tcp_input.c revision 1.150 1 /* $NetBSD: tcp_input.c,v 1.150 2002/08/14 00:23:33 itojun Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * @(#)COPYRIGHT 1.1 (NRL) 17 January 1995
34 *
35 * NRL grants permission for redistribution and use in source and binary
36 * forms, with or without modification, of the software and documentation
37 * created at NRL provided that the following conditions are met:
38 *
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgements:
46 * This product includes software developed by the University of
47 * California, Berkeley and its contributors.
48 * This product includes software developed at the Information
49 * Technology Division, US Naval Research Laboratory.
50 * 4. Neither the name of the NRL nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
55 * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
57 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NRL OR
58 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
59 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
61 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
62 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
63 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
64 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65 *
66 * The views and conclusions contained in the software and documentation
67 * are those of the authors and should not be interpreted as representing
68 * official policies, either expressed or implied, of the US Naval
69 * Research Laboratory (NRL).
70 */
71
72 /*-
73 * Copyright (c) 1997, 1998, 1999, 2001 The NetBSD Foundation, Inc.
74 * All rights reserved.
75 *
76 * This code is derived from software contributed to The NetBSD Foundation
77 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
78 * Facility, NASA Ames Research Center.
79 *
80 * Redistribution and use in source and binary forms, with or without
81 * modification, are permitted provided that the following conditions
82 * are met:
83 * 1. Redistributions of source code must retain the above copyright
84 * notice, this list of conditions and the following disclaimer.
85 * 2. Redistributions in binary form must reproduce the above copyright
86 * notice, this list of conditions and the following disclaimer in the
87 * documentation and/or other materials provided with the distribution.
88 * 3. All advertising materials mentioning features or use of this software
89 * must display the following acknowledgement:
90 * This product includes software developed by the NetBSD
91 * Foundation, Inc. and its contributors.
92 * 4. Neither the name of The NetBSD Foundation nor the names of its
93 * contributors may be used to endorse or promote products derived
94 * from this software without specific prior written permission.
95 *
96 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
97 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
98 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
99 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
100 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
101 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
102 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
103 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
104 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
105 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
106 * POSSIBILITY OF SUCH DAMAGE.
107 */
108
109 /*
110 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
111 * The Regents of the University of California. All rights reserved.
112 *
113 * Redistribution and use in source and binary forms, with or without
114 * modification, are permitted provided that the following conditions
115 * are met:
116 * 1. Redistributions of source code must retain the above copyright
117 * notice, this list of conditions and the following disclaimer.
118 * 2. Redistributions in binary form must reproduce the above copyright
119 * notice, this list of conditions and the following disclaimer in the
120 * documentation and/or other materials provided with the distribution.
121 * 3. All advertising materials mentioning features or use of this software
122 * must display the following acknowledgement:
123 * This product includes software developed by the University of
124 * California, Berkeley and its contributors.
125 * 4. Neither the name of the University nor the names of its contributors
126 * may be used to endorse or promote products derived from this software
127 * without specific prior written permission.
128 *
129 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
130 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
131 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
132 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
133 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
134 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
135 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
136 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
137 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
138 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
139 * SUCH DAMAGE.
140 *
141 * @(#)tcp_input.c 8.12 (Berkeley) 5/24/95
142 */
143
144 /*
145 * TODO list for SYN cache stuff:
146 *
147 * Find room for a "state" field, which is needed to keep a
148 * compressed state for TIME_WAIT TCBs. It's been noted already
149 * that this is fairly important for very high-volume web and
150 * mail servers, which use a large number of short-lived
151 * connections.
152 */
153
154 #include <sys/cdefs.h>
155 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.150 2002/08/14 00:23:33 itojun Exp $");
156
157 #include "opt_inet.h"
158 #include "opt_ipsec.h"
159 #include "opt_inet_csum.h"
160 #include "opt_tcp_debug.h"
161
162 #include <sys/param.h>
163 #include <sys/systm.h>
164 #include <sys/malloc.h>
165 #include <sys/mbuf.h>
166 #include <sys/protosw.h>
167 #include <sys/socket.h>
168 #include <sys/socketvar.h>
169 #include <sys/errno.h>
170 #include <sys/syslog.h>
171 #include <sys/pool.h>
172 #include <sys/domain.h>
173 #include <sys/kernel.h>
174
175 #include <net/if.h>
176 #include <net/route.h>
177 #include <net/if_types.h>
178
179 #include <netinet/in.h>
180 #include <netinet/in_systm.h>
181 #include <netinet/ip.h>
182 #include <netinet/in_pcb.h>
183 #include <netinet/ip_var.h>
184
185 #ifdef INET6
186 #ifndef INET
187 #include <netinet/in.h>
188 #endif
189 #include <netinet/ip6.h>
190 #include <netinet6/ip6_var.h>
191 #include <netinet6/in6_pcb.h>
192 #include <netinet6/ip6_var.h>
193 #include <netinet6/in6_var.h>
194 #include <netinet/icmp6.h>
195 #include <netinet6/nd6.h>
196 #endif
197
198 #ifdef PULLDOWN_TEST
199 #ifndef INET6
200 /* always need ip6.h for IP6_EXTHDR_GET */
201 #include <netinet/ip6.h>
202 #endif
203 #endif
204
205 #include <netinet/tcp.h>
206 #include <netinet/tcp_fsm.h>
207 #include <netinet/tcp_seq.h>
208 #include <netinet/tcp_timer.h>
209 #include <netinet/tcp_var.h>
210 #include <netinet/tcpip.h>
211 #include <netinet/tcp_debug.h>
212
213 #include <machine/stdarg.h>
214
215 #ifdef IPSEC
216 #include <netinet6/ipsec.h>
217 #include <netkey/key.h>
218 #endif /*IPSEC*/
219 #ifdef INET6
220 #include "faith.h"
221 #if defined(NFAITH) && NFAITH > 0
222 #include <net/if_faith.h>
223 #endif
224 #endif
225
226 int tcprexmtthresh = 3;
227 int tcp_log_refused;
228
229 static int tcp_rst_ppslim_count = 0;
230 static struct timeval tcp_rst_ppslim_last;
231
232 #define TCP_PAWS_IDLE (24 * 24 * 60 * 60 * PR_SLOWHZ)
233
234 /* for modulo comparisons of timestamps */
235 #define TSTMP_LT(a,b) ((int)((a)-(b)) < 0)
236 #define TSTMP_GEQ(a,b) ((int)((a)-(b)) >= 0)
237
238 /*
239 * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
240 */
241 #ifdef INET6
242 #define ND6_HINT(tp) \
243 do { \
244 if (tp && tp->t_in6pcb && tp->t_family == AF_INET6 \
245 && tp->t_in6pcb->in6p_route.ro_rt) { \
246 nd6_nud_hint(tp->t_in6pcb->in6p_route.ro_rt, NULL, 0); \
247 } \
248 } while (0)
249 #else
250 #define ND6_HINT(tp)
251 #endif
252
253 /*
254 * Macro to compute ACK transmission behavior. Delay the ACK unless
255 * we have already delayed an ACK (must send an ACK every two segments).
256 * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
257 * option is enabled.
258 */
259 #define TCP_SETUP_ACK(tp, th) \
260 do { \
261 if ((tp)->t_flags & TF_DELACK || \
262 (tcp_ack_on_push && (th)->th_flags & TH_PUSH)) \
263 tp->t_flags |= TF_ACKNOW; \
264 else \
265 TCP_SET_DELACK(tp); \
266 } while (0)
267
268 /*
269 * Convert TCP protocol fields to host order for easier processing.
270 */
271 #define TCP_FIELDS_TO_HOST(th) \
272 do { \
273 NTOHL((th)->th_seq); \
274 NTOHL((th)->th_ack); \
275 NTOHS((th)->th_win); \
276 NTOHS((th)->th_urp); \
277 } while (0)
278
279 #ifdef TCP_CSUM_COUNTERS
280 #include <sys/device.h>
281
282 extern struct evcnt tcp_hwcsum_ok;
283 extern struct evcnt tcp_hwcsum_bad;
284 extern struct evcnt tcp_hwcsum_data;
285 extern struct evcnt tcp_swcsum;
286
287 #define TCP_CSUM_COUNTER_INCR(ev) (ev)->ev_count++
288
289 #else
290
291 #define TCP_CSUM_COUNTER_INCR(ev) /* nothing */
292
293 #endif /* TCP_CSUM_COUNTERS */
294
295 #ifdef TCP_REASS_COUNTERS
296 #include <sys/device.h>
297
298 extern struct evcnt tcp_reass_;
299 extern struct evcnt tcp_reass_empty;
300 extern struct evcnt tcp_reass_iteration[8];
301 extern struct evcnt tcp_reass_prependfirst;
302 extern struct evcnt tcp_reass_prepend;
303 extern struct evcnt tcp_reass_insert;
304 extern struct evcnt tcp_reass_inserttail;
305 extern struct evcnt tcp_reass_append;
306 extern struct evcnt tcp_reass_appendtail;
307 extern struct evcnt tcp_reass_overlaptail;
308 extern struct evcnt tcp_reass_overlapfront;
309 extern struct evcnt tcp_reass_segdup;
310 extern struct evcnt tcp_reass_fragdup;
311
312 #define TCP_REASS_COUNTER_INCR(ev) (ev)->ev_count++
313
314 #else
315
316 #define TCP_REASS_COUNTER_INCR(ev) /* nothing */
317
318 #endif /* TCP_REASS_COUNTERS */
319
320 #ifdef INET
321 static void tcp4_log_refused __P((const struct ip *, const struct tcphdr *));
322 #endif
323 #ifdef INET6
324 static void tcp6_log_refused
325 __P((const struct ip6_hdr *, const struct tcphdr *));
326 #endif
327
328 int
329 tcp_reass(tp, th, m, tlen)
330 struct tcpcb *tp;
331 struct tcphdr *th;
332 struct mbuf *m;
333 int *tlen;
334 {
335 struct ipqent *p, *q, *nq, *tiqe = NULL;
336 struct socket *so = NULL;
337 int pkt_flags;
338 tcp_seq pkt_seq;
339 unsigned pkt_len;
340 u_long rcvpartdupbyte = 0;
341 u_long rcvoobyte;
342 #ifdef TCP_REASS_COUNTERS
343 u_int count = 0;
344 #endif
345
346 if (tp->t_inpcb)
347 so = tp->t_inpcb->inp_socket;
348 #ifdef INET6
349 else if (tp->t_in6pcb)
350 so = tp->t_in6pcb->in6p_socket;
351 #endif
352
353 TCP_REASS_LOCK_CHECK(tp);
354
355 /*
356 * Call with th==0 after become established to
357 * force pre-ESTABLISHED data up to user socket.
358 */
359 if (th == 0)
360 goto present;
361
362 rcvoobyte = *tlen;
363 /*
364 * Copy these to local variables because the tcpiphdr
365 * gets munged while we are collapsing mbufs.
366 */
367 pkt_seq = th->th_seq;
368 pkt_len = *tlen;
369 pkt_flags = th->th_flags;
370
371 TCP_REASS_COUNTER_INCR(&tcp_reass_);
372
373 if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
374 /*
375 * When we miss a packet, the vast majority of time we get
376 * packets that follow it in order. So optimize for that.
377 */
378 if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
379 p->ipqe_len += pkt_len;
380 p->ipqe_flags |= pkt_flags;
381 m_cat(p->ipqe_m, m);
382 tiqe = p;
383 TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
384 TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
385 goto skip_replacement;
386 }
387 /*
388 * While we're here, if the pkt is completely beyond
389 * anything we have, just insert it at the tail.
390 */
391 if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
392 TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
393 goto insert_it;
394 }
395 }
396
397 q = TAILQ_FIRST(&tp->segq);
398
399 if (q != NULL) {
400 /*
401 * If this segment immediately precedes the first out-of-order
402 * block, simply slap the segment in front of it and (mostly)
403 * skip the complicated logic.
404 */
405 if (pkt_seq + pkt_len == q->ipqe_seq) {
406 q->ipqe_seq = pkt_seq;
407 q->ipqe_len += pkt_len;
408 q->ipqe_flags |= pkt_flags;
409 m_cat(m, q->ipqe_m);
410 q->ipqe_m = m;
411 tiqe = q;
412 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
413 TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
414 goto skip_replacement;
415 }
416 } else {
417 TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
418 }
419
420 /*
421 * Find a segment which begins after this one does.
422 */
423 for (p = NULL; q != NULL; q = nq) {
424 nq = TAILQ_NEXT(q, ipqe_q);
425 #ifdef TCP_REASS_COUNTERS
426 count++;
427 #endif
428 /*
429 * If the received segment is just right after this
430 * fragment, merge the two together and then check
431 * for further overlaps.
432 */
433 if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
434 #ifdef TCPREASS_DEBUG
435 printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
436 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
437 q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
438 #endif
439 pkt_len += q->ipqe_len;
440 pkt_flags |= q->ipqe_flags;
441 pkt_seq = q->ipqe_seq;
442 m_cat(q->ipqe_m, m);
443 m = q->ipqe_m;
444 TCP_REASS_COUNTER_INCR(&tcp_reass_append);
445 goto free_ipqe;
446 }
447 /*
448 * If the received segment is completely past this
449 * fragment, we need to go the next fragment.
450 */
451 if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
452 p = q;
453 continue;
454 }
455 /*
456 * If the fragment is past the received segment,
457 * it (or any following) can't be concatenated.
458 */
459 if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
460 TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
461 break;
462 }
463
464 /*
465 * We've received all the data in this segment before.
466 * mark it as a duplicate and return.
467 */
468 if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
469 SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
470 tcpstat.tcps_rcvduppack++;
471 tcpstat.tcps_rcvdupbyte += pkt_len;
472 m_freem(m);
473 if (tiqe != NULL)
474 pool_put(&ipqent_pool, tiqe);
475 TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
476 return (0);
477 }
478 /*
479 * Received segment completely overlaps this fragment
480 * so we drop the fragment (this keeps the temporal
481 * ordering of segments correct).
482 */
483 if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
484 SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
485 rcvpartdupbyte += q->ipqe_len;
486 m_freem(q->ipqe_m);
487 TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
488 goto free_ipqe;
489 }
490 /*
491 * RX'ed segment extends past the end of the
492 * fragment. Drop the overlapping bytes. Then
493 * merge the fragment and segment then treat as
494 * a longer received packet.
495 */
496 if (SEQ_LT(q->ipqe_seq, pkt_seq)
497 && SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
498 int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
499 #ifdef TCPREASS_DEBUG
500 printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
501 tp, overlap,
502 pkt_seq, pkt_seq + pkt_len, pkt_len);
503 #endif
504 m_adj(m, overlap);
505 rcvpartdupbyte += overlap;
506 m_cat(q->ipqe_m, m);
507 m = q->ipqe_m;
508 pkt_seq = q->ipqe_seq;
509 pkt_len += q->ipqe_len - overlap;
510 rcvoobyte -= overlap;
511 TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
512 goto free_ipqe;
513 }
514 /*
515 * RX'ed segment extends past the front of the
516 * fragment. Drop the overlapping bytes on the
517 * received packet. The packet will then be
518 * contatentated with this fragment a bit later.
519 */
520 if (SEQ_GT(q->ipqe_seq, pkt_seq)
521 && SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len)) {
522 int overlap = pkt_seq + pkt_len - q->ipqe_seq;
523 #ifdef TCPREASS_DEBUG
524 printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
525 tp, overlap,
526 pkt_seq, pkt_seq + pkt_len, pkt_len);
527 #endif
528 m_adj(m, -overlap);
529 pkt_len -= overlap;
530 rcvpartdupbyte += overlap;
531 TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
532 rcvoobyte -= overlap;
533 }
534 /*
535 * If the received segment immediates precedes this
536 * fragment then tack the fragment onto this segment
537 * and reinsert the data.
