tcp_input.c revision 1.161 1 /* $NetBSD: tcp_input.c,v 1.161 2003/02/25 22:12:24 he Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * @(#)COPYRIGHT 1.1 (NRL) 17 January 1995
34 *
35 * NRL grants permission for redistribution and use in source and binary
36 * forms, with or without modification, of the software and documentation
37 * created at NRL provided that the following conditions are met:
38 *
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgements:
46 * This product includes software developed by the University of
47 * California, Berkeley and its contributors.
48 * This product includes software developed at the Information
49 * Technology Division, US Naval Research Laboratory.
50 * 4. Neither the name of the NRL nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
55 * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
57 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NRL OR
58 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
59 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
61 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
62 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
63 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
64 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65 *
66 * The views and conclusions contained in the software and documentation
67 * are those of the authors and should not be interpreted as representing
68 * official policies, either expressed or implied, of the US Naval
69 * Research Laboratory (NRL).
70 */
71
72 /*-
73 * Copyright (c) 1997, 1998, 1999, 2001 The NetBSD Foundation, Inc.
74 * All rights reserved.
75 *
76 * This code is derived from software contributed to The NetBSD Foundation
77 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
78 * Facility, NASA Ames Research Center.
79 *
80 * Redistribution and use in source and binary forms, with or without
81 * modification, are permitted provided that the following conditions
82 * are met:
83 * 1. Redistributions of source code must retain the above copyright
84 * notice, this list of conditions and the following disclaimer.
85 * 2. Redistributions in binary form must reproduce the above copyright
86 * notice, this list of conditions and the following disclaimer in the
87 * documentation and/or other materials provided with the distribution.
88 * 3. All advertising materials mentioning features or use of this software
89 * must display the following acknowledgement:
90 * This product includes software developed by the NetBSD
91 * Foundation, Inc. and its contributors.
92 * 4. Neither the name of The NetBSD Foundation nor the names of its
93 * contributors may be used to endorse or promote products derived
94 * from this software without specific prior written permission.
95 *
96 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
97 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
98 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
99 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
100 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
101 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
102 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
103 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
104 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
105 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
106 * POSSIBILITY OF SUCH DAMAGE.
107 */
108
109 /*
110 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
111 * The Regents of the University of California. All rights reserved.
112 *
113 * Redistribution and use in source and binary forms, with or without
114 * modification, are permitted provided that the following conditions
115 * are met:
116 * 1. Redistributions of source code must retain the above copyright
117 * notice, this list of conditions and the following disclaimer.
118 * 2. Redistributions in binary form must reproduce the above copyright
119 * notice, this list of conditions and the following disclaimer in the
120 * documentation and/or other materials provided with the distribution.
121 * 3. All advertising materials mentioning features or use of this software
122 * must display the following acknowledgement:
123 * This product includes software developed by the University of
124 * California, Berkeley and its contributors.
125 * 4. Neither the name of the University nor the names of its contributors
126 * may be used to endorse or promote products derived from this software
127 * without specific prior written permission.
128 *
129 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
130 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
131 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
132 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
133 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
134 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
135 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
136 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
137 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
138 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
139 * SUCH DAMAGE.
140 *
141 * @(#)tcp_input.c 8.12 (Berkeley) 5/24/95
142 */
143
144 /*
145 * TODO list for SYN cache stuff:
146 *
147 * Find room for a "state" field, which is needed to keep a
148 * compressed state for TIME_WAIT TCBs. It's been noted already
149 * that this is fairly important for very high-volume web and
150 * mail servers, which use a large number of short-lived
151 * connections.
152 */
153
154 #include <sys/cdefs.h>
155 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.161 2003/02/25 22:12:24 he Exp $");
156
157 #include "opt_inet.h"
158 #include "opt_ipsec.h"
159 #include "opt_inet_csum.h"
160 #include "opt_tcp_debug.h"
161
162 #include <sys/param.h>
163 #include <sys/systm.h>
164 #include <sys/malloc.h>
165 #include <sys/mbuf.h>
166 #include <sys/protosw.h>
167 #include <sys/socket.h>
168 #include <sys/socketvar.h>
169 #include <sys/errno.h>
170 #include <sys/syslog.h>
171 #include <sys/pool.h>
172 #include <sys/domain.h>
173 #include <sys/kernel.h>
174
175 #include <net/if.h>
176 #include <net/route.h>
177 #include <net/if_types.h>
178
179 #include <netinet/in.h>
180 #include <netinet/in_systm.h>
181 #include <netinet/ip.h>
182 #include <netinet/in_pcb.h>
183 #include <netinet/ip_var.h>
184
185 #ifdef INET6
186 #ifndef INET
187 #include <netinet/in.h>
188 #endif
189 #include <netinet/ip6.h>
190 #include <netinet6/ip6_var.h>
191 #include <netinet6/in6_pcb.h>
192 #include <netinet6/ip6_var.h>
193 #include <netinet6/in6_var.h>
194 #include <netinet/icmp6.h>
195 #include <netinet6/nd6.h>
196 #endif
197
198 #ifdef PULLDOWN_TEST
199 #ifndef INET6
200 /* always need ip6.h for IP6_EXTHDR_GET */
201 #include <netinet/ip6.h>
202 #endif
203 #endif
204
205 #include <netinet/tcp.h>
206 #include <netinet/tcp_fsm.h>
207 #include <netinet/tcp_seq.h>
208 #include <netinet/tcp_timer.h>
209 #include <netinet/tcp_var.h>
210 #include <netinet/tcpip.h>
211 #include <netinet/tcp_debug.h>
212
213 #include <machine/stdarg.h>
214
215 #ifdef IPSEC
216 #include <netinet6/ipsec.h>
217 #include <netkey/key.h>
218 #endif /*IPSEC*/
219 #ifdef INET6
220 #include "faith.h"
221 #if defined(NFAITH) && NFAITH > 0
222 #include <net/if_faith.h>
223 #endif
224 #endif
225
226 int tcprexmtthresh = 3;
227 int tcp_log_refused;
228
229 static int tcp_rst_ppslim_count = 0;
230 static struct timeval tcp_rst_ppslim_last;
231
232 #define TCP_PAWS_IDLE (24 * 24 * 60 * 60 * PR_SLOWHZ)
233
234 /* for modulo comparisons of timestamps */
235 #define TSTMP_LT(a,b) ((int)((a)-(b)) < 0)
236 #define TSTMP_GEQ(a,b) ((int)((a)-(b)) >= 0)
237
238 /*
239 * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
240 */
241 #ifdef INET6
242 #define ND6_HINT(tp) \
243 do { \
244 if (tp && tp->t_in6pcb && tp->t_family == AF_INET6 \
245 && tp->t_in6pcb->in6p_route.ro_rt) { \
246 nd6_nud_hint(tp->t_in6pcb->in6p_route.ro_rt, NULL, 0); \
247 } \
248 } while (/*CONSTCOND*/ 0)
249 #else
250 #define ND6_HINT(tp)
251 #endif
252
253 /*
254 * Macro to compute ACK transmission behavior. Delay the ACK unless
255 * we have already delayed an ACK (must send an ACK every two segments).
256 * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
257 * option is enabled.
258 */
259 #define TCP_SETUP_ACK(tp, th) \
260 do { \
261 if ((tp)->t_flags & TF_DELACK || \
262 (tcp_ack_on_push && (th)->th_flags & TH_PUSH)) \
263 tp->t_flags |= TF_ACKNOW; \
264 else \
265 TCP_SET_DELACK(tp); \
266 } while (/*CONSTCOND*/ 0)
267
268 /*
269 * Convert TCP protocol fields to host order for easier processing.
270 */
271 #define TCP_FIELDS_TO_HOST(th) \
272 do { \
273 NTOHL((th)->th_seq); \
274 NTOHL((th)->th_ack); \
275 NTOHS((th)->th_win); \
276 NTOHS((th)->th_urp); \
277 } while (/*CONSTCOND*/ 0)
278
279 /*
280 * ... and reverse the above.
281 */
282 #define TCP_FIELDS_TO_NET(th) \
283 do { \
284 HTONL((th)->th_seq); \
285 HTONL((th)->th_ack); \
286 HTONS((th)->th_win); \
287 HTONS((th)->th_urp); \
288 } while (/*CONSTCOND*/ 0)
289
290 #ifdef TCP_CSUM_COUNTERS
291 #include <sys/device.h>
292
293 extern struct evcnt tcp_hwcsum_ok;
294 extern struct evcnt tcp_hwcsum_bad;
295 extern struct evcnt tcp_hwcsum_data;
296 extern struct evcnt tcp_swcsum;
297
298 #define TCP_CSUM_COUNTER_INCR(ev) (ev)->ev_count++
299
300 #else
301
302 #define TCP_CSUM_COUNTER_INCR(ev) /* nothing */
303
304 #endif /* TCP_CSUM_COUNTERS */
305
306 #ifdef TCP_REASS_COUNTERS
307 #include <sys/device.h>
308
309 extern struct evcnt tcp_reass_;
310 extern struct evcnt tcp_reass_empty;
311 extern struct evcnt tcp_reass_iteration[8];
312 extern struct evcnt tcp_reass_prependfirst;
313 extern struct evcnt tcp_reass_prepend;
314 extern struct evcnt tcp_reass_insert;
315 extern struct evcnt tcp_reass_inserttail;
316 extern struct evcnt tcp_reass_append;
317 extern struct evcnt tcp_reass_appendtail;
318 extern struct evcnt tcp_reass_overlaptail;
319 extern struct evcnt tcp_reass_overlapfront;
320 extern struct evcnt tcp_reass_segdup;
321 extern struct evcnt tcp_reass_fragdup;
322
323 #define TCP_REASS_COUNTER_INCR(ev) (ev)->ev_count++
324
325 #else
326
327 #define TCP_REASS_COUNTER_INCR(ev) /* nothing */
328
329 #endif /* TCP_REASS_COUNTERS */
330
331 #ifdef INET
332 static void tcp4_log_refused __P((const struct ip *, const struct tcphdr *));
333 #endif
334 #ifdef INET6
335 static void tcp6_log_refused
336 __P((const struct ip6_hdr *, const struct tcphdr *));
337 #endif
338
339 int
340 tcp_reass(tp, th, m, tlen)
341 struct tcpcb *tp;
342 struct tcphdr *th;
343 struct mbuf *m;
344 int *tlen;
345 {
346 struct ipqent *p, *q, *nq, *tiqe = NULL;
347 struct socket *so = NULL;
348 int pkt_flags;
349 tcp_seq pkt_seq;
350 unsigned pkt_len;
351 u_long rcvpartdupbyte = 0;
352 u_long rcvoobyte;
353 #ifdef TCP_REASS_COUNTERS
354 u_int count = 0;
355 #endif
356
357 if (tp->t_inpcb)
358 so = tp->t_inpcb->inp_socket;
359 #ifdef INET6
360 else if (tp->t_in6pcb)
361 so = tp->t_in6pcb->in6p_socket;
362 #endif
363
364 TCP_REASS_LOCK_CHECK(tp);
365
366 /*
367 * Call with th==0 after become established to
368 * force pre-ESTABLISHED data up to user socket.
369 */
370 if (th == 0)
371 goto present;
372
373 rcvoobyte = *tlen;
374 /*
375 * Copy these to local variables because the tcpiphdr
376 * gets munged while we are collapsing mbufs.
377 */
378 pkt_seq = th->th_seq;
379 pkt_len = *tlen;
380 pkt_flags = th->th_flags;
381
382 TCP_REASS_COUNTER_INCR(&tcp_reass_);
383
384 if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
385 /*
386 * When we miss a packet, the vast majority of time we get
387 * packets that follow it in order. So optimize for that.
388 */
389 if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
390 p->ipqe_len += pkt_len;
391 p->ipqe_flags |= pkt_flags;
392 m_cat(p->ipqe_m, m);
393 tiqe = p;
394 TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
395 TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
396 goto skip_replacement;
397 }
398 /*
399 * While we're here, if the pkt is completely beyond
400 * anything we have, just insert it at the tail.
401 */
402 if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
403 TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
404 goto insert_it;
405 }
406 }
407
408 q = TAILQ_FIRST(&tp->segq);
409
410 if (q != NULL) {
411 /*
412 * If this segment immediately precedes the first out-of-order
413 * block, simply slap the segment in front of it and (mostly)
414 * skip the complicated logic.
415 */
416 if (pkt_seq + pkt_len == q->ipqe_seq) {
417 q->ipqe_seq = pkt_seq;
418 q->ipqe_len += pkt_len;
419 q->ipqe_flags |= pkt_flags;
420 m_cat(m, q->ipqe_m);
421 q->ipqe_m = m;
422 tiqe = q;
423 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
424 TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
425 goto skip_replacement;
426 }
427 } else {
428 TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
429 }
430
431 /*
432 * Find a segment which begins after this one does.
433 */
434 for (p = NULL; q != NULL; q = nq) {
435 nq = TAILQ_NEXT(q, ipqe_q);
436 #ifdef TCP_REASS_COUNTERS
437 count++;
438 #endif
439 /*
440 * If the received segment is just right after this
441 * fragment, merge the two together and then check
442 * for further overlaps.
443 */
444 if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
445 #ifdef TCPREASS_DEBUG
446 printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
447 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
448 q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
449 #endif
450 pkt_len += q->ipqe_len;
451 pkt_flags |= q->ipqe_flags;
452 pkt_seq = q->ipqe_seq;
453 m_cat(q->ipqe_m, m);
454 m = q->ipqe_m;
455 TCP_REASS_COUNTER_INCR(&tcp_reass_append);
456 goto free_ipqe;
457 }
458 /*
459 * If the received segment is completely past this
460 * fragment, we need to go the next fragment.
461 */
462 if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
463 p = q;
464 continue;
465 }
466 /*
467 * If the fragment is past the received segment,
468 * it (or any following) can't be concatenated.
469 */
470 if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
471 TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
472 break;
473 }
474
475 /*
476 * We've received all the data in this segment before.
477 * mark it as a duplicate and return.
478 */
479 if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
480 SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
481 tcpstat.tcps_rcvduppack++;
482 tcpstat.tcps_rcvdupbyte += pkt_len;
483 m_freem(m);
484 if (tiqe != NULL)
485 pool_put(&ipqent_pool, tiqe);
486 TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
487 return (0);
488 }
489 /*
490 * Received segment completely overlaps this fragment
491 * so we drop the fragment (this keeps the temporal
492 * ordering of segments correct).
493 */
494 if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
495 SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
496 rcvpartdupbyte += q->ipqe_len;
497 m_freem(q->ipqe_m);
498 TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
499 goto free_ipqe;
500 }
501 /*
502 * RX'ed segment extends past the end of the
503 * fragment. Drop the overlapping bytes. Then
504 * merge the fragment and segment then treat as
505 * a longer received packet.
506 */
507 if (SEQ_LT(q->ipqe_seq, pkt_seq)
508 && SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
509 int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
510 #ifdef TCPREASS_DEBUG
511 printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
512 tp, overlap,
513 pkt_seq, pkt_seq + pkt_len, pkt_len);
514 #endif
515 m_adj(m, overlap);
516 rcvpartdupbyte += overlap;
517 m_cat(q->ipqe_m, m);
518 m = q->ipqe_m;
519 pkt_seq = q->ipqe_seq;
520 pkt_len += q->ipqe_len - overlap;
521 rcvoobyte -= overlap;
522 TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
523 goto free_ipqe;
524 }
525 /*
526 * RX'ed segment extends past the front of the
527 * fragment. Drop the overlapping bytes on the
528 * received packet. The packet will then be
529 * contatentated with this fragment a bit later.
530 */
531 if (SEQ_GT(q->ipqe_seq, pkt_seq)
532 && SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len)) {
533 int overlap = pkt_seq + pkt_len - q->ipqe_seq;
534 #ifdef TCPREASS_DEBUG
535 printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
536 tp, overlap,
537 pkt_seq, pkt_seq + pkt_len, pkt_len);
538 #endif
539 m_adj(m, -overlap);
540 pkt_len -= overlap;
541 rcvpartdupbyte += overlap;
542 TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
543 rcvoobyte -= overlap;
544 }
545 /*
546 * If the received segment immediates precedes this
547 * fragment then tack the fragment onto this segment
548 * and reinsert the data.
