tcp_input.c revision 1.163 1 /* $NetBSD: tcp_input.c,v 1.163 2003/03/01 04:40:27 thorpej Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * @(#)COPYRIGHT 1.1 (NRL) 17 January 1995
34 *
35 * NRL grants permission for redistribution and use in source and binary
36 * forms, with or without modification, of the software and documentation
37 * created at NRL provided that the following conditions are met:
38 *
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgements:
46 * This product includes software developed by the University of
47 * California, Berkeley and its contributors.
48 * This product includes software developed at the Information
49 * Technology Division, US Naval Research Laboratory.
50 * 4. Neither the name of the NRL nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
55 * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
57 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NRL OR
58 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
59 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
61 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
62 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
63 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
64 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65 *
66 * The views and conclusions contained in the software and documentation
67 * are those of the authors and should not be interpreted as representing
68 * official policies, either expressed or implied, of the US Naval
69 * Research Laboratory (NRL).
70 */
71
72 /*-
73 * Copyright (c) 1997, 1998, 1999, 2001 The NetBSD Foundation, Inc.
74 * All rights reserved.
75 *
76 * This code is derived from software contributed to The NetBSD Foundation
77 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
78 * Facility, NASA Ames Research Center.
79 *
80 * Redistribution and use in source and binary forms, with or without
81 * modification, are permitted provided that the following conditions
82 * are met:
83 * 1. Redistributions of source code must retain the above copyright
84 * notice, this list of conditions and the following disclaimer.
85 * 2. Redistributions in binary form must reproduce the above copyright
86 * notice, this list of conditions and the following disclaimer in the
87 * documentation and/or other materials provided with the distribution.
88 * 3. All advertising materials mentioning features or use of this software
89 * must display the following acknowledgement:
90 * This product includes software developed by the NetBSD
91 * Foundation, Inc. and its contributors.
92 * 4. Neither the name of The NetBSD Foundation nor the names of its
93 * contributors may be used to endorse or promote products derived
94 * from this software without specific prior written permission.
95 *
96 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
97 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
98 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
99 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
100 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
101 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
102 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
103 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
104 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
105 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
106 * POSSIBILITY OF SUCH DAMAGE.
107 */
108
109 /*
110 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
111 * The Regents of the University of California. All rights reserved.
112 *
113 * Redistribution and use in source and binary forms, with or without
114 * modification, are permitted provided that the following conditions
115 * are met:
116 * 1. Redistributions of source code must retain the above copyright
117 * notice, this list of conditions and the following disclaimer.
118 * 2. Redistributions in binary form must reproduce the above copyright
119 * notice, this list of conditions and the following disclaimer in the
120 * documentation and/or other materials provided with the distribution.
121 * 3. All advertising materials mentioning features or use of this software
122 * must display the following acknowledgement:
123 * This product includes software developed by the University of
124 * California, Berkeley and its contributors.
125 * 4. Neither the name of the University nor the names of its contributors
126 * may be used to endorse or promote products derived from this software
127 * without specific prior written permission.
128 *
129 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
130 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
131 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
132 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
133 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
134 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
135 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
136 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
137 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
138 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
139 * SUCH DAMAGE.
140 *
141 * @(#)tcp_input.c 8.12 (Berkeley) 5/24/95
142 */
143
144 /*
145 * TODO list for SYN cache stuff:
146 *
147 * Find room for a "state" field, which is needed to keep a
148 * compressed state for TIME_WAIT TCBs. It's been noted already
149 * that this is fairly important for very high-volume web and
150 * mail servers, which use a large number of short-lived
151 * connections.
152 */
153
154 #include <sys/cdefs.h>
155 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.163 2003/03/01 04:40:27 thorpej Exp $");
156
157 #include "opt_inet.h"
158 #include "opt_ipsec.h"
159 #include "opt_inet_csum.h"
160 #include "opt_tcp_debug.h"
161
162 #include <sys/param.h>
163 #include <sys/systm.h>
164 #include <sys/malloc.h>
165 #include <sys/mbuf.h>
166 #include <sys/protosw.h>
167 #include <sys/socket.h>
168 #include <sys/socketvar.h>
169 #include <sys/errno.h>
170 #include <sys/syslog.h>
171 #include <sys/pool.h>
172 #include <sys/domain.h>
173 #include <sys/kernel.h>
174
175 #include <net/if.h>
176 #include <net/route.h>
177 #include <net/if_types.h>
178
179 #include <netinet/in.h>
180 #include <netinet/in_systm.h>
181 #include <netinet/ip.h>
182 #include <netinet/in_pcb.h>
183 #include <netinet/ip_var.h>
184
185 #ifdef INET6
186 #ifndef INET
187 #include <netinet/in.h>
188 #endif
189 #include <netinet/ip6.h>
190 #include <netinet6/ip6_var.h>
191 #include <netinet6/in6_pcb.h>
192 #include <netinet6/ip6_var.h>
193 #include <netinet6/in6_var.h>
194 #include <netinet/icmp6.h>
195 #include <netinet6/nd6.h>
196 #endif
197
198 #ifdef PULLDOWN_TEST
199 #ifndef INET6
200 /* always need ip6.h for IP6_EXTHDR_GET */
201 #include <netinet/ip6.h>
202 #endif
203 #endif
204
205 #include <netinet/tcp.h>
206 #include <netinet/tcp_fsm.h>
207 #include <netinet/tcp_seq.h>
208 #include <netinet/tcp_timer.h>
209 #include <netinet/tcp_var.h>
210 #include <netinet/tcpip.h>
211 #include <netinet/tcp_debug.h>
212
213 #include <machine/stdarg.h>
214
215 #ifdef IPSEC
216 #include <netinet6/ipsec.h>
217 #include <netkey/key.h>
218 #endif /*IPSEC*/
219 #ifdef INET6
220 #include "faith.h"
221 #if defined(NFAITH) && NFAITH > 0
222 #include <net/if_faith.h>
223 #endif
224 #endif
225
226 int tcprexmtthresh = 3;
227 int tcp_log_refused;
228
229 static int tcp_rst_ppslim_count = 0;
230 static struct timeval tcp_rst_ppslim_last;
231
232 #define TCP_PAWS_IDLE (24 * 24 * 60 * 60 * PR_SLOWHZ)
233
234 /* for modulo comparisons of timestamps */
235 #define TSTMP_LT(a,b) ((int)((a)-(b)) < 0)
236 #define TSTMP_GEQ(a,b) ((int)((a)-(b)) >= 0)
237
238 /*
239 * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
240 */
241 #ifdef INET6
242 #define ND6_HINT(tp) \
243 do { \
244 if (tp && tp->t_in6pcb && tp->t_family == AF_INET6 \
245 && tp->t_in6pcb->in6p_route.ro_rt) { \
246 nd6_nud_hint(tp->t_in6pcb->in6p_route.ro_rt, NULL, 0); \
247 } \
248 } while (/*CONSTCOND*/ 0)
249 #else
250 #define ND6_HINT(tp)
251 #endif
252
253 /*
254 * Macro to compute ACK transmission behavior. Delay the ACK unless
255 * we have already delayed an ACK (must send an ACK every two segments).
256 * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
257 * option is enabled.
258 */
259 #define TCP_SETUP_ACK(tp, th) \
260 do { \
261 if ((tp)->t_flags & TF_DELACK || \
262 (tcp_ack_on_push && (th)->th_flags & TH_PUSH)) \
263 tp->t_flags |= TF_ACKNOW; \
264 else \
265 TCP_SET_DELACK(tp); \
266 } while (/*CONSTCOND*/ 0)
267
268 /*
269 * Convert TCP protocol fields to host order for easier processing.
270 */
271 #define TCP_FIELDS_TO_HOST(th) \
272 do { \
273 NTOHL((th)->th_seq); \
274 NTOHL((th)->th_ack); \
275 NTOHS((th)->th_win); \
276 NTOHS((th)->th_urp); \
277 } while (/*CONSTCOND*/ 0)
278
279 /*
280 * ... and reverse the above.
281 */
282 #define TCP_FIELDS_TO_NET(th) \
283 do { \
284 HTONL((th)->th_seq); \
285 HTONL((th)->th_ack); \
286 HTONS((th)->th_win); \
287 HTONS((th)->th_urp); \
288 } while (/*CONSTCOND*/ 0)
289
290 #ifdef TCP_CSUM_COUNTERS
291 #include <sys/device.h>
292
293 extern struct evcnt tcp_hwcsum_ok;
294 extern struct evcnt tcp_hwcsum_bad;
295 extern struct evcnt tcp_hwcsum_data;
296 extern struct evcnt tcp_swcsum;
297
298 #define TCP_CSUM_COUNTER_INCR(ev) (ev)->ev_count++
299
300 #else
301
302 #define TCP_CSUM_COUNTER_INCR(ev) /* nothing */
303
304 #endif /* TCP_CSUM_COUNTERS */
305
306 #ifdef TCP_REASS_COUNTERS
307 #include <sys/device.h>
308
309 extern struct evcnt tcp_reass_;
310 extern struct evcnt tcp_reass_empty;
311 extern struct evcnt tcp_reass_iteration[8];
312 extern struct evcnt tcp_reass_prependfirst;
313 extern struct evcnt tcp_reass_prepend;
314 extern struct evcnt tcp_reass_insert;
315 extern struct evcnt tcp_reass_inserttail;
316 extern struct evcnt tcp_reass_append;
317 extern struct evcnt tcp_reass_appendtail;
318 extern struct evcnt tcp_reass_overlaptail;
319 extern struct evcnt tcp_reass_overlapfront;
320 extern struct evcnt tcp_reass_segdup;
321 extern struct evcnt tcp_reass_fragdup;
322
323 #define TCP_REASS_COUNTER_INCR(ev) (ev)->ev_count++
324
325 #else
326
327 #define TCP_REASS_COUNTER_INCR(ev) /* nothing */
328
329 #endif /* TCP_REASS_COUNTERS */
330
331 #ifdef INET
332 static void tcp4_log_refused __P((const struct ip *, const struct tcphdr *));
333 #endif
334 #ifdef INET6
335 static void tcp6_log_refused
336 __P((const struct ip6_hdr *, const struct tcphdr *));
337 #endif
338
339 int
340 tcp_reass(tp, th, m, tlen)
341 struct tcpcb *tp;
342 struct tcphdr *th;
343 struct mbuf *m;
344 int *tlen;
345 {
346 struct ipqent *p, *q, *nq, *tiqe = NULL;
347 struct socket *so = NULL;
348 int pkt_flags;
349 tcp_seq pkt_seq;
350 unsigned pkt_len;
351 u_long rcvpartdupbyte = 0;
352 u_long rcvoobyte;
353 #ifdef TCP_REASS_COUNTERS
354 u_int count = 0;
355 #endif
356
357 if (tp->t_inpcb)
358 so = tp->t_inpcb->inp_socket;
359 #ifdef INET6
360 else if (tp->t_in6pcb)
361 so = tp->t_in6pcb->in6p_socket;
362 #endif
363
364 TCP_REASS_LOCK_CHECK(tp);
365
366 /*
367 * Call with th==0 after become established to
368 * force pre-ESTABLISHED data up to user socket.