538 */
539 if (q->ipqe_seq == pkt_seq + pkt_len) {
540 #ifdef TCPREASS_DEBUG
541 printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
542 tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
543 pkt_seq, pkt_seq + pkt_len, pkt_len);
544 #endif
545 pkt_len += q->ipqe_len;
546 pkt_flags |= q->ipqe_flags;
547 m_cat(m, q->ipqe_m);
548 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
549 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
550 if (tiqe == NULL) {
551 tiqe = q;
552 } else {
553 pool_put(&ipqent_pool, q);
554 }
555 TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
556 break;
557 }
558 /*
559 * If the fragment is before the segment, remember it.
560 * When this loop is terminated, p will contain the
561 * pointer to fragment that is right before the received
562 * segment.
563 */
564 if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
565 p = q;
566
567 continue;
568
569 /*
570 * This is a common operation. It also will allow
571 * to save doing a malloc/free in most instances.
572 */
573 free_ipqe:
574 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
575 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
576 if (tiqe == NULL) {
577 tiqe = q;
578 } else {
579 pool_put(&ipqent_pool, q);
580 }
581 }
582
583 #ifdef TCP_REASS_COUNTERS
584 if (count > 7)
585 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
586 else if (count > 0)
587 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
588 #endif
589
590 insert_it:
591
592 /*
593 * Allocate a new queue entry since the received segment did not
594 * collapse onto any other out-of-order block; thus we are allocating
595 * a new block. If it had collapsed, tiqe would not be NULL and
596 * we would be reusing it.
597 * XXX If we can't, just drop the packet. XXX
598 */
599 if (tiqe == NULL) {
600 tiqe = pool_get(&ipqent_pool, PR_NOWAIT);
601 if (tiqe == NULL) {
602 tcpstat.tcps_rcvmemdrop++;
603 m_freem(m);
604 return (0);
605 }
606 }
607
608 /*
609 * Update the counters.
610 */
611 tcpstat.tcps_rcvoopack++;
612 tcpstat.tcps_rcvoobyte += rcvoobyte;
613 if (rcvpartdupbyte) {
614 tcpstat.tcps_rcvpartduppack++;
615 tcpstat.tcps_rcvpartdupbyte += rcvpartdupbyte;
616 }
617
618 /*
619 * Insert the new fragment queue entry into both queues.
620 */
621 tiqe->ipqe_m = m;
622 tiqe->ipqe_seq = pkt_seq;
623 tiqe->ipqe_len = pkt_len;
624 tiqe->ipqe_flags = pkt_flags;
625 if (p == NULL) {
626 TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
627 #ifdef TCPREASS_DEBUG
628 if (tiqe->ipqe_seq != tp->rcv_nxt)
629 printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
630 tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
631 #endif
632 } else {
633 TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
634 #ifdef TCPREASS_DEBUG
635 printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
636 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
637 p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
638 #endif
639 }
640
641 skip_replacement:
642
643 TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
644
645 present:
646 /*
647 * Present data to user, advancing rcv_nxt through
648 * completed sequence space.
649 */
650 if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
651 return (0);
652 q = TAILQ_FIRST(&tp->segq);
653 if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
654 return (0);
655 if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
656 return (0);
657
658 tp->rcv_nxt += q->ipqe_len;
659 pkt_flags = q->ipqe_flags & TH_FIN;
660 ND6_HINT(tp);
661
662 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
663 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
664 if (so->so_state & SS_CANTRCVMORE)
665 m_freem(q->ipqe_m);
666 else
667 sbappendstream(&so->so_rcv, q->ipqe_m);
668 pool_put(&ipqent_pool, q);
669 sorwakeup(so);
670 return (pkt_flags);
671 }
672
673 #ifdef INET6
674 int
675 tcp6_input(mp, offp, proto)
676 struct mbuf **mp;
677 int *offp, proto;
678 {
679 struct mbuf *m = *mp;
680
681 /*
682 * draft-itojun-ipv6-tcp-to-anycast
683 * better place to put this in?
684 */
685 if (m->m_flags & M_ANYCAST6) {
686 struct ip6_hdr *ip6;
687 if (m->m_len < sizeof(struct ip6_hdr)) {
688 if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
689 tcpstat.tcps_rcvshort++;
690 return IPPROTO_DONE;
691 }
692 }
693 ip6 = mtod(m, struct ip6_hdr *);
694 icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
695 (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
696 return IPPROTO_DONE;
697 }
698
699 tcp_input(m, *offp, proto);
700 return IPPROTO_DONE;
701 }
702 #endif
703
704 #ifdef INET
705 static void
706 tcp4_log_refused(ip, th)
707 const struct ip *ip;
708 const struct tcphdr *th;
709 {
710 char src[4*sizeof "123"];
711 char dst[4*sizeof "123"];
712
713 if (ip) {
714 strcpy(src, inet_ntoa(ip->ip_src));
715 strcpy(dst, inet_ntoa(ip->ip_dst));
716 }
717 else {
718 strcpy(src, "(unknown)");
719 strcpy(dst, "(unknown)");
720 }
721 log(LOG_INFO,
722 "Connection attempt to TCP %s:%d from %s:%d\n",
723 dst, ntohs(th->th_dport),
724 src, ntohs(th->th_sport));
725 }
726 #endif
727
728 #ifdef INET6
729 static void
730 tcp6_log_refused(ip6, th)
731 const struct ip6_hdr *ip6;
732 const struct tcphdr *th;
733 {
734 char src[INET6_ADDRSTRLEN];
735 char dst[INET6_ADDRSTRLEN];
736
737 if (ip6) {
738 strcpy(src, ip6_sprintf(&ip6->ip6_src));
739 strcpy(dst, ip6_sprintf(&ip6->ip6_dst));
740 }
741 else {
742 strcpy(src, "(unknown v6)");
743 strcpy(dst, "(unknown v6)");
744 }
745 log(LOG_INFO,
746 "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
747 dst, ntohs(th->th_dport),
748 src, ntohs(th->th_sport));
749 }
750 #endif
751
752 /*
753 * TCP input routine, follows pages 65-76 of the
754 * protocol specification dated September, 1981 very closely.
755 */
756 void
757 #if __STDC__
758 tcp_input(struct mbuf *m, ...)
759 #else
760 tcp_input(m, va_alist)
761 struct mbuf *m;
762 #endif
763 {
764 int proto;
765 struct tcphdr *th;
766 struct ip *ip;
767 struct inpcb *inp;
768 #ifdef INET6
769 struct ip6_hdr *ip6;
770 struct in6pcb *in6p;
771 #endif
772 caddr_t optp = NULL;
773 int optlen = 0;
774 int len, tlen, toff, hdroptlen = 0;
775 struct tcpcb *tp = 0;
776 int tiflags;
777 struct socket *so = NULL;
778 int todrop, acked, ourfinisacked, needoutput = 0;
779 short ostate = 0;
780 int iss = 0;
781 u_long tiwin;
782 struct tcp_opt_info opti;
783 int off, iphlen;
784 va_list ap;
785 int af; /* af on the wire */
786 struct mbuf *tcp_saveti = NULL;
787
788 va_start(ap, m);
789 toff = va_arg(ap, int);
790 proto = va_arg(ap, int);
791 va_end(ap);
792
793 tcpstat.tcps_rcvtotal++;
794
795 bzero(&opti, sizeof(opti));
796 opti.ts_present = 0;
797 opti.maxseg = 0;
798
799 /*
800 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
801 *
802 * TCP is, by definition, unicast, so we reject all
803 * multicast outright.
804 *
805 * Note, there are additional src/dst address checks in
806 * the AF-specific code below.
807 */
808 if (m->m_flags & (M_BCAST|M_MCAST)) {
809 /* XXX stat */
810 goto drop;
811 }
812 #ifdef INET6
813 if (m->m_flags & M_ANYCAST6) {
814 /* XXX stat */
815 goto drop;
816 }
817 #endif
818
819 /*
820 * Get IP and TCP header together in first mbuf.
821 * Note: IP leaves IP header in first mbuf.
822 */
823 ip = mtod(m, struct ip *);
824 #ifdef INET6
825 ip6 = NULL;
826 #endif
827 switch (ip->ip_v) {
828 #ifdef INET
829 case 4:
830 af = AF_INET;
831 iphlen = sizeof(struct ip);
832 #ifndef PULLDOWN_TEST
833 /* would like to get rid of this... */
834 if (toff > sizeof (struct ip)) {
835 ip_stripoptions(m, (struct mbuf *)0);
836 toff = sizeof(struct ip);
837 }
838 if (m->m_len < toff + sizeof (struct tcphdr)) {
839 if ((m = m_pullup(m, toff + sizeof (struct tcphdr))) == 0) {
840 tcpstat.tcps_rcvshort++;
841 return;
842 }
843 }
844 ip = mtod(m, struct ip *);
845 th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
846 #else
847 ip = mtod(m, struct ip *);
848 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
849 sizeof(struct tcphdr));
850 if (th == NULL) {
851 tcpstat.tcps_rcvshort++;
852 return;
853 }
854 #endif
855 /* We do the checksum after PCB lookup... */
856 len = ntohs(ip->ip_len);
857 tlen = len - toff;
858 break;
859 #endif
860 #ifdef INET6
861 case 6:
862 ip = NULL;
863 iphlen = sizeof(struct ip6_hdr);
864 af = AF_INET6;
865 #ifndef PULLDOWN_TEST
866 if (m->m_len < toff + sizeof(struct tcphdr)) {
867 m = m_pullup(m, toff + sizeof(struct tcphdr)); /*XXX*/
868 if (m == NULL) {
869 tcpstat.tcps_rcvshort++;
870 return;
871 }
872 }
873 ip6 = mtod(m, struct ip6_hdr *);
874 th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
875 #else
876 ip6 = mtod(m, struct ip6_hdr *);
877 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
878 sizeof(struct tcphdr));
879 if (th == NULL) {
880 tcpstat.tcps_rcvshort++;
881 return;
882 }
883 #endif
884
885 /* Be proactive about malicious use of IPv4 mapped address */
886 if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
887 IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
888 /* XXX stat */
889 goto drop;
890 }
891
892 /*
893 * Be proactive about unspecified IPv6 address in source.
894 * As we use all-zero to indicate unbounded/unconnected pcb,
895 * unspecified IPv6 address can be used to confuse us.
896 *
897 * Note that packets with unspecified IPv6 destination is
898 * already dropped in ip6_input.
899 */
900 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
901 /* XXX stat */
902 goto drop;
903 }
904
905 /*
906 * Make sure destination address is not multicast.
907 * Source address checked in ip6_input().
908 */
909 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
910 /* XXX stat */
911 goto drop;
912 }
913
914 /* We do the checksum after PCB lookup... */
915 len = m->m_pkthdr.len;
916 tlen = len - toff;
917 break;
918 #endif
919 default:
920 m_freem(m);
921 return;
922 }
923
924 KASSERT(TCP_HDR_ALIGNED_P(th));
925
926 /*
927 * Check that TCP offset makes sense,
928 * pull out TCP options and adjust length. XXX
929 */
930 off = th->th_off << 2;
931 if (off < sizeof (struct tcphdr) || off > tlen) {
932 tcpstat.tcps_rcvbadoff++;
933 goto drop;
934 }
935 tlen -= off;
936
937 /*
938 * tcp_input() has been modified to use tlen to mean the TCP data
939 * length throughout the function. Other functions can use
940 * m->m_pkthdr.len as the basis for calculating the TCP data length.
941 * rja
942 */
943
944 if (off > sizeof (struct tcphdr)) {
945 #ifndef PULLDOWN_TEST
946 if (m->m_len < toff + off) {
947 if ((m = m_pullup(m, toff + off)) == 0) {
948 tcpstat.tcps_rcvshort++;
949 return;
950 }
951 switch (af) {
952 #ifdef INET
953 case AF_INET:
954 ip = mtod(m, struct ip *);
955 break;
956 #endif
957 #ifdef INET6
958 case AF_INET6:
959 ip6 = mtod(m, struct ip6_hdr *);
960 break;
961 #endif
962 }
963 th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
964 }
965 #else
966 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
967 if (th == NULL) {
968 tcpstat.tcps_rcvshort++;
969 return;
970 }
971 /*
972 * NOTE: ip/ip6 will not be affected by m_pulldown()
973 * (as they're before toff) and we don't need to update those.
974 */
975 #endif
976 KASSERT(TCP_HDR_ALIGNED_P(th));
977 optlen = off - sizeof (struct tcphdr);
978 optp = ((caddr_t)th) + sizeof(struct tcphdr);
979 /*
980 * Do quick retrieval of timestamp options ("options
981 * prediction?"). If timestamp is the only option and it's
982 * formatted as recommended in RFC 1323 appendix A, we
983 * quickly get the values now and not bother calling
984 * tcp_dooptions(), etc.
985 */
986 if ((optlen == TCPOLEN_TSTAMP_APPA ||
987 (optlen > TCPOLEN_TSTAMP_APPA &&
988 optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
989 *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
990 (th->th_flags & TH_SYN) == 0) {
991 opti.ts_present = 1;
992 opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
993 opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
994 optp = NULL; /* we've parsed the options */
995 }
996 }
997 tiflags = th->th_flags;
998
999 /*
1000 * Locate pcb for segment.
1001 */
1002 findpcb:
1003 inp = NULL;
1004 #ifdef INET6
1005 in6p = NULL;
1006 #endif
1007 switch (af) {
1008 #ifdef INET
1009 case AF_INET:
1010 inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
1011 ip->ip_dst, th->th_dport);
1012 if (inp == 0) {
1013 ++tcpstat.tcps_pcbhashmiss;
1014 inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
1015 }
1016 #ifdef INET6
1017 if (inp == 0) {
1018 struct in6_addr s, d;
1019
1020 /* mapped addr case */
1021 bzero(&s, sizeof(s));
1022 s.s6_addr16[5] = htons(0xffff);
1023 bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
1024 bzero(&d, sizeof(d));
1025 d.s6_addr16[5] = htons(0xffff);
1026 bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
1027 in6p = in6_pcblookup_connect(&tcb6, &s, th->th_sport,
1028 &d, th->th_dport, 0);
1029 if (in6p == 0) {
1030 ++tcpstat.tcps_pcbhashmiss;
1031 in6p = in6_pcblookup_bind(&tcb6, &d,
1032 th->th_dport, 0);
1033 }
1034 }
1035 #endif
1036 #ifndef INET6
1037 if (inp == 0)
1038 #else
1039 if (inp == 0 && in6p == 0)
1040 #endif
1041 {
1042 ++tcpstat.tcps_noport;
1043 if (tcp_log_refused && (tiflags & TH_SYN)) {
1044 tcp4_log_refused(ip, th);
1045 }
1046 TCP_FIELDS_TO_HOST(th);
1047 goto dropwithreset_ratelim;
1048 }
1049 #ifdef IPSEC
1050 if (inp && ipsec4_in_reject(m, inp)) {
1051 ipsecstat.in_polvio++;
1052 goto drop;
1053 }
1054 #ifdef INET6
1055 else if (in6p && ipsec4_in_reject_so(m, in6p->in6p_socket)) {
1056 ipsecstat.in_polvio++;
1057 goto drop;
1058 }
1059 #endif
1060 #endif /*IPSEC*/
1061 break;
1062 #endif /*INET*/
1063 #ifdef INET6
1064 case AF_INET6:
1065 {
1066 int faith;
1067
1068 #if defined(NFAITH) && NFAITH > 0
1069 faith = faithprefix(&ip6->ip6_dst);
1070 #else
1071 faith = 0;
1072 #endif
1073 in6p = in6_pcblookup_connect(&tcb6, &ip6->ip6_src, th->th_sport,
1074 &ip6->ip6_dst, th->th_dport, faith);
1075 if (in6p == NULL) {
1076 ++tcpstat.tcps_pcbhashmiss;
1077 in6p = in6_pcblookup_bind(&tcb6, &ip6->ip6_dst,
1078 th->th_dport, faith);
1079 }
1080 if (in6p == NULL) {
1081 ++tcpstat.tcps_noport;
1082 if (tcp_log_refused && (tiflags & TH_SYN)) {
1083 tcp6_log_refused(ip6, th);
1084 }
1085 TCP_FIELDS_TO_HOST(th);
1086 goto dropwithreset_ratelim;
1087 }
1088 #ifdef IPSEC
1089 if (ipsec6_in_reject(m, in6p)) {
1090 ipsec6stat.in_polvio++;
1091 goto drop;
1092 }
1093 #endif /*IPSEC*/
1094 break;
1095 }
1096 #endif
1097 }
1098
1099 /*
1100 * If the state is CLOSED (i.e., TCB does not exist) then
1101 * all data in the incoming segment is discarded.
