tcp_input.c revision 1.152 1 /* $NetBSD: tcp_input.c,v 1.152 2002/08/19 02:17:54 itojun Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * @(#)COPYRIGHT 1.1 (NRL) 17 January 1995
34 *
35 * NRL grants permission for redistribution and use in source and binary
36 * forms, with or without modification, of the software and documentation
37 * created at NRL provided that the following conditions are met:
38 *
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgements:
46 * This product includes software developed by the University of
47 * California, Berkeley and its contributors.
48 * This product includes software developed at the Information
49 * Technology Division, US Naval Research Laboratory.
50 * 4. Neither the name of the NRL nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
55 * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
57 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NRL OR
58 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
59 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
61 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
62 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
63 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
64 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65 *
66 * The views and conclusions contained in the software and documentation
67 * are those of the authors and should not be interpreted as representing
68 * official policies, either expressed or implied, of the US Naval
69 * Research Laboratory (NRL).
70 */
71
72 /*-
73 * Copyright (c) 1997, 1998, 1999, 2001 The NetBSD Foundation, Inc.
74 * All rights reserved.
75 *
76 * This code is derived from software contributed to The NetBSD Foundation
77 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
78 * Facility, NASA Ames Research Center.
79 *
80 * Redistribution and use in source and binary forms, with or without
81 * modification, are permitted provided that the following conditions
82 * are met:
83 * 1. Redistributions of source code must retain the above copyright
84 * notice, this list of conditions and the following disclaimer.
85 * 2. Redistributions in binary form must reproduce the above copyright
86 * notice, this list of conditions and the following disclaimer in the
87 * documentation and/or other materials provided with the distribution.
88 * 3. All advertising materials mentioning features or use of this software
89 * must display the following acknowledgement:
90 * This product includes software developed by the NetBSD
91 * Foundation, Inc. and its contributors.
92 * 4. Neither the name of The NetBSD Foundation nor the names of its
93 * contributors may be used to endorse or promote products derived
94 * from this software without specific prior written permission.
95 *
96 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
97 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
98 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
99 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
100 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
101 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
102 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
103 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
104 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
105 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
106 * POSSIBILITY OF SUCH DAMAGE.
107 */
108
109 /*
110 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
111 * The Regents of the University of California. All rights reserved.
112 *
113 * Redistribution and use in source and binary forms, with or without
114 * modification, are permitted provided that the following conditions
115 * are met:
116 * 1. Redistributions of source code must retain the above copyright
117 * notice, this list of conditions and the following disclaimer.
118 * 2. Redistributions in binary form must reproduce the above copyright
119 * notice, this list of conditions and the following disclaimer in the
120 * documentation and/or other materials provided with the distribution.
121 * 3. All advertising materials mentioning features or use of this software
122 * must display the following acknowledgement:
123 * This product includes software developed by the University of
124 * California, Berkeley and its contributors.
125 * 4. Neither the name of the University nor the names of its contributors
126 * may be used to endorse or promote products derived from this software
127 * without specific prior written permission.
128 *
129 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
130 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
131 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
132 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
133 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
134 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
135 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
136 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
137 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
138 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
139 * SUCH DAMAGE.
140 *
141 * @(#)tcp_input.c 8.12 (Berkeley) 5/24/95
142 */
143
144 /*
145 * TODO list for SYN cache stuff:
146 *
147 * Find room for a "state" field, which is needed to keep a
148 * compressed state for TIME_WAIT TCBs. It's been noted already
149 * that this is fairly important for very high-volume web and
150 * mail servers, which use a large number of short-lived
151 * connections.
152 */
153
154 #include <sys/cdefs.h>
155 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.152 2002/08/19 02:17:54 itojun Exp $");
156
157 #include "opt_inet.h"
158 #include "opt_ipsec.h"
159 #include "opt_inet_csum.h"
160 #include "opt_tcp_debug.h"
161
162 #include <sys/param.h>
163 #include <sys/systm.h>
164 #include <sys/malloc.h>
165 #include <sys/mbuf.h>
166 #include <sys/protosw.h>
167 #include <sys/socket.h>
168 #include <sys/socketvar.h>
169 #include <sys/errno.h>
170 #include <sys/syslog.h>
171 #include <sys/pool.h>
172 #include <sys/domain.h>
173 #include <sys/kernel.h>
174
175 #include <net/if.h>
176 #include <net/route.h>
177 #include <net/if_types.h>
178
179 #include <netinet/in.h>
180 #include <netinet/in_systm.h>
181 #include <netinet/ip.h>
182 #include <netinet/in_pcb.h>
183 #include <netinet/ip_var.h>
184
185 #ifdef INET6
186 #ifndef INET
187 #include <netinet/in.h>
188 #endif
189 #include <netinet/ip6.h>
190 #include <netinet6/ip6_var.h>
191 #include <netinet6/in6_pcb.h>
192 #include <netinet6/ip6_var.h>
193 #include <netinet6/in6_var.h>
194 #include <netinet/icmp6.h>
195 #include <netinet6/nd6.h>
196 #endif
197
198 #ifdef PULLDOWN_TEST
199 #ifndef INET6
200 /* always need ip6.h for IP6_EXTHDR_GET */
201 #include <netinet/ip6.h>
202 #endif
203 #endif
204
205 #include <netinet/tcp.h>
206 #include <netinet/tcp_fsm.h>
207 #include <netinet/tcp_seq.h>
208 #include <netinet/tcp_timer.h>
209 #include <netinet/tcp_var.h>
210 #include <netinet/tcpip.h>
211 #include <netinet/tcp_debug.h>
212
213 #include <machine/stdarg.h>
214
215 #ifdef IPSEC
216 #include <netinet6/ipsec.h>
217 #include <netkey/key.h>
218 #endif /*IPSEC*/
219 #ifdef INET6
220 #include "faith.h"
221 #if defined(NFAITH) && NFAITH > 0
222 #include <net/if_faith.h>
223 #endif
224 #endif
225
226 int tcprexmtthresh = 3;
227 int tcp_log_refused;
228
229 static int tcp_rst_ppslim_count = 0;
230 static struct timeval tcp_rst_ppslim_last;
231
232 #define TCP_PAWS_IDLE (24 * 24 * 60 * 60 * PR_SLOWHZ)
233
234 /* for modulo comparisons of timestamps */
235 #define TSTMP_LT(a,b) ((int)((a)-(b)) < 0)
236 #define TSTMP_GEQ(a,b) ((int)((a)-(b)) >= 0)
237
238 /*
239 * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
240 */
241 #ifdef INET6
242 #define ND6_HINT(tp) \
243 do { \
244 if (tp && tp->t_in6pcb && tp->t_family == AF_INET6 \
245 && tp->t_in6pcb->in6p_route.ro_rt) { \
246 nd6_nud_hint(tp->t_in6pcb->in6p_route.ro_rt, NULL, 0); \
247 } \
248 } while (0)
249 #else
250 #define ND6_HINT(tp)
251 #endif
252
253 /*
254 * Macro to compute ACK transmission behavior. Delay the ACK unless
255 * we have already delayed an ACK (must send an ACK every two segments).
256 * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
257 * option is enabled.
258 */
259 #define TCP_SETUP_ACK(tp, th) \
260 do { \
261 if ((tp)->t_flags & TF_DELACK || \
262 (tcp_ack_on_push && (th)->th_flags & TH_PUSH)) \
263 tp->t_flags |= TF_ACKNOW; \
264 else \
265 TCP_SET_DELACK(tp); \
266 } while (0)
267
268 /*
269 * Convert TCP protocol fields to host order for easier processing.
270 */
271 #define TCP_FIELDS_TO_HOST(th) \
272 do { \
273 NTOHL((th)->th_seq); \
274 NTOHL((th)->th_ack); \
275 NTOHS((th)->th_win); \
276 NTOHS((th)->th_urp); \
277 } while (0)
278
279 #ifdef TCP_CSUM_COUNTERS
280 #include <sys/device.h>
281
282 extern struct evcnt tcp_hwcsum_ok;
283 extern struct evcnt tcp_hwcsum_bad;
284 extern struct evcnt tcp_hwcsum_data;
285 extern struct evcnt tcp_swcsum;
286
287 #define TCP_CSUM_COUNTER_INCR(ev) (ev)->ev_count++
288
289 #else
290
291 #define TCP_CSUM_COUNTER_INCR(ev) /* nothing */
292
293 #endif /* TCP_CSUM_COUNTERS */
294
295 #ifdef TCP_REASS_COUNTERS
296 #include <sys/device.h>
297
298 extern struct evcnt tcp_reass_;
299 extern struct evcnt tcp_reass_empty;
300 extern struct evcnt tcp_reass_iteration[8];
301 extern struct evcnt tcp_reass_prependfirst;
302 extern struct evcnt tcp_reass_prepend;
303 extern struct evcnt tcp_reass_insert;
304 extern struct evcnt tcp_reass_inserttail;
305 extern struct evcnt tcp_reass_append;
306 extern struct evcnt tcp_reass_appendtail;
307 extern struct evcnt tcp_reass_overlaptail;
308 extern struct evcnt tcp_reass_overlapfront;
309 extern struct evcnt tcp_reass_segdup;
310 extern struct evcnt tcp_reass_fragdup;
311
312 #define TCP_REASS_COUNTER_INCR(ev) (ev)->ev_count++
313
314 #else
315
316 #define TCP_REASS_COUNTER_INCR(ev) /* nothing */
317
318 #endif /* TCP_REASS_COUNTERS */
319
320 #ifdef INET
321 static void tcp4_log_refused __P((const struct ip *, const struct tcphdr *));
322 #endif
323 #ifdef INET6
324 static void tcp6_log_refused
325 __P((const struct ip6_hdr *, const struct tcphdr *));
326 #endif
327
328 int
329 tcp_reass(tp, th, m, tlen)
330 struct tcpcb *tp;
331 struct tcphdr *th;
332 struct mbuf *m;
333 int *tlen;
334 {
335 struct ipqent *p, *q, *nq, *tiqe = NULL;
336 struct socket *so = NULL;
337 int pkt_flags;
338 tcp_seq pkt_seq;
339 unsigned pkt_len;
340 u_long rcvpartdupbyte = 0;
341 u_long rcvoobyte;
342 #ifdef TCP_REASS_COUNTERS
343 u_int count = 0;
344 #endif
345
346 if (tp->t_inpcb)
347 so = tp->t_inpcb->inp_socket;
348 #ifdef INET6
349 else if (tp->t_in6pcb)
350 so = tp->t_in6pcb->in6p_socket;
351 #endif
352
353 TCP_REASS_LOCK_CHECK(tp);
354
355 /*
356 * Call with th==0 after become established to
357 * force pre-ESTABLISHED data up to user socket.
358 */
359 if (th == 0)
360 goto present;
361
362 rcvoobyte = *tlen;
363 /*
364 * Copy these to local variables because the tcpiphdr
365 * gets munged while we are collapsing mbufs.
366 */
367 pkt_seq = th->th_seq;
368 pkt_len = *tlen;
369 pkt_flags = th->th_flags;
370
371 TCP_REASS_COUNTER_INCR(&tcp_reass_);
372
373 if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
374 /*
375 * When we miss a packet, the vast majority of time we get
376 * packets that follow it in order. So optimize for that.
377 */
378 if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
379 p->ipqe_len += pkt_len;
380 p->ipqe_flags |= pkt_flags;
381 m_cat(p->ipqe_m, m);
382 tiqe = p;
383 TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
384 TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
385 goto skip_replacement;
386 }
387 /*
388 * While we're here, if the pkt is completely beyond
389 * anything we have, just insert it at the tail.
390 */
391 if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
392 TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
393 goto insert_it;
394 }
395 }
396
397 q = TAILQ_FIRST(&tp->segq);
398
399 if (q != NULL) {
400 /*
401 * If this segment immediately precedes the first out-of-order
402 * block, simply slap the segment in front of it and (mostly)
403 * skip the complicated logic.
404 */
405 if (pkt_seq + pkt_len == q->ipqe_seq) {
406 q->ipqe_seq = pkt_seq;
407 q->ipqe_len += pkt_len;
408 q->ipqe_flags |= pkt_flags;
409 m_cat(m, q->ipqe_m);
410 q->ipqe_m = m;
411 tiqe = q;
412 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
413 TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
414 goto skip_replacement;
415 }
416 } else {
417 TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
418 }
419
420 /*
421 * Find a segment which begins after this one does.
422 */
423 for (p = NULL; q != NULL; q = nq) {
424 nq = TAILQ_NEXT(q, ipqe_q);
425 #ifdef TCP_REASS_COUNTERS
426 count++;
427 #endif
428 /*
429 * If the received segment is just right after this
430 * fragment, merge the two together and then check
431 * for further overlaps.
432 */
433 if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
434 #ifdef TCPREASS_DEBUG
435 printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
436 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
437 q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
438 #endif
439 pkt_len += q->ipqe_len;
440 pkt_flags |= q->ipqe_flags;
441 pkt_seq = q->ipqe_seq;
442 m_cat(q->ipqe_m, m);
443 m = q->ipqe_m;
444 TCP_REASS_COUNTER_INCR(&tcp_reass_append);
445 goto free_ipqe;
446 }
447 /*
448 * If the received segment is completely past this
449 * fragment, we need to go the next fragment.
450 */
451 if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
452 p = q;
453 continue;
454 }
455 /*
456 * If the fragment is past the received segment,
457 * it (or any following) can't be concatenated.
458 */
459 if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
460 TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
461 break;
462 }
463
464 /*
465 * We've received all the data in this segment before.
466 * mark it as a duplicate and return.
467 */
468 if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
469 SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
470 tcpstat.tcps_rcvduppack++;
471 tcpstat.tcps_rcvdupbyte += pkt_len;
472 m_freem(m);
473 if (tiqe != NULL)
474 pool_put(&ipqent_pool, tiqe);
475 TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
476 return (0);
477 }
478 /*
479 * Received segment completely overlaps this fragment
480 * so we drop the fragment (this keeps the temporal
481 * ordering of segments correct).
482 */
483 if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
484 SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
485 rcvpartdupbyte += q->ipqe_len;
486 m_freem(q->ipqe_m);
487 TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
488 goto free_ipqe;
489 }
490 /*
491 * RX'ed segment extends past the end of the
492 * fragment. Drop the overlapping bytes. Then
493 * merge the fragment and segment then treat as
494 * a longer received packet.
495 */
496 if (SEQ_LT(q->ipqe_seq, pkt_seq)
497 && SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
498 int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
499 #ifdef TCPREASS_DEBUG
500 printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
501 tp, overlap,
502 pkt_seq, pkt_seq + pkt_len, pkt_len);
503 #endif
504 m_adj(m, overlap);
505 rcvpartdupbyte += overlap;
506 m_cat(q->ipqe_m, m);
507 m = q->ipqe_m;
508 pkt_seq = q->ipqe_seq;
509 pkt_len += q->ipqe_len - overlap;
510 rcvoobyte -= overlap;
511 TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
512 goto free_ipqe;
513 }
514 /*
515 * RX'ed segment extends past the front of the
516 * fragment. Drop the overlapping bytes on the
517 * received packet. The packet will then be
518 * contatentated with this fragment a bit later.
519 */
520 if (SEQ_GT(q->ipqe_seq, pkt_seq)
521 && SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len)) {
522 int overlap = pkt_seq + pkt_len - q->ipqe_seq;
523 #ifdef TCPREASS_DEBUG
524 printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
525 tp, overlap,
526 pkt_seq, pkt_seq + pkt_len, pkt_len);
527 #endif
528 m_adj(m, -overlap);
529 pkt_len -= overlap;
530 rcvpartdupbyte += overlap;
531 TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
532 rcvoobyte -= overlap;
533 }
534 /*
535 * If the received segment immediates precedes this
536 * fragment then tack the fragment onto this segment
537 * and reinsert the data.
