
   2398 	case AF_INET:
   2399 		if (IN_MULTICAST(ip->ip_dst.s_addr) ||
   2400 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
   2401 			goto drop;
   2402 	}
   2403 
   2404     {
   2405 	/*
   2406 	 * need to recover version # field, which was overwritten on
   2407 	 * ip_cksum computation.
   2408 	 */
   2409 	struct ip *sip;
   2410 	sip = mtod(m, struct ip *);
   2411 	switch (af) {
   2412 #ifdef INET
   2413 	case AF_INET:
   2414 		sip->ip_v = 4;
   2415 		break;
   2416 #endif
   2417 #ifdef INET6
   2418 	case AF_INET6:
   2419 		sip->ip_v = 6;
   2420 		break;
   2421 #endif
   2422 	}
   2423     }
   2424 	if (tiflags & TH_ACK)
   2425 		(void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
   2426 	else {
   2427 		if (tiflags & TH_SYN)
   2428 			tlen++;
   2429 		(void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
   2430 		    TH_RST|TH_ACK);
   2431 	}
   2432 	if (tcp_saveti)
   2433 		m_freem(tcp_saveti);
   2434 	return;
   2435 
   2436 badcsum:
   2437 	tcpstat.tcps_rcvbadsum++;
   2438 drop:
   2439 	/*
   2440 	 * Drop space held by incoming segment and return.
   2441 	 */
   2442 	if (tp) {
   2443 		if (tp->t_inpcb)
   2444 			so = tp->t_inpcb->inp_socket;
   2445 #ifdef INET6
   2446 		else if (tp->t_in6pcb)
   2447 			so = tp->t_in6pcb->in6p_socket;
   2448 #endif
   2449 		else
   2450 			so = NULL;
   2451 #ifdef TCP_DEBUG
   2452 		if (so && (so->so_options & SO_DEBUG) != 0)
   2453 			tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
   2454 #endif
   2455 	}
   2456 	if (tcp_saveti)
   2457 		m_freem(tcp_saveti);
   2458 	m_freem(m);
   2459 	return;
   2460 }
   2461 
   2462 void
   2463 tcp_dooptions(tp, cp, cnt, th, oi)
   2464 	struct tcpcb *tp;
   2465 	u_char *cp;
   2466 	int cnt;
   2467 	struct tcphdr *th;
   2468 	struct tcp_opt_info *oi;
   2469 {
   2470 	u_int16_t mss;
   2471 	int opt, optlen;
   2472 
   2473 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
   2474 		opt = cp[0];
   2475 		if (opt == TCPOPT_EOL)
   2476 			break;
   2477 		if (opt == TCPOPT_NOP)
   2478 			optlen = 1;
   2479 		else {
   2480 			if (cnt < 2)
   2481 				break;
   2482 			optlen = cp[1];
   2483 			if (optlen < 2 || optlen > cnt)
   2484 				break;
   2485 		}
   2486 		switch (opt) {
   2487 
   2488 		default:
   2489 			continue;
   2490 
   2491 		case TCPOPT_MAXSEG:
   2492 			if (optlen != TCPOLEN_MAXSEG)
   2493 				continue;
   2494 			if (!(th->th_flags & TH_SYN))
   2495 				continue;
   2496 			bcopy(cp + 2, &mss, sizeof(mss));
   2497 			oi->maxseg = ntohs(mss);
   2498 			break;
   2499 
   2500 		case TCPOPT_WINDOW:
   2501 			if (optlen != TCPOLEN_WINDOW)
   2502 				continue;
   2503 			if (!(th->th_flags & TH_SYN))
   2504 				continue;
   2505 			tp->t_flags |= TF_RCVD_SCALE;
   2506 			tp->requested_s_scale = cp[2];
   2507 			if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
   2508 #if 0	/*XXX*/
   2509 				char *p;
   2510 
   2511 				if (ip)
   2512 					p = ntohl(ip->ip_src);
   2513 #ifdef INET6
   2514 				else if (ip6)
   2515 					p = ip6_sprintf(&ip6->ip6_src);
   2516 #endif
   2517 				else
   2518 					p = "(unknown)";
   2519 				log(LOG_ERR, "TCP: invalid wscale %d from %s, "
   2520 				    "assuming %d\n",
   2521 				    tp->requested_s_scale, p,
   2522 				    TCP_MAX_WINSHIFT);
   2523 #else
   2524 				log(LOG_ERR, "TCP: invalid wscale %d, "
   2525 				    "assuming %d\n",
   2526 				    tp->requested_s_scale,
   2527 				    TCP_MAX_WINSHIFT);
   2528 #endif
   2529 				tp->requested_s_scale = TCP_MAX_WINSHIFT;
   2530 			}
   2531 			break;
   2532 
   2533 		case TCPOPT_TIMESTAMP:
   2534 			if (optlen != TCPOLEN_TIMESTAMP)
   2535 				continue;
   2536 			oi->ts_present = 1;
   2537 			bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
   2538 			NTOHL(oi->ts_val);
   2539 			bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
   2540 			NTOHL(oi->ts_ecr);
   2541 
   2542 			/*
   2543 			 * A timestamp received in a SYN makes
   2544 			 * it ok to send timestamp requests and replies.
   2545 			 */
   2546 			if (th->th_flags & TH_SYN) {
   2547 				tp->t_flags |= TF_RCVD_TSTMP;
   2548 				tp->ts_recent = oi->ts_val;
   2549 				tp->ts_recent_age = TCP_TIMESTAMP(tp);
   2550 			}
   2551 			break;
   2552 		case TCPOPT_SACK_PERMITTED:
   2553 			if (optlen != TCPOLEN_SACK_PERMITTED)
   2554 				continue;
   2555 			if (!(th->th_flags & TH_SYN))
   2556 				continue;
   2557 			tp->t_flags &= ~TF_CANT_TXSACK;
   2558 			break;
   2559 
   2560 		case TCPOPT_SACK:
   2561 			if (tp->t_flags & TF_IGNR_RXSACK)
   2562 				continue;
   2563 			if (optlen % 8 != 2 || optlen < 10)
   2564 				continue;
   2565 			cp += 2;
   2566 			optlen -= 2;
   2567 			for (; optlen > 0; cp -= 8, optlen -= 8) {
   2568 				tcp_seq lwe, rwe;
   2569 				bcopy((char *)cp, (char *) &lwe, sizeof(lwe));
   2570 				NTOHL(lwe);
   2571 				bcopy((char *)cp, (char *) &rwe, sizeof(rwe));
   2572 				NTOHL(rwe);
   2573 				/* tcp_mark_sacked(tp, lwe, rwe); */
   2574 			}
   2575 			break;
   2576 		}
   2577 	}
   2578 }
   2579 
   2580 /*
   2581  * Pull out of band byte out of a segment so
   2582  * it doesn't appear in the user's data queue.
   2583  * It is still reflected in the segment length for
   2584  * sequencing purposes.
