tcp_input.c revision 1.162 1 /* $NetBSD: tcp_input.c,v 1.162 2003/02/26 06:31:15 matt Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * @(#)COPYRIGHT 1.1 (NRL) 17 January 1995
34 *
35 * NRL grants permission for redistribution and use in source and binary
36 * forms, with or without modification, of the software and documentation
37 * created at NRL provided that the following conditions are met:
38 *
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgements:
46 * This product includes software developed by the University of
47 * California, Berkeley and its contributors.
48 * This product includes software developed at the Information
49 * Technology Division, US Naval Research Laboratory.
50 * 4. Neither the name of the NRL nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
55 * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
57 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NRL OR
58 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
59 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
61 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
62 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
63 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
64 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65 *
66 * The views and conclusions contained in the software and documentation
67 * are those of the authors and should not be interpreted as representing
68 * official policies, either expressed or implied, of the US Naval
69 * Research Laboratory (NRL).
70 */
71
72 /*-
73 * Copyright (c) 1997, 1998, 1999, 2001 The NetBSD Foundation, Inc.
74 * All rights reserved.
75 *
76 * This code is derived from software contributed to The NetBSD Foundation
77 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
78 * Facility, NASA Ames Research Center.
79 *
80 * Redistribution and use in source and binary forms, with or without
81 * modification, are permitted provided that the following conditions
82 * are met:
83 * 1. Redistributions of source code must retain the above copyright
84 * notice, this list of conditions and the following disclaimer.
85 * 2. Redistributions in binary form must reproduce the above copyright
86 * notice, this list of conditions and the following disclaimer in the
87 * documentation and/or other materials provided with the distribution.
88 * 3. All advertising materials mentioning features or use of this software
89 * must display the following acknowledgement:
90 * This product includes software developed by the NetBSD
91 * Foundation, Inc. and its contributors.
92 * 4. Neither the name of The NetBSD Foundation nor the names of its
93 * contributors may be used to endorse or promote products derived
94 * from this software without specific prior written permission.
95 *
96 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
97 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
98 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
99 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
100 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
101 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
102 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
103 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
104 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
105 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
106 * POSSIBILITY OF SUCH DAMAGE.
107 */
108
109 /*
110 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
111 * The Regents of the University of California. All rights reserved.
112 *
113 * Redistribution and use in source and binary forms, with or without
114 * modification, are permitted provided that the following conditions
115 * are met:
116 * 1. Redistributions of source code must retain the above copyright
117 * notice, this list of conditions and the following disclaimer.
118 * 2. Redistributions in binary form must reproduce the above copyright
119 * notice, this list of conditions and the following disclaimer in the
120 * documentation and/or other materials provided with the distribution.
121 * 3. All advertising materials mentioning features or use of this software
122 * must display the following acknowledgement:
123 * This product includes software developed by the University of
124 * California, Berkeley and its contributors.
125 * 4. Neither the name of the University nor the names of its contributors
126 * may be used to endorse or promote products derived from this software
127 * without specific prior written permission.
128 *
129 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
130 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
131 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
132 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
133 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
134 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
135 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
136 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
137 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
138 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
139 * SUCH DAMAGE.
140 *
141 * @(#)tcp_input.c 8.12 (Berkeley) 5/24/95
142 */
143
144 /*
145 * TODO list for SYN cache stuff:
146 *
147 * Find room for a "state" field, which is needed to keep a
148 * compressed state for TIME_WAIT TCBs. It's been noted already
149 * that this is fairly important for very high-volume web and
150 * mail servers, which use a large number of short-lived
151 * connections.
152 */
153
154 #include <sys/cdefs.h>
155 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.162 2003/02/26 06:31:15 matt Exp $");
156
157 #include "opt_inet.h"
158 #include "opt_ipsec.h"
159 #include "opt_inet_csum.h"
160 #include "opt_tcp_debug.h"
161
162 #include <sys/param.h>
163 #include <sys/systm.h>
164 #include <sys/malloc.h>
165 #include <sys/mbuf.h>
166 #include <sys/protosw.h>
167 #include <sys/socket.h>
168 #include <sys/socketvar.h>
169 #include <sys/errno.h>
170 #include <sys/syslog.h>
171 #include <sys/pool.h>
172 #include <sys/domain.h>
173 #include <sys/kernel.h>
174
175 #include <net/if.h>
176 #include <net/route.h>
177 #include <net/if_types.h>
178
179 #include <netinet/in.h>
180 #include <netinet/in_systm.h>
181 #include <netinet/ip.h>
182 #include <netinet/in_pcb.h>
183 #include <netinet/ip_var.h>
184
185 #ifdef INET6
186 #ifndef INET
187 #include <netinet/in.h>
188 #endif
189 #include <netinet/ip6.h>
190 #include <netinet6/ip6_var.h>
191 #include <netinet6/in6_pcb.h>
192 #include <netinet6/ip6_var.h>
193 #include <netinet6/in6_var.h>
194 #include <netinet/icmp6.h>
195 #include <netinet6/nd6.h>
196 #endif
197
198 #ifdef PULLDOWN_TEST
199 #ifndef INET6
200 /* always need ip6.h for IP6_EXTHDR_GET */
201 #include <netinet/ip6.h>
202 #endif
203 #endif
204
205 #include <netinet/tcp.h>
206 #include <netinet/tcp_fsm.h>
207 #include <netinet/tcp_seq.h>
208 #include <netinet/tcp_timer.h>
209 #include <netinet/tcp_var.h>
210 #include <netinet/tcpip.h>
211 #include <netinet/tcp_debug.h>
212
213 #include <machine/stdarg.h>
214
215 #ifdef IPSEC
216 #include <netinet6/ipsec.h>
217 #include <netkey/key.h>
218 #endif /*IPSEC*/
219 #ifdef INET6
220 #include "faith.h"
221 #if defined(NFAITH) && NFAITH > 0
222 #include <net/if_faith.h>
223 #endif
224 #endif
225
226 int tcprexmtthresh = 3;
227 int tcp_log_refused;
228
229 static int tcp_rst_ppslim_count = 0;
230 static struct timeval tcp_rst_ppslim_last;
231
232 #define TCP_PAWS_IDLE (24 * 24 * 60 * 60 * PR_SLOWHZ)
233
234 /* for modulo comparisons of timestamps */
235 #define TSTMP_LT(a,b) ((int)((a)-(b)) < 0)
236 #define TSTMP_GEQ(a,b) ((int)((a)-(b)) >= 0)
237
238 /*
239 * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
240 */
241 #ifdef INET6
242 #define ND6_HINT(tp) \
243 do { \
244 if (tp && tp->t_in6pcb && tp->t_family == AF_INET6 \
245 && tp->t_in6pcb->in6p_route.ro_rt) { \
246 nd6_nud_hint(tp->t_in6pcb->in6p_route.ro_rt, NULL, 0); \
247 } \
248 } while (/*CONSTCOND*/ 0)
249 #else
250 #define ND6_HINT(tp)
251 #endif
252
253 /*
254 * Macro to compute ACK transmission behavior. Delay the ACK unless
255 * we have already delayed an ACK (must send an ACK every two segments).
256 * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
257 * option is enabled.
258 */
259 #define TCP_SETUP_ACK(tp, th) \
260 do { \
261 if ((tp)->t_flags & TF_DELACK || \
262 (tcp_ack_on_push && (th)->th_flags & TH_PUSH)) \
263 tp->t_flags |= TF_ACKNOW; \
264 else \
265 TCP_SET_DELACK(tp); \
266 } while (/*CONSTCOND*/ 0)
267
268 /*
269 * Convert TCP protocol fields to host order for easier processing.
270 */
271 #define TCP_FIELDS_TO_HOST(th) \
272 do { \
273 NTOHL((th)->th_seq); \
274 NTOHL((th)->th_ack); \
275 NTOHS((th)->th_win); \
276 NTOHS((th)->th_urp); \
277 } while (/*CONSTCOND*/ 0)
278
279 /*
280 * ... and reverse the above.
281 */
282 #define TCP_FIELDS_TO_NET(th) \
283 do { \
284 HTONL((th)->th_seq); \
285 HTONL((th)->th_ack); \
286 HTONS((th)->th_win); \
287 HTONS((th)->th_urp); \
288 } while (/*CONSTCOND*/ 0)
289
290 #ifdef TCP_CSUM_COUNTERS
291 #include <sys/device.h>
292
293 extern struct evcnt tcp_hwcsum_ok;
294 extern struct evcnt tcp_hwcsum_bad;
295 extern struct evcnt tcp_hwcsum_data;
296 extern struct evcnt tcp_swcsum;
297
298 #define TCP_CSUM_COUNTER_INCR(ev) (ev)->ev_count++
299
300 #else
301
302 #define TCP_CSUM_COUNTER_INCR(ev) /* nothing */
303
304 #endif /* TCP_CSUM_COUNTERS */
305
306 #ifdef TCP_REASS_COUNTERS
307 #include <sys/device.h>
308
309 extern struct evcnt tcp_reass_;
310 extern struct evcnt tcp_reass_empty;
311 extern struct evcnt tcp_reass_iteration[8];
312 extern struct evcnt tcp_reass_prependfirst;
313 extern struct evcnt tcp_reass_prepend;
314 extern struct evcnt tcp_reass_insert;
315 extern struct evcnt tcp_reass_inserttail;
316 extern struct evcnt tcp_reass_append;
317 extern struct evcnt tcp_reass_appendtail;
318 extern struct evcnt tcp_reass_overlaptail;
319 extern struct evcnt tcp_reass_overlapfront;
320 extern struct evcnt tcp_reass_segdup;
321 extern struct evcnt tcp_reass_fragdup;
322
323 #define TCP_REASS_COUNTER_INCR(ev) (ev)->ev_count++
324
325 #else
326
327 #define TCP_REASS_COUNTER_INCR(ev) /* nothing */
328
329 #endif /* TCP_REASS_COUNTERS */
330
331 #ifdef INET
332 static void tcp4_log_refused __P((const struct ip *, const struct tcphdr *));
333 #endif
334 #ifdef INET6
335 static void tcp6_log_refused
336 __P((const struct ip6_hdr *, const struct tcphdr *));
337 #endif
338
339 int
340 tcp_reass(tp, th, m, tlen)
341 struct tcpcb *tp;
342 struct tcphdr *th;
343 struct mbuf *m;
344 int *tlen;
345 {
346 struct ipqent *p, *q, *nq, *tiqe = NULL;
347 struct socket *so = NULL;
348 int pkt_flags;
349 tcp_seq pkt_seq;
350 unsigned pkt_len;
351 u_long rcvpartdupbyte = 0;
352 u_long rcvoobyte;
353 #ifdef TCP_REASS_COUNTERS
354 u_int count = 0;
355 #endif
356
357 if (tp->t_inpcb)
358 so = tp->t_inpcb->inp_socket;
359 #ifdef INET6
360 else if (tp->t_in6pcb)
361 so = tp->t_in6pcb->in6p_socket;
362 #endif
363
364 TCP_REASS_LOCK_CHECK(tp);
365
366 /*
367 * Call with th==0 after become established to
368 * force pre-ESTABLISHED data up to user socket.
369 */
370 if (th == 0)
371 goto present;
372
373 rcvoobyte = *tlen;
374 /*
375 * Copy these to local variables because the tcpiphdr
376 * gets munged while we are collapsing mbufs.
377 */
378 pkt_seq = th->th_seq;
379 pkt_len = *tlen;
380 pkt_flags = th->th_flags;
381
382 TCP_REASS_COUNTER_INCR(&tcp_reass_);
383
384 if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
385 /*
386 * When we miss a packet, the vast majority of time we get
387 * packets that follow it in order. So optimize for that.
388 */
389 if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
390 p->ipqe_len += pkt_len;
391 p->ipqe_flags |= pkt_flags;
392 m_cat(p->ipqe_m, m);
393 tiqe = p;
394 TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
395 TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
396 goto skip_replacement;
397 }
398 /*
399 * While we're here, if the pkt is completely beyond
400 * anything we have, just insert it at the tail.
401 */
402 if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
403 TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
404 goto insert_it;
405 }
406 }
407
408 q = TAILQ_FIRST(&tp->segq);
409
410 if (q != NULL) {
411 /*
412 * If this segment immediately precedes the first out-of-order
413 * block, simply slap the segment in front of it and (mostly)
414 * skip the complicated logic.
415 */
416 if (pkt_seq + pkt_len == q->ipqe_seq) {
417 q->ipqe_seq = pkt_seq;
418 q->ipqe_len += pkt_len;
419 q->ipqe_flags |= pkt_flags;
420 m_cat(m, q->ipqe_m);
421 q->ipqe_m = m;
422 tiqe = q;
423 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
424 TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
425 goto skip_replacement;
426 }
427 } else {
428 TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
429 }
430
431 /*
432 * Find a segment which begins after this one does.
433 */
434 for (p = NULL; q != NULL; q = nq) {
435 nq = TAILQ_NEXT(q, ipqe_q);
436 #ifdef TCP_REASS_COUNTERS
437 count++;
438 #endif
439 /*
440 * If the received segment is just right after this
441 * fragment, merge the two together and then check
442 * for further overlaps.
443 */
444 if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
445 #ifdef TCPREASS_DEBUG
446 printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
447 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
448 q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
449 #endif
450 pkt_len += q->ipqe_len;
451 pkt_flags |= q->ipqe_flags;
452 pkt_seq = q->ipqe_seq;
453 m_cat(q->ipqe_m, m);
454 m = q->ipqe_m;
455 TCP_REASS_COUNTER_INCR(&tcp_reass_append);
456 goto free_ipqe;
457 }
458 /*
459 * If the received segment is completely past this
460 * fragment, we need to go the next fragment.
461 */
462 if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
463 p = q;
464 continue;
465 }
466 /*
467 * If the fragment is past the received segment,
468 * it (or any following) can't be concatenated.
469 */
470 if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
471 TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
472 break;
473 }
474
475 /*
476 * We've received all the data in this segment before.
477 * mark it as a duplicate and return.
478 */
479 if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
480 SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
481 tcpstat.tcps_rcvduppack++;
482 tcpstat.tcps_rcvdupbyte += pkt_len;
483 m_freem(m);
484 if (tiqe != NULL)
485 pool_put(&ipqent_pool, tiqe);
486 TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
487 return (0);
488 }
489 /*
490 * Received segment completely overlaps this fragment
491 * so we drop the fragment (this keeps the temporal
492 * ordering of segments correct).
493 */
494 if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
495 SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
496 rcvpartdupbyte += q->ipqe_len;
497 m_freem(q->ipqe_m);
498 TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
499 goto free_ipqe;
500 }
501 /*
502 * RX'ed segment extends past the end of the
503 * fragment. Drop the overlapping bytes. Then
504 * merge the fragment and segment then treat as
505 * a longer received packet.
506 */
507 if (SEQ_LT(q->ipqe_seq, pkt_seq)
508 && SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
509 int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
510 #ifdef TCPREASS_DEBUG
511 printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
512 tp, overlap,
513 pkt_seq, pkt_seq + pkt_len, pkt_len);
514 #endif
515 m_adj(m, overlap);
516 rcvpartdupbyte += overlap;
517 m_cat(q->ipqe_m, m);
518 m = q->ipqe_m;
519 pkt_seq = q->ipqe_seq;
520 pkt_len += q->ipqe_len - overlap;
521 rcvoobyte -= overlap;
522 TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
523 goto free_ipqe;
524 }
525 /*
526 * RX'ed segment extends past the front of the
527 * fragment. Drop the overlapping bytes on the
528 * received packet. The packet will then be
529 * contatentated with this fragment a bit later.
530 */
531 if (SEQ_GT(q->ipqe_seq, pkt_seq)
532 && SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len)) {
533 int overlap = pkt_seq + pkt_len - q->ipqe_seq;
534 #ifdef TCPREASS_DEBUG
535 printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
536 tp, overlap,
537 pkt_seq, pkt_seq + pkt_len, pkt_len);
538 #endif
539 m_adj(m, -overlap);
540 pkt_len -= overlap;
541 rcvpartdupbyte += overlap;
542 TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
543 rcvoobyte -= overlap;
544 }
545 /*
546 * If the received segment immediates precedes this
547 * fragment then tack the fragment onto this segment
548 * and reinsert the data.