538 */
539 if (q->ipqe_seq == pkt_seq + pkt_len) {
540 #ifdef TCPREASS_DEBUG
541 printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
542 tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
543 pkt_seq, pkt_seq + pkt_len, pkt_len);
544 #endif
545 pkt_len += q->ipqe_len;
546 pkt_flags |= q->ipqe_flags;
547 m_cat(m, q->ipqe_m);
548 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
549 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
550 if (tiqe == NULL) {
551 tiqe = q;
552 } else {
553 pool_put(&ipqent_pool, q);
554 }
555 TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
556 break;
557 }
558 /*
559 * If the fragment is before the segment, remember it.
560 * When this loop is terminated, p will contain the
561 * pointer to fragment that is right before the received
562 * segment.
563 */
564 if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
565 p = q;
566
567 continue;
568
569 /*
570 * This is a common operation. It also will allow
571 * to save doing a malloc/free in most instances.
572 */
573 free_ipqe:
574 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
575 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
576 if (tiqe == NULL) {
577 tiqe = q;
578 } else {
579 pool_put(&ipqent_pool, q);
580 }
581 }
582
583 #ifdef TCP_REASS_COUNTERS
584 if (count > 7)
585 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
586 else if (count > 0)
587 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
588 #endif
589
590 insert_it:
591
592 /*
593 * Allocate a new queue entry since the received segment did not
594 * collapse onto any other out-of-order block; thus we are allocating
595 * a new block. If it had collapsed, tiqe would not be NULL and
596 * we would be reusing it.
597 * XXX If we can't, just drop the packet. XXX
598 */
599 if (tiqe == NULL) {
600 tiqe = pool_get(&ipqent_pool, PR_NOWAIT);
601 if (tiqe == NULL) {
602 tcpstat.tcps_rcvmemdrop++;
603 m_freem(m);
604 return (0);
605 }
606 }
607
608 /*
609 * Update the counters.
610 */
611 tcpstat.tcps_rcvoopack++;
612 tcpstat.tcps_rcvoobyte += rcvoobyte;
613 if (rcvpartdupbyte) {
614 tcpstat.tcps_rcvpartduppack++;
615 tcpstat.tcps_rcvpartdupbyte += rcvpartdupbyte;
616 }
617
618 /*
619 * Insert the new fragment queue entry into both queues.
620 */
621 tiqe->ipqe_m = m;
622 tiqe->ipqe_seq = pkt_seq;
623 tiqe->ipqe_len = pkt_len;
624 tiqe->ipqe_flags = pkt_flags;
625 if (p == NULL) {
626 TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
627 #ifdef TCPREASS_DEBUG
628 if (tiqe->ipqe_seq != tp->rcv_nxt)
629 printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
630 tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
631 #endif
632 } else {
633 TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
634 #ifdef TCPREASS_DEBUG
635 printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
636 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
637 p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
638 #endif
639 }
640
641 skip_replacement:
642
643 TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
644
645 present:
646 /*
647 * Present data to user, advancing rcv_nxt through
648 * completed sequence space.
649 */
650 if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
651 return (0);
652 q = TAILQ_FIRST(&tp->segq);
653 if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
654 return (0);
655 if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
656 return (0);
657
658 tp->rcv_nxt += q->ipqe_len;
659 pkt_flags = q->ipqe_flags & TH_FIN;
660 ND6_HINT(tp);
661
662 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
663 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
664 if (so->so_state & SS_CANTRCVMORE)
665 m_freem(q->ipqe_m);
666 else
667 sbappendstream(&so->so_rcv, q->ipqe_m);
668 pool_put(&ipqent_pool, q);
669 sorwakeup(so);
670 return (pkt_flags);
671 }
672
673 #ifdef INET6
674 int
675 tcp6_input(mp, offp, proto)
676 struct mbuf **mp;
677 int *offp, proto;
678 {
679 struct mbuf *m = *mp;
680
681 /*
682 * draft-itojun-ipv6-tcp-to-anycast
683 * better place to put this in?
684 */
685 if (m->m_flags & M_ANYCAST6) {
686 struct ip6_hdr *ip6;
687 if (m->m_len < sizeof(struct ip6_hdr)) {
688 if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
689 tcpstat.tcps_rcvshort++;
690 return IPPROTO_DONE;
691 }
692 }
693 ip6 = mtod(m, struct ip6_hdr *);
694 icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
695 (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
696 return IPPROTO_DONE;
697 }
698
699 tcp_input(m, *offp, proto);
700 return IPPROTO_DONE;
701 }
702 #endif
703
704 #ifdef INET
705 static void
706 tcp4_log_refused(ip, th)
707 const struct ip *ip;
708 const struct tcphdr *th;
709 {
710 char src[4*sizeof "123"];
711 char dst[4*sizeof "123"];
712
713 if (ip) {
714 strcpy(src, inet_ntoa(ip->ip_src));
715 strcpy(dst, inet_ntoa(ip->ip_dst));
716 }
717 else {
718 strcpy(src, "(unknown)");
719 strcpy(dst, "(unknown)");
720 }
721 log(LOG_INFO,
722 "Connection attempt to TCP %s:%d from %s:%d\n",
723 dst, ntohs(th->th_dport),
724 src, ntohs(th->th_sport));
725 }
726 #endif
727
728 #ifdef INET6
729 static void
730 tcp6_log_refused(ip6, th)
731 const struct ip6_hdr *ip6;
732 const struct tcphdr *th;
733 {
734 char src[INET6_ADDRSTRLEN];
735 char dst[INET6_ADDRSTRLEN];
736
737 if (ip6) {
738 strcpy(src, ip6_sprintf(&ip6->ip6_src));
739 strcpy(dst, ip6_sprintf(&ip6->ip6_dst));
740 }
741 else {
742 strcpy(src, "(unknown v6)");
743 strcpy(dst, "(unknown v6)");
744 }
745 log(LOG_INFO,
746 "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
747 dst, ntohs(th->th_dport),
748 src, ntohs(th->th_sport));
749 }
750 #endif
751
752 /*
753 * TCP input routine, follows pages 65-76 of the
754 * protocol specification dated September, 1981 very closely.
755 */
756 void
757 #if __STDC__
758 tcp_input(struct mbuf *m, ...)
759 #else
760 tcp_input(m, va_alist)
761 struct mbuf *m;
762 #endif
763 {
764 int proto;
765 struct tcphdr *th;
766 struct ip *ip;
767 struct inpcb *inp;
768 #ifdef INET6
769 struct ip6_hdr *ip6;
770 struct in6pcb *in6p;
771 #endif
772 caddr_t optp = NULL;
773 int optlen = 0;
774 int len, tlen, toff, hdroptlen = 0;
775 struct tcpcb *tp = 0;
776 int tiflags;
777 struct socket *so = NULL;
778 int todrop, acked, ourfinisacked, needoutput = 0;
779 short ostate = 0;
780 int iss = 0;
781 u_long tiwin;
782 struct tcp_opt_info opti;
783 int off, iphlen;
784 va_list ap;
785 int af; /* af on the wire */
786 struct mbuf *tcp_saveti = NULL;
787
788 va_start(ap, m);
789 toff = va_arg(ap, int);
790 proto = va_arg(ap, int);
791 va_end(ap);
792
793 tcpstat.tcps_rcvtotal++;
794
795 bzero(&opti, sizeof(opti));
796 opti.ts_present = 0;
797 opti.maxseg = 0;
798
799 /*
800 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
801 *
802 * TCP is, by definition, unicast, so we reject all
803 * multicast outright.
804 *
805 * Note, there are additional src/dst address checks in
806 * the AF-specific code below.
807 */
808 if (m->m_flags & (M_BCAST|M_MCAST)) {
809 /* XXX stat */
810 goto drop;
811 }
812 #ifdef INET6
813 if (m->m_flags & M_ANYCAST6) {
814 /* XXX stat */
815 goto drop;
816 }
817 #endif
818
819 /*
820 * Get IP and TCP header together in first mbuf.
821 * Note: IP leaves IP header in first mbuf.
822 */
823 ip = mtod(m, struct ip *);
824 #ifdef INET6
825 ip6 = NULL;
826 #endif
827 switch (ip->ip_v) {
828 #ifdef INET
829 case 4:
830 af = AF_INET;
831 iphlen = sizeof(struct ip);
832 #ifndef PULLDOWN_TEST
833 /* would like to get rid of this... */
834 if (toff > sizeof (struct ip)) {
835 ip_stripoptions(m, (struct mbuf *)0);
836 toff = sizeof(struct ip);
837 }
838 if (m->m_len < toff + sizeof (struct tcphdr)) {
839 if ((m = m_pullup(m, toff + sizeof (struct tcphdr))) == 0) {
840 tcpstat.tcps_rcvshort++;
841 return;
842 }
843 }
844 ip = mtod(m, struct ip *);
845 th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
846 #else
847 ip = mtod(m, struct ip *);
848 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
849 sizeof(struct tcphdr));
850 if (th == NULL) {
851 tcpstat.tcps_rcvshort++;
852 return;
853 }
854 #endif
855 /* We do the checksum after PCB lookup... */
856 len = ntohs(ip->ip_len);
857 tlen = len - toff;
858 break;
859 #endif
860 #ifdef INET6
861 case 6:
862 ip = NULL;
863 iphlen = sizeof(struct ip6_hdr);
864 af = AF_INET6;
865 #ifndef PULLDOWN_TEST
866 if (m->m_len < toff + sizeof(struct tcphdr)) {
867 m = m_pullup(m, toff + sizeof(struct tcphdr)); /*XXX*/
868 if (m == NULL) {
869 tcpstat.tcps_rcvshort++;
870 return;
871 }
872 }
873 ip6 = mtod(m, struct ip6_hdr *);
874 th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
875 #else
876 ip6 = mtod(m, struct ip6_hdr *);
877 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
878 sizeof(struct tcphdr));
879 if (th == NULL) {
880 tcpstat.tcps_rcvshort++;
881 return;
882 }
883 #endif
884
885 /* Be proactive about malicious use of IPv4 mapped address */
886 if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
887 IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
888 /* XXX stat */
889 goto drop;
890 }
891
892 /*
893 * Be proactive about unspecified IPv6 address in source.
894 * As we use all-zero to indicate unbounded/unconnected pcb,
895 * unspecified IPv6 address can be used to confuse us.
896 *
897 * Note that packets with unspecified IPv6 destination is
898 * already dropped in ip6_input.
899 */
900 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
901 /* XXX stat */
902 goto drop;
903 }
904
905 /*
906 * Make sure destination address is not multicast.
907 * Source address checked in ip6_input().
908 */
909 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
910 /* XXX stat */
911 goto drop;
912 }
913
914 /* We do the checksum after PCB lookup... */
915 len = m->m_pkthdr.len;
916 tlen = len - toff;
917 break;
918 #endif
919 default:
920 m_freem(m);
921 return;
922 }
923
924 KASSERT(TCP_HDR_ALIGNED_P(th));
925
926 /*
927 * Check that TCP offset makes sense,
928 * pull out TCP options and adjust length. XXX
929 */
930 off = th->th_off << 2;
931 if (off < sizeof (struct tcphdr) || off > tlen) {
932 tcpstat.tcps_rcvbadoff++;
933 goto drop;
934 }
935 tlen -= off;
936
937 /*
938 * tcp_input() has been modified to use tlen to mean the TCP data
939 * length throughout the function. Other functions can use
940 * m->m_pkthdr.len as the basis for calculating the TCP data length.
941 * rja
942 */
943
944 if (off > sizeof (struct tcphdr)) {
945 #ifndef PULLDOWN_TEST
946 if (m->m_len < toff + off) {
947 if ((m = m_pullup(m, toff + off)) == 0) {
948 tcpstat.tcps_rcvshort++;
949 return;
950 }
951 switch (af) {
952 #ifdef INET
953 case AF_INET:
954 ip = mtod(m, struct ip *);
955 break;
956 #endif
957 #ifdef INET6
958 case AF_INET6:
959 ip6 = mtod(m, struct ip6_hdr *);
960 break;
961 #endif
962 }
963 th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
964 }
965 #else
966 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
967 if (th == NULL) {
968 tcpstat.tcps_rcvshort++;
969 return;
970 }
971 /*
972 * NOTE: ip/ip6 will not be affected by m_pulldown()
973 * (as they're before toff) and we don't need to update those.
974 */
975 #endif
976 KASSERT(TCP_HDR_ALIGNED_P(th));
977 optlen = off - sizeof (struct tcphdr);
978 optp = ((caddr_t)th) + sizeof(struct tcphdr);
979 /*
980 * Do quick retrieval of timestamp options ("options
981 * prediction?"). If timestamp is the only option and it's
982 * formatted as recommended in RFC 1323 appendix A, we
983 * quickly get the values now and not bother calling
984 * tcp_dooptions(), etc.
985 */
986 if ((optlen == TCPOLEN_TSTAMP_APPA ||
987 (optlen > TCPOLEN_TSTAMP_APPA &&
988 optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
989 *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
990 (th->th_flags & TH_SYN) == 0) {
991 opti.ts_present = 1;
992 opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
993 opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
994 optp = NULL; /* we've parsed the options */
995 }
996 }
997 tiflags = th->th_flags;
998
999 /*
1000 * Locate pcb for segment.
1001 */
1002 findpcb:
1003 inp = NULL;
1004 #ifdef INET6
1005 in6p = NULL;
1006 #endif
1007 switch (af) {
1008 #ifdef INET
1009 case AF_INET:
1010 inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
1011 ip->ip_dst, th->th_dport);
1012 if (inp == 0) {
1013 ++tcpstat.tcps_pcbhashmiss;
1014 inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
1015 }
1016 #ifdef INET6
1017 if (inp == 0) {
1018 struct in6_addr s, d;
1019
1020 /* mapped addr case */
1021 bzero(&s, sizeof(s));
1022 s.s6_addr16[5] = htons(0xffff);
1023 bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
1024 bzero(&d, sizeof(d));
1025 d.s6_addr16[5] = htons(0xffff);
1026 bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
1027 in6p = in6_pcblookup_connect(&tcb6, &s, th->th_sport,
1028 &d, th->th_dport, 0);
1029 if (in6p == 0) {
1030 ++tcpstat.tcps_pcbhashmiss;
1031 in6p = in6_pcblookup_bind(&tcb6, &d,
1032 th->th_dport, 0);
1033 }
1034 }
1035 #endif
1036 #ifndef INET6
1037 if (inp == 0)
1038 #else
1039 if (inp == 0 && in6p == 0)
1040 #endif
1041 {
1042 ++tcpstat.tcps_noport;
1043 if (tcp_log_refused && (tiflags & TH_SYN)) {
1044 tcp4_log_refused(ip, th);
1045 }
1046 TCP_FIELDS_TO_HOST(th);
1047 goto dropwithreset_ratelim;
1048 }
1049 #ifdef IPSEC
1050 if (inp && ipsec4_in_reject(m, inp)) {
1051 ipsecstat.in_polvio++;
1052 goto drop;
1053 }
1054 #ifdef INET6
1055 else if (in6p && ipsec4_in_reject_so(m, in6p->in6p_socket)) {
1056 ipsecstat.in_polvio++;
1057 goto drop;
1058 }
1059 #endif
1060 #endif /*IPSEC*/
1061 break;
1062 #endif /*INET*/
1063 #ifdef INET6
1064 case AF_INET6:
1065 {
1066 int faith;
1067
1068 #if defined(NFAITH) && NFAITH > 0
1069 faith = faithprefix(&ip6->ip6_dst);
1070 #else
1071 faith = 0;
1072 #endif
1073 in6p = in6_pcblookup_connect(&tcb6, &ip6->ip6_src, th->th_sport,
1074 &ip6->ip6_dst, th->th_dport, faith);
1075 if (in6p == NULL) {
1076 ++tcpstat.tcps_pcbhashmiss;
1077 in6p = in6_pcblookup_bind(&tcb6, &ip6->ip6_dst,
1078 th->th_dport, faith);
1079 }
1080 if (in6p == NULL) {
1081 ++tcpstat.tcps_noport;
1082 if (tcp_log_refused && (tiflags & TH_SYN)) {
1083 tcp6_log_refused(ip6, th);
1084 }
1085 TCP_FIELDS_TO_HOST(th);
1086 goto dropwithreset_ratelim;
1087 }
1088 #ifdef IPSEC
1089 if (ipsec6_in_reject(m, in6p)) {
1090 ipsec6stat.in_polvio++;
1091 goto drop;
1092 }
1093 #endif /*IPSEC*/
1094 break;
1095 }
1096 #endif
1097 }
1098
1099 /*
1100 * If the state is CLOSED (i.e., TCB does not exist) then
1101 * all data in the incoming segment is discarded.