369 */
370 if (th == 0)
371 goto present;
372
373 rcvoobyte = *tlen;
374 /*
375 * Copy these to local variables because the tcpiphdr
376 * gets munged while we are collapsing mbufs.
377 */
378 pkt_seq = th->th_seq;
379 pkt_len = *tlen;
380 pkt_flags = th->th_flags;
381
382 TCP_REASS_COUNTER_INCR(&tcp_reass_);
383
384 if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
385 /*
386 * When we miss a packet, the vast majority of time we get
387 * packets that follow it in order. So optimize for that.
388 */
389 if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
390 p->ipqe_len += pkt_len;
391 p->ipqe_flags |= pkt_flags;
392 m_cat(p->ipqe_m, m);
393 tiqe = p;
394 TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
395 TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
396 goto skip_replacement;
397 }
398 /*
399 * While we're here, if the pkt is completely beyond
400 * anything we have, just insert it at the tail.
401 */
402 if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
403 TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
404 goto insert_it;
405 }
406 }
407
408 q = TAILQ_FIRST(&tp->segq);
409
410 if (q != NULL) {
411 /*
412 * If this segment immediately precedes the first out-of-order
413 * block, simply slap the segment in front of it and (mostly)
414 * skip the complicated logic.
415 */
416 if (pkt_seq + pkt_len == q->ipqe_seq) {
417 q->ipqe_seq = pkt_seq;
418 q->ipqe_len += pkt_len;
419 q->ipqe_flags |= pkt_flags;
420 m_cat(m, q->ipqe_m);
421 q->ipqe_m = m;
422 tiqe = q;
423 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
424 TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
425 goto skip_replacement;
426 }
427 } else {
428 TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
429 }
430
431 /*
432 * Find a segment which begins after this one does.
433 */
434 for (p = NULL; q != NULL; q = nq) {
435 nq = TAILQ_NEXT(q, ipqe_q);
436 #ifdef TCP_REASS_COUNTERS
437 count++;
438 #endif
439 /*
440 * If the received segment is just right after this
441 * fragment, merge the two together and then check
442 * for further overlaps.
443 */
444 if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
445 #ifdef TCPREASS_DEBUG
446 printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
447 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
448 q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
449 #endif
450 pkt_len += q->ipqe_len;
451 pkt_flags |= q->ipqe_flags;
452 pkt_seq = q->ipqe_seq;
453 m_cat(q->ipqe_m, m);
454 m = q->ipqe_m;
455 TCP_REASS_COUNTER_INCR(&tcp_reass_append);
456 goto free_ipqe;
457 }
458 /*
459 * If the received segment is completely past this
460 * fragment, we need to go the next fragment.
461 */
462 if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
463 p = q;
464 continue;
465 }
466 /*
467 * If the fragment is past the received segment,
468 * it (or any following) can't be concatenated.
469 */
470 if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
471 TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
472 break;
473 }
474
475 /*
476 * We've received all the data in this segment before.
477 * mark it as a duplicate and return.
478 */
479 if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
480 SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
481 tcpstat.tcps_rcvduppack++;
482 tcpstat.tcps_rcvdupbyte += pkt_len;
483 m_freem(m);
484 if (tiqe != NULL)
485 pool_put(&ipqent_pool, tiqe);
486 TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
487 return (0);
488 }
489 /*
490 * Received segment completely overlaps this fragment
491 * so we drop the fragment (this keeps the temporal
492 * ordering of segments correct).
493 */
494 if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
495 SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
496 rcvpartdupbyte += q->ipqe_len;
497 m_freem(q->ipqe_m);
498 TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
499 goto free_ipqe;
500 }
501 /*
502 * RX'ed segment extends past the end of the
503 * fragment. Drop the overlapping bytes. Then
504 * merge the fragment and segment then treat as
505 * a longer received packet.
506 */
507 if (SEQ_LT(q->ipqe_seq, pkt_seq)
508 && SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
509 int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
510 #ifdef TCPREASS_DEBUG
511 printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
512 tp, overlap,
513 pkt_seq, pkt_seq + pkt_len, pkt_len);
514 #endif
515 m_adj(m, overlap);
516 rcvpartdupbyte += overlap;
517 m_cat(q->ipqe_m, m);
518 m = q->ipqe_m;
519 pkt_seq = q->ipqe_seq;
520 pkt_len += q->ipqe_len - overlap;
521 rcvoobyte -= overlap;
522 TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
523 goto free_ipqe;
524 }
525 /*
526 * RX'ed segment extends past the front of the
527 * fragment. Drop the overlapping bytes on the
528 * received packet. The packet will then be
529 * contatentated with this fragment a bit later.
530 */
531 if (SEQ_GT(q->ipqe_seq, pkt_seq)
532 && SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len)) {
533 int overlap = pkt_seq + pkt_len - q->ipqe_seq;
534 #ifdef TCPREASS_DEBUG
535 printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
536 tp, overlap,
537 pkt_seq, pkt_seq + pkt_len, pkt_len);
538 #endif
539 m_adj(m, -overlap);
540 pkt_len -= overlap;
541 rcvpartdupbyte += overlap;
542 TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
543 rcvoobyte -= overlap;
544 }
545 /*
546 * If the received segment immediates precedes this
547 * fragment then tack the fragment onto this segment
548 * and reinsert the data.
549 */
550 if (q->ipqe_seq == pkt_seq + pkt_len) {
551 #ifdef TCPREASS_DEBUG
552 printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
553 tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
554 pkt_seq, pkt_seq + pkt_len, pkt_len);
555 #endif
556 pkt_len += q->ipqe_len;
557 pkt_flags |= q->ipqe_flags;
558 m_cat(m, q->ipqe_m);
559 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
560 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
561 if (tiqe == NULL) {
562 tiqe = q;
563 } else {
564 pool_put(&ipqent_pool, q);
565 }
566 TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
567 break;
568 }
569 /*
570 * If the fragment is before the segment, remember it.
571 * When this loop is terminated, p will contain the
572 * pointer to fragment that is right before the received
573 * segment.
574 */
575 if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
576 p = q;
577
578 continue;
579
580 /*
581 * This is a common operation. It also will allow
582 * to save doing a malloc/free in most instances.
583 */
584 free_ipqe:
585 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
586 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
587 if (tiqe == NULL) {
588 tiqe = q;
589 } else {
590 pool_put(&ipqent_pool, q);
591 }
592 }
593
594 #ifdef TCP_REASS_COUNTERS
595 if (count > 7)
596 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
597 else if (count > 0)
598 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
599 #endif
600
601 insert_it:
602
603 /*
604 * Allocate a new queue entry since the received segment did not
605 * collapse onto any other out-of-order block; thus we are allocating
606 * a new block. If it had collapsed, tiqe would not be NULL and
607 * we would be reusing it.
608 * XXX If we can't, just drop the packet. XXX
609 */
610 if (tiqe == NULL) {
611 tiqe = pool_get(&ipqent_pool, PR_NOWAIT);
612 if (tiqe == NULL) {
613 tcpstat.tcps_rcvmemdrop++;
614 m_freem(m);
615 return (0);
616 }
617 }
618
619 /*
620 * Update the counters.
621 */
622 tcpstat.tcps_rcvoopack++;
623 tcpstat.tcps_rcvoobyte += rcvoobyte;
624 if (rcvpartdupbyte) {
625 tcpstat.tcps_rcvpartduppack++;
626 tcpstat.tcps_rcvpartdupbyte += rcvpartdupbyte;
627 }
628
629 /*
630 * Insert the new fragment queue entry into both queues.
631 */
632 tiqe->ipqe_m = m;
633 tiqe->ipqe_seq = pkt_seq;
634 tiqe->ipqe_len = pkt_len;
635 tiqe->ipqe_flags = pkt_flags;
636 if (p == NULL) {
637 TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
638 #ifdef TCPREASS_DEBUG
639 if (tiqe->ipqe_seq != tp->rcv_nxt)
640 printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
641 tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
642 #endif
643 } else {
644 TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
645 #ifdef TCPREASS_DEBUG
646 printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
647 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
648 p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
649 #endif
650 }
651
652 skip_replacement:
653
654 TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
655
656 present:
657 /*
658 * Present data to user, advancing rcv_nxt through
659 * completed sequence space.
660 */
661 if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
662 return (0);
663 q = TAILQ_FIRST(&tp->segq);
664 if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
665 return (0);
666 if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
667 return (0);
668
669 tp->rcv_nxt += q->ipqe_len;
670 pkt_flags = q->ipqe_flags & TH_FIN;
671 ND6_HINT(tp);
672
673 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
674 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
675 if (so->so_state & SS_CANTRCVMORE)
676 m_freem(q->ipqe_m);
677 else
678 sbappendstream(&so->so_rcv, q->ipqe_m);
679 pool_put(&ipqent_pool, q);
680 sorwakeup(so);
681 return (pkt_flags);
682 }
683
684 #ifdef INET6
685 int
686 tcp6_input(mp, offp, proto)
687 struct mbuf **mp;
688 int *offp, proto;
689 {
690 struct mbuf *m = *mp;
691
692 /*
693 * draft-itojun-ipv6-tcp-to-anycast
694 * better place to put this in?