549 */
550 if (q->ipqe_seq == pkt_seq + pkt_len) {
551 #ifdef TCPREASS_DEBUG
552 printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
553 tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
554 pkt_seq, pkt_seq + pkt_len, pkt_len);
555 #endif
556 pkt_len += q->ipqe_len;
557 pkt_flags |= q->ipqe_flags;
558 m_cat(m, q->ipqe_m);
559 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
560 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
561 if (tiqe == NULL) {
562 tiqe = q;
563 } else {
564 pool_put(&ipqent_pool, q);
565 }
566 TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
567 break;
568 }
569 /*
570 * If the fragment is before the segment, remember it.
571 * When this loop is terminated, p will contain the
572 * pointer to fragment that is right before the received
573 * segment.
574 */
575 if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
576 p = q;
577
578 continue;
579
580 /*
581 * This is a common operation. It also will allow
582 * to save doing a malloc/free in most instances.
583 */
584 free_ipqe:
585 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
586 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
587 if (tiqe == NULL) {
588 tiqe = q;
589 } else {
590 pool_put(&ipqent_pool, q);
591 }
592 }
593
594 #ifdef TCP_REASS_COUNTERS
595 if (count > 7)
596 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
597 else if (count > 0)
598 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
599 #endif
600
601 insert_it:
602
603 /*
604 * Allocate a new queue entry since the received segment did not
605 * collapse onto any other out-of-order block; thus we are allocating
606 * a new block. If it had collapsed, tiqe would not be NULL and
607 * we would be reusing it.
608 * XXX If we can't, just drop the packet. XXX
609 */
610 if (tiqe == NULL) {
611 tiqe = pool_get(&ipqent_pool, PR_NOWAIT);
612 if (tiqe == NULL) {
613 tcpstat.tcps_rcvmemdrop++;
614 m_freem(m);
615 return (0);
616 }
617 }
618
619 /*
620 * Update the counters.
621 */
622 tcpstat.tcps_rcvoopack++;
623 tcpstat.tcps_rcvoobyte += rcvoobyte;
624 if (rcvpartdupbyte) {
625 tcpstat.tcps_rcvpartduppack++;
626 tcpstat.tcps_rcvpartdupbyte += rcvpartdupbyte;
627 }
628
629 /*
630 * Insert the new fragment queue entry into both queues.
631 */
632 tiqe->ipqe_m = m;
633 tiqe->ipqe_seq = pkt_seq;
634 tiqe->ipqe_len = pkt_len;
635 tiqe->ipqe_flags = pkt_flags;
636 if (p == NULL) {
637 TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
638 #ifdef TCPREASS_DEBUG
639 if (tiqe->ipqe_seq != tp->rcv_nxt)
640 printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
641 tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
642 #endif
643 } else {
644 TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
645 #ifdef TCPREASS_DEBUG
646 printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
647 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
648 p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
649 #endif
650 }
651
652 skip_replacement:
653
654 TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
655
656 present:
657 /*
658 * Present data to user, advancing rcv_nxt through
659 * completed sequence space.
660 */
661 if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
662 return (0);
663 q = TAILQ_FIRST(&tp->segq);
664 if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
665 return (0);
666 if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
667 return (0);
668
669 tp->rcv_nxt += q->ipqe_len;
670 pkt_flags = q->ipqe_flags & TH_FIN;
671 ND6_HINT(tp);
672
673 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
674 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
675 if (so->so_state & SS_CANTRCVMORE)
676 m_freem(q->ipqe_m);
677 else
678 sbappendstream(&so->so_rcv, q->ipqe_m);
679 pool_put(&ipqent_pool, q);
680 sorwakeup(so);
681 return (pkt_flags);
682 }
683
684 #ifdef INET6
685 int
686 tcp6_input(mp, offp, proto)
687 struct mbuf **mp;
688 int *offp, proto;
689 {
690 struct mbuf *m = *mp;
691
692 /*
693 * draft-itojun-ipv6-tcp-to-anycast
694 * better place to put this in?
695 */
696 if (m->m_flags & M_ANYCAST6) {
697 struct ip6_hdr *ip6;
698 if (m->m_len < sizeof(struct ip6_hdr)) {
699 if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
700 tcpstat.tcps_rcvshort++;
701 return IPPROTO_DONE;
702 }
703 }
704 ip6 = mtod(m, struct ip6_hdr *);
705 icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
706 (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
707 return IPPROTO_DONE;
708 }
709
710 tcp_input(m, *offp, proto);
711 return IPPROTO_DONE;
712 }
713 #endif
714
715 #ifdef INET
716 static void
717 tcp4_log_refused(ip, th)
718 const struct ip *ip;
719 const struct tcphdr *th;
720 {
721 char src[4*sizeof "123"];
722 char dst[4*sizeof "123"];
723
724 if (ip) {
725 strcpy(src, inet_ntoa(ip->ip_src));
726 strcpy(dst, inet_ntoa(ip->ip_dst));
727 }
728 else {
729 strcpy(src, "(unknown)");
730 strcpy(dst, "(unknown)");
731 }
732 log(LOG_INFO,
733 "Connection attempt to TCP %s:%d from %s:%d\n",
734 dst, ntohs(th->th_dport),
735 src, ntohs(th->th_sport));
736 }
737 #endif
738
739 #ifdef INET6
740 static void
741 tcp6_log_refused(ip6, th)
742 const struct ip6_hdr *ip6;
743 const struct tcphdr *th;
744 {
745 char src[INET6_ADDRSTRLEN];
746 char dst[INET6_ADDRSTRLEN];
747
748 if (ip6) {
749 strcpy(src, ip6_sprintf(&ip6->ip6_src));
750 strcpy(dst, ip6_sprintf(&ip6->ip6_dst));
751 }
752 else {
753 strcpy(src, "(unknown v6)");
754 strcpy(dst, "(unknown v6)");
755 }
756 log(LOG_INFO,
757 "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
758 dst, ntohs(th->th_dport),
759 src, ntohs(th->th_sport));
760 }
761 #endif
762
763 /*
764 * TCP input routine, follows pages 65-76 of the
765 * protocol specification dated September, 1981 very closely.
766 */
767 void
768 #if __STDC__
769 tcp_input(struct mbuf *m, ...)
770 #else
771 tcp_input(m, va_alist)
772 struct mbuf *m;
773 #endif
774 {
775 struct tcphdr *th;
776 struct ip *ip;
777 struct inpcb *inp;
778 #ifdef INET6
779 struct ip6_hdr *ip6;
780 struct in6pcb *in6p;
781 #endif
782 u_int8_t *optp = NULL;
783 int optlen = 0;
784 int len, tlen, toff, hdroptlen = 0;
785 struct tcpcb *tp = 0;
786 int tiflags;
787 struct socket *so = NULL;
788 int todrop, acked, ourfinisacked, needoutput = 0;
789 #ifdef TCP_DEBUG
790 short ostate = 0;
791 #endif
792 int iss = 0;
793 u_long tiwin;
794 struct tcp_opt_info opti;
795 int off, iphlen;
796 va_list ap;
797 int af; /* af on the wire */
798 struct mbuf *tcp_saveti = NULL;
799
800 MCLAIM(m, &tcp_rx_mowner);
801 va_start(ap, m);
802 toff = va_arg(ap, int);
803 (void)va_arg(ap, int); /* ignore value, advance ap */
804 va_end(ap);
805
806 tcpstat.tcps_rcvtotal++;
807
808 bzero(&opti, sizeof(opti));
809 opti.ts_present = 0;
810 opti.maxseg = 0;
811
812 /*
813 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
814 *
815 * TCP is, by definition, unicast, so we reject all
816 * multicast outright.
817 *
818 * Note, there are additional src/dst address checks in
819 * the AF-specific code below.
820 */
821 if (m->m_flags & (M_BCAST|M_MCAST)) {
822 /* XXX stat */
823 goto drop;
824 }
825 #ifdef INET6
826 if (m->m_flags & M_ANYCAST6) {
827 /* XXX stat */
828 goto drop;
829 }
830 #endif
831
832 /*
833 * Get IP and TCP header together in first mbuf.
834 * Note: IP leaves IP header in first mbuf.
835 */
836 ip = mtod(m, struct ip *);
837 #ifdef INET6
838 ip6 = NULL;
839 #endif
840 switch (ip->ip_v) {
841 #ifdef INET
842 case 4:
843 af = AF_INET;
844 iphlen = sizeof(struct ip);
845 #ifndef PULLDOWN_TEST
846 /* would like to get rid of this... */
847 if (toff > sizeof (struct ip)) {
848 ip_stripoptions(m, (struct mbuf *)0);
849 toff = sizeof(struct ip);
850 }
851 if (m->m_len < toff + sizeof (struct tcphdr)) {
852 if ((m = m_pullup(m, toff + sizeof (struct tcphdr))) == 0) {
853 tcpstat.tcps_rcvshort++;
854 return;
855 }
856 }
857 ip = mtod(m, struct ip *);
858 th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
859 #else
860 ip = mtod(m, struct ip *);
861 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
862 sizeof(struct tcphdr));
863 if (th == NULL) {
864 tcpstat.tcps_rcvshort++;
865 return;
866 }
867 #endif
868 /* We do the checksum after PCB lookup... */
869 len = ntohs(ip->ip_len);
870 tlen = len - toff;
871 break;
872 #endif
873 #ifdef INET6
874 case 6:
875 ip = NULL;
876 iphlen = sizeof(struct ip6_hdr);
877 af = AF_INET6;
878 #ifndef PULLDOWN_TEST
879 if (m->m_len < toff + sizeof(struct tcphdr)) {
880 m = m_pullup(m, toff + sizeof(struct tcphdr)); /*XXX*/
881 if (m == NULL) {
882 tcpstat.tcps_rcvshort++;
883 return;
884 }
885 }
886 ip6 = mtod(m, struct ip6_hdr *);
887 th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
888 #else
889 ip6 = mtod(m, struct ip6_hdr *);
890 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
891 sizeof(struct tcphdr));
892 if (th == NULL) {
893 tcpstat.tcps_rcvshort++;
894 return;
895 }
896 #endif
897
898 /* Be proactive about malicious use of IPv4 mapped address */
899 if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
900 IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
901 /* XXX stat */
902 goto drop;
903 }
904
905 /*
906 * Be proactive about unspecified IPv6 address in source.
907 * As we use all-zero to indicate unbounded/unconnected pcb,
908 * unspecified IPv6 address can be used to confuse us.
909 *
910 * Note that packets with unspecified IPv6 destination is
911 * already dropped in ip6_input.
912 */
913 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
914 /* XXX stat */
915 goto drop;
916 }
917
918 /*
919 * Make sure destination address is not multicast.
920 * Source address checked in ip6_input().
921 */
922 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
923 /* XXX stat */
924 goto drop;
925 }
926
927 /* We do the checksum after PCB lookup... */
928 len = m->m_pkthdr.len;
929 tlen = len - toff;
930 break;
931 #endif
932 default:
933 m_freem(m);
934 return;
935 }
936
937 KASSERT(TCP_HDR_ALIGNED_P(th));
938
939 /*
940 * Check that TCP offset makes sense,
941 * pull out TCP options and adjust length. XXX
942 */
943 off = th->th_off << 2;
944 if (off < sizeof (struct tcphdr) || off > tlen) {
945 tcpstat.tcps_rcvbadoff++;
946 goto drop;
947 }
948 tlen -= off;
949
950 /*
951 * tcp_input() has been modified to use tlen to mean the TCP data
952 * length throughout the function. Other functions can use
953 * m->m_pkthdr.len as the basis for calculating the TCP data length.
954 * rja
955 */
956
957 if (off > sizeof (struct tcphdr)) {
958 #ifndef PULLDOWN_TEST
959 if (m->m_len < toff + off) {
960 if ((m = m_pullup(m, toff + off)) == 0) {
961 tcpstat.tcps_rcvshort++;
962 return;
963 }
964 switch (af) {
965 #ifdef INET
966 case AF_INET:
967 ip = mtod(m, struct ip *);
968 break;
969 #endif
970 #ifdef INET6
971 case AF_INET6:
972 ip6 = mtod(m, struct ip6_hdr *);
973 break;
974 #endif
975 }
976 th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
977 }
978 #else
979 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
980 if (th == NULL) {
981 tcpstat.tcps_rcvshort++;
982 return;
983 }
984 /*
985 * NOTE: ip/ip6 will not be affected by m_pulldown()
986 * (as they're before toff) and we don't need to update those.
987 */
988 #endif
989 KASSERT(TCP_HDR_ALIGNED_P(th));
990 optlen = off - sizeof (struct tcphdr);
991 optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
992 /*
993 * Do quick retrieval of timestamp options ("options
994 * prediction?"). If timestamp is the only option and it's
995 * formatted as recommended in RFC 1323 appendix A, we
996 * quickly get the values now and not bother calling
997 * tcp_dooptions(), etc.
998 */
999 if ((optlen == TCPOLEN_TSTAMP_APPA ||
1000 (optlen > TCPOLEN_TSTAMP_APPA &&
1001 optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
1002 *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
1003 (th->th_flags & TH_SYN) == 0) {
1004 opti.ts_present = 1;
1005 opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
1006 opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
1007 optp = NULL; /* we've parsed the options */
1008 }
1009 }
1010 tiflags = th->th_flags;
1011
1012 /*
1013 * Locate pcb for segment.
1014 */
1015 findpcb:
1016 inp = NULL;
1017 #ifdef INET6
1018 in6p = NULL;
1019 #endif
1020 switch (af) {
1021 #ifdef INET
1022 case AF_INET:
1023 inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
1024 ip->ip_dst, th->th_dport);
1025 if (inp == 0) {
1026 ++tcpstat.tcps_pcbhashmiss;
1027 inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
1028 }
1029 #ifdef INET6
1030 if (inp == 0) {
1031 struct in6_addr s, d;
1032
1033 /* mapped addr case */
1034 bzero(&s, sizeof(s));
1035 s.s6_addr16[5] = htons(0xffff);
1036 bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
1037 bzero(&d, sizeof(d));
1038 d.s6_addr16[5] = htons(0xffff);
1039 bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
1040 in6p = in6_pcblookup_connect(&tcb6, &s, th->th_sport,
1041 &d, th->th_dport, 0);
1042 if (in6p == 0) {
1043 ++tcpstat.tcps_pcbhashmiss;
1044 in6p = in6_pcblookup_bind(&tcb6, &d,
1045 th->th_dport, 0);
1046 }
1047 }
1048 #endif
1049 #ifndef INET6
1050 if (inp == 0)
1051 #else
1052 if (inp == 0 && in6p == 0)
1053 #endif
1054 {
1055 ++tcpstat.tcps_noport;
1056 if (tcp_log_refused &&
1057 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1058 tcp4_log_refused(ip, th);
1059 }
1060 TCP_FIELDS_TO_HOST(th);
1061 goto dropwithreset_ratelim;
1062 }
1063 #ifdef IPSEC
1064 if (inp && ipsec4_in_reject(m, inp)) {
1065 ipsecstat.in_polvio++;
1066 goto drop;
1067 }
1068 #ifdef INET6
1069 else if (in6p && ipsec4_in_reject_so(m, in6p->in6p_socket)) {
1070 ipsecstat.in_polvio++;
1071 goto drop;
1072 }
1073 #endif
1074 #endif /*IPSEC*/
1075 break;
1076 #endif /*INET*/
1077 #ifdef INET6
1078 case AF_INET6:
1079 {
1080 int faith;
1081
1082 #if defined(NFAITH) && NFAITH > 0
1083 faith = faithprefix(&ip6->ip6_dst);
1084 #else
1085 faith = 0;
1086 #endif
1087 in6p = in6_pcblookup_connect(&tcb6, &ip6->ip6_src, th->th_sport,
1088 &ip6->ip6_dst, th->th_dport, faith);
1089 if (in6p == NULL) {
1090 ++tcpstat.tcps_pcbhashmiss;
1091 in6p = in6_pcblookup_bind(&tcb6, &ip6->ip6_dst,
1092 th->th_dport, faith);
1093 }
1094 if (in6p == NULL) {
1095 ++tcpstat.tcps_noport;
1096 if (tcp_log_refused &&
1097 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1098 tcp6_log_refused(ip6, th);
1099 }
1100 TCP_FIELDS_TO_HOST(th);
1101 goto dropwithreset_ratelim;
1102 }
1103 #ifdef IPSEC
1104 if (ipsec6_in_reject(m, in6p)) {
1105 ipsec6stat.in_polvio++;
1106 goto drop;
1107 }
1108 #endif /*IPSEC*/
1109 break;
1110 }
1111 #endif
1112 }
1113
1114 /*
1115 * If the state is CLOSED (i.e., TCB does not exist) then
1116 * all data in the incoming segment is discarded.