   2585  */
   2586 void
   2587 tcp_pulloutofband(so, th, m, off)
   2588 	struct socket *so;
   2589 	struct tcphdr *th;
   2590 	struct mbuf *m;
   2591 	int off;
   2592 {
   2593 	int cnt = off + th->th_urp - 1;
   2594 
   2595 	while (cnt >= 0) {
   2596 		if (m->m_len > cnt) {
   2597 			char *cp = mtod(m, caddr_t) + cnt;
   2598 			struct tcpcb *tp = sototcpcb(so);
   2599 
   2600 			tp->t_iobc = *cp;
   2601 			tp->t_oobflags |= TCPOOB_HAVEDATA;
   2602 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
   2603 			m->m_len--;
   2604 			return;
   2605 		}
   2606 		cnt -= m->m_len;
   2607 		m = m->m_next;
   2608 		if (m == 0)
   2609 			break;
   2610 	}
   2611 	panic("tcp_pulloutofband");
   2612 }
   2613 
   2614 /*
   2615  * Collect new round-trip time estimate
   2616  * and update averages and current timeout.
   2617  */
   2618 void
   2619 tcp_xmit_timer(tp, rtt)
   2620 	struct tcpcb *tp;
   2621 	uint32_t rtt;
   2622 {
   2623 	int32_t delta;
   2624 
   2625 	tcpstat.tcps_rttupdated++;
   2626 	if (tp->t_srtt != 0) {
   2627 		/*
   2628 		 * srtt is stored as fixed point with 3 bits after the
   2629 		 * binary point (i.e., scaled by 8).  The following magic
   2630 		 * is equivalent to the smoothing algorithm in rfc793 with
   2631 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
   2632 		 * point).  Adjust rtt to origin 0.
   2633 		 */
   2634 		delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
   2635 		if ((tp->t_srtt += delta) <= 0)
   2636 			tp->t_srtt = 1 << 2;
   2637 		/*
   2638 		 * We accumulate a smoothed rtt variance (actually, a
   2639 		 * smoothed mean difference), then set the retransmit
   2640 		 * timer to smoothed rtt + 4 times the smoothed variance.
   2641 		 * rttvar is stored as fixed point with 2 bits after the
   2642 		 * binary point (scaled by 4).  The following is
   2643 		 * equivalent to rfc793 smoothing with an alpha of .75
   2644 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
   2645 		 * rfc793's wired-in beta.
   2646 		 */
   2647 		if (delta < 0)
   2648 			delta = -delta;
   2649 		delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
   2650 		if ((tp->t_rttvar += delta) <= 0)
   2651 			tp->t_rttvar = 1 << 2;
   2652 	} else {
   2653 		/*
   2654 		 * No rtt measurement yet - use the unsmoothed rtt.
   2655 		 * Set the variance to half the rtt (so our first
   2656 		 * retransmit happens at 3*rtt).
   2657 		 */
   2658 		tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
   2659 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
   2660 	}
   2661 	tp->t_rtttime = 0;
   2662 	tp->t_rxtshift = 0;
   2663 
   2664 	/*
   2665 	 * the retransmit should happen at rtt + 4 * rttvar.
   2666 	 * Because of the way we do the smoothing, srtt and rttvar
   2667 	 * will each average +1/2 tick of bias.  When we compute
   2668 	 * the retransmit timer, we want 1/2 tick of rounding and
   2669 	 * 1 extra tick because of +-1/2 tick uncertainty in the
   2670 	 * firing of the timer.  The bias will give us exactly the
   2671 	 * 1.5 tick we need.  But, because the bias is
   2672 	 * statistical, we have to test that we don't drop below
   2673 	 * the minimum feasible timer (which is 2 ticks).
   2674 	 */
   2675 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
   2676 	    max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
   2677 
   2678 	/*
   2679 	 * We received an ack for a packet that wasn't retransmitted;
   2680 	 * it is probably safe to discard any error indications we've
   2681 	 * received recently.  This isn't quite right, but close enough
   2682 	 * for now (a route might have failed after we sent a segment,
   2683 	 * and the return path might not be symmetrical).
   2684 	 */
   2685 	tp->t_softerror = 0;
   2686 }
   2687 
   2688 /*
   2689  * Checks for partial ack.  If partial ack arrives, force the retransmission
   2690  * of the next unacknowledged segment, do not clear tp->t_dupacks, and return
   2691  * 1.  By setting snd_nxt to th_ack, this forces retransmission timer to
   2692  * be started again.  If the ack advances at least to tp->snd_recover, return 0.
   2693  */
   2694 int
   2695 tcp_newreno(tp, th)
   2696 	struct tcpcb *tp;
   2697 	struct tcphdr *th;
   2698 {
   2699 	tcp_seq onxt = tp->snd_nxt;
   2700 	u_long ocwnd = tp->snd_cwnd;
   2701 
   2702 	if (SEQ_LT(th->th_ack, tp->snd_recover)) {
   2703 		/*
   2704 		 * snd_una has not yet been updated and the socket's send
   2705 		 * buffer has not yet drained off the ACK'd data, so we
   2706 		 * have to leave snd_una as it was to get the correct data
   2707 		 * offset in tcp_output().
   2708 		 */
   2709 		TCP_TIMER_DISARM(tp, TCPT_REXMT);
   2710 	        tp->t_rtttime = 0;
   2711 	        tp->snd_nxt = th->th_ack;
   2712 		/*
   2713 		 * Set snd_cwnd to one segment beyond ACK'd offset.  snd_una
   2714 		 * is not yet updated when we're called.
   2715 		 */
   2716 		tp->snd_cwnd = tp->t_segsz + (th->th_ack - tp->snd_una);
   2717 	        (void) tcp_output(tp);
   2718 	        tp->snd_cwnd = ocwnd;
   2719 	        if (SEQ_GT(onxt, tp->snd_nxt))
   2720 	                tp->snd_nxt = onxt;
   2721 	        /*
   2722 	         * Partial window deflation.  Relies on fact that tp->snd_una
   2723 	         * not updated yet.
   2724 	         */
   2725 	        tp->snd_cwnd -= (th->th_ack - tp->snd_una - tp->t_segsz);
   2726 	        return 1;
   2727 	}
   2728 	return 0;
   2729 }
   2730 
   2731 
   2732 /*
   2733  * TCP compressed state engine.  Currently used to hold compressed
   2734  * state for SYN_RECEIVED.