1102 * If the TCB exists but is in CLOSED state, it is embryonic,
1103 * but should either do a listen or a connect soon.
1104 */
1105 tp = NULL;
1106 so = NULL;
1107 if (inp) {
1108 tp = intotcpcb(inp);
1109 so = inp->inp_socket;
1110 }
1111 #ifdef INET6
1112 else if (in6p) {
1113 tp = in6totcpcb(in6p);
1114 so = in6p->in6p_socket;
1115 }
1116 #endif
1117 if (tp == 0) {
1118 TCP_FIELDS_TO_HOST(th);
1119 goto dropwithreset_ratelim;
1120 }
1121 if (tp->t_state == TCPS_CLOSED)
1122 goto drop;
1123
1124 /*
1125 * Checksum extended TCP header and data.
1126 */
1127 switch (af) {
1128 #ifdef INET
1129 case AF_INET:
1130 switch (m->m_pkthdr.csum_flags &
1131 ((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
1132 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
1133 case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
1134 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
1135 goto badcsum;
1136
1137 case M_CSUM_TCPv4|M_CSUM_DATA:
1138 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
1139 if ((m->m_pkthdr.csum_data ^ 0xffff) != 0)
1140 goto badcsum;
1141 break;
1142
1143 case M_CSUM_TCPv4:
1144 /* Checksum was okay. */
1145 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
1146 break;
1147
1148 default:
1149 /* Must compute it ourselves. */
1150 TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
1151 #ifndef PULLDOWN_TEST
1152 {
1153 struct ipovly *ipov;
1154 ipov = (struct ipovly *)ip;
1155 bzero(ipov->ih_x1, sizeof ipov->ih_x1);
1156 ipov->ih_len = htons(tlen + off);
1157
1158 if (in_cksum(m, len) != 0)
1159 goto badcsum;
1160 }
1161 #else
1162 if (in4_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0)
1163 goto badcsum;
1164 #endif /* ! PULLDOWN_TEST */
1165 break;
1166 }
1167 break;
1168 #endif /* INET4 */
1169
1170 #ifdef INET6
1171 case AF_INET6:
1172 if (in6_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0)
1173 goto badcsum;
1174 break;
1175 #endif /* INET6 */
1176 }
1177
1178 TCP_FIELDS_TO_HOST(th);
1179
1180 /* Unscale the window into a 32-bit value. */
1181 if ((tiflags & TH_SYN) == 0)
1182 tiwin = th->th_win << tp->snd_scale;
1183 else
1184 tiwin = th->th_win;
1185
1186 #ifdef INET6
1187 /* save packet options if user wanted */
1188 if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
1189 if (in6p->in6p_options) {
1190 m_freem(in6p->in6p_options);
1191 in6p->in6p_options = 0;
1192 }
1193 ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
1194 }
1195 #endif
1196
1197 if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
1198 union syn_cache_sa src;
1199 union syn_cache_sa dst;
1200
1201 bzero(&src, sizeof(src));
1202 bzero(&dst, sizeof(dst));
1203 switch (af) {
1204 #ifdef INET
1205 case AF_INET:
1206 src.sin.sin_len = sizeof(struct sockaddr_in);
1207 src.sin.sin_family = AF_INET;
1208 src.sin.sin_addr = ip->ip_src;
1209 src.sin.sin_port = th->th_sport;
1210
1211 dst.sin.sin_len = sizeof(struct sockaddr_in);
1212 dst.sin.sin_family = AF_INET;
1213 dst.sin.sin_addr = ip->ip_dst;
1214 dst.sin.sin_port = th->th_dport;
1215 break;
1216 #endif
1217 #ifdef INET6
1218 case AF_INET6:
1219 src.sin6.sin6_len = sizeof(struct sockaddr_in6);
1220 src.sin6.sin6_family = AF_INET6;
1221 src.sin6.sin6_addr = ip6->ip6_src;
1222 src.sin6.sin6_port = th->th_sport;
1223
1224 dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
1225 dst.sin6.sin6_family = AF_INET6;
1226 dst.sin6.sin6_addr = ip6->ip6_dst;
1227 dst.sin6.sin6_port = th->th_dport;
1228 break;
1229 #endif /* INET6 */
1230 default:
1231 goto badsyn; /*sanity*/
1232 }
1233
1234 if (so->so_options & SO_DEBUG) {
1235 ostate = tp->t_state;
1236
1237 tcp_saveti = NULL;
1238 if (iphlen + sizeof(struct tcphdr) > MHLEN)
1239 goto nosave;
1240
1241 if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
1242 tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
1243 if (!tcp_saveti)
1244 goto nosave;
1245 } else {
1246 MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
1247 if (!tcp_saveti)
1248 goto nosave;
1249 tcp_saveti->m_len = iphlen;
1250 m_copydata(m, 0, iphlen,
1251 mtod(tcp_saveti, caddr_t));
1252 }
1253
1254 if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
1255 m_freem(tcp_saveti);
1256 tcp_saveti = NULL;
1257 } else {
1258 tcp_saveti->m_len += sizeof(struct tcphdr);
1259 bcopy(th, mtod(tcp_saveti, caddr_t) + iphlen,
1260 sizeof(struct tcphdr));
1261 }
1262 if (tcp_saveti) {
1263 /*
1264 * need to recover version # field, which was
1265 * overwritten on ip_cksum computation.
1266 */
1267 struct ip *sip;
1268 sip = mtod(tcp_saveti, struct ip *);
1269 switch (af) {
1270 #ifdef INET
1271 case AF_INET:
1272 sip->ip_v = 4;
1273 break;
1274 #endif
1275 #ifdef INET6
1276 case AF_INET6:
1277 sip->ip_v = 6;
1278 break;
1279 #endif
1280 }
1281 }
1282 nosave:;
1283 }
1284 if (so->so_options & SO_ACCEPTCONN) {
1285 if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1286 if (tiflags & TH_RST) {
1287 syn_cache_reset(&src.sa, &dst.sa, th);
1288 } else if ((tiflags & (TH_ACK|TH_SYN)) ==
1289 (TH_ACK|TH_SYN)) {
1290 /*
1291 * Received a SYN,ACK. This should
1292 * never happen while we are in
1293 * LISTEN. Send an RST.
1294 */
1295 goto badsyn;
1296 } else if (tiflags & TH_ACK) {
1297 so = syn_cache_get(&src.sa, &dst.sa,
1298 th, toff, tlen, so, m);
1299 if (so == NULL) {
1300 /*
1301 * We don't have a SYN for
1302 * this ACK; send an RST.
1303 */
1304 goto badsyn;
1305 } else if (so ==
1306 (struct socket *)(-1)) {
1307 /*
1308 * We were unable to create
1309 * the connection. If the
1310 * 3-way handshake was
1311 * completed, and RST has
1312 * been sent to the peer.
1313 * Since the mbuf might be
1314 * in use for the reply,
1315 * do not free it.
1316 */
1317 m = NULL;
1318 } else {
1319 /*
1320 * We have created a
1321 * full-blown connection.
1322 */
1323 tp = NULL;
1324 inp = NULL;
1325 #ifdef INET6
1326 in6p = NULL;
1327 #endif
1328 switch (so->so_proto->pr_domain->dom_family) {
1329 #ifdef INET
1330 case AF_INET:
1331 inp = sotoinpcb(so);
1332 tp = intotcpcb(inp);
1333 break;
1334 #endif
1335 #ifdef INET6
1336 case AF_INET6:
1337 in6p = sotoin6pcb(so);
1338 tp = in6totcpcb(in6p);
1339 break;
1340 #endif
1341 }
1342 if (tp == NULL)
1343 goto badsyn; /*XXX*/
1344 tiwin <<= tp->snd_scale;
1345 goto after_listen;
1346 }
1347 } else {
1348 /*
1349 * None of RST, SYN or ACK was set.
1350 * This is an invalid packet for a
1351 * TCB in LISTEN state. Send a RST.
1352 */
1353 goto badsyn;
1354 }
1355 } else {
1356 /*
1357 * Received a SYN.
1358 */
1359
1360 #ifdef INET6
1361 /*
1362 * If deprecated address is forbidden, we do
1363 * not accept SYN to deprecated interface
1364 * address to prevent any new inbound
1365 * connection from getting established.
1366 * When we do not accept SYN, we send a TCP
1367 * RST, with deprecated source address (instead
1368 * of dropping it). We compromise it as it is
1369 * much better for peer to send a RST, and
1370 * RST will be the final packet for the
1371 * exchange.
1372 *
1373 * If we do not forbid deprecated addresses, we
1374 * accept the SYN packet. RFC2462 does not
1375 * suggest dropping SYN in this case.
1376 * If we decipher RFC2462 5.5.4, it says like
1377 * this:
1378 * 1. use of deprecated addr with existing
1379 * communication is okay - "SHOULD continue
1380 * to be used"
1381 * 2. use of it with new communication:
1382 * (2a) "SHOULD NOT be used if alternate
1383 * address with sufficient scope is
1384 * available"
1385 * (2b) nothing mentioned otherwise.
1386 * Here we fall into (2b) case as we have no
1387 * choice in our source address selection - we
1388 * must obey the peer.
1389 *
1390 * The wording in RFC2462 is confusing, and
1391 * there are multiple description text for
1392 * deprecated address handling - worse, they
1393 * are not exactly the same. I believe 5.5.4
1394 * is the best one, so we follow 5.5.4.
1395 */
1396 if (af == AF_INET6 && !ip6_use_deprecated) {
1397 struct in6_ifaddr *ia6;
1398 if ((ia6 = in6ifa_ifpwithaddr(m->m_pkthdr.rcvif,
1399 &ip6->ip6_dst)) &&
1400 (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1401 tp = NULL;
1402 goto dropwithreset;
1403 }
1404 }
1405 #endif
1406
1407 /*
1408 * LISTEN socket received a SYN
1409 * from itself? This can't possibly
1410 * be valid; drop the packet.
1411 */
1412 if (th->th_sport == th->th_dport) {
1413 int i;
1414
1415 switch (af) {
1416 #ifdef INET
1417 case AF_INET:
1418 i = in_hosteq(ip->ip_src, ip->ip_dst);
1419 break;
1420 #endif
1421 #ifdef INET6
1422 case AF_INET6:
1423 i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
1424 break;
1425 #endif
1426 default:
1427 i = 1;
1428 }
1429 if (i) {
1430 tcpstat.tcps_badsyn++;
1431 goto drop;
1432 }
1433 }
1434
1435 /*
1436 * SYN looks ok; create compressed TCP
1437 * state for it.
1438 */
1439 if (so->so_qlen <= so->so_qlimit &&
1440 syn_cache_add(&src.sa, &dst.sa, th, tlen,
1441 so, m, optp, optlen, &opti))
1442 m = NULL;
1443 }
1444 goto drop;
1445 }
1446 }
1447
1448 after_listen:
1449 #ifdef DIAGNOSTIC
1450 /*
1451 * Should not happen now that all embryonic connections
1452 * are handled with compressed state.
1453 */
1454 if (tp->t_state == TCPS_LISTEN)
1455 panic("tcp_input: TCPS_LISTEN");
1456 #endif
1457
1458 /*
1459 * Segment received on connection.
1460 * Reset idle time and keep-alive timer.
1461 */
1462 tp->t_rcvtime = tcp_now;
1463 if (TCPS_HAVEESTABLISHED(tp->t_state))
1464 TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1465
1466 /*
1467 * Process options.
1468 */
1469 if (optp)
1470 tcp_dooptions(tp, optp, optlen, th, &opti);
1471
1472 /*
1473 * Header prediction: check for the two common cases
1474 * of a uni-directional data xfer. If the packet has
1475 * no control flags, is in-sequence, the window didn't
1476 * change and we're not retransmitting, it's a
1477 * candidate. If the length is zero and the ack moved
1478 * forward, we're the sender side of the xfer. Just
1479 * free the data acked & wake any higher level process
1480 * that was blocked waiting for space. If the length
1481 * is non-zero and the ack didn't move, we're the
1482 * receiver side. If we're getting packets in-order
1483 * (the reassembly queue is empty), add the data to
1484 * the socket buffer and note that we need a delayed ack.
1485 */
1486 if (tp->t_state == TCPS_ESTABLISHED &&
1487 (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1488 (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
1489 th->th_seq == tp->rcv_nxt &&
1490 tiwin && tiwin == tp->snd_wnd &&
1491 tp->snd_nxt == tp->snd_max) {
1492
1493 /*
1494 * If last ACK falls within this segment's sequence numbers,
1495 * record the timestamp.
1496 */
1497 if (opti.ts_present &&
1498 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1499 SEQ_LT(tp->last_ack_sent, th->th_seq + tlen)) {
1500 tp->ts_recent_age = TCP_TIMESTAMP(tp);
1501 tp->ts_recent = opti.ts_val;
1502 }
1503
1504 if (tlen == 0) {
1505 if (SEQ_GT(th->th_ack, tp->snd_una) &&
1506 SEQ_LEQ(th->th_ack, tp->snd_max) &&
1507 tp->snd_cwnd >= tp->snd_wnd &&
1508 tp->t_dupacks < tcprexmtthresh) {
1509 /*
1510 * this is a pure ack for outstanding data.
1511 */
1512 ++tcpstat.tcps_predack;
1513 if (opti.ts_present && opti.ts_ecr)
1514 tcp_xmit_timer(tp,
1515 TCP_TIMESTAMP(tp) - opti.ts_ecr + 1);
1516 else if (tp->t_rtttime &&
1517 SEQ_GT(th->th_ack, tp->t_rtseq))
1518 tcp_xmit_timer(tp,
1519 tcp_now - tp->t_rtttime);
1520 acked = th->th_ack - tp->snd_una;
1521 tcpstat.tcps_rcvackpack++;
1522 tcpstat.tcps_rcvackbyte += acked;
1523 ND6_HINT(tp);
1524 sbdrop(&so->so_snd, acked);
1525 /*
1526 * We want snd_recover to track snd_una to
1527 * avoid sequence wraparound problems for
1528 * very large transfers.
1529 */
1530 tp->snd_una = tp->snd_recover = th->th_ack;
1531 m_freem(m);
1532
1533 /*
1534 * If all outstanding data are acked, stop
1535 * retransmit timer, otherwise restart timer
1536 * using current (possibly backed-off) value.
1537 * If process is waiting for space,
1538 * wakeup/selwakeup/signal. If data
1539 * are ready to send, let tcp_output
1540 * decide between more output or persist.
1541 */
1542 if (tp->snd_una == tp->snd_max)
1543 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1544 else if (TCP_TIMER_ISARMED(tp,
1545 TCPT_PERSIST) == 0)
1546 TCP_TIMER_ARM(tp, TCPT_REXMT,
1547 tp->t_rxtcur);
1548
1549 sowwakeup(so);
1550 if (so->so_snd.sb_cc)
1551 (void) tcp_output(tp);
1552 if (tcp_saveti)
1553 m_freem(tcp_saveti);
1554 return;
1555 }
1556 } else if (th->th_ack == tp->snd_una &&
1557 TAILQ_FIRST(&tp->segq) == NULL &&
1558 tlen <= sbspace(&so->so_rcv)) {
1559 /*
1560 * this is a pure, in-sequence data packet
1561 * with nothing on the reassembly queue and
1562 * we have enough buffer space to take it.