1117 * If the TCB exists but is in CLOSED state, it is embryonic,
1118 * but should either do a listen or a connect soon.
1119 */
1120 tp = NULL;
1121 so = NULL;
1122 if (inp) {
1123 tp = intotcpcb(inp);
1124 so = inp->inp_socket;
1125 }
1126 #ifdef INET6
1127 else if (in6p) {
1128 tp = in6totcpcb(in6p);
1129 so = in6p->in6p_socket;
1130 }
1131 #endif
1132 if (tp == 0) {
1133 TCP_FIELDS_TO_HOST(th);
1134 goto dropwithreset_ratelim;
1135 }
1136 if (tp->t_state == TCPS_CLOSED)
1137 goto drop;
1138
1139 /*
1140 * Checksum extended TCP header and data.
1141 */
1142 switch (af) {
1143 #ifdef INET
1144 case AF_INET:
1145 switch (m->m_pkthdr.csum_flags &
1146 ((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
1147 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
1148 case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
1149 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
1150 goto badcsum;
1151
1152 case M_CSUM_TCPv4|M_CSUM_DATA:
1153 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
1154 if ((m->m_pkthdr.csum_data ^ 0xffff) != 0)
1155 goto badcsum;
1156 break;
1157
1158 case M_CSUM_TCPv4:
1159 /* Checksum was okay. */
1160 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
1161 break;
1162
1163 default:
1164 /* Must compute it ourselves. */
1165 TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
1166 #ifndef PULLDOWN_TEST
1167 {
1168 struct ipovly *ipov;
1169 ipov = (struct ipovly *)ip;
1170 bzero(ipov->ih_x1, sizeof ipov->ih_x1);
1171 ipov->ih_len = htons(tlen + off);
1172
1173 if (in_cksum(m, len) != 0)
1174 goto badcsum;
1175 }
1176 #else
1177 if (in4_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0)
1178 goto badcsum;
1179 #endif /* ! PULLDOWN_TEST */
1180 break;
1181 }
1182 break;
1183 #endif /* INET4 */
1184
1185 #ifdef INET6
1186 case AF_INET6:
1187 if (in6_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0)
1188 goto badcsum;
1189 break;
1190 #endif /* INET6 */
1191 }
1192
1193 TCP_FIELDS_TO_HOST(th);
1194
1195 /* Unscale the window into a 32-bit value. */
1196 if ((tiflags & TH_SYN) == 0)
1197 tiwin = th->th_win << tp->snd_scale;
1198 else
1199 tiwin = th->th_win;
1200
1201 #ifdef INET6
1202 /* save packet options if user wanted */
1203 if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
1204 if (in6p->in6p_options) {
1205 m_freem(in6p->in6p_options);
1206 in6p->in6p_options = 0;
1207 }
1208 ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
1209 }
1210 #endif
1211
1212 if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
1213 union syn_cache_sa src;
1214 union syn_cache_sa dst;
1215
1216 bzero(&src, sizeof(src));
1217 bzero(&dst, sizeof(dst));
1218 switch (af) {
1219 #ifdef INET
1220 case AF_INET:
1221 src.sin.sin_len = sizeof(struct sockaddr_in);
1222 src.sin.sin_family = AF_INET;
1223 src.sin.sin_addr = ip->ip_src;
1224 src.sin.sin_port = th->th_sport;
1225
1226 dst.sin.sin_len = sizeof(struct sockaddr_in);
1227 dst.sin.sin_family = AF_INET;
1228 dst.sin.sin_addr = ip->ip_dst;
1229 dst.sin.sin_port = th->th_dport;
1230 break;
1231 #endif
1232 #ifdef INET6
1233 case AF_INET6:
1234 src.sin6.sin6_len = sizeof(struct sockaddr_in6);
1235 src.sin6.sin6_family = AF_INET6;
1236 src.sin6.sin6_addr = ip6->ip6_src;
1237 src.sin6.sin6_port = th->th_sport;
1238
1239 dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
1240 dst.sin6.sin6_family = AF_INET6;
1241 dst.sin6.sin6_addr = ip6->ip6_dst;
1242 dst.sin6.sin6_port = th->th_dport;
1243 break;
1244 #endif /* INET6 */
1245 default:
1246 goto badsyn; /*sanity*/
1247 }
1248
1249 if (so->so_options & SO_DEBUG) {
1250 #ifdef TCP_DEBUG
1251 ostate = tp->t_state;
1252 #endif
1253
1254 tcp_saveti = NULL;
1255 if (iphlen + sizeof(struct tcphdr) > MHLEN)
1256 goto nosave;
1257
1258 if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
1259 tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
1260 if (!tcp_saveti)
1261 goto nosave;
1262 } else {
1263 MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
1264 if (!tcp_saveti)
1265 goto nosave;
1266 MCLAIM(m, &tcp_mowner);
1267 tcp_saveti->m_len = iphlen;
1268 m_copydata(m, 0, iphlen,
1269 mtod(tcp_saveti, caddr_t));
1270 }
1271
1272 if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
1273 m_freem(tcp_saveti);
1274 tcp_saveti = NULL;
1275 } else {
1276 tcp_saveti->m_len += sizeof(struct tcphdr);
1277 bcopy(th, mtod(tcp_saveti, caddr_t) + iphlen,
1278 sizeof(struct tcphdr));
1279 }
1280 if (tcp_saveti) {
1281 /*
1282 * need to recover version # field, which was
1283 * overwritten on ip_cksum computation.
1284 */
1285 struct ip *sip;
1286 sip = mtod(tcp_saveti, struct ip *);
1287 switch (af) {
1288 #ifdef INET
1289 case AF_INET:
1290 sip->ip_v = 4;
1291 break;
1292 #endif
1293 #ifdef INET6
1294 case AF_INET6:
1295 sip->ip_v = 6;
1296 break;
1297 #endif
1298 }
1299 }
1300 nosave:;
1301 }
1302 if (so->so_options & SO_ACCEPTCONN) {
1303 if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1304 if (tiflags & TH_RST) {
1305 syn_cache_reset(&src.sa, &dst.sa, th);
1306 } else if ((tiflags & (TH_ACK|TH_SYN)) ==
1307 (TH_ACK|TH_SYN)) {
1308 /*
1309 * Received a SYN,ACK. This should
1310 * never happen while we are in
1311 * LISTEN. Send an RST.
1312 */
1313 goto badsyn;
1314 } else if (tiflags & TH_ACK) {
1315 so = syn_cache_get(&src.sa, &dst.sa,
1316 th, toff, tlen, so, m);
1317 if (so == NULL) {
1318 /*
1319 * We don't have a SYN for
1320 * this ACK; send an RST.
1321 */
1322 goto badsyn;
1323 } else if (so ==
1324 (struct socket *)(-1)) {
1325 /*
1326 * We were unable to create
1327 * the connection. If the
1328 * 3-way handshake was
1329 * completed, and RST has
1330 * been sent to the peer.
1331 * Since the mbuf might be
1332 * in use for the reply,
1333 * do not free it.
1334 */
1335 m = NULL;
1336 } else {
1337 /*
1338 * We have created a
1339 * full-blown connection.
1340 */
1341 tp = NULL;
1342 inp = NULL;
1343 #ifdef INET6
1344 in6p = NULL;
1345 #endif
1346 switch (so->so_proto->pr_domain->dom_family) {
1347 #ifdef INET
1348 case AF_INET:
1349 inp = sotoinpcb(so);
1350 tp = intotcpcb(inp);
1351 break;
1352 #endif
1353 #ifdef INET6
1354 case AF_INET6:
1355 in6p = sotoin6pcb(so);
1356 tp = in6totcpcb(in6p);
1357 break;
1358 #endif
1359 }
1360 if (tp == NULL)
1361 goto badsyn; /*XXX*/
1362 tiwin <<= tp->snd_scale;
1363 goto after_listen;
1364 }
1365 } else {
1366 /*
1367 * None of RST, SYN or ACK was set.
1368 * This is an invalid packet for a
1369 * TCB in LISTEN state. Send a RST.
1370 */
1371 goto badsyn;
1372 }
1373 } else {
1374 /*
1375 * Received a SYN.
1376 */
1377
1378 #ifdef INET6
1379 /*
1380 * If deprecated address is forbidden, we do
1381 * not accept SYN to deprecated interface
1382 * address to prevent any new inbound
1383 * connection from getting established.
1384 * When we do not accept SYN, we send a TCP
1385 * RST, with deprecated source address (instead
1386 * of dropping it). We compromise it as it is
1387 * much better for peer to send a RST, and
1388 * RST will be the final packet for the
1389 * exchange.
1390 *
1391 * If we do not forbid deprecated addresses, we
1392 * accept the SYN packet. RFC2462 does not
1393 * suggest dropping SYN in this case.
1394 * If we decipher RFC2462 5.5.4, it says like
1395 * this:
1396 * 1. use of deprecated addr with existing
1397 * communication is okay - "SHOULD continue
1398 * to be used"
1399 * 2. use of it with new communication:
1400 * (2a) "SHOULD NOT be used if alternate
1401 * address with sufficient scope is
1402 * available"
1403 * (2b) nothing mentioned otherwise.
1404 * Here we fall into (2b) case as we have no
1405 * choice in our source address selection - we
1406 * must obey the peer.
1407 *
1408 * The wording in RFC2462 is confusing, and
1409 * there are multiple description text for
1410 * deprecated address handling - worse, they
1411 * are not exactly the same. I believe 5.5.4
1412 * is the best one, so we follow 5.5.4.
1413 */
1414 if (af == AF_INET6 && !ip6_use_deprecated) {
1415 struct in6_ifaddr *ia6;
1416 if ((ia6 = in6ifa_ifpwithaddr(m->m_pkthdr.rcvif,
1417 &ip6->ip6_dst)) &&
1418 (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1419 tp = NULL;
1420 goto dropwithreset;
1421 }
1422 }
1423 #endif
1424
1425 /*
1426 * LISTEN socket received a SYN
1427 * from itself? This can't possibly
1428 * be valid; drop the packet.
1429 */
1430 if (th->th_sport == th->th_dport) {
1431 int i;
1432
1433 switch (af) {
1434 #ifdef INET
1435 case AF_INET:
1436 i = in_hosteq(ip->ip_src, ip->ip_dst);
1437 break;
1438 #endif
1439 #ifdef INET6
1440 case AF_INET6:
1441 i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
1442 break;
1443 #endif
1444 default:
1445 i = 1;
1446 }
1447 if (i) {
1448 tcpstat.tcps_badsyn++;
1449 goto drop;
1450 }
1451 }
1452
1453 /*
1454 * SYN looks ok; create compressed TCP
1455 * state for it.
1456 */
1457 if (so->so_qlen <= so->so_qlimit &&
1458 syn_cache_add(&src.sa, &dst.sa, th, tlen,
1459 so, m, optp, optlen, &opti))
1460 m = NULL;
1461 }
1462 goto drop;
1463 }
1464 }
1465
1466 after_listen:
1467 #ifdef DIAGNOSTIC
1468 /*
1469 * Should not happen now that all embryonic connections
1470 * are handled with compressed state.
1471 */
1472 if (tp->t_state == TCPS_LISTEN)
1473 panic("tcp_input: TCPS_LISTEN");
1474 #endif
1475
1476 /*
1477 * Segment received on connection.
1478 * Reset idle time and keep-alive timer.
1479 */
1480 tp->t_rcvtime = tcp_now;
1481 if (TCPS_HAVEESTABLISHED(tp->t_state))
1482 TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1483
1484 /*
1485 * Process options.
1486 */
1487 if (optp)
1488 tcp_dooptions(tp, optp, optlen, th, &opti);
1489
1490 /*
1491 * Header prediction: check for the two common cases
1492 * of a uni-directional data xfer. If the packet has
1493 * no control flags, is in-sequence, the window didn't
1494 * change and we're not retransmitting, it's a
1495 * candidate. If the length is zero and the ack moved
1496 * forward, we're the sender side of the xfer. Just
1497 * free the data acked & wake any higher level process
1498 * that was blocked waiting for space. If the length
1499 * is non-zero and the ack didn't move, we're the
1500 * receiver side. If we're getting packets in-order
1501 * (the reassembly queue is empty), add the data to
1502 * the socket buffer and note that we need a delayed ack.
1503 */
1504 if (tp->t_state == TCPS_ESTABLISHED &&
1505 (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1506 (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
1507 th->th_seq == tp->rcv_nxt &&
1508 tiwin && tiwin == tp->snd_wnd &&
1509 tp->snd_nxt == tp->snd_max) {
1510
1511 /*
1512 * If last ACK falls within this segment's sequence numbers,
1513 * record the timestamp.
1514 */
1515 if (opti.ts_present &&
1516 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1517 SEQ_LT(tp->last_ack_sent, th->th_seq + tlen)) {
1518 tp->ts_recent_age = TCP_TIMESTAMP(tp);
1519 tp->ts_recent = opti.ts_val;
1520 }
1521
1522 if (tlen == 0) {
1523 if (SEQ_GT(th->th_ack, tp->snd_una) &&
1524 SEQ_LEQ(th->th_ack, tp->snd_max) &&
1525 tp->snd_cwnd >= tp->snd_wnd &&
1526 tp->t_dupacks < tcprexmtthresh) {
1527 /*
1528 * this is a pure ack for outstanding data.
1529 */
1530 ++tcpstat.tcps_predack;
1531 if (opti.ts_present && opti.ts_ecr)
1532 tcp_xmit_timer(tp,
1533 TCP_TIMESTAMP(tp) - opti.ts_ecr + 1);
1534 else if (tp->t_rtttime &&
1535 SEQ_GT(th->th_ack, tp->t_rtseq))
1536 tcp_xmit_timer(tp,
1537 tcp_now - tp->t_rtttime);
1538 acked = th->th_ack - tp->snd_una;
1539 tcpstat.tcps_rcvackpack++;
1540 tcpstat.tcps_rcvackbyte += acked;
1541 ND6_HINT(tp);
1542 sbdrop(&so->so_snd, acked);
1543 /*
1544 * We want snd_recover to track snd_una to
1545 * avoid sequence wraparound problems for
1546 * very large transfers.
1547 */
1548 tp->snd_una = tp->snd_recover = th->th_ack;
1549 m_freem(m);
1550
1551 /*
1552 * If all outstanding data are acked, stop
1553 * retransmit timer, otherwise restart timer
1554 * using current (possibly backed-off) value.
1555 * If process is waiting for space,
1556 * wakeup/selwakeup/signal. If data
1557 * are ready to send, let tcp_output
1558 * decide between more output or persist.