   2735  */
   2736 
   2737 u_long	syn_cache_count;
   2738 u_int32_t syn_hash1, syn_hash2;
   2739 
   2740 #define SYN_HASH(sa, sp, dp) \
   2741 	((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
   2742 				     ((u_int32_t)(sp)))^syn_hash2)))
   2743 #ifndef INET6
   2744 #define	SYN_HASHALL(hash, src, dst) \
   2745 do {									\
   2746 	hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr,	\
   2747 		((struct sockaddr_in *)(src))->sin_port,		\
   2748 		((struct sockaddr_in *)(dst))->sin_port);		\
   2749 } while (0)
   2750 #else
   2751 #define SYN_HASH6(sa, sp, dp) \
   2752 	((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
   2753 	  (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
   2754 	 & 0x7fffffff)
   2755 
   2756 #define SYN_HASHALL(hash, src, dst) \
   2757 do {									\
   2758 	switch ((src)->sa_family) {					\
   2759 	case AF_INET:							\
   2760 		hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
   2761 			((struct sockaddr_in *)(src))->sin_port,	\
   2762 			((struct sockaddr_in *)(dst))->sin_port);	\
   2763 		break;							\
   2764 	case AF_INET6:							\
   2765 		hash = SYN_HASH6(&((struct sockaddr_in6 *)(src))->sin6_addr, \
   2766 			((struct sockaddr_in6 *)(src))->sin6_port,	\
   2767 			((struct sockaddr_in6 *)(dst))->sin6_port);	\
   2768 		break;							\
   2769 	default:							\
   2770 		hash = 0;						\
   2771 	}								\
   2772 } while (/*CONSTCOND*/0)
   2773 #endif /* INET6 */
   2774 
   2775 #define	SYN_CACHE_RM(sc)						\
   2776 do {									\
   2777 	TAILQ_REMOVE(&tcp_syn_cache[(sc)->sc_bucketidx].sch_bucket,	\
   2778 	    (sc), sc_bucketq);						\
   2779 	(sc)->sc_tp = NULL;						\
   2780 	LIST_REMOVE((sc), sc_tpq);					\
   2781 	tcp_syn_cache[(sc)->sc_bucketidx].sch_length--;			\
   2782 	callout_stop(&(sc)->sc_timer);					\
   2783 	syn_cache_count--;						\
   2784 } while (/*CONSTCOND*/0)
   2785 
   2786 #define	SYN_CACHE_PUT(sc)						\
   2787 do {									\
   2788 	if ((sc)->sc_ipopts)						\
   2789 		(void) m_free((sc)->sc_ipopts);				\
   2790 	if ((sc)->sc_route4.ro_rt != NULL)				\
   2791 		RTFREE((sc)->sc_route4.ro_rt);				\
   2792 	pool_put(&syn_cache_pool, (sc));				\
   2793 } while (/*CONSTCOND*/0)
   2794 
   2795 struct pool syn_cache_pool;
   2796 
   2797 /*
   2798  * We don't estimate RTT with SYNs, so each packet starts with the default
   2799  * RTT and each timer step has a fixed timeout value.
   2800  */
   2801 #define	SYN_CACHE_TIMER_ARM(sc)						\
   2802 do {									\
   2803 	TCPT_RANGESET((sc)->sc_rxtcur,					\
   2804 	    TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN,	\
   2805 	    TCPTV_REXMTMAX);						\
   2806 	callout_reset(&(sc)->sc_timer,					\
   2807 	    (sc)->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, (sc));	\
   2808 } while (/*CONSTCOND*/0)
   2809 
   2810 #define	SYN_CACHE_TIMESTAMP(sc)	(tcp_now - (sc)->sc_timebase)
   2811 
   2812 void
   2813 syn_cache_init()
   2814 {
   2815 	int i;
   2816 
   2817 	/* Initialize the hash buckets. */
   2818 	for (i = 0; i < tcp_syn_cache_size; i++)
   2819 		TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
   2820 
   2821 	/* Initialize the syn cache pool. */
   2822 	pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
   2823 	    "synpl", NULL);
   2824 }
   2825 
   2826 void
   2827 syn_cache_insert(sc, tp)
   2828 	struct syn_cache *sc;
   2829 	struct tcpcb *tp;
   2830 {
   2831 	struct syn_cache_head *scp;
   2832 	struct syn_cache *sc2;
   2833 	int s;
   2834 
   2835 	/*
   2836 	 * If there are no entries in the hash table, reinitialize
   2837 	 * the hash secrets.
   2838 	 */
   2839 	if (syn_cache_count == 0) {
   2840 		struct timeval tv;
   2841 		microtime(&tv);
   2842 		syn_hash1 = arc4random() ^ (u_long)&sc;
   2843 		syn_hash2 = arc4random() ^ tv.tv_usec;
   2844 	}
   2845 
   2846 	SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
   2847 	sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
   2848 	scp = &tcp_syn_cache[sc->sc_bucketidx];
   2849 
   2850 	/*
   2851 	 * Make sure that we don't overflow the per-bucket
   2852 	 * limit or the total cache size limit.
   2853 	 */
   2854 	s = splsoftnet();
   2855 	if (scp->sch_length >= tcp_syn_bucket_limit) {
   2856 		tcpstat.tcps_sc_bucketoverflow++;
   2857 		/*
   2858 		 * The bucket is full.  Toss the oldest element in the
   2859 		 * bucket.  This will be the first entry in the bucket.
   2860 		 */
   2861 		sc2 = TAILQ_FIRST(&scp->sch_bucket);
   2862 #ifdef DIAGNOSTIC
   2863 		/*
   2864 		 * This should never happen; we should always find an
   2865 		 * entry in our bucket.
   2866 		 */
   2867 		if (sc2 == NULL)
   2868 			panic("syn_cache_insert: bucketoverflow: impossible");
   2869 #endif
   2870 		SYN_CACHE_RM(sc2);
   2871 		SYN_CACHE_PUT(sc2);
   2872 	} else if (syn_cache_count >= tcp_syn_cache_limit) {
   2873 		struct syn_cache_head *scp2, *sce;
   2874 
   2875 		tcpstat.tcps_sc_overflowed++;
   2876 		/*
   2877 		 * The cache is full.  Toss the oldest entry in the
   2878 		 * first non-empty bucket we can find.
   2879 		 *
   2880 		 * XXX We would really like to toss the oldest
   2881 		 * entry in the cache, but we hope that this
   2882 		 * condition doesn't happen very often.
   2883 		 */
   2884 		scp2 = scp;
   2885 		if (TAILQ_EMPTY(&scp2->sch_bucket)) {
   2886 			sce = &tcp_syn_cache[tcp_syn_cache_size];
   2887 			for (++scp2; scp2 != scp; scp2++) {
   2888 				if (scp2 >= sce)
   2889 					scp2 = &tcp_syn_cache[0];
   2890 				if (! TAILQ_EMPTY(&scp2->sch_bucket))
   2891 					break;
   2892 			}
   2893 #ifdef DIAGNOSTIC
   2894 			/*
   2895 			 * This should never happen; we should always find a
   2896 			 * non-empty bucket.
   2897 			 */
   2898 			if (scp2 == scp)
   2899 				panic("syn_cache_insert: cacheoverflow: "
   2900 				    "impossible");
   2901 #endif
   2902 		}
   2903 		sc2 = TAILQ_FIRST(&scp2->sch_bucket);
   2904 		SYN_CACHE_RM(sc2);
   2905 		SYN_CACHE_PUT(sc2);
   2906 	}
   2907 
   2908 	/*
   2909 	 * Initialize the entry's timer.