549 */
550 if (q->ipqe_seq == pkt_seq + pkt_len) {
551 #ifdef TCPREASS_DEBUG
552 printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
553 tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
554 pkt_seq, pkt_seq + pkt_len, pkt_len);
555 #endif
556 pkt_len += q->ipqe_len;
557 pkt_flags |= q->ipqe_flags;
558 m_cat(m, q->ipqe_m);
559 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
560 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
561 if (tiqe == NULL) {
562 tiqe = q;
563 } else {
564 pool_put(&ipqent_pool, q);
565 }
566 TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
567 break;
568 }
569 /*
570 * If the fragment is before the segment, remember it.
571 * When this loop is terminated, p will contain the
572 * pointer to fragment that is right before the received
573 * segment.
574 */
575 if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
576 p = q;
577
578 continue;
579
580 /*
581 * This is a common operation. It also will allow
582 * to save doing a malloc/free in most instances.
583 */
584 free_ipqe:
585 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
586 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
587 if (tiqe == NULL) {
588 tiqe = q;
589 } else {
590 pool_put(&ipqent_pool, q);
591 }
592 }
593
594 #ifdef TCP_REASS_COUNTERS
595 if (count > 7)
596 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
597 else if (count > 0)
598 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
599 #endif
600
601 insert_it:
602
603 /*
604 * Allocate a new queue entry since the received segment did not
605 * collapse onto any other out-of-order block; thus we are allocating
606 * a new block. If it had collapsed, tiqe would not be NULL and
607 * we would be reusing it.
608 * XXX If we can't, just drop the packet. XXX
609 */
610 if (tiqe == NULL) {
611 tiqe = pool_get(&ipqent_pool, PR_NOWAIT);
612 if (tiqe == NULL) {
613 tcpstat.tcps_rcvmemdrop++;
614 m_freem(m);
615 return (0);
616 }
617 }
618
619 /*
620 * Update the counters.
621 */
622 tcpstat.tcps_rcvoopack++;
623 tcpstat.tcps_rcvoobyte += rcvoobyte;
624 if (rcvpartdupbyte) {
625 tcpstat.tcps_rcvpartduppack++;
626 tcpstat.tcps_rcvpartdupbyte += rcvpartdupbyte;
627 }
628
629 /*
630 * Insert the new fragment queue entry into both queues.
631 */
632 tiqe->ipqe_m = m;
633 tiqe->ipqe_seq = pkt_seq;
634 tiqe->ipqe_len = pkt_len;
635 tiqe->ipqe_flags = pkt_flags;
636 if (p == NULL) {
637 TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
638 #ifdef TCPREASS_DEBUG
639 if (tiqe->ipqe_seq != tp->rcv_nxt)
640 printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
641 tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
642 #endif
643 } else {
644 TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
645 #ifdef TCPREASS_DEBUG
646 printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
647 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
648 p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
649 #endif
650 }
651
652 skip_replacement:
653
654 TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
655
656 present:
657 /*
658 * Present data to user, advancing rcv_nxt through
659 * completed sequence space.
660 */
661 if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
662 return (0);
663 q = TAILQ_FIRST(&tp->segq);
664 if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
665 return (0);
666 if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
667 return (0);
668
669 tp->rcv_nxt += q->ipqe_len;
670 pkt_flags = q->ipqe_flags & TH_FIN;
671 ND6_HINT(tp);
672
673 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
674 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
675 if (so->so_state & SS_CANTRCVMORE)
676 m_freem(q->ipqe_m);
677 else
678 sbappendstream(&so->so_rcv, q->ipqe_m);
679 pool_put(&ipqent_pool, q);
680 sorwakeup(so);
681 return (pkt_flags);
682 }
683
684 #ifdef INET6
685 int
686 tcp6_input(mp, offp, proto)
687 struct mbuf **mp;
688 int *offp, proto;
689 {
690 struct mbuf *m = *mp;
691
692 /*
693 * draft-itojun-ipv6-tcp-to-anycast
694 * better place to put this in?
695 */
696 if (m->m_flags & M_ANYCAST6) {
697 struct ip6_hdr *ip6;
698 if (m->m_len < sizeof(struct ip6_hdr)) {
699 if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
700 tcpstat.tcps_rcvshort++;
701 return IPPROTO_DONE;
702 }
703 }
704 ip6 = mtod(m, struct ip6_hdr *);
705 icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
706 (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
707 return IPPROTO_DONE;
708 }
709
710 tcp_input(m, *offp, proto);
711 return IPPROTO_DONE;
712 }
713 #endif
714
715 #ifdef INET
716 static void
717 tcp4_log_refused(ip, th)
718 const struct ip *ip;
719 const struct tcphdr *th;
720 {
721 char src[4*sizeof "123"];
722 char dst[4*sizeof "123"];
723
724 if (ip) {
725 strcpy(src, inet_ntoa(ip->ip_src));
726 strcpy(dst, inet_ntoa(ip->ip_dst));
727 }
728 else {
729 strcpy(src, "(unknown)");
730 strcpy(dst, "(unknown)");
731 }
732 log(LOG_INFO,
733 "Connection attempt to TCP %s:%d from %s:%d\n",
734 dst, ntohs(th->th_dport),
735 src, ntohs(th->th_sport));
736 }
737 #endif
738
739 #ifdef INET6
740 static void
741 tcp6_log_refused(ip6, th)
742 const struct ip6_hdr *ip6;
743 const struct tcphdr *th;
744 {
745 char src[INET6_ADDRSTRLEN];
746 char dst[INET6_ADDRSTRLEN];
747
748 if (ip6) {
749 strcpy(src, ip6_sprintf(&ip6->ip6_src));
750 strcpy(dst, ip6_sprintf(&ip6->ip6_dst));
751 }
752 else {
753 strcpy(src, "(unknown v6)");
754 strcpy(dst, "(unknown v6)");
755 }
756 log(LOG_INFO,
757 "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
758 dst, ntohs(th->th_dport),
759 src, ntohs(th->th_sport));
760 }
761 #endif
762
763 /*
764 * TCP input routine, follows pages 65-76 of the
765 * protocol specification dated September, 1981 very closely.
766 */
767 void
768 #if __STDC__
769 tcp_input(struct mbuf *m, ...)
770 #else
771 tcp_input(m, va_alist)
772 struct mbuf *m;
773 #endif
774 {
775 struct tcphdr *th;
776 struct ip *ip;
777 struct inpcb *inp;
778 #ifdef INET6
779 struct ip6_hdr *ip6;
780 struct in6pcb *in6p;
781 #endif
782 u_int8_t *optp = NULL;
783 int optlen = 0;
784 int len, tlen, toff, hdroptlen = 0;
785 struct tcpcb *tp = 0;
786 int tiflags;
787 struct socket *so = NULL;
788 int todrop, acked, ourfinisacked, needoutput = 0;
789 #ifdef TCP_DEBUG
790 short ostate = 0;
791 #endif
792 int iss = 0;
793 u_long tiwin;
794 struct tcp_opt_info opti;
795 int off, iphlen;
796 va_list ap;
797 int af; /* af on the wire */
798 struct mbuf *tcp_saveti = NULL;
799
800 va_start(ap, m);
801 toff = va_arg(ap, int);
802 (void)va_arg(ap, int); /* ignore value, advance ap */
803 va_end(ap);
804
805 tcpstat.tcps_rcvtotal++;
806
807 bzero(&opti, sizeof(opti));
808 opti.ts_present = 0;
809 opti.maxseg = 0;
810
811 /*
812 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
813 *
814 * TCP is, by definition, unicast, so we reject all
815 * multicast outright.
816 *
817 * Note, there are additional src/dst address checks in
818 * the AF-specific code below.
819 */
820 if (m->m_flags & (M_BCAST|M_MCAST)) {
821 /* XXX stat */
822 goto drop;
823 }
824 #ifdef INET6
825 if (m->m_flags & M_ANYCAST6) {
826 /* XXX stat */
827 goto drop;
828 }
829 #endif
830
831 /*
832 * Get IP and TCP header together in first mbuf.
833 * Note: IP leaves IP header in first mbuf.
834 */
835 ip = mtod(m, struct ip *);
836 #ifdef INET6
837 ip6 = NULL;
838 #endif
839 switch (ip->ip_v) {
840 #ifdef INET
841 case 4:
842 af = AF_INET;
843 iphlen = sizeof(struct ip);
844 #ifndef PULLDOWN_TEST
845 /* would like to get rid of this... */
846 if (toff > sizeof (struct ip)) {
847 ip_stripoptions(m, (struct mbuf *)0);
848 toff = sizeof(struct ip);
849 }
850 if (m->m_len < toff + sizeof (struct tcphdr)) {
851 if ((m = m_pullup(m, toff + sizeof (struct tcphdr))) == 0) {
852 tcpstat.tcps_rcvshort++;
853 return;
854 }
855 }
856 ip = mtod(m, struct ip *);
857 th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
858 #else
859 ip = mtod(m, struct ip *);
860 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
861 sizeof(struct tcphdr));
862 if (th == NULL) {
863 tcpstat.tcps_rcvshort++;
864 return;
865 }
866 #endif
867 /* We do the checksum after PCB lookup... */
868 len = ntohs(ip->ip_len);
869 tlen = len - toff;
870 break;
871 #endif
872 #ifdef INET6
873 case 6:
874 ip = NULL;
875 iphlen = sizeof(struct ip6_hdr);
876 af = AF_INET6;
877 #ifndef PULLDOWN_TEST
878 if (m->m_len < toff + sizeof(struct tcphdr)) {
879 m = m_pullup(m, toff + sizeof(struct tcphdr)); /*XXX*/
880 if (m == NULL) {
881 tcpstat.tcps_rcvshort++;
882 return;
883 }
884 }
885 ip6 = mtod(m, struct ip6_hdr *);
886 th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
887 #else
888 ip6 = mtod(m, struct ip6_hdr *);
889 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
890 sizeof(struct tcphdr));
891 if (th == NULL) {
892 tcpstat.tcps_rcvshort++;
893 return;
894 }
895 #endif
896
897 /* Be proactive about malicious use of IPv4 mapped address */
898 if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
899 IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
900 /* XXX stat */
901 goto drop;
902 }
903
904 /*
905 * Be proactive about unspecified IPv6 address in source.
906 * As we use all-zero to indicate unbounded/unconnected pcb,
907 * unspecified IPv6 address can be used to confuse us.
908 *
909 * Note that packets with unspecified IPv6 destination is
910 * already dropped in ip6_input.
911 */
912 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
913 /* XXX stat */
914 goto drop;
915 }
916
917 /*
918 * Make sure destination address is not multicast.
919 * Source address checked in ip6_input().
920 */
921 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
922 /* XXX stat */
923 goto drop;
924 }
925
926 /* We do the checksum after PCB lookup... */
927 len = m->m_pkthdr.len;
928 tlen = len - toff;
929 break;
930 #endif
931 default:
932 m_freem(m);
933 return;
934 }
935
936 KASSERT(TCP_HDR_ALIGNED_P(th));
937
938 /*
939 * Check that TCP offset makes sense,
940 * pull out TCP options and adjust length. XXX
941 */
942 off = th->th_off << 2;
943 if (off < sizeof (struct tcphdr) || off > tlen) {
944 tcpstat.tcps_rcvbadoff++;
945 goto drop;
946 }
947 tlen -= off;
948
949 /*
950 * tcp_input() has been modified to use tlen to mean the TCP data
951 * length throughout the function. Other functions can use
952 * m->m_pkthdr.len as the basis for calculating the TCP data length.
953 * rja
954 */
955
956 if (off > sizeof (struct tcphdr)) {
957 #ifndef PULLDOWN_TEST
958 if (m->m_len < toff + off) {
959 if ((m = m_pullup(m, toff + off)) == 0) {
960 tcpstat.tcps_rcvshort++;
961 return;
962 }
963 switch (af) {
964 #ifdef INET
965 case AF_INET:
966 ip = mtod(m, struct ip *);
967 break;
968 #endif
969 #ifdef INET6
970 case AF_INET6:
971 ip6 = mtod(m, struct ip6_hdr *);
972 break;
973 #endif
974 }
975 th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
976 }
977 #else
978 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
979 if (th == NULL) {
980 tcpstat.tcps_rcvshort++;
981 return;
982 }
983 /*
984 * NOTE: ip/ip6 will not be affected by m_pulldown()
985 * (as they're before toff) and we don't need to update those.
986 */
987 #endif
988 KASSERT(TCP_HDR_ALIGNED_P(th));
989 optlen = off - sizeof (struct tcphdr);
990 optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
991 /*
992 * Do quick retrieval of timestamp options ("options
993 * prediction?"). If timestamp is the only option and it's
994 * formatted as recommended in RFC 1323 appendix A, we
995 * quickly get the values now and not bother calling
996 * tcp_dooptions(), etc.
997 */
998 if ((optlen == TCPOLEN_TSTAMP_APPA ||
999 (optlen > TCPOLEN_TSTAMP_APPA &&
1000 optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
1001 *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
1002 (th->th_flags & TH_SYN) == 0) {
1003 opti.ts_present = 1;
1004 opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
1005 opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
1006 optp = NULL; /* we've parsed the options */
1007 }
1008 }
1009 tiflags = th->th_flags;
1010
1011 /*
1012 * Locate pcb for segment.
1013 */
1014 findpcb:
1015 inp = NULL;
1016 #ifdef INET6
1017 in6p = NULL;
1018 #endif
1019 switch (af) {
1020 #ifdef INET
1021 case AF_INET:
1022 inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
1023 ip->ip_dst, th->th_dport);
1024 if (inp == 0) {
1025 ++tcpstat.tcps_pcbhashmiss;
1026 inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
1027 }
1028 #ifdef INET6
1029 if (inp == 0) {
1030 struct in6_addr s, d;
1031
1032 /* mapped addr case */
1033 bzero(&s, sizeof(s));
1034 s.s6_addr16[5] = htons(0xffff);
1035 bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
1036 bzero(&d, sizeof(d));
1037 d.s6_addr16[5] = htons(0xffff);
1038 bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
1039 in6p = in6_pcblookup_connect(&tcb6, &s, th->th_sport,
1040 &d, th->th_dport, 0);
1041 if (in6p == 0) {
1042 ++tcpstat.tcps_pcbhashmiss;
1043 in6p = in6_pcblookup_bind(&tcb6, &d,
1044 th->th_dport, 0);
1045 }
1046 }
1047 #endif
1048 #ifndef INET6
1049 if (inp == 0)
1050 #else
1051 if (inp == 0 && in6p == 0)
1052 #endif
1053 {
1054 ++tcpstat.tcps_noport;
1055 if (tcp_log_refused &&
1056 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1057 tcp4_log_refused(ip, th);
1058 }
1059 TCP_FIELDS_TO_HOST(th);
1060 goto dropwithreset_ratelim;
1061 }
1062 #ifdef IPSEC
1063 if (inp && ipsec4_in_reject(m, inp)) {
1064 ipsecstat.in_polvio++;
1065 goto drop;
1066 }
1067 #ifdef INET6
1068 else if (in6p && ipsec4_in_reject_so(m, in6p->in6p_socket)) {
1069 ipsecstat.in_polvio++;
1070 goto drop;
1071 }
1072 #endif
1073 #endif /*IPSEC*/
1074 break;
1075 #endif /*INET*/
1076 #ifdef INET6
1077 case AF_INET6:
1078 {
1079 int faith;
1080
1081 #if defined(NFAITH) && NFAITH > 0
1082 faith = faithprefix(&ip6->ip6_dst);
1083 #else
1084 faith = 0;
1085 #endif
1086 in6p = in6_pcblookup_connect(&tcb6, &ip6->ip6_src, th->th_sport,
1087 &ip6->ip6_dst, th->th_dport, faith);
1088 if (in6p == NULL) {
1089 ++tcpstat.tcps_pcbhashmiss;
1090 in6p = in6_pcblookup_bind(&tcb6, &ip6->ip6_dst,
1091 th->th_dport, faith);
1092 }
1093 if (in6p == NULL) {
1094 ++tcpstat.tcps_noport;
1095 if (tcp_log_refused &&
1096 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1097 tcp6_log_refused(ip6, th);
1098 }
1099 TCP_FIELDS_TO_HOST(th);
1100 goto dropwithreset_ratelim;
1101 }
1102 #ifdef IPSEC
1103 if (ipsec6_in_reject(m, in6p)) {
1104 ipsec6stat.in_polvio++;
1105 goto drop;
1106 }
1107 #endif /*IPSEC*/
1108 break;
1109 }
1110 #endif
1111 }
1112
1113 /*
1114 * If the state is CLOSED (i.e., TCB does not exist) then
1115 * all data in the incoming segment is discarded.