1559 */
1560 if (tp->snd_una == tp->snd_max)
1561 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1562 else if (TCP_TIMER_ISARMED(tp,
1563 TCPT_PERSIST) == 0)
1564 TCP_TIMER_ARM(tp, TCPT_REXMT,
1565 tp->t_rxtcur);
1566
1567 sowwakeup(so);
1568 if (so->so_snd.sb_cc)
1569 (void) tcp_output(tp);
1570 if (tcp_saveti)
1571 m_freem(tcp_saveti);
1572 return;
1573 }
1574 } else if (th->th_ack == tp->snd_una &&
1575 TAILQ_FIRST(&tp->segq) == NULL &&
1576 tlen <= sbspace(&so->so_rcv)) {
1577 /*
1578 * this is a pure, in-sequence data packet
1579 * with nothing on the reassembly queue and
1580 * we have enough buffer space to take it.
1581 */
1582 ++tcpstat.tcps_preddat;
1583 tp->rcv_nxt += tlen;
1584 tcpstat.tcps_rcvpack++;
1585 tcpstat.tcps_rcvbyte += tlen;
1586 ND6_HINT(tp);
1587 /*
1588 * Drop TCP, IP headers and TCP options then add data
1589 * to socket buffer.
1590 */
1591 if (so->so_state & SS_CANTRCVMORE)
1592 m_freem(m);
1593 else {
1594 m_adj(m, toff + off);
1595 sbappendstream(&so->so_rcv, m);
1596 }
1597 sorwakeup(so);
1598 TCP_SETUP_ACK(tp, th);
1599 if (tp->t_flags & TF_ACKNOW)
1600 (void) tcp_output(tp);
1601 if (tcp_saveti)
1602 m_freem(tcp_saveti);
1603 return;
1604 }
1605 }
1606
1607 /*
1608 * Compute mbuf offset to TCP data segment.
1609 */
1610 hdroptlen = toff + off;
1611
1612 /*
1613 * Calculate amount of space in receive window,
1614 * and then do TCP input processing.
1615 * Receive window is amount of space in rcv queue,
1616 * but not less than advertised window.
1617 */
1618 { int win;
1619
1620 win = sbspace(&so->so_rcv);
1621 if (win < 0)
1622 win = 0;
1623 tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1624 }
1625
1626 switch (tp->t_state) {
1627 case TCPS_LISTEN:
1628 /*
1629 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
1630 */
1631 if (m->m_flags & (M_BCAST|M_MCAST))
1632 goto drop;
1633 switch (af) {
1634 #ifdef INET6
1635 case AF_INET6:
1636 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
1637 goto drop;
1638 break;
1639 #endif /* INET6 */
1640 case AF_INET:
1641 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
1642 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
1643 goto drop;
1644 break;
1645 }
1646 break;
1647
1648 /*
1649 * If the state is SYN_SENT:
1650 * if seg contains an ACK, but not for our SYN, drop the input.
1651 * if seg contains a RST, then drop the connection.
1652 * if seg does not contain SYN, then drop it.
1653 * Otherwise this is an acceptable SYN segment
1654 * initialize tp->rcv_nxt and tp->irs
1655 * if seg contains ack then advance tp->snd_una
1656 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1657 * arrange for segment to be acked (eventually)
1658 * continue processing rest of data/controls, beginning with URG
1659 */
1660 case TCPS_SYN_SENT:
1661 if ((tiflags & TH_ACK) &&
1662 (SEQ_LEQ(th->th_ack, tp->iss) ||
1663 SEQ_GT(th->th_ack, tp->snd_max)))
1664 goto dropwithreset;
1665 if (tiflags & TH_RST) {
1666 if (tiflags & TH_ACK)
1667 tp = tcp_drop(tp, ECONNREFUSED);
1668 goto drop;
1669 }
1670 if ((tiflags & TH_SYN) == 0)
1671 goto drop;
1672 if (tiflags & TH_ACK) {
1673 tp->snd_una = tp->snd_recover = th->th_ack;
1674 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1675 tp->snd_nxt = tp->snd_una;
1676 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1677 }
1678 tp->irs = th->th_seq;
1679 tcp_rcvseqinit(tp);
1680 tp->t_flags |= TF_ACKNOW;
1681 tcp_mss_from_peer(tp, opti.maxseg);
1682
1683 /*
1684 * Initialize the initial congestion window. If we
1685 * had to retransmit the SYN, we must initialize cwnd
1686 * to 1 segment (i.e. the Loss Window).
1687 */
1688 if (tp->t_flags & TF_SYN_REXMT)
1689 tp->snd_cwnd = tp->t_peermss;
1690 else
1691 tp->snd_cwnd = TCP_INITIAL_WINDOW(tcp_init_win,
1692 tp->t_peermss);
1693
1694 tcp_rmx_rtt(tp);
1695 if (tiflags & TH_ACK) {
1696 tcpstat.tcps_connects++;
1697 soisconnected(so);
1698 tcp_established(tp);
1699 /* Do window scaling on this connection? */
1700 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1701 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1702 tp->snd_scale = tp->requested_s_scale;
1703 tp->rcv_scale = tp->request_r_scale;
1704 }
1705 TCP_REASS_LOCK(tp);
1706 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1707 TCP_REASS_UNLOCK(tp);
1708 /*
1709 * if we didn't have to retransmit the SYN,
1710 * use its rtt as our initial srtt & rtt var.
1711 */
1712 if (tp->t_rtttime)
1713 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
1714 } else
1715 tp->t_state = TCPS_SYN_RECEIVED;
1716
1717 /*
1718 * Advance th->th_seq to correspond to first data byte.
1719 * If data, trim to stay within window,
1720 * dropping FIN if necessary.
1721 */
1722 th->th_seq++;
1723 if (tlen > tp->rcv_wnd) {
1724 todrop = tlen - tp->rcv_wnd;
1725 m_adj(m, -todrop);
1726 tlen = tp->rcv_wnd;
1727 tiflags &= ~TH_FIN;
1728 tcpstat.tcps_rcvpackafterwin++;
1729 tcpstat.tcps_rcvbyteafterwin += todrop;
1730 }
1731 tp->snd_wl1 = th->th_seq - 1;
1732 tp->rcv_up = th->th_seq;
1733 goto step6;
1734
1735 /*
1736 * If the state is SYN_RECEIVED:
1737 * If seg contains an ACK, but not for our SYN, drop the input
1738 * and generate an RST. See page 36, rfc793
1739 */
1740 case TCPS_SYN_RECEIVED:
1741 if ((tiflags & TH_ACK) &&
1742 (SEQ_LEQ(th->th_ack, tp->iss) ||
1743 SEQ_GT(th->th_ack, tp->snd_max)))
1744 goto dropwithreset;
1745 break;
1746 }
1747
1748 /*
1749 * States other than LISTEN or SYN_SENT.
1750 * First check timestamp, if present.
1751 * Then check that at least some bytes of segment are within
1752 * receive window. If segment begins before rcv_nxt,
1753 * drop leading data (and SYN); if nothing left, just ack.
1754 *
1755 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1756 * and it's less than ts_recent, drop it.
1757 */
1758 if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
1759 TSTMP_LT(opti.ts_val, tp->ts_recent)) {
1760
1761 /* Check to see if ts_recent is over 24 days old. */
1762 if ((int)(TCP_TIMESTAMP(tp) - tp->ts_recent_age) >
1763 TCP_PAWS_IDLE) {
1764 /*
1765 * Invalidate ts_recent. If this segment updates
1766 * ts_recent, the age will be reset later and ts_recent
1767 * will get a valid value. If it does not, setting
1768 * ts_recent to zero will at least satisfy the
1769 * requirement that zero be placed in the timestamp
1770 * echo reply when ts_recent isn't valid. The
1771 * age isn't reset until we get a valid ts_recent
1772 * because we don't want out-of-order segments to be
1773 * dropped when ts_recent is old.
1774 */
1775 tp->ts_recent = 0;
1776 } else {
1777 tcpstat.tcps_rcvduppack++;
1778 tcpstat.tcps_rcvdupbyte += tlen;
1779 tcpstat.tcps_pawsdrop++;
1780 goto dropafterack;
1781 }
1782 }
1783
1784 todrop = tp->rcv_nxt - th->th_seq;
1785 if (todrop > 0) {
1786 if (tiflags & TH_SYN) {
1787 tiflags &= ~TH_SYN;
1788 th->th_seq++;
1789 if (th->th_urp > 1)
1790 th->th_urp--;
1791 else {
1792 tiflags &= ~TH_URG;
1793 th->th_urp = 0;
1794 }
1795 todrop--;
1796 }
1797 if (todrop > tlen ||
1798 (todrop == tlen && (tiflags & TH_FIN) == 0)) {
1799 /*
1800 * Any valid FIN must be to the left of the window.
1801 * At this point the FIN must be a duplicate or
1802 * out of sequence; drop it.
1803 */
1804 tiflags &= ~TH_FIN;
1805 /*
1806 * Send an ACK to resynchronize and drop any data.
1807 * But keep on processing for RST or ACK.
1808 */
1809 tp->t_flags |= TF_ACKNOW;
1810 todrop = tlen;
1811 tcpstat.tcps_rcvdupbyte += todrop;
1812 tcpstat.tcps_rcvduppack++;
1813 } else {
1814 tcpstat.tcps_rcvpartduppack++;
1815 tcpstat.tcps_rcvpartdupbyte += todrop;
1816 }
1817 hdroptlen += todrop; /*drop from head afterwards*/
1818 th->th_seq += todrop;
1819 tlen -= todrop;
1820 if (th->th_urp > todrop)
1821 th->th_urp -= todrop;
1822 else {
1823 tiflags &= ~TH_URG;
1824 th->th_urp = 0;
1825 }
1826 }
1827
1828 /*
1829 * If new data are received on a connection after the
1830 * user processes are gone, then RST the other end.
1831 */
1832 if ((so->so_state & SS_NOFDREF) &&
1833 tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1834 tp = tcp_close(tp);
1835 tcpstat.tcps_rcvafterclose++;
1836 goto dropwithreset;
1837 }
1838
1839 /*
1840 * If segment ends after window, drop trailing data
1841 * (and PUSH and FIN); if nothing left, just ACK.
1842 */
1843 todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
1844 if (todrop > 0) {
1845 tcpstat.tcps_rcvpackafterwin++;
1846 if (todrop >= tlen) {
1847 tcpstat.tcps_rcvbyteafterwin += tlen;
1848 /*
1849 * If a new connection request is received
1850 * while in TIME_WAIT, drop the old connection
1851 * and start over if the sequence numbers
1852 * are above the previous ones.
1853 *
1854 * NOTE: We will checksum the packet again, and
1855 * so we need to put the header fields back into
1856 * network order!
1857 * XXX This kind of sucks, but we don't expect
1858 * XXX this to happen very often, so maybe it
1859 * XXX doesn't matter so much.
1860 */
1861 if (tiflags & TH_SYN &&
1862 tp->t_state == TCPS_TIME_WAIT &&
1863 SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1864 iss = tcp_new_iss(tp, tp->snd_nxt);
1865 tp = tcp_close(tp);
1866 TCP_FIELDS_TO_NET(th);
1867 goto findpcb;
1868 }
1869 /*
1870 * If window is closed can only take segments at
1871 * window edge, and have to drop data and PUSH from
1872 * incoming segments. Continue processing, but
1873 * remember to ack. Otherwise, drop segment
1874 * and ack.
1875 */
1876 if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1877 tp->t_flags |= TF_ACKNOW;
1878 tcpstat.tcps_rcvwinprobe++;
1879 } else
1880 goto dropafterack;
1881 } else
1882 tcpstat.tcps_rcvbyteafterwin += todrop;
1883 m_adj(m, -todrop);
1884 tlen -= todrop;
1885 tiflags &= ~(TH_PUSH|TH_FIN);
1886 }
1887
1888 /*
1889 * If last ACK falls within this segment's sequence numbers,
1890 * and the timestamp is newer, record it.
1891 */
1892 if (opti.ts_present && TSTMP_GEQ(opti.ts_val, tp->ts_recent) &&
1893 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1894 SEQ_LT(tp->last_ack_sent, th->th_seq + tlen +
1895 ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
1896 tp->ts_recent_age = TCP_TIMESTAMP(tp);
1897 tp->ts_recent = opti.ts_val;
1898 }
1899
1900 /*
1901 * If the RST bit is set examine the state:
1902 * SYN_RECEIVED STATE:
1903 * If passive open, return to LISTEN state.
1904 * If active open, inform user that connection was refused.
1905 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
1906 * Inform user that connection was reset, and close tcb.
1907 * CLOSING, LAST_ACK, TIME_WAIT STATES
1908 * Close the tcb.
1909 */
1910 if (tiflags&TH_RST) switch (tp->t_state) {
1911
1912 case TCPS_SYN_RECEIVED:
1913 so->so_error = ECONNREFUSED;
1914 goto close;
1915
1916 case TCPS_ESTABLISHED:
1917 case TCPS_FIN_WAIT_1:
1918 case TCPS_FIN_WAIT_2:
1919 case TCPS_CLOSE_WAIT:
1920 so->so_error = ECONNRESET;
1921 close:
1922 tp->t_state = TCPS_CLOSED;
1923 tcpstat.tcps_drops++;
1924 tp = tcp_close(tp);
1925 goto drop;
1926
1927 case TCPS_CLOSING:
1928 case TCPS_LAST_ACK:
1929 case TCPS_TIME_WAIT:
1930 tp = tcp_close(tp);
1931 goto drop;
1932 }
1933
1934 /*
1935 * If a SYN is in the window, then this is an
1936 * error and we send an RST and drop the connection.
1937 */
1938 if (tiflags & TH_SYN) {
1939 tp = tcp_drop(tp, ECONNRESET);
1940 goto dropwithreset;
1941 }
1942
1943 /*
1944 * If the ACK bit is off we drop the segment and return.
1945 */
1946 if ((tiflags & TH_ACK) == 0) {
1947 if (tp->t_flags & TF_ACKNOW)
1948 goto dropafterack;
1949 else
1950 goto drop;
1951 }
1952
1953 /*
1954 * Ack processing.
1955 */
1956 switch (tp->t_state) {
1957
1958 /*
1959 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
1960 * ESTABLISHED state and continue processing, otherwise
1961 * send an RST.
1962 */
1963 case TCPS_SYN_RECEIVED:
1964 if (SEQ_GT(tp->snd_una, th->th_ack) ||
1965 SEQ_GT(th->th_ack, tp->snd_max))
1966 goto dropwithreset;
1967 tcpstat.tcps_connects++;
1968 soisconnected(so);
1969 tcp_established(tp);
1970 /* Do window scaling? */
1971 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1972 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1973 tp->snd_scale = tp->requested_s_scale;
1974 tp->rcv_scale = tp->request_r_scale;
1975 }
1976 TCP_REASS_LOCK(tp);
1977 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1978 TCP_REASS_UNLOCK(tp);
1979 tp->snd_wl1 = th->th_seq - 1;
1980 /* fall into ... */
1981
1982 /*
1983 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1984 * ACKs. If the ack is in the range
1985 * tp->snd_una < th->th_ack <= tp->snd_max
1986 * then advance tp->snd_una to th->th_ack and drop
1987 * data from the retransmission queue. If this ACK reflects
1988 * more up to date window information we update our window information.
1989 */
1990 case TCPS_ESTABLISHED:
1991 case TCPS_FIN_WAIT_1:
1992 case TCPS_FIN_WAIT_2:
1993 case TCPS_CLOSE_WAIT:
1994 case TCPS_CLOSING:
1995 case TCPS_LAST_ACK:
1996 case TCPS_TIME_WAIT:
1997
1998 if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
1999 if (tlen == 0 && tiwin == tp->snd_wnd) {
2000 tcpstat.tcps_rcvdupack++;
2001 /*
2002 * If we have outstanding data (other than
2003 * a window probe), this is a completely
2004 * duplicate ack (ie, window info didn't
2005 * change), the ack is the biggest we've
2006 * seen and we've seen exactly our rexmt
2007 * threshhold of them, assume a packet
2008 * has been dropped and retransmit it.
2009 * Kludge snd_nxt & the congestion
2010 * window so we send only this one
2011 * packet.
2012 *
2013 * We know we're losing at the current
2014 * window size so do congestion avoidance
2015 * (set ssthresh to half the current window
2016 * and pull our congestion window back to
2017 * the new ssthresh).