   2910 	 */
   2911 	sc->sc_rxttot = 0;
   2912 	sc->sc_rxtshift = 0;
   2913 	SYN_CACHE_TIMER_ARM(sc);
   2914 
   2915 	/* Link it from tcpcb entry */
   2916 	LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
   2917 
   2918 	/* Put it into the bucket. */
   2919 	TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
   2920 	scp->sch_length++;
   2921 	syn_cache_count++;
   2922 
   2923 	tcpstat.tcps_sc_added++;
   2924 	splx(s);
   2925 }
   2926 
   2927 /*
   2928  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
   2929  * If we have retransmitted an entry the maximum number of times, expire
   2930  * that entry.
   2931  */
   2932 void
   2933 syn_cache_timer(void *arg)
   2934 {
   2935 	struct syn_cache *sc = arg;
   2936 	int s;
   2937 
   2938 	s = splsoftnet();
   2939 
   2940 	if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
   2941 		/* Drop it -- too many retransmissions. */
   2942 		goto dropit;
   2943 	}
   2944 
   2945 	/*
   2946 	 * Compute the total amount of time this entry has
   2947 	 * been on a queue.  If this entry has been on longer
   2948 	 * than the keep alive timer would allow, expire it.
   2949 	 */
   2950 	sc->sc_rxttot += sc->sc_rxtcur;
   2951 	if (sc->sc_rxttot >= TCPTV_KEEP_INIT)
   2952 		goto dropit;
   2953 
   2954 	tcpstat.tcps_sc_retransmitted++;
   2955 	(void) syn_cache_respond(sc, NULL);
   2956 
   2957 	/* Advance the timer back-off. */
   2958 	sc->sc_rxtshift++;
   2959 	SYN_CACHE_TIMER_ARM(sc);
   2960 
   2961 	splx(s);
   2962 	return;
   2963 
   2964  dropit:
   2965 	tcpstat.tcps_sc_timed_out++;
   2966 	SYN_CACHE_RM(sc);
   2967 	SYN_CACHE_PUT(sc);
   2968 	splx(s);
   2969 }
   2970 
   2971 /*
   2972  * Remove syn cache created by the specified tcb entry,
   2973  * because this does not make sense to keep them
   2974  * (if there's no tcb entry, syn cache entry will never be used)
   2975  */
   2976 void
   2977 syn_cache_cleanup(tp)
   2978 	struct tcpcb *tp;
   2979 {
   2980 	struct syn_cache *sc, *nsc;
   2981 	int s;
   2982 
   2983 	s = splsoftnet();
   2984 
   2985 	for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
   2986 		nsc = LIST_NEXT(sc, sc_tpq);
   2987 
   2988 #ifdef DIAGNOSTIC
   2989 		if (sc->sc_tp != tp)
   2990 			panic("invalid sc_tp in syn_cache_cleanup");
   2991 #endif
   2992 		SYN_CACHE_RM(sc);
   2993 		SYN_CACHE_PUT(sc);
   2994 	}
   2995 	/* just for safety */
   2996 	LIST_INIT(&tp->t_sc);
   2997 
   2998 	splx(s);
   2999 }
   3000 
   3001 /*
   3002  * Find an entry in the syn cache.
   3003  */
   3004 struct syn_cache *
   3005 syn_cache_lookup(src, dst, headp)
   3006 	struct sockaddr *src;
   3007 	struct sockaddr *dst;
   3008 	struct syn_cache_head **headp;
   3009 {
   3010 	struct syn_cache *sc;
   3011 	struct syn_cache_head *scp;
   3012 	u_int32_t hash;
   3013 	int s;
   3014 
   3015 	SYN_HASHALL(hash, src, dst);
   3016 
   3017 	scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
   3018 	*headp = scp;
   3019 	s = splsoftnet();
   3020 	for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
   3021 	     sc = TAILQ_NEXT(sc, sc_bucketq)) {
   3022 		if (sc->sc_hash != hash)
   3023 			continue;
   3024 		if (!bcmp(&sc->sc_src, src, src->sa_len) &&
   3025 		    !bcmp(&sc->sc_dst, dst, dst->sa_len)) {
   3026 			splx(s);
   3027 			return (sc);
   3028 		}
   3029 	}
   3030 	splx(s);
   3031 	return (NULL);
   3032 }
   3033 
   3034 /*
   3035  * This function gets called when we receive an ACK for a
   3036  * socket in the LISTEN state.  We look up the connection
   3037  * in the syn cache, and if its there, we pull it out of
   3038  * the cache and turn it into a full-blown connection in
   3039  * the SYN-RECEIVED state.
   3040  *
   3041  * The return values may not be immediately obvious, and their effects
   3042  * can be subtle, so here they are:
   3043  *
   3044  *	NULL	SYN was not found in cache; caller should drop the
   3045  *		packet and send an RST.
   3046  *
   3047  *	-1	We were unable to create the new connection, and are
   3048  *		aborting it.  An ACK,RST is being sent to the peer
   3049  *		(unless we got screwey sequence numbners; see below),
   3050  *		because the 3-way handshake has been completed.  Caller
   3051  *		should not free the mbuf, since we may be using it.  If
   3052  *		we are not, we will free it.
   3053  *
   3054  *	Otherwise, the return value is a pointer to the new socket
   3055  *	associated with the connection.
   3056  */
   3057 struct socket *
   3058 syn_cache_get(src, dst, th, hlen, tlen, so, m)
   3059 	struct sockaddr *src;
   3060 	struct sockaddr *dst;
   3061 	struct tcphdr *th;
   3062 	unsigned int hlen, tlen;
   3063 	struct socket *so;
   3064 	struct mbuf *m;
   3065 {
   3066 	struct syn_cache *sc;
   3067 	struct syn_cache_head *scp;
   3068 	struct inpcb *inp = NULL;
   3069 #ifdef INET6
   3070 	struct in6pcb *in6p = NULL;
   3071 #endif
   3072 	struct tcpcb *tp = 0;
   3073 	struct mbuf *am;
   3074 	int s;
   3075 	struct socket *oso;
   3076 
   3077 	s = splsoftnet();
   3078 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
   3079 		splx(s);
   3080 		return (NULL);
   3081 	}
   3082 
   3083 	/*
   3084 	 * Verify the sequence and ack numbers.  Try getting the correct
   3085 	 * response again.
   3086 	 */
   3087 	if ((th->th_ack != sc->sc_iss + 1) ||
   3088 	    SEQ_LEQ(th->th_seq, sc->sc_irs) ||
   3089 	    SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
   3090 		(void) syn_cache_respond(sc, m);
   3091 		splx(s);
   3092 		return ((struct socket *)(-1));
   3093 	}
   3094 
   3095 	/* Remove this cache entry */
   3096 	SYN_CACHE_RM(sc);
   3097 	splx(s);
   3098 
   3099 	/*
   3100 	 * Ok, create the full blown connection, and set things up
   3101 	 * as they would have been set up if we had created the
   3102 	 * connection when the SYN arrived.  If we can't create
   3103 	 * the connection, abort it.