695 */
696 if (m->m_flags & M_ANYCAST6) {
697 struct ip6_hdr *ip6;
698 if (m->m_len < sizeof(struct ip6_hdr)) {
699 if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
700 tcpstat.tcps_rcvshort++;
701 return IPPROTO_DONE;
702 }
703 }
704 ip6 = mtod(m, struct ip6_hdr *);
705 icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
706 (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
707 return IPPROTO_DONE;
708 }
709
710 tcp_input(m, *offp, proto);
711 return IPPROTO_DONE;
712 }
713 #endif
714
715 #ifdef INET
716 static void
717 tcp4_log_refused(ip, th)
718 const struct ip *ip;
719 const struct tcphdr *th;
720 {
721 char src[4*sizeof "123"];
722 char dst[4*sizeof "123"];
723
724 if (ip) {
725 strcpy(src, inet_ntoa(ip->ip_src));
726 strcpy(dst, inet_ntoa(ip->ip_dst));
727 }
728 else {
729 strcpy(src, "(unknown)");
730 strcpy(dst, "(unknown)");
731 }
732 log(LOG_INFO,
733 "Connection attempt to TCP %s:%d from %s:%d\n",
734 dst, ntohs(th->th_dport),
735 src, ntohs(th->th_sport));
736 }
737 #endif
738
739 #ifdef INET6
740 static void
741 tcp6_log_refused(ip6, th)
742 const struct ip6_hdr *ip6;
743 const struct tcphdr *th;
744 {
745 char src[INET6_ADDRSTRLEN];
746 char dst[INET6_ADDRSTRLEN];
747
748 if (ip6) {
749 strcpy(src, ip6_sprintf(&ip6->ip6_src));
750 strcpy(dst, ip6_sprintf(&ip6->ip6_dst));
751 }
752 else {
753 strcpy(src, "(unknown v6)");
754 strcpy(dst, "(unknown v6)");
755 }
756 log(LOG_INFO,
757 "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
758 dst, ntohs(th->th_dport),
759 src, ntohs(th->th_sport));
760 }
761 #endif
762
763 /*
764 * TCP input routine, follows pages 65-76 of the
765 * protocol specification dated September, 1981 very closely.
766 */
767 void
768 #if __STDC__
769 tcp_input(struct mbuf *m, ...)
770 #else
771 tcp_input(m, va_alist)
772 struct mbuf *m;
773 #endif
774 {
775 struct tcphdr *th;
776 struct ip *ip;
777 struct inpcb *inp;
778 #ifdef INET6
779 struct ip6_hdr *ip6;
780 struct in6pcb *in6p;
781 #endif
782 u_int8_t *optp = NULL;
783 int optlen = 0;
784 int len, tlen, toff, hdroptlen = 0;
785 struct tcpcb *tp = 0;
786 int tiflags;
787 struct socket *so = NULL;
788 int todrop, acked, ourfinisacked, needoutput = 0;
789 #ifdef TCP_DEBUG
790 short ostate = 0;
791 #endif
792 int iss = 0;
793 u_long tiwin;
794 struct tcp_opt_info opti;
795 int off, iphlen;
796 va_list ap;
797 int af; /* af on the wire */
798 struct mbuf *tcp_saveti = NULL;
799
800 MCLAIM(m, &tcp_rx_mowner);
801 va_start(ap, m);
802 toff = va_arg(ap, int);
803 (void)va_arg(ap, int); /* ignore value, advance ap */
804 va_end(ap);
805
806 tcpstat.tcps_rcvtotal++;
807
808 bzero(&opti, sizeof(opti));
809 opti.ts_present = 0;
810 opti.maxseg = 0;
811
812 /*
813 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
814 *
815 * TCP is, by definition, unicast, so we reject all
816 * multicast outright.
817 *
818 * Note, there are additional src/dst address checks in
819 * the AF-specific code below.
820 */
821 if (m->m_flags & (M_BCAST|M_MCAST)) {
822 /* XXX stat */
823 goto drop;
824 }
825 #ifdef INET6
826 if (m->m_flags & M_ANYCAST6) {
827 /* XXX stat */
828 goto drop;
829 }
830 #endif
831
832 /*
833 * Get IP and TCP header together in first mbuf.
834 * Note: IP leaves IP header in first mbuf.
835 */
836 ip = mtod(m, struct ip *);
837 #ifdef INET6
838 ip6 = NULL;
839 #endif
840 switch (ip->ip_v) {
841 #ifdef INET
842 case 4:
843 af = AF_INET;
844 iphlen = sizeof(struct ip);
845 #ifndef PULLDOWN_TEST
846 /* would like to get rid of this... */
847 if (toff > sizeof (struct ip)) {
848 ip_stripoptions(m, (struct mbuf *)0);
849 toff = sizeof(struct ip);
850 }
851 if (m->m_len < toff + sizeof (struct tcphdr)) {
852 if ((m = m_pullup(m, toff + sizeof (struct tcphdr))) == 0) {
853 tcpstat.tcps_rcvshort++;
854 return;
855 }
856 }
857 ip = mtod(m, struct ip *);
858 th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
859 #else
860 ip = mtod(m, struct ip *);
861 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
862 sizeof(struct tcphdr));
863 if (th == NULL) {
864 tcpstat.tcps_rcvshort++;
865 return;
866 }
867 #endif
868 /* We do the checksum after PCB lookup... */
869 len = ntohs(ip->ip_len);
870 tlen = len - toff;
871 break;
872 #endif
873 #ifdef INET6
874 case 6:
875 ip = NULL;
876 iphlen = sizeof(struct ip6_hdr);
877 af = AF_INET6;
878 #ifndef PULLDOWN_TEST
879 if (m->m_len < toff + sizeof(struct tcphdr)) {
880 m = m_pullup(m, toff + sizeof(struct tcphdr)); /*XXX*/
881 if (m == NULL) {
882 tcpstat.tcps_rcvshort++;
883 return;
884 }
885 }
886 ip6 = mtod(m, struct ip6_hdr *);
887 th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
888 #else
889 ip6 = mtod(m, struct ip6_hdr *);
890 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
891 sizeof(struct tcphdr));
892 if (th == NULL) {
893 tcpstat.tcps_rcvshort++;
894 return;
895 }
896 #endif
897
898 /* Be proactive about malicious use of IPv4 mapped address */
899 if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
900 IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
901 /* XXX stat */
902 goto drop;
903 }
904
905 /*
906 * Be proactive about unspecified IPv6 address in source.
907 * As we use all-zero to indicate unbounded/unconnected pcb,
908 * unspecified IPv6 address can be used to confuse us.
909 *
910 * Note that packets with unspecified IPv6 destination is
911 * already dropped in ip6_input.
912 */
913 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
914 /* XXX stat */
915 goto drop;
916 }
917
918 /*
919 * Make sure destination address is not multicast.
920 * Source address checked in ip6_input().
921 */
922 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
923 /* XXX stat */
924 goto drop;
925 }
926
927 /* We do the checksum after PCB lookup... */
928 len = m->m_pkthdr.len;
929 tlen = len - toff;
930 break;
931 #endif
932 default:
933 m_freem(m);
934 return;
935 }
936
937 KASSERT(TCP_HDR_ALIGNED_P(th));
938
939 /*
940 * Check that TCP offset makes sense,
941 * pull out TCP options and adjust length. XXX
942 */
943 off = th->th_off << 2;
944 if (off < sizeof (struct tcphdr) || off > tlen) {
945 tcpstat.tcps_rcvbadoff++;
946 goto drop;
947 }
948 tlen -= off;
949
950 /*
951 * tcp_input() has been modified to use tlen to mean the TCP data
952 * length throughout the function. Other functions can use
953 * m->m_pkthdr.len as the basis for calculating the TCP data length.
954 * rja
955 */
956
957 if (off > sizeof (struct tcphdr)) {
958 #ifndef PULLDOWN_TEST
959 if (m->m_len < toff + off) {
960 if ((m = m_pullup(m, toff + off)) == 0) {
961 tcpstat.tcps_rcvshort++;
962 return;
963 }
964 switch (af) {
965 #ifdef INET
966 case AF_INET:
967 ip = mtod(m, struct ip *);
968 break;
969 #endif
970 #ifdef INET6
971 case AF_INET6:
972 ip6 = mtod(m, struct ip6_hdr *);
973 break;
974 #endif
975 }
976 th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
977 }
978 #else
979 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
980 if (th == NULL) {
981 tcpstat.tcps_rcvshort++;
982 return;
983 }
984 /*
985 * NOTE: ip/ip6 will not be affected by m_pulldown()
986 * (as they're before toff) and we don't need to update those.
987 */
988 #endif
989 KASSERT(TCP_HDR_ALIGNED_P(th));
990 optlen = off - sizeof (struct tcphdr);
991 optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
992 /*
993 * Do quick retrieval of timestamp options ("options
994 * prediction?"). If timestamp is the only option and it's
995 * formatted as recommended in RFC 1323 appendix A, we
996 * quickly get the values now and not bother calling
997 * tcp_dooptions(), etc.
998 */
999 if ((optlen == TCPOLEN_TSTAMP_APPA ||
1000 (optlen > TCPOLEN_TSTAMP_APPA &&
1001 optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
1002 *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
1003 (th->th_flags & TH_SYN) == 0) {
1004 opti.ts_present = 1;
1005 opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
1006 opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
1007 optp = NULL; /* we've parsed the options */
1008 }
1009 }
1010 tiflags = th->th_flags;
1011
1012 /*
1013 * Locate pcb for segment.