2018 *
2019 * Dup acks mean that packets have left the
2020 * network (they're now cached at the receiver)
2021 * so bump cwnd by the amount in the receiver
2022 * to keep a constant cwnd packets in the
2023 * network.
2024 */
2025 if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
2026 th->th_ack != tp->snd_una)
2027 tp->t_dupacks = 0;
2028 else if (++tp->t_dupacks == tcprexmtthresh) {
2029 tcp_seq onxt = tp->snd_nxt;
2030 u_int win =
2031 min(tp->snd_wnd, tp->snd_cwnd) /
2032 2 / tp->t_segsz;
2033 if (tcp_do_newreno && SEQ_LT(th->th_ack,
2034 tp->snd_recover)) {
2035 /*
2036 * False fast retransmit after
2037 * timeout. Do not cut window.
2038 */
2039 tp->snd_cwnd += tp->t_segsz;
2040 tp->t_dupacks = 0;
2041 (void) tcp_output(tp);
2042 goto drop;
2043 }
2044
2045 if (win < 2)
2046 win = 2;
2047 tp->snd_ssthresh = win * tp->t_segsz;
2048 tp->snd_recover = tp->snd_max;
2049 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2050 tp->t_rtttime = 0;
2051 tp->snd_nxt = th->th_ack;
2052 tp->snd_cwnd = tp->t_segsz;
2053 (void) tcp_output(tp);
2054 tp->snd_cwnd = tp->snd_ssthresh +
2055 tp->t_segsz * tp->t_dupacks;
2056 if (SEQ_GT(onxt, tp->snd_nxt))
2057 tp->snd_nxt = onxt;
2058 goto drop;
2059 } else if (tp->t_dupacks > tcprexmtthresh) {
2060 tp->snd_cwnd += tp->t_segsz;
2061 (void) tcp_output(tp);
2062 goto drop;
2063 }
2064 } else
2065 tp->t_dupacks = 0;
2066 break;
2067 }
2068 /*
2069 * If the congestion window was inflated to account
2070 * for the other side's cached packets, retract it.
2071 */
2072 if (tcp_do_newreno == 0) {
2073 if (tp->t_dupacks >= tcprexmtthresh &&
2074 tp->snd_cwnd > tp->snd_ssthresh)
2075 tp->snd_cwnd = tp->snd_ssthresh;
2076 tp->t_dupacks = 0;
2077 } else if (tp->t_dupacks >= tcprexmtthresh &&
2078 tcp_newreno(tp, th) == 0) {
2079 tp->snd_cwnd = tp->snd_ssthresh;
2080 /*
2081 * Window inflation should have left us with approx.
2082 * snd_ssthresh outstanding data. But in case we
2083 * would be inclined to send a burst, better to do
2084 * it via the slow start mechanism.
2085 */
2086 if (SEQ_SUB(tp->snd_max, th->th_ack) < tp->snd_ssthresh)
2087 tp->snd_cwnd = SEQ_SUB(tp->snd_max, th->th_ack)
2088 + tp->t_segsz;
2089 tp->t_dupacks = 0;
2090 }
2091 if (SEQ_GT(th->th_ack, tp->snd_max)) {
2092 tcpstat.tcps_rcvacktoomuch++;
2093 goto dropafterack;
2094 }
2095 acked = th->th_ack - tp->snd_una;
2096 tcpstat.tcps_rcvackpack++;
2097 tcpstat.tcps_rcvackbyte += acked;
2098
2099 /*
2100 * If we have a timestamp reply, update smoothed
2101 * round trip time. If no timestamp is present but
2102 * transmit timer is running and timed sequence
2103 * number was acked, update smoothed round trip time.
2104 * Since we now have an rtt measurement, cancel the
2105 * timer backoff (cf., Phil Karn's retransmit alg.).
2106 * Recompute the initial retransmit timer.
2107 */
2108 if (opti.ts_present && opti.ts_ecr)
2109 tcp_xmit_timer(tp, TCP_TIMESTAMP(tp) - opti.ts_ecr + 1);
2110 else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2111 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2112
2113 /*
2114 * If all outstanding data is acked, stop retransmit
2115 * timer and remember to restart (more output or persist).
2116 * If there is more data to be acked, restart retransmit
2117 * timer, using current (possibly backed-off) value.
2118 */
2119 if (th->th_ack == tp->snd_max) {
2120 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2121 needoutput = 1;
2122 } else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
2123 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
2124 /*
2125 * When new data is acked, open the congestion window.
2126 * If the window gives us less than ssthresh packets
2127 * in flight, open exponentially (segsz per packet).
2128 * Otherwise open linearly: segsz per window
2129 * (segsz^2 / cwnd per packet), plus a constant
2130 * fraction of a packet (segsz/8) to help larger windows
2131 * open quickly enough.
2132 */
2133 {
2134 u_int cw = tp->snd_cwnd;
2135 u_int incr = tp->t_segsz;
2136
2137 if (cw > tp->snd_ssthresh)
2138 incr = incr * incr / cw;
2139 if (tcp_do_newreno == 0 || SEQ_GEQ(th->th_ack, tp->snd_recover))
2140 tp->snd_cwnd = min(cw + incr,
2141 TCP_MAXWIN << tp->snd_scale);
2142 }
2143 ND6_HINT(tp);
2144 if (acked > so->so_snd.sb_cc) {
2145 tp->snd_wnd -= so->so_snd.sb_cc;
2146 sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
2147 ourfinisacked = 1;
2148 } else {
2149 sbdrop(&so->so_snd, acked);
2150 tp->snd_wnd -= acked;
2151 ourfinisacked = 0;
2152 }
2153 sowwakeup(so);
2154 /*
2155 * We want snd_recover to track snd_una to
2156 * avoid sequence wraparound problems for
2157 * very large transfers.
2158 */
2159 tp->snd_una = tp->snd_recover = th->th_ack;
2160 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2161 tp->snd_nxt = tp->snd_una;
2162
2163 switch (tp->t_state) {
2164
2165 /*
2166 * In FIN_WAIT_1 STATE in addition to the processing
2167 * for the ESTABLISHED state if our FIN is now acknowledged
2168 * then enter FIN_WAIT_2.
2169 */
2170 case TCPS_FIN_WAIT_1:
2171 if (ourfinisacked) {
2172 /*
2173 * If we can't receive any more
2174 * data, then closing user can proceed.
2175 * Starting the timer is contrary to the
2176 * specification, but if we don't get a FIN
2177 * we'll hang forever.
2178 */
2179 if (so->so_state & SS_CANTRCVMORE) {
2180 soisdisconnected(so);
2181 if (tcp_maxidle > 0)
2182 TCP_TIMER_ARM(tp, TCPT_2MSL,
2183 tcp_maxidle);
2184 }
2185 tp->t_state = TCPS_FIN_WAIT_2;
2186 }
2187 break;
2188
2189 /*
2190 * In CLOSING STATE in addition to the processing for
2191 * the ESTABLISHED state if the ACK acknowledges our FIN
2192 * then enter the TIME-WAIT state, otherwise ignore
2193 * the segment.
2194 */
2195 case TCPS_CLOSING:
2196 if (ourfinisacked) {
2197 tp->t_state = TCPS_TIME_WAIT;
2198 tcp_canceltimers(tp);
2199 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2200 soisdisconnected(so);
2201 }
2202 break;
2203
2204 /*
2205 * In LAST_ACK, we may still be waiting for data to drain
2206 * and/or to be acked, as well as for the ack of our FIN.
2207 * If our FIN is now acknowledged, delete the TCB,
2208 * enter the closed state and return.
2209 */
2210 case TCPS_LAST_ACK:
2211 if (ourfinisacked) {
2212 tp = tcp_close(tp);
2213 goto drop;
2214 }
2215 break;
2216
2217 /*
2218 * In TIME_WAIT state the only thing that should arrive
2219 * is a retransmission of the remote FIN. Acknowledge
2220 * it and restart the finack timer.
2221 */
2222 case TCPS_TIME_WAIT:
2223 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2224 goto dropafterack;
2225 }
2226 }
2227
2228 step6:
2229 /*
2230 * Update window information.
2231 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2232 */
2233 if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2234 (tp->snd_wl1 == th->th_seq && SEQ_LT(tp->snd_wl2, th->th_ack)) ||
2235 (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))) {
2236 /* keep track of pure window updates */
2237 if (tlen == 0 &&
2238 tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2239 tcpstat.tcps_rcvwinupd++;
2240 tp->snd_wnd = tiwin;
2241 tp->snd_wl1 = th->th_seq;
2242 tp->snd_wl2 = th->th_ack;
2243 if (tp->snd_wnd > tp->max_sndwnd)
2244 tp->max_sndwnd = tp->snd_wnd;
2245 needoutput = 1;
2246 }
2247
2248 /*
2249 * Process segments with URG.
2250 */
2251 if ((tiflags & TH_URG) && th->th_urp &&
2252 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2253 /*
2254 * This is a kludge, but if we receive and accept
2255 * random urgent pointers, we'll crash in
2256 * soreceive. It's hard to imagine someone
2257 * actually wanting to send this much urgent data.
2258 */
2259 if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2260 th->th_urp = 0; /* XXX */
2261 tiflags &= ~TH_URG; /* XXX */
2262 goto dodata; /* XXX */
2263 }
2264 /*
2265 * If this segment advances the known urgent pointer,
2266 * then mark the data stream. This should not happen
2267 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2268 * a FIN has been received from the remote side.
2269 * In these states we ignore the URG.
2270 *
2271 * According to RFC961 (Assigned Protocols),
2272 * the urgent pointer points to the last octet
2273 * of urgent data. We continue, however,
2274 * to consider it to indicate the first octet
2275 * of data past the urgent section as the original
2276 * spec states (in one of two places).
2277 */
2278 if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2279 tp->rcv_up = th->th_seq + th->th_urp;
2280 so->so_oobmark = so->so_rcv.sb_cc +
2281 (tp->rcv_up - tp->rcv_nxt) - 1;
2282 if (so->so_oobmark == 0)
2283 so->so_state |= SS_RCVATMARK;
2284 sohasoutofband(so);
2285 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2286 }
2287 /*
2288 * Remove out of band data so doesn't get presented to user.
2289 * This can happen independent of advancing the URG pointer,
2290 * but if two URG's are pending at once, some out-of-band
2291 * data may creep in... ick.
2292 */
2293 if (th->th_urp <= (u_int16_t) tlen
2294 #ifdef SO_OOBINLINE
2295 && (so->so_options & SO_OOBINLINE) == 0
2296 #endif
2297 )
2298 tcp_pulloutofband(so, th, m, hdroptlen);
2299 } else
2300 /*
2301 * If no out of band data is expected,
2302 * pull receive urgent pointer along
2303 * with the receive window.
2304 */
2305 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2306 tp->rcv_up = tp->rcv_nxt;
2307 dodata: /* XXX */
2308
2309 /*
2310 * Process the segment text, merging it into the TCP sequencing queue,
2311 * and arranging for acknowledgement of receipt if necessary.
2312 * This process logically involves adjusting tp->rcv_wnd as data
2313 * is presented to the user (this happens in tcp_usrreq.c,
2314 * case PRU_RCVD). If a FIN has already been received on this
2315 * connection then we just ignore the text.
2316 */
2317 if ((tlen || (tiflags & TH_FIN)) &&
2318 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2319 /*
2320 * Insert segment ti into reassembly queue of tcp with
2321 * control block tp. Return TH_FIN if reassembly now includes
2322 * a segment with FIN. The macro form does the common case
2323 * inline (segment is the next to be received on an
2324 * established connection, and the queue is empty),
2325 * avoiding linkage into and removal from the queue and
2326 * repetition of various conversions.
2327 * Set DELACK for segments received in order, but ack
2328 * immediately when segments are out of order
2329 * (so fast retransmit can work).
2330 */
2331 /* NOTE: this was TCP_REASS() macro, but used only once */
2332 TCP_REASS_LOCK(tp);
2333 if (th->th_seq == tp->rcv_nxt &&
2334 TAILQ_FIRST(&tp->segq) == NULL &&
2335 tp->t_state == TCPS_ESTABLISHED) {
2336 TCP_SETUP_ACK(tp, th);
2337 tp->rcv_nxt += tlen;
2338 tiflags = th->th_flags & TH_FIN;
2339 tcpstat.tcps_rcvpack++;
2340 tcpstat.tcps_rcvbyte += tlen;
2341 ND6_HINT(tp);
2342 if (so->so_state & SS_CANTRCVMORE)
2343 m_freem(m);
2344 else {
2345 m_adj(m, hdroptlen);
2346 sbappendstream(&(so)->so_rcv, m);
2347 }
2348 sorwakeup(so);
2349 } else {
2350 m_adj(m, hdroptlen);
2351 tiflags = tcp_reass(tp, th, m, &tlen);
2352 tp->t_flags |= TF_ACKNOW;
2353 }
2354 TCP_REASS_UNLOCK(tp);
2355
2356 /*
2357 * Note the amount of data that peer has sent into
2358 * our window, in order to estimate the sender's
2359 * buffer size.
2360 */
2361 len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2362 } else {
2363 m_freem(m);
2364 m = NULL;
2365 tiflags &= ~TH_FIN;
2366 }
2367
2368 /*
2369 * If FIN is received ACK the FIN and let the user know
2370 * that the connection is closing. Ignore a FIN received before
2371 * the connection is fully established.
2372 */
2373 if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2374 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2375 socantrcvmore(so);
2376 tp->t_flags |= TF_ACKNOW;
2377 tp->rcv_nxt++;
2378 }
2379 switch (tp->t_state) {
2380
2381 /*
2382 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2383 */
2384 case TCPS_ESTABLISHED:
2385 tp->t_state = TCPS_CLOSE_WAIT;
2386 break;
2387
2388 /*
2389 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2390 * enter the CLOSING state.
2391 */
2392 case TCPS_FIN_WAIT_1:
2393 tp->t_state = TCPS_CLOSING;
2394 break;
2395
2396 /*
2397 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2398 * starting the time-wait timer, turning off the other
2399 * standard timers.
2400 */
2401 case TCPS_FIN_WAIT_2:
2402 tp->t_state = TCPS_TIME_WAIT;
2403 tcp_canceltimers(tp);
2404 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2405 soisdisconnected(so);
2406 break;
2407
2408 /*
2409 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2410 */
2411 case TCPS_TIME_WAIT:
2412 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2413 break;
2414 }
2415 }
2416 #ifdef TCP_DEBUG
2417 if (so->so_options & SO_DEBUG)
2418 tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
2419 #endif
2420
2421 /*
2422 * Return any desired output.
2423 */
2424 if (needoutput || (tp->t_flags & TF_ACKNOW))
2425 (void) tcp_output(tp);
2426 if (tcp_saveti)
2427 m_freem(tcp_saveti);
2428 return;
2429
2430 badsyn:
2431 /*
2432 * Received a bad SYN. Increment counters and dropwithreset.
2433 */
2434 tcpstat.tcps_badsyn++;
2435 tp = NULL;
2436 goto dropwithreset;
2437
2438 dropafterack:
2439 /*
2440 * Generate an ACK dropping incoming segment if it occupies
2441 * sequence space, where the ACK reflects our state.
2442 */
2443 if (tiflags & TH_RST)
2444 goto drop;
2445 m_freem(m);
2446 tp->t_flags |= TF_ACKNOW;
2447 (void) tcp_output(tp);
2448 if (tcp_saveti)
2449 m_freem(tcp_saveti);
2450 return;
2451
2452 dropwithreset_ratelim:
2453 /*
2454 * We may want to rate-limit RSTs in certain situations,
2455 * particularly if we are sending an RST in response to
2456 * an attempt to connect to or otherwise communicate with
2457 * a port for which we have no socket.
2458 */
2459 if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
2460 tcp_rst_ppslim) == 0) {
2461 /* XXX stat */
2462 goto drop;
2463 }
2464 /* ...fall into dropwithreset... */
2465
2466 dropwithreset:
2467 /*
2468 * Generate a RST, dropping incoming segment.