1116 * If the TCB exists but is in CLOSED state, it is embryonic,
1117 * but should either do a listen or a connect soon.
1118 */
1119 tp = NULL;
1120 so = NULL;
1121 if (inp) {
1122 tp = intotcpcb(inp);
1123 so = inp->inp_socket;
1124 }
1125 #ifdef INET6
1126 else if (in6p) {
1127 tp = in6totcpcb(in6p);
1128 so = in6p->in6p_socket;
1129 }
1130 #endif
1131 if (tp == 0) {
1132 TCP_FIELDS_TO_HOST(th);
1133 goto dropwithreset_ratelim;
1134 }
1135 if (tp->t_state == TCPS_CLOSED)
1136 goto drop;
1137
1138 /*
1139 * Checksum extended TCP header and data.
1140 */
1141 switch (af) {
1142 #ifdef INET
1143 case AF_INET:
1144 switch (m->m_pkthdr.csum_flags &
1145 ((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
1146 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
1147 case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
1148 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
1149 goto badcsum;
1150
1151 case M_CSUM_TCPv4|M_CSUM_DATA:
1152 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
1153 if ((m->m_pkthdr.csum_data ^ 0xffff) != 0)
1154 goto badcsum;
1155 break;
1156
1157 case M_CSUM_TCPv4:
1158 /* Checksum was okay. */
1159 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
1160 break;
1161
1162 default:
1163 /* Must compute it ourselves. */
1164 TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
1165 #ifndef PULLDOWN_TEST
1166 {
1167 struct ipovly *ipov;
1168 ipov = (struct ipovly *)ip;
1169 bzero(ipov->ih_x1, sizeof ipov->ih_x1);
1170 ipov->ih_len = htons(tlen + off);
1171
1172 if (in_cksum(m, len) != 0)
1173 goto badcsum;
1174 }
1175 #else
1176 if (in4_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0)
1177 goto badcsum;
1178 #endif /* ! PULLDOWN_TEST */
1179 break;
1180 }
1181 break;
1182 #endif /* INET4 */
1183
1184 #ifdef INET6
1185 case AF_INET6:
1186 if (in6_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0)
1187 goto badcsum;
1188 break;
1189 #endif /* INET6 */
1190 }
1191
1192 TCP_FIELDS_TO_HOST(th);
1193
1194 /* Unscale the window into a 32-bit value. */
1195 if ((tiflags & TH_SYN) == 0)
1196 tiwin = th->th_win << tp->snd_scale;
1197 else
1198 tiwin = th->th_win;
1199
1200 #ifdef INET6
1201 /* save packet options if user wanted */
1202 if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
1203 if (in6p->in6p_options) {
1204 m_freem(in6p->in6p_options);
1205 in6p->in6p_options = 0;
1206 }
1207 ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
1208 }
1209 #endif
1210
1211 if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
1212 union syn_cache_sa src;
1213 union syn_cache_sa dst;
1214
1215 bzero(&src, sizeof(src));
1216 bzero(&dst, sizeof(dst));
1217 switch (af) {
1218 #ifdef INET
1219 case AF_INET:
1220 src.sin.sin_len = sizeof(struct sockaddr_in);
1221 src.sin.sin_family = AF_INET;
1222 src.sin.sin_addr = ip->ip_src;
1223 src.sin.sin_port = th->th_sport;
1224
1225 dst.sin.sin_len = sizeof(struct sockaddr_in);
1226 dst.sin.sin_family = AF_INET;
1227 dst.sin.sin_addr = ip->ip_dst;
1228 dst.sin.sin_port = th->th_dport;
1229 break;
1230 #endif
1231 #ifdef INET6
1232 case AF_INET6:
1233 src.sin6.sin6_len = sizeof(struct sockaddr_in6);
1234 src.sin6.sin6_family = AF_INET6;
1235 src.sin6.sin6_addr = ip6->ip6_src;
1236 src.sin6.sin6_port = th->th_sport;
1237
1238 dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
1239 dst.sin6.sin6_family = AF_INET6;
1240 dst.sin6.sin6_addr = ip6->ip6_dst;
1241 dst.sin6.sin6_port = th->th_dport;
1242 break;
1243 #endif /* INET6 */
1244 default:
1245 goto badsyn; /*sanity*/
1246 }
1247
1248 if (so->so_options & SO_DEBUG) {
1249 #ifdef TCP_DEBUG
1250 ostate = tp->t_state;
1251 #endif
1252
1253 tcp_saveti = NULL;
1254 if (iphlen + sizeof(struct tcphdr) > MHLEN)
1255 goto nosave;
1256
1257 if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
1258 tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
1259 if (!tcp_saveti)
1260 goto nosave;
1261 } else {
1262 MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
1263 if (!tcp_saveti)
1264 goto nosave;
1265 tcp_saveti->m_len = iphlen;
1266 m_copydata(m, 0, iphlen,
1267 mtod(tcp_saveti, caddr_t));
1268 }
1269
1270 if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
1271 m_freem(tcp_saveti);
1272 tcp_saveti = NULL;
1273 } else {
1274 tcp_saveti->m_len += sizeof(struct tcphdr);
1275 bcopy(th, mtod(tcp_saveti, caddr_t) + iphlen,
1276 sizeof(struct tcphdr));
1277 }
1278 if (tcp_saveti) {
1279 /*
1280 * need to recover version # field, which was
1281 * overwritten on ip_cksum computation.
1282 */
1283 struct ip *sip;
1284 sip = mtod(tcp_saveti, struct ip *);
1285 switch (af) {
1286 #ifdef INET
1287 case AF_INET:
1288 sip->ip_v = 4;
1289 break;
1290 #endif
1291 #ifdef INET6
1292 case AF_INET6:
1293 sip->ip_v = 6;
1294 break;
1295 #endif
1296 }
1297 }
1298 nosave:;
1299 }
1300 if (so->so_options & SO_ACCEPTCONN) {
1301 if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1302 if (tiflags & TH_RST) {
1303 syn_cache_reset(&src.sa, &dst.sa, th);
1304 } else if ((tiflags & (TH_ACK|TH_SYN)) ==
1305 (TH_ACK|TH_SYN)) {
1306 /*
1307 * Received a SYN,ACK. This should
1308 * never happen while we are in
1309 * LISTEN. Send an RST.
1310 */
1311 goto badsyn;
1312 } else if (tiflags & TH_ACK) {
1313 so = syn_cache_get(&src.sa, &dst.sa,
1314 th, toff, tlen, so, m);
1315 if (so == NULL) {
1316 /*
1317 * We don't have a SYN for
1318 * this ACK; send an RST.
1319 */
1320 goto badsyn;
1321 } else if (so ==
1322 (struct socket *)(-1)) {
1323 /*
1324 * We were unable to create
1325 * the connection. If the
1326 * 3-way handshake was
1327 * completed, and RST has
1328 * been sent to the peer.
1329 * Since the mbuf might be
1330 * in use for the reply,
1331 * do not free it.
1332 */
1333 m = NULL;
1334 } else {
1335 /*
1336 * We have created a
1337 * full-blown connection.
1338 */
1339 tp = NULL;
1340 inp = NULL;
1341 #ifdef INET6
1342 in6p = NULL;
1343 #endif
1344 switch (so->so_proto->pr_domain->dom_family) {
1345 #ifdef INET
1346 case AF_INET:
1347 inp = sotoinpcb(so);
1348 tp = intotcpcb(inp);
1349 break;
1350 #endif
1351 #ifdef INET6
1352 case AF_INET6:
1353 in6p = sotoin6pcb(so);
1354 tp = in6totcpcb(in6p);
1355 break;
1356 #endif
1357 }
1358 if (tp == NULL)
1359 goto badsyn; /*XXX*/
1360 tiwin <<= tp->snd_scale;
1361 goto after_listen;
1362 }
1363 } else {
1364 /*
1365 * None of RST, SYN or ACK was set.
1366 * This is an invalid packet for a
1367 * TCB in LISTEN state. Send a RST.
1368 */
1369 goto badsyn;
1370 }
1371 } else {
1372 /*
1373 * Received a SYN.
1374 */
1375
1376 #ifdef INET6
1377 /*
1378 * If deprecated address is forbidden, we do
1379 * not accept SYN to deprecated interface
1380 * address to prevent any new inbound
1381 * connection from getting established.
1382 * When we do not accept SYN, we send a TCP
1383 * RST, with deprecated source address (instead
1384 * of dropping it). We compromise it as it is
1385 * much better for peer to send a RST, and
1386 * RST will be the final packet for the
1387 * exchange.
1388 *
1389 * If we do not forbid deprecated addresses, we
1390 * accept the SYN packet. RFC2462 does not
1391 * suggest dropping SYN in this case.
1392 * If we decipher RFC2462 5.5.4, it says like
1393 * this:
1394 * 1. use of deprecated addr with existing
1395 * communication is okay - "SHOULD continue
1396 * to be used"
1397 * 2. use of it with new communication:
1398 * (2a) "SHOULD NOT be used if alternate
1399 * address with sufficient scope is
1400 * available"
1401 * (2b) nothing mentioned otherwise.
1402 * Here we fall into (2b) case as we have no
1403 * choice in our source address selection - we
1404 * must obey the peer.
1405 *
1406 * The wording in RFC2462 is confusing, and
1407 * there are multiple description text for
1408 * deprecated address handling - worse, they
1409 * are not exactly the same. I believe 5.5.4
1410 * is the best one, so we follow 5.5.4.
1411 */
1412 if (af == AF_INET6 && !ip6_use_deprecated) {
1413 struct in6_ifaddr *ia6;
1414 if ((ia6 = in6ifa_ifpwithaddr(m->m_pkthdr.rcvif,
1415 &ip6->ip6_dst)) &&
1416 (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1417 tp = NULL;
1418 goto dropwithreset;
1419 }
1420 }
1421 #endif
1422
1423 /*
1424 * LISTEN socket received a SYN
1425 * from itself? This can't possibly
1426 * be valid; drop the packet.
1427 */
1428 if (th->th_sport == th->th_dport) {
1429 int i;
1430
1431 switch (af) {
1432 #ifdef INET
1433 case AF_INET:
1434 i = in_hosteq(ip->ip_src, ip->ip_dst);
1435 break;
1436 #endif
1437 #ifdef INET6
1438 case AF_INET6:
1439 i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
1440 break;
1441 #endif
1442 default:
1443 i = 1;
1444 }
1445 if (i) {
1446 tcpstat.tcps_badsyn++;
1447 goto drop;
1448 }
1449 }
1450
1451 /*
1452 * SYN looks ok; create compressed TCP
1453 * state for it.
1454 */
1455 if (so->so_qlen <= so->so_qlimit &&
1456 syn_cache_add(&src.sa, &dst.sa, th, tlen,
1457 so, m, optp, optlen, &opti))
1458 m = NULL;
1459 }
1460 goto drop;
1461 }
1462 }
1463
1464 after_listen:
1465 #ifdef DIAGNOSTIC
1466 /*
1467 * Should not happen now that all embryonic connections
1468 * are handled with compressed state.
1469 */
1470 if (tp->t_state == TCPS_LISTEN)
1471 panic("tcp_input: TCPS_LISTEN");
1472 #endif
1473
1474 /*
1475 * Segment received on connection.
1476 * Reset idle time and keep-alive timer.
1477 */
1478 tp->t_rcvtime = tcp_now;
1479 if (TCPS_HAVEESTABLISHED(tp->t_state))
1480 TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1481
1482 /*
1483 * Process options.
1484 */
1485 if (optp)
1486 tcp_dooptions(tp, optp, optlen, th, &opti);
1487
1488 /*
1489 * Header prediction: check for the two common cases
1490 * of a uni-directional data xfer. If the packet has
1491 * no control flags, is in-sequence, the window didn't
1492 * change and we're not retransmitting, it's a
1493 * candidate. If the length is zero and the ack moved
1494 * forward, we're the sender side of the xfer. Just
1495 * free the data acked & wake any higher level process
1496 * that was blocked waiting for space. If the length
1497 * is non-zero and the ack didn't move, we're the
1498 * receiver side. If we're getting packets in-order
1499 * (the reassembly queue is empty), add the data to
1500 * the socket buffer and note that we need a delayed ack.
1501 */
1502 if (tp->t_state == TCPS_ESTABLISHED &&
1503 (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1504 (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
1505 th->th_seq == tp->rcv_nxt &&
1506 tiwin && tiwin == tp->snd_wnd &&
1507 tp->snd_nxt == tp->snd_max) {
1508
1509 /*
1510 * If last ACK falls within this segment's sequence numbers,
1511 * record the timestamp.
1512 */
1513 if (opti.ts_present &&
1514 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1515 SEQ_LT(tp->last_ack_sent, th->th_seq + tlen)) {
1516 tp->ts_recent_age = TCP_TIMESTAMP(tp);
1517 tp->ts_recent = opti.ts_val;
1518 }
1519
1520 if (tlen == 0) {
1521 if (SEQ_GT(th->th_ack, tp->snd_una) &&
1522 SEQ_LEQ(th->th_ack, tp->snd_max) &&
1523 tp->snd_cwnd >= tp->snd_wnd &&
1524 tp->t_dupacks < tcprexmtthresh) {
1525 /*
1526 * this is a pure ack for outstanding data.
1527 */
1528 ++tcpstat.tcps_predack;
1529 if (opti.ts_present && opti.ts_ecr)
1530 tcp_xmit_timer(tp,
1531 TCP_TIMESTAMP(tp) - opti.ts_ecr + 1);
1532 else if (tp->t_rtttime &&
1533 SEQ_GT(th->th_ack, tp->t_rtseq))
1534 tcp_xmit_timer(tp,
1535 tcp_now - tp->t_rtttime);
1536 acked = th->th_ack - tp->snd_una;
1537 tcpstat.tcps_rcvackpack++;
1538 tcpstat.tcps_rcvackbyte += acked;
1539 ND6_HINT(tp);
1540 sbdrop(&so->so_snd, acked);
1541 /*
1542 * We want snd_recover to track snd_una to
1543 * avoid sequence wraparound problems for
1544 * very large transfers.
1545 */
1546 tp->snd_una = tp->snd_recover = th->th_ack;
1547 m_freem(m);
1548
1549 /*
1550 * If all outstanding data are acked, stop
1551 * retransmit timer, otherwise restart timer
1552 * using current (possibly backed-off) value.
1553 * If process is waiting for space,
1554 * wakeup/selwakeup/signal. If data
1555 * are ready to send, let tcp_output
1556 * decide between more output or persist.