1102 * If the TCB exists but is in CLOSED state, it is embryonic,
1103 * but should either do a listen or a connect soon.
1104 */
1105 tp = NULL;
1106 so = NULL;
1107 if (inp) {
1108 tp = intotcpcb(inp);
1109 so = inp->inp_socket;
1110 }
1111 #ifdef INET6
1112 else if (in6p) {
1113 tp = in6totcpcb(in6p);
1114 so = in6p->in6p_socket;
1115 }
1116 #endif
1117 if (tp == 0) {
1118 TCP_FIELDS_TO_HOST(th);
1119 goto dropwithreset_ratelim;
1120 }
1121 if (tp->t_state == TCPS_CLOSED)
1122 goto drop;
1123
1124 /*
1125 * Checksum extended TCP header and data.
1126 */
1127 switch (af) {
1128 #ifdef INET
1129 case AF_INET:
1130 switch (m->m_pkthdr.csum_flags &
1131 ((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
1132 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
1133 case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
1134 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
1135 goto badcsum;
1136
1137 case M_CSUM_TCPv4|M_CSUM_DATA:
1138 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
1139 if ((m->m_pkthdr.csum_data ^ 0xffff) != 0)
1140 goto badcsum;
1141 break;
1142
1143 case M_CSUM_TCPv4:
1144 /* Checksum was okay. */
1145 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
1146 break;
1147
1148 default:
1149 /* Must compute it ourselves. */
1150 TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
1151 #ifndef PULLDOWN_TEST
1152 {
1153 struct ipovly *ipov;
1154 ipov = (struct ipovly *)ip;
1155 bzero(ipov->ih_x1, sizeof ipov->ih_x1);
1156 ipov->ih_len = htons(tlen + off);
1157
1158 if (in_cksum(m, len) != 0)
1159 goto badcsum;
1160 }
1161 #else
1162 if (in4_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0)
1163 goto badcsum;
1164 #endif /* ! PULLDOWN_TEST */
1165 break;
1166 }
1167 break;
1168 #endif /* INET4 */
1169
1170 #ifdef INET6
1171 case AF_INET6:
1172 if (in6_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0)
1173 goto badcsum;
1174 break;
1175 #endif /* INET6 */
1176 }
1177
1178 TCP_FIELDS_TO_HOST(th);
1179
1180 /* Unscale the window into a 32-bit value. */
1181 if ((tiflags & TH_SYN) == 0)
1182 tiwin = th->th_win << tp->snd_scale;
1183 else
1184 tiwin = th->th_win;
1185
1186 #ifdef INET6
1187 /* save packet options if user wanted */
1188 if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
1189 if (in6p->in6p_options) {
1190 m_freem(in6p->in6p_options);
1191 in6p->in6p_options = 0;
1192 }
1193 ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
1194 }
1195 #endif
1196
1197 if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
1198 union syn_cache_sa src;
1199 union syn_cache_sa dst;
1200
1201 bzero(&src, sizeof(src));
1202 bzero(&dst, sizeof(dst));
1203 switch (af) {
1204 #ifdef INET
1205 case AF_INET:
1206 src.sin.sin_len = sizeof(struct sockaddr_in);
1207 src.sin.sin_family = AF_INET;
1208 src.sin.sin_addr = ip->ip_src;
1209 src.sin.sin_port = th->th_sport;
1210
1211 dst.sin.sin_len = sizeof(struct sockaddr_in);
1212 dst.sin.sin_family = AF_INET;
1213 dst.sin.sin_addr = ip->ip_dst;
1214 dst.sin.sin_port = th->th_dport;
1215 break;
1216 #endif
1217 #ifdef INET6
1218 case AF_INET6:
1219 src.sin6.sin6_len = sizeof(struct sockaddr_in6);
1220 src.sin6.sin6_family = AF_INET6;
1221 src.sin6.sin6_addr = ip6->ip6_src;
1222 src.sin6.sin6_port = th->th_sport;
1223
1224 dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
1225 dst.sin6.sin6_family = AF_INET6;
1226 dst.sin6.sin6_addr = ip6->ip6_dst;
1227 dst.sin6.sin6_port = th->th_dport;
1228 break;
1229 #endif /* INET6 */
1230 default:
1231 goto badsyn; /*sanity*/
1232 }
1233
1234 if (so->so_options & SO_DEBUG) {
1235 ostate = tp->t_state;
1236
1237 tcp_saveti = NULL;
1238 if (iphlen + sizeof(struct tcphdr) > MHLEN)
1239 goto nosave;
1240
1241 if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
1242 tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
1243 if (!tcp_saveti)
1244 goto nosave;
1245 } else {
1246 MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
1247 if (!tcp_saveti)
1248 goto nosave;
1249 tcp_saveti->m_len = iphlen;
1250 m_copydata(m, 0, iphlen,
1251 mtod(tcp_saveti, caddr_t));
1252 }
1253
1254 if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
1255 m_freem(tcp_saveti);
1256 tcp_saveti = NULL;
1257 } else {
1258 tcp_saveti->m_len += sizeof(struct tcphdr);
1259 bcopy(th, mtod(tcp_saveti, caddr_t) + iphlen,
1260 sizeof(struct tcphdr));
1261 }
1262 if (tcp_saveti) {
1263 /*
1264 * need to recover version # field, which was
1265 * overwritten on ip_cksum computation.
1266 */
1267 struct ip *sip;
1268 sip = mtod(tcp_saveti, struct ip *);
1269 switch (af) {
1270 #ifdef INET
1271 case AF_INET:
1272 sip->ip_v = 4;
1273 break;
1274 #endif
1275 #ifdef INET6
1276 case AF_INET6:
1277 sip->ip_v = 6;
1278 break;
1279 #endif
1280 }
1281 }
1282 nosave:;
1283 }
1284 if (so->so_options & SO_ACCEPTCONN) {
1285 if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1286 if (tiflags & TH_RST) {
1287 syn_cache_reset(&src.sa, &dst.sa, th);
1288 } else if ((tiflags & (TH_ACK|TH_SYN)) ==
1289 (TH_ACK|TH_SYN)) {
1290 /*
1291 * Received a SYN,ACK. This should
1292 * never happen while we are in
1293 * LISTEN. Send an RST.
1294 */
1295 goto badsyn;
1296 } else if (tiflags & TH_ACK) {
1297 so = syn_cache_get(&src.sa, &dst.sa,
1298 th, toff, tlen, so, m);
1299 if (so == NULL) {
1300 /*
1301 * We don't have a SYN for
1302 * this ACK; send an RST.
1303 */
1304 goto badsyn;
1305 } else if (so ==
1306 (struct socket *)(-1)) {
1307 /*
1308 * We were unable to create
1309 * the connection. If the
1310 * 3-way handshake was
1311 * completed, and RST has
1312 * been sent to the peer.
1313 * Since the mbuf might be
1314 * in use for the reply,
1315 * do not free it.
1316 */
1317 m = NULL;
1318 } else {
1319 /*
1320 * We have created a
1321 * full-blown connection.
1322 */
1323 tp = NULL;
1324 inp = NULL;
1325 #ifdef INET6
1326 in6p = NULL;
1327 #endif
1328 switch (so->so_proto->pr_domain->dom_family) {
1329 #ifdef INET
1330 case AF_INET:
1331 inp = sotoinpcb(so);
1332 tp = intotcpcb(inp);
1333 break;
1334 #endif
1335 #ifdef INET6
1336 case AF_INET6:
1337 in6p = sotoin6pcb(so);
1338 tp = in6totcpcb(in6p);
1339 break;
1340 #endif
1341 }
1342 if (tp == NULL)
1343 goto badsyn; /*XXX*/
1344 tiwin <<= tp->snd_scale;
1345 goto after_listen;
1346 }
1347 } else {
1348 /*
1349 * None of RST, SYN or ACK was set.
1350 * This is an invalid packet for a
1351 * TCB in LISTEN state. Send a RST.
1352 */
1353 goto badsyn;
1354 }
1355 } else {
1356 /*
1357 * Received a SYN.
1358 */
1359
1360 /*
1361 * LISTEN socket received a SYN
1362 * from itself? This can't possibly
1363 * be valid; drop the packet.
1364 */
1365 if (th->th_sport == th->th_dport) {
1366 int i;
1367
1368 switch (af) {
1369 #ifdef INET
1370 case AF_INET:
1371 i = in_hosteq(ip->ip_src, ip->ip_dst);
1372 break;
1373 #endif
1374 #ifdef INET6
1375 case AF_INET6:
1376 i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
1377 break;
1378 #endif
1379 default:
1380 i = 1;
1381 }
1382 if (i) {
1383 tcpstat.tcps_badsyn++;
1384 goto drop;
1385 }
1386 }
1387
1388 /*
1389 * SYN looks ok; create compressed TCP
1390 * state for it.
1391 */
1392 if (so->so_qlen <= so->so_qlimit &&
1393 syn_cache_add(&src.sa, &dst.sa, th, tlen,
1394 so, m, optp, optlen, &opti))
1395 m = NULL;
1396 }
1397 goto drop;
1398 }
1399 }
1400
1401 after_listen:
1402 #ifdef DIAGNOSTIC
1403 /*
1404 * Should not happen now that all embryonic connections
1405 * are handled with compressed state.
1406 */
1407 if (tp->t_state == TCPS_LISTEN)
1408 panic("tcp_input: TCPS_LISTEN");
1409 #endif
1410
1411 /*
1412 * Segment received on connection.
1413 * Reset idle time and keep-alive timer.
1414 */
1415 tp->t_rcvtime = tcp_now;
1416 if (TCPS_HAVEESTABLISHED(tp->t_state))
1417 TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1418
1419 /*
1420 * Process options.
1421 */
1422 if (optp)
1423 tcp_dooptions(tp, optp, optlen, th, &opti);
1424
1425 /*
1426 * Header prediction: check for the two common cases
1427 * of a uni-directional data xfer. If the packet has
1428 * no control flags, is in-sequence, the window didn't
1429 * change and we're not retransmitting, it's a
1430 * candidate. If the length is zero and the ack moved
1431 * forward, we're the sender side of the xfer. Just
1432 * free the data acked & wake any higher level process
1433 * that was blocked waiting for space. If the length
1434 * is non-zero and the ack didn't move, we're the
1435 * receiver side. If we're getting packets in-order
1436 * (the reassembly queue is empty), add the data to
1437 * the socket buffer and note that we need a delayed ack.
1438 */
1439 if (tp->t_state == TCPS_ESTABLISHED &&
1440 (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1441 (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
1442 th->th_seq == tp->rcv_nxt &&
1443 tiwin && tiwin == tp->snd_wnd &&
1444 tp->snd_nxt == tp->snd_max) {
1445
1446 /*
1447 * If last ACK falls within this segment's sequence numbers,
1448 * record the timestamp.
1449 */
1450 if (opti.ts_present &&
1451 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1452 SEQ_LT(tp->last_ack_sent, th->th_seq + tlen)) {
1453 tp->ts_recent_age = TCP_TIMESTAMP(tp);
1454 tp->ts_recent = opti.ts_val;
1455 }
1456
1457 if (tlen == 0) {
1458 if (SEQ_GT(th->th_ack, tp->snd_una) &&
1459 SEQ_LEQ(th->th_ack, tp->snd_max) &&
1460 tp->snd_cwnd >= tp->snd_wnd &&
1461 tp->t_dupacks < tcprexmtthresh) {
1462 /*
1463 * this is a pure ack for outstanding data.
1464 */
1465 ++tcpstat.tcps_predack;
1466 if (opti.ts_present && opti.ts_ecr)
1467 tcp_xmit_timer(tp,
1468 TCP_TIMESTAMP(tp) - opti.ts_ecr + 1);
1469 else if (tp->t_rtttime &&
1470 SEQ_GT(th->th_ack, tp->t_rtseq))
1471 tcp_xmit_timer(tp,
1472 tcp_now - tp->t_rtttime);
1473 acked = th->th_ack - tp->snd_una;
1474 tcpstat.tcps_rcvackpack++;
1475 tcpstat.tcps_rcvackbyte += acked;
1476 ND6_HINT(tp);
1477 sbdrop(&so->so_snd, acked);
1478 /*
1479 * We want snd_recover to track snd_una to
1480 * avoid sequence wraparound problems for
1481 * very large transfers.
1482 */
1483 tp->snd_una = tp->snd_recover = th->th_ack;
1484 m_freem(m);
1485
1486 /*
1487 * If all outstanding data are acked, stop
1488 * retransmit timer, otherwise restart timer
1489 * using current (possibly backed-off) value.
1490 * If process is waiting for space,
1491 * wakeup/selwakeup/signal. If data
1492 * are ready to send, let tcp_output
1493 * decide between more output or persist.
1494 */
1495 if (tp->snd_una == tp->snd_max)
1496 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1497 else if (TCP_TIMER_ISARMED(tp,
1498 TCPT_PERSIST) == 0)
1499 TCP_TIMER_ARM(tp, TCPT_REXMT,
1500 tp->t_rxtcur);
1501
1502 sowwakeup(so);
1503 if (so->so_snd.sb_cc)
1504 (void) tcp_output(tp);
1505 if (tcp_saveti)
1506 m_freem(tcp_saveti);
1507 return;
1508 }
1509 } else if (th->th_ack == tp->snd_una &&
1510 TAILQ_FIRST(&tp->segq) == NULL &&
1511 tlen <= sbspace(&so->so_rcv)) {
1512 /*
1513 * this is a pure, in-sequence data packet
1514 * with nothing on the reassembly queue and
1515 * we have enough buffer space to take it.
1516 */
1517 ++tcpstat.tcps_preddat;
1518 tp->rcv_nxt += tlen;
1519 tcpstat.tcps_rcvpack++;
1520 tcpstat.tcps_rcvbyte += tlen;
1521 ND6_HINT(tp);
1522 /*
1523 * Drop TCP, IP headers and TCP options then add data
1524 * to socket buffer.
1525 */
1526 m_adj(m, toff + off);
1527 sbappendstream(&so->so_rcv, m);
1528 sorwakeup(so);
1529 TCP_SETUP_ACK(tp, th);
1530 if (tp->t_flags & TF_ACKNOW)
1531 (void) tcp_output(tp);
1532 if (tcp_saveti)
1533 m_freem(tcp_saveti);
1534 return;
1535 }
1536 }
1537
1538 /*
1539 * Compute mbuf offset to TCP data segment.