2469 * Make ACK acceptable to originator of segment.
2470 */
2471 if (tiflags & TH_RST)
2472 goto drop;
2473
2474 switch (af) {
2475 #ifdef INET6
2476 case AF_INET6:
2477 /* For following calls to tcp_respond */
2478 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
2479 goto drop;
2480 break;
2481 #endif /* INET6 */
2482 case AF_INET:
2483 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
2484 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2485 goto drop;
2486 }
2487
2488 {
2489 /*
2490 * need to recover version # field, which was overwritten on
2491 * ip_cksum computation.
2492 */
2493 struct ip *sip;
2494 sip = mtod(m, struct ip *);
2495 switch (af) {
2496 #ifdef INET
2497 case AF_INET:
2498 sip->ip_v = 4;
2499 break;
2500 #endif
2501 #ifdef INET6
2502 case AF_INET6:
2503 sip->ip_v = 6;
2504 break;
2505 #endif
2506 }
2507 }
2508 if (tiflags & TH_ACK)
2509 (void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
2510 else {
2511 if (tiflags & TH_SYN)
2512 tlen++;
2513 (void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
2514 TH_RST|TH_ACK);
2515 }
2516 if (tcp_saveti)
2517 m_freem(tcp_saveti);
2518 return;
2519
2520 badcsum:
2521 tcpstat.tcps_rcvbadsum++;
2522 drop:
2523 /*
2524 * Drop space held by incoming segment and return.
2525 */
2526 if (tp) {
2527 if (tp->t_inpcb)
2528 so = tp->t_inpcb->inp_socket;
2529 #ifdef INET6
2530 else if (tp->t_in6pcb)
2531 so = tp->t_in6pcb->in6p_socket;
2532 #endif
2533 else
2534 so = NULL;
2535 #ifdef TCP_DEBUG
2536 if (so && (so->so_options & SO_DEBUG) != 0)
2537 tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
2538 #endif
2539 }
2540 if (tcp_saveti)
2541 m_freem(tcp_saveti);
2542 m_freem(m);
2543 return;
2544 }
2545
2546 void
2547 tcp_dooptions(tp, cp, cnt, th, oi)
2548 struct tcpcb *tp;
2549 u_char *cp;
2550 int cnt;
2551 struct tcphdr *th;
2552 struct tcp_opt_info *oi;
2553 {
2554 u_int16_t mss;
2555 int opt, optlen;
2556
2557 for (; cnt > 0; cnt -= optlen, cp += optlen) {
2558 opt = cp[0];
2559 if (opt == TCPOPT_EOL)
2560 break;
2561 if (opt == TCPOPT_NOP)
2562 optlen = 1;
2563 else {
2564 if (cnt < 2)
2565 break;
2566 optlen = cp[1];
2567 if (optlen < 2 || optlen > cnt)
2568 break;
2569 }
2570 switch (opt) {
2571
2572 default:
2573 continue;
2574
2575 case TCPOPT_MAXSEG:
2576 if (optlen != TCPOLEN_MAXSEG)
2577 continue;
2578 if (!(th->th_flags & TH_SYN))
2579 continue;
2580 bcopy(cp + 2, &mss, sizeof(mss));
2581 oi->maxseg = ntohs(mss);
2582 break;
2583
2584 case TCPOPT_WINDOW:
2585 if (optlen != TCPOLEN_WINDOW)
2586 continue;
2587 if (!(th->th_flags & TH_SYN))
2588 continue;
2589 tp->t_flags |= TF_RCVD_SCALE;
2590 tp->requested_s_scale = cp[2];
2591 if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
2592 #if 0 /*XXX*/
2593 char *p;
2594
2595 if (ip)
2596 p = ntohl(ip->ip_src);
2597 #ifdef INET6
2598 else if (ip6)
2599 p = ip6_sprintf(&ip6->ip6_src);
2600 #endif
2601 else
2602 p = "(unknown)";
2603 log(LOG_ERR, "TCP: invalid wscale %d from %s, "
2604 "assuming %d\n",
2605 tp->requested_s_scale, p,
2606 TCP_MAX_WINSHIFT);
2607 #else
2608 log(LOG_ERR, "TCP: invalid wscale %d, "
2609 "assuming %d\n",
2610 tp->requested_s_scale,
2611 TCP_MAX_WINSHIFT);
2612 #endif
2613 tp->requested_s_scale = TCP_MAX_WINSHIFT;
2614 }
2615 break;
2616
2617 case TCPOPT_TIMESTAMP:
2618 if (optlen != TCPOLEN_TIMESTAMP)
2619 continue;
2620 oi->ts_present = 1;
2621 bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
2622 NTOHL(oi->ts_val);
2623 bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
2624 NTOHL(oi->ts_ecr);
2625
2626 /*
2627 * A timestamp received in a SYN makes
2628 * it ok to send timestamp requests and replies.
2629 */
2630 if (th->th_flags & TH_SYN) {
2631 tp->t_flags |= TF_RCVD_TSTMP;
2632 tp->ts_recent = oi->ts_val;
2633 tp->ts_recent_age = TCP_TIMESTAMP(tp);
2634 }
2635 break;
2636 case TCPOPT_SACK_PERMITTED:
2637 if (optlen != TCPOLEN_SACK_PERMITTED)
2638 continue;
2639 if (!(th->th_flags & TH_SYN))
2640 continue;
2641 tp->t_flags &= ~TF_CANT_TXSACK;
2642 break;
2643
2644 case TCPOPT_SACK:
2645 if (tp->t_flags & TF_IGNR_RXSACK)
2646 continue;
2647 if (optlen % 8 != 2 || optlen < 10)
2648 continue;
2649 cp += 2;
2650 optlen -= 2;
2651 for (; optlen > 0; cp -= 8, optlen -= 8) {
2652 tcp_seq lwe, rwe;
2653 bcopy((char *)cp, (char *) &lwe, sizeof(lwe));
2654 NTOHL(lwe);
2655 bcopy((char *)cp, (char *) &rwe, sizeof(rwe));
2656 NTOHL(rwe);
2657 /* tcp_mark_sacked(tp, lwe, rwe); */
2658 }
2659 break;
2660 }
2661 }
2662 }
2663
2664 /*
2665 * Pull out of band byte out of a segment so
2666 * it doesn't appear in the user's data queue.
2667 * It is still reflected in the segment length for
2668 * sequencing purposes.
2669 */
2670 void
2671 tcp_pulloutofband(so, th, m, off)
2672 struct socket *so;
2673 struct tcphdr *th;
2674 struct mbuf *m;
2675 int off;
2676 {
2677 int cnt = off + th->th_urp - 1;
2678
2679 while (cnt >= 0) {
2680 if (m->m_len > cnt) {
2681 char *cp = mtod(m, caddr_t) + cnt;
2682 struct tcpcb *tp = sototcpcb(so);
2683
2684 tp->t_iobc = *cp;
2685 tp->t_oobflags |= TCPOOB_HAVEDATA;
2686 bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
2687 m->m_len--;
2688 return;
2689 }
2690 cnt -= m->m_len;
2691 m = m->m_next;
2692 if (m == 0)
2693 break;
2694 }
2695 panic("tcp_pulloutofband");
2696 }
2697
2698 /*
2699 * Collect new round-trip time estimate
2700 * and update averages and current timeout.
2701 */
2702 void
2703 tcp_xmit_timer(tp, rtt)
2704 struct tcpcb *tp;
2705 uint32_t rtt;
2706 {
2707 int32_t delta;
2708
2709 tcpstat.tcps_rttupdated++;
2710 if (tp->t_srtt != 0) {
2711 /*
2712 * srtt is stored as fixed point with 3 bits after the
2713 * binary point (i.e., scaled by 8). The following magic
2714 * is equivalent to the smoothing algorithm in rfc793 with
2715 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2716 * point). Adjust rtt to origin 0.
2717 */
2718 delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
2719 if ((tp->t_srtt += delta) <= 0)
2720 tp->t_srtt = 1 << 2;
2721 /*
2722 * We accumulate a smoothed rtt variance (actually, a
2723 * smoothed mean difference), then set the retransmit
2724 * timer to smoothed rtt + 4 times the smoothed variance.
2725 * rttvar is stored as fixed point with 2 bits after the
2726 * binary point (scaled by 4). The following is
2727 * equivalent to rfc793 smoothing with an alpha of .75
2728 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces
2729 * rfc793's wired-in beta.
2730 */
2731 if (delta < 0)
2732 delta = -delta;
2733 delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
2734 if ((tp->t_rttvar += delta) <= 0)
2735 tp->t_rttvar = 1 << 2;
2736 } else {
2737 /*
2738 * No rtt measurement yet - use the unsmoothed rtt.
2739 * Set the variance to half the rtt (so our first
2740 * retransmit happens at 3*rtt).
2741 */
2742 tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
2743 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
2744 }
2745 tp->t_rtttime = 0;
2746 tp->t_rxtshift = 0;
2747
2748 /*
2749 * the retransmit should happen at rtt + 4 * rttvar.
2750 * Because of the way we do the smoothing, srtt and rttvar
2751 * will each average +1/2 tick of bias. When we compute
2752 * the retransmit timer, we want 1/2 tick of rounding and
2753 * 1 extra tick because of +-1/2 tick uncertainty in the
2754 * firing of the timer. The bias will give us exactly the
2755 * 1.5 tick we need. But, because the bias is
2756 * statistical, we have to test that we don't drop below
2757 * the minimum feasible timer (which is 2 ticks).
2758 */
2759 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
2760 max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
2761
2762 /*
2763 * We received an ack for a packet that wasn't retransmitted;
2764 * it is probably safe to discard any error indications we've
2765 * received recently. This isn't quite right, but close enough
2766 * for now (a route might have failed after we sent a segment,
2767 * and the return path might not be symmetrical).
2768 */
2769 tp->t_softerror = 0;
2770 }
2771
2772 /*
2773 * Checks for partial ack. If partial ack arrives, force the retransmission
2774 * of the next unacknowledged segment, do not clear tp->t_dupacks, and return
2775 * 1. By setting snd_nxt to th_ack, this forces retransmission timer to
2776 * be started again. If the ack advances at least to tp->snd_recover, return 0.
2777 */
2778 int
2779 tcp_newreno(tp, th)
2780 struct tcpcb *tp;
2781 struct tcphdr *th;
2782 {
2783 tcp_seq onxt = tp->snd_nxt;
2784 u_long ocwnd = tp->snd_cwnd;
2785
2786 if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2787 /*
2788 * snd_una has not yet been updated and the socket's send
2789 * buffer has not yet drained off the ACK'd data, so we
2790 * have to leave snd_una as it was to get the correct data
2791 * offset in tcp_output().
2792 */
2793 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2794 tp->t_rtttime = 0;
2795 tp->snd_nxt = th->th_ack;
2796 /*
2797 * Set snd_cwnd to one segment beyond ACK'd offset. snd_una
2798 * is not yet updated when we're called.
2799 */
2800 tp->snd_cwnd = tp->t_segsz + (th->th_ack - tp->snd_una);
2801 (void) tcp_output(tp);
2802 tp->snd_cwnd = ocwnd;
2803 if (SEQ_GT(onxt, tp->snd_nxt))
2804 tp->snd_nxt = onxt;
2805 /*
2806 * Partial window deflation. Relies on fact that tp->snd_una
2807 * not updated yet.
2808 */
2809 tp->snd_cwnd -= (th->th_ack - tp->snd_una - tp->t_segsz);
2810 return 1;
2811 }
2812 return 0;
2813 }
2814
2815
2816 /*
2817 * TCP compressed state engine. Currently used to hold compressed
2818 * state for SYN_RECEIVED.
2819 */
2820
2821 u_long syn_cache_count;
2822 u_int32_t syn_hash1, syn_hash2;
2823
2824 #define SYN_HASH(sa, sp, dp) \
2825 ((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
2826 ((u_int32_t)(sp)))^syn_hash2)))
2827 #ifndef INET6
2828 #define SYN_HASHALL(hash, src, dst) \
2829 do { \
2830 hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
2831 ((struct sockaddr_in *)(src))->sin_port, \
2832 ((struct sockaddr_in *)(dst))->sin_port); \
2833 } while (/*CONSTCOND*/ 0)
2834 #else
2835 #define SYN_HASH6(sa, sp, dp) \
2836 ((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
2837 (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
2838 & 0x7fffffff)
2839
2840 #define SYN_HASHALL(hash, src, dst) \
2841 do { \
2842 switch ((src)->sa_family) { \
2843 case AF_INET: \
2844 hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
2845 ((struct sockaddr_in *)(src))->sin_port, \
2846 ((struct sockaddr_in *)(dst))->sin_port); \
2847 break; \
2848 case AF_INET6: \
2849 hash = SYN_HASH6(&((struct sockaddr_in6 *)(src))->sin6_addr, \
2850 ((struct sockaddr_in6 *)(src))->sin6_port, \
2851 ((struct sockaddr_in6 *)(dst))->sin6_port); \
2852 break; \
2853 default: \
2854 hash = 0; \
2855 } \
2856 } while (/*CONSTCOND*/0)
2857 #endif /* INET6 */
2858
2859 #define SYN_CACHE_RM(sc) \
2860 do { \
2861 TAILQ_REMOVE(&tcp_syn_cache[(sc)->sc_bucketidx].sch_bucket, \
2862 (sc), sc_bucketq); \
2863 (sc)->sc_tp = NULL; \
2864 LIST_REMOVE((sc), sc_tpq); \
2865 tcp_syn_cache[(sc)->sc_bucketidx].sch_length--; \
2866 callout_stop(&(sc)->sc_timer); \
2867 syn_cache_count--; \
2868 } while (/*CONSTCOND*/0)
2869
2870 #define SYN_CACHE_PUT(sc) \
2871 do { \
2872 if ((sc)->sc_ipopts) \
2873 (void) m_free((sc)->sc_ipopts); \
2874 if ((sc)->sc_route4.ro_rt != NULL) \
2875 RTFREE((sc)->sc_route4.ro_rt); \
2876 pool_put(&syn_cache_pool, (sc)); \
2877 } while (/*CONSTCOND*/0)
2878
2879 struct pool syn_cache_pool;
2880
2881 /*
2882 * We don't estimate RTT with SYNs, so each packet starts with the default
2883 * RTT and each timer step has a fixed timeout value.
2884 */
2885 #define SYN_CACHE_TIMER_ARM(sc) \
2886 do { \
2887 TCPT_RANGESET((sc)->sc_rxtcur, \
2888 TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN, \
2889 TCPTV_REXMTMAX); \
2890 callout_reset(&(sc)->sc_timer, \
2891 (sc)->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, (sc)); \
2892 } while (/*CONSTCOND*/0)
2893
2894 #define SYN_CACHE_TIMESTAMP(sc) (tcp_now - (sc)->sc_timebase)
2895
2896 void
2897 syn_cache_init()
2898 {
2899 int i;
2900
2901 /* Initialize the hash buckets. */
2902 for (i = 0; i < tcp_syn_cache_size; i++)
2903 TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
2904
2905 /* Initialize the syn cache pool. */
2906 pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
2907 "synpl", NULL);
2908 }
2909
2910 void
2911 syn_cache_insert(sc, tp)
2912 struct syn_cache *sc;
2913 struct tcpcb *tp;
2914 {
2915 struct syn_cache_head *scp;
2916 struct syn_cache *sc2;
2917 int s;
2918
2919 /*
2920 * If there are no entries in the hash table, reinitialize
2921 * the hash secrets.
2922 */
2923 if (syn_cache_count == 0) {
2924 struct timeval tv;
2925 microtime(&tv);
2926 syn_hash1 = arc4random() ^ (u_long)≻
2927 syn_hash2 = arc4random() ^ tv.tv_usec;
2928 }
2929
2930 SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
2931 sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
2932 scp = &tcp_syn_cache[sc->sc_bucketidx];
2933
2934 /*
2935 * Make sure that we don't overflow the per-bucket
2936 * limit or the total cache size limit.