1557 */
1558 if (tp->snd_una == tp->snd_max)
1559 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1560 else if (TCP_TIMER_ISARMED(tp,
1561 TCPT_PERSIST) == 0)
1562 TCP_TIMER_ARM(tp, TCPT_REXMT,
1563 tp->t_rxtcur);
1564
1565 sowwakeup(so);
1566 if (so->so_snd.sb_cc)
1567 (void) tcp_output(tp);
1568 if (tcp_saveti)
1569 m_freem(tcp_saveti);
1570 return;
1571 }
1572 } else if (th->th_ack == tp->snd_una &&
1573 TAILQ_FIRST(&tp->segq) == NULL &&
1574 tlen <= sbspace(&so->so_rcv)) {
1575 /*
1576 * this is a pure, in-sequence data packet
1577 * with nothing on the reassembly queue and
1578 * we have enough buffer space to take it.
1579 */
1580 ++tcpstat.tcps_preddat;
1581 tp->rcv_nxt += tlen;
1582 tcpstat.tcps_rcvpack++;
1583 tcpstat.tcps_rcvbyte += tlen;
1584 ND6_HINT(tp);
1585 /*
1586 * Drop TCP, IP headers and TCP options then add data
1587 * to socket buffer.
1588 */
1589 if (so->so_state & SS_CANTRCVMORE)
1590 m_freem(m);
1591 else {
1592 m_adj(m, toff + off);
1593 sbappendstream(&so->so_rcv, m);
1594 }
1595 sorwakeup(so);
1596 TCP_SETUP_ACK(tp, th);
1597 if (tp->t_flags & TF_ACKNOW)
1598 (void) tcp_output(tp);
1599 if (tcp_saveti)
1600 m_freem(tcp_saveti);
1601 return;
1602 }
1603 }
1604
1605 /*
1606 * Compute mbuf offset to TCP data segment.
1607 */
1608 hdroptlen = toff + off;
1609
1610 /*
1611 * Calculate amount of space in receive window,
1612 * and then do TCP input processing.
1613 * Receive window is amount of space in rcv queue,
1614 * but not less than advertised window.
1615 */
1616 { int win;
1617
1618 win = sbspace(&so->so_rcv);
1619 if (win < 0)
1620 win = 0;
1621 tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1622 }
1623
1624 switch (tp->t_state) {
1625 case TCPS_LISTEN:
1626 /*
1627 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
1628 */
1629 if (m->m_flags & (M_BCAST|M_MCAST))
1630 goto drop;
1631 switch (af) {
1632 #ifdef INET6
1633 case AF_INET6:
1634 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
1635 goto drop;
1636 break;
1637 #endif /* INET6 */
1638 case AF_INET:
1639 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
1640 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
1641 goto drop;
1642 break;
1643 }
1644 break;
1645
1646 /*
1647 * If the state is SYN_SENT:
1648 * if seg contains an ACK, but not for our SYN, drop the input.
1649 * if seg contains a RST, then drop the connection.
1650 * if seg does not contain SYN, then drop it.
1651 * Otherwise this is an acceptable SYN segment
1652 * initialize tp->rcv_nxt and tp->irs
1653 * if seg contains ack then advance tp->snd_una
1654 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1655 * arrange for segment to be acked (eventually)
1656 * continue processing rest of data/controls, beginning with URG
1657 */
1658 case TCPS_SYN_SENT:
1659 if ((tiflags & TH_ACK) &&
1660 (SEQ_LEQ(th->th_ack, tp->iss) ||
1661 SEQ_GT(th->th_ack, tp->snd_max)))
1662 goto dropwithreset;
1663 if (tiflags & TH_RST) {
1664 if (tiflags & TH_ACK)
1665 tp = tcp_drop(tp, ECONNREFUSED);
1666 goto drop;
1667 }
1668 if ((tiflags & TH_SYN) == 0)
1669 goto drop;
1670 if (tiflags & TH_ACK) {
1671 tp->snd_una = tp->snd_recover = th->th_ack;
1672 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1673 tp->snd_nxt = tp->snd_una;
1674 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1675 }
1676 tp->irs = th->th_seq;
1677 tcp_rcvseqinit(tp);
1678 tp->t_flags |= TF_ACKNOW;
1679 tcp_mss_from_peer(tp, opti.maxseg);
1680
1681 /*
1682 * Initialize the initial congestion window. If we
1683 * had to retransmit the SYN, we must initialize cwnd
1684 * to 1 segment (i.e. the Loss Window).
1685 */
1686 if (tp->t_flags & TF_SYN_REXMT)
1687 tp->snd_cwnd = tp->t_peermss;
1688 else
1689 tp->snd_cwnd = TCP_INITIAL_WINDOW(tcp_init_win,
1690 tp->t_peermss);
1691
1692 tcp_rmx_rtt(tp);
1693 if (tiflags & TH_ACK) {
1694 tcpstat.tcps_connects++;
1695 soisconnected(so);
1696 tcp_established(tp);
1697 /* Do window scaling on this connection? */
1698 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1699 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1700 tp->snd_scale = tp->requested_s_scale;
1701 tp->rcv_scale = tp->request_r_scale;
1702 }
1703 TCP_REASS_LOCK(tp);
1704 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1705 TCP_REASS_UNLOCK(tp);
1706 /*
1707 * if we didn't have to retransmit the SYN,
1708 * use its rtt as our initial srtt & rtt var.
1709 */
1710 if (tp->t_rtttime)
1711 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
1712 } else
1713 tp->t_state = TCPS_SYN_RECEIVED;
1714
1715 /*
1716 * Advance th->th_seq to correspond to first data byte.
1717 * If data, trim to stay within window,
1718 * dropping FIN if necessary.
1719 */
1720 th->th_seq++;
1721 if (tlen > tp->rcv_wnd) {
1722 todrop = tlen - tp->rcv_wnd;
1723 m_adj(m, -todrop);
1724 tlen = tp->rcv_wnd;
1725 tiflags &= ~TH_FIN;
1726 tcpstat.tcps_rcvpackafterwin++;
1727 tcpstat.tcps_rcvbyteafterwin += todrop;
1728 }
1729 tp->snd_wl1 = th->th_seq - 1;
1730 tp->rcv_up = th->th_seq;
1731 goto step6;
1732
1733 /*
1734 * If the state is SYN_RECEIVED:
1735 * If seg contains an ACK, but not for our SYN, drop the input
1736 * and generate an RST. See page 36, rfc793
1737 */
1738 case TCPS_SYN_RECEIVED:
1739 if ((tiflags & TH_ACK) &&
1740 (SEQ_LEQ(th->th_ack, tp->iss) ||
1741 SEQ_GT(th->th_ack, tp->snd_max)))
1742 goto dropwithreset;
1743 break;
1744 }
1745
1746 /*
1747 * States other than LISTEN or SYN_SENT.
1748 * First check timestamp, if present.
1749 * Then check that at least some bytes of segment are within
1750 * receive window. If segment begins before rcv_nxt,
1751 * drop leading data (and SYN); if nothing left, just ack.
1752 *
1753 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1754 * and it's less than ts_recent, drop it.
1755 */
1756 if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
1757 TSTMP_LT(opti.ts_val, tp->ts_recent)) {
1758
1759 /* Check to see if ts_recent is over 24 days old. */
1760 if ((int)(TCP_TIMESTAMP(tp) - tp->ts_recent_age) >
1761 TCP_PAWS_IDLE) {
1762 /*
1763 * Invalidate ts_recent. If this segment updates
1764 * ts_recent, the age will be reset later and ts_recent
1765 * will get a valid value. If it does not, setting
1766 * ts_recent to zero will at least satisfy the
1767 * requirement that zero be placed in the timestamp
1768 * echo reply when ts_recent isn't valid. The
1769 * age isn't reset until we get a valid ts_recent
1770 * because we don't want out-of-order segments to be
1771 * dropped when ts_recent is old.
1772 */
1773 tp->ts_recent = 0;
1774 } else {
1775 tcpstat.tcps_rcvduppack++;
1776 tcpstat.tcps_rcvdupbyte += tlen;
1777 tcpstat.tcps_pawsdrop++;
1778 goto dropafterack;
1779 }
1780 }
1781
1782 todrop = tp->rcv_nxt - th->th_seq;
1783 if (todrop > 0) {
1784 if (tiflags & TH_SYN) {
1785 tiflags &= ~TH_SYN;
1786 th->th_seq++;
1787 if (th->th_urp > 1)
1788 th->th_urp--;
1789 else {
1790 tiflags &= ~TH_URG;
1791 th->th_urp = 0;
1792 }
1793 todrop--;
1794 }
1795 if (todrop > tlen ||
1796 (todrop == tlen && (tiflags & TH_FIN) == 0)) {
1797 /*
1798 * Any valid FIN must be to the left of the window.
1799 * At this point the FIN must be a duplicate or
1800 * out of sequence; drop it.
1801 */
1802 tiflags &= ~TH_FIN;
1803 /*
1804 * Send an ACK to resynchronize and drop any data.
1805 * But keep on processing for RST or ACK.
1806 */
1807 tp->t_flags |= TF_ACKNOW;
1808 todrop = tlen;
1809 tcpstat.tcps_rcvdupbyte += todrop;
1810 tcpstat.tcps_rcvduppack++;
1811 } else {
1812 tcpstat.tcps_rcvpartduppack++;
1813 tcpstat.tcps_rcvpartdupbyte += todrop;
1814 }
1815 hdroptlen += todrop; /*drop from head afterwards*/
1816 th->th_seq += todrop;
1817 tlen -= todrop;
1818 if (th->th_urp > todrop)
1819 th->th_urp -= todrop;
1820 else {
1821 tiflags &= ~TH_URG;
1822 th->th_urp = 0;
1823 }
1824 }
1825
1826 /*
1827 * If new data are received on a connection after the
1828 * user processes are gone, then RST the other end.
1829 */
1830 if ((so->so_state & SS_NOFDREF) &&
1831 tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1832 tp = tcp_close(tp);
1833 tcpstat.tcps_rcvafterclose++;
1834 goto dropwithreset;
1835 }
1836
1837 /*
1838 * If segment ends after window, drop trailing data
1839 * (and PUSH and FIN); if nothing left, just ACK.
1840 */
1841 todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
1842 if (todrop > 0) {
1843 tcpstat.tcps_rcvpackafterwin++;
1844 if (todrop >= tlen) {
1845 tcpstat.tcps_rcvbyteafterwin += tlen;
1846 /*
1847 * If a new connection request is received
1848 * while in TIME_WAIT, drop the old connection
1849 * and start over if the sequence numbers
1850 * are above the previous ones.
1851 *
1852 * NOTE: We will checksum the packet again, and
1853 * so we need to put the header fields back into
1854 * network order!
1855 * XXX This kind of sucks, but we don't expect
1856 * XXX this to happen very often, so maybe it
1857 * XXX doesn't matter so much.
1858 */
1859 if (tiflags & TH_SYN &&
1860 tp->t_state == TCPS_TIME_WAIT &&
1861 SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1862 iss = tcp_new_iss(tp, tp->snd_nxt);
1863 tp = tcp_close(tp);
1864 TCP_FIELDS_TO_NET(th);
1865 goto findpcb;
1866 }
1867 /*
1868 * If window is closed can only take segments at
1869 * window edge, and have to drop data and PUSH from
1870 * incoming segments. Continue processing, but
1871 * remember to ack. Otherwise, drop segment
1872 * and ack.
1873 */
1874 if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1875 tp->t_flags |= TF_ACKNOW;
1876 tcpstat.tcps_rcvwinprobe++;
1877 } else
1878 goto dropafterack;
1879 } else
1880 tcpstat.tcps_rcvbyteafterwin += todrop;
1881 m_adj(m, -todrop);
1882 tlen -= todrop;
1883 tiflags &= ~(TH_PUSH|TH_FIN);
1884 }
1885
1886 /*
1887 * If last ACK falls within this segment's sequence numbers,
1888 * and the timestamp is newer, record it.
1889 */
1890 if (opti.ts_present && TSTMP_GEQ(opti.ts_val, tp->ts_recent) &&
1891 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1892 SEQ_LT(tp->last_ack_sent, th->th_seq + tlen +
1893 ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
1894 tp->ts_recent_age = TCP_TIMESTAMP(tp);
1895 tp->ts_recent = opti.ts_val;
1896 }
1897
1898 /*
1899 * If the RST bit is set examine the state:
1900 * SYN_RECEIVED STATE:
1901 * If passive open, return to LISTEN state.
1902 * If active open, inform user that connection was refused.
1903 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
1904 * Inform user that connection was reset, and close tcb.
1905 * CLOSING, LAST_ACK, TIME_WAIT STATES
1906 * Close the tcb.
1907 */
1908 if (tiflags&TH_RST) switch (tp->t_state) {
1909
1910 case TCPS_SYN_RECEIVED:
1911 so->so_error = ECONNREFUSED;
1912 goto close;
1913
1914 case TCPS_ESTABLISHED:
1915 case TCPS_FIN_WAIT_1:
1916 case TCPS_FIN_WAIT_2:
1917 case TCPS_CLOSE_WAIT:
1918 so->so_error = ECONNRESET;
1919 close:
1920 tp->t_state = TCPS_CLOSED;
1921 tcpstat.tcps_drops++;
1922 tp = tcp_close(tp);
1923 goto drop;
1924
1925 case TCPS_CLOSING:
1926 case TCPS_LAST_ACK:
1927 case TCPS_TIME_WAIT:
1928 tp = tcp_close(tp);
1929 goto drop;
1930 }
1931
1932 /*
1933 * If a SYN is in the window, then this is an
1934 * error and we send an RST and drop the connection.
1935 */
1936 if (tiflags & TH_SYN) {
1937 tp = tcp_drop(tp, ECONNRESET);
1938 goto dropwithreset;
1939 }
1940
1941 /*
1942 * If the ACK bit is off we drop the segment and return.
1943 */
1944 if ((tiflags & TH_ACK) == 0) {
1945 if (tp->t_flags & TF_ACKNOW)
1946 goto dropafterack;
1947 else
1948 goto drop;
1949 }
1950
1951 /*
1952 * Ack processing.
1953 */
1954 switch (tp->t_state) {
1955
1956 /*
1957 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
1958 * ESTABLISHED state and continue processing, otherwise
1959 * send an RST.
1960 */
1961 case TCPS_SYN_RECEIVED:
1962 if (SEQ_GT(tp->snd_una, th->th_ack) ||
1963 SEQ_GT(th->th_ack, tp->snd_max))
1964 goto dropwithreset;
1965 tcpstat.tcps_connects++;
1966 soisconnected(so);
1967 tcp_established(tp);
1968 /* Do window scaling? */
1969 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1970 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1971 tp->snd_scale = tp->requested_s_scale;
1972 tp->rcv_scale = tp->request_r_scale;
1973 }
1974 TCP_REASS_LOCK(tp);
1975 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1976 TCP_REASS_UNLOCK(tp);
1977 tp->snd_wl1 = th->th_seq - 1;
1978 /* fall into ... */
1979
1980 /*
1981 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1982 * ACKs. If the ack is in the range
1983 * tp->snd_una < th->th_ack <= tp->snd_max
1984 * then advance tp->snd_una to th->th_ack and drop
1985 * data from the retransmission queue. If this ACK reflects
1986 * more up to date window information we update our window information.
1987 */
1988 case TCPS_ESTABLISHED:
1989 case TCPS_FIN_WAIT_1:
1990 case TCPS_FIN_WAIT_2:
1991 case TCPS_CLOSE_WAIT:
1992 case TCPS_CLOSING:
1993 case TCPS_LAST_ACK:
1994 case TCPS_TIME_WAIT:
1995
1996 if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
1997 if (tlen == 0 && tiwin == tp->snd_wnd) {
1998 tcpstat.tcps_rcvdupack++;
1999 /*
2000 * If we have outstanding data (other than
2001 * a window probe), this is a completely
2002 * duplicate ack (ie, window info didn't
2003 * change), the ack is the biggest we've
2004 * seen and we've seen exactly our rexmt
2005 * threshhold of them, assume a packet
2006 * has been dropped and retransmit it.
2007 * Kludge snd_nxt & the congestion
2008 * window so we send only this one
2009 * packet.
2010 *
2011 * We know we're losing at the current
2012 * window size so do congestion avoidance
2013 * (set ssthresh to half the current window
2014 * and pull our congestion window back to
2015 * the new ssthresh).