1014 */
1015 findpcb:
1016 inp = NULL;
1017 #ifdef INET6
1018 in6p = NULL;
1019 #endif
1020 switch (af) {
1021 #ifdef INET
1022 case AF_INET:
1023 inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
1024 ip->ip_dst, th->th_dport);
1025 if (inp == 0) {
1026 ++tcpstat.tcps_pcbhashmiss;
1027 inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
1028 }
1029 #ifdef INET6
1030 if (inp == 0) {
1031 struct in6_addr s, d;
1032
1033 /* mapped addr case */
1034 bzero(&s, sizeof(s));
1035 s.s6_addr16[5] = htons(0xffff);
1036 bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
1037 bzero(&d, sizeof(d));
1038 d.s6_addr16[5] = htons(0xffff);
1039 bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
1040 in6p = in6_pcblookup_connect(&tcb6, &s, th->th_sport,
1041 &d, th->th_dport, 0);
1042 if (in6p == 0) {
1043 ++tcpstat.tcps_pcbhashmiss;
1044 in6p = in6_pcblookup_bind(&tcb6, &d,
1045 th->th_dport, 0);
1046 }
1047 }
1048 #endif
1049 #ifndef INET6
1050 if (inp == 0)
1051 #else
1052 if (inp == 0 && in6p == 0)
1053 #endif
1054 {
1055 ++tcpstat.tcps_noport;
1056 if (tcp_log_refused &&
1057 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1058 tcp4_log_refused(ip, th);
1059 }
1060 TCP_FIELDS_TO_HOST(th);
1061 goto dropwithreset_ratelim;
1062 }
1063 #ifdef IPSEC
1064 if (inp && ipsec4_in_reject(m, inp)) {
1065 ipsecstat.in_polvio++;
1066 goto drop;
1067 }
1068 #ifdef INET6
1069 else if (in6p && ipsec4_in_reject_so(m, in6p->in6p_socket)) {
1070 ipsecstat.in_polvio++;
1071 goto drop;
1072 }
1073 #endif
1074 #endif /*IPSEC*/
1075 break;
1076 #endif /*INET*/
1077 #ifdef INET6
1078 case AF_INET6:
1079 {
1080 int faith;
1081
1082 #if defined(NFAITH) && NFAITH > 0
1083 faith = faithprefix(&ip6->ip6_dst);
1084 #else
1085 faith = 0;
1086 #endif
1087 in6p = in6_pcblookup_connect(&tcb6, &ip6->ip6_src, th->th_sport,
1088 &ip6->ip6_dst, th->th_dport, faith);
1089 if (in6p == NULL) {
1090 ++tcpstat.tcps_pcbhashmiss;
1091 in6p = in6_pcblookup_bind(&tcb6, &ip6->ip6_dst,
1092 th->th_dport, faith);
1093 }
1094 if (in6p == NULL) {
1095 ++tcpstat.tcps_noport;
1096 if (tcp_log_refused &&
1097 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1098 tcp6_log_refused(ip6, th);
1099 }
1100 TCP_FIELDS_TO_HOST(th);
1101 goto dropwithreset_ratelim;
1102 }
1103 #ifdef IPSEC
1104 if (ipsec6_in_reject(m, in6p)) {
1105 ipsec6stat.in_polvio++;
1106 goto drop;
1107 }
1108 #endif /*IPSEC*/
1109 break;
1110 }
1111 #endif
1112 }
1113
1114 /*
1115 * If the state is CLOSED (i.e., TCB does not exist) then
1116 * all data in the incoming segment is discarded.
1117 * If the TCB exists but is in CLOSED state, it is embryonic,
1118 * but should either do a listen or a connect soon.
1119 */
1120 tp = NULL;
1121 so = NULL;
1122 if (inp) {
1123 tp = intotcpcb(inp);
1124 so = inp->inp_socket;
1125 }
1126 #ifdef INET6
1127 else if (in6p) {
1128 tp = in6totcpcb(in6p);
1129 so = in6p->in6p_socket;
1130 }
1131 #endif
1132 if (tp == 0) {
1133 TCP_FIELDS_TO_HOST(th);
1134 goto dropwithreset_ratelim;
1135 }
1136 if (tp->t_state == TCPS_CLOSED)
1137 goto drop;
1138
1139 /*
1140 * Checksum extended TCP header and data.
1141 */
1142 switch (af) {
1143 #ifdef INET
1144 case AF_INET:
1145 switch (m->m_pkthdr.csum_flags &
1146 ((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
1147 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
1148 case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
1149 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
1150 goto badcsum;
1151
1152 case M_CSUM_TCPv4|M_CSUM_DATA:
1153 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
1154 if ((m->m_pkthdr.csum_data ^ 0xffff) != 0)
1155 goto badcsum;
1156 break;
1157
1158 case M_CSUM_TCPv4:
1159 /* Checksum was okay. */
1160 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
1161 break;
1162
1163 default:
1164 /* Must compute it ourselves. */
1165 TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
1166 #ifndef PULLDOWN_TEST
1167 {
1168 struct ipovly *ipov;
1169 ipov = (struct ipovly *)ip;
1170 bzero(ipov->ih_x1, sizeof ipov->ih_x1);
1171 ipov->ih_len = htons(tlen + off);
1172
1173 if (in_cksum(m, len) != 0)
1174 goto badcsum;
1175 }
1176 #else
1177 if (in4_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0)
1178 goto badcsum;
1179 #endif /* ! PULLDOWN_TEST */
1180 break;
1181 }
1182 break;
1183 #endif /* INET4 */
1184
1185 #ifdef INET6
1186 case AF_INET6:
1187 if (in6_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0)
1188 goto badcsum;
1189 break;
1190 #endif /* INET6 */
1191 }
1192
1193 TCP_FIELDS_TO_HOST(th);
1194
1195 /* Unscale the window into a 32-bit value. */
1196 if ((tiflags & TH_SYN) == 0)
1197 tiwin = th->th_win << tp->snd_scale;
1198 else
1199 tiwin = th->th_win;
1200
1201 #ifdef INET6
1202 /* save packet options if user wanted */
1203 if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
1204 if (in6p->in6p_options) {
1205 m_freem(in6p->in6p_options);
1206 in6p->in6p_options = 0;
1207 }
1208 ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
1209 }
1210 #endif
1211
1212 if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
1213 union syn_cache_sa src;
1214 union syn_cache_sa dst;
1215
1216 bzero(&src, sizeof(src));
1217 bzero(&dst, sizeof(dst));
1218 switch (af) {
1219 #ifdef INET
1220 case AF_INET:
1221 src.sin.sin_len = sizeof(struct sockaddr_in);
1222 src.sin.sin_family = AF_INET;
1223 src.sin.sin_addr = ip->ip_src;
1224 src.sin.sin_port = th->th_sport;
1225
1226 dst.sin.sin_len = sizeof(struct sockaddr_in);
1227 dst.sin.sin_family = AF_INET;
1228 dst.sin.sin_addr = ip->ip_dst;
1229 dst.sin.sin_port = th->th_dport;
1230 break;
1231 #endif
1232 #ifdef INET6
1233 case AF_INET6:
1234 src.sin6.sin6_len = sizeof(struct sockaddr_in6);
1235 src.sin6.sin6_family = AF_INET6;
1236 src.sin6.sin6_addr = ip6->ip6_src;
1237 src.sin6.sin6_port = th->th_sport;
1238
1239 dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
1240 dst.sin6.sin6_family = AF_INET6;
1241 dst.sin6.sin6_addr = ip6->ip6_dst;
1242 dst.sin6.sin6_port = th->th_dport;
1243 break;
1244 #endif /* INET6 */
1245 default:
1246 goto badsyn; /*sanity*/
1247 }
1248
1249 if (so->so_options & SO_DEBUG) {
1250 #ifdef TCP_DEBUG
1251 ostate = tp->t_state;
1252 #endif
1253
1254 tcp_saveti = NULL;
1255 if (iphlen + sizeof(struct tcphdr) > MHLEN)
1256 goto nosave;
1257
1258 if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
1259 tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
1260 if (!tcp_saveti)
1261 goto nosave;
1262 } else {
1263 MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
1264 if (!tcp_saveti)
1265 goto nosave;
1266 MCLAIM(m, &tcp_mowner);
1267 tcp_saveti->m_len = iphlen;
1268 m_copydata(m, 0, iphlen,
1269 mtod(tcp_saveti, caddr_t));
1270 }
1271
1272 if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
1273 m_freem(tcp_saveti);
1274 tcp_saveti = NULL;
1275 } else {
1276 tcp_saveti->m_len += sizeof(struct tcphdr);
1277 bcopy(th, mtod(tcp_saveti, caddr_t) + iphlen,
1278 sizeof(struct tcphdr));
1279 }
1280 if (tcp_saveti) {
1281 /*
1282 * need to recover version # field, which was
1283 * overwritten on ip_cksum computation.
1284 */
1285 struct ip *sip;
1286 sip = mtod(tcp_saveti, struct ip *);
1287 switch (af) {
1288 #ifdef INET
1289 case AF_INET:
1290 sip->ip_v = 4;
1291 break;
1292 #endif
1293 #ifdef INET6
1294 case AF_INET6:
1295 sip->ip_v = 6;
1296 break;
1297 #endif
1298 }
1299 }
1300 nosave:;
1301 }
1302 if (so->so_options & SO_ACCEPTCONN) {
1303 if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1304 if (tiflags & TH_RST) {
1305 syn_cache_reset(&src.sa, &dst.sa, th);
1306 } else if ((tiflags & (TH_ACK|TH_SYN)) ==
1307 (TH_ACK|TH_SYN)) {
1308 /*
1309 * Received a SYN,ACK. This should
1310 * never happen while we are in
1311 * LISTEN. Send an RST.
1312 */
1313 goto badsyn;
1314 } else if (tiflags & TH_ACK) {
1315 so = syn_cache_get(&src.sa, &dst.sa,
1316 th, toff, tlen, so, m);
1317 if (so == NULL) {
1318 /*
1319 * We don't have a SYN for
1320 * this ACK; send an RST.
1321 */
1322 goto badsyn;
1323 } else if (so ==
1324 (struct socket *)(-1)) {
1325 /*
1326 * We were unable to create
1327 * the connection. If the
1328 * 3-way handshake was
1329 * completed, and RST has
1330 * been sent to the peer.
1331 * Since the mbuf might be
1332 * in use for the reply,
1333 * do not free it.
1334 */
1335 m = NULL;
1336 } else {
1337 /*
1338 * We have created a
1339 * full-blown connection.