2937 */
2938 s = splsoftnet();
2939 if (scp->sch_length >= tcp_syn_bucket_limit) {
2940 tcpstat.tcps_sc_bucketoverflow++;
2941 /*
2942 * The bucket is full. Toss the oldest element in the
2943 * bucket. This will be the first entry in the bucket.
2944 */
2945 sc2 = TAILQ_FIRST(&scp->sch_bucket);
2946 #ifdef DIAGNOSTIC
2947 /*
2948 * This should never happen; we should always find an
2949 * entry in our bucket.
2950 */
2951 if (sc2 == NULL)
2952 panic("syn_cache_insert: bucketoverflow: impossible");
2953 #endif
2954 SYN_CACHE_RM(sc2);
2955 SYN_CACHE_PUT(sc2);
2956 } else if (syn_cache_count >= tcp_syn_cache_limit) {
2957 struct syn_cache_head *scp2, *sce;
2958
2959 tcpstat.tcps_sc_overflowed++;
2960 /*
2961 * The cache is full. Toss the oldest entry in the
2962 * first non-empty bucket we can find.
2963 *
2964 * XXX We would really like to toss the oldest
2965 * entry in the cache, but we hope that this
2966 * condition doesn't happen very often.
2967 */
2968 scp2 = scp;
2969 if (TAILQ_EMPTY(&scp2->sch_bucket)) {
2970 sce = &tcp_syn_cache[tcp_syn_cache_size];
2971 for (++scp2; scp2 != scp; scp2++) {
2972 if (scp2 >= sce)
2973 scp2 = &tcp_syn_cache[0];
2974 if (! TAILQ_EMPTY(&scp2->sch_bucket))
2975 break;
2976 }
2977 #ifdef DIAGNOSTIC
2978 /*
2979 * This should never happen; we should always find a
2980 * non-empty bucket.
2981 */
2982 if (scp2 == scp)
2983 panic("syn_cache_insert: cacheoverflow: "
2984 "impossible");
2985 #endif
2986 }
2987 sc2 = TAILQ_FIRST(&scp2->sch_bucket);
2988 SYN_CACHE_RM(sc2);
2989 SYN_CACHE_PUT(sc2);
2990 }
2991
2992 /*
2993 * Initialize the entry's timer.
2994 */
2995 sc->sc_rxttot = 0;
2996 sc->sc_rxtshift = 0;
2997 SYN_CACHE_TIMER_ARM(sc);
2998
2999 /* Link it from tcpcb entry */
3000 LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
3001
3002 /* Put it into the bucket. */
3003 TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
3004 scp->sch_length++;
3005 syn_cache_count++;
3006
3007 tcpstat.tcps_sc_added++;
3008 splx(s);
3009 }
3010
3011 /*
3012 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
3013 * If we have retransmitted an entry the maximum number of times, expire
3014 * that entry.
3015 */
3016 void
3017 syn_cache_timer(void *arg)
3018 {
3019 struct syn_cache *sc = arg;
3020 int s;
3021
3022 s = splsoftnet();
3023
3024 if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
3025 /* Drop it -- too many retransmissions. */
3026 goto dropit;
3027 }
3028
3029 /*
3030 * Compute the total amount of time this entry has
3031 * been on a queue. If this entry has been on longer
3032 * than the keep alive timer would allow, expire it.
3033 */
3034 sc->sc_rxttot += sc->sc_rxtcur;
3035 if (sc->sc_rxttot >= TCPTV_KEEP_INIT)
3036 goto dropit;
3037
3038 tcpstat.tcps_sc_retransmitted++;
3039 (void) syn_cache_respond(sc, NULL);
3040
3041 /* Advance the timer back-off. */
3042 sc->sc_rxtshift++;
3043 SYN_CACHE_TIMER_ARM(sc);
3044
3045 splx(s);
3046 return;
3047
3048 dropit:
3049 tcpstat.tcps_sc_timed_out++;
3050 SYN_CACHE_RM(sc);
3051 SYN_CACHE_PUT(sc);
3052 splx(s);
3053 }
3054
3055 /*
3056 * Remove syn cache created by the specified tcb entry,
3057 * because this does not make sense to keep them
3058 * (if there's no tcb entry, syn cache entry will never be used)
3059 */
3060 void
3061 syn_cache_cleanup(tp)
3062 struct tcpcb *tp;
3063 {
3064 struct syn_cache *sc, *nsc;
3065 int s;
3066
3067 s = splsoftnet();
3068
3069 for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
3070 nsc = LIST_NEXT(sc, sc_tpq);
3071
3072 #ifdef DIAGNOSTIC
3073 if (sc->sc_tp != tp)
3074 panic("invalid sc_tp in syn_cache_cleanup");
3075 #endif
3076 SYN_CACHE_RM(sc);
3077 SYN_CACHE_PUT(sc);
3078 }
3079 /* just for safety */
3080 LIST_INIT(&tp->t_sc);
3081
3082 splx(s);
3083 }
3084
3085 /*
3086 * Find an entry in the syn cache.
3087 */
3088 struct syn_cache *
3089 syn_cache_lookup(src, dst, headp)
3090 struct sockaddr *src;
3091 struct sockaddr *dst;
3092 struct syn_cache_head **headp;
3093 {
3094 struct syn_cache *sc;
3095 struct syn_cache_head *scp;
3096 u_int32_t hash;
3097 int s;
3098
3099 SYN_HASHALL(hash, src, dst);
3100
3101 scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
3102 *headp = scp;
3103 s = splsoftnet();
3104 for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
3105 sc = TAILQ_NEXT(sc, sc_bucketq)) {
3106 if (sc->sc_hash != hash)
3107 continue;
3108 if (!bcmp(&sc->sc_src, src, src->sa_len) &&
3109 !bcmp(&sc->sc_dst, dst, dst->sa_len)) {
3110 splx(s);
3111 return (sc);
3112 }
3113 }
3114 splx(s);
3115 return (NULL);
3116 }
3117
3118 /*
3119 * This function gets called when we receive an ACK for a
3120 * socket in the LISTEN state. We look up the connection
3121 * in the syn cache, and if its there, we pull it out of
3122 * the cache and turn it into a full-blown connection in
3123 * the SYN-RECEIVED state.
3124 *
3125 * The return values may not be immediately obvious, and their effects
3126 * can be subtle, so here they are:
3127 *
3128 * NULL SYN was not found in cache; caller should drop the
3129 * packet and send an RST.
3130 *
3131 * -1 We were unable to create the new connection, and are
3132 * aborting it. An ACK,RST is being sent to the peer
3133 * (unless we got screwey sequence numbners; see below),
3134 * because the 3-way handshake has been completed. Caller
3135 * should not free the mbuf, since we may be using it. If
3136 * we are not, we will free it.
3137 *
3138 * Otherwise, the return value is a pointer to the new socket
3139 * associated with the connection.
3140 */
3141 struct socket *
3142 syn_cache_get(src, dst, th, hlen, tlen, so, m)
3143 struct sockaddr *src;
3144 struct sockaddr *dst;
3145 struct tcphdr *th;
3146 unsigned int hlen, tlen;
3147 struct socket *so;
3148 struct mbuf *m;
3149 {
3150 struct syn_cache *sc;
3151 struct syn_cache_head *scp;
3152 struct inpcb *inp = NULL;
3153 #ifdef INET6
3154 struct in6pcb *in6p = NULL;
3155 #endif
3156 struct tcpcb *tp = 0;
3157 struct mbuf *am;
3158 int s;
3159 struct socket *oso;
3160
3161 s = splsoftnet();
3162 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3163 splx(s);
3164 return (NULL);
3165 }
3166
3167 /*
3168 * Verify the sequence and ack numbers. Try getting the correct
3169 * response again.
3170 */
3171 if ((th->th_ack != sc->sc_iss + 1) ||
3172 SEQ_LEQ(th->th_seq, sc->sc_irs) ||
3173 SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
3174 (void) syn_cache_respond(sc, m);
3175 splx(s);
3176 return ((struct socket *)(-1));
3177 }
3178
3179 /* Remove this cache entry */
3180 SYN_CACHE_RM(sc);
3181 splx(s);
3182
3183 /*
3184 * Ok, create the full blown connection, and set things up
3185 * as they would have been set up if we had created the
3186 * connection when the SYN arrived. If we can't create
3187 * the connection, abort it.
3188 */
3189 /*
3190 * inp still has the OLD in_pcb stuff, set the
3191 * v6-related flags on the new guy, too. This is
3192 * done particularly for the case where an AF_INET6
3193 * socket is bound only to a port, and a v4 connection
3194 * comes in on that port.
3195 * we also copy the flowinfo from the original pcb
3196 * to the new one.
3197 */
3198 oso = so;
3199 so = sonewconn(so, SS_ISCONNECTED);
3200 if (so == NULL)
3201 goto resetandabort;
3202
3203 switch (so->so_proto->pr_domain->dom_family) {
3204 #ifdef INET
3205 case AF_INET:
3206 inp = sotoinpcb(so);
3207 break;
3208 #endif
3209 #ifdef INET6
3210 case AF_INET6:
3211 in6p = sotoin6pcb(so);
3212 break;
3213 #endif
3214 }
3215 switch (src->sa_family) {
3216 #ifdef INET
3217 case AF_INET:
3218 if (inp) {
3219 inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
3220 inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
3221 inp->inp_options = ip_srcroute();
3222 in_pcbstate(inp, INP_BOUND);
3223 if (inp->inp_options == NULL) {
3224 inp->inp_options = sc->sc_ipopts;
3225 sc->sc_ipopts = NULL;
3226 }
3227 }
3228 #ifdef INET6
3229 else if (in6p) {
3230 /* IPv4 packet to AF_INET6 socket */
3231 bzero(&in6p->in6p_laddr, sizeof(in6p->in6p_laddr));
3232 in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
3233 bcopy(&((struct sockaddr_in *)dst)->sin_addr,
3234 &in6p->in6p_laddr.s6_addr32[3],
3235 sizeof(((struct sockaddr_in *)dst)->sin_addr));
3236 in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
3237 in6totcpcb(in6p)->t_family = AF_INET;
3238 }
3239 #endif
3240 break;
3241 #endif
3242 #ifdef INET6
3243 case AF_INET6:
3244 if (in6p) {
3245 in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
3246 in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
3247 #if 0
3248 in6p->in6p_flowinfo = ip6->ip6_flow & IPV6_FLOWINFO_MASK;
3249 /*inp->inp_options = ip6_srcroute();*/ /* soon. */
3250 #endif
3251 }
3252 break;
3253 #endif
3254 }
3255 #ifdef INET6
3256 if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
3257 struct in6pcb *oin6p = sotoin6pcb(oso);
3258 /* inherit socket options from the listening socket */
3259 in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
3260 if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
3261 m_freem(in6p->in6p_options);
3262 in6p->in6p_options = 0;
3263 }
3264 ip6_savecontrol(in6p, &in6p->in6p_options,
3265 mtod(m, struct ip6_hdr *), m);
3266 }
3267 #endif
3268
3269 #ifdef IPSEC
3270 /*
3271 * we make a copy of policy, instead of sharing the policy,
3272 * for better behavior in terms of SA lookup and dead SA removal.
3273 */
3274 if (inp) {
3275 /* copy old policy into new socket's */
3276 if (ipsec_copy_pcbpolicy(sotoinpcb(oso)->inp_sp, inp->inp_sp))
3277 printf("tcp_input: could not copy policy\n");
3278 }
3279 #ifdef INET6
3280 else if (in6p) {
3281 /* copy old policy into new socket's */
3282 if (ipsec_copy_pcbpolicy(sotoin6pcb(oso)->in6p_sp,
3283 in6p->in6p_sp))
3284 printf("tcp_input: could not copy policy\n");
3285 }
3286 #endif
3287 #endif
3288
3289 /*
3290 * Give the new socket our cached route reference.
3291 */
3292 if (inp)
3293 inp->inp_route = sc->sc_route4; /* struct assignment */
3294 #ifdef INET6
3295 else
3296 in6p->in6p_route = sc->sc_route6;
3297 #endif
3298 sc->sc_route4.ro_rt = NULL;
3299
3300 am = m_get(M_DONTWAIT, MT_SONAME); /* XXX */
3301 if (am == NULL)
3302 goto resetandabort;
3303 MCLAIM(am, &tcp_mowner);
3304 am->m_len = src->sa_len;
3305 bcopy(src, mtod(am, caddr_t), src->sa_len);
3306 if (inp) {
3307 if (in_pcbconnect(inp, am)) {
3308 (void) m_free(am);
3309 goto resetandabort;
3310 }
3311 }
3312 #ifdef INET6
3313 else if (in6p) {
3314 if (src->sa_family == AF_INET) {
3315 /* IPv4 packet to AF_INET6 socket */
3316 struct sockaddr_in6 *sin6;
3317 sin6 = mtod(am, struct sockaddr_in6 *);
3318 am->m_len = sizeof(*sin6);
3319 bzero(sin6, sizeof(*sin6));
3320 sin6->sin6_family = AF_INET6;
3321 sin6->sin6_len = sizeof(*sin6);
3322 sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port;
3323 sin6->sin6_addr.s6_addr16[5] = htons(0xffff);
3324 bcopy(&((struct sockaddr_in *)src)->sin_addr,
3325 &sin6->sin6_addr.s6_addr32[3],
3326 sizeof(sin6->sin6_addr.s6_addr32[3]));
3327 }
3328 if (in6_pcbconnect(in6p, am)) {
3329 (void) m_free(am);
3330 goto resetandabort;
3331 }
3332 }
3333 #endif
3334 else {
3335 (void) m_free(am);
3336 goto resetandabort;
3337 }
3338 (void) m_free(am);
3339
3340 if (inp)
3341 tp = intotcpcb(inp);
3342 #ifdef INET6
3343 else if (in6p)
3344 tp = in6totcpcb(in6p);
3345 #endif
3346 else
3347 tp = NULL;
3348 tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
3349 if (sc->sc_request_r_scale != 15) {
3350 tp->requested_s_scale = sc->sc_requested_s_scale;
3351 tp->request_r_scale = sc->sc_request_r_scale;
3352 tp->snd_scale = sc->sc_requested_s_scale;
3353 tp->rcv_scale = sc->sc_request_r_scale;
3354 tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
3355 }
3356 if (sc->sc_flags & SCF_TIMESTAMP)
3357 tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
3358 tp->ts_timebase = sc->sc_timebase;
3359
3360 tp->t_template = tcp_template(tp);
3361 if (tp->t_template == 0) {
3362 tp = tcp_drop(tp, ENOBUFS); /* destroys socket */
3363 so = NULL;
3364 m_freem(m);
3365 goto abort;
3366 }
3367
3368 tp->iss = sc->sc_iss;
3369 tp->irs = sc->sc_irs;
3370 tcp_sendseqinit(tp);
3371 tcp_rcvseqinit(tp);
3372 tp->t_state = TCPS_SYN_RECEIVED;
3373 TCP_TIMER_ARM(tp, TCPT_KEEP, TCPTV_KEEP_INIT);
3374 tcpstat.tcps_accepts++;
3375
3376 /* Initialize tp->t_ourmss before we deal with the peer's! */
3377 tp->t_ourmss = sc->sc_ourmaxseg;
3378 tcp_mss_from_peer(tp, sc->sc_peermaxseg);
3379
3380 /*
3381 * Initialize the initial congestion window. If we
3382 * had to retransmit the SYN,ACK, we must initialize cwnd
3383 * to 1 segment (i.e. the Loss Window).
3384 */
3385 if (sc->sc_rxtshift)
3386 tp->snd_cwnd = tp->t_peermss;
3387 else
3388 tp->snd_cwnd = TCP_INITIAL_WINDOW(tcp_init_win, tp->t_peermss);
3389
3390 tcp_rmx_rtt(tp);
3391 tp->snd_wl1 = sc->sc_irs;
3392 tp->rcv_up = sc->sc_irs + 1;
3393
3394 /*
3395 * This is what whould have happened in tcp_output() when
3396 * the SYN,ACK was sent.