1563 */
1564 ++tcpstat.tcps_preddat;
1565 tp->rcv_nxt += tlen;
1566 tcpstat.tcps_rcvpack++;
1567 tcpstat.tcps_rcvbyte += tlen;
1568 ND6_HINT(tp);
1569 /*
1570 * Drop TCP, IP headers and TCP options then add data
1571 * to socket buffer.
1572 */
1573 m_adj(m, toff + off);
1574 sbappendstream(&so->so_rcv, m);
1575 sorwakeup(so);
1576 TCP_SETUP_ACK(tp, th);
1577 if (tp->t_flags & TF_ACKNOW)
1578 (void) tcp_output(tp);
1579 if (tcp_saveti)
1580 m_freem(tcp_saveti);
1581 return;
1582 }
1583 }
1584
1585 /*
1586 * Compute mbuf offset to TCP data segment.
1587 */
1588 hdroptlen = toff + off;
1589
1590 /*
1591 * Calculate amount of space in receive window,
1592 * and then do TCP input processing.
1593 * Receive window is amount of space in rcv queue,
1594 * but not less than advertised window.
1595 */
1596 { int win;
1597
1598 win = sbspace(&so->so_rcv);
1599 if (win < 0)
1600 win = 0;
1601 tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1602 }
1603
1604 switch (tp->t_state) {
1605 case TCPS_LISTEN:
1606 /*
1607 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
1608 */
1609 if (m->m_flags & (M_BCAST|M_MCAST))
1610 goto drop;
1611 switch (af) {
1612 #ifdef INET6
1613 case AF_INET6:
1614 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
1615 goto drop;
1616 break;
1617 #endif /* INET6 */
1618 case AF_INET:
1619 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
1620 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
1621 goto drop;
1622 break;
1623 }
1624 break;
1625
1626 /*
1627 * If the state is SYN_SENT:
1628 * if seg contains an ACK, but not for our SYN, drop the input.
1629 * if seg contains a RST, then drop the connection.
1630 * if seg does not contain SYN, then drop it.
1631 * Otherwise this is an acceptable SYN segment
1632 * initialize tp->rcv_nxt and tp->irs
1633 * if seg contains ack then advance tp->snd_una
1634 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1635 * arrange for segment to be acked (eventually)
1636 * continue processing rest of data/controls, beginning with URG
1637 */
1638 case TCPS_SYN_SENT:
1639 if ((tiflags & TH_ACK) &&
1640 (SEQ_LEQ(th->th_ack, tp->iss) ||
1641 SEQ_GT(th->th_ack, tp->snd_max)))
1642 goto dropwithreset;
1643 if (tiflags & TH_RST) {
1644 if (tiflags & TH_ACK)
1645 tp = tcp_drop(tp, ECONNREFUSED);
1646 goto drop;
1647 }
1648 if ((tiflags & TH_SYN) == 0)
1649 goto drop;
1650 if (tiflags & TH_ACK) {
1651 tp->snd_una = tp->snd_recover = th->th_ack;
1652 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1653 tp->snd_nxt = tp->snd_una;
1654 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1655 }
1656 tp->irs = th->th_seq;
1657 tcp_rcvseqinit(tp);
1658 tp->t_flags |= TF_ACKNOW;
1659 tcp_mss_from_peer(tp, opti.maxseg);
1660
1661 /*
1662 * Initialize the initial congestion window. If we
1663 * had to retransmit the SYN, we must initialize cwnd
1664 * to 1 segment (i.e. the Loss Window).
1665 */
1666 if (tp->t_flags & TF_SYN_REXMT)
1667 tp->snd_cwnd = tp->t_peermss;
1668 else
1669 tp->snd_cwnd = TCP_INITIAL_WINDOW(tcp_init_win,
1670 tp->t_peermss);
1671
1672 tcp_rmx_rtt(tp);
1673 if (tiflags & TH_ACK) {
1674 tcpstat.tcps_connects++;
1675 soisconnected(so);
1676 tcp_established(tp);
1677 /* Do window scaling on this connection? */
1678 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1679 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1680 tp->snd_scale = tp->requested_s_scale;
1681 tp->rcv_scale = tp->request_r_scale;
1682 }
1683 TCP_REASS_LOCK(tp);
1684 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1685 TCP_REASS_UNLOCK(tp);
1686 /*
1687 * if we didn't have to retransmit the SYN,
1688 * use its rtt as our initial srtt & rtt var.
1689 */
1690 if (tp->t_rtttime)
1691 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
1692 } else
1693 tp->t_state = TCPS_SYN_RECEIVED;
1694
1695 /*
1696 * Advance th->th_seq to correspond to first data byte.
1697 * If data, trim to stay within window,
1698 * dropping FIN if necessary.
1699 */
1700 th->th_seq++;
1701 if (tlen > tp->rcv_wnd) {
1702 todrop = tlen - tp->rcv_wnd;
1703 m_adj(m, -todrop);
1704 tlen = tp->rcv_wnd;
1705 tiflags &= ~TH_FIN;
1706 tcpstat.tcps_rcvpackafterwin++;
1707 tcpstat.tcps_rcvbyteafterwin += todrop;
1708 }
1709 tp->snd_wl1 = th->th_seq - 1;
1710 tp->rcv_up = th->th_seq;
1711 goto step6;
1712
1713 /*
1714 * If the state is SYN_RECEIVED:
1715 * If seg contains an ACK, but not for our SYN, drop the input
1716 * and generate an RST. See page 36, rfc793
1717 */
1718 case TCPS_SYN_RECEIVED:
1719 if ((tiflags & TH_ACK) &&
1720 (SEQ_LEQ(th->th_ack, tp->iss) ||
1721 SEQ_GT(th->th_ack, tp->snd_max)))
1722 goto dropwithreset;
1723 break;
1724 }
1725
1726 /*
1727 * States other than LISTEN or SYN_SENT.
1728 * First check timestamp, if present.
1729 * Then check that at least some bytes of segment are within
1730 * receive window. If segment begins before rcv_nxt,
1731 * drop leading data (and SYN); if nothing left, just ack.
1732 *
1733 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1734 * and it's less than ts_recent, drop it.
1735 */
1736 if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
1737 TSTMP_LT(opti.ts_val, tp->ts_recent)) {
1738
1739 /* Check to see if ts_recent is over 24 days old. */
1740 if ((int)(TCP_TIMESTAMP(tp) - tp->ts_recent_age) >
1741 TCP_PAWS_IDLE) {
1742 /*
1743 * Invalidate ts_recent. If this segment updates
1744 * ts_recent, the age will be reset later and ts_recent
1745 * will get a valid value. If it does not, setting
1746 * ts_recent to zero will at least satisfy the
1747 * requirement that zero be placed in the timestamp
1748 * echo reply when ts_recent isn't valid. The
1749 * age isn't reset until we get a valid ts_recent
1750 * because we don't want out-of-order segments to be
1751 * dropped when ts_recent is old.
1752 */
1753 tp->ts_recent = 0;
1754 } else {
1755 tcpstat.tcps_rcvduppack++;
1756 tcpstat.tcps_rcvdupbyte += tlen;
1757 tcpstat.tcps_pawsdrop++;
1758 goto dropafterack;
1759 }
1760 }
1761
1762 todrop = tp->rcv_nxt - th->th_seq;
1763 if (todrop > 0) {
1764 if (tiflags & TH_SYN) {
1765 tiflags &= ~TH_SYN;
1766 th->th_seq++;
1767 if (th->th_urp > 1)
1768 th->th_urp--;
1769 else {
1770 tiflags &= ~TH_URG;
1771 th->th_urp = 0;
1772 }
1773 todrop--;
1774 }
1775 if (todrop > tlen ||
1776 (todrop == tlen && (tiflags & TH_FIN) == 0)) {
1777 /*
1778 * Any valid FIN must be to the left of the window.
1779 * At this point the FIN must be a duplicate or
1780 * out of sequence; drop it.
1781 */
1782 tiflags &= ~TH_FIN;
1783 /*
1784 * Send an ACK to resynchronize and drop any data.
1785 * But keep on processing for RST or ACK.
1786 */
1787 tp->t_flags |= TF_ACKNOW;
1788 todrop = tlen;
1789 tcpstat.tcps_rcvdupbyte += todrop;
1790 tcpstat.tcps_rcvduppack++;
1791 } else {
1792 tcpstat.tcps_rcvpartduppack++;
1793 tcpstat.tcps_rcvpartdupbyte += todrop;
1794 }
1795 hdroptlen += todrop; /*drop from head afterwards*/
1796 th->th_seq += todrop;
1797 tlen -= todrop;
1798 if (th->th_urp > todrop)
1799 th->th_urp -= todrop;
1800 else {
1801 tiflags &= ~TH_URG;
1802 th->th_urp = 0;
1803 }
1804 }
1805
1806 /*
1807 * If new data are received on a connection after the
1808 * user processes are gone, then RST the other end.
1809 */
1810 if ((so->so_state & SS_NOFDREF) &&
1811 tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1812 tp = tcp_close(tp);
1813 tcpstat.tcps_rcvafterclose++;
1814 goto dropwithreset;
1815 }
1816
1817 /*
1818 * If segment ends after window, drop trailing data
1819 * (and PUSH and FIN); if nothing left, just ACK.
1820 */
1821 todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
1822 if (todrop > 0) {
1823 tcpstat.tcps_rcvpackafterwin++;
1824 if (todrop >= tlen) {
1825 tcpstat.tcps_rcvbyteafterwin += tlen;
1826 /*
1827 * If a new connection request is received
1828 * while in TIME_WAIT, drop the old connection
1829 * and start over if the sequence numbers
1830 * are above the previous ones.
1831 */
1832 if (tiflags & TH_SYN &&
1833 tp->t_state == TCPS_TIME_WAIT &&
1834 SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1835 iss = tcp_new_iss(tp, tp->snd_nxt);
1836 tp = tcp_close(tp);
1837 goto findpcb;
1838 }
1839 /*
1840 * If window is closed can only take segments at
1841 * window edge, and have to drop data and PUSH from
1842 * incoming segments. Continue processing, but
1843 * remember to ack. Otherwise, drop segment
1844 * and ack.
1845 */
1846 if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1847 tp->t_flags |= TF_ACKNOW;
1848 tcpstat.tcps_rcvwinprobe++;
1849 } else
1850 goto dropafterack;
1851 } else
1852 tcpstat.tcps_rcvbyteafterwin += todrop;
1853 m_adj(m, -todrop);
1854 tlen -= todrop;
1855 tiflags &= ~(TH_PUSH|TH_FIN);
1856 }
1857
1858 /*
1859 * If last ACK falls within this segment's sequence numbers,
1860 * and the timestamp is newer, record it.
1861 */
1862 if (opti.ts_present && TSTMP_GEQ(opti.ts_val, tp->ts_recent) &&
1863 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1864 SEQ_LT(tp->last_ack_sent, th->th_seq + tlen +
1865 ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
1866 tp->ts_recent_age = TCP_TIMESTAMP(tp);
1867 tp->ts_recent = opti.ts_val;
1868 }
1869
1870 /*
1871 * If the RST bit is set examine the state:
1872 * SYN_RECEIVED STATE:
1873 * If passive open, return to LISTEN state.
1874 * If active open, inform user that connection was refused.
1875 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
1876 * Inform user that connection was reset, and close tcb.
1877 * CLOSING, LAST_ACK, TIME_WAIT STATES
1878 * Close the tcb.
1879 */
1880 if (tiflags&TH_RST) switch (tp->t_state) {
1881
1882 case TCPS_SYN_RECEIVED:
1883 so->so_error = ECONNREFUSED;
1884 goto close;
1885
1886 case TCPS_ESTABLISHED:
1887 case TCPS_FIN_WAIT_1:
1888 case TCPS_FIN_WAIT_2:
1889 case TCPS_CLOSE_WAIT:
1890 so->so_error = ECONNRESET;
1891 close:
1892 tp->t_state = TCPS_CLOSED;
1893 tcpstat.tcps_drops++;
1894 tp = tcp_close(tp);
1895 goto drop;
1896
1897 case TCPS_CLOSING:
1898 case TCPS_LAST_ACK:
1899 case TCPS_TIME_WAIT:
1900 tp = tcp_close(tp);
1901 goto drop;
1902 }
1903
1904 /*
1905 * If a SYN is in the window, then this is an
1906 * error and we send an RST and drop the connection.
1907 */
1908 if (tiflags & TH_SYN) {
1909 tp = tcp_drop(tp, ECONNRESET);
1910 goto dropwithreset;
1911 }
1912
1913 /*
1914 * If the ACK bit is off we drop the segment and return.
1915 */
1916 if ((tiflags & TH_ACK) == 0) {
1917 if (tp->t_flags & TF_ACKNOW)
1918 goto dropafterack;
1919 else
1920 goto drop;
1921 }
1922
1923 /*
1924 * Ack processing.
1925 */
1926 switch (tp->t_state) {
1927
1928 /*
1929 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
1930 * ESTABLISHED state and continue processing, otherwise
1931 * send an RST.
1932 */
1933 case TCPS_SYN_RECEIVED:
1934 if (SEQ_GT(tp->snd_una, th->th_ack) ||
1935 SEQ_GT(th->th_ack, tp->snd_max))
1936 goto dropwithreset;
1937 tcpstat.tcps_connects++;
1938 soisconnected(so);
1939 tcp_established(tp);
1940 /* Do window scaling? */
1941 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1942 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1943 tp->snd_scale = tp->requested_s_scale;
1944 tp->rcv_scale = tp->request_r_scale;
1945 }
1946 TCP_REASS_LOCK(tp);
1947 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1948 TCP_REASS_UNLOCK(tp);
1949 tp->snd_wl1 = th->th_seq - 1;
1950 /* fall into ... */
1951
1952 /*
1953 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1954 * ACKs. If the ack is in the range
1955 * tp->snd_una < th->th_ack <= tp->snd_max
1956 * then advance tp->snd_una to th->th_ack and drop
1957 * data from the retransmission queue. If this ACK reflects
1958 * more up to date window information we update our window information.
1959 */
1960 case TCPS_ESTABLISHED:
1961 case TCPS_FIN_WAIT_1:
1962 case TCPS_FIN_WAIT_2:
1963 case TCPS_CLOSE_WAIT:
1964 case TCPS_CLOSING:
1965 case TCPS_LAST_ACK:
1966 case TCPS_TIME_WAIT:
1967
1968 if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
1969 if (tlen == 0 && tiwin == tp->snd_wnd) {
1970 tcpstat.tcps_rcvdupack++;
1971 /*
1972 * If we have outstanding data (other than
1973 * a window probe), this is a completely
1974 * duplicate ack (ie, window info didn't
1975 * change), the ack is the biggest we've
1976 * seen and we've seen exactly our rexmt
1977 * threshhold of them, assume a packet
1978 * has been dropped and retransmit it.
1979 * Kludge snd_nxt & the congestion
1980 * window so we send only this one
1981 * packet.
1982 *
1983 * We know we're losing at the current
1984 * window size so do congestion avoidance
1985 * (set ssthresh to half the current window
1986 * and pull our congestion window back to
1987 * the new ssthresh).
1988 *
1989 * Dup acks mean that packets have left the
1990 * network (they're now cached at the receiver)
1991 * so bump cwnd by the amount in the receiver
1992 * to keep a constant cwnd packets in the
1993 * network.