1340 */
1341 tp = NULL;
1342 inp = NULL;
1343 #ifdef INET6
1344 in6p = NULL;
1345 #endif
1346 switch (so->so_proto->pr_domain->dom_family) {
1347 #ifdef INET
1348 case AF_INET:
1349 inp = sotoinpcb(so);
1350 tp = intotcpcb(inp);
1351 break;
1352 #endif
1353 #ifdef INET6
1354 case AF_INET6:
1355 in6p = sotoin6pcb(so);
1356 tp = in6totcpcb(in6p);
1357 break;
1358 #endif
1359 }
1360 if (tp == NULL)
1361 goto badsyn; /*XXX*/
1362 tiwin <<= tp->snd_scale;
1363 goto after_listen;
1364 }
1365 } else {
1366 /*
1367 * None of RST, SYN or ACK was set.
1368 * This is an invalid packet for a
1369 * TCB in LISTEN state. Send a RST.
1370 */
1371 goto badsyn;
1372 }
1373 } else {
1374 /*
1375 * Received a SYN.
1376 */
1377
1378 #ifdef INET6
1379 /*
1380 * If deprecated address is forbidden, we do
1381 * not accept SYN to deprecated interface
1382 * address to prevent any new inbound
1383 * connection from getting established.
1384 * When we do not accept SYN, we send a TCP
1385 * RST, with deprecated source address (instead
1386 * of dropping it). We compromise it as it is
1387 * much better for peer to send a RST, and
1388 * RST will be the final packet for the
1389 * exchange.
1390 *
1391 * If we do not forbid deprecated addresses, we
1392 * accept the SYN packet. RFC2462 does not
1393 * suggest dropping SYN in this case.
1394 * If we decipher RFC2462 5.5.4, it says like
1395 * this:
1396 * 1. use of deprecated addr with existing
1397 * communication is okay - "SHOULD continue
1398 * to be used"
1399 * 2. use of it with new communication:
1400 * (2a) "SHOULD NOT be used if alternate
1401 * address with sufficient scope is
1402 * available"
1403 * (2b) nothing mentioned otherwise.
1404 * Here we fall into (2b) case as we have no
1405 * choice in our source address selection - we
1406 * must obey the peer.
1407 *
1408 * The wording in RFC2462 is confusing, and
1409 * there are multiple description text for
1410 * deprecated address handling - worse, they
1411 * are not exactly the same. I believe 5.5.4
1412 * is the best one, so we follow 5.5.4.
1413 */
1414 if (af == AF_INET6 && !ip6_use_deprecated) {
1415 struct in6_ifaddr *ia6;
1416 if ((ia6 = in6ifa_ifpwithaddr(m->m_pkthdr.rcvif,
1417 &ip6->ip6_dst)) &&
1418 (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1419 tp = NULL;
1420 goto dropwithreset;
1421 }
1422 }
1423 #endif
1424
1425 /*
1426 * LISTEN socket received a SYN
1427 * from itself? This can't possibly
1428 * be valid; drop the packet.
1429 */
1430 if (th->th_sport == th->th_dport) {
1431 int i;
1432
1433 switch (af) {
1434 #ifdef INET
1435 case AF_INET:
1436 i = in_hosteq(ip->ip_src, ip->ip_dst);
1437 break;
1438 #endif
1439 #ifdef INET6
1440 case AF_INET6:
1441 i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
1442 break;
1443 #endif
1444 default:
1445 i = 1;
1446 }
1447 if (i) {
1448 tcpstat.tcps_badsyn++;
1449 goto drop;
1450 }
1451 }
1452
1453 /*
1454 * SYN looks ok; create compressed TCP
1455 * state for it.
1456 */
1457 if (so->so_qlen <= so->so_qlimit &&
1458 syn_cache_add(&src.sa, &dst.sa, th, tlen,
1459 so, m, optp, optlen, &opti))
1460 m = NULL;
1461 }
1462 goto drop;
1463 }
1464 }
1465
1466 after_listen:
1467 #ifdef DIAGNOSTIC
1468 /*
1469 * Should not happen now that all embryonic connections
1470 * are handled with compressed state.
1471 */
1472 if (tp->t_state == TCPS_LISTEN)
1473 panic("tcp_input: TCPS_LISTEN");
1474 #endif
1475
1476 /*
1477 * Segment received on connection.
1478 * Reset idle time and keep-alive timer.
1479 */
1480 tp->t_rcvtime = tcp_now;
1481 if (TCPS_HAVEESTABLISHED(tp->t_state))
1482 TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1483
1484 /*
1485 * Process options.
1486 */
1487 if (optp)
1488 tcp_dooptions(tp, optp, optlen, th, &opti);
1489
1490 /*
1491 * Header prediction: check for the two common cases
1492 * of a uni-directional data xfer. If the packet has
1493 * no control flags, is in-sequence, the window didn't
1494 * change and we're not retransmitting, it's a
1495 * candidate. If the length is zero and the ack moved
1496 * forward, we're the sender side of the xfer. Just
1497 * free the data acked & wake any higher level process
1498 * that was blocked waiting for space. If the length
1499 * is non-zero and the ack didn't move, we're the
1500 * receiver side. If we're getting packets in-order
1501 * (the reassembly queue is empty), add the data to
1502 * the socket buffer and note that we need a delayed ack.
1503 */
1504 if (tp->t_state == TCPS_ESTABLISHED &&
1505 (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1506 (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
1507 th->th_seq == tp->rcv_nxt &&
1508 tiwin && tiwin == tp->snd_wnd &&
1509 tp->snd_nxt == tp->snd_max) {
1510
1511 /*
1512 * If last ACK falls within this segment's sequence numbers,
1513 * record the timestamp.
1514 */
1515 if (opti.ts_present &&
1516 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1517 SEQ_LT(tp->last_ack_sent, th->th_seq + tlen)) {
1518 tp->ts_recent_age = TCP_TIMESTAMP(tp);
1519 tp->ts_recent = opti.ts_val;
1520 }
1521
1522 if (tlen == 0) {
1523 if (SEQ_GT(th->th_ack, tp->snd_una) &&
1524 SEQ_LEQ(th->th_ack, tp->snd_max) &&
1525 tp->snd_cwnd >= tp->snd_wnd &&
1526 tp->t_dupacks < tcprexmtthresh) {
1527 /*
1528 * this is a pure ack for outstanding data.
1529 */
1530 ++tcpstat.tcps_predack;
1531 if (opti.ts_present && opti.ts_ecr)
1532 tcp_xmit_timer(tp,
1533 TCP_TIMESTAMP(tp) - opti.ts_ecr + 1);
1534 else if (tp->t_rtttime &&
1535 SEQ_GT(th->th_ack, tp->t_rtseq))
1536 tcp_xmit_timer(tp,
1537 tcp_now - tp->t_rtttime);
1538 acked = th->th_ack - tp->snd_una;
1539 tcpstat.tcps_rcvackpack++;
1540 tcpstat.tcps_rcvackbyte += acked;
1541 ND6_HINT(tp);
1542 sbdrop(&so->so_snd, acked);
1543 /*
1544 * We want snd_recover to track snd_una to
1545 * avoid sequence wraparound problems for
1546 * very large transfers.
1547 */
1548 tp->snd_una = tp->snd_recover = th->th_ack;
1549 m_freem(m);
1550
1551 /*
1552 * If all outstanding data are acked, stop
1553 * retransmit timer, otherwise restart timer
1554 * using current (possibly backed-off) value.
1555 * If process is waiting for space,
1556 * wakeup/selwakeup/signal. If data
1557 * are ready to send, let tcp_output
1558 * decide between more output or persist.
1559 */
1560 if (tp->snd_una == tp->snd_max)
1561 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1562 else if (TCP_TIMER_ISARMED(tp,
1563 TCPT_PERSIST) == 0)
1564 TCP_TIMER_ARM(tp, TCPT_REXMT,
1565 tp->t_rxtcur);
1566
1567 sowwakeup(so);
1568 if (so->so_snd.sb_cc)
1569 (void) tcp_output(tp);
1570 if (tcp_saveti)
1571 m_freem(tcp_saveti);
1572 return;
1573 }
1574 } else if (th->th_ack == tp->snd_una &&
1575 TAILQ_FIRST(&tp->segq) == NULL &&
1576 tlen <= sbspace(&so->so_rcv)) {
1577 /*
1578 * this is a pure, in-sequence data packet
1579 * with nothing on the reassembly queue and
1580 * we have enough buffer space to take it.
1581 */
1582 ++tcpstat.tcps_preddat;
1583 tp->rcv_nxt += tlen;
1584 tcpstat.tcps_rcvpack++;
1585 tcpstat.tcps_rcvbyte += tlen;
1586 ND6_HINT(tp);
1587 /*
1588 * Drop TCP, IP headers and TCP options then add data
1589 * to socket buffer.
1590 */
1591 if (so->so_state & SS_CANTRCVMORE)
1592 m_freem(m);
1593 else {
1594 m_adj(m, toff + off);
1595 sbappendstream(&so->so_rcv, m);
1596 }
1597 sorwakeup(so);
1598 TCP_SETUP_ACK(tp, th);
1599 if (tp->t_flags & TF_ACKNOW)
1600 (void) tcp_output(tp);
1601 if (tcp_saveti)
1602 m_freem(tcp_saveti);
1603 return;
1604 }
1605 }
1606
1607 /*
1608 * Compute mbuf offset to TCP data segment.
1609 */
1610 hdroptlen = toff + off;
1611
1612 /*
1613 * Calculate amount of space in receive window,
1614 * and then do TCP input processing.
1615 * Receive window is amount of space in rcv queue,
1616 * but not less than advertised window.
1617 */
1618 { int win;
1619
1620 win = sbspace(&so->so_rcv);
1621 if (win < 0)
1622 win = 0;
1623 tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1624 }
1625
1626 switch (tp->t_state) {
1627 case TCPS_LISTEN:
1628 /*
1629 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
1630 */
1631 if (m->m_flags & (M_BCAST|M_MCAST))
1632 goto drop;
1633 switch (af) {
1634 #ifdef INET6
1635 case AF_INET6:
1636 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
1637 goto drop;
1638 break;
1639 #endif /* INET6 */
1640 case AF_INET:
1641 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
1642 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
1643 goto drop;
1644 break;
1645 }
1646 break;
1647
1648 /*
1649 * If the state is SYN_SENT:
1650 * if seg contains an ACK, but not for our SYN, drop the input.