   3104 	 */
   3105 	/*
   3106 	 * inp still has the OLD in_pcb stuff, set the
   3107 	 * v6-related flags on the new guy, too.   This is
   3108 	 * done particularly for the case where an AF_INET6
   3109 	 * socket is bound only to a port, and a v4 connection
   3110 	 * comes in on that port.
   3111 	 * we also copy the flowinfo from the original pcb
   3112 	 * to the new one.
   3113 	 */
   3114     {
   3115 	struct inpcb *parentinpcb;
   3116 
   3117 	parentinpcb = (struct inpcb *)so->so_pcb;
   3118 
   3119 	oso = so;
   3120 	so = sonewconn(so, SS_ISCONNECTED);
   3121 	if (so == NULL)
   3122 		goto resetandabort;
   3123 
   3124 	switch (so->so_proto->pr_domain->dom_family) {
   3125 #ifdef INET
   3126 	case AF_INET:
   3127 		inp = sotoinpcb(so);
   3128 		break;
   3129 #endif
   3130 #ifdef INET6
   3131 	case AF_INET6:
   3132 		in6p = sotoin6pcb(so);
   3133 		break;
   3134 #endif
   3135 	}
   3136     }
   3137 	switch (src->sa_family) {
   3138 #ifdef INET
   3139 	case AF_INET:
   3140 		if (inp) {
   3141 			inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
   3142 			inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
   3143 			inp->inp_options = ip_srcroute();
   3144 			in_pcbstate(inp, INP_BOUND);
   3145 			if (inp->inp_options == NULL) {
   3146 				inp->inp_options = sc->sc_ipopts;
   3147 				sc->sc_ipopts = NULL;
   3148 			}
   3149 		}
   3150 #ifdef INET6
   3151 		else if (in6p) {
   3152 			/* IPv4 packet to AF_INET6 socket */
   3153 			bzero(&in6p->in6p_laddr, sizeof(in6p->in6p_laddr));
   3154 			in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
   3155 			bcopy(&((struct sockaddr_in *)dst)->sin_addr,
   3156 				&in6p->in6p_laddr.s6_addr32[3],
   3157 				sizeof(((struct sockaddr_in *)dst)->sin_addr));
   3158 			in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
   3159 			in6totcpcb(in6p)->t_family = AF_INET;
   3160 		}
   3161 #endif
   3162 		break;
   3163 #endif
   3164 #ifdef INET6
   3165 	case AF_INET6:
   3166 		if (in6p) {
   3167 			in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
   3168 			in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
   3169 #if 0
   3170 			in6p->in6p_flowinfo = ip6->ip6_flow & IPV6_FLOWINFO_MASK;
   3171 			/*inp->inp_options = ip6_srcroute();*/ /* soon. */
   3172 #endif
   3173 		}
   3174 		break;
   3175 #endif
   3176 	}
   3177 #ifdef INET6
   3178 	if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
   3179 		struct in6pcb *oin6p = sotoin6pcb(oso);
   3180 		/* inherit socket options from the listening socket */
   3181 		in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
   3182 		if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
   3183 			m_freem(in6p->in6p_options);
   3184 			in6p->in6p_options = 0;
   3185 		}
   3186 		ip6_savecontrol(in6p, &in6p->in6p_options,
   3187 			mtod(m, struct ip6_hdr *), m);
   3188 	}
   3189 #endif
   3190 
   3191 #ifdef IPSEC
   3192 	/*
   3193 	 * we make a copy of policy, instead of sharing the policy,
   3194 	 * for better behavior in terms of SA lookup and dead SA removal.
   3195 	 */
   3196 	if (inp) {
   3197 		/* copy old policy into new socket's */
   3198 		if (ipsec_copy_pcbpolicy(sotoinpcb(oso)->inp_sp, inp->inp_sp))
   3199 			printf("tcp_input: could not copy policy\n");
   3200 	}
   3201 #ifdef INET6
   3202 	else if (in6p) {
   3203 		/* copy old policy into new socket's */
   3204 		if (ipsec_copy_pcbpolicy(sotoin6pcb(oso)->in6p_sp,
   3205 		    in6p->in6p_sp))
   3206 			printf("tcp_input: could not copy policy\n");
   3207 	}
   3208 #endif
   3209 #endif
   3210 
   3211 	/*
   3212 	 * Give the new socket our cached route reference.
   3213 	 */
   3214 	if (inp)
   3215 		inp->inp_route = sc->sc_route4;		/* struct assignment */
   3216 #ifdef INET6
   3217 	else
   3218 		in6p->in6p_route = sc->sc_route6;
   3219 #endif
   3220 	sc->sc_route4.ro_rt = NULL;
   3221 
   3222 	am = m_get(M_DONTWAIT, MT_SONAME);	/* XXX */
   3223 	if (am == NULL)
   3224 		goto resetandabort;
   3225 	am->m_len = src->sa_len;
   3226 	bcopy(src, mtod(am, caddr_t), src->sa_len);
   3227 	if (inp) {
   3228 		if (in_pcbconnect(inp, am)) {
   3229 			(void) m_free(am);
   3230 			goto resetandabort;
   3231 		}
   3232 	}
   3233 #ifdef INET6
   3234 	else if (in6p) {
   3235 		if (src->sa_family == AF_INET) {
   3236 			/* IPv4 packet to AF_INET6 socket */
   3237 			struct sockaddr_in6 *sin6;
   3238 			sin6 = mtod(am, struct sockaddr_in6 *);
   3239 			am->m_len = sizeof(*sin6);
   3240 			bzero(sin6, sizeof(*sin6));
   3241 			sin6->sin6_family = AF_INET6;
   3242 			sin6->sin6_len = sizeof(*sin6);
   3243 			sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port;
   3244 			sin6->sin6_addr.s6_addr16[5] = htons(0xffff);
   3245 			bcopy(&((struct sockaddr_in *)src)->sin_addr,
   3246 				&sin6->sin6_addr.s6_addr32[3],
   3247 				sizeof(sin6->sin6_addr.s6_addr32[3]));
   3248 		}
   3249 		if (in6_pcbconnect(in6p, am)) {
   3250 			(void) m_free(am);
   3251 			goto resetandabort;
   3252 		}
   3253 	}
   3254 #endif
   3255 	else {
   3256 		(void) m_free(am);
   3257 		goto resetandabort;
   3258 	}
   3259 	(void) m_free(am);
   3260 
   3261 	if (inp)
   3262 		tp = intotcpcb(inp);
   3263 #ifdef INET6
   3264 	else if (in6p)
   3265 		tp = in6totcpcb(in6p);
   3266 #endif
   3267 	else
   3268 		tp = NULL;
   3269 	if (sc->sc_request_r_scale != 15) {
   3270 		tp->requested_s_scale = sc->sc_requested_s_scale;
   3271 		tp->request_r_scale = sc->sc_request_r_scale;
   3272 		tp->snd_scale = sc->sc_requested_s_scale;
   3273 		tp->rcv_scale = sc->sc_request_r_scale;
   3274 		tp->t_flags |= TF_RCVD_SCALE;
   3275 	}
   3276 	if (sc->sc_flags & SCF_TIMESTAMP)
   3277 		tp->t_flags |= TF_RCVD_TSTMP;
   3278 	tp->ts_timebase = sc->sc_timebase;
   3279 
   3280 	tp->t_template = tcp_template(tp);
   3281 	if (tp->t_template == 0) {
   3282 		tp = tcp_drop(tp, ENOBUFS);	/* destroys socket */
   3283 		so = NULL;
   3284 		m_freem(m);
   3285 		goto abort;
   3286 	}
   3287 
   3288 	tp->iss = sc->sc_iss;
   3289 	tp->irs = sc->sc_irs;
   3290 	tcp_sendseqinit(tp);
   3291 	tcp_rcvseqinit(tp);
   3292 	tp->t_state = TCPS_SYN_RECEIVED;
   3293 	TCP_TIMER_ARM(tp, TCPT_KEEP, TCPTV_KEEP_INIT);
   3294 	tcpstat.tcps_accepts++;
   3295 
   3296 	/* Initialize tp->t_ourmss before we deal with the peer's! */
   3297 	tp->t_ourmss = sc->sc_ourmaxseg;
   3298 	tcp_mss_from_peer(tp, sc->sc_peermaxseg);
   3299 
   3300 	/*
   3301 	 * Initialize the initial congestion window.  If we
   3302 	 * had to retransmit the SYN,ACK, we must initialize cwnd
   3303 	 * to 1 segment (i.e. the Loss Window).