1994 */
1995 if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
1996 th->th_ack != tp->snd_una)
1997 tp->t_dupacks = 0;
1998 else if (++tp->t_dupacks == tcprexmtthresh) {
1999 tcp_seq onxt = tp->snd_nxt;
2000 u_int win =
2001 min(tp->snd_wnd, tp->snd_cwnd) /
2002 2 / tp->t_segsz;
2003 if (tcp_do_newreno && SEQ_LT(th->th_ack,
2004 tp->snd_recover)) {
2005 /*
2006 * False fast retransmit after
2007 * timeout. Do not cut window.
2008 */
2009 tp->snd_cwnd += tp->t_segsz;
2010 tp->t_dupacks = 0;
2011 (void) tcp_output(tp);
2012 goto drop;
2013 }
2014
2015 if (win < 2)
2016 win = 2;
2017 tp->snd_ssthresh = win * tp->t_segsz;
2018 tp->snd_recover = tp->snd_max;
2019 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2020 tp->t_rtttime = 0;
2021 tp->snd_nxt = th->th_ack;
2022 tp->snd_cwnd = tp->t_segsz;
2023 (void) tcp_output(tp);
2024 tp->snd_cwnd = tp->snd_ssthresh +
2025 tp->t_segsz * tp->t_dupacks;
2026 if (SEQ_GT(onxt, tp->snd_nxt))
2027 tp->snd_nxt = onxt;
2028 goto drop;
2029 } else if (tp->t_dupacks > tcprexmtthresh) {
2030 tp->snd_cwnd += tp->t_segsz;
2031 (void) tcp_output(tp);
2032 goto drop;
2033 }
2034 } else
2035 tp->t_dupacks = 0;
2036 break;
2037 }
2038 /*
2039 * If the congestion window was inflated to account
2040 * for the other side's cached packets, retract it.
2041 */
2042 if (tcp_do_newreno == 0) {
2043 if (tp->t_dupacks >= tcprexmtthresh &&
2044 tp->snd_cwnd > tp->snd_ssthresh)
2045 tp->snd_cwnd = tp->snd_ssthresh;
2046 tp->t_dupacks = 0;
2047 } else if (tp->t_dupacks >= tcprexmtthresh &&
2048 tcp_newreno(tp, th) == 0) {
2049 tp->snd_cwnd = tp->snd_ssthresh;
2050 /*
2051 * Window inflation should have left us with approx.
2052 * snd_ssthresh outstanding data. But in case we
2053 * would be inclined to send a burst, better to do
2054 * it via the slow start mechanism.
2055 */
2056 if (SEQ_SUB(tp->snd_max, th->th_ack) < tp->snd_ssthresh)
2057 tp->snd_cwnd = SEQ_SUB(tp->snd_max, th->th_ack)
2058 + tp->t_segsz;
2059 tp->t_dupacks = 0;
2060 }
2061 if (SEQ_GT(th->th_ack, tp->snd_max)) {
2062 tcpstat.tcps_rcvacktoomuch++;
2063 goto dropafterack;
2064 }
2065 acked = th->th_ack - tp->snd_una;
2066 tcpstat.tcps_rcvackpack++;
2067 tcpstat.tcps_rcvackbyte += acked;
2068
2069 /*
2070 * If we have a timestamp reply, update smoothed
2071 * round trip time. If no timestamp is present but
2072 * transmit timer is running and timed sequence
2073 * number was acked, update smoothed round trip time.
2074 * Since we now have an rtt measurement, cancel the
2075 * timer backoff (cf., Phil Karn's retransmit alg.).
2076 * Recompute the initial retransmit timer.
2077 */
2078 if (opti.ts_present && opti.ts_ecr)
2079 tcp_xmit_timer(tp, TCP_TIMESTAMP(tp) - opti.ts_ecr + 1);
2080 else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2081 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2082
2083 /*
2084 * If all outstanding data is acked, stop retransmit
2085 * timer and remember to restart (more output or persist).
2086 * If there is more data to be acked, restart retransmit
2087 * timer, using current (possibly backed-off) value.
2088 */
2089 if (th->th_ack == tp->snd_max) {
2090 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2091 needoutput = 1;
2092 } else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
2093 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
2094 /*
2095 * When new data is acked, open the congestion window.
2096 * If the window gives us less than ssthresh packets
2097 * in flight, open exponentially (segsz per packet).
2098 * Otherwise open linearly: segsz per window
2099 * (segsz^2 / cwnd per packet), plus a constant
2100 * fraction of a packet (segsz/8) to help larger windows
2101 * open quickly enough.
2102 */
2103 {
2104 u_int cw = tp->snd_cwnd;
2105 u_int incr = tp->t_segsz;
2106
2107 if (cw > tp->snd_ssthresh)
2108 incr = incr * incr / cw;
2109 if (tcp_do_newreno == 0 || SEQ_GEQ(th->th_ack, tp->snd_recover))
2110 tp->snd_cwnd = min(cw + incr,
2111 TCP_MAXWIN << tp->snd_scale);
2112 }
2113 ND6_HINT(tp);
2114 if (acked > so->so_snd.sb_cc) {
2115 tp->snd_wnd -= so->so_snd.sb_cc;
2116 sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
2117 ourfinisacked = 1;
2118 } else {
2119 sbdrop(&so->so_snd, acked);
2120 tp->snd_wnd -= acked;
2121 ourfinisacked = 0;
2122 }
2123 sowwakeup(so);
2124 /*
2125 * We want snd_recover to track snd_una to
2126 * avoid sequence wraparound problems for
2127 * very large transfers.
2128 */
2129 tp->snd_una = tp->snd_recover = th->th_ack;
2130 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2131 tp->snd_nxt = tp->snd_una;
2132
2133 switch (tp->t_state) {
2134
2135 /*
2136 * In FIN_WAIT_1 STATE in addition to the processing
2137 * for the ESTABLISHED state if our FIN is now acknowledged
2138 * then enter FIN_WAIT_2.
2139 */
2140 case TCPS_FIN_WAIT_1:
2141 if (ourfinisacked) {
2142 /*
2143 * If we can't receive any more
2144 * data, then closing user can proceed.
2145 * Starting the timer is contrary to the
2146 * specification, but if we don't get a FIN
2147 * we'll hang forever.
2148 */
2149 if (so->so_state & SS_CANTRCVMORE) {
2150 soisdisconnected(so);
2151 if (tcp_maxidle > 0)
2152 TCP_TIMER_ARM(tp, TCPT_2MSL,
2153 tcp_maxidle);
2154 }
2155 tp->t_state = TCPS_FIN_WAIT_2;
2156 }
2157 break;
2158
2159 /*
2160 * In CLOSING STATE in addition to the processing for
2161 * the ESTABLISHED state if the ACK acknowledges our FIN
2162 * then enter the TIME-WAIT state, otherwise ignore
2163 * the segment.
2164 */
2165 case TCPS_CLOSING:
2166 if (ourfinisacked) {
2167 tp->t_state = TCPS_TIME_WAIT;
2168 tcp_canceltimers(tp);
2169 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2170 soisdisconnected(so);
2171 }
2172 break;
2173
2174 /*
2175 * In LAST_ACK, we may still be waiting for data to drain
2176 * and/or to be acked, as well as for the ack of our FIN.
2177 * If our FIN is now acknowledged, delete the TCB,
2178 * enter the closed state and return.
2179 */
2180 case TCPS_LAST_ACK:
2181 if (ourfinisacked) {
2182 tp = tcp_close(tp);
2183 goto drop;
2184 }
2185 break;
2186
2187 /*
2188 * In TIME_WAIT state the only thing that should arrive
2189 * is a retransmission of the remote FIN. Acknowledge
2190 * it and restart the finack timer.
2191 */
2192 case TCPS_TIME_WAIT:
2193 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2194 goto dropafterack;
2195 }
2196 }
2197
2198 step6:
2199 /*
2200 * Update window information.
2201 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2202 */
2203 if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2204 (tp->snd_wl1 == th->th_seq && SEQ_LT(tp->snd_wl2, th->th_ack)) ||
2205 (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))) {
2206 /* keep track of pure window updates */
2207 if (tlen == 0 &&
2208 tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2209 tcpstat.tcps_rcvwinupd++;
2210 tp->snd_wnd = tiwin;
2211 tp->snd_wl1 = th->th_seq;
2212 tp->snd_wl2 = th->th_ack;
2213 if (tp->snd_wnd > tp->max_sndwnd)
2214 tp->max_sndwnd = tp->snd_wnd;
2215 needoutput = 1;
2216 }
2217
2218 /*
2219 * Process segments with URG.
2220 */
2221 if ((tiflags & TH_URG) && th->th_urp &&
2222 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2223 /*
2224 * This is a kludge, but if we receive and accept
2225 * random urgent pointers, we'll crash in
2226 * soreceive. It's hard to imagine someone
2227 * actually wanting to send this much urgent data.
2228 */
2229 if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2230 th->th_urp = 0; /* XXX */
2231 tiflags &= ~TH_URG; /* XXX */
2232 goto dodata; /* XXX */
2233 }
2234 /*
2235 * If this segment advances the known urgent pointer,
2236 * then mark the data stream. This should not happen
2237 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2238 * a FIN has been received from the remote side.
2239 * In these states we ignore the URG.
2240 *
2241 * According to RFC961 (Assigned Protocols),
2242 * the urgent pointer points to the last octet
2243 * of urgent data. We continue, however,
2244 * to consider it to indicate the first octet
2245 * of data past the urgent section as the original
2246 * spec states (in one of two places).
2247 */
2248 if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2249 tp->rcv_up = th->th_seq + th->th_urp;
2250 so->so_oobmark = so->so_rcv.sb_cc +
2251 (tp->rcv_up - tp->rcv_nxt) - 1;
2252 if (so->so_oobmark == 0)
2253 so->so_state |= SS_RCVATMARK;
2254 sohasoutofband(so);
2255 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2256 }
2257 /*
2258 * Remove out of band data so doesn't get presented to user.
2259 * This can happen independent of advancing the URG pointer,
2260 * but if two URG's are pending at once, some out-of-band
2261 * data may creep in... ick.
2262 */
2263 if (th->th_urp <= (u_int16_t) tlen
2264 #ifdef SO_OOBINLINE
2265 && (so->so_options & SO_OOBINLINE) == 0
2266 #endif
2267 )
2268 tcp_pulloutofband(so, th, m, hdroptlen);
2269 } else
2270 /*
2271 * If no out of band data is expected,
2272 * pull receive urgent pointer along
2273 * with the receive window.
2274 */
2275 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2276 tp->rcv_up = tp->rcv_nxt;
2277 dodata: /* XXX */
2278
2279 /*
2280 * Process the segment text, merging it into the TCP sequencing queue,
2281 * and arranging for acknowledgement of receipt if necessary.
2282 * This process logically involves adjusting tp->rcv_wnd as data
2283 * is presented to the user (this happens in tcp_usrreq.c,
2284 * case PRU_RCVD). If a FIN has already been received on this
2285 * connection then we just ignore the text.
2286 */
2287 if ((tlen || (tiflags & TH_FIN)) &&
2288 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2289 /*
2290 * Insert segment ti into reassembly queue of tcp with
2291 * control block tp. Return TH_FIN if reassembly now includes
2292 * a segment with FIN. The macro form does the common case
2293 * inline (segment is the next to be received on an
2294 * established connection, and the queue is empty),
2295 * avoiding linkage into and removal from the queue and
2296 * repetition of various conversions.
2297 * Set DELACK for segments received in order, but ack
2298 * immediately when segments are out of order
2299 * (so fast retransmit can work).
2300 */
2301 /* NOTE: this was TCP_REASS() macro, but used only once */
2302 TCP_REASS_LOCK(tp);
2303 if (th->th_seq == tp->rcv_nxt &&
2304 TAILQ_FIRST(&tp->segq) == NULL &&
2305 tp->t_state == TCPS_ESTABLISHED) {
2306 TCP_SETUP_ACK(tp, th);
2307 tp->rcv_nxt += tlen;
2308 tiflags = th->th_flags & TH_FIN;
2309 tcpstat.tcps_rcvpack++;
2310 tcpstat.tcps_rcvbyte += tlen;
2311 ND6_HINT(tp);
2312 m_adj(m, hdroptlen);
2313 sbappendstream(&(so)->so_rcv, m);
2314 sorwakeup(so);
2315 } else {
2316 m_adj(m, hdroptlen);
2317 tiflags = tcp_reass(tp, th, m, &tlen);
2318 tp->t_flags |= TF_ACKNOW;
2319 }
2320 TCP_REASS_UNLOCK(tp);
2321
2322 /*
2323 * Note the amount of data that peer has sent into
2324 * our window, in order to estimate the sender's
2325 * buffer size.
2326 */
2327 len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2328 } else {
2329 m_freem(m);
2330 m = NULL;
2331 tiflags &= ~TH_FIN;
2332 }
2333
2334 /*
2335 * If FIN is received ACK the FIN and let the user know
2336 * that the connection is closing. Ignore a FIN received before
2337 * the connection is fully established.
2338 */
2339 if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2340 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2341 socantrcvmore(so);
2342 tp->t_flags |= TF_ACKNOW;
2343 tp->rcv_nxt++;
2344 }
2345 switch (tp->t_state) {
2346
2347 /*
2348 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2349 */
2350 case TCPS_ESTABLISHED:
2351 tp->t_state = TCPS_CLOSE_WAIT;
2352 break;
2353
2354 /*
2355 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2356 * enter the CLOSING state.
2357 */
2358 case TCPS_FIN_WAIT_1:
2359 tp->t_state = TCPS_CLOSING;
2360 break;
2361
2362 /*
2363 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2364 * starting the time-wait timer, turning off the other
2365 * standard timers.
2366 */
2367 case TCPS_FIN_WAIT_2:
2368 tp->t_state = TCPS_TIME_WAIT;
2369 tcp_canceltimers(tp);
2370 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2371 soisdisconnected(so);
2372 break;
2373
2374 /*
2375 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2376 */
2377 case TCPS_TIME_WAIT:
2378 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2379 break;
2380 }
2381 }
2382 #ifdef TCP_DEBUG
2383 if (so->so_options & SO_DEBUG)
2384 tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
2385 #endif
2386
2387 /*
2388 * Return any desired output.
2389 */
2390 if (needoutput || (tp->t_flags & TF_ACKNOW))
2391 (void) tcp_output(tp);
2392 if (tcp_saveti)
2393 m_freem(tcp_saveti);
2394 return;
2395
2396 badsyn:
2397 /*
2398 * Received a bad SYN. Increment counters and dropwithreset.
2399 */
2400 tcpstat.tcps_badsyn++;
2401 tp = NULL;
2402 goto dropwithreset;
2403
2404 dropafterack:
2405 /*
2406 * Generate an ACK dropping incoming segment if it occupies
2407 * sequence space, where the ACK reflects our state.
2408 */
2409 if (tiflags & TH_RST)
2410 goto drop;
2411 m_freem(m);
2412 tp->t_flags |= TF_ACKNOW;
2413 (void) tcp_output(tp);
2414 if (tcp_saveti)
2415 m_freem(tcp_saveti);
2416 return;
2417
2418 dropwithreset_ratelim:
2419 /*
2420 * We may want to rate-limit RSTs in certain situations,
2421 * particularly if we are sending an RST in response to
2422 * an attempt to connect to or otherwise communicate with
2423 * a port for which we have no socket.
2424 */
2425 if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
2426 tcp_rst_ppslim) == 0) {
2427 /* XXX stat */
2428 goto drop;
2429 }
2430 /* ...fall into dropwithreset... */
2431
2432 dropwithreset:
2433 /*
2434 * Generate a RST, dropping incoming segment.
2435 * Make ACK acceptable to originator of segment.
2436 */
2437 if (tiflags & TH_RST)
2438 goto drop;
2439
2440 switch (af) {
2441 #ifdef INET6
2442 case AF_INET6:
2443 /* For following calls to tcp_respond */
2444 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
2445 goto drop;
2446 break;
2447 #endif /* INET6 */
2448 case AF_INET:
2449 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
2450 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2451 goto drop;
2452 }
2453
2454 {
2455 /*
2456 * need to recover version # field, which was overwritten on
2457 * ip_cksum computation.