1651 * if seg contains a RST, then drop the connection.
1652 * if seg does not contain SYN, then drop it.
1653 * Otherwise this is an acceptable SYN segment
1654 * initialize tp->rcv_nxt and tp->irs
1655 * if seg contains ack then advance tp->snd_una
1656 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1657 * arrange for segment to be acked (eventually)
1658 * continue processing rest of data/controls, beginning with URG
1659 */
1660 case TCPS_SYN_SENT:
1661 if ((tiflags & TH_ACK) &&
1662 (SEQ_LEQ(th->th_ack, tp->iss) ||
1663 SEQ_GT(th->th_ack, tp->snd_max)))
1664 goto dropwithreset;
1665 if (tiflags & TH_RST) {
1666 if (tiflags & TH_ACK)
1667 tp = tcp_drop(tp, ECONNREFUSED);
1668 goto drop;
1669 }
1670 if ((tiflags & TH_SYN) == 0)
1671 goto drop;
1672 if (tiflags & TH_ACK) {
1673 tp->snd_una = tp->snd_recover = th->th_ack;
1674 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1675 tp->snd_nxt = tp->snd_una;
1676 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1677 }
1678 tp->irs = th->th_seq;
1679 tcp_rcvseqinit(tp);
1680 tp->t_flags |= TF_ACKNOW;
1681 tcp_mss_from_peer(tp, opti.maxseg);
1682
1683 /*
1684 * Initialize the initial congestion window. If we
1685 * had to retransmit the SYN, we must initialize cwnd
1686 * to 1 segment (i.e. the Loss Window).
1687 */
1688 if (tp->t_flags & TF_SYN_REXMT)
1689 tp->snd_cwnd = tp->t_peermss;
1690 else {
1691 int ss = tcp_init_win;
1692 #ifdef INET
1693 if (inp != NULL && in_localaddr(inp->inp_faddr))
1694 ss = tcp_init_win_local;
1695 #endif
1696 #ifdef INET6
1697 if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
1698 ss = tcp_init_win_local;
1699 #endif
1700 tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
1701 }
1702
1703 tcp_rmx_rtt(tp);
1704 if (tiflags & TH_ACK) {
1705 tcpstat.tcps_connects++;
1706 soisconnected(so);
1707 tcp_established(tp);
1708 /* Do window scaling on this connection? */
1709 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1710 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1711 tp->snd_scale = tp->requested_s_scale;
1712 tp->rcv_scale = tp->request_r_scale;
1713 }
1714 TCP_REASS_LOCK(tp);
1715 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1716 TCP_REASS_UNLOCK(tp);
1717 /*
1718 * if we didn't have to retransmit the SYN,
1719 * use its rtt as our initial srtt & rtt var.
1720 */
1721 if (tp->t_rtttime)
1722 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
1723 } else
1724 tp->t_state = TCPS_SYN_RECEIVED;
1725
1726 /*
1727 * Advance th->th_seq to correspond to first data byte.
1728 * If data, trim to stay within window,
1729 * dropping FIN if necessary.
1730 */
1731 th->th_seq++;
1732 if (tlen > tp->rcv_wnd) {
1733 todrop = tlen - tp->rcv_wnd;
1734 m_adj(m, -todrop);
1735 tlen = tp->rcv_wnd;
1736 tiflags &= ~TH_FIN;
1737 tcpstat.tcps_rcvpackafterwin++;
1738 tcpstat.tcps_rcvbyteafterwin += todrop;
1739 }
1740 tp->snd_wl1 = th->th_seq - 1;
1741 tp->rcv_up = th->th_seq;
1742 goto step6;
1743
1744 /*
1745 * If the state is SYN_RECEIVED:
1746 * If seg contains an ACK, but not for our SYN, drop the input
1747 * and generate an RST. See page 36, rfc793
1748 */
1749 case TCPS_SYN_RECEIVED:
1750 if ((tiflags & TH_ACK) &&
1751 (SEQ_LEQ(th->th_ack, tp->iss) ||
1752 SEQ_GT(th->th_ack, tp->snd_max)))
1753 goto dropwithreset;
1754 break;
1755 }
1756
1757 /*
1758 * States other than LISTEN or SYN_SENT.
1759 * First check timestamp, if present.
1760 * Then check that at least some bytes of segment are within
1761 * receive window. If segment begins before rcv_nxt,
1762 * drop leading data (and SYN); if nothing left, just ack.
1763 *
1764 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1765 * and it's less than ts_recent, drop it.
1766 */
1767 if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
1768 TSTMP_LT(opti.ts_val, tp->ts_recent)) {
1769
1770 /* Check to see if ts_recent is over 24 days old. */
1771 if ((int)(TCP_TIMESTAMP(tp) - tp->ts_recent_age) >
1772 TCP_PAWS_IDLE) {
1773 /*
1774 * Invalidate ts_recent. If this segment updates
1775 * ts_recent, the age will be reset later and ts_recent
1776 * will get a valid value. If it does not, setting
1777 * ts_recent to zero will at least satisfy the
1778 * requirement that zero be placed in the timestamp
1779 * echo reply when ts_recent isn't valid. The
1780 * age isn't reset until we get a valid ts_recent
1781 * because we don't want out-of-order segments to be
1782 * dropped when ts_recent is old.
1783 */
1784 tp->ts_recent = 0;
1785 } else {
1786 tcpstat.tcps_rcvduppack++;
1787 tcpstat.tcps_rcvdupbyte += tlen;
1788 tcpstat.tcps_pawsdrop++;
1789 goto dropafterack;
1790 }
1791 }
1792
1793 todrop = tp->rcv_nxt - th->th_seq;
1794 if (todrop > 0) {
1795 if (tiflags & TH_SYN) {
1796 tiflags &= ~TH_SYN;
1797 th->th_seq++;
1798 if (th->th_urp > 1)
1799 th->th_urp--;
1800 else {
1801 tiflags &= ~TH_URG;
1802 th->th_urp = 0;
1803 }
1804 todrop--;
1805 }
1806 if (todrop > tlen ||
1807 (todrop == tlen && (tiflags & TH_FIN) == 0)) {
1808 /*
1809 * Any valid FIN must be to the left of the window.
1810 * At this point the FIN must be a duplicate or
1811 * out of sequence; drop it.
1812 */
1813 tiflags &= ~TH_FIN;
1814 /*
1815 * Send an ACK to resynchronize and drop any data.
1816 * But keep on processing for RST or ACK.
1817 */
1818 tp->t_flags |= TF_ACKNOW;
1819 todrop = tlen;
1820 tcpstat.tcps_rcvdupbyte += todrop;
1821 tcpstat.tcps_rcvduppack++;
1822 } else {
1823 tcpstat.tcps_rcvpartduppack++;
1824 tcpstat.tcps_rcvpartdupbyte += todrop;
1825 }
1826 hdroptlen += todrop; /*drop from head afterwards*/
1827 th->th_seq += todrop;
1828 tlen -= todrop;
1829 if (th->th_urp > todrop)
1830 th->th_urp -= todrop;
1831 else {
1832 tiflags &= ~TH_URG;
1833 th->th_urp = 0;
1834 }
1835 }
1836
1837 /*
1838 * If new data are received on a connection after the
1839 * user processes are gone, then RST the other end.
1840 */
1841 if ((so->so_state & SS_NOFDREF) &&
1842 tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1843 tp = tcp_close(tp);
1844 tcpstat.tcps_rcvafterclose++;
1845 goto dropwithreset;
1846 }
1847
1848 /*
1849 * If segment ends after window, drop trailing data
1850 * (and PUSH and FIN); if nothing left, just ACK.
1851 */
1852 todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
1853 if (todrop > 0) {
1854 tcpstat.tcps_rcvpackafterwin++;
1855 if (todrop >= tlen) {
1856 tcpstat.tcps_rcvbyteafterwin += tlen;
1857 /*
1858 * If a new connection request is received
1859 * while in TIME_WAIT, drop the old connection
1860 * and start over if the sequence numbers
1861 * are above the previous ones.
1862 *
1863 * NOTE: We will checksum the packet again, and
1864 * so we need to put the header fields back into
1865 * network order!
1866 * XXX This kind of sucks, but we don't expect
1867 * XXX this to happen very often, so maybe it
1868 * XXX doesn't matter so much.
1869 */
1870 if (tiflags & TH_SYN &&
1871 tp->t_state == TCPS_TIME_WAIT &&
1872 SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1873 iss = tcp_new_iss(tp, tp->snd_nxt);
1874 tp = tcp_close(tp);
1875 TCP_FIELDS_TO_NET(th);
1876 goto findpcb;
1877 }
1878 /*
1879 * If window is closed can only take segments at
1880 * window edge, and have to drop data and PUSH from
1881 * incoming segments. Continue processing, but
1882 * remember to ack. Otherwise, drop segment
1883 * and ack.
1884 */
1885 if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1886 tp->t_flags |= TF_ACKNOW;
1887 tcpstat.tcps_rcvwinprobe++;
1888 } else
1889 goto dropafterack;
1890 } else
1891 tcpstat.tcps_rcvbyteafterwin += todrop;
1892 m_adj(m, -todrop);
1893 tlen -= todrop;
1894 tiflags &= ~(TH_PUSH|TH_FIN);
1895 }
1896
1897 /*
1898 * If last ACK falls within this segment's sequence numbers,
1899 * and the timestamp is newer, record it.
1900 */
1901 if (opti.ts_present && TSTMP_GEQ(opti.ts_val, tp->ts_recent) &&
1902 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1903 SEQ_LT(tp->last_ack_sent, th->th_seq + tlen +
1904 ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
1905 tp->ts_recent_age = TCP_TIMESTAMP(tp);
1906 tp->ts_recent = opti.ts_val;
1907 }
1908
1909 /*
1910 * If the RST bit is set examine the state:
1911 * SYN_RECEIVED STATE:
1912 * If passive open, return to LISTEN state.