2016 *
2017 * Dup acks mean that packets have left the
2018 * network (they're now cached at the receiver)
2019 * so bump cwnd by the amount in the receiver
2020 * to keep a constant cwnd packets in the
2021 * network.
2022 */
2023 if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
2024 th->th_ack != tp->snd_una)
2025 tp->t_dupacks = 0;
2026 else if (++tp->t_dupacks == tcprexmtthresh) {
2027 tcp_seq onxt = tp->snd_nxt;
2028 u_int win =
2029 min(tp->snd_wnd, tp->snd_cwnd) /
2030 2 / tp->t_segsz;
2031 if (tcp_do_newreno && SEQ_LT(th->th_ack,
2032 tp->snd_recover)) {
2033 /*
2034 * False fast retransmit after
2035 * timeout. Do not cut window.
2036 */
2037 tp->snd_cwnd += tp->t_segsz;
2038 tp->t_dupacks = 0;
2039 (void) tcp_output(tp);
2040 goto drop;
2041 }
2042
2043 if (win < 2)
2044 win = 2;
2045 tp->snd_ssthresh = win * tp->t_segsz;
2046 tp->snd_recover = tp->snd_max;
2047 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2048 tp->t_rtttime = 0;
2049 tp->snd_nxt = th->th_ack;
2050 tp->snd_cwnd = tp->t_segsz;
2051 (void) tcp_output(tp);
2052 tp->snd_cwnd = tp->snd_ssthresh +
2053 tp->t_segsz * tp->t_dupacks;
2054 if (SEQ_GT(onxt, tp->snd_nxt))
2055 tp->snd_nxt = onxt;
2056 goto drop;
2057 } else if (tp->t_dupacks > tcprexmtthresh) {
2058 tp->snd_cwnd += tp->t_segsz;
2059 (void) tcp_output(tp);
2060 goto drop;
2061 }
2062 } else
2063 tp->t_dupacks = 0;
2064 break;
2065 }
2066 /*
2067 * If the congestion window was inflated to account
2068 * for the other side's cached packets, retract it.
2069 */
2070 if (tcp_do_newreno == 0) {
2071 if (tp->t_dupacks >= tcprexmtthresh &&
2072 tp->snd_cwnd > tp->snd_ssthresh)
2073 tp->snd_cwnd = tp->snd_ssthresh;
2074 tp->t_dupacks = 0;
2075 } else if (tp->t_dupacks >= tcprexmtthresh &&
2076 tcp_newreno(tp, th) == 0) {
2077 tp->snd_cwnd = tp->snd_ssthresh;
2078 /*
2079 * Window inflation should have left us with approx.
2080 * snd_ssthresh outstanding data. But in case we
2081 * would be inclined to send a burst, better to do
2082 * it via the slow start mechanism.
2083 */
2084 if (SEQ_SUB(tp->snd_max, th->th_ack) < tp->snd_ssthresh)
2085 tp->snd_cwnd = SEQ_SUB(tp->snd_max, th->th_ack)
2086 + tp->t_segsz;
2087 tp->t_dupacks = 0;
2088 }
2089 if (SEQ_GT(th->th_ack, tp->snd_max)) {
2090 tcpstat.tcps_rcvacktoomuch++;
2091 goto dropafterack;
2092 }
2093 acked = th->th_ack - tp->snd_una;
2094 tcpstat.tcps_rcvackpack++;
2095 tcpstat.tcps_rcvackbyte += acked;
2096
2097 /*
2098 * If we have a timestamp reply, update smoothed
2099 * round trip time. If no timestamp is present but
2100 * transmit timer is running and timed sequence
2101 * number was acked, update smoothed round trip time.
2102 * Since we now have an rtt measurement, cancel the
2103 * timer backoff (cf., Phil Karn's retransmit alg.).
2104 * Recompute the initial retransmit timer.
2105 */
2106 if (opti.ts_present && opti.ts_ecr)
2107 tcp_xmit_timer(tp, TCP_TIMESTAMP(tp) - opti.ts_ecr + 1);
2108 else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2109 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2110
2111 /*
2112 * If all outstanding data is acked, stop retransmit
2113 * timer and remember to restart (more output or persist).
2114 * If there is more data to be acked, restart retransmit
2115 * timer, using current (possibly backed-off) value.
2116 */
2117 if (th->th_ack == tp->snd_max) {
2118 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2119 needoutput = 1;
2120 } else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
2121 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
2122 /*
2123 * When new data is acked, open the congestion window.
2124 * If the window gives us less than ssthresh packets
2125 * in flight, open exponentially (segsz per packet).
2126 * Otherwise open linearly: segsz per window
2127 * (segsz^2 / cwnd per packet), plus a constant
2128 * fraction of a packet (segsz/8) to help larger windows
2129 * open quickly enough.
2130 */
2131 {
2132 u_int cw = tp->snd_cwnd;
2133 u_int incr = tp->t_segsz;
2134
2135 if (cw > tp->snd_ssthresh)
2136 incr = incr * incr / cw;
2137 if (tcp_do_newreno == 0 || SEQ_GEQ(th->th_ack, tp->snd_recover))
2138 tp->snd_cwnd = min(cw + incr,
2139 TCP_MAXWIN << tp->snd_scale);
2140 }
2141 ND6_HINT(tp);
2142 if (acked > so->so_snd.sb_cc) {
2143 tp->snd_wnd -= so->so_snd.sb_cc;
2144 sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
2145 ourfinisacked = 1;
2146 } else {
2147 sbdrop(&so->so_snd, acked);
2148 tp->snd_wnd -= acked;
2149 ourfinisacked = 0;
2150 }
2151 sowwakeup(so);
2152 /*
2153 * We want snd_recover to track snd_una to
2154 * avoid sequence wraparound problems for
2155 * very large transfers.
2156 */
2157 tp->snd_una = tp->snd_recover = th->th_ack;
2158 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2159 tp->snd_nxt = tp->snd_una;
2160
2161 switch (tp->t_state) {
2162
2163 /*
2164 * In FIN_WAIT_1 STATE in addition to the processing
2165 * for the ESTABLISHED state if our FIN is now acknowledged
2166 * then enter FIN_WAIT_2.
2167 */
2168 case TCPS_FIN_WAIT_1:
2169 if (ourfinisacked) {
2170 /*
2171 * If we can't receive any more
2172 * data, then closing user can proceed.
2173 * Starting the timer is contrary to the
2174 * specification, but if we don't get a FIN
2175 * we'll hang forever.
2176 */
2177 if (so->so_state & SS_CANTRCVMORE) {
2178 soisdisconnected(so);
2179 if (tcp_maxidle > 0)
2180 TCP_TIMER_ARM(tp, TCPT_2MSL,
2181 tcp_maxidle);
2182 }
2183 tp->t_state = TCPS_FIN_WAIT_2;
2184 }
2185 break;
2186
2187 /*
2188 * In CLOSING STATE in addition to the processing for
2189 * the ESTABLISHED state if the ACK acknowledges our FIN
2190 * then enter the TIME-WAIT state, otherwise ignore
2191 * the segment.
2192 */
2193 case TCPS_CLOSING:
2194 if (ourfinisacked) {
2195 tp->t_state = TCPS_TIME_WAIT;
2196 tcp_canceltimers(tp);
2197 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2198 soisdisconnected(so);
2199 }
2200 break;
2201
2202 /*
2203 * In LAST_ACK, we may still be waiting for data to drain
2204 * and/or to be acked, as well as for the ack of our FIN.
2205 * If our FIN is now acknowledged, delete the TCB,
2206 * enter the closed state and return.
2207 */
2208 case TCPS_LAST_ACK:
2209 if (ourfinisacked) {
2210 tp = tcp_close(tp);
2211 goto drop;
2212 }
2213 break;
2214
2215 /*
2216 * In TIME_WAIT state the only thing that should arrive
2217 * is a retransmission of the remote FIN. Acknowledge
2218 * it and restart the finack timer.
2219 */
2220 case TCPS_TIME_WAIT:
2221 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2222 goto dropafterack;
2223 }
2224 }
2225
2226 step6:
2227 /*
2228 * Update window information.
2229 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2230 */
2231 if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2232 (tp->snd_wl1 == th->th_seq && SEQ_LT(tp->snd_wl2, th->th_ack)) ||
2233 (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))) {
2234 /* keep track of pure window updates */
2235 if (tlen == 0 &&
2236 tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2237 tcpstat.tcps_rcvwinupd++;
2238 tp->snd_wnd = tiwin;
2239 tp->snd_wl1 = th->th_seq;
2240 tp->snd_wl2 = th->th_ack;
2241 if (tp->snd_wnd > tp->max_sndwnd)
2242 tp->max_sndwnd = tp->snd_wnd;
2243 needoutput = 1;
2244 }
2245
2246 /*
2247 * Process segments with URG.
2248 */
2249 if ((tiflags & TH_URG) && th->th_urp &&
2250 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2251 /*
2252 * This is a kludge, but if we receive and accept
2253 * random urgent pointers, we'll crash in
2254 * soreceive. It's hard to imagine someone
2255 * actually wanting to send this much urgent data.
2256 */
2257 if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2258 th->th_urp = 0; /* XXX */
2259 tiflags &= ~TH_URG; /* XXX */
2260 goto dodata; /* XXX */
2261 }
2262 /*
2263 * If this segment advances the known urgent pointer,
2264 * then mark the data stream. This should not happen
2265 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2266 * a FIN has been received from the remote side.
2267 * In these states we ignore the URG.
2268 *
2269 * According to RFC961 (Assigned Protocols),
2270 * the urgent pointer points to the last octet
2271 * of urgent data. We continue, however,
2272 * to consider it to indicate the first octet
2273 * of data past the urgent section as the original
2274 * spec states (in one of two places).
2275 */
2276 if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2277 tp->rcv_up = th->th_seq + th->th_urp;
2278 so->so_oobmark = so->so_rcv.sb_cc +
2279 (tp->rcv_up - tp->rcv_nxt) - 1;
2280 if (so->so_oobmark == 0)
2281 so->so_state |= SS_RCVATMARK;
2282 sohasoutofband(so);
2283 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2284 }
2285 /*
2286 * Remove out of band data so doesn't get presented to user.
2287 * This can happen independent of advancing the URG pointer,
2288 * but if two URG's are pending at once, some out-of-band
2289 * data may creep in... ick.
2290 */
2291 if (th->th_urp <= (u_int16_t) tlen
2292 #ifdef SO_OOBINLINE
2293 && (so->so_options & SO_OOBINLINE) == 0
2294 #endif
2295 )
2296 tcp_pulloutofband(so, th, m, hdroptlen);
2297 } else
2298 /*
2299 * If no out of band data is expected,
2300 * pull receive urgent pointer along
2301 * with the receive window.
2302 */
2303 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2304 tp->rcv_up = tp->rcv_nxt;
2305 dodata: /* XXX */
2306
2307 /*
2308 * Process the segment text, merging it into the TCP sequencing queue,
2309 * and arranging for acknowledgement of receipt if necessary.
2310 * This process logically involves adjusting tp->rcv_wnd as data
2311 * is presented to the user (this happens in tcp_usrreq.c,
2312 * case PRU_RCVD). If a FIN has already been received on this
2313 * connection then we just ignore the text.
2314 */
2315 if ((tlen || (tiflags & TH_FIN)) &&
2316 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2317 /*
2318 * Insert segment ti into reassembly queue of tcp with
2319 * control block tp. Return TH_FIN if reassembly now includes
2320 * a segment with FIN. The macro form does the common case
2321 * inline (segment is the next to be received on an
2322 * established connection, and the queue is empty),
2323 * avoiding linkage into and removal from the queue and
2324 * repetition of various conversions.
2325 * Set DELACK for segments received in order, but ack
2326 * immediately when segments are out of order
2327 * (so fast retransmit can work).
2328 */
2329 /* NOTE: this was TCP_REASS() macro, but used only once */
2330 TCP_REASS_LOCK(tp);
2331 if (th->th_seq == tp->rcv_nxt &&
2332 TAILQ_FIRST(&tp->segq) == NULL &&
2333 tp->t_state == TCPS_ESTABLISHED) {
2334 TCP_SETUP_ACK(tp, th);
2335 tp->rcv_nxt += tlen;
2336 tiflags = th->th_flags & TH_FIN;
2337 tcpstat.tcps_rcvpack++;
2338 tcpstat.tcps_rcvbyte += tlen;
2339 ND6_HINT(tp);
2340 if (so->so_state & SS_CANTRCVMORE)
2341 m_freem(m);
2342 else {
2343 m_adj(m, hdroptlen);
2344 sbappendstream(&(so)->so_rcv, m);
2345 }
2346 sorwakeup(so);
2347 } else {
2348 m_adj(m, hdroptlen);
2349 tiflags = tcp_reass(tp, th, m, &tlen);
2350 tp->t_flags |= TF_ACKNOW;
2351 }
2352 TCP_REASS_UNLOCK(tp);
2353
2354 /*
2355 * Note the amount of data that peer has sent into
2356 * our window, in order to estimate the sender's
2357 * buffer size.
2358 */
2359 len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2360 } else {
2361 m_freem(m);
2362 m = NULL;
2363 tiflags &= ~TH_FIN;
2364 }
2365
2366 /*
2367 * If FIN is received ACK the FIN and let the user know
2368 * that the connection is closing. Ignore a FIN received before
2369 * the connection is fully established.
2370 */
2371 if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2372 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2373 socantrcvmore(so);
2374 tp->t_flags |= TF_ACKNOW;
2375 tp->rcv_nxt++;
2376 }
2377 switch (tp->t_state) {
2378
2379 /*
2380 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2381 */
2382 case TCPS_ESTABLISHED:
2383 tp->t_state = TCPS_CLOSE_WAIT;
2384 break;
2385
2386 /*
2387 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2388 * enter the CLOSING state.
2389 */
2390 case TCPS_FIN_WAIT_1:
2391 tp->t_state = TCPS_CLOSING;
2392 break;
2393
2394 /*
2395 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2396 * starting the time-wait timer, turning off the other
2397 * standard timers.
2398 */
2399 case TCPS_FIN_WAIT_2:
2400 tp->t_state = TCPS_TIME_WAIT;
2401 tcp_canceltimers(tp);
2402 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2403 soisdisconnected(so);
2404 break;
2405
2406 /*
2407 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2408 */
2409 case TCPS_TIME_WAIT:
2410 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2411 break;
2412 }
2413 }
2414 #ifdef TCP_DEBUG
2415 if (so->so_options & SO_DEBUG)
2416 tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
2417 #endif
2418
2419 /*
2420 * Return any desired output.
2421 */
2422 if (needoutput || (tp->t_flags & TF_ACKNOW))
2423 (void) tcp_output(tp);
2424 if (tcp_saveti)
2425 m_freem(tcp_saveti);
2426 return;
2427
2428 badsyn:
2429 /*
2430 * Received a bad SYN. Increment counters and dropwithreset.
2431 */
2432 tcpstat.tcps_badsyn++;
2433 tp = NULL;
2434 goto dropwithreset;
2435
2436 dropafterack:
2437 /*
2438 * Generate an ACK dropping incoming segment if it occupies
2439 * sequence space, where the ACK reflects our state.
2440 */
2441 if (tiflags & TH_RST)
2442 goto drop;
2443 m_freem(m);
2444 tp->t_flags |= TF_ACKNOW;
2445 (void) tcp_output(tp);
2446 if (tcp_saveti)
2447 m_freem(tcp_saveti);
2448 return;
2449
2450 dropwithreset_ratelim:
2451 /*
2452 * We may want to rate-limit RSTs in certain situations,
2453 * particularly if we are sending an RST in response to
2454 * an attempt to connect to or otherwise communicate with
2455 * a port for which we have no socket.
2456 */
2457 if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
2458 tcp_rst_ppslim) == 0) {
2459 /* XXX stat */
2460 goto drop;
2461 }
2462 /* ...fall into dropwithreset... */
2463
2464 dropwithreset:
2465 /*
2466 * Generate a RST, dropping incoming segment.