   3304 	 */
   3305 	if (sc->sc_rxtshift)
   3306 		tp->snd_cwnd = tp->t_peermss;
   3307 	else
   3308 		tp->snd_cwnd = TCP_INITIAL_WINDOW(tcp_init_win, tp->t_peermss);
   3309 
   3310 	tcp_rmx_rtt(tp);
   3311 	tp->snd_wl1 = sc->sc_irs;
   3312 	tp->rcv_up = sc->sc_irs + 1;
   3313 
   3314 	/*
   3315 	 * This is what whould have happened in tcp_ouput() when
   3316 	 * the SYN,ACK was sent.
   3317 	 */
   3318 	tp->snd_up = tp->snd_una;
   3319 	tp->snd_max = tp->snd_nxt = tp->iss+1;
   3320 	TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
   3321 	if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
   3322 		tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
   3323 	tp->last_ack_sent = tp->rcv_nxt;
   3324 
   3325 	tcpstat.tcps_sc_completed++;
   3326 	SYN_CACHE_PUT(sc);
   3327 	return (so);
   3328 
   3329 resetandabort:
   3330 	(void) tcp_respond(NULL, m, m, th,
   3331 			   th->th_seq + tlen, (tcp_seq)0, TH_RST|TH_ACK);
   3332 abort:
   3333 	if (so != NULL)
   3334 		(void) soabort(so);
   3335 	SYN_CACHE_PUT(sc);
   3336 	tcpstat.tcps_sc_aborted++;
   3337 	return ((struct socket *)(-1));
   3338 }
   3339 
   3340 /*
   3341  * This function is called when we get a RST for a
   3342  * non-existent connection, so that we can see if the
   3343  * connection is in the syn cache.  If it is, zap it.
   3344  */
   3345 
   3346 void
   3347 syn_cache_reset(src, dst, th)
   3348 	struct sockaddr *src;
   3349 	struct sockaddr *dst;
   3350 	struct tcphdr *th;
   3351 {
   3352 	struct syn_cache *sc;
   3353 	struct syn_cache_head *scp;
   3354 	int s = splsoftnet();
   3355 
   3356 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
   3357 		splx(s);
   3358 		return;
   3359 	}
   3360 	if (SEQ_LT(th->th_seq, sc->sc_irs) ||
   3361 	    SEQ_GT(th->th_seq, sc->sc_irs+1)) {
   3362 		splx(s);
   3363 		return;
   3364 	}
   3365 	SYN_CACHE_RM(sc);
   3366 	splx(s);
   3367 	tcpstat.tcps_sc_reset++;
   3368 	SYN_CACHE_PUT(sc);
   3369 }
   3370 
   3371 void
   3372 syn_cache_unreach(src, dst, th)
   3373 	struct sockaddr *src;
   3374 	struct sockaddr *dst;
   3375 	struct tcphdr *th;
   3376 {
   3377 	struct syn_cache *sc;
   3378 	struct syn_cache_head *scp;
   3379 	int s;
   3380 
   3381 	s = splsoftnet();
   3382 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
   3383 		splx(s);
   3384 		return;
   3385 	}
   3386 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
   3387 	if (ntohl (th->th_seq) != sc->sc_iss) {
   3388 		splx(s);
   3389 		return;
   3390 	}
   3391 
   3392 	/*
   3393 	 * If we've rertransmitted 3 times and this is our second error,
   3394 	 * we remove the entry.  Otherwise, we allow it to continue on.
   3395 	 * This prevents us from incorrectly nuking an entry during a
   3396 	 * spurious network outage.
   3397 	 *
   3398 	 * See tcp_notify().
   3399 	 */
   3400 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
   3401 		sc->sc_flags |= SCF_UNREACH;
   3402 		splx(s);
   3403 		return;
   3404 	}
   3405 
   3406 	SYN_CACHE_RM(sc);
   3407 	splx(s);
   3408 	tcpstat.tcps_sc_unreach++;
   3409 	SYN_CACHE_PUT(sc);
   3410 }
   3411 
   3412 /*
   3413  * Given a LISTEN socket and an inbound SYN request, add
   3414  * this to the syn cache, and send back a segment:
   3415  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
   3416  * to the source.
   3417  *
   3418  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
   3419  * Doing so would require that we hold onto the data and deliver it
   3420  * to the application.  However, if we are the target of a SYN-flood
   3421  * DoS attack, an attacker could send data which would eventually
   3422  * consume all available buffer space if it were ACKed.  By not ACKing
   3423  * the data, we avoid this DoS scenario.
   3424  */
   3425 
   3426 int
   3427 syn_cache_add(src, dst, th, hlen, so, m, optp, optlen, oi)
   3428 	struct sockaddr *src;
   3429 	struct sockaddr *dst;
   3430 	struct tcphdr *th;
   3431 	unsigned int hlen;
   3432 	struct socket *so;
   3433 	struct mbuf *m;
   3434 	u_char *optp;
   3435 	int optlen;
   3436 	struct tcp_opt_info *oi;
   3437 {
   3438 	struct tcpcb tb, *tp;
   3439 	long win;
   3440 	struct syn_cache *sc;
   3441 	struct syn_cache_head *scp;
   3442 	struct mbuf *ipopts;
   3443 
   3444 	tp = sototcpcb(so);
   3445 
   3446 	/*
   3447 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
   3448 	 *
   3449 	 * Note this check is performed in tcp_input() very early on.