1913 * If active open, inform user that connection was refused.
1914 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
1915 * Inform user that connection was reset, and close tcb.
1916 * CLOSING, LAST_ACK, TIME_WAIT STATES
1917 * Close the tcb.
1918 */
1919 if (tiflags&TH_RST) switch (tp->t_state) {
1920
1921 case TCPS_SYN_RECEIVED:
1922 so->so_error = ECONNREFUSED;
1923 goto close;
1924
1925 case TCPS_ESTABLISHED:
1926 case TCPS_FIN_WAIT_1:
1927 case TCPS_FIN_WAIT_2:
1928 case TCPS_CLOSE_WAIT:
1929 so->so_error = ECONNRESET;
1930 close:
1931 tp->t_state = TCPS_CLOSED;
1932 tcpstat.tcps_drops++;
1933 tp = tcp_close(tp);
1934 goto drop;
1935
1936 case TCPS_CLOSING:
1937 case TCPS_LAST_ACK:
1938 case TCPS_TIME_WAIT:
1939 tp = tcp_close(tp);
1940 goto drop;
1941 }
1942
1943 /*
1944 * If a SYN is in the window, then this is an
1945 * error and we send an RST and drop the connection.
1946 */
1947 if (tiflags & TH_SYN) {
1948 tp = tcp_drop(tp, ECONNRESET);
1949 goto dropwithreset;
1950 }
1951
1952 /*
1953 * If the ACK bit is off we drop the segment and return.
1954 */
1955 if ((tiflags & TH_ACK) == 0) {
1956 if (tp->t_flags & TF_ACKNOW)
1957 goto dropafterack;
1958 else
1959 goto drop;
1960 }
1961
1962 /*
1963 * Ack processing.
1964 */
1965 switch (tp->t_state) {
1966
1967 /*
1968 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
1969 * ESTABLISHED state and continue processing, otherwise
1970 * send an RST.
1971 */
1972 case TCPS_SYN_RECEIVED:
1973 if (SEQ_GT(tp->snd_una, th->th_ack) ||
1974 SEQ_GT(th->th_ack, tp->snd_max))
1975 goto dropwithreset;
1976 tcpstat.tcps_connects++;
1977 soisconnected(so);
1978 tcp_established(tp);
1979 /* Do window scaling? */
1980 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1981 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1982 tp->snd_scale = tp->requested_s_scale;
1983 tp->rcv_scale = tp->request_r_scale;
1984 }
1985 TCP_REASS_LOCK(tp);
1986 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1987 TCP_REASS_UNLOCK(tp);
1988 tp->snd_wl1 = th->th_seq - 1;
1989 /* fall into ... */
1990
1991 /*
1992 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1993 * ACKs. If the ack is in the range
1994 * tp->snd_una < th->th_ack <= tp->snd_max
1995 * then advance tp->snd_una to th->th_ack and drop
1996 * data from the retransmission queue. If this ACK reflects
1997 * more up to date window information we update our window information.
1998 */
1999 case TCPS_ESTABLISHED:
2000 case TCPS_FIN_WAIT_1:
2001 case TCPS_FIN_WAIT_2:
2002 case TCPS_CLOSE_WAIT:
2003 case TCPS_CLOSING:
2004 case TCPS_LAST_ACK:
2005 case TCPS_TIME_WAIT:
2006
2007 if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2008 if (tlen == 0 && tiwin == tp->snd_wnd) {
2009 tcpstat.tcps_rcvdupack++;
2010 /*
2011 * If we have outstanding data (other than
2012 * a window probe), this is a completely
2013 * duplicate ack (ie, window info didn't
2014 * change), the ack is the biggest we've
2015 * seen and we've seen exactly our rexmt
2016 * threshhold of them, assume a packet
2017 * has been dropped and retransmit it.
2018 * Kludge snd_nxt & the congestion
2019 * window so we send only this one
2020 * packet.
2021 *
2022 * We know we're losing at the current
2023 * window size so do congestion avoidance
2024 * (set ssthresh to half the current window
2025 * and pull our congestion window back to
2026 * the new ssthresh).
2027 *
2028 * Dup acks mean that packets have left the
2029 * network (they're now cached at the receiver)
2030 * so bump cwnd by the amount in the receiver
2031 * to keep a constant cwnd packets in the
2032 * network.
2033 */
2034 if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
2035 th->th_ack != tp->snd_una)
2036 tp->t_dupacks = 0;
2037 else if (++tp->t_dupacks == tcprexmtthresh) {
2038 tcp_seq onxt = tp->snd_nxt;
2039 u_int win =
2040 min(tp->snd_wnd, tp->snd_cwnd) /
2041 2 / tp->t_segsz;
2042 if (tcp_do_newreno && SEQ_LT(th->th_ack,
2043 tp->snd_recover)) {
2044 /*
2045 * False fast retransmit after
2046 * timeout. Do not cut window.
2047 */
2048 tp->snd_cwnd += tp->t_segsz;
2049 tp->t_dupacks = 0;
2050 (void) tcp_output(tp);
2051 goto drop;
2052 }
2053
2054 if (win < 2)
2055 win = 2;
2056 tp->snd_ssthresh = win * tp->t_segsz;
2057 tp->snd_recover = tp->snd_max;
2058 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2059 tp->t_rtttime = 0;
2060 tp->snd_nxt = th->th_ack;
2061 tp->snd_cwnd = tp->t_segsz;
2062 (void) tcp_output(tp);
2063 tp->snd_cwnd = tp->snd_ssthresh +
2064 tp->t_segsz * tp->t_dupacks;
2065 if (SEQ_GT(onxt, tp->snd_nxt))
2066 tp->snd_nxt = onxt;
2067 goto drop;
2068 } else if (tp->t_dupacks > tcprexmtthresh) {
2069 tp->snd_cwnd += tp->t_segsz;
2070 (void) tcp_output(tp);
2071 goto drop;
2072 }
2073 } else
2074 tp->t_dupacks = 0;
2075 break;
2076 }
2077 /*
2078 * If the congestion window was inflated to account
2079 * for the other side's cached packets, retract it.
2080 */
2081 if (tcp_do_newreno == 0) {
2082 if (tp->t_dupacks >= tcprexmtthresh &&
2083 tp->snd_cwnd > tp->snd_ssthresh)
2084 tp->snd_cwnd = tp->snd_ssthresh;
2085 tp->t_dupacks = 0;
2086 } else if (tp->t_dupacks >= tcprexmtthresh &&
2087 tcp_newreno(tp, th) == 0) {
2088 tp->snd_cwnd = tp->snd_ssthresh;
2089 /*
2090 * Window inflation should have left us with approx.
2091 * snd_ssthresh outstanding data. But in case we
2092 * would be inclined to send a burst, better to do
2093 * it via the slow start mechanism.
2094 */
2095 if (SEQ_SUB(tp->snd_max, th->th_ack) < tp->snd_ssthresh)
2096 tp->snd_cwnd = SEQ_SUB(tp->snd_max, th->th_ack)
2097 + tp->t_segsz;
2098 tp->t_dupacks = 0;
2099 }
2100 if (SEQ_GT(th->th_ack, tp->snd_max)) {
2101 tcpstat.tcps_rcvacktoomuch++;
2102 goto dropafterack;
2103 }
2104 acked = th->th_ack - tp->snd_una;
2105 tcpstat.tcps_rcvackpack++;
2106 tcpstat.tcps_rcvackbyte += acked;
2107
2108 /*
2109 * If we have a timestamp reply, update smoothed
2110 * round trip time. If no timestamp is present but
2111 * transmit timer is running and timed sequence
2112 * number was acked, update smoothed round trip time.
2113 * Since we now have an rtt measurement, cancel the
2114 * timer backoff (cf., Phil Karn's retransmit alg.).
2115 * Recompute the initial retransmit timer.
2116 */
2117 if (opti.ts_present && opti.ts_ecr)
2118 tcp_xmit_timer(tp, TCP_TIMESTAMP(tp) - opti.ts_ecr + 1);
2119 else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2120 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2121
2122 /*
2123 * If all outstanding data is acked, stop retransmit
2124 * timer and remember to restart (more output or persist).
2125 * If there is more data to be acked, restart retransmit
2126 * timer, using current (possibly backed-off) value.
2127 */
2128 if (th->th_ack == tp->snd_max) {
2129 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2130 needoutput = 1;
2131 } else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
2132 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
2133 /*
2134 * When new data is acked, open the congestion window.
2135 * If the window gives us less than ssthresh packets
2136 * in flight, open exponentially (segsz per packet).
2137 * Otherwise open linearly: segsz per window
2138 * (segsz^2 / cwnd per packet), plus a constant
2139 * fraction of a packet (segsz/8) to help larger windows
2140 * open quickly enough.
2141 */
2142 {
2143 u_int cw = tp->snd_cwnd;
2144 u_int incr = tp->t_segsz;
2145
2146 if (cw > tp->snd_ssthresh)
2147 incr = incr * incr / cw;
2148 if (tcp_do_newreno == 0 || SEQ_GEQ(th->th_ack, tp->snd_recover))
2149 tp->snd_cwnd = min(cw + incr,
2150 TCP_MAXWIN << tp->snd_scale);
2151 }
2152 ND6_HINT(tp);
2153 if (acked > so->so_snd.sb_cc) {
2154 tp->snd_wnd -= so->so_snd.sb_cc;
2155 sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
2156 ourfinisacked = 1;
2157 } else {
2158 sbdrop(&so->so_snd, acked);
2159 tp->snd_wnd -= acked;
2160 ourfinisacked = 0;
2161 }
2162 sowwakeup(so);
2163 /*
2164 * We want snd_recover to track snd_una to
2165 * avoid sequence wraparound problems for
2166 * very large transfers.
2167 */
2168 tp->snd_una = tp->snd_recover = th->th_ack;
2169 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2170 tp->snd_nxt = tp->snd_una;
2171
2172 switch (tp->t_state) {
2173
2174 /*
2175 * In FIN_WAIT_1 STATE in addition to the processing
2176 * for the ESTABLISHED state if our FIN is now acknowledged
2177 * then enter FIN_WAIT_2.