2458 */
2459 struct ip *sip;
2460 sip = mtod(m, struct ip *);
2461 switch (af) {
2462 #ifdef INET
2463 case AF_INET:
2464 sip->ip_v = 4;
2465 break;
2466 #endif
2467 #ifdef INET6
2468 case AF_INET6:
2469 sip->ip_v = 6;
2470 break;
2471 #endif
2472 }
2473 }
2474 if (tiflags & TH_ACK)
2475 (void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
2476 else {
2477 if (tiflags & TH_SYN)
2478 tlen++;
2479 (void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
2480 TH_RST|TH_ACK);
2481 }
2482 if (tcp_saveti)
2483 m_freem(tcp_saveti);
2484 return;
2485
2486 badcsum:
2487 tcpstat.tcps_rcvbadsum++;
2488 drop:
2489 /*
2490 * Drop space held by incoming segment and return.
2491 */
2492 if (tp) {
2493 if (tp->t_inpcb)
2494 so = tp->t_inpcb->inp_socket;
2495 #ifdef INET6
2496 else if (tp->t_in6pcb)
2497 so = tp->t_in6pcb->in6p_socket;
2498 #endif
2499 else
2500 so = NULL;
2501 #ifdef TCP_DEBUG
2502 if (so && (so->so_options & SO_DEBUG) != 0)
2503 tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
2504 #endif
2505 }
2506 if (tcp_saveti)
2507 m_freem(tcp_saveti);
2508 m_freem(m);
2509 return;
2510 }
2511
2512 void
2513 tcp_dooptions(tp, cp, cnt, th, oi)
2514 struct tcpcb *tp;
2515 u_char *cp;
2516 int cnt;
2517 struct tcphdr *th;
2518 struct tcp_opt_info *oi;
2519 {
2520 u_int16_t mss;
2521 int opt, optlen;
2522
2523 for (; cnt > 0; cnt -= optlen, cp += optlen) {
2524 opt = cp[0];
2525 if (opt == TCPOPT_EOL)
2526 break;
2527 if (opt == TCPOPT_NOP)
2528 optlen = 1;
2529 else {
2530 if (cnt < 2)
2531 break;
2532 optlen = cp[1];
2533 if (optlen < 2 || optlen > cnt)
2534 break;
2535 }
2536 switch (opt) {
2537
2538 default:
2539 continue;
2540
2541 case TCPOPT_MAXSEG:
2542 if (optlen != TCPOLEN_MAXSEG)
2543 continue;
2544 if (!(th->th_flags & TH_SYN))
2545 continue;
2546 bcopy(cp + 2, &mss, sizeof(mss));
2547 oi->maxseg = ntohs(mss);
2548 break;
2549
2550 case TCPOPT_WINDOW:
2551 if (optlen != TCPOLEN_WINDOW)
2552 continue;
2553 if (!(th->th_flags & TH_SYN))
2554 continue;
2555 tp->t_flags |= TF_RCVD_SCALE;
2556 tp->requested_s_scale = cp[2];
2557 if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
2558 #if 0 /*XXX*/
2559 char *p;
2560
2561 if (ip)
2562 p = ntohl(ip->ip_src);
2563 #ifdef INET6
2564 else if (ip6)
2565 p = ip6_sprintf(&ip6->ip6_src);
2566 #endif
2567 else
2568 p = "(unknown)";
2569 log(LOG_ERR, "TCP: invalid wscale %d from %s, "
2570 "assuming %d\n",
2571 tp->requested_s_scale, p,
2572 TCP_MAX_WINSHIFT);
2573 #else
2574 log(LOG_ERR, "TCP: invalid wscale %d, "
2575 "assuming %d\n",
2576 tp->requested_s_scale,
2577 TCP_MAX_WINSHIFT);
2578 #endif
2579 tp->requested_s_scale = TCP_MAX_WINSHIFT;
2580 }
2581 break;
2582
2583 case TCPOPT_TIMESTAMP:
2584 if (optlen != TCPOLEN_TIMESTAMP)
2585 continue;
2586 oi->ts_present = 1;
2587 bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
2588 NTOHL(oi->ts_val);
2589 bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
2590 NTOHL(oi->ts_ecr);
2591
2592 /*
2593 * A timestamp received in a SYN makes
2594 * it ok to send timestamp requests and replies.
2595 */
2596 if (th->th_flags & TH_SYN) {
2597 tp->t_flags |= TF_RCVD_TSTMP;
2598 tp->ts_recent = oi->ts_val;
2599 tp->ts_recent_age = TCP_TIMESTAMP(tp);
2600 }
2601 break;
2602 case TCPOPT_SACK_PERMITTED:
2603 if (optlen != TCPOLEN_SACK_PERMITTED)
2604 continue;
2605 if (!(th->th_flags & TH_SYN))
2606 continue;
2607 tp->t_flags &= ~TF_CANT_TXSACK;
2608 break;
2609
2610 case TCPOPT_SACK:
2611 if (tp->t_flags & TF_IGNR_RXSACK)
2612 continue;
2613 if (optlen % 8 != 2 || optlen < 10)
2614 continue;
2615 cp += 2;
2616 optlen -= 2;
2617 for (; optlen > 0; cp -= 8, optlen -= 8) {
2618 tcp_seq lwe, rwe;
2619 bcopy((char *)cp, (char *) &lwe, sizeof(lwe));
2620 NTOHL(lwe);
2621 bcopy((char *)cp, (char *) &rwe, sizeof(rwe));
2622 NTOHL(rwe);
2623 /* tcp_mark_sacked(tp, lwe, rwe); */
2624 }
2625 break;
2626 }
2627 }
2628 }
2629
2630 /*
2631 * Pull out of band byte out of a segment so
2632 * it doesn't appear in the user's data queue.
2633 * It is still reflected in the segment length for
2634 * sequencing purposes.
2635 */
2636 void
2637 tcp_pulloutofband(so, th, m, off)
2638 struct socket *so;
2639 struct tcphdr *th;
2640 struct mbuf *m;
2641 int off;
2642 {
2643 int cnt = off + th->th_urp - 1;
2644
2645 while (cnt >= 0) {
2646 if (m->m_len > cnt) {
2647 char *cp = mtod(m, caddr_t) + cnt;
2648 struct tcpcb *tp = sototcpcb(so);
2649
2650 tp->t_iobc = *cp;
2651 tp->t_oobflags |= TCPOOB_HAVEDATA;
2652 bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
2653 m->m_len--;
2654 return;
2655 }
2656 cnt -= m->m_len;
2657 m = m->m_next;
2658 if (m == 0)
2659 break;
2660 }
2661 panic("tcp_pulloutofband");
2662 }
2663
2664 /*
2665 * Collect new round-trip time estimate
2666 * and update averages and current timeout.
2667 */
2668 void
2669 tcp_xmit_timer(tp, rtt)
2670 struct tcpcb *tp;
2671 uint32_t rtt;
2672 {
2673 int32_t delta;
2674
2675 tcpstat.tcps_rttupdated++;
2676 if (tp->t_srtt != 0) {
2677 /*
2678 * srtt is stored as fixed point with 3 bits after the
2679 * binary point (i.e., scaled by 8). The following magic
2680 * is equivalent to the smoothing algorithm in rfc793 with
2681 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2682 * point). Adjust rtt to origin 0.
2683 */
2684 delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
2685 if ((tp->t_srtt += delta) <= 0)
2686 tp->t_srtt = 1 << 2;
2687 /*
2688 * We accumulate a smoothed rtt variance (actually, a
2689 * smoothed mean difference), then set the retransmit
2690 * timer to smoothed rtt + 4 times the smoothed variance.
2691 * rttvar is stored as fixed point with 2 bits after the
2692 * binary point (scaled by 4). The following is
2693 * equivalent to rfc793 smoothing with an alpha of .75
2694 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces
2695 * rfc793's wired-in beta.
2696 */
2697 if (delta < 0)
2698 delta = -delta;
2699 delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
2700 if ((tp->t_rttvar += delta) <= 0)
2701 tp->t_rttvar = 1 << 2;
2702 } else {
2703 /*
2704 * No rtt measurement yet - use the unsmoothed rtt.
2705 * Set the variance to half the rtt (so our first
2706 * retransmit happens at 3*rtt).
2707 */
2708 tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
2709 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
2710 }
2711 tp->t_rtttime = 0;
2712 tp->t_rxtshift = 0;
2713
2714 /*
2715 * the retransmit should happen at rtt + 4 * rttvar.
2716 * Because of the way we do the smoothing, srtt and rttvar
2717 * will each average +1/2 tick of bias. When we compute
2718 * the retransmit timer, we want 1/2 tick of rounding and
2719 * 1 extra tick because of +-1/2 tick uncertainty in the
2720 * firing of the timer. The bias will give us exactly the
2721 * 1.5 tick we need. But, because the bias is
2722 * statistical, we have to test that we don't drop below
2723 * the minimum feasible timer (which is 2 ticks).
2724 */
2725 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
2726 max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
2727
2728 /*
2729 * We received an ack for a packet that wasn't retransmitted;
2730 * it is probably safe to discard any error indications we've
2731 * received recently. This isn't quite right, but close enough
2732 * for now (a route might have failed after we sent a segment,
2733 * and the return path might not be symmetrical).
2734 */
2735 tp->t_softerror = 0;
2736 }
2737
2738 /*
2739 * Checks for partial ack. If partial ack arrives, force the retransmission
2740 * of the next unacknowledged segment, do not clear tp->t_dupacks, and return
2741 * 1. By setting snd_nxt to th_ack, this forces retransmission timer to
2742 * be started again. If the ack advances at least to tp->snd_recover, return 0.
2743 */
2744 int
2745 tcp_newreno(tp, th)
2746 struct tcpcb *tp;
2747 struct tcphdr *th;
2748 {
2749 tcp_seq onxt = tp->snd_nxt;
2750 u_long ocwnd = tp->snd_cwnd;
2751
2752 if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2753 /*
2754 * snd_una has not yet been updated and the socket's send
2755 * buffer has not yet drained off the ACK'd data, so we
2756 * have to leave snd_una as it was to get the correct data
2757 * offset in tcp_output().
2758 */
2759 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2760 tp->t_rtttime = 0;
2761 tp->snd_nxt = th->th_ack;
2762 /*
2763 * Set snd_cwnd to one segment beyond ACK'd offset. snd_una
2764 * is not yet updated when we're called.
2765 */
2766 tp->snd_cwnd = tp->t_segsz + (th->th_ack - tp->snd_una);
2767 (void) tcp_output(tp);
2768 tp->snd_cwnd = ocwnd;
2769 if (SEQ_GT(onxt, tp->snd_nxt))
2770 tp->snd_nxt = onxt;
2771 /*
2772 * Partial window deflation. Relies on fact that tp->snd_una
2773 * not updated yet.
2774 */
2775 tp->snd_cwnd -= (th->th_ack - tp->snd_una - tp->t_segsz);
2776 return 1;
2777 }
2778 return 0;
2779 }
2780
2781
2782 /*
2783 * TCP compressed state engine. Currently used to hold compressed
2784 * state for SYN_RECEIVED.
2785 */
2786
2787 u_long syn_cache_count;
2788 u_int32_t syn_hash1, syn_hash2;
2789
2790 #define SYN_HASH(sa, sp, dp) \
2791 ((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
2792 ((u_int32_t)(sp)))^syn_hash2)))
2793 #ifndef INET6
2794 #define SYN_HASHALL(hash, src, dst) \
2795 do { \
2796 hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
2797 ((struct sockaddr_in *)(src))->sin_port, \
2798 ((struct sockaddr_in *)(dst))->sin_port); \
2799 } while (0)
2800 #else
2801 #define SYN_HASH6(sa, sp, dp) \
2802 ((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
2803 (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
2804 & 0x7fffffff)
2805
2806 #define SYN_HASHALL(hash, src, dst) \
2807 do { \
2808 switch ((src)->sa_family) { \
2809 case AF_INET: \
2810 hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
2811 ((struct sockaddr_in *)(src))->sin_port, \
2812 ((struct sockaddr_in *)(dst))->sin_port); \
2813 break; \
2814 case AF_INET6: \
2815 hash = SYN_HASH6(&((struct sockaddr_in6 *)(src))->sin6_addr, \
2816 ((struct sockaddr_in6 *)(src))->sin6_port, \
2817 ((struct sockaddr_in6 *)(dst))->sin6_port); \
2818 break; \
2819 default: \
2820 hash = 0; \
2821 } \
2822 } while (/*CONSTCOND*/0)
2823 #endif /* INET6 */
2824
2825 #define SYN_CACHE_RM(sc) \
2826 do { \
2827 TAILQ_REMOVE(&tcp_syn_cache[(sc)->sc_bucketidx].sch_bucket, \
2828 (sc), sc_bucketq); \
2829 (sc)->sc_tp = NULL; \
2830 LIST_REMOVE((sc), sc_tpq); \
2831 tcp_syn_cache[(sc)->sc_bucketidx].sch_length--; \
2832 callout_stop(&(sc)->sc_timer); \
2833 syn_cache_count--; \
2834 } while (/*CONSTCOND*/0)
2835
2836 #define SYN_CACHE_PUT(sc) \
2837 do { \
2838 if ((sc)->sc_ipopts) \
2839 (void) m_free((sc)->sc_ipopts); \
2840 if ((sc)->sc_route4.ro_rt != NULL) \
2841 RTFREE((sc)->sc_route4.ro_rt); \
2842 pool_put(&syn_cache_pool, (sc)); \
2843 } while (/*CONSTCOND*/0)
2844
2845 struct pool syn_cache_pool;
2846
2847 /*
2848 * We don't estimate RTT with SYNs, so each packet starts with the default
2849 * RTT and each timer step has a fixed timeout value.
2850 */
2851 #define SYN_CACHE_TIMER_ARM(sc) \
2852 do { \
2853 TCPT_RANGESET((sc)->sc_rxtcur, \
2854 TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN, \
2855 TCPTV_REXMTMAX); \
2856 callout_reset(&(sc)->sc_timer, \
2857 (sc)->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, (sc)); \
2858 } while (/*CONSTCOND*/0)
2859
2860 #define SYN_CACHE_TIMESTAMP(sc) (tcp_now - (sc)->sc_timebase)
2861
2862 void
2863 syn_cache_init()
2864 {
2865 int i;
2866
2867 /* Initialize the hash buckets. */
2868 for (i = 0; i < tcp_syn_cache_size; i++)
2869 TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
2870
2871 /* Initialize the syn cache pool. */
2872 pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
2873 "synpl", NULL);
2874 }
2875
2876 void
2877 syn_cache_insert(sc, tp)
2878 struct syn_cache *sc;
2879 struct tcpcb *tp;
2880 {
2881 struct syn_cache_head *scp;
2882 struct syn_cache *sc2;
2883 int s;
2884
2885 /*
2886 * If there are no entries in the hash table, reinitialize
2887 * the hash secrets.
2888 */
2889 if (syn_cache_count == 0) {
2890 struct timeval tv;
2891 microtime(&tv);
2892 syn_hash1 = arc4random() ^ (u_long)≻
2893 syn_hash2 = arc4random() ^ tv.tv_usec;
2894 }
2895
2896 SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
2897 sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
2898 scp = &tcp_syn_cache[sc->sc_bucketidx];
2899
2900 /*
2901 * Make sure that we don't overflow the per-bucket
2902 * limit or the total cache size limit.
2903 */
2904 s = splsoftnet();
2905 if (scp->sch_length >= tcp_syn_bucket_limit) {
2906 tcpstat.tcps_sc_bucketoverflow++;
2907 /*
2908 * The bucket is full. Toss the oldest element in the
2909 * bucket. This will be the first entry in the bucket.