2467 * Make ACK acceptable to originator of segment.
2468 */
2469 if (tiflags & TH_RST)
2470 goto drop;
2471
2472 switch (af) {
2473 #ifdef INET6
2474 case AF_INET6:
2475 /* For following calls to tcp_respond */
2476 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
2477 goto drop;
2478 break;
2479 #endif /* INET6 */
2480 case AF_INET:
2481 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
2482 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2483 goto drop;
2484 }
2485
2486 {
2487 /*
2488 * need to recover version # field, which was overwritten on
2489 * ip_cksum computation.
2490 */
2491 struct ip *sip;
2492 sip = mtod(m, struct ip *);
2493 switch (af) {
2494 #ifdef INET
2495 case AF_INET:
2496 sip->ip_v = 4;
2497 break;
2498 #endif
2499 #ifdef INET6
2500 case AF_INET6:
2501 sip->ip_v = 6;
2502 break;
2503 #endif
2504 }
2505 }
2506 if (tiflags & TH_ACK)
2507 (void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
2508 else {
2509 if (tiflags & TH_SYN)
2510 tlen++;
2511 (void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
2512 TH_RST|TH_ACK);
2513 }
2514 if (tcp_saveti)
2515 m_freem(tcp_saveti);
2516 return;
2517
2518 badcsum:
2519 tcpstat.tcps_rcvbadsum++;
2520 drop:
2521 /*
2522 * Drop space held by incoming segment and return.
2523 */
2524 if (tp) {
2525 if (tp->t_inpcb)
2526 so = tp->t_inpcb->inp_socket;
2527 #ifdef INET6
2528 else if (tp->t_in6pcb)
2529 so = tp->t_in6pcb->in6p_socket;
2530 #endif
2531 else
2532 so = NULL;
2533 #ifdef TCP_DEBUG
2534 if (so && (so->so_options & SO_DEBUG) != 0)
2535 tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
2536 #endif
2537 }
2538 if (tcp_saveti)
2539 m_freem(tcp_saveti);
2540 m_freem(m);
2541 return;
2542 }
2543
2544 void
2545 tcp_dooptions(tp, cp, cnt, th, oi)
2546 struct tcpcb *tp;
2547 u_char *cp;
2548 int cnt;
2549 struct tcphdr *th;
2550 struct tcp_opt_info *oi;
2551 {
2552 u_int16_t mss;
2553 int opt, optlen;
2554
2555 for (; cnt > 0; cnt -= optlen, cp += optlen) {
2556 opt = cp[0];
2557 if (opt == TCPOPT_EOL)
2558 break;
2559 if (opt == TCPOPT_NOP)
2560 optlen = 1;
2561 else {
2562 if (cnt < 2)
2563 break;
2564 optlen = cp[1];
2565 if (optlen < 2 || optlen > cnt)
2566 break;
2567 }
2568 switch (opt) {
2569
2570 default:
2571 continue;
2572
2573 case TCPOPT_MAXSEG:
2574 if (optlen != TCPOLEN_MAXSEG)
2575 continue;
2576 if (!(th->th_flags & TH_SYN))
2577 continue;
2578 bcopy(cp + 2, &mss, sizeof(mss));
2579 oi->maxseg = ntohs(mss);
2580 break;
2581
2582 case TCPOPT_WINDOW:
2583 if (optlen != TCPOLEN_WINDOW)
2584 continue;
2585 if (!(th->th_flags & TH_SYN))
2586 continue;
2587 tp->t_flags |= TF_RCVD_SCALE;
2588 tp->requested_s_scale = cp[2];
2589 if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
2590 #if 0 /*XXX*/
2591 char *p;
2592
2593 if (ip)
2594 p = ntohl(ip->ip_src);
2595 #ifdef INET6
2596 else if (ip6)
2597 p = ip6_sprintf(&ip6->ip6_src);
2598 #endif
2599 else
2600 p = "(unknown)";
2601 log(LOG_ERR, "TCP: invalid wscale %d from %s, "
2602 "assuming %d\n",
2603 tp->requested_s_scale, p,
2604 TCP_MAX_WINSHIFT);
2605 #else
2606 log(LOG_ERR, "TCP: invalid wscale %d, "
2607 "assuming %d\n",
2608 tp->requested_s_scale,
2609 TCP_MAX_WINSHIFT);
2610 #endif
2611 tp->requested_s_scale = TCP_MAX_WINSHIFT;
2612 }
2613 break;
2614
2615 case TCPOPT_TIMESTAMP:
2616 if (optlen != TCPOLEN_TIMESTAMP)
2617 continue;
2618 oi->ts_present = 1;
2619 bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
2620 NTOHL(oi->ts_val);
2621 bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
2622 NTOHL(oi->ts_ecr);
2623
2624 /*
2625 * A timestamp received in a SYN makes
2626 * it ok to send timestamp requests and replies.
2627 */
2628 if (th->th_flags & TH_SYN) {
2629 tp->t_flags |= TF_RCVD_TSTMP;
2630 tp->ts_recent = oi->ts_val;
2631 tp->ts_recent_age = TCP_TIMESTAMP(tp);
2632 }
2633 break;
2634 case TCPOPT_SACK_PERMITTED:
2635 if (optlen != TCPOLEN_SACK_PERMITTED)
2636 continue;
2637 if (!(th->th_flags & TH_SYN))
2638 continue;
2639 tp->t_flags &= ~TF_CANT_TXSACK;
2640 break;
2641
2642 case TCPOPT_SACK:
2643 if (tp->t_flags & TF_IGNR_RXSACK)
2644 continue;
2645 if (optlen % 8 != 2 || optlen < 10)
2646 continue;
2647 cp += 2;
2648 optlen -= 2;
2649 for (; optlen > 0; cp -= 8, optlen -= 8) {
2650 tcp_seq lwe, rwe;
2651 bcopy((char *)cp, (char *) &lwe, sizeof(lwe));
2652 NTOHL(lwe);
2653 bcopy((char *)cp, (char *) &rwe, sizeof(rwe));
2654 NTOHL(rwe);
2655 /* tcp_mark_sacked(tp, lwe, rwe); */
2656 }
2657 break;
2658 }
2659 }
2660 }
2661
2662 /*
2663 * Pull out of band byte out of a segment so
2664 * it doesn't appear in the user's data queue.
2665 * It is still reflected in the segment length for
2666 * sequencing purposes.
2667 */
2668 void
2669 tcp_pulloutofband(so, th, m, off)
2670 struct socket *so;
2671 struct tcphdr *th;
2672 struct mbuf *m;
2673 int off;
2674 {
2675 int cnt = off + th->th_urp - 1;
2676
2677 while (cnt >= 0) {
2678 if (m->m_len > cnt) {
2679 char *cp = mtod(m, caddr_t) + cnt;
2680 struct tcpcb *tp = sototcpcb(so);
2681
2682 tp->t_iobc = *cp;
2683 tp->t_oobflags |= TCPOOB_HAVEDATA;
2684 bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
2685 m->m_len--;
2686 return;
2687 }
2688 cnt -= m->m_len;
2689 m = m->m_next;
2690 if (m == 0)
2691 break;
2692 }
2693 panic("tcp_pulloutofband");
2694 }
2695
2696 /*
2697 * Collect new round-trip time estimate
2698 * and update averages and current timeout.
2699 */
2700 void
2701 tcp_xmit_timer(tp, rtt)
2702 struct tcpcb *tp;
2703 uint32_t rtt;
2704 {
2705 int32_t delta;
2706
2707 tcpstat.tcps_rttupdated++;
2708 if (tp->t_srtt != 0) {
2709 /*
2710 * srtt is stored as fixed point with 3 bits after the
2711 * binary point (i.e., scaled by 8). The following magic
2712 * is equivalent to the smoothing algorithm in rfc793 with
2713 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2714 * point). Adjust rtt to origin 0.
2715 */
2716 delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
2717 if ((tp->t_srtt += delta) <= 0)
2718 tp->t_srtt = 1 << 2;
2719 /*
2720 * We accumulate a smoothed rtt variance (actually, a
2721 * smoothed mean difference), then set the retransmit
2722 * timer to smoothed rtt + 4 times the smoothed variance.
2723 * rttvar is stored as fixed point with 2 bits after the
2724 * binary point (scaled by 4). The following is
2725 * equivalent to rfc793 smoothing with an alpha of .75
2726 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces
2727 * rfc793's wired-in beta.
2728 */
2729 if (delta < 0)
2730 delta = -delta;
2731 delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
2732 if ((tp->t_rttvar += delta) <= 0)
2733 tp->t_rttvar = 1 << 2;
2734 } else {
2735 /*
2736 * No rtt measurement yet - use the unsmoothed rtt.
2737 * Set the variance to half the rtt (so our first
2738 * retransmit happens at 3*rtt).
2739 */
2740 tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
2741 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
2742 }
2743 tp->t_rtttime = 0;
2744 tp->t_rxtshift = 0;
2745
2746 /*
2747 * the retransmit should happen at rtt + 4 * rttvar.
2748 * Because of the way we do the smoothing, srtt and rttvar
2749 * will each average +1/2 tick of bias. When we compute
2750 * the retransmit timer, we want 1/2 tick of rounding and
2751 * 1 extra tick because of +-1/2 tick uncertainty in the
2752 * firing of the timer. The bias will give us exactly the
2753 * 1.5 tick we need. But, because the bias is
2754 * statistical, we have to test that we don't drop below
2755 * the minimum feasible timer (which is 2 ticks).
2756 */
2757 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
2758 max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
2759
2760 /*
2761 * We received an ack for a packet that wasn't retransmitted;
2762 * it is probably safe to discard any error indications we've
2763 * received recently. This isn't quite right, but close enough
2764 * for now (a route might have failed after we sent a segment,
2765 * and the return path might not be symmetrical).
2766 */
2767 tp->t_softerror = 0;
2768 }
2769
2770 /*
2771 * Checks for partial ack. If partial ack arrives, force the retransmission
2772 * of the next unacknowledged segment, do not clear tp->t_dupacks, and return
2773 * 1. By setting snd_nxt to th_ack, this forces retransmission timer to
2774 * be started again. If the ack advances at least to tp->snd_recover, return 0.
2775 */
2776 int
2777 tcp_newreno(tp, th)
2778 struct tcpcb *tp;
2779 struct tcphdr *th;
2780 {
2781 tcp_seq onxt = tp->snd_nxt;
2782 u_long ocwnd = tp->snd_cwnd;
2783
2784 if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2785 /*
2786 * snd_una has not yet been updated and the socket's send
2787 * buffer has not yet drained off the ACK'd data, so we
2788 * have to leave snd_una as it was to get the correct data
2789 * offset in tcp_output().
2790 */
2791 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2792 tp->t_rtttime = 0;
2793 tp->snd_nxt = th->th_ack;
2794 /*
2795 * Set snd_cwnd to one segment beyond ACK'd offset. snd_una
2796 * is not yet updated when we're called.
2797 */
2798 tp->snd_cwnd = tp->t_segsz + (th->th_ack - tp->snd_una);
2799 (void) tcp_output(tp);
2800 tp->snd_cwnd = ocwnd;
2801 if (SEQ_GT(onxt, tp->snd_nxt))
2802 tp->snd_nxt = onxt;
2803 /*
2804 * Partial window deflation. Relies on fact that tp->snd_una
2805 * not updated yet.
2806 */
2807 tp->snd_cwnd -= (th->th_ack - tp->snd_una - tp->t_segsz);
2808 return 1;
2809 }
2810 return 0;
2811 }
2812
2813
2814 /*
2815 * TCP compressed state engine. Currently used to hold compressed
2816 * state for SYN_RECEIVED.
2817 */
2818
2819 u_long syn_cache_count;
2820 u_int32_t syn_hash1, syn_hash2;
2821
2822 #define SYN_HASH(sa, sp, dp) \
2823 ((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
2824 ((u_int32_t)(sp)))^syn_hash2)))
2825 #ifndef INET6
2826 #define SYN_HASHALL(hash, src, dst) \
2827 do { \
2828 hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
2829 ((struct sockaddr_in *)(src))->sin_port, \
2830 ((struct sockaddr_in *)(dst))->sin_port); \
2831 } while (/*CONSTCOND*/ 0)
2832 #else
2833 #define SYN_HASH6(sa, sp, dp) \
2834 ((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
2835 (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
2836 & 0x7fffffff)
2837
2838 #define SYN_HASHALL(hash, src, dst) \
2839 do { \
2840 switch ((src)->sa_family) { \
2841 case AF_INET: \
2842 hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
2843 ((struct sockaddr_in *)(src))->sin_port, \
2844 ((struct sockaddr_in *)(dst))->sin_port); \
2845 break; \
2846 case AF_INET6: \
2847 hash = SYN_HASH6(&((struct sockaddr_in6 *)(src))->sin6_addr, \
2848 ((struct sockaddr_in6 *)(src))->sin6_port, \
2849 ((struct sockaddr_in6 *)(dst))->sin6_port); \
2850 break; \
2851 default: \
2852 hash = 0; \
2853 } \
2854 } while (/*CONSTCOND*/0)
2855 #endif /* INET6 */
2856
2857 #define SYN_CACHE_RM(sc) \
2858 do { \
2859 TAILQ_REMOVE(&tcp_syn_cache[(sc)->sc_bucketidx].sch_bucket, \
2860 (sc), sc_bucketq); \
2861 (sc)->sc_tp = NULL; \
2862 LIST_REMOVE((sc), sc_tpq); \
2863 tcp_syn_cache[(sc)->sc_bucketidx].sch_length--; \
2864 callout_stop(&(sc)->sc_timer); \
2865 syn_cache_count--; \
2866 } while (/*CONSTCOND*/0)
2867
2868 #define SYN_CACHE_PUT(sc) \
2869 do { \
2870 if ((sc)->sc_ipopts) \
2871 (void) m_free((sc)->sc_ipopts); \
2872 if ((sc)->sc_route4.ro_rt != NULL) \
2873 RTFREE((sc)->sc_route4.ro_rt); \
2874 pool_put(&syn_cache_pool, (sc)); \
2875 } while (/*CONSTCOND*/0)
2876
2877 struct pool syn_cache_pool;
2878
2879 /*
2880 * We don't estimate RTT with SYNs, so each packet starts with the default
2881 * RTT and each timer step has a fixed timeout value.
2882 */
2883 #define SYN_CACHE_TIMER_ARM(sc) \
2884 do { \
2885 TCPT_RANGESET((sc)->sc_rxtcur, \
2886 TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN, \
2887 TCPTV_REXMTMAX); \
2888 callout_reset(&(sc)->sc_timer, \
2889 (sc)->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, (sc)); \
2890 } while (/*CONSTCOND*/0)
2891
2892 #define SYN_CACHE_TIMESTAMP(sc) (tcp_now - (sc)->sc_timebase)
2893
2894 void
2895 syn_cache_init()
2896 {
2897 int i;
2898
2899 /* Initialize the hash buckets. */
2900 for (i = 0; i < tcp_syn_cache_size; i++)
2901 TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
2902
2903 /* Initialize the syn cache pool. */
2904 pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
2905 "synpl", NULL);
2906 }
2907
2908 void
2909 syn_cache_insert(sc, tp)
2910 struct syn_cache *sc;
2911 struct tcpcb *tp;
2912 {
2913 struct syn_cache_head *scp;
2914 struct syn_cache *sc2;
2915 int s;
2916
2917 /*
2918 * If there are no entries in the hash table, reinitialize
2919 * the hash secrets.
2920 */
2921 if (syn_cache_count == 0) {
2922 struct timeval tv;
2923 microtime(&tv);
2924 syn_hash1 = arc4random() ^ (u_long)≻
2925 syn_hash2 = arc4random() ^ tv.tv_usec;
2926 }
2927
2928 SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
2929 sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
2930 scp = &tcp_syn_cache[sc->sc_bucketidx];
2931
2932 /*
2933 * Make sure that we don't overflow the per-bucket
2934 * limit or the total cache size limit.