1540 */
1541 hdroptlen = toff + off;
1542
1543 /*
1544 * Calculate amount of space in receive window,
1545 * and then do TCP input processing.
1546 * Receive window is amount of space in rcv queue,
1547 * but not less than advertised window.
1548 */
1549 { int win;
1550
1551 win = sbspace(&so->so_rcv);
1552 if (win < 0)
1553 win = 0;
1554 tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1555 }
1556
1557 switch (tp->t_state) {
1558 case TCPS_LISTEN:
1559 /*
1560 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
1561 */
1562 if (m->m_flags & (M_BCAST|M_MCAST))
1563 goto drop;
1564 switch (af) {
1565 #ifdef INET6
1566 case AF_INET6:
1567 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
1568 goto drop;
1569 break;
1570 #endif /* INET6 */
1571 case AF_INET:
1572 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
1573 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
1574 goto drop;
1575 break;
1576 }
1577 break;
1578
1579 /*
1580 * If the state is SYN_SENT:
1581 * if seg contains an ACK, but not for our SYN, drop the input.
1582 * if seg contains a RST, then drop the connection.
1583 * if seg does not contain SYN, then drop it.
1584 * Otherwise this is an acceptable SYN segment
1585 * initialize tp->rcv_nxt and tp->irs
1586 * if seg contains ack then advance tp->snd_una
1587 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1588 * arrange for segment to be acked (eventually)
1589 * continue processing rest of data/controls, beginning with URG
1590 */
1591 case TCPS_SYN_SENT:
1592 if ((tiflags & TH_ACK) &&
1593 (SEQ_LEQ(th->th_ack, tp->iss) ||
1594 SEQ_GT(th->th_ack, tp->snd_max)))
1595 goto dropwithreset;
1596 if (tiflags & TH_RST) {
1597 if (tiflags & TH_ACK)
1598 tp = tcp_drop(tp, ECONNREFUSED);
1599 goto drop;
1600 }
1601 if ((tiflags & TH_SYN) == 0)
1602 goto drop;
1603 if (tiflags & TH_ACK) {
1604 tp->snd_una = tp->snd_recover = th->th_ack;
1605 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1606 tp->snd_nxt = tp->snd_una;
1607 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1608 }
1609 tp->irs = th->th_seq;
1610 tcp_rcvseqinit(tp);
1611 tp->t_flags |= TF_ACKNOW;
1612 tcp_mss_from_peer(tp, opti.maxseg);
1613
1614 /*
1615 * Initialize the initial congestion window. If we
1616 * had to retransmit the SYN, we must initialize cwnd
1617 * to 1 segment (i.e. the Loss Window).
1618 */
1619 if (tp->t_flags & TF_SYN_REXMT)
1620 tp->snd_cwnd = tp->t_peermss;
1621 else
1622 tp->snd_cwnd = TCP_INITIAL_WINDOW(tcp_init_win,
1623 tp->t_peermss);
1624
1625 tcp_rmx_rtt(tp);
1626 if (tiflags & TH_ACK) {
1627 tcpstat.tcps_connects++;
1628 soisconnected(so);
1629 tcp_established(tp);
1630 /* Do window scaling on this connection? */
1631 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1632 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1633 tp->snd_scale = tp->requested_s_scale;
1634 tp->rcv_scale = tp->request_r_scale;
1635 }
1636 TCP_REASS_LOCK(tp);
1637 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1638 TCP_REASS_UNLOCK(tp);
1639 /*
1640 * if we didn't have to retransmit the SYN,
1641 * use its rtt as our initial srtt & rtt var.
1642 */
1643 if (tp->t_rtttime)
1644 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
1645 } else
1646 tp->t_state = TCPS_SYN_RECEIVED;
1647
1648 /*
1649 * Advance th->th_seq to correspond to first data byte.
1650 * If data, trim to stay within window,
1651 * dropping FIN if necessary.
1652 */
1653 th->th_seq++;
1654 if (tlen > tp->rcv_wnd) {
1655 todrop = tlen - tp->rcv_wnd;
1656 m_adj(m, -todrop);
1657 tlen = tp->rcv_wnd;
1658 tiflags &= ~TH_FIN;
1659 tcpstat.tcps_rcvpackafterwin++;
1660 tcpstat.tcps_rcvbyteafterwin += todrop;
1661 }
1662 tp->snd_wl1 = th->th_seq - 1;
1663 tp->rcv_up = th->th_seq;
1664 goto step6;
1665
1666 /*
1667 * If the state is SYN_RECEIVED:
1668 * If seg contains an ACK, but not for our SYN, drop the input
1669 * and generate an RST. See page 36, rfc793
1670 */
1671 case TCPS_SYN_RECEIVED:
1672 if ((tiflags & TH_ACK) &&
1673 (SEQ_LEQ(th->th_ack, tp->iss) ||
1674 SEQ_GT(th->th_ack, tp->snd_max)))
1675 goto dropwithreset;
1676 break;
1677 }
1678
1679 /*
1680 * States other than LISTEN or SYN_SENT.
1681 * First check timestamp, if present.
1682 * Then check that at least some bytes of segment are within
1683 * receive window. If segment begins before rcv_nxt,
1684 * drop leading data (and SYN); if nothing left, just ack.
1685 *
1686 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1687 * and it's less than ts_recent, drop it.
1688 */
1689 if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
1690 TSTMP_LT(opti.ts_val, tp->ts_recent)) {
1691
1692 /* Check to see if ts_recent is over 24 days old. */
1693 if ((int)(TCP_TIMESTAMP(tp) - tp->ts_recent_age) >
1694 TCP_PAWS_IDLE) {
1695 /*
1696 * Invalidate ts_recent. If this segment updates
1697 * ts_recent, the age will be reset later and ts_recent
1698 * will get a valid value. If it does not, setting
1699 * ts_recent to zero will at least satisfy the
1700 * requirement that zero be placed in the timestamp
1701 * echo reply when ts_recent isn't valid. The
1702 * age isn't reset until we get a valid ts_recent
1703 * because we don't want out-of-order segments to be
1704 * dropped when ts_recent is old.
1705 */
1706 tp->ts_recent = 0;
1707 } else {
1708 tcpstat.tcps_rcvduppack++;
1709 tcpstat.tcps_rcvdupbyte += tlen;
1710 tcpstat.tcps_pawsdrop++;
1711 goto dropafterack;
1712 }
1713 }
1714
1715 todrop = tp->rcv_nxt - th->th_seq;
1716 if (todrop > 0) {
1717 if (tiflags & TH_SYN) {
1718 tiflags &= ~TH_SYN;
1719 th->th_seq++;
1720 if (th->th_urp > 1)
1721 th->th_urp--;
1722 else {
1723 tiflags &= ~TH_URG;
1724 th->th_urp = 0;
1725 }
1726 todrop--;
1727 }
1728 if (todrop > tlen ||
1729 (todrop == tlen && (tiflags & TH_FIN) == 0)) {
1730 /*
1731 * Any valid FIN must be to the left of the window.
1732 * At this point the FIN must be a duplicate or
1733 * out of sequence; drop it.
1734 */
1735 tiflags &= ~TH_FIN;
1736 /*
1737 * Send an ACK to resynchronize and drop any data.
1738 * But keep on processing for RST or ACK.
1739 */
1740 tp->t_flags |= TF_ACKNOW;
1741 todrop = tlen;
1742 tcpstat.tcps_rcvdupbyte += todrop;
1743 tcpstat.tcps_rcvduppack++;
1744 } else {
1745 tcpstat.tcps_rcvpartduppack++;
1746 tcpstat.tcps_rcvpartdupbyte += todrop;
1747 }
1748 hdroptlen += todrop; /*drop from head afterwards*/
1749 th->th_seq += todrop;
1750 tlen -= todrop;
1751 if (th->th_urp > todrop)
1752 th->th_urp -= todrop;
1753 else {
1754 tiflags &= ~TH_URG;
1755 th->th_urp = 0;
1756 }
1757 }
1758
1759 /*
1760 * If new data are received on a connection after the
1761 * user processes are gone, then RST the other end.
1762 */
1763 if ((so->so_state & SS_NOFDREF) &&
1764 tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1765 tp = tcp_close(tp);
1766 tcpstat.tcps_rcvafterclose++;
1767 goto dropwithreset;
1768 }
1769
1770 /*
1771 * If segment ends after window, drop trailing data
1772 * (and PUSH and FIN); if nothing left, just ACK.
1773 */
1774 todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
1775 if (todrop > 0) {
1776 tcpstat.tcps_rcvpackafterwin++;
1777 if (todrop >= tlen) {
1778 tcpstat.tcps_rcvbyteafterwin += tlen;
1779 /*
1780 * If a new connection request is received
1781 * while in TIME_WAIT, drop the old connection
1782 * and start over if the sequence numbers
1783 * are above the previous ones.
1784 */
1785 if (tiflags & TH_SYN &&
1786 tp->t_state == TCPS_TIME_WAIT &&
1787 SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1788 iss = tcp_new_iss(tp, tp->snd_nxt);
1789 tp = tcp_close(tp);
1790 goto findpcb;
1791 }
1792 /*
1793 * If window is closed can only take segments at
1794 * window edge, and have to drop data and PUSH from
1795 * incoming segments. Continue processing, but
1796 * remember to ack. Otherwise, drop segment
1797 * and ack.
1798 */
1799 if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1800 tp->t_flags |= TF_ACKNOW;
1801 tcpstat.tcps_rcvwinprobe++;
1802 } else
1803 goto dropafterack;
1804 } else
1805 tcpstat.tcps_rcvbyteafterwin += todrop;
1806 m_adj(m, -todrop);
1807 tlen -= todrop;
1808 tiflags &= ~(TH_PUSH|TH_FIN);
1809 }
1810
1811 /*
1812 * If last ACK falls within this segment's sequence numbers,
1813 * and the timestamp is newer, record it.
1814 */
1815 if (opti.ts_present && TSTMP_GEQ(opti.ts_val, tp->ts_recent) &&
1816 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1817 SEQ_LT(tp->last_ack_sent, th->th_seq + tlen +
1818 ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
1819 tp->ts_recent_age = TCP_TIMESTAMP(tp);
1820 tp->ts_recent = opti.ts_val;
1821 }
1822
1823 /*
1824 * If the RST bit is set examine the state:
1825 * SYN_RECEIVED STATE:
1826 * If passive open, return to LISTEN state.
1827 * If active open, inform user that connection was refused.
1828 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
1829 * Inform user that connection was reset, and close tcb.
1830 * CLOSING, LAST_ACK, TIME_WAIT STATES
1831 * Close the tcb.
1832 */
1833 if (tiflags&TH_RST) switch (tp->t_state) {
1834
1835 case TCPS_SYN_RECEIVED:
1836 so->so_error = ECONNREFUSED;
1837 goto close;
1838
1839 case TCPS_ESTABLISHED:
1840 case TCPS_FIN_WAIT_1:
1841 case TCPS_FIN_WAIT_2:
1842 case TCPS_CLOSE_WAIT:
1843 so->so_error = ECONNRESET;
1844 close:
1845 tp->t_state = TCPS_CLOSED;
1846 tcpstat.tcps_drops++;
1847 tp = tcp_close(tp);
1848 goto drop;
1849
1850 case TCPS_CLOSING:
1851 case TCPS_LAST_ACK:
1852 case TCPS_TIME_WAIT:
1853 tp = tcp_close(tp);
1854 goto drop;
1855 }
1856
1857 /*
1858 * If a SYN is in the window, then this is an
1859 * error and we send an RST and drop the connection.
1860 */
1861 if (tiflags & TH_SYN) {
1862 tp = tcp_drop(tp, ECONNRESET);
1863 goto dropwithreset;
1864 }
1865
1866 /*
1867 * If the ACK bit is off we drop the segment and return.
1868 */
1869 if ((tiflags & TH_ACK) == 0) {
1870 if (tp->t_flags & TF_ACKNOW)
1871 goto dropafterack;
1872 else
1873 goto drop;
1874 }
1875
1876 /*
1877 * Ack processing.
1878 */
1879 switch (tp->t_state) {
1880
1881 /*
1882 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
1883 * ESTABLISHED state and continue processing, otherwise
1884 * send an RST.
1885 */
1886 case TCPS_SYN_RECEIVED:
1887 if (SEQ_GT(tp->snd_una, th->th_ack) ||
1888 SEQ_GT(th->th_ack, tp->snd_max))
1889 goto dropwithreset;
1890 tcpstat.tcps_connects++;
1891 soisconnected(so);
1892 tcp_established(tp);
1893 /* Do window scaling? */
1894 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1895 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1896 tp->snd_scale = tp->requested_s_scale;
1897 tp->rcv_scale = tp->request_r_scale;
1898 }
1899 TCP_REASS_LOCK(tp);
1900 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1901 TCP_REASS_UNLOCK(tp);
1902 tp->snd_wl1 = th->th_seq - 1;
1903 /* fall into ... */
1904
1905 /*
1906 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1907 * ACKs. If the ack is in the range
1908 * tp->snd_una < th->th_ack <= tp->snd_max
1909 * then advance tp->snd_una to th->th_ack and drop
1910 * data from the retransmission queue. If this ACK reflects
1911 * more up to date window information we update our window information.
1912 */
1913 case TCPS_ESTABLISHED:
1914 case TCPS_FIN_WAIT_1:
1915 case TCPS_FIN_WAIT_2:
1916 case TCPS_CLOSE_WAIT:
1917 case TCPS_CLOSING:
1918 case TCPS_LAST_ACK:
1919 case TCPS_TIME_WAIT:
1920
1921 if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
1922 if (tlen == 0 && tiwin == tp->snd_wnd) {
1923 tcpstat.tcps_rcvdupack++;
1924 /*
1925 * If we have outstanding data (other than
1926 * a window probe), this is a completely
1927 * duplicate ack (ie, window info didn't
1928 * change), the ack is the biggest we've
1929 * seen and we've seen exactly our rexmt
1930 * threshhold of them, assume a packet
1931 * has been dropped and retransmit it.
1932 * Kludge snd_nxt & the congestion
1933 * window so we send only this one
1934 * packet.
1935 *
1936 * We know we're losing at the current
1937 * window size so do congestion avoidance
1938 * (set ssthresh to half the current window
1939 * and pull our congestion window back to
1940 * the new ssthresh).
1941 *
1942 * Dup acks mean that packets have left the
1943 * network (they're now cached at the receiver)
1944 * so bump cwnd by the amount in the receiver
1945 * to keep a constant cwnd packets in the
1946 * network.
1947 */
1948 if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
1949 th->th_ack != tp->snd_una)
1950 tp->t_dupacks = 0;
1951 else if (++tp->t_dupacks == tcprexmtthresh) {
1952 tcp_seq onxt = tp->snd_nxt;
1953 u_int win =
1954 min(tp->snd_wnd, tp->snd_cwnd) /
1955 2 / tp->t_segsz;
1956 if (tcp_do_newreno && SEQ_LT(th->th_ack,
1957 tp->snd_recover)) {
1958 /*
1959 * False fast retransmit after
1960 * timeout. Do not cut window.