   3450 	 */
   3451 
   3452 	/*
   3453 	 * Initialize some local state.
   3454 	 */
   3455 	win = sbspace(&so->so_rcv);
   3456 	if (win > TCP_MAXWIN)
   3457 		win = TCP_MAXWIN;
   3458 
   3459 	switch (src->sa_family) {
   3460 #ifdef INET
   3461 	case AF_INET:
   3462 		/*
   3463 		 * Remember the IP options, if any.
   3464 		 */
   3465 		ipopts = ip_srcroute();
   3466 		break;
   3467 #endif
   3468 	default:
   3469 		ipopts = NULL;
   3470 	}
   3471 
   3472 	if (optp) {
   3473 		tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
   3474 		tcp_dooptions(&tb, optp, optlen, th, oi);
   3475 	} else
   3476 		tb.t_flags = 0;
   3477 
   3478 	/*
   3479 	 * See if we already have an entry for this connection.
   3480 	 * If we do, resend the SYN,ACK.  We do not count this
   3481 	 * as a retransmission (XXX though maybe we should).
   3482 	 */
   3483 	if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
   3484 		tcpstat.tcps_sc_dupesyn++;
   3485 		if (ipopts) {
   3486 			/*
   3487 			 * If we were remembering a previous source route,
   3488 			 * forget it and use the new one we've been given.
   3489 			 */
   3490 			if (sc->sc_ipopts)
   3491 				(void) m_free(sc->sc_ipopts);
   3492 			sc->sc_ipopts = ipopts;
   3493 		}
   3494 		sc->sc_timestamp = tb.ts_recent;
   3495 		if (syn_cache_respond(sc, m) == 0) {
   3496 			tcpstat.tcps_sndacks++;
   3497 			tcpstat.tcps_sndtotal++;
   3498 		}
   3499 		return (1);
   3500 	}
   3501 
   3502 	sc = pool_get(&syn_cache_pool, PR_NOWAIT);
   3503 	if (sc == NULL) {
   3504 		if (ipopts)
   3505 			(void) m_free(ipopts);
   3506 		return (0);
   3507 	}
   3508 
   3509 	/*
   3510 	 * Fill in the cache, and put the necessary IP and TCP
   3511 	 * options into the reply.
   3512 	 */
   3513 	callout_init(&sc->sc_timer);
   3514 	bzero(sc, sizeof(struct syn_cache));
   3515 	bcopy(src, &sc->sc_src, src->sa_len);
   3516 	bcopy(dst, &sc->sc_dst, dst->sa_len);
   3517 	sc->sc_flags = 0;
   3518 	sc->sc_ipopts = ipopts;
   3519 	sc->sc_irs = th->th_seq;
   3520 	switch (src->sa_family) {
   3521 #ifdef INET
   3522 	case AF_INET:
   3523 	    {
   3524 		struct sockaddr_in *srcin = (void *) src;
   3525 		struct sockaddr_in *dstin = (void *) dst;
   3526 
   3527 		sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
   3528 		    &srcin->sin_addr, dstin->sin_port,
   3529 		    srcin->sin_port, sizeof(dstin->sin_addr), 0);
   3530 		break;
   3531 	    }
   3532 #endif /* INET */
   3533 #ifdef INET6
   3534 	case AF_INET6:
   3535 	    {
   3536 		struct sockaddr_in6 *srcin6 = (void *) src;
   3537 		struct sockaddr_in6 *dstin6 = (void *) dst;
   3538 
   3539 		sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
   3540 		    &srcin6->sin6_addr, dstin6->sin6_port,
   3541 		    srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
   3542 		break;
   3543 	    }
   3544 #endif /* INET6 */
   3545 	}
   3546 	sc->sc_peermaxseg = oi->maxseg;
   3547 	sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
   3548 						m->m_pkthdr.rcvif : NULL,
   3549 						sc->sc_src.sa.sa_family);
   3550 	sc->sc_win = win;
   3551 	sc->sc_timebase = tcp_now;	/* see tcp_newtcpcb() */
   3552 	sc->sc_timestamp = tb.ts_recent;
   3553 	if (tcp_do_rfc1323 && (tb.t_flags & TF_RCVD_TSTMP))
   3554 		sc->sc_flags |= SCF_TIMESTAMP;
   3555 	if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   3556 	    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
   3557 		sc->sc_requested_s_scale = tb.requested_s_scale;
   3558 		sc->sc_request_r_scale = 0;
   3559 		while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
   3560 		    TCP_MAXWIN << sc->sc_request_r_scale <
   3561 		    so->so_rcv.sb_hiwat)
   3562 			sc->sc_request_r_scale++;
   3563 	} else {
   3564 		sc->sc_requested_s_scale = 15;
   3565 		sc->sc_request_r_scale = 15;
   3566 	}
   3567 	sc->sc_tp = tp;
   3568 	if (syn_cache_respond(sc, m) == 0) {
   3569 		syn_cache_insert(sc, tp);
   3570 		tcpstat.tcps_sndacks++;
   3571 		tcpstat.tcps_sndtotal++;
   3572 	} else {
   3573 		SYN_CACHE_PUT(sc);
   3574 		tcpstat.tcps_sc_dropped++;
   3575 	}
   3576 	return (1);
   3577 }
   3578 
   3579 int
   3580 syn_cache_respond(sc, m)
   3581 	struct syn_cache *sc;
   3582 	struct mbuf *m;
   3583 {
   3584 	struct route *ro;
   3585 	u_int8_t *optp;
   3586 	int optlen, error;
   3587 	u_int16_t tlen;
   3588 	struct ip *ip = NULL;
   3589 #ifdef INET6
   3590 	struct ip6_hdr *ip6 = NULL;
   3591 #endif
   3592 	struct tcphdr *th;
   3593 	u_int hlen;
   3594 
   3595 	switch (sc->sc_src.sa.sa_family) {
   3596 	case AF_INET:
   3597 		hlen = sizeof(struct ip);
   3598 		ro = &sc->sc_route4;
   3599 		break;
   3600 #ifdef INET6
   3601 	case AF_INET6:
   3602 		hlen = sizeof(struct ip6_hdr);
   3603 		ro = (struct route *)&sc->sc_route6;
   3604 		break;
   3605 #endif
   3606 	default:
   3607 		if (m)
   3608 			m_freem(m);
   3609 		return EAFNOSUPPORT;
   3610 	}
   3611 
   3612 	/* Compute the size of the TCP options. */
   3613 	optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
   3614 	    ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
   3615 
   3616 	tlen = hlen + sizeof(struct tcphdr) + optlen;
   3617 
   3618 	/*
   3619 	 * Create the IP+TCP header from scratch.