2935 */
2936 s = splsoftnet();
2937 if (scp->sch_length >= tcp_syn_bucket_limit) {
2938 tcpstat.tcps_sc_bucketoverflow++;
2939 /*
2940 * The bucket is full. Toss the oldest element in the
2941 * bucket. This will be the first entry in the bucket.
2942 */
2943 sc2 = TAILQ_FIRST(&scp->sch_bucket);
2944 #ifdef DIAGNOSTIC
2945 /*
2946 * This should never happen; we should always find an
2947 * entry in our bucket.
2948 */
2949 if (sc2 == NULL)
2950 panic("syn_cache_insert: bucketoverflow: impossible");
2951 #endif
2952 SYN_CACHE_RM(sc2);
2953 SYN_CACHE_PUT(sc2);
2954 } else if (syn_cache_count >= tcp_syn_cache_limit) {
2955 struct syn_cache_head *scp2, *sce;
2956
2957 tcpstat.tcps_sc_overflowed++;
2958 /*
2959 * The cache is full. Toss the oldest entry in the
2960 * first non-empty bucket we can find.
2961 *
2962 * XXX We would really like to toss the oldest
2963 * entry in the cache, but we hope that this
2964 * condition doesn't happen very often.
2965 */
2966 scp2 = scp;
2967 if (TAILQ_EMPTY(&scp2->sch_bucket)) {
2968 sce = &tcp_syn_cache[tcp_syn_cache_size];
2969 for (++scp2; scp2 != scp; scp2++) {
2970 if (scp2 >= sce)
2971 scp2 = &tcp_syn_cache[0];
2972 if (! TAILQ_EMPTY(&scp2->sch_bucket))
2973 break;
2974 }
2975 #ifdef DIAGNOSTIC
2976 /*
2977 * This should never happen; we should always find a
2978 * non-empty bucket.
2979 */
2980 if (scp2 == scp)
2981 panic("syn_cache_insert: cacheoverflow: "
2982 "impossible");
2983 #endif
2984 }
2985 sc2 = TAILQ_FIRST(&scp2->sch_bucket);
2986 SYN_CACHE_RM(sc2);
2987 SYN_CACHE_PUT(sc2);
2988 }
2989
2990 /*
2991 * Initialize the entry's timer.
2992 */
2993 sc->sc_rxttot = 0;
2994 sc->sc_rxtshift = 0;
2995 SYN_CACHE_TIMER_ARM(sc);
2996
2997 /* Link it from tcpcb entry */
2998 LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
2999
3000 /* Put it into the bucket. */
3001 TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
3002 scp->sch_length++;
3003 syn_cache_count++;
3004
3005 tcpstat.tcps_sc_added++;
3006 splx(s);
3007 }
3008
3009 /*
3010 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
3011 * If we have retransmitted an entry the maximum number of times, expire
3012 * that entry.
3013 */
3014 void
3015 syn_cache_timer(void *arg)
3016 {
3017 struct syn_cache *sc = arg;
3018 int s;
3019
3020 s = splsoftnet();
3021
3022 if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
3023 /* Drop it -- too many retransmissions. */
3024 goto dropit;
3025 }
3026
3027 /*
3028 * Compute the total amount of time this entry has
3029 * been on a queue. If this entry has been on longer
3030 * than the keep alive timer would allow, expire it.
3031 */
3032 sc->sc_rxttot += sc->sc_rxtcur;
3033 if (sc->sc_rxttot >= TCPTV_KEEP_INIT)
3034 goto dropit;
3035
3036 tcpstat.tcps_sc_retransmitted++;
3037 (void) syn_cache_respond(sc, NULL);
3038
3039 /* Advance the timer back-off. */
3040 sc->sc_rxtshift++;
3041 SYN_CACHE_TIMER_ARM(sc);
3042
3043 splx(s);
3044 return;
3045
3046 dropit:
3047 tcpstat.tcps_sc_timed_out++;
3048 SYN_CACHE_RM(sc);
3049 SYN_CACHE_PUT(sc);
3050 splx(s);
3051 }
3052
3053 /*
3054 * Remove syn cache created by the specified tcb entry,
3055 * because this does not make sense to keep them
3056 * (if there's no tcb entry, syn cache entry will never be used)
3057 */
3058 void
3059 syn_cache_cleanup(tp)
3060 struct tcpcb *tp;
3061 {
3062 struct syn_cache *sc, *nsc;
3063 int s;
3064
3065 s = splsoftnet();
3066
3067 for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
3068 nsc = LIST_NEXT(sc, sc_tpq);
3069
3070 #ifdef DIAGNOSTIC
3071 if (sc->sc_tp != tp)
3072 panic("invalid sc_tp in syn_cache_cleanup");
3073 #endif
3074 SYN_CACHE_RM(sc);
3075 SYN_CACHE_PUT(sc);
3076 }
3077 /* just for safety */
3078 LIST_INIT(&tp->t_sc);
3079
3080 splx(s);
3081 }
3082
3083 /*
3084 * Find an entry in the syn cache.
3085 */
3086 struct syn_cache *
3087 syn_cache_lookup(src, dst, headp)
3088 struct sockaddr *src;
3089 struct sockaddr *dst;
3090 struct syn_cache_head **headp;
3091 {
3092 struct syn_cache *sc;
3093 struct syn_cache_head *scp;
3094 u_int32_t hash;
3095 int s;
3096
3097 SYN_HASHALL(hash, src, dst);
3098
3099 scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
3100 *headp = scp;
3101 s = splsoftnet();
3102 for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
3103 sc = TAILQ_NEXT(sc, sc_bucketq)) {
3104 if (sc->sc_hash != hash)
3105 continue;
3106 if (!bcmp(&sc->sc_src, src, src->sa_len) &&
3107 !bcmp(&sc->sc_dst, dst, dst->sa_len)) {
3108 splx(s);
3109 return (sc);
3110 }
3111 }
3112 splx(s);
3113 return (NULL);
3114 }
3115
3116 /*
3117 * This function gets called when we receive an ACK for a
3118 * socket in the LISTEN state. We look up the connection
3119 * in the syn cache, and if its there, we pull it out of
3120 * the cache and turn it into a full-blown connection in
3121 * the SYN-RECEIVED state.
3122 *
3123 * The return values may not be immediately obvious, and their effects
3124 * can be subtle, so here they are:
3125 *
3126 * NULL SYN was not found in cache; caller should drop the
3127 * packet and send an RST.
3128 *
3129 * -1 We were unable to create the new connection, and are
3130 * aborting it. An ACK,RST is being sent to the peer
3131 * (unless we got screwey sequence numbners; see below),
3132 * because the 3-way handshake has been completed. Caller
3133 * should not free the mbuf, since we may be using it. If
3134 * we are not, we will free it.
3135 *
3136 * Otherwise, the return value is a pointer to the new socket
3137 * associated with the connection.
3138 */
3139 struct socket *
3140 syn_cache_get(src, dst, th, hlen, tlen, so, m)
3141 struct sockaddr *src;
3142 struct sockaddr *dst;
3143 struct tcphdr *th;
3144 unsigned int hlen, tlen;
3145 struct socket *so;
3146 struct mbuf *m;
3147 {
3148 struct syn_cache *sc;
3149 struct syn_cache_head *scp;
3150 struct inpcb *inp = NULL;
3151 #ifdef INET6
3152 struct in6pcb *in6p = NULL;
3153 #endif
3154 struct tcpcb *tp = 0;
3155 struct mbuf *am;
3156 int s;
3157 struct socket *oso;
3158
3159 s = splsoftnet();
3160 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3161 splx(s);
3162 return (NULL);
3163 }
3164
3165 /*
3166 * Verify the sequence and ack numbers. Try getting the correct
3167 * response again.
3168 */
3169 if ((th->th_ack != sc->sc_iss + 1) ||
3170 SEQ_LEQ(th->th_seq, sc->sc_irs) ||
3171 SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
3172 (void) syn_cache_respond(sc, m);
3173 splx(s);
3174 return ((struct socket *)(-1));
3175 }
3176
3177 /* Remove this cache entry */
3178 SYN_CACHE_RM(sc);
3179 splx(s);
3180
3181 /*
3182 * Ok, create the full blown connection, and set things up
3183 * as they would have been set up if we had created the
3184 * connection when the SYN arrived. If we can't create
3185 * the connection, abort it.
3186 */
3187 /*
3188 * inp still has the OLD in_pcb stuff, set the
3189 * v6-related flags on the new guy, too. This is
3190 * done particularly for the case where an AF_INET6
3191 * socket is bound only to a port, and a v4 connection
3192 * comes in on that port.
3193 * we also copy the flowinfo from the original pcb
3194 * to the new one.
3195 */
3196 oso = so;
3197 so = sonewconn(so, SS_ISCONNECTED);
3198 if (so == NULL)
3199 goto resetandabort;
3200
3201 switch (so->so_proto->pr_domain->dom_family) {
3202 #ifdef INET
3203 case AF_INET:
3204 inp = sotoinpcb(so);
3205 break;
3206 #endif
3207 #ifdef INET6
3208 case AF_INET6:
3209 in6p = sotoin6pcb(so);
3210 break;
3211 #endif
3212 }
3213 switch (src->sa_family) {
3214 #ifdef INET
3215 case AF_INET:
3216 if (inp) {
3217 inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
3218 inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
3219 inp->inp_options = ip_srcroute();
3220 in_pcbstate(inp, INP_BOUND);
3221 if (inp->inp_options == NULL) {
3222 inp->inp_options = sc->sc_ipopts;
3223 sc->sc_ipopts = NULL;
3224 }
3225 }
3226 #ifdef INET6
3227 else if (in6p) {
3228 /* IPv4 packet to AF_INET6 socket */
3229 bzero(&in6p->in6p_laddr, sizeof(in6p->in6p_laddr));
3230 in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
3231 bcopy(&((struct sockaddr_in *)dst)->sin_addr,
3232 &in6p->in6p_laddr.s6_addr32[3],
3233 sizeof(((struct sockaddr_in *)dst)->sin_addr));
3234 in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
3235 in6totcpcb(in6p)->t_family = AF_INET;
3236 }
3237 #endif
3238 break;
3239 #endif
3240 #ifdef INET6
3241 case AF_INET6:
3242 if (in6p) {
3243 in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
3244 in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
3245 #if 0
3246 in6p->in6p_flowinfo = ip6->ip6_flow & IPV6_FLOWINFO_MASK;
3247 /*inp->inp_options = ip6_srcroute();*/ /* soon. */
3248 #endif
3249 }
3250 break;
3251 #endif
3252 }
3253 #ifdef INET6
3254 if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
3255 struct in6pcb *oin6p = sotoin6pcb(oso);
3256 /* inherit socket options from the listening socket */
3257 in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
3258 if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
3259 m_freem(in6p->in6p_options);
3260 in6p->in6p_options = 0;
3261 }
3262 ip6_savecontrol(in6p, &in6p->in6p_options,
3263 mtod(m, struct ip6_hdr *), m);
3264 }
3265 #endif
3266
3267 #ifdef IPSEC
3268 /*
3269 * we make a copy of policy, instead of sharing the policy,
3270 * for better behavior in terms of SA lookup and dead SA removal.
3271 */
3272 if (inp) {
3273 /* copy old policy into new socket's */
3274 if (ipsec_copy_pcbpolicy(sotoinpcb(oso)->inp_sp, inp->inp_sp))
3275 printf("tcp_input: could not copy policy\n");
3276 }
3277 #ifdef INET6
3278 else if (in6p) {
3279 /* copy old policy into new socket's */
3280 if (ipsec_copy_pcbpolicy(sotoin6pcb(oso)->in6p_sp,
3281 in6p->in6p_sp))
3282 printf("tcp_input: could not copy policy\n");
3283 }
3284 #endif
3285 #endif
3286
3287 /*
3288 * Give the new socket our cached route reference.
3289 */
3290 if (inp)
3291 inp->inp_route = sc->sc_route4; /* struct assignment */
3292 #ifdef INET6
3293 else
3294 in6p->in6p_route = sc->sc_route6;
3295 #endif
3296 sc->sc_route4.ro_rt = NULL;
3297
3298 am = m_get(M_DONTWAIT, MT_SONAME); /* XXX */
3299 if (am == NULL)
3300 goto resetandabort;
3301 am->m_len = src->sa_len;
3302 bcopy(src, mtod(am, caddr_t), src->sa_len);
3303 if (inp) {
3304 if (in_pcbconnect(inp, am)) {
3305 (void) m_free(am);
3306 goto resetandabort;
3307 }
3308 }
3309 #ifdef INET6
3310 else if (in6p) {
3311 if (src->sa_family == AF_INET) {
3312 /* IPv4 packet to AF_INET6 socket */
3313 struct sockaddr_in6 *sin6;
3314 sin6 = mtod(am, struct sockaddr_in6 *);
3315 am->m_len = sizeof(*sin6);
3316 bzero(sin6, sizeof(*sin6));
3317 sin6->sin6_family = AF_INET6;
3318 sin6->sin6_len = sizeof(*sin6);
3319 sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port;
3320 sin6->sin6_addr.s6_addr16[5] = htons(0xffff);
3321 bcopy(&((struct sockaddr_in *)src)->sin_addr,
3322 &sin6->sin6_addr.s6_addr32[3],
3323 sizeof(sin6->sin6_addr.s6_addr32[3]));
3324 }
3325 if (in6_pcbconnect(in6p, am)) {
3326 (void) m_free(am);
3327 goto resetandabort;
3328 }
3329 }
3330 #endif
3331 else {
3332 (void) m_free(am);
3333 goto resetandabort;
3334 }
3335 (void) m_free(am);
3336
3337 if (inp)
3338 tp = intotcpcb(inp);
3339 #ifdef INET6
3340 else if (in6p)
3341 tp = in6totcpcb(in6p);
3342 #endif
3343 else
3344 tp = NULL;
3345 tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
3346 if (sc->sc_request_r_scale != 15) {
3347 tp->requested_s_scale = sc->sc_requested_s_scale;
3348 tp->request_r_scale = sc->sc_request_r_scale;
3349 tp->snd_scale = sc->sc_requested_s_scale;
3350 tp->rcv_scale = sc->sc_request_r_scale;
3351 tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
3352 }
3353 if (sc->sc_flags & SCF_TIMESTAMP)
3354 tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
3355 tp->ts_timebase = sc->sc_timebase;
3356
3357 tp->t_template = tcp_template(tp);
3358 if (tp->t_template == 0) {
3359 tp = tcp_drop(tp, ENOBUFS); /* destroys socket */
3360 so = NULL;
3361 m_freem(m);
3362 goto abort;
3363 }
3364
3365 tp->iss = sc->sc_iss;
3366 tp->irs = sc->sc_irs;
3367 tcp_sendseqinit(tp);
3368 tcp_rcvseqinit(tp);
3369 tp->t_state = TCPS_SYN_RECEIVED;
3370 TCP_TIMER_ARM(tp, TCPT_KEEP, TCPTV_KEEP_INIT);
3371 tcpstat.tcps_accepts++;
3372
3373 /* Initialize tp->t_ourmss before we deal with the peer's! */
3374 tp->t_ourmss = sc->sc_ourmaxseg;
3375 tcp_mss_from_peer(tp, sc->sc_peermaxseg);
3376
3377 /*
3378 * Initialize the initial congestion window. If we
3379 * had to retransmit the SYN,ACK, we must initialize cwnd
3380 * to 1 segment (i.e. the Loss Window).
3381 */
3382 if (sc->sc_rxtshift)
3383 tp->snd_cwnd = tp->t_peermss;
3384 else
3385 tp->snd_cwnd = TCP_INITIAL_WINDOW(tcp_init_win, tp->t_peermss);
3386
3387 tcp_rmx_rtt(tp);
3388 tp->snd_wl1 = sc->sc_irs;
3389 tp->rcv_up = sc->sc_irs + 1;
3390
3391 /*
3392 * This is what whould have happened in tcp_output() when
3393 * the SYN,ACK was sent.