1961 */
1962 tp->snd_cwnd += tp->t_segsz;
1963 tp->t_dupacks = 0;
1964 (void) tcp_output(tp);
1965 goto drop;
1966 }
1967
1968 if (win < 2)
1969 win = 2;
1970 tp->snd_ssthresh = win * tp->t_segsz;
1971 tp->snd_recover = tp->snd_max;
1972 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1973 tp->t_rtttime = 0;
1974 tp->snd_nxt = th->th_ack;
1975 tp->snd_cwnd = tp->t_segsz;
1976 (void) tcp_output(tp);
1977 tp->snd_cwnd = tp->snd_ssthresh +
1978 tp->t_segsz * tp->t_dupacks;
1979 if (SEQ_GT(onxt, tp->snd_nxt))
1980 tp->snd_nxt = onxt;
1981 goto drop;
1982 } else if (tp->t_dupacks > tcprexmtthresh) {
1983 tp->snd_cwnd += tp->t_segsz;
1984 (void) tcp_output(tp);
1985 goto drop;
1986 }
1987 } else
1988 tp->t_dupacks = 0;
1989 break;
1990 }
1991 /*
1992 * If the congestion window was inflated to account
1993 * for the other side's cached packets, retract it.
1994 */
1995 if (tcp_do_newreno == 0) {
1996 if (tp->t_dupacks >= tcprexmtthresh &&
1997 tp->snd_cwnd > tp->snd_ssthresh)
1998 tp->snd_cwnd = tp->snd_ssthresh;
1999 tp->t_dupacks = 0;
2000 } else if (tp->t_dupacks >= tcprexmtthresh &&
2001 tcp_newreno(tp, th) == 0) {
2002 tp->snd_cwnd = tp->snd_ssthresh;
2003 /*
2004 * Window inflation should have left us with approx.
2005 * snd_ssthresh outstanding data. But in case we
2006 * would be inclined to send a burst, better to do
2007 * it via the slow start mechanism.
2008 */
2009 if (SEQ_SUB(tp->snd_max, th->th_ack) < tp->snd_ssthresh)
2010 tp->snd_cwnd = SEQ_SUB(tp->snd_max, th->th_ack)
2011 + tp->t_segsz;
2012 tp->t_dupacks = 0;
2013 }
2014 if (SEQ_GT(th->th_ack, tp->snd_max)) {
2015 tcpstat.tcps_rcvacktoomuch++;
2016 goto dropafterack;
2017 }
2018 acked = th->th_ack - tp->snd_una;
2019 tcpstat.tcps_rcvackpack++;
2020 tcpstat.tcps_rcvackbyte += acked;
2021
2022 /*
2023 * If we have a timestamp reply, update smoothed
2024 * round trip time. If no timestamp is present but
2025 * transmit timer is running and timed sequence
2026 * number was acked, update smoothed round trip time.
2027 * Since we now have an rtt measurement, cancel the
2028 * timer backoff (cf., Phil Karn's retransmit alg.).
2029 * Recompute the initial retransmit timer.
2030 */
2031 if (opti.ts_present && opti.ts_ecr)
2032 tcp_xmit_timer(tp, TCP_TIMESTAMP(tp) - opti.ts_ecr + 1);
2033 else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2034 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2035
2036 /*
2037 * If all outstanding data is acked, stop retransmit
2038 * timer and remember to restart (more output or persist).
2039 * If there is more data to be acked, restart retransmit
2040 * timer, using current (possibly backed-off) value.
2041 */
2042 if (th->th_ack == tp->snd_max) {
2043 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2044 needoutput = 1;
2045 } else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
2046 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
2047 /*
2048 * When new data is acked, open the congestion window.
2049 * If the window gives us less than ssthresh packets
2050 * in flight, open exponentially (segsz per packet).
2051 * Otherwise open linearly: segsz per window
2052 * (segsz^2 / cwnd per packet), plus a constant
2053 * fraction of a packet (segsz/8) to help larger windows
2054 * open quickly enough.
2055 */
2056 {
2057 u_int cw = tp->snd_cwnd;
2058 u_int incr = tp->t_segsz;
2059
2060 if (cw > tp->snd_ssthresh)
2061 incr = incr * incr / cw;
2062 if (tcp_do_newreno == 0 || SEQ_GEQ(th->th_ack, tp->snd_recover))
2063 tp->snd_cwnd = min(cw + incr,
2064 TCP_MAXWIN << tp->snd_scale);
2065 }
2066 ND6_HINT(tp);
2067 if (acked > so->so_snd.sb_cc) {
2068 tp->snd_wnd -= so->so_snd.sb_cc;
2069 sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
2070 ourfinisacked = 1;
2071 } else {
2072 sbdrop(&so->so_snd, acked);
2073 tp->snd_wnd -= acked;
2074 ourfinisacked = 0;
2075 }
2076 sowwakeup(so);
2077 /*
2078 * We want snd_recover to track snd_una to
2079 * avoid sequence wraparound problems for
2080 * very large transfers.
2081 */
2082 tp->snd_una = tp->snd_recover = th->th_ack;
2083 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2084 tp->snd_nxt = tp->snd_una;
2085
2086 switch (tp->t_state) {
2087
2088 /*
2089 * In FIN_WAIT_1 STATE in addition to the processing
2090 * for the ESTABLISHED state if our FIN is now acknowledged
2091 * then enter FIN_WAIT_2.
2092 */
2093 case TCPS_FIN_WAIT_1:
2094 if (ourfinisacked) {
2095 /*
2096 * If we can't receive any more
2097 * data, then closing user can proceed.
2098 * Starting the timer is contrary to the
2099 * specification, but if we don't get a FIN
2100 * we'll hang forever.
2101 */
2102 if (so->so_state & SS_CANTRCVMORE) {
2103 soisdisconnected(so);
2104 if (tcp_maxidle > 0)
2105 TCP_TIMER_ARM(tp, TCPT_2MSL,
2106 tcp_maxidle);
2107 }
2108 tp->t_state = TCPS_FIN_WAIT_2;
2109 }
2110 break;
2111
2112 /*
2113 * In CLOSING STATE in addition to the processing for
2114 * the ESTABLISHED state if the ACK acknowledges our FIN
2115 * then enter the TIME-WAIT state, otherwise ignore
2116 * the segment.
2117 */
2118 case TCPS_CLOSING:
2119 if (ourfinisacked) {
2120 tp->t_state = TCPS_TIME_WAIT;
2121 tcp_canceltimers(tp);
2122 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2123 soisdisconnected(so);
2124 }
2125 break;
2126
2127 /*
2128 * In LAST_ACK, we may still be waiting for data to drain
2129 * and/or to be acked, as well as for the ack of our FIN.
2130 * If our FIN is now acknowledged, delete the TCB,
2131 * enter the closed state and return.
2132 */
2133 case TCPS_LAST_ACK:
2134 if (ourfinisacked) {
2135 tp = tcp_close(tp);
2136 goto drop;
2137 }
2138 break;
2139
2140 /*
2141 * In TIME_WAIT state the only thing that should arrive
2142 * is a retransmission of the remote FIN. Acknowledge
2143 * it and restart the finack timer.
2144 */
2145 case TCPS_TIME_WAIT:
2146 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2147 goto dropafterack;
2148 }
2149 }
2150
2151 step6:
2152 /*
2153 * Update window information.
2154 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2155 */
2156 if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2157 (tp->snd_wl1 == th->th_seq && SEQ_LT(tp->snd_wl2, th->th_ack)) ||
2158 (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))) {
2159 /* keep track of pure window updates */
2160 if (tlen == 0 &&
2161 tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2162 tcpstat.tcps_rcvwinupd++;
2163 tp->snd_wnd = tiwin;
2164 tp->snd_wl1 = th->th_seq;
2165 tp->snd_wl2 = th->th_ack;
2166 if (tp->snd_wnd > tp->max_sndwnd)
2167 tp->max_sndwnd = tp->snd_wnd;
2168 needoutput = 1;
2169 }
2170
2171 /*
2172 * Process segments with URG.
2173 */
2174 if ((tiflags & TH_URG) && th->th_urp &&
2175 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2176 /*
2177 * This is a kludge, but if we receive and accept
2178 * random urgent pointers, we'll crash in
2179 * soreceive. It's hard to imagine someone
2180 * actually wanting to send this much urgent data.
2181 */
2182 if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2183 th->th_urp = 0; /* XXX */
2184 tiflags &= ~TH_URG; /* XXX */
2185 goto dodata; /* XXX */
2186 }
2187 /*
2188 * If this segment advances the known urgent pointer,
2189 * then mark the data stream. This should not happen
2190 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2191 * a FIN has been received from the remote side.
2192 * In these states we ignore the URG.
2193 *
2194 * According to RFC961 (Assigned Protocols),
2195 * the urgent pointer points to the last octet
2196 * of urgent data. We continue, however,
2197 * to consider it to indicate the first octet
2198 * of data past the urgent section as the original
2199 * spec states (in one of two places).
2200 */
2201 if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2202 tp->rcv_up = th->th_seq + th->th_urp;
2203 so->so_oobmark = so->so_rcv.sb_cc +
2204 (tp->rcv_up - tp->rcv_nxt) - 1;
2205 if (so->so_oobmark == 0)
2206 so->so_state |= SS_RCVATMARK;
2207 sohasoutofband(so);
2208 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2209 }
2210 /*
2211 * Remove out of band data so doesn't get presented to user.
2212 * This can happen independent of advancing the URG pointer,
2213 * but if two URG's are pending at once, some out-of-band
2214 * data may creep in... ick.
2215 */
2216 if (th->th_urp <= (u_int16_t) tlen
2217 #ifdef SO_OOBINLINE
2218 && (so->so_options & SO_OOBINLINE) == 0
2219 #endif
2220 )
2221 tcp_pulloutofband(so, th, m, hdroptlen);
2222 } else
2223 /*
2224 * If no out of band data is expected,
2225 * pull receive urgent pointer along
2226 * with the receive window.
2227 */
2228 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2229 tp->rcv_up = tp->rcv_nxt;
2230 dodata: /* XXX */
2231
2232 /*
2233 * Process the segment text, merging it into the TCP sequencing queue,
2234 * and arranging for acknowledgement of receipt if necessary.
2235 * This process logically involves adjusting tp->rcv_wnd as data
2236 * is presented to the user (this happens in tcp_usrreq.c,
2237 * case PRU_RCVD). If a FIN has already been received on this
2238 * connection then we just ignore the text.
2239 */
2240 if ((tlen || (tiflags & TH_FIN)) &&
2241 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2242 /*
2243 * Insert segment ti into reassembly queue of tcp with
2244 * control block tp. Return TH_FIN if reassembly now includes
2245 * a segment with FIN. The macro form does the common case
2246 * inline (segment is the next to be received on an
2247 * established connection, and the queue is empty),
2248 * avoiding linkage into and removal from the queue and
2249 * repetition of various conversions.
2250 * Set DELACK for segments received in order, but ack
2251 * immediately when segments are out of order
2252 * (so fast retransmit can work).
2253 */
2254 /* NOTE: this was TCP_REASS() macro, but used only once */
2255 TCP_REASS_LOCK(tp);
2256 if (th->th_seq == tp->rcv_nxt &&
2257 TAILQ_FIRST(&tp->segq) == NULL &&
2258 tp->t_state == TCPS_ESTABLISHED) {
2259 TCP_SETUP_ACK(tp, th);
2260 tp->rcv_nxt += tlen;
2261 tiflags = th->th_flags & TH_FIN;
2262 tcpstat.tcps_rcvpack++;
2263 tcpstat.tcps_rcvbyte += tlen;
2264 ND6_HINT(tp);
2265 m_adj(m, hdroptlen);
2266 sbappendstream(&(so)->so_rcv, m);
2267 sorwakeup(so);
2268 } else {
2269 m_adj(m, hdroptlen);
2270 tiflags = tcp_reass(tp, th, m, &tlen);
2271 tp->t_flags |= TF_ACKNOW;
2272 }
2273 TCP_REASS_UNLOCK(tp);
2274
2275 /*
2276 * Note the amount of data that peer has sent into
2277 * our window, in order to estimate the sender's
2278 * buffer size.
2279 */
2280 len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2281 } else {
2282 m_freem(m);
2283 m = NULL;
2284 tiflags &= ~TH_FIN;
2285 }
2286
2287 /*
2288 * If FIN is received ACK the FIN and let the user know
2289 * that the connection is closing. Ignore a FIN received before
2290 * the connection is fully established.
2291 */
2292 if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2293 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2294 socantrcvmore(so);
2295 tp->t_flags |= TF_ACKNOW;
2296 tp->rcv_nxt++;
2297 }
2298 switch (tp->t_state) {
2299
2300 /*
2301 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2302 */
2303 case TCPS_ESTABLISHED:
2304 tp->t_state = TCPS_CLOSE_WAIT;
2305 break;
2306
2307 /*
2308 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2309 * enter the CLOSING state.
2310 */
2311 case TCPS_FIN_WAIT_1:
2312 tp->t_state = TCPS_CLOSING;
2313 break;
2314
2315 /*
2316 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2317 * starting the time-wait timer, turning off the other
2318 * standard timers.
2319 */
2320 case TCPS_FIN_WAIT_2:
2321 tp->t_state = TCPS_TIME_WAIT;
2322 tcp_canceltimers(tp);
2323 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2324 soisdisconnected(so);
2325 break;
2326
2327 /*
2328 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2329 */
2330 case TCPS_TIME_WAIT:
2331 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2332 break;
2333 }
2334 }
2335 #ifdef TCP_DEBUG
2336 if (so->so_options & SO_DEBUG)
2337 tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
2338 #endif
2339
2340 /*
2341 * Return any desired output.
2342 */
2343 if (needoutput || (tp->t_flags & TF_ACKNOW))
2344 (void) tcp_output(tp);
2345 if (tcp_saveti)
2346 m_freem(tcp_saveti);
2347 return;
2348
2349 badsyn:
2350 /*
2351 * Received a bad SYN. Increment counters and dropwithreset.
2352 */
2353 tcpstat.tcps_badsyn++;
2354 tp = NULL;
2355 goto dropwithreset;
2356
2357 dropafterack:
2358 /*
2359 * Generate an ACK dropping incoming segment if it occupies
2360 * sequence space, where the ACK reflects our state.
2361 */
2362 if (tiflags & TH_RST)
2363 goto drop;
2364 m_freem(m);
2365 tp->t_flags |= TF_ACKNOW;
2366 (void) tcp_output(tp);
2367 if (tcp_saveti)
2368 m_freem(tcp_saveti);
2369 return;
2370
2371 dropwithreset_ratelim:
2372 /*
2373 * We may want to rate-limit RSTs in certain situations,
2374 * particularly if we are sending an RST in response to
2375 * an attempt to connect to or otherwise communicate with
2376 * a port for which we have no socket.
2377 */
2378 if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
2379 tcp_rst_ppslim) == 0) {
2380 /* XXX stat */
2381 goto drop;
2382 }
2383 /* ...fall into dropwithreset... */
2384
2385 dropwithreset:
2386 /*
2387 * Generate a RST, dropping incoming segment.
2388 * Make ACK acceptable to originator of segment.
2389 */
2390 if (tiflags & TH_RST)
2391 goto drop;
2392
2393 switch (af) {
2394 #ifdef INET6
2395 case AF_INET6:
2396 /* For following calls to tcp_respond */
2397 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
2398 goto drop;
2399 break;
2400 #endif /* INET6 */
2401 case AF_INET:
2402 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
2403 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2404 goto drop;
2405 }
2406
2407 {
2408 /*
2409 * need to recover version # field, which was overwritten on
2410 * ip_cksum computation.
2411 */
2412 struct ip *sip;
2413 sip = mtod(m, struct ip *);
2414 switch (af) {
2415 #ifdef INET
2416 case AF_INET:
2417 sip->ip_v = 4;
2418 break;
2419 #endif
2420 #ifdef INET6
2421 case AF_INET6:
2422 sip->ip_v = 6;
2423 break;
2424 #endif
2425 }
2426 }
2427 if (tiflags & TH_ACK)
2428 (void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
2429 else {
2430 if (tiflags & TH_SYN)
2431 tlen++;
2432 (void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
2433 TH_RST|TH_ACK);
2434 }
2435 if (tcp_saveti)
2436 m_freem(tcp_saveti);
2437 return;
2438
2439 badcsum:
2440 tcpstat.tcps_rcvbadsum++;
2441 drop:
2442 /*
2443 * Drop space held by incoming segment and return.