3397 */
3398 tp->snd_up = tp->snd_una;
3399 tp->snd_max = tp->snd_nxt = tp->iss+1;
3400 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
3401 if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
3402 tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
3403 tp->last_ack_sent = tp->rcv_nxt;
3404
3405 tcpstat.tcps_sc_completed++;
3406 SYN_CACHE_PUT(sc);
3407 return (so);
3408
3409 resetandabort:
3410 (void) tcp_respond(NULL, m, m, th,
3411 th->th_seq + tlen, (tcp_seq)0, TH_RST|TH_ACK);
3412 abort:
3413 if (so != NULL)
3414 (void) soabort(so);
3415 SYN_CACHE_PUT(sc);
3416 tcpstat.tcps_sc_aborted++;
3417 return ((struct socket *)(-1));
3418 }
3419
3420 /*
3421 * This function is called when we get a RST for a
3422 * non-existent connection, so that we can see if the
3423 * connection is in the syn cache. If it is, zap it.
3424 */
3425
3426 void
3427 syn_cache_reset(src, dst, th)
3428 struct sockaddr *src;
3429 struct sockaddr *dst;
3430 struct tcphdr *th;
3431 {
3432 struct syn_cache *sc;
3433 struct syn_cache_head *scp;
3434 int s = splsoftnet();
3435
3436 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3437 splx(s);
3438 return;
3439 }
3440 if (SEQ_LT(th->th_seq, sc->sc_irs) ||
3441 SEQ_GT(th->th_seq, sc->sc_irs+1)) {
3442 splx(s);
3443 return;
3444 }
3445 SYN_CACHE_RM(sc);
3446 splx(s);
3447 tcpstat.tcps_sc_reset++;
3448 SYN_CACHE_PUT(sc);
3449 }
3450
3451 void
3452 syn_cache_unreach(src, dst, th)
3453 struct sockaddr *src;
3454 struct sockaddr *dst;
3455 struct tcphdr *th;
3456 {
3457 struct syn_cache *sc;
3458 struct syn_cache_head *scp;
3459 int s;
3460
3461 s = splsoftnet();
3462 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3463 splx(s);
3464 return;
3465 }
3466 /* If the sequence number != sc_iss, then it's a bogus ICMP msg */
3467 if (ntohl (th->th_seq) != sc->sc_iss) {
3468 splx(s);
3469 return;
3470 }
3471
3472 /*
3473 * If we've rertransmitted 3 times and this is our second error,
3474 * we remove the entry. Otherwise, we allow it to continue on.
3475 * This prevents us from incorrectly nuking an entry during a
3476 * spurious network outage.
3477 *
3478 * See tcp_notify().
3479 */
3480 if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
3481 sc->sc_flags |= SCF_UNREACH;
3482 splx(s);
3483 return;
3484 }
3485
3486 SYN_CACHE_RM(sc);
3487 splx(s);
3488 tcpstat.tcps_sc_unreach++;
3489 SYN_CACHE_PUT(sc);
3490 }
3491
3492 /*
3493 * Given a LISTEN socket and an inbound SYN request, add
3494 * this to the syn cache, and send back a segment:
3495 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
3496 * to the source.
3497 *
3498 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
3499 * Doing so would require that we hold onto the data and deliver it
3500 * to the application. However, if we are the target of a SYN-flood
3501 * DoS attack, an attacker could send data which would eventually
3502 * consume all available buffer space if it were ACKed. By not ACKing
3503 * the data, we avoid this DoS scenario.
3504 */
3505
3506 int
3507 syn_cache_add(src, dst, th, hlen, so, m, optp, optlen, oi)
3508 struct sockaddr *src;
3509 struct sockaddr *dst;
3510 struct tcphdr *th;
3511 unsigned int hlen;
3512 struct socket *so;
3513 struct mbuf *m;
3514 u_char *optp;
3515 int optlen;
3516 struct tcp_opt_info *oi;
3517 {
3518 struct tcpcb tb, *tp;
3519 long win;
3520 struct syn_cache *sc;
3521 struct syn_cache_head *scp;
3522 struct mbuf *ipopts;
3523
3524 tp = sototcpcb(so);
3525
3526 /*
3527 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
3528 *
3529 * Note this check is performed in tcp_input() very early on.
3530 */
3531
3532 /*
3533 * Initialize some local state.
3534 */
3535 win = sbspace(&so->so_rcv);
3536 if (win > TCP_MAXWIN)
3537 win = TCP_MAXWIN;
3538
3539 switch (src->sa_family) {
3540 #ifdef INET
3541 case AF_INET:
3542 /*
3543 * Remember the IP options, if any.
3544 */
3545 ipopts = ip_srcroute();
3546 break;
3547 #endif
3548 default:
3549 ipopts = NULL;
3550 }
3551
3552 if (optp) {
3553 tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
3554 tcp_dooptions(&tb, optp, optlen, th, oi);
3555 } else
3556 tb.t_flags = 0;
3557
3558 /*
3559 * See if we already have an entry for this connection.
3560 * If we do, resend the SYN,ACK. We do not count this
3561 * as a retransmission (XXX though maybe we should).
3562 */
3563 if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
3564 tcpstat.tcps_sc_dupesyn++;
3565 if (ipopts) {
3566 /*
3567 * If we were remembering a previous source route,
3568 * forget it and use the new one we've been given.
3569 */
3570 if (sc->sc_ipopts)
3571 (void) m_free(sc->sc_ipopts);
3572 sc->sc_ipopts = ipopts;
3573 }
3574 sc->sc_timestamp = tb.ts_recent;
3575 if (syn_cache_respond(sc, m) == 0) {
3576 tcpstat.tcps_sndacks++;
3577 tcpstat.tcps_sndtotal++;
3578 }
3579 return (1);
3580 }
3581
3582 sc = pool_get(&syn_cache_pool, PR_NOWAIT);
3583 if (sc == NULL) {
3584 if (ipopts)
3585 (void) m_free(ipopts);
3586 return (0);
3587 }
3588
3589 /*
3590 * Fill in the cache, and put the necessary IP and TCP
3591 * options into the reply.
3592 */
3593 bzero(sc, sizeof(struct syn_cache));
3594 callout_init(&sc->sc_timer);
3595 bcopy(src, &sc->sc_src, src->sa_len);
3596 bcopy(dst, &sc->sc_dst, dst->sa_len);
3597 sc->sc_flags = 0;
3598 sc->sc_ipopts = ipopts;
3599 sc->sc_irs = th->th_seq;
3600 switch (src->sa_family) {
3601 #ifdef INET
3602 case AF_INET:
3603 {
3604 struct sockaddr_in *srcin = (void *) src;
3605 struct sockaddr_in *dstin = (void *) dst;
3606
3607 sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
3608 &srcin->sin_addr, dstin->sin_port,
3609 srcin->sin_port, sizeof(dstin->sin_addr), 0);
3610 break;
3611 }
3612 #endif /* INET */
3613 #ifdef INET6
3614 case AF_INET6:
3615 {
3616 struct sockaddr_in6 *srcin6 = (void *) src;
3617 struct sockaddr_in6 *dstin6 = (void *) dst;
3618
3619 sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
3620 &srcin6->sin6_addr, dstin6->sin6_port,
3621 srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
3622 break;
3623 }
3624 #endif /* INET6 */
3625 }
3626 sc->sc_peermaxseg = oi->maxseg;
3627 sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
3628 m->m_pkthdr.rcvif : NULL,
3629 sc->sc_src.sa.sa_family);
3630 sc->sc_win = win;
3631 sc->sc_timebase = tcp_now; /* see tcp_newtcpcb() */
3632 sc->sc_timestamp = tb.ts_recent;
3633 if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
3634 (TF_REQ_TSTMP|TF_RCVD_TSTMP))
3635 sc->sc_flags |= SCF_TIMESTAMP;
3636 if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
3637 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
3638 sc->sc_requested_s_scale = tb.requested_s_scale;
3639 sc->sc_request_r_scale = 0;
3640 while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
3641 TCP_MAXWIN << sc->sc_request_r_scale <
3642 so->so_rcv.sb_hiwat)
3643 sc->sc_request_r_scale++;
3644 } else {
3645 sc->sc_requested_s_scale = 15;
3646 sc->sc_request_r_scale = 15;
3647 }
3648 sc->sc_tp = tp;
3649 if (syn_cache_respond(sc, m) == 0) {
3650 syn_cache_insert(sc, tp);
3651 tcpstat.tcps_sndacks++;
3652 tcpstat.tcps_sndtotal++;
3653 } else {
3654 SYN_CACHE_PUT(sc);
3655 tcpstat.tcps_sc_dropped++;
3656 }
3657 return (1);
3658 }
3659
3660 int
3661 syn_cache_respond(sc, m)
3662 struct syn_cache *sc;
3663 struct mbuf *m;
3664 {
3665 struct route *ro;
3666 u_int8_t *optp;
3667 int optlen, error;
3668 u_int16_t tlen;
3669 struct ip *ip = NULL;
3670 #ifdef INET6
3671 struct ip6_hdr *ip6 = NULL;
3672 #endif
3673 struct tcphdr *th;
3674 u_int hlen;
3675
3676 switch (sc->sc_src.sa.sa_family) {
3677 case AF_INET:
3678 hlen = sizeof(struct ip);
3679 ro = &sc->sc_route4;
3680 break;
3681 #ifdef INET6
3682 case AF_INET6:
3683 hlen = sizeof(struct ip6_hdr);
3684 ro = (struct route *)&sc->sc_route6;
3685 break;
3686 #endif
3687 default:
3688 if (m)
3689 m_freem(m);
3690 return EAFNOSUPPORT;
3691 }
3692
3693 /* Compute the size of the TCP options. */
3694 optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
3695 ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
3696
3697 tlen = hlen + sizeof(struct tcphdr) + optlen;
3698
3699 /*
3700 * Create the IP+TCP header from scratch.
3701 */
3702 if (m)
3703 m_freem(m);
3704 #ifdef DIAGNOSTIC
3705 if (max_linkhdr + tlen > MCLBYTES)
3706 return (ENOBUFS);
3707 #endif
3708 MGETHDR(m, M_DONTWAIT, MT_DATA);
3709 if (m && tlen > MHLEN) {
3710 MCLGET(m, M_DONTWAIT);
3711 if ((m->m_flags & M_EXT) == 0) {
3712 m_freem(m);
3713 m = NULL;
3714 }
3715 }
3716 if (m == NULL)
3717 return (ENOBUFS);
3718 MCLAIM(m, &tcp_tx_mowner);
3719
3720 /* Fixup the mbuf. */
3721 m->m_data += max_linkhdr;
3722 m->m_len = m->m_pkthdr.len = tlen;
3723 #ifdef IPSEC
3724 if (sc->sc_tp) {
3725 struct tcpcb *tp;
3726 struct socket *so;
3727
3728 tp = sc->sc_tp;
3729 if (tp->t_inpcb)
3730 so = tp->t_inpcb->inp_socket;
3731 #ifdef INET6
3732 else if (tp->t_in6pcb)
3733 so = tp->t_in6pcb->in6p_socket;
3734 #endif
3735 else
3736 so = NULL;
3737 /* use IPsec policy on listening socket, on SYN ACK */
3738 if (ipsec_setsocket(m, so) != 0) {
3739 m_freem(m);
3740 return ENOBUFS;
3741 }
3742 }
3743 #endif
3744 m->m_pkthdr.rcvif = NULL;
3745 memset(mtod(m, u_char *), 0, tlen);
3746
3747 switch (sc->sc_src.sa.sa_family) {
3748 case AF_INET:
3749 ip = mtod(m, struct ip *);
3750 ip->ip_dst = sc->sc_src.sin.sin_addr;
3751 ip->ip_src = sc->sc_dst.sin.sin_addr;
3752 ip->ip_p = IPPROTO_TCP;
3753 th = (struct tcphdr *)(ip + 1);
3754 th->th_dport = sc->sc_src.sin.sin_port;
3755 th->th_sport = sc->sc_dst.sin.sin_port;
3756 break;
3757 #ifdef INET6
3758 case AF_INET6:
3759 ip6 = mtod(m, struct ip6_hdr *);
3760 ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
3761 ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
3762 ip6->ip6_nxt = IPPROTO_TCP;
3763 /* ip6_plen will be updated in ip6_output() */
3764 th = (struct tcphdr *)(ip6 + 1);
3765 th->th_dport = sc->sc_src.sin6.sin6_port;
3766 th->th_sport = sc->sc_dst.sin6.sin6_port;
3767 break;
3768 #endif
3769 default:
3770 th = NULL;
3771 }
3772
3773 th->th_seq = htonl(sc->sc_iss);
3774 th->th_ack = htonl(sc->sc_irs + 1);
3775 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
3776 th->th_flags = TH_SYN|TH_ACK;
3777 th->th_win = htons(sc->sc_win);
3778 /* th_sum already 0 */
3779 /* th_urp already 0 */
3780
3781 /* Tack on the TCP options. */
3782 optp = (u_int8_t *)(th + 1);
3783 *optp++ = TCPOPT_MAXSEG;
3784 *optp++ = 4;
3785 *optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
3786 *optp++ = sc->sc_ourmaxseg & 0xff;
3787
3788 if (sc->sc_request_r_scale != 15) {
3789 *((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
3790 TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
3791 sc->sc_request_r_scale);
3792 optp += 4;
3793 }
3794
3795 if (sc->sc_flags & SCF_TIMESTAMP) {
3796 u_int32_t *lp = (u_int32_t *)(optp);
3797 /* Form timestamp option as shown in appendix A of RFC 1323. */
3798 *lp++ = htonl(TCPOPT_TSTAMP_HDR);
3799 *lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
3800 *lp = htonl(sc->sc_timestamp);
3801 optp += TCPOLEN_TSTAMP_APPA;
3802 }
3803
3804 /* Compute the packet's checksum. */
3805 switch (sc->sc_src.sa.sa_family) {
3806 case AF_INET:
3807 ip->ip_len = htons(tlen - hlen);
3808 th->th_sum = 0;
3809 th->th_sum = in_cksum(m, tlen);
3810 break;
3811 #ifdef INET6
3812 case AF_INET6:
3813 ip6->ip6_plen = htons(tlen - hlen);
3814 th->th_sum = 0;
3815 th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
3816 break;
3817 #endif
3818 }
3819
3820 /*
3821 * Fill in some straggling IP bits. Note the stack expects
3822 * ip_len to be in host order, for convenience.
3823 */
3824 switch (sc->sc_src.sa.sa_family) {
3825 #ifdef INET
3826 case AF_INET:
3827 ip->ip_len = htons(tlen);
3828 ip->ip_ttl = ip_defttl;
3829 /* XXX tos? */
3830 break;
3831 #endif
3832 #ifdef INET6
3833 case AF_INET6:
3834 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
3835 ip6->ip6_vfc |= IPV6_VERSION;
3836 ip6->ip6_plen = htons(tlen - hlen);
3837 /* ip6_hlim will be initialized afterwards */
3838 /* XXX flowlabel? */
3839 break;
3840 #endif
3841 }
3842
3843 switch (sc->sc_src.sa.sa_family) {
3844 #ifdef INET
3845 case AF_INET:
3846 error = ip_output(m, sc->sc_ipopts, ro,
3847 (ip_mtudisc ? IP_MTUDISC : 0),
3848 NULL);
3849 break;
3850 #endif
3851 #ifdef INET6
3852 case AF_INET6:
3853 ip6->ip6_hlim = in6_selecthlim(NULL,
3854 ro->ro_rt ? ro->ro_rt->rt_ifp : NULL);
3855
3856 error = ip6_output(m, NULL /*XXX*/, (struct route_in6 *)ro,
3857 0, NULL, NULL);
3858 break;
3859 #endif
3860 default:
3861 error = EAFNOSUPPORT;
3862 break;
3863 }
3864 return (error);
3865 }
3866