2910 */
2911 sc2 = TAILQ_FIRST(&scp->sch_bucket);
2912 #ifdef DIAGNOSTIC
2913 /*
2914 * This should never happen; we should always find an
2915 * entry in our bucket.
2916 */
2917 if (sc2 == NULL)
2918 panic("syn_cache_insert: bucketoverflow: impossible");
2919 #endif
2920 SYN_CACHE_RM(sc2);
2921 SYN_CACHE_PUT(sc2);
2922 } else if (syn_cache_count >= tcp_syn_cache_limit) {
2923 struct syn_cache_head *scp2, *sce;
2924
2925 tcpstat.tcps_sc_overflowed++;
2926 /*
2927 * The cache is full. Toss the oldest entry in the
2928 * first non-empty bucket we can find.
2929 *
2930 * XXX We would really like to toss the oldest
2931 * entry in the cache, but we hope that this
2932 * condition doesn't happen very often.
2933 */
2934 scp2 = scp;
2935 if (TAILQ_EMPTY(&scp2->sch_bucket)) {
2936 sce = &tcp_syn_cache[tcp_syn_cache_size];
2937 for (++scp2; scp2 != scp; scp2++) {
2938 if (scp2 >= sce)
2939 scp2 = &tcp_syn_cache[0];
2940 if (! TAILQ_EMPTY(&scp2->sch_bucket))
2941 break;
2942 }
2943 #ifdef DIAGNOSTIC
2944 /*
2945 * This should never happen; we should always find a
2946 * non-empty bucket.
2947 */
2948 if (scp2 == scp)
2949 panic("syn_cache_insert: cacheoverflow: "
2950 "impossible");
2951 #endif
2952 }
2953 sc2 = TAILQ_FIRST(&scp2->sch_bucket);
2954 SYN_CACHE_RM(sc2);
2955 SYN_CACHE_PUT(sc2);
2956 }
2957
2958 /*
2959 * Initialize the entry's timer.
2960 */
2961 sc->sc_rxttot = 0;
2962 sc->sc_rxtshift = 0;
2963 SYN_CACHE_TIMER_ARM(sc);
2964
2965 /* Link it from tcpcb entry */
2966 LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
2967
2968 /* Put it into the bucket. */
2969 TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
2970 scp->sch_length++;
2971 syn_cache_count++;
2972
2973 tcpstat.tcps_sc_added++;
2974 splx(s);
2975 }
2976
2977 /*
2978 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
2979 * If we have retransmitted an entry the maximum number of times, expire
2980 * that entry.
2981 */
2982 void
2983 syn_cache_timer(void *arg)
2984 {
2985 struct syn_cache *sc = arg;
2986 int s;
2987
2988 s = splsoftnet();
2989
2990 if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
2991 /* Drop it -- too many retransmissions. */
2992 goto dropit;
2993 }
2994
2995 /*
2996 * Compute the total amount of time this entry has
2997 * been on a queue. If this entry has been on longer
2998 * than the keep alive timer would allow, expire it.
2999 */
3000 sc->sc_rxttot += sc->sc_rxtcur;
3001 if (sc->sc_rxttot >= TCPTV_KEEP_INIT)
3002 goto dropit;
3003
3004 tcpstat.tcps_sc_retransmitted++;
3005 (void) syn_cache_respond(sc, NULL);
3006
3007 /* Advance the timer back-off. */
3008 sc->sc_rxtshift++;
3009 SYN_CACHE_TIMER_ARM(sc);
3010
3011 splx(s);
3012 return;
3013
3014 dropit:
3015 tcpstat.tcps_sc_timed_out++;
3016 SYN_CACHE_RM(sc);
3017 SYN_CACHE_PUT(sc);
3018 splx(s);
3019 }
3020
3021 /*
3022 * Remove syn cache created by the specified tcb entry,
3023 * because this does not make sense to keep them
3024 * (if there's no tcb entry, syn cache entry will never be used)
3025 */
3026 void
3027 syn_cache_cleanup(tp)
3028 struct tcpcb *tp;
3029 {
3030 struct syn_cache *sc, *nsc;
3031 int s;
3032
3033 s = splsoftnet();
3034
3035 for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
3036 nsc = LIST_NEXT(sc, sc_tpq);
3037
3038 #ifdef DIAGNOSTIC
3039 if (sc->sc_tp != tp)
3040 panic("invalid sc_tp in syn_cache_cleanup");
3041 #endif
3042 SYN_CACHE_RM(sc);
3043 SYN_CACHE_PUT(sc);
3044 }
3045 /* just for safety */
3046 LIST_INIT(&tp->t_sc);
3047
3048 splx(s);
3049 }
3050
3051 /*
3052 * Find an entry in the syn cache.
3053 */
3054 struct syn_cache *
3055 syn_cache_lookup(src, dst, headp)
3056 struct sockaddr *src;
3057 struct sockaddr *dst;
3058 struct syn_cache_head **headp;
3059 {
3060 struct syn_cache *sc;
3061 struct syn_cache_head *scp;
3062 u_int32_t hash;
3063 int s;
3064
3065 SYN_HASHALL(hash, src, dst);
3066
3067 scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
3068 *headp = scp;
3069 s = splsoftnet();
3070 for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
3071 sc = TAILQ_NEXT(sc, sc_bucketq)) {
3072 if (sc->sc_hash != hash)
3073 continue;
3074 if (!bcmp(&sc->sc_src, src, src->sa_len) &&
3075 !bcmp(&sc->sc_dst, dst, dst->sa_len)) {
3076 splx(s);
3077 return (sc);
3078 }
3079 }
3080 splx(s);
3081 return (NULL);
3082 }
3083
3084 /*
3085 * This function gets called when we receive an ACK for a
3086 * socket in the LISTEN state. We look up the connection
3087 * in the syn cache, and if its there, we pull it out of
3088 * the cache and turn it into a full-blown connection in
3089 * the SYN-RECEIVED state.
3090 *
3091 * The return values may not be immediately obvious, and their effects
3092 * can be subtle, so here they are:
3093 *
3094 * NULL SYN was not found in cache; caller should drop the
3095 * packet and send an RST.
3096 *
3097 * -1 We were unable to create the new connection, and are
3098 * aborting it. An ACK,RST is being sent to the peer
3099 * (unless we got screwey sequence numbners; see below),
3100 * because the 3-way handshake has been completed. Caller
3101 * should not free the mbuf, since we may be using it. If
3102 * we are not, we will free it.
3103 *
3104 * Otherwise, the return value is a pointer to the new socket
3105 * associated with the connection.
3106 */
3107 struct socket *
3108 syn_cache_get(src, dst, th, hlen, tlen, so, m)
3109 struct sockaddr *src;
3110 struct sockaddr *dst;
3111 struct tcphdr *th;
3112 unsigned int hlen, tlen;
3113 struct socket *so;
3114 struct mbuf *m;
3115 {
3116 struct syn_cache *sc;
3117 struct syn_cache_head *scp;
3118 struct inpcb *inp = NULL;
3119 #ifdef INET6
3120 struct in6pcb *in6p = NULL;
3121 #endif
3122 struct tcpcb *tp = 0;
3123 struct mbuf *am;
3124 int s;
3125 struct socket *oso;
3126
3127 s = splsoftnet();
3128 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3129 splx(s);
3130 return (NULL);
3131 }
3132
3133 /*
3134 * Verify the sequence and ack numbers. Try getting the correct
3135 * response again.
3136 */
3137 if ((th->th_ack != sc->sc_iss + 1) ||
3138 SEQ_LEQ(th->th_seq, sc->sc_irs) ||
3139 SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
3140 (void) syn_cache_respond(sc, m);
3141 splx(s);
3142 return ((struct socket *)(-1));
3143 }
3144
3145 /* Remove this cache entry */
3146 SYN_CACHE_RM(sc);
3147 splx(s);
3148
3149 /*
3150 * Ok, create the full blown connection, and set things up
3151 * as they would have been set up if we had created the
3152 * connection when the SYN arrived. If we can't create
3153 * the connection, abort it.
3154 */
3155 /*
3156 * inp still has the OLD in_pcb stuff, set the
3157 * v6-related flags on the new guy, too. This is
3158 * done particularly for the case where an AF_INET6
3159 * socket is bound only to a port, and a v4 connection
3160 * comes in on that port.
3161 * we also copy the flowinfo from the original pcb
3162 * to the new one.
3163 */
3164 {
3165 struct inpcb *parentinpcb;
3166
3167 parentinpcb = (struct inpcb *)so->so_pcb;
3168
3169 oso = so;
3170 so = sonewconn(so, SS_ISCONNECTED);
3171 if (so == NULL)
3172 goto resetandabort;
3173
3174 switch (so->so_proto->pr_domain->dom_family) {
3175 #ifdef INET
3176 case AF_INET:
3177 inp = sotoinpcb(so);
3178 break;
3179 #endif
3180 #ifdef INET6
3181 case AF_INET6:
3182 in6p = sotoin6pcb(so);
3183 break;
3184 #endif
3185 }
3186 }
3187 switch (src->sa_family) {
3188 #ifdef INET
3189 case AF_INET:
3190 if (inp) {
3191 inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
3192 inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
3193 inp->inp_options = ip_srcroute();
3194 in_pcbstate(inp, INP_BOUND);
3195 if (inp->inp_options == NULL) {
3196 inp->inp_options = sc->sc_ipopts;
3197 sc->sc_ipopts = NULL;
3198 }
3199 }
3200 #ifdef INET6
3201 else if (in6p) {
3202 /* IPv4 packet to AF_INET6 socket */
3203 bzero(&in6p->in6p_laddr, sizeof(in6p->in6p_laddr));
3204 in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
3205 bcopy(&((struct sockaddr_in *)dst)->sin_addr,
3206 &in6p->in6p_laddr.s6_addr32[3],
3207 sizeof(((struct sockaddr_in *)dst)->sin_addr));
3208 in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
3209 in6totcpcb(in6p)->t_family = AF_INET;
3210 }
3211 #endif
3212 break;
3213 #endif
3214 #ifdef INET6
3215 case AF_INET6:
3216 if (in6p) {
3217 in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
3218 in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
3219 #if 0
3220 in6p->in6p_flowinfo = ip6->ip6_flow & IPV6_FLOWINFO_MASK;
3221 /*inp->inp_options = ip6_srcroute();*/ /* soon. */
3222 #endif
3223 }
3224 break;
3225 #endif
3226 }
3227 #ifdef INET6
3228 if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
3229 struct in6pcb *oin6p = sotoin6pcb(oso);
3230 /* inherit socket options from the listening socket */
3231 in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
3232 if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
3233 m_freem(in6p->in6p_options);
3234 in6p->in6p_options = 0;
3235 }
3236 ip6_savecontrol(in6p, &in6p->in6p_options,
3237 mtod(m, struct ip6_hdr *), m);
3238 }
3239 #endif
3240
3241 #ifdef IPSEC
3242 /*
3243 * we make a copy of policy, instead of sharing the policy,
3244 * for better behavior in terms of SA lookup and dead SA removal.
3245 */
3246 if (inp) {
3247 /* copy old policy into new socket's */
3248 if (ipsec_copy_pcbpolicy(sotoinpcb(oso)->inp_sp, inp->inp_sp))
3249 printf("tcp_input: could not copy policy\n");
3250 }
3251 #ifdef INET6
3252 else if (in6p) {
3253 /* copy old policy into new socket's */
3254 if (ipsec_copy_pcbpolicy(sotoin6pcb(oso)->in6p_sp,
3255 in6p->in6p_sp))
3256 printf("tcp_input: could not copy policy\n");
3257 }
3258 #endif
3259 #endif
3260
3261 /*
3262 * Give the new socket our cached route reference.
3263 */
3264 if (inp)
3265 inp->inp_route = sc->sc_route4; /* struct assignment */
3266 #ifdef INET6
3267 else
3268 in6p->in6p_route = sc->sc_route6;
3269 #endif
3270 sc->sc_route4.ro_rt = NULL;
3271
3272 am = m_get(M_DONTWAIT, MT_SONAME); /* XXX */
3273 if (am == NULL)
3274 goto resetandabort;
3275 am->m_len = src->sa_len;
3276 bcopy(src, mtod(am, caddr_t), src->sa_len);
3277 if (inp) {
3278 if (in_pcbconnect(inp, am)) {
3279 (void) m_free(am);
3280 goto resetandabort;
3281 }
3282 }
3283 #ifdef INET6
3284 else if (in6p) {
3285 if (src->sa_family == AF_INET) {
3286 /* IPv4 packet to AF_INET6 socket */
3287 struct sockaddr_in6 *sin6;
3288 sin6 = mtod(am, struct sockaddr_in6 *);
3289 am->m_len = sizeof(*sin6);
3290 bzero(sin6, sizeof(*sin6));
3291 sin6->sin6_family = AF_INET6;
3292 sin6->sin6_len = sizeof(*sin6);
3293 sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port;
3294 sin6->sin6_addr.s6_addr16[5] = htons(0xffff);
3295 bcopy(&((struct sockaddr_in *)src)->sin_addr,
3296 &sin6->sin6_addr.s6_addr32[3],
3297 sizeof(sin6->sin6_addr.s6_addr32[3]));
3298 }
3299 if (in6_pcbconnect(in6p, am)) {
3300 (void) m_free(am);
3301 goto resetandabort;
3302 }
3303 }
3304 #endif
3305 else {
3306 (void) m_free(am);
3307 goto resetandabort;
3308 }
3309 (void) m_free(am);
3310
3311 if (inp)
3312 tp = intotcpcb(inp);
3313 #ifdef INET6
3314 else if (in6p)
3315 tp = in6totcpcb(in6p);
3316 #endif
3317 else
3318 tp = NULL;
3319 tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
3320 if (sc->sc_request_r_scale != 15) {
3321 tp->requested_s_scale = sc->sc_requested_s_scale;
3322 tp->request_r_scale = sc->sc_request_r_scale;
3323 tp->snd_scale = sc->sc_requested_s_scale;
3324 tp->rcv_scale = sc->sc_request_r_scale;
3325 tp->t_flags |= TF_RCVD_SCALE;
3326 }
3327 if (sc->sc_flags & SCF_TIMESTAMP)
3328 tp->t_flags |= TF_RCVD_TSTMP;
3329 tp->ts_timebase = sc->sc_timebase;
3330
3331 tp->t_template = tcp_template(tp);
3332 if (tp->t_template == 0) {
3333 tp = tcp_drop(tp, ENOBUFS); /* destroys socket */
3334 so = NULL;
3335 m_freem(m);
3336 goto abort;
3337 }
3338
3339 tp->iss = sc->sc_iss;
3340 tp->irs = sc->sc_irs;
3341 tcp_sendseqinit(tp);
3342 tcp_rcvseqinit(tp);
3343 tp->t_state = TCPS_SYN_RECEIVED;
3344 TCP_TIMER_ARM(tp, TCPT_KEEP, TCPTV_KEEP_INIT);
3345 tcpstat.tcps_accepts++;
3346
3347 /* Initialize tp->t_ourmss before we deal with the peer's! */
3348 tp->t_ourmss = sc->sc_ourmaxseg;
3349 tcp_mss_from_peer(tp, sc->sc_peermaxseg);
3350
3351 /*
3352 * Initialize the initial congestion window. If we
3353 * had to retransmit the SYN,ACK, we must initialize cwnd
3354 * to 1 segment (i.e. the Loss Window).
3355 */
3356 if (sc->sc_rxtshift)
3357 tp->snd_cwnd = tp->t_peermss;
3358 else
3359 tp->snd_cwnd = TCP_INITIAL_WINDOW(tcp_init_win, tp->t_peermss);
3360
3361 tcp_rmx_rtt(tp);
3362 tp->snd_wl1 = sc->sc_irs;
3363 tp->rcv_up = sc->sc_irs + 1;
3364
3365 /*
3366 * This is what whould have happened in tcp_ouput() when
3367 * the SYN,ACK was sent.