2444 */
2445 if (tp) {
2446 if (tp->t_inpcb)
2447 so = tp->t_inpcb->inp_socket;
2448 #ifdef INET6
2449 else if (tp->t_in6pcb)
2450 so = tp->t_in6pcb->in6p_socket;
2451 #endif
2452 else
2453 so = NULL;
2454 #ifdef TCP_DEBUG
2455 if (so && (so->so_options & SO_DEBUG) != 0)
2456 tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
2457 #endif
2458 }
2459 if (tcp_saveti)
2460 m_freem(tcp_saveti);
2461 m_freem(m);
2462 return;
2463 }
2464
2465 void
2466 tcp_dooptions(tp, cp, cnt, th, oi)
2467 struct tcpcb *tp;
2468 u_char *cp;
2469 int cnt;
2470 struct tcphdr *th;
2471 struct tcp_opt_info *oi;
2472 {
2473 u_int16_t mss;
2474 int opt, optlen;
2475
2476 for (; cnt > 0; cnt -= optlen, cp += optlen) {
2477 opt = cp[0];
2478 if (opt == TCPOPT_EOL)
2479 break;
2480 if (opt == TCPOPT_NOP)
2481 optlen = 1;
2482 else {
2483 if (cnt < 2)
2484 break;
2485 optlen = cp[1];
2486 if (optlen < 2 || optlen > cnt)
2487 break;
2488 }
2489 switch (opt) {
2490
2491 default:
2492 continue;
2493
2494 case TCPOPT_MAXSEG:
2495 if (optlen != TCPOLEN_MAXSEG)
2496 continue;
2497 if (!(th->th_flags & TH_SYN))
2498 continue;
2499 bcopy(cp + 2, &mss, sizeof(mss));
2500 oi->maxseg = ntohs(mss);
2501 break;
2502
2503 case TCPOPT_WINDOW:
2504 if (optlen != TCPOLEN_WINDOW)
2505 continue;
2506 if (!(th->th_flags & TH_SYN))
2507 continue;
2508 tp->t_flags |= TF_RCVD_SCALE;
2509 tp->requested_s_scale = cp[2];
2510 if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
2511 #if 0 /*XXX*/
2512 char *p;
2513
2514 if (ip)
2515 p = ntohl(ip->ip_src);
2516 #ifdef INET6
2517 else if (ip6)
2518 p = ip6_sprintf(&ip6->ip6_src);
2519 #endif
2520 else
2521 p = "(unknown)";
2522 log(LOG_ERR, "TCP: invalid wscale %d from %s, "
2523 "assuming %d\n",
2524 tp->requested_s_scale, p,
2525 TCP_MAX_WINSHIFT);
2526 #else
2527 log(LOG_ERR, "TCP: invalid wscale %d, "
2528 "assuming %d\n",
2529 tp->requested_s_scale,
2530 TCP_MAX_WINSHIFT);
2531 #endif
2532 tp->requested_s_scale = TCP_MAX_WINSHIFT;
2533 }
2534 break;
2535
2536 case TCPOPT_TIMESTAMP:
2537 if (optlen != TCPOLEN_TIMESTAMP)
2538 continue;
2539 oi->ts_present = 1;
2540 bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
2541 NTOHL(oi->ts_val);
2542 bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
2543 NTOHL(oi->ts_ecr);
2544
2545 /*
2546 * A timestamp received in a SYN makes
2547 * it ok to send timestamp requests and replies.
2548 */
2549 if (th->th_flags & TH_SYN) {
2550 tp->t_flags |= TF_RCVD_TSTMP;
2551 tp->ts_recent = oi->ts_val;
2552 tp->ts_recent_age = TCP_TIMESTAMP(tp);
2553 }
2554 break;
2555 case TCPOPT_SACK_PERMITTED:
2556 if (optlen != TCPOLEN_SACK_PERMITTED)
2557 continue;
2558 if (!(th->th_flags & TH_SYN))
2559 continue;
2560 tp->t_flags &= ~TF_CANT_TXSACK;
2561 break;
2562
2563 case TCPOPT_SACK:
2564 if (tp->t_flags & TF_IGNR_RXSACK)
2565 continue;
2566 if (optlen % 8 != 2 || optlen < 10)
2567 continue;
2568 cp += 2;
2569 optlen -= 2;
2570 for (; optlen > 0; cp -= 8, optlen -= 8) {
2571 tcp_seq lwe, rwe;
2572 bcopy((char *)cp, (char *) &lwe, sizeof(lwe));
2573 NTOHL(lwe);
2574 bcopy((char *)cp, (char *) &rwe, sizeof(rwe));
2575 NTOHL(rwe);
2576 /* tcp_mark_sacked(tp, lwe, rwe); */
2577 }
2578 break;
2579 }
2580 }
2581 }
2582
2583 /*
2584 * Pull out of band byte out of a segment so
2585 * it doesn't appear in the user's data queue.
2586 * It is still reflected in the segment length for
2587 * sequencing purposes.
2588 */
2589 void
2590 tcp_pulloutofband(so, th, m, off)
2591 struct socket *so;
2592 struct tcphdr *th;
2593 struct mbuf *m;
2594 int off;
2595 {
2596 int cnt = off + th->th_urp - 1;
2597
2598 while (cnt >= 0) {
2599 if (m->m_len > cnt) {
2600 char *cp = mtod(m, caddr_t) + cnt;
2601 struct tcpcb *tp = sototcpcb(so);
2602
2603 tp->t_iobc = *cp;
2604 tp->t_oobflags |= TCPOOB_HAVEDATA;
2605 bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
2606 m->m_len--;
2607 return;
2608 }
2609 cnt -= m->m_len;
2610 m = m->m_next;
2611 if (m == 0)
2612 break;
2613 }
2614 panic("tcp_pulloutofband");
2615 }
2616
2617 /*
2618 * Collect new round-trip time estimate
2619 * and update averages and current timeout.
2620 */
2621 void
2622 tcp_xmit_timer(tp, rtt)
2623 struct tcpcb *tp;
2624 uint32_t rtt;
2625 {
2626 int32_t delta;
2627
2628 tcpstat.tcps_rttupdated++;
2629 if (tp->t_srtt != 0) {
2630 /*
2631 * srtt is stored as fixed point with 3 bits after the
2632 * binary point (i.e., scaled by 8). The following magic
2633 * is equivalent to the smoothing algorithm in rfc793 with
2634 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2635 * point). Adjust rtt to origin 0.
2636 */
2637 delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
2638 if ((tp->t_srtt += delta) <= 0)
2639 tp->t_srtt = 1 << 2;
2640 /*
2641 * We accumulate a smoothed rtt variance (actually, a
2642 * smoothed mean difference), then set the retransmit
2643 * timer to smoothed rtt + 4 times the smoothed variance.
2644 * rttvar is stored as fixed point with 2 bits after the
2645 * binary point (scaled by 4). The following is
2646 * equivalent to rfc793 smoothing with an alpha of .75
2647 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces
2648 * rfc793's wired-in beta.
2649 */
2650 if (delta < 0)
2651 delta = -delta;
2652 delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
2653 if ((tp->t_rttvar += delta) <= 0)
2654 tp->t_rttvar = 1 << 2;
2655 } else {
2656 /*
2657 * No rtt measurement yet - use the unsmoothed rtt.
2658 * Set the variance to half the rtt (so our first
2659 * retransmit happens at 3*rtt).
2660 */
2661 tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
2662 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
2663 }
2664 tp->t_rtttime = 0;
2665 tp->t_rxtshift = 0;
2666
2667 /*
2668 * the retransmit should happen at rtt + 4 * rttvar.
2669 * Because of the way we do the smoothing, srtt and rttvar
2670 * will each average +1/2 tick of bias. When we compute
2671 * the retransmit timer, we want 1/2 tick of rounding and
2672 * 1 extra tick because of +-1/2 tick uncertainty in the
2673 * firing of the timer. The bias will give us exactly the
2674 * 1.5 tick we need. But, because the bias is
2675 * statistical, we have to test that we don't drop below
2676 * the minimum feasible timer (which is 2 ticks).
2677 */
2678 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
2679 max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
2680
2681 /*
2682 * We received an ack for a packet that wasn't retransmitted;
2683 * it is probably safe to discard any error indications we've
2684 * received recently. This isn't quite right, but close enough
2685 * for now (a route might have failed after we sent a segment,
2686 * and the return path might not be symmetrical).
2687 */
2688 tp->t_softerror = 0;
2689 }
2690
2691 /*
2692 * Checks for partial ack. If partial ack arrives, force the retransmission
2693 * of the next unacknowledged segment, do not clear tp->t_dupacks, and return
2694 * 1. By setting snd_nxt to th_ack, this forces retransmission timer to
2695 * be started again. If the ack advances at least to tp->snd_recover, return 0.
2696 */
2697 int
2698 tcp_newreno(tp, th)
2699 struct tcpcb *tp;
2700 struct tcphdr *th;
2701 {
2702 tcp_seq onxt = tp->snd_nxt;
2703 u_long ocwnd = tp->snd_cwnd;
2704
2705 if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2706 /*
2707 * snd_una has not yet been updated and the socket's send
2708 * buffer has not yet drained off the ACK'd data, so we
2709 * have to leave snd_una as it was to get the correct data
2710 * offset in tcp_output().
2711 */
2712 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2713 tp->t_rtttime = 0;
2714 tp->snd_nxt = th->th_ack;
2715 /*
2716 * Set snd_cwnd to one segment beyond ACK'd offset. snd_una
2717 * is not yet updated when we're called.
2718 */
2719 tp->snd_cwnd = tp->t_segsz + (th->th_ack - tp->snd_una);
2720 (void) tcp_output(tp);
2721 tp->snd_cwnd = ocwnd;
2722 if (SEQ_GT(onxt, tp->snd_nxt))
2723 tp->snd_nxt = onxt;
2724 /*
2725 * Partial window deflation. Relies on fact that tp->snd_una
2726 * not updated yet.
2727 */
2728 tp->snd_cwnd -= (th->th_ack - tp->snd_una - tp->t_segsz);
2729 return 1;
2730 }
2731 return 0;
2732 }
2733
2734
2735 /*
2736 * TCP compressed state engine. Currently used to hold compressed
2737 * state for SYN_RECEIVED.
2738 */
2739
2740 u_long syn_cache_count;
2741 u_int32_t syn_hash1, syn_hash2;
2742
2743 #define SYN_HASH(sa, sp, dp) \
2744 ((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
2745 ((u_int32_t)(sp)))^syn_hash2)))
2746 #ifndef INET6
2747 #define SYN_HASHALL(hash, src, dst) \
2748 do { \
2749 hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
2750 ((struct sockaddr_in *)(src))->sin_port, \
2751 ((struct sockaddr_in *)(dst))->sin_port); \
2752 } while (0)
2753 #else
2754 #define SYN_HASH6(sa, sp, dp) \
2755 ((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
2756 (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
2757 & 0x7fffffff)
2758
2759 #define SYN_HASHALL(hash, src, dst) \
2760 do { \
2761 switch ((src)->sa_family) { \
2762 case AF_INET: \
2763 hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
2764 ((struct sockaddr_in *)(src))->sin_port, \
2765 ((struct sockaddr_in *)(dst))->sin_port); \
2766 break; \
2767 case AF_INET6: \
2768 hash = SYN_HASH6(&((struct sockaddr_in6 *)(src))->sin6_addr, \
2769 ((struct sockaddr_in6 *)(src))->sin6_port, \
2770 ((struct sockaddr_in6 *)(dst))->sin6_port); \
2771 break; \
2772 default: \
2773 hash = 0; \
2774 } \
2775 } while (/*CONSTCOND*/0)
2776 #endif /* INET6 */
2777
2778 #define SYN_CACHE_RM(sc) \
2779 do { \
2780 TAILQ_REMOVE(&tcp_syn_cache[(sc)->sc_bucketidx].sch_bucket, \
2781 (sc), sc_bucketq); \
2782 (sc)->sc_tp = NULL; \
2783 LIST_REMOVE((sc), sc_tpq); \
2784 tcp_syn_cache[(sc)->sc_bucketidx].sch_length--; \
2785 callout_stop(&(sc)->sc_timer); \
2786 syn_cache_count--; \
2787 } while (/*CONSTCOND*/0)
2788
2789 #define SYN_CACHE_PUT(sc) \
2790 do { \
2791 if ((sc)->sc_ipopts) \
2792 (void) m_free((sc)->sc_ipopts); \
2793 if ((sc)->sc_route4.ro_rt != NULL) \
2794 RTFREE((sc)->sc_route4.ro_rt); \
2795 pool_put(&syn_cache_pool, (sc)); \
2796 } while (/*CONSTCOND*/0)
2797
2798 struct pool syn_cache_pool;
2799
2800 /*
2801 * We don't estimate RTT with SYNs, so each packet starts with the default
2802 * RTT and each timer step has a fixed timeout value.
2803 */
2804 #define SYN_CACHE_TIMER_ARM(sc) \
2805 do { \
2806 TCPT_RANGESET((sc)->sc_rxtcur, \
2807 TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN, \
2808 TCPTV_REXMTMAX); \
2809 callout_reset(&(sc)->sc_timer, \
2810 (sc)->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, (sc)); \
2811 } while (/*CONSTCOND*/0)
2812
2813 #define SYN_CACHE_TIMESTAMP(sc) (tcp_now - (sc)->sc_timebase)
2814
2815 void
2816 syn_cache_init()
2817 {
2818 int i;
2819
2820 /* Initialize the hash buckets. */
2821 for (i = 0; i < tcp_syn_cache_size; i++)
2822 TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
2823
2824 /* Initialize the syn cache pool. */
2825 pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
2826 "synpl", NULL);
2827 }
2828
2829 void
2830 syn_cache_insert(sc, tp)
2831 struct syn_cache *sc;
2832 struct tcpcb *tp;
2833 {
2834 struct syn_cache_head *scp;
2835 struct syn_cache *sc2;
2836 int s;
2837
2838 /*
2839 * If there are no entries in the hash table, reinitialize
2840 * the hash secrets.
2841 */
2842 if (syn_cache_count == 0) {
2843 struct timeval tv;
2844 microtime(&tv);
2845 syn_hash1 = arc4random() ^ (u_long)≻
2846 syn_hash2 = arc4random() ^ tv.tv_usec;
2847 }
2848
2849 SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
2850 sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
2851 scp = &tcp_syn_cache[sc->sc_bucketidx];
2852
2853 /*
2854 * Make sure that we don't overflow the per-bucket
2855 * limit or the total cache size limit.
2856 */
2857 s = splsoftnet();
2858 if (scp->sch_length >= tcp_syn_bucket_limit) {
2859 tcpstat.tcps_sc_bucketoverflow++;
2860 /*
2861 * The bucket is full. Toss the oldest element in the
2862 * bucket. This will be the first entry in the bucket.
2863 */
2864 sc2 = TAILQ_FIRST(&scp->sch_bucket);
2865 #ifdef DIAGNOSTIC
2866 /*
2867 * This should never happen; we should always find an
2868 * entry in our bucket.