3394 */
3395 tp->snd_up = tp->snd_una;
3396 tp->snd_max = tp->snd_nxt = tp->iss+1;
3397 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
3398 if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
3399 tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
3400 tp->last_ack_sent = tp->rcv_nxt;
3401
3402 tcpstat.tcps_sc_completed++;
3403 SYN_CACHE_PUT(sc);
3404 return (so);
3405
3406 resetandabort:
3407 (void) tcp_respond(NULL, m, m, th,
3408 th->th_seq + tlen, (tcp_seq)0, TH_RST|TH_ACK);
3409 abort:
3410 if (so != NULL)
3411 (void) soabort(so);
3412 SYN_CACHE_PUT(sc);
3413 tcpstat.tcps_sc_aborted++;
3414 return ((struct socket *)(-1));
3415 }
3416
3417 /*
3418 * This function is called when we get a RST for a
3419 * non-existent connection, so that we can see if the
3420 * connection is in the syn cache. If it is, zap it.
3421 */
3422
3423 void
3424 syn_cache_reset(src, dst, th)
3425 struct sockaddr *src;
3426 struct sockaddr *dst;
3427 struct tcphdr *th;
3428 {
3429 struct syn_cache *sc;
3430 struct syn_cache_head *scp;
3431 int s = splsoftnet();
3432
3433 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3434 splx(s);
3435 return;
3436 }
3437 if (SEQ_LT(th->th_seq, sc->sc_irs) ||
3438 SEQ_GT(th->th_seq, sc->sc_irs+1)) {
3439 splx(s);
3440 return;
3441 }
3442 SYN_CACHE_RM(sc);
3443 splx(s);
3444 tcpstat.tcps_sc_reset++;
3445 SYN_CACHE_PUT(sc);
3446 }
3447
3448 void
3449 syn_cache_unreach(src, dst, th)
3450 struct sockaddr *src;
3451 struct sockaddr *dst;
3452 struct tcphdr *th;
3453 {
3454 struct syn_cache *sc;
3455 struct syn_cache_head *scp;
3456 int s;
3457
3458 s = splsoftnet();
3459 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3460 splx(s);
3461 return;
3462 }
3463 /* If the sequence number != sc_iss, then it's a bogus ICMP msg */
3464 if (ntohl (th->th_seq) != sc->sc_iss) {
3465 splx(s);
3466 return;
3467 }
3468
3469 /*
3470 * If we've rertransmitted 3 times and this is our second error,
3471 * we remove the entry. Otherwise, we allow it to continue on.
3472 * This prevents us from incorrectly nuking an entry during a
3473 * spurious network outage.
3474 *
3475 * See tcp_notify().
3476 */
3477 if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
3478 sc->sc_flags |= SCF_UNREACH;
3479 splx(s);
3480 return;
3481 }
3482
3483 SYN_CACHE_RM(sc);
3484 splx(s);
3485 tcpstat.tcps_sc_unreach++;
3486 SYN_CACHE_PUT(sc);
3487 }
3488
3489 /*
3490 * Given a LISTEN socket and an inbound SYN request, add
3491 * this to the syn cache, and send back a segment:
3492 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
3493 * to the source.
3494 *
3495 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
3496 * Doing so would require that we hold onto the data and deliver it
3497 * to the application. However, if we are the target of a SYN-flood
3498 * DoS attack, an attacker could send data which would eventually
3499 * consume all available buffer space if it were ACKed. By not ACKing
3500 * the data, we avoid this DoS scenario.
3501 */
3502
3503 int
3504 syn_cache_add(src, dst, th, hlen, so, m, optp, optlen, oi)
3505 struct sockaddr *src;
3506 struct sockaddr *dst;
3507 struct tcphdr *th;
3508 unsigned int hlen;
3509 struct socket *so;
3510 struct mbuf *m;
3511 u_char *optp;
3512 int optlen;
3513 struct tcp_opt_info *oi;
3514 {
3515 struct tcpcb tb, *tp;
3516 long win;
3517 struct syn_cache *sc;
3518 struct syn_cache_head *scp;
3519 struct mbuf *ipopts;
3520
3521 tp = sototcpcb(so);
3522
3523 /*
3524 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
3525 *
3526 * Note this check is performed in tcp_input() very early on.
3527 */
3528
3529 /*
3530 * Initialize some local state.
3531 */
3532 win = sbspace(&so->so_rcv);
3533 if (win > TCP_MAXWIN)
3534 win = TCP_MAXWIN;
3535
3536 switch (src->sa_family) {
3537 #ifdef INET
3538 case AF_INET:
3539 /*
3540 * Remember the IP options, if any.
3541 */
3542 ipopts = ip_srcroute();
3543 break;
3544 #endif
3545 default:
3546 ipopts = NULL;
3547 }
3548
3549 if (optp) {
3550 tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
3551 tcp_dooptions(&tb, optp, optlen, th, oi);
3552 } else
3553 tb.t_flags = 0;
3554
3555 /*
3556 * See if we already have an entry for this connection.
3557 * If we do, resend the SYN,ACK. We do not count this
3558 * as a retransmission (XXX though maybe we should).
3559 */
3560 if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
3561 tcpstat.tcps_sc_dupesyn++;
3562 if (ipopts) {
3563 /*
3564 * If we were remembering a previous source route,
3565 * forget it and use the new one we've been given.
3566 */
3567 if (sc->sc_ipopts)
3568 (void) m_free(sc->sc_ipopts);
3569 sc->sc_ipopts = ipopts;
3570 }
3571 sc->sc_timestamp = tb.ts_recent;
3572 if (syn_cache_respond(sc, m) == 0) {
3573 tcpstat.tcps_sndacks++;
3574 tcpstat.tcps_sndtotal++;
3575 }
3576 return (1);
3577 }
3578
3579 sc = pool_get(&syn_cache_pool, PR_NOWAIT);
3580 if (sc == NULL) {
3581 if (ipopts)
3582 (void) m_free(ipopts);
3583 return (0);
3584 }
3585
3586 /*
3587 * Fill in the cache, and put the necessary IP and TCP
3588 * options into the reply.
3589 */
3590 bzero(sc, sizeof(struct syn_cache));
3591 callout_init(&sc->sc_timer);
3592 bcopy(src, &sc->sc_src, src->sa_len);
3593 bcopy(dst, &sc->sc_dst, dst->sa_len);
3594 sc->sc_flags = 0;
3595 sc->sc_ipopts = ipopts;
3596 sc->sc_irs = th->th_seq;
3597 switch (src->sa_family) {
3598 #ifdef INET
3599 case AF_INET:
3600 {
3601 struct sockaddr_in *srcin = (void *) src;
3602 struct sockaddr_in *dstin = (void *) dst;
3603
3604 sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
3605 &srcin->sin_addr, dstin->sin_port,
3606 srcin->sin_port, sizeof(dstin->sin_addr), 0);
3607 break;
3608 }
3609 #endif /* INET */
3610 #ifdef INET6
3611 case AF_INET6:
3612 {
3613 struct sockaddr_in6 *srcin6 = (void *) src;
3614 struct sockaddr_in6 *dstin6 = (void *) dst;
3615
3616 sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
3617 &srcin6->sin6_addr, dstin6->sin6_port,
3618 srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
3619 break;
3620 }
3621 #endif /* INET6 */
3622 }
3623 sc->sc_peermaxseg = oi->maxseg;
3624 sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
3625 m->m_pkthdr.rcvif : NULL,
3626 sc->sc_src.sa.sa_family);
3627 sc->sc_win = win;
3628 sc->sc_timebase = tcp_now; /* see tcp_newtcpcb() */
3629 sc->sc_timestamp = tb.ts_recent;
3630 if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
3631 (TF_REQ_TSTMP|TF_RCVD_TSTMP))
3632 sc->sc_flags |= SCF_TIMESTAMP;
3633 if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
3634 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
3635 sc->sc_requested_s_scale = tb.requested_s_scale;
3636 sc->sc_request_r_scale = 0;
3637 while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
3638 TCP_MAXWIN << sc->sc_request_r_scale <
3639 so->so_rcv.sb_hiwat)
3640 sc->sc_request_r_scale++;
3641 } else {
3642 sc->sc_requested_s_scale = 15;
3643 sc->sc_request_r_scale = 15;
3644 }
3645 sc->sc_tp = tp;
3646 if (syn_cache_respond(sc, m) == 0) {
3647 syn_cache_insert(sc, tp);
3648 tcpstat.tcps_sndacks++;
3649 tcpstat.tcps_sndtotal++;
3650 } else {
3651 SYN_CACHE_PUT(sc);
3652 tcpstat.tcps_sc_dropped++;
3653 }
3654 return (1);
3655 }
3656
3657 int
3658 syn_cache_respond(sc, m)
3659 struct syn_cache *sc;
3660 struct mbuf *m;
3661 {
3662 struct route *ro;
3663 u_int8_t *optp;
3664 int optlen, error;
3665 u_int16_t tlen;
3666 struct ip *ip = NULL;
3667 #ifdef INET6
3668 struct ip6_hdr *ip6 = NULL;
3669 #endif
3670 struct tcphdr *th;
3671 u_int hlen;
3672
3673 switch (sc->sc_src.sa.sa_family) {
3674 case AF_INET:
3675 hlen = sizeof(struct ip);
3676 ro = &sc->sc_route4;
3677 break;
3678 #ifdef INET6
3679 case AF_INET6:
3680 hlen = sizeof(struct ip6_hdr);
3681 ro = (struct route *)&sc->sc_route6;
3682 break;
3683 #endif
3684 default:
3685 if (m)
3686 m_freem(m);
3687 return EAFNOSUPPORT;
3688 }
3689
3690 /* Compute the size of the TCP options. */
3691 optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
3692 ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
3693
3694 tlen = hlen + sizeof(struct tcphdr) + optlen;
3695
3696 /*
3697 * Create the IP+TCP header from scratch.
3698 */
3699 if (m)
3700 m_freem(m);
3701 #ifdef DIAGNOSTIC
3702 if (max_linkhdr + tlen > MCLBYTES)
3703 return (ENOBUFS);
3704 #endif
3705 MGETHDR(m, M_DONTWAIT, MT_DATA);
3706 if (m && tlen > MHLEN) {
3707 MCLGET(m, M_DONTWAIT);
3708 if ((m->m_flags & M_EXT) == 0) {
3709 m_freem(m);
3710 m = NULL;
3711 }
3712 }
3713 if (m == NULL)
3714 return (ENOBUFS);
3715
3716 /* Fixup the mbuf. */
3717 m->m_data += max_linkhdr;
3718 m->m_len = m->m_pkthdr.len = tlen;
3719 #ifdef IPSEC
3720 if (sc->sc_tp) {
3721 struct tcpcb *tp;
3722 struct socket *so;
3723
3724 tp = sc->sc_tp;
3725 if (tp->t_inpcb)
3726 so = tp->t_inpcb->inp_socket;
3727 #ifdef INET6
3728 else if (tp->t_in6pcb)
3729 so = tp->t_in6pcb->in6p_socket;
3730 #endif
3731 else
3732 so = NULL;
3733 /* use IPsec policy on listening socket, on SYN ACK */
3734 if (ipsec_setsocket(m, so) != 0) {
3735 m_freem(m);
3736 return ENOBUFS;
3737 }
3738 }
3739 #endif
3740 m->m_pkthdr.rcvif = NULL;
3741 memset(mtod(m, u_char *), 0, tlen);
3742
3743 switch (sc->sc_src.sa.sa_family) {
3744 case AF_INET:
3745 ip = mtod(m, struct ip *);
3746 ip->ip_dst = sc->sc_src.sin.sin_addr;
3747 ip->ip_src = sc->sc_dst.sin.sin_addr;
3748 ip->ip_p = IPPROTO_TCP;
3749 th = (struct tcphdr *)(ip + 1);
3750 th->th_dport = sc->sc_src.sin.sin_port;
3751 th->th_sport = sc->sc_dst.sin.sin_port;
3752 break;
3753 #ifdef INET6
3754 case AF_INET6:
3755 ip6 = mtod(m, struct ip6_hdr *);
3756 ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
3757 ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
3758 ip6->ip6_nxt = IPPROTO_TCP;
3759 /* ip6_plen will be updated in ip6_output() */
3760 th = (struct tcphdr *)(ip6 + 1);
3761 th->th_dport = sc->sc_src.sin6.sin6_port;
3762 th->th_sport = sc->sc_dst.sin6.sin6_port;
3763 break;
3764 #endif
3765 default:
3766 th = NULL;
3767 }
3768
3769 th->th_seq = htonl(sc->sc_iss);
3770 th->th_ack = htonl(sc->sc_irs + 1);
3771 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
3772 th->th_flags = TH_SYN|TH_ACK;
3773 th->th_win = htons(sc->sc_win);
3774 /* th_sum already 0 */
3775 /* th_urp already 0 */
3776
3777 /* Tack on the TCP options. */
3778 optp = (u_int8_t *)(th + 1);
3779 *optp++ = TCPOPT_MAXSEG;
3780 *optp++ = 4;
3781 *optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
3782 *optp++ = sc->sc_ourmaxseg & 0xff;
3783
3784 if (sc->sc_request_r_scale != 15) {
3785 *((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
3786 TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
3787 sc->sc_request_r_scale);
3788 optp += 4;
3789 }
3790
3791 if (sc->sc_flags & SCF_TIMESTAMP) {
3792 u_int32_t *lp = (u_int32_t *)(optp);
3793 /* Form timestamp option as shown in appendix A of RFC 1323. */
3794 *lp++ = htonl(TCPOPT_TSTAMP_HDR);
3795 *lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
3796 *lp = htonl(sc->sc_timestamp);
3797 optp += TCPOLEN_TSTAMP_APPA;
3798 }
3799
3800 /* Compute the packet's checksum. */
3801 switch (sc->sc_src.sa.sa_family) {
3802 case AF_INET:
3803 ip->ip_len = htons(tlen - hlen);
3804 th->th_sum = 0;
3805 th->th_sum = in_cksum(m, tlen);
3806 break;
3807 #ifdef INET6
3808 case AF_INET6:
3809 ip6->ip6_plen = htons(tlen - hlen);
3810 th->th_sum = 0;
3811 th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
3812 break;
3813 #endif
3814 }
3815
3816 /*
3817 * Fill in some straggling IP bits. Note the stack expects
3818 * ip_len to be in host order, for convenience.
3819 */
3820 switch (sc->sc_src.sa.sa_family) {
3821 #ifdef INET
3822 case AF_INET:
3823 ip->ip_len = htons(tlen);
3824 ip->ip_ttl = ip_defttl;
3825 /* XXX tos? */
3826 break;
3827 #endif
3828 #ifdef INET6
3829 case AF_INET6:
3830 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
3831 ip6->ip6_vfc |= IPV6_VERSION;
3832 ip6->ip6_plen = htons(tlen - hlen);
3833 /* ip6_hlim will be initialized afterwards */
3834 /* XXX flowlabel? */
3835 break;
3836 #endif
3837 }
3838
3839 switch (sc->sc_src.sa.sa_family) {
3840 #ifdef INET
3841 case AF_INET:
3842 error = ip_output(m, sc->sc_ipopts, ro,
3843 (ip_mtudisc ? IP_MTUDISC : 0),
3844 NULL);
3845 break;
3846 #endif
3847 #ifdef INET6
3848 case AF_INET6:
3849 ip6->ip6_hlim = in6_selecthlim(NULL,
3850 ro->ro_rt ? ro->ro_rt->rt_ifp : NULL);
3851
3852 error = ip6_output(m, NULL /*XXX*/, (struct route_in6 *)ro,
3853 0, NULL, NULL);
3854 break;
3855 #endif
3856 default:
3857 error = EAFNOSUPPORT;
3858 break;
3859 }
3860 return (error);
3861 }
3862