   3620 	 */
   3621 	if (m)
   3622 		m_freem(m);
   3623 #ifdef DIAGNOSTIC
   3624 	if (max_linkhdr + tlen > MCLBYTES)
   3625 		return (ENOBUFS);
   3626 #endif
   3627 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   3628 	if (m && tlen > MHLEN) {
   3629 		MCLGET(m, M_DONTWAIT);
   3630 		if ((m->m_flags & M_EXT) == 0) {
   3631 			m_freem(m);
   3632 			m = NULL;
   3633 		}
   3634 	}
   3635 	if (m == NULL)
   3636 		return (ENOBUFS);
   3637 
   3638 	/* Fixup the mbuf. */
   3639 	m->m_data += max_linkhdr;
   3640 	m->m_len = m->m_pkthdr.len = tlen;
   3641 #ifdef IPSEC
   3642 	if (sc->sc_tp) {
   3643 		struct tcpcb *tp;
   3644 		struct socket *so;
   3645 
   3646 		tp = sc->sc_tp;
   3647 		if (tp->t_inpcb)
   3648 			so = tp->t_inpcb->inp_socket;
   3649 #ifdef INET6
   3650 		else if (tp->t_in6pcb)
   3651 			so = tp->t_in6pcb->in6p_socket;
   3652 #endif
   3653 		else
   3654 			so = NULL;
   3655 		/* use IPsec policy on listening socket, on SYN ACK */
   3656 		if (ipsec_setsocket(m, so) != 0) {
   3657 			m_freem(m);
   3658 			return ENOBUFS;
   3659 		}
   3660 	}
   3661 #endif
   3662 	m->m_pkthdr.rcvif = NULL;
   3663 	memset(mtod(m, u_char *), 0, tlen);
   3664 
   3665 	switch (sc->sc_src.sa.sa_family) {
   3666 	case AF_INET:
   3667 		ip = mtod(m, struct ip *);
   3668 		ip->ip_dst = sc->sc_src.sin.sin_addr;
   3669 		ip->ip_src = sc->sc_dst.sin.sin_addr;
   3670 		ip->ip_p = IPPROTO_TCP;
   3671 		th = (struct tcphdr *)(ip + 1);
   3672 		th->th_dport = sc->sc_src.sin.sin_port;
   3673 		th->th_sport = sc->sc_dst.sin.sin_port;
   3674 		break;
   3675 #ifdef INET6
   3676 	case AF_INET6:
   3677 		ip6 = mtod(m, struct ip6_hdr *);
   3678 		ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
   3679 		ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
   3680 		ip6->ip6_nxt = IPPROTO_TCP;
   3681 		/* ip6_plen will be updated in ip6_output() */
   3682 		th = (struct tcphdr *)(ip6 + 1);
   3683 		th->th_dport = sc->sc_src.sin6.sin6_port;
   3684 		th->th_sport = sc->sc_dst.sin6.sin6_port;
   3685 		break;
   3686 #endif
   3687 	default:
   3688 		th = NULL;
   3689 	}
   3690 
   3691 	th->th_seq = htonl(sc->sc_iss);
   3692 	th->th_ack = htonl(sc->sc_irs + 1);
   3693 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
   3694 	th->th_flags = TH_SYN|TH_ACK;
   3695 	th->th_win = htons(sc->sc_win);
   3696 	/* th_sum already 0 */
   3697 	/* th_urp already 0 */
   3698 
   3699 	/* Tack on the TCP options. */
   3700 	optp = (u_int8_t *)(th + 1);
   3701 	*optp++ = TCPOPT_MAXSEG;
   3702 	*optp++ = 4;
   3703 	*optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
   3704 	*optp++ = sc->sc_ourmaxseg & 0xff;
   3705 
   3706 	if (sc->sc_request_r_scale != 15) {
   3707 		*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
   3708 		    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
   3709 		    sc->sc_request_r_scale);
   3710 		optp += 4;
   3711 	}
   3712 
   3713 	if (sc->sc_flags & SCF_TIMESTAMP) {
   3714 		u_int32_t *lp = (u_int32_t *)(optp);
   3715 		/* Form timestamp option as shown in appendix A of RFC 1323. */
   3716 		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
   3717 		*lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
   3718 		*lp   = htonl(sc->sc_timestamp);
   3719 		optp += TCPOLEN_TSTAMP_APPA;
   3720 	}
   3721 
   3722 	/* Compute the packet's checksum. */
   3723 	switch (sc->sc_src.sa.sa_family) {
   3724 	case AF_INET:
   3725 		ip->ip_len = htons(tlen - hlen);
   3726 		th->th_sum = 0;
   3727 		th->th_sum = in_cksum(m, tlen);
   3728 		break;
   3729 #ifdef INET6
   3730 	case AF_INET6:
   3731 		ip6->ip6_plen = htons(tlen - hlen);
   3732 		th->th_sum = 0;
   3733 		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
   3734 		break;
   3735 #endif
   3736 	}
   3737 
   3738 	/*
   3739 	 * Fill in some straggling IP bits.  Note the stack expects
   3740 	 * ip_len to be in host order, for convenience.
   3741 	 */
   3742 	switch (sc->sc_src.sa.sa_family) {
   3743 #ifdef INET
   3744 	case AF_INET:
   3745 		ip->ip_len = tlen;
   3746 		ip->ip_ttl = ip_defttl;
   3747 		/* XXX tos? */
   3748 		break;
   3749 #endif
   3750 #ifdef INET6
   3751 	case AF_INET6:
   3752 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
   3753 		ip6->ip6_vfc |= IPV6_VERSION;
   3754 		ip6->ip6_plen = htons(tlen - hlen);
   3755 		/* ip6_hlim will be initialized afterwards */
   3756 		/* XXX flowlabel? */
   3757 		break;
   3758 #endif
   3759 	}
   3760 
   3761 	switch (sc->sc_src.sa.sa_family) {
   3762 #ifdef INET
   3763 	case AF_INET:
   3764 		error = ip_output(m, sc->sc_ipopts, ro,
   3765 		    (ip_mtudisc ? IP_MTUDISC : 0),
   3766 		    NULL);
   3767 		break;
   3768 #endif
   3769 #ifdef INET6
   3770 	case AF_INET6:
   3771 		ip6->ip6_hlim = in6_selecthlim(NULL,
   3772 				ro->ro_rt ? ro->ro_rt->rt_ifp : NULL);
   3773 
   3774 		error = ip6_output(m, NULL /*XXX*/, (struct route_in6 *)ro,
   3775 			0, NULL, NULL);
   3776 		break;
   3777 #endif
   3778 	default:
   3779 		error = EAFNOSUPPORT;
   3780 		break;
   3781 	}
   3782 	return (error);
   3783 }
   3784