2869 */
2870 if (sc2 == NULL)
2871 panic("syn_cache_insert: bucketoverflow: impossible");
2872 #endif
2873 SYN_CACHE_RM(sc2);
2874 SYN_CACHE_PUT(sc2);
2875 } else if (syn_cache_count >= tcp_syn_cache_limit) {
2876 struct syn_cache_head *scp2, *sce;
2877
2878 tcpstat.tcps_sc_overflowed++;
2879 /*
2880 * The cache is full. Toss the oldest entry in the
2881 * first non-empty bucket we can find.
2882 *
2883 * XXX We would really like to toss the oldest
2884 * entry in the cache, but we hope that this
2885 * condition doesn't happen very often.
2886 */
2887 scp2 = scp;
2888 if (TAILQ_EMPTY(&scp2->sch_bucket)) {
2889 sce = &tcp_syn_cache[tcp_syn_cache_size];
2890 for (++scp2; scp2 != scp; scp2++) {
2891 if (scp2 >= sce)
2892 scp2 = &tcp_syn_cache[0];
2893 if (! TAILQ_EMPTY(&scp2->sch_bucket))
2894 break;
2895 }
2896 #ifdef DIAGNOSTIC
2897 /*
2898 * This should never happen; we should always find a
2899 * non-empty bucket.
2900 */
2901 if (scp2 == scp)
2902 panic("syn_cache_insert: cacheoverflow: "
2903 "impossible");
2904 #endif
2905 }
2906 sc2 = TAILQ_FIRST(&scp2->sch_bucket);
2907 SYN_CACHE_RM(sc2);
2908 SYN_CACHE_PUT(sc2);
2909 }
2910
2911 /*
2912 * Initialize the entry's timer.
2913 */
2914 sc->sc_rxttot = 0;
2915 sc->sc_rxtshift = 0;
2916 SYN_CACHE_TIMER_ARM(sc);
2917
2918 /* Link it from tcpcb entry */
2919 LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
2920
2921 /* Put it into the bucket. */
2922 TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
2923 scp->sch_length++;
2924 syn_cache_count++;
2925
2926 tcpstat.tcps_sc_added++;
2927 splx(s);
2928 }
2929
2930 /*
2931 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
2932 * If we have retransmitted an entry the maximum number of times, expire
2933 * that entry.
2934 */
2935 void
2936 syn_cache_timer(void *arg)
2937 {
2938 struct syn_cache *sc = arg;
2939 int s;
2940
2941 s = splsoftnet();
2942
2943 if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
2944 /* Drop it -- too many retransmissions. */
2945 goto dropit;
2946 }
2947
2948 /*
2949 * Compute the total amount of time this entry has
2950 * been on a queue. If this entry has been on longer
2951 * than the keep alive timer would allow, expire it.
2952 */
2953 sc->sc_rxttot += sc->sc_rxtcur;
2954 if (sc->sc_rxttot >= TCPTV_KEEP_INIT)
2955 goto dropit;
2956
2957 tcpstat.tcps_sc_retransmitted++;
2958 (void) syn_cache_respond(sc, NULL);
2959
2960 /* Advance the timer back-off. */
2961 sc->sc_rxtshift++;
2962 SYN_CACHE_TIMER_ARM(sc);
2963
2964 splx(s);
2965 return;
2966
2967 dropit:
2968 tcpstat.tcps_sc_timed_out++;
2969 SYN_CACHE_RM(sc);
2970 SYN_CACHE_PUT(sc);
2971 splx(s);
2972 }
2973
2974 /*
2975 * Remove syn cache created by the specified tcb entry,
2976 * because this does not make sense to keep them
2977 * (if there's no tcb entry, syn cache entry will never be used)
2978 */
2979 void
2980 syn_cache_cleanup(tp)
2981 struct tcpcb *tp;
2982 {
2983 struct syn_cache *sc, *nsc;
2984 int s;
2985
2986 s = splsoftnet();
2987
2988 for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
2989 nsc = LIST_NEXT(sc, sc_tpq);
2990
2991 #ifdef DIAGNOSTIC
2992 if (sc->sc_tp != tp)
2993 panic("invalid sc_tp in syn_cache_cleanup");
2994 #endif
2995 SYN_CACHE_RM(sc);
2996 SYN_CACHE_PUT(sc);
2997 }
2998 /* just for safety */
2999 LIST_INIT(&tp->t_sc);
3000
3001 splx(s);
3002 }
3003
3004 /*
3005 * Find an entry in the syn cache.
3006 */
3007 struct syn_cache *
3008 syn_cache_lookup(src, dst, headp)
3009 struct sockaddr *src;
3010 struct sockaddr *dst;
3011 struct syn_cache_head **headp;
3012 {
3013 struct syn_cache *sc;
3014 struct syn_cache_head *scp;
3015 u_int32_t hash;
3016 int s;
3017
3018 SYN_HASHALL(hash, src, dst);
3019
3020 scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
3021 *headp = scp;
3022 s = splsoftnet();
3023 for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
3024 sc = TAILQ_NEXT(sc, sc_bucketq)) {
3025 if (sc->sc_hash != hash)
3026 continue;
3027 if (!bcmp(&sc->sc_src, src, src->sa_len) &&
3028 !bcmp(&sc->sc_dst, dst, dst->sa_len)) {
3029 splx(s);
3030 return (sc);
3031 }
3032 }
3033 splx(s);
3034 return (NULL);
3035 }
3036
3037 /*
3038 * This function gets called when we receive an ACK for a
3039 * socket in the LISTEN state. We look up the connection
3040 * in the syn cache, and if its there, we pull it out of
3041 * the cache and turn it into a full-blown connection in
3042 * the SYN-RECEIVED state.
3043 *
3044 * The return values may not be immediately obvious, and their effects
3045 * can be subtle, so here they are:
3046 *
3047 * NULL SYN was not found in cache; caller should drop the
3048 * packet and send an RST.
3049 *
3050 * -1 We were unable to create the new connection, and are
3051 * aborting it. An ACK,RST is being sent to the peer
3052 * (unless we got screwey sequence numbners; see below),
3053 * because the 3-way handshake has been completed. Caller
3054 * should not free the mbuf, since we may be using it. If
3055 * we are not, we will free it.
3056 *
3057 * Otherwise, the return value is a pointer to the new socket
3058 * associated with the connection.
3059 */
3060 struct socket *
3061 syn_cache_get(src, dst, th, hlen, tlen, so, m)
3062 struct sockaddr *src;
3063 struct sockaddr *dst;
3064 struct tcphdr *th;
3065 unsigned int hlen, tlen;
3066 struct socket *so;
3067 struct mbuf *m;
3068 {
3069 struct syn_cache *sc;
3070 struct syn_cache_head *scp;
3071 struct inpcb *inp = NULL;
3072 #ifdef INET6
3073 struct in6pcb *in6p = NULL;
3074 #endif
3075 struct tcpcb *tp = 0;
3076 struct mbuf *am;
3077 int s;
3078 struct socket *oso;
3079
3080 s = splsoftnet();
3081 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3082 splx(s);
3083 return (NULL);
3084 }
3085
3086 /*
3087 * Verify the sequence and ack numbers. Try getting the correct
3088 * response again.
3089 */
3090 if ((th->th_ack != sc->sc_iss + 1) ||
3091 SEQ_LEQ(th->th_seq, sc->sc_irs) ||
3092 SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
3093 (void) syn_cache_respond(sc, m);
3094 splx(s);
3095 return ((struct socket *)(-1));
3096 }
3097
3098 /* Remove this cache entry */
3099 SYN_CACHE_RM(sc);
3100 splx(s);
3101
3102 /*
3103 * Ok, create the full blown connection, and set things up
3104 * as they would have been set up if we had created the
3105 * connection when the SYN arrived. If we can't create
3106 * the connection, abort it.
3107 */
3108 /*
3109 * inp still has the OLD in_pcb stuff, set the
3110 * v6-related flags on the new guy, too. This is
3111 * done particularly for the case where an AF_INET6
3112 * socket is bound only to a port, and a v4 connection
3113 * comes in on that port.
3114 * we also copy the flowinfo from the original pcb
3115 * to the new one.
3116 */
3117 {
3118 struct inpcb *parentinpcb;
3119
3120 parentinpcb = (struct inpcb *)so->so_pcb;
3121
3122 oso = so;
3123 so = sonewconn(so, SS_ISCONNECTED);
3124 if (so == NULL)
3125 goto resetandabort;
3126
3127 switch (so->so_proto->pr_domain->dom_family) {
3128 #ifdef INET
3129 case AF_INET:
3130 inp = sotoinpcb(so);
3131 break;
3132 #endif
3133 #ifdef INET6
3134 case AF_INET6:
3135 in6p = sotoin6pcb(so);
3136 break;
3137 #endif
3138 }
3139 }
3140 switch (src->sa_family) {
3141 #ifdef INET
3142 case AF_INET:
3143 if (inp) {
3144 inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
3145 inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
3146 inp->inp_options = ip_srcroute();
3147 in_pcbstate(inp, INP_BOUND);
3148 if (inp->inp_options == NULL) {
3149 inp->inp_options = sc->sc_ipopts;
3150 sc->sc_ipopts = NULL;
3151 }
3152 }
3153 #ifdef INET6
3154 else if (in6p) {
3155 /* IPv4 packet to AF_INET6 socket */
3156 bzero(&in6p->in6p_laddr, sizeof(in6p->in6p_laddr));
3157 in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
3158 bcopy(&((struct sockaddr_in *)dst)->sin_addr,
3159 &in6p->in6p_laddr.s6_addr32[3],
3160 sizeof(((struct sockaddr_in *)dst)->sin_addr));
3161 in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
3162 in6totcpcb(in6p)->t_family = AF_INET;
3163 }
3164 #endif
3165 break;
3166 #endif
3167 #ifdef INET6
3168 case AF_INET6:
3169 if (in6p) {
3170 in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
3171 in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
3172 #if 0
3173 in6p->in6p_flowinfo = ip6->ip6_flow & IPV6_FLOWINFO_MASK;
3174 /*inp->inp_options = ip6_srcroute();*/ /* soon. */
3175 #endif
3176 }
3177 break;
3178 #endif
3179 }
3180 #ifdef INET6
3181 if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
3182 struct in6pcb *oin6p = sotoin6pcb(oso);
3183 /* inherit socket options from the listening socket */
3184 in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
3185 if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
3186 m_freem(in6p->in6p_options);
3187 in6p->in6p_options = 0;
3188 }
3189 ip6_savecontrol(in6p, &in6p->in6p_options,
3190 mtod(m, struct ip6_hdr *), m);
3191 }
3192 #endif
3193
3194 #ifdef IPSEC
3195 /*
3196 * we make a copy of policy, instead of sharing the policy,
3197 * for better behavior in terms of SA lookup and dead SA removal.
3198 */
3199 if (inp) {
3200 /* copy old policy into new socket's */
3201 if (ipsec_copy_pcbpolicy(sotoinpcb(oso)->inp_sp, inp->inp_sp))
3202 printf("tcp_input: could not copy policy\n");
3203 }
3204 #ifdef INET6
3205 else if (in6p) {
3206 /* copy old policy into new socket's */
3207 if (ipsec_copy_pcbpolicy(sotoin6pcb(oso)->in6p_sp,
3208 in6p->in6p_sp))
3209 printf("tcp_input: could not copy policy\n");
3210 }
3211 #endif
3212 #endif
3213
3214 /*
3215 * Give the new socket our cached route reference.
3216 */
3217 if (inp)
3218 inp->inp_route = sc->sc_route4; /* struct assignment */
3219 #ifdef INET6
3220 else
3221 in6p->in6p_route = sc->sc_route6;
3222 #endif
3223 sc->sc_route4.ro_rt = NULL;
3224
3225 am = m_get(M_DONTWAIT, MT_SONAME); /* XXX */
3226 if (am == NULL)
3227 goto resetandabort;
3228 am->m_len = src->sa_len;
3229 bcopy(src, mtod(am, caddr_t), src->sa_len);
3230 if (inp) {
3231 if (in_pcbconnect(inp, am)) {
3232 (void) m_free(am);
3233 goto resetandabort;
3234 }
3235 }
3236 #ifdef INET6
3237 else if (in6p) {
3238 if (src->sa_family == AF_INET) {
3239 /* IPv4 packet to AF_INET6 socket */
3240 struct sockaddr_in6 *sin6;
3241 sin6 = mtod(am, struct sockaddr_in6 *);
3242 am->m_len = sizeof(*sin6);
3243 bzero(sin6, sizeof(*sin6));
3244 sin6->sin6_family = AF_INET6;
3245 sin6->sin6_len = sizeof(*sin6);
3246 sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port;
3247 sin6->sin6_addr.s6_addr16[5] = htons(0xffff);
3248 bcopy(&((struct sockaddr_in *)src)->sin_addr,
3249 &sin6->sin6_addr.s6_addr32[3],
3250 sizeof(sin6->sin6_addr.s6_addr32[3]));
3251 }
3252 if (in6_pcbconnect(in6p, am)) {
3253 (void) m_free(am);
3254 goto resetandabort;
3255 }
3256 }
3257 #endif
3258 else {
3259 (void) m_free(am);
3260 goto resetandabort;
3261 }
3262 (void) m_free(am);
3263
3264 if (inp)
3265 tp = intotcpcb(inp);
3266 #ifdef INET6
3267 else if (in6p)
3268 tp = in6totcpcb(in6p);
3269 #endif
3270 else
3271 tp = NULL;
3272 tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
3273 if (sc->sc_request_r_scale != 15) {
3274 tp->requested_s_scale = sc->sc_requested_s_scale;
3275 tp->request_r_scale = sc->sc_request_r_scale;
3276 tp->snd_scale = sc->sc_requested_s_scale;
3277 tp->rcv_scale = sc->sc_request_r_scale;
3278 tp->t_flags |= TF_RCVD_SCALE;
3279 }
3280 if (sc->sc_flags & SCF_TIMESTAMP)
3281 tp->t_flags |= TF_RCVD_TSTMP;
3282 tp->ts_timebase = sc->sc_timebase;
3283
3284 tp->t_template = tcp_template(tp);
3285 if (tp->t_template == 0) {
3286 tp = tcp_drop(tp, ENOBUFS); /* destroys socket */
3287 so = NULL;
3288 m_freem(m);
3289 goto abort;
3290 }
3291
3292 tp->iss = sc->sc_iss;
3293 tp->irs = sc->sc_irs;
3294 tcp_sendseqinit(tp);
3295 tcp_rcvseqinit(tp);
3296 tp->t_state = TCPS_SYN_RECEIVED;
3297 TCP_TIMER_ARM(tp, TCPT_KEEP, TCPTV_KEEP_INIT);
3298 tcpstat.tcps_accepts++;
3299
3300 /* Initialize tp->t_ourmss before we deal with the peer's! */
3301 tp->t_ourmss = sc->sc_ourmaxseg;
3302 tcp_mss_from_peer(tp, sc->sc_peermaxseg);
3303
3304 /*
3305 * Initialize the initial congestion window. If we
3306 * had to retransmit the SYN,ACK, we must initialize cwnd
3307 * to 1 segment (i.e. the Loss Window).
3308 */
3309 if (sc->sc_rxtshift)
3310 tp->snd_cwnd = tp->t_peermss;
3311 else
3312 tp->snd_cwnd = TCP_INITIAL_WINDOW(tcp_init_win, tp->t_peermss);
3313
3314 tcp_rmx_rtt(tp);
3315 tp->snd_wl1 = sc->sc_irs;
3316 tp->rcv_up = sc->sc_irs + 1;
3317
3318 /*
3319 * This is what whould have happened in tcp_ouput() when
3320 * the SYN,ACK was sent.