3368 */
3369 tp->snd_up = tp->snd_una;
3370 tp->snd_max = tp->snd_nxt = tp->iss+1;
3371 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
3372 if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
3373 tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
3374 tp->last_ack_sent = tp->rcv_nxt;
3375
3376 tcpstat.tcps_sc_completed++;
3377 SYN_CACHE_PUT(sc);
3378 return (so);
3379
3380 resetandabort:
3381 (void) tcp_respond(NULL, m, m, th,
3382 th->th_seq + tlen, (tcp_seq)0, TH_RST|TH_ACK);
3383 abort:
3384 if (so != NULL)
3385 (void) soabort(so);
3386 SYN_CACHE_PUT(sc);
3387 tcpstat.tcps_sc_aborted++;
3388 return ((struct socket *)(-1));
3389 }
3390
3391 /*
3392 * This function is called when we get a RST for a
3393 * non-existent connection, so that we can see if the
3394 * connection is in the syn cache. If it is, zap it.
3395 */
3396
3397 void
3398 syn_cache_reset(src, dst, th)
3399 struct sockaddr *src;
3400 struct sockaddr *dst;
3401 struct tcphdr *th;
3402 {
3403 struct syn_cache *sc;
3404 struct syn_cache_head *scp;
3405 int s = splsoftnet();
3406
3407 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3408 splx(s);
3409 return;
3410 }
3411 if (SEQ_LT(th->th_seq, sc->sc_irs) ||
3412 SEQ_GT(th->th_seq, sc->sc_irs+1)) {
3413 splx(s);
3414 return;
3415 }
3416 SYN_CACHE_RM(sc);
3417 splx(s);
3418 tcpstat.tcps_sc_reset++;
3419 SYN_CACHE_PUT(sc);
3420 }
3421
3422 void
3423 syn_cache_unreach(src, dst, th)
3424 struct sockaddr *src;
3425 struct sockaddr *dst;
3426 struct tcphdr *th;
3427 {
3428 struct syn_cache *sc;
3429 struct syn_cache_head *scp;
3430 int s;
3431
3432 s = splsoftnet();
3433 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3434 splx(s);
3435 return;
3436 }
3437 /* If the sequence number != sc_iss, then it's a bogus ICMP msg */
3438 if (ntohl (th->th_seq) != sc->sc_iss) {
3439 splx(s);
3440 return;
3441 }
3442
3443 /*
3444 * If we've rertransmitted 3 times and this is our second error,
3445 * we remove the entry. Otherwise, we allow it to continue on.
3446 * This prevents us from incorrectly nuking an entry during a
3447 * spurious network outage.
3448 *
3449 * See tcp_notify().
3450 */
3451 if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
3452 sc->sc_flags |= SCF_UNREACH;
3453 splx(s);
3454 return;
3455 }
3456
3457 SYN_CACHE_RM(sc);
3458 splx(s);
3459 tcpstat.tcps_sc_unreach++;
3460 SYN_CACHE_PUT(sc);
3461 }
3462
3463 /*
3464 * Given a LISTEN socket and an inbound SYN request, add
3465 * this to the syn cache, and send back a segment:
3466 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
3467 * to the source.
3468 *
3469 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
3470 * Doing so would require that we hold onto the data and deliver it
3471 * to the application. However, if we are the target of a SYN-flood
3472 * DoS attack, an attacker could send data which would eventually
3473 * consume all available buffer space if it were ACKed. By not ACKing
3474 * the data, we avoid this DoS scenario.
3475 */
3476
3477 int
3478 syn_cache_add(src, dst, th, hlen, so, m, optp, optlen, oi)
3479 struct sockaddr *src;
3480 struct sockaddr *dst;
3481 struct tcphdr *th;
3482 unsigned int hlen;
3483 struct socket *so;
3484 struct mbuf *m;
3485 u_char *optp;
3486 int optlen;
3487 struct tcp_opt_info *oi;
3488 {
3489 struct tcpcb tb, *tp;
3490 long win;
3491 struct syn_cache *sc;
3492 struct syn_cache_head *scp;
3493 struct mbuf *ipopts;
3494
3495 tp = sototcpcb(so);
3496
3497 /*
3498 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
3499 *
3500 * Note this check is performed in tcp_input() very early on.
3501 */
3502
3503 /*
3504 * Initialize some local state.
3505 */
3506 win = sbspace(&so->so_rcv);
3507 if (win > TCP_MAXWIN)
3508 win = TCP_MAXWIN;
3509
3510 switch (src->sa_family) {
3511 #ifdef INET
3512 case AF_INET:
3513 /*
3514 * Remember the IP options, if any.
3515 */
3516 ipopts = ip_srcroute();
3517 break;
3518 #endif
3519 default:
3520 ipopts = NULL;
3521 }
3522
3523 if (optp) {
3524 tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
3525 tcp_dooptions(&tb, optp, optlen, th, oi);
3526 } else
3527 tb.t_flags = 0;
3528
3529 /*
3530 * See if we already have an entry for this connection.
3531 * If we do, resend the SYN,ACK. We do not count this
3532 * as a retransmission (XXX though maybe we should).
3533 */
3534 if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
3535 tcpstat.tcps_sc_dupesyn++;
3536 if (ipopts) {
3537 /*
3538 * If we were remembering a previous source route,
3539 * forget it and use the new one we've been given.
3540 */
3541 if (sc->sc_ipopts)
3542 (void) m_free(sc->sc_ipopts);
3543 sc->sc_ipopts = ipopts;
3544 }
3545 sc->sc_timestamp = tb.ts_recent;
3546 if (syn_cache_respond(sc, m) == 0) {
3547 tcpstat.tcps_sndacks++;
3548 tcpstat.tcps_sndtotal++;
3549 }
3550 return (1);
3551 }
3552
3553 sc = pool_get(&syn_cache_pool, PR_NOWAIT);
3554 if (sc == NULL) {
3555 if (ipopts)
3556 (void) m_free(ipopts);
3557 return (0);
3558 }
3559
3560 /*
3561 * Fill in the cache, and put the necessary IP and TCP
3562 * options into the reply.
3563 */
3564 callout_init(&sc->sc_timer);
3565 bzero(sc, sizeof(struct syn_cache));
3566 bcopy(src, &sc->sc_src, src->sa_len);
3567 bcopy(dst, &sc->sc_dst, dst->sa_len);
3568 sc->sc_flags = 0;
3569 sc->sc_ipopts = ipopts;
3570 sc->sc_irs = th->th_seq;
3571 switch (src->sa_family) {
3572 #ifdef INET
3573 case AF_INET:
3574 {
3575 struct sockaddr_in *srcin = (void *) src;
3576 struct sockaddr_in *dstin = (void *) dst;
3577
3578 sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
3579 &srcin->sin_addr, dstin->sin_port,
3580 srcin->sin_port, sizeof(dstin->sin_addr), 0);
3581 break;
3582 }
3583 #endif /* INET */
3584 #ifdef INET6
3585 case AF_INET6:
3586 {
3587 struct sockaddr_in6 *srcin6 = (void *) src;
3588 struct sockaddr_in6 *dstin6 = (void *) dst;
3589
3590 sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
3591 &srcin6->sin6_addr, dstin6->sin6_port,
3592 srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
3593 break;
3594 }
3595 #endif /* INET6 */
3596 }
3597 sc->sc_peermaxseg = oi->maxseg;
3598 sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
3599 m->m_pkthdr.rcvif : NULL,
3600 sc->sc_src.sa.sa_family);
3601 sc->sc_win = win;
3602 sc->sc_timebase = tcp_now; /* see tcp_newtcpcb() */
3603 sc->sc_timestamp = tb.ts_recent;
3604 if (tcp_do_rfc1323 && (tb.t_flags & TF_RCVD_TSTMP))
3605 sc->sc_flags |= SCF_TIMESTAMP;
3606 if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
3607 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
3608 sc->sc_requested_s_scale = tb.requested_s_scale;
3609 sc->sc_request_r_scale = 0;
3610 while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
3611 TCP_MAXWIN << sc->sc_request_r_scale <
3612 so->so_rcv.sb_hiwat)
3613 sc->sc_request_r_scale++;
3614 } else {
3615 sc->sc_requested_s_scale = 15;
3616 sc->sc_request_r_scale = 15;
3617 }
3618 sc->sc_tp = tp;
3619 if (syn_cache_respond(sc, m) == 0) {
3620 syn_cache_insert(sc, tp);
3621 tcpstat.tcps_sndacks++;
3622 tcpstat.tcps_sndtotal++;
3623 } else {
3624 SYN_CACHE_PUT(sc);
3625 tcpstat.tcps_sc_dropped++;
3626 }
3627 return (1);
3628 }
3629
3630 int
3631 syn_cache_respond(sc, m)
3632 struct syn_cache *sc;
3633 struct mbuf *m;
3634 {
3635 struct route *ro;
3636 u_int8_t *optp;
3637 int optlen, error;
3638 u_int16_t tlen;
3639 struct ip *ip = NULL;
3640 #ifdef INET6
3641 struct ip6_hdr *ip6 = NULL;
3642 #endif
3643 struct tcphdr *th;
3644 u_int hlen;
3645
3646 switch (sc->sc_src.sa.sa_family) {
3647 case AF_INET:
3648 hlen = sizeof(struct ip);
3649 ro = &sc->sc_route4;
3650 break;
3651 #ifdef INET6
3652 case AF_INET6:
3653 hlen = sizeof(struct ip6_hdr);
3654 ro = (struct route *)&sc->sc_route6;
3655 break;
3656 #endif
3657 default:
3658 if (m)
3659 m_freem(m);
3660 return EAFNOSUPPORT;
3661 }
3662
3663 /* Compute the size of the TCP options. */
3664 optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
3665 ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
3666
3667 tlen = hlen + sizeof(struct tcphdr) + optlen;
3668
3669 /*
3670 * Create the IP+TCP header from scratch.
3671 */
3672 if (m)
3673 m_freem(m);
3674 #ifdef DIAGNOSTIC
3675 if (max_linkhdr + tlen > MCLBYTES)
3676 return (ENOBUFS);
3677 #endif
3678 MGETHDR(m, M_DONTWAIT, MT_DATA);
3679 if (m && tlen > MHLEN) {
3680 MCLGET(m, M_DONTWAIT);
3681 if ((m->m_flags & M_EXT) == 0) {
3682 m_freem(m);
3683 m = NULL;
3684 }
3685 }
3686 if (m == NULL)
3687 return (ENOBUFS);
3688
3689 /* Fixup the mbuf. */
3690 m->m_data += max_linkhdr;
3691 m->m_len = m->m_pkthdr.len = tlen;
3692 #ifdef IPSEC
3693 if (sc->sc_tp) {
3694 struct tcpcb *tp;
3695 struct socket *so;
3696
3697 tp = sc->sc_tp;
3698 if (tp->t_inpcb)
3699 so = tp->t_inpcb->inp_socket;
3700 #ifdef INET6
3701 else if (tp->t_in6pcb)
3702 so = tp->t_in6pcb->in6p_socket;
3703 #endif
3704 else
3705 so = NULL;
3706 /* use IPsec policy on listening socket, on SYN ACK */
3707 if (ipsec_setsocket(m, so) != 0) {
3708 m_freem(m);
3709 return ENOBUFS;
3710 }
3711 }
3712 #endif
3713 m->m_pkthdr.rcvif = NULL;
3714 memset(mtod(m, u_char *), 0, tlen);
3715
3716 switch (sc->sc_src.sa.sa_family) {
3717 case AF_INET:
3718 ip = mtod(m, struct ip *);
3719 ip->ip_dst = sc->sc_src.sin.sin_addr;
3720 ip->ip_src = sc->sc_dst.sin.sin_addr;
3721 ip->ip_p = IPPROTO_TCP;
3722 th = (struct tcphdr *)(ip + 1);
3723 th->th_dport = sc->sc_src.sin.sin_port;
3724 th->th_sport = sc->sc_dst.sin.sin_port;
3725 break;
3726 #ifdef INET6
3727 case AF_INET6:
3728 ip6 = mtod(m, struct ip6_hdr *);
3729 ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
3730 ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
3731 ip6->ip6_nxt = IPPROTO_TCP;
3732 /* ip6_plen will be updated in ip6_output() */
3733 th = (struct tcphdr *)(ip6 + 1);
3734 th->th_dport = sc->sc_src.sin6.sin6_port;
3735 th->th_sport = sc->sc_dst.sin6.sin6_port;
3736 break;
3737 #endif
3738 default:
3739 th = NULL;
3740 }
3741
3742 th->th_seq = htonl(sc->sc_iss);
3743 th->th_ack = htonl(sc->sc_irs + 1);
3744 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
3745 th->th_flags = TH_SYN|TH_ACK;
3746 th->th_win = htons(sc->sc_win);
3747 /* th_sum already 0 */
3748 /* th_urp already 0 */
3749
3750 /* Tack on the TCP options. */
3751 optp = (u_int8_t *)(th + 1);
3752 *optp++ = TCPOPT_MAXSEG;
3753 *optp++ = 4;
3754 *optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
3755 *optp++ = sc->sc_ourmaxseg & 0xff;
3756
3757 if (sc->sc_request_r_scale != 15) {
3758 *((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
3759 TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
3760 sc->sc_request_r_scale);
3761 optp += 4;
3762 }
3763
3764 if (sc->sc_flags & SCF_TIMESTAMP) {
3765 u_int32_t *lp = (u_int32_t *)(optp);
3766 /* Form timestamp option as shown in appendix A of RFC 1323. */
3767 *lp++ = htonl(TCPOPT_TSTAMP_HDR);
3768 *lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
3769 *lp = htonl(sc->sc_timestamp);
3770 optp += TCPOLEN_TSTAMP_APPA;
3771 }
3772
3773 /* Compute the packet's checksum. */
3774 switch (sc->sc_src.sa.sa_family) {
3775 case AF_INET:
3776 ip->ip_len = htons(tlen - hlen);
3777 th->th_sum = 0;
3778 th->th_sum = in_cksum(m, tlen);
3779 break;
3780 #ifdef INET6
3781 case AF_INET6:
3782 ip6->ip6_plen = htons(tlen - hlen);
3783 th->th_sum = 0;
3784 th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
3785 break;
3786 #endif
3787 }
3788
3789 /*
3790 * Fill in some straggling IP bits. Note the stack expects
3791 * ip_len to be in host order, for convenience.
3792 */
3793 switch (sc->sc_src.sa.sa_family) {
3794 #ifdef INET
3795 case AF_INET:
3796 ip->ip_len = htons(tlen);
3797 ip->ip_ttl = ip_defttl;
3798 /* XXX tos? */
3799 break;
3800 #endif
3801 #ifdef INET6
3802 case AF_INET6:
3803 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
3804 ip6->ip6_vfc |= IPV6_VERSION;
3805 ip6->ip6_plen = htons(tlen - hlen);
3806 /* ip6_hlim will be initialized afterwards */
3807 /* XXX flowlabel? */
3808 break;
3809 #endif
3810 }
3811
3812 switch (sc->sc_src.sa.sa_family) {
3813 #ifdef INET
3814 case AF_INET:
3815 error = ip_output(m, sc->sc_ipopts, ro,
3816 (ip_mtudisc ? IP_MTUDISC : 0),
3817 NULL);
3818 break;
3819 #endif
3820 #ifdef INET6
3821 case AF_INET6:
3822 ip6->ip6_hlim = in6_selecthlim(NULL,
3823 ro->ro_rt ? ro->ro_rt->rt_ifp : NULL);
3824
3825 error = ip6_output(m, NULL /*XXX*/, (struct route_in6 *)ro,
3826 0, NULL, NULL);
3827 break;
3828 #endif
3829 default:
3830 error = EAFNOSUPPORT;
3831 break;
3832 }
3833 return (error);
3834 }
3835