3321 */
3322 tp->snd_up = tp->snd_una;
3323 tp->snd_max = tp->snd_nxt = tp->iss+1;
3324 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
3325 if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
3326 tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
3327 tp->last_ack_sent = tp->rcv_nxt;
3328
3329 tcpstat.tcps_sc_completed++;
3330 SYN_CACHE_PUT(sc);
3331 return (so);
3332
3333 resetandabort:
3334 (void) tcp_respond(NULL, m, m, th,
3335 th->th_seq + tlen, (tcp_seq)0, TH_RST|TH_ACK);
3336 abort:
3337 if (so != NULL)
3338 (void) soabort(so);
3339 SYN_CACHE_PUT(sc);
3340 tcpstat.tcps_sc_aborted++;
3341 return ((struct socket *)(-1));
3342 }
3343
3344 /*
3345 * This function is called when we get a RST for a
3346 * non-existent connection, so that we can see if the
3347 * connection is in the syn cache. If it is, zap it.
3348 */
3349
3350 void
3351 syn_cache_reset(src, dst, th)
3352 struct sockaddr *src;
3353 struct sockaddr *dst;
3354 struct tcphdr *th;
3355 {
3356 struct syn_cache *sc;
3357 struct syn_cache_head *scp;
3358 int s = splsoftnet();
3359
3360 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3361 splx(s);
3362 return;
3363 }
3364 if (SEQ_LT(th->th_seq, sc->sc_irs) ||
3365 SEQ_GT(th->th_seq, sc->sc_irs+1)) {
3366 splx(s);
3367 return;
3368 }
3369 SYN_CACHE_RM(sc);
3370 splx(s);
3371 tcpstat.tcps_sc_reset++;
3372 SYN_CACHE_PUT(sc);
3373 }
3374
3375 void
3376 syn_cache_unreach(src, dst, th)
3377 struct sockaddr *src;
3378 struct sockaddr *dst;
3379 struct tcphdr *th;
3380 {
3381 struct syn_cache *sc;
3382 struct syn_cache_head *scp;
3383 int s;
3384
3385 s = splsoftnet();
3386 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3387 splx(s);
3388 return;
3389 }
3390 /* If the sequence number != sc_iss, then it's a bogus ICMP msg */
3391 if (ntohl (th->th_seq) != sc->sc_iss) {
3392 splx(s);
3393 return;
3394 }
3395
3396 /*
3397 * If we've rertransmitted 3 times and this is our second error,
3398 * we remove the entry. Otherwise, we allow it to continue on.
3399 * This prevents us from incorrectly nuking an entry during a
3400 * spurious network outage.
3401 *
3402 * See tcp_notify().
3403 */
3404 if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
3405 sc->sc_flags |= SCF_UNREACH;
3406 splx(s);
3407 return;
3408 }
3409
3410 SYN_CACHE_RM(sc);
3411 splx(s);
3412 tcpstat.tcps_sc_unreach++;
3413 SYN_CACHE_PUT(sc);
3414 }
3415
3416 /*
3417 * Given a LISTEN socket and an inbound SYN request, add
3418 * this to the syn cache, and send back a segment:
3419 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
3420 * to the source.
3421 *
3422 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
3423 * Doing so would require that we hold onto the data and deliver it
3424 * to the application. However, if we are the target of a SYN-flood
3425 * DoS attack, an attacker could send data which would eventually
3426 * consume all available buffer space if it were ACKed. By not ACKing
3427 * the data, we avoid this DoS scenario.
3428 */
3429
3430 int
3431 syn_cache_add(src, dst, th, hlen, so, m, optp, optlen, oi)
3432 struct sockaddr *src;
3433 struct sockaddr *dst;
3434 struct tcphdr *th;
3435 unsigned int hlen;
3436 struct socket *so;
3437 struct mbuf *m;
3438 u_char *optp;
3439 int optlen;
3440 struct tcp_opt_info *oi;
3441 {
3442 struct tcpcb tb, *tp;
3443 long win;
3444 struct syn_cache *sc;
3445 struct syn_cache_head *scp;
3446 struct mbuf *ipopts;
3447
3448 tp = sototcpcb(so);
3449
3450 /*
3451 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
3452 *
3453 * Note this check is performed in tcp_input() very early on.
3454 */
3455
3456 /*
3457 * Initialize some local state.
3458 */
3459 win = sbspace(&so->so_rcv);
3460 if (win > TCP_MAXWIN)
3461 win = TCP_MAXWIN;
3462
3463 switch (src->sa_family) {
3464 #ifdef INET
3465 case AF_INET:
3466 /*
3467 * Remember the IP options, if any.
3468 */
3469 ipopts = ip_srcroute();
3470 break;
3471 #endif
3472 default:
3473 ipopts = NULL;
3474 }
3475
3476 if (optp) {
3477 tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
3478 tcp_dooptions(&tb, optp, optlen, th, oi);
3479 } else
3480 tb.t_flags = 0;
3481
3482 /*
3483 * See if we already have an entry for this connection.
3484 * If we do, resend the SYN,ACK. We do not count this
3485 * as a retransmission (XXX though maybe we should).
3486 */
3487 if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
3488 tcpstat.tcps_sc_dupesyn++;
3489 if (ipopts) {
3490 /*
3491 * If we were remembering a previous source route,
3492 * forget it and use the new one we've been given.
3493 */
3494 if (sc->sc_ipopts)
3495 (void) m_free(sc->sc_ipopts);
3496 sc->sc_ipopts = ipopts;
3497 }
3498 sc->sc_timestamp = tb.ts_recent;
3499 if (syn_cache_respond(sc, m) == 0) {
3500 tcpstat.tcps_sndacks++;
3501 tcpstat.tcps_sndtotal++;
3502 }
3503 return (1);
3504 }
3505
3506 sc = pool_get(&syn_cache_pool, PR_NOWAIT);
3507 if (sc == NULL) {
3508 if (ipopts)
3509 (void) m_free(ipopts);
3510 return (0);
3511 }
3512
3513 /*
3514 * Fill in the cache, and put the necessary IP and TCP
3515 * options into the reply.
3516 */
3517 callout_init(&sc->sc_timer);
3518 bzero(sc, sizeof(struct syn_cache));
3519 bcopy(src, &sc->sc_src, src->sa_len);
3520 bcopy(dst, &sc->sc_dst, dst->sa_len);
3521 sc->sc_flags = 0;
3522 sc->sc_ipopts = ipopts;
3523 sc->sc_irs = th->th_seq;
3524 switch (src->sa_family) {
3525 #ifdef INET
3526 case AF_INET:
3527 {
3528 struct sockaddr_in *srcin = (void *) src;
3529 struct sockaddr_in *dstin = (void *) dst;
3530
3531 sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
3532 &srcin->sin_addr, dstin->sin_port,
3533 srcin->sin_port, sizeof(dstin->sin_addr), 0);
3534 break;
3535 }
3536 #endif /* INET */
3537 #ifdef INET6
3538 case AF_INET6:
3539 {
3540 struct sockaddr_in6 *srcin6 = (void *) src;
3541 struct sockaddr_in6 *dstin6 = (void *) dst;
3542
3543 sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
3544 &srcin6->sin6_addr, dstin6->sin6_port,
3545 srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
3546 break;
3547 }
3548 #endif /* INET6 */
3549 }
3550 sc->sc_peermaxseg = oi->maxseg;
3551 sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
3552 m->m_pkthdr.rcvif : NULL,
3553 sc->sc_src.sa.sa_family);
3554 sc->sc_win = win;
3555 sc->sc_timebase = tcp_now; /* see tcp_newtcpcb() */
3556 sc->sc_timestamp = tb.ts_recent;
3557 if (tcp_do_rfc1323 && (tb.t_flags & TF_RCVD_TSTMP))
3558 sc->sc_flags |= SCF_TIMESTAMP;
3559 if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
3560 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
3561 sc->sc_requested_s_scale = tb.requested_s_scale;
3562 sc->sc_request_r_scale = 0;
3563 while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
3564 TCP_MAXWIN << sc->sc_request_r_scale <
3565 so->so_rcv.sb_hiwat)
3566 sc->sc_request_r_scale++;
3567 } else {
3568 sc->sc_requested_s_scale = 15;
3569 sc->sc_request_r_scale = 15;
3570 }
3571 sc->sc_tp = tp;
3572 if (syn_cache_respond(sc, m) == 0) {
3573 syn_cache_insert(sc, tp);
3574 tcpstat.tcps_sndacks++;
3575 tcpstat.tcps_sndtotal++;
3576 } else {
3577 SYN_CACHE_PUT(sc);
3578 tcpstat.tcps_sc_dropped++;
3579 }
3580 return (1);
3581 }
3582
3583 int
3584 syn_cache_respond(sc, m)
3585 struct syn_cache *sc;
3586 struct mbuf *m;
3587 {
3588 struct route *ro;
3589 u_int8_t *optp;
3590 int optlen, error;
3591 u_int16_t tlen;
3592 struct ip *ip = NULL;
3593 #ifdef INET6
3594 struct ip6_hdr *ip6 = NULL;
3595 #endif
3596 struct tcphdr *th;
3597 u_int hlen;
3598
3599 switch (sc->sc_src.sa.sa_family) {
3600 case AF_INET:
3601 hlen = sizeof(struct ip);
3602 ro = &sc->sc_route4;
3603 break;
3604 #ifdef INET6
3605 case AF_INET6:
3606 hlen = sizeof(struct ip6_hdr);
3607 ro = (struct route *)&sc->sc_route6;
3608 break;
3609 #endif
3610 default:
3611 if (m)
3612 m_freem(m);
3613 return EAFNOSUPPORT;
3614 }
3615
3616 /* Compute the size of the TCP options. */
3617 optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
3618 ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
3619
3620 tlen = hlen + sizeof(struct tcphdr) + optlen;
3621
3622 /*
3623 * Create the IP+TCP header from scratch.
3624 */
3625 if (m)
3626 m_freem(m);
3627 #ifdef DIAGNOSTIC
3628 if (max_linkhdr + tlen > MCLBYTES)
3629 return (ENOBUFS);
3630 #endif
3631 MGETHDR(m, M_DONTWAIT, MT_DATA);
3632 if (m && tlen > MHLEN) {
3633 MCLGET(m, M_DONTWAIT);
3634 if ((m->m_flags & M_EXT) == 0) {
3635 m_freem(m);
3636 m = NULL;
3637 }
3638 }
3639 if (m == NULL)
3640 return (ENOBUFS);
3641
3642 /* Fixup the mbuf. */
3643 m->m_data += max_linkhdr;
3644 m->m_len = m->m_pkthdr.len = tlen;
3645 #ifdef IPSEC
3646 if (sc->sc_tp) {
3647 struct tcpcb *tp;
3648 struct socket *so;
3649
3650 tp = sc->sc_tp;
3651 if (tp->t_inpcb)
3652 so = tp->t_inpcb->inp_socket;
3653 #ifdef INET6
3654 else if (tp->t_in6pcb)
3655 so = tp->t_in6pcb->in6p_socket;
3656 #endif
3657 else
3658 so = NULL;
3659 /* use IPsec policy on listening socket, on SYN ACK */
3660 if (ipsec_setsocket(m, so) != 0) {
3661 m_freem(m);
3662 return ENOBUFS;
3663 }
3664 }
3665 #endif
3666 m->m_pkthdr.rcvif = NULL;
3667 memset(mtod(m, u_char *), 0, tlen);
3668
3669 switch (sc->sc_src.sa.sa_family) {
3670 case AF_INET:
3671 ip = mtod(m, struct ip *);
3672 ip->ip_dst = sc->sc_src.sin.sin_addr;
3673 ip->ip_src = sc->sc_dst.sin.sin_addr;
3674 ip->ip_p = IPPROTO_TCP;
3675 th = (struct tcphdr *)(ip + 1);
3676 th->th_dport = sc->sc_src.sin.sin_port;
3677 th->th_sport = sc->sc_dst.sin.sin_port;
3678 break;
3679 #ifdef INET6
3680 case AF_INET6:
3681 ip6 = mtod(m, struct ip6_hdr *);
3682 ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
3683 ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
3684 ip6->ip6_nxt = IPPROTO_TCP;
3685 /* ip6_plen will be updated in ip6_output() */
3686 th = (struct tcphdr *)(ip6 + 1);
3687 th->th_dport = sc->sc_src.sin6.sin6_port;
3688 th->th_sport = sc->sc_dst.sin6.sin6_port;
3689 break;
3690 #endif
3691 default:
3692 th = NULL;
3693 }
3694
3695 th->th_seq = htonl(sc->sc_iss);
3696 th->th_ack = htonl(sc->sc_irs + 1);
3697 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
3698 th->th_flags = TH_SYN|TH_ACK;
3699 th->th_win = htons(sc->sc_win);
3700 /* th_sum already 0 */
3701 /* th_urp already 0 */
3702
3703 /* Tack on the TCP options. */
3704 optp = (u_int8_t *)(th + 1);
3705 *optp++ = TCPOPT_MAXSEG;
3706 *optp++ = 4;
3707 *optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
3708 *optp++ = sc->sc_ourmaxseg & 0xff;
3709
3710 if (sc->sc_request_r_scale != 15) {
3711 *((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
3712 TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
3713 sc->sc_request_r_scale);
3714 optp += 4;
3715 }
3716
3717 if (sc->sc_flags & SCF_TIMESTAMP) {
3718 u_int32_t *lp = (u_int32_t *)(optp);
3719 /* Form timestamp option as shown in appendix A of RFC 1323. */
3720 *lp++ = htonl(TCPOPT_TSTAMP_HDR);
3721 *lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
3722 *lp = htonl(sc->sc_timestamp);
3723 optp += TCPOLEN_TSTAMP_APPA;
3724 }
3725
3726 /* Compute the packet's checksum. */
3727 switch (sc->sc_src.sa.sa_family) {
3728 case AF_INET:
3729 ip->ip_len = htons(tlen - hlen);
3730 th->th_sum = 0;
3731 th->th_sum = in_cksum(m, tlen);
3732 break;
3733 #ifdef INET6
3734 case AF_INET6:
3735 ip6->ip6_plen = htons(tlen - hlen);
3736 th->th_sum = 0;
3737 th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
3738 break;
3739 #endif
3740 }
3741
3742 /*
3743 * Fill in some straggling IP bits. Note the stack expects
3744 * ip_len to be in host order, for convenience.
3745 */
3746 switch (sc->sc_src.sa.sa_family) {
3747 #ifdef INET
3748 case AF_INET:
3749 ip->ip_len = htons(tlen);
3750 ip->ip_ttl = ip_defttl;
3751 /* XXX tos? */
3752 break;
3753 #endif
3754 #ifdef INET6
3755 case AF_INET6:
3756 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
3757 ip6->ip6_vfc |= IPV6_VERSION;
3758 ip6->ip6_plen = htons(tlen - hlen);
3759 /* ip6_hlim will be initialized afterwards */
3760 /* XXX flowlabel? */
3761 break;
3762 #endif
3763 }
3764
3765 switch (sc->sc_src.sa.sa_family) {
3766 #ifdef INET
3767 case AF_INET:
3768 error = ip_output(m, sc->sc_ipopts, ro,
3769 (ip_mtudisc ? IP_MTUDISC : 0),
3770 NULL);
3771 break;
3772 #endif
3773 #ifdef INET6
3774 case AF_INET6:
3775 ip6->ip6_hlim = in6_selecthlim(NULL,
3776 ro->ro_rt ? ro->ro_rt->rt_ifp : NULL);
3777
3778 error = ip6_output(m, NULL /*XXX*/, (struct route_in6 *)ro,
3779 0, NULL, NULL);
3780 break;
3781 #endif
3782 default:
3783 error = EAFNOSUPPORT;
3784 break;
3785 }
3786 return (error);
3787 }
3788