2178 */
2179 case TCPS_FIN_WAIT_1:
2180 if (ourfinisacked) {
2181 /*
2182 * If we can't receive any more
2183 * data, then closing user can proceed.
2184 * Starting the timer is contrary to the
2185 * specification, but if we don't get a FIN
2186 * we'll hang forever.
2187 */
2188 if (so->so_state & SS_CANTRCVMORE) {
2189 soisdisconnected(so);
2190 if (tcp_maxidle > 0)
2191 TCP_TIMER_ARM(tp, TCPT_2MSL,
2192 tcp_maxidle);
2193 }
2194 tp->t_state = TCPS_FIN_WAIT_2;
2195 }
2196 break;
2197
2198 /*
2199 * In CLOSING STATE in addition to the processing for
2200 * the ESTABLISHED state if the ACK acknowledges our FIN
2201 * then enter the TIME-WAIT state, otherwise ignore
2202 * the segment.
2203 */
2204 case TCPS_CLOSING:
2205 if (ourfinisacked) {
2206 tp->t_state = TCPS_TIME_WAIT;
2207 tcp_canceltimers(tp);
2208 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2209 soisdisconnected(so);
2210 }
2211 break;
2212
2213 /*
2214 * In LAST_ACK, we may still be waiting for data to drain
2215 * and/or to be acked, as well as for the ack of our FIN.
2216 * If our FIN is now acknowledged, delete the TCB,
2217 * enter the closed state and return.
2218 */
2219 case TCPS_LAST_ACK:
2220 if (ourfinisacked) {
2221 tp = tcp_close(tp);
2222 goto drop;
2223 }
2224 break;
2225
2226 /*
2227 * In TIME_WAIT state the only thing that should arrive
2228 * is a retransmission of the remote FIN. Acknowledge
2229 * it and restart the finack timer.
2230 */
2231 case TCPS_TIME_WAIT:
2232 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2233 goto dropafterack;
2234 }
2235 }
2236
2237 step6:
2238 /*
2239 * Update window information.
2240 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2241 */
2242 if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2243 (tp->snd_wl1 == th->th_seq && SEQ_LT(tp->snd_wl2, th->th_ack)) ||
2244 (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))) {
2245 /* keep track of pure window updates */
2246 if (tlen == 0 &&
2247 tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2248 tcpstat.tcps_rcvwinupd++;
2249 tp->snd_wnd = tiwin;
2250 tp->snd_wl1 = th->th_seq;
2251 tp->snd_wl2 = th->th_ack;
2252 if (tp->snd_wnd > tp->max_sndwnd)
2253 tp->max_sndwnd = tp->snd_wnd;
2254 needoutput = 1;
2255 }
2256
2257 /*
2258 * Process segments with URG.
2259 */
2260 if ((tiflags & TH_URG) && th->th_urp &&
2261 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2262 /*
2263 * This is a kludge, but if we receive and accept
2264 * random urgent pointers, we'll crash in
2265 * soreceive. It's hard to imagine someone
2266 * actually wanting to send this much urgent data.
2267 */
2268 if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2269 th->th_urp = 0; /* XXX */
2270 tiflags &= ~TH_URG; /* XXX */
2271 goto dodata; /* XXX */
2272 }
2273 /*
2274 * If this segment advances the known urgent pointer,
2275 * then mark the data stream. This should not happen
2276 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2277 * a FIN has been received from the remote side.
2278 * In these states we ignore the URG.
2279 *
2280 * According to RFC961 (Assigned Protocols),
2281 * the urgent pointer points to the last octet
2282 * of urgent data. We continue, however,
2283 * to consider it to indicate the first octet
2284 * of data past the urgent section as the original
2285 * spec states (in one of two places).
2286 */
2287 if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2288 tp->rcv_up = th->th_seq + th->th_urp;
2289 so->so_oobmark = so->so_rcv.sb_cc +
2290 (tp->rcv_up - tp->rcv_nxt) - 1;
2291 if (so->so_oobmark == 0)
2292 so->so_state |= SS_RCVATMARK;
2293 sohasoutofband(so);
2294 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2295 }
2296 /*
2297 * Remove out of band data so doesn't get presented to user.
2298 * This can happen independent of advancing the URG pointer,
2299 * but if two URG's are pending at once, some out-of-band
2300 * data may creep in... ick.
2301 */
2302 if (th->th_urp <= (u_int16_t) tlen
2303 #ifdef SO_OOBINLINE
2304 && (so->so_options & SO_OOBINLINE) == 0
2305 #endif
2306 )
2307 tcp_pulloutofband(so, th, m, hdroptlen);
2308 } else
2309 /*
2310 * If no out of band data is expected,
2311 * pull receive urgent pointer along
2312 * with the receive window.
2313 */
2314 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2315 tp->rcv_up = tp->rcv_nxt;
2316 dodata: /* XXX */
2317
2318 /*
2319 * Process the segment text, merging it into the TCP sequencing queue,
2320 * and arranging for acknowledgement of receipt if necessary.
2321 * This process logically involves adjusting tp->rcv_wnd as data
2322 * is presented to the user (this happens in tcp_usrreq.c,
2323 * case PRU_RCVD). If a FIN has already been received on this
2324 * connection then we just ignore the text.
2325 */
2326 if ((tlen || (tiflags & TH_FIN)) &&
2327 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2328 /*
2329 * Insert segment ti into reassembly queue of tcp with
2330 * control block tp. Return TH_FIN if reassembly now includes
2331 * a segment with FIN. The macro form does the common case
2332 * inline (segment is the next to be received on an
2333 * established connection, and the queue is empty),
2334 * avoiding linkage into and removal from the queue and
2335 * repetition of various conversions.
2336 * Set DELACK for segments received in order, but ack
2337 * immediately when segments are out of order
2338 * (so fast retransmit can work).
2339 */
2340 /* NOTE: this was TCP_REASS() macro, but used only once */
2341 TCP_REASS_LOCK(tp);
2342 if (th->th_seq == tp->rcv_nxt &&
2343 TAILQ_FIRST(&tp->segq) == NULL &&
2344 tp->t_state == TCPS_ESTABLISHED) {
2345 TCP_SETUP_ACK(tp, th);
2346 tp->rcv_nxt += tlen;
2347 tiflags = th->th_flags & TH_FIN;
2348 tcpstat.tcps_rcvpack++;
2349 tcpstat.tcps_rcvbyte += tlen;
2350 ND6_HINT(tp);
2351 if (so->so_state & SS_CANTRCVMORE)
2352 m_freem(m);
2353 else {
2354 m_adj(m, hdroptlen);
2355 sbappendstream(&(so)->so_rcv, m);
2356 }
2357 sorwakeup(so);
2358 } else {
2359 m_adj(m, hdroptlen);
2360 tiflags = tcp_reass(tp, th, m, &tlen);
2361 tp->t_flags |= TF_ACKNOW;
2362 }
2363 TCP_REASS_UNLOCK(tp);
2364
2365 /*
2366 * Note the amount of data that peer has sent into
2367 * our window, in order to estimate the sender's
2368 * buffer size.
2369 */
2370 len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2371 } else {
2372 m_freem(m);
2373 m = NULL;
2374 tiflags &= ~TH_FIN;
2375 }
2376
2377 /*
2378 * If FIN is received ACK the FIN and let the user know
2379 * that the connection is closing. Ignore a FIN received before
2380 * the connection is fully established.
2381 */
2382 if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2383 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2384 socantrcvmore(so);
2385 tp->t_flags |= TF_ACKNOW;
2386 tp->rcv_nxt++;
2387 }
2388 switch (tp->t_state) {
2389
2390 /*
2391 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2392 */
2393 case TCPS_ESTABLISHED:
2394 tp->t_state = TCPS_CLOSE_WAIT;
2395 break;
2396
2397 /*
2398 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2399 * enter the CLOSING state.
2400 */
2401 case TCPS_FIN_WAIT_1:
2402 tp->t_state = TCPS_CLOSING;
2403 break;
2404
2405 /*
2406 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2407 * starting the time-wait timer, turning off the other
2408 * standard timers.
2409 */
2410 case TCPS_FIN_WAIT_2:
2411 tp->t_state = TCPS_TIME_WAIT;
2412 tcp_canceltimers(tp);
2413 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2414 soisdisconnected(so);
2415 break;
2416
2417 /*
2418 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2419 */
2420 case TCPS_TIME_WAIT:
2421 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2422 break;
2423 }
2424 }
2425 #ifdef TCP_DEBUG
2426 if (so->so_options & SO_DEBUG)
2427 tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
2428 #endif
2429
2430 /*
2431 * Return any desired output.
2432 */
2433 if (needoutput || (tp->t_flags & TF_ACKNOW))
2434 (void) tcp_output(tp);
2435 if (tcp_saveti)
2436 m_freem(tcp_saveti);
2437 return;
2438
2439 badsyn:
2440 /*
2441 * Received a bad SYN. Increment counters and dropwithreset.
2442 */
2443 tcpstat.tcps_badsyn++;
2444 tp = NULL;
2445 goto dropwithreset;
2446
2447 dropafterack:
2448 /*
2449 * Generate an ACK dropping incoming segment if it occupies
2450 * sequence space, where the ACK reflects our state.
2451 */
2452 if (tiflags & TH_RST)
2453 goto drop;
2454 m_freem(m);
2455 tp->t_flags |= TF_ACKNOW;
2456 (void) tcp_output(tp);
2457 if (tcp_saveti)
2458 m_freem(tcp_saveti);
2459 return;
2460
2461 dropwithreset_ratelim:
2462 /*
2463 * We may want to rate-limit RSTs in certain situations,
2464 * particularly if we are sending an RST in response to
2465 * an attempt to connect to or otherwise communicate with
2466 * a port for which we have no socket.
2467 */
2468 if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
2469 tcp_rst_ppslim) == 0) {
2470 /* XXX stat */
2471 goto drop;
2472 }
2473 /* ...fall into dropwithreset... */
2474
2475 dropwithreset:
2476 /*
2477 * Generate a RST, dropping incoming segment.
2478 * Make ACK acceptable to originator of segment.
2479 */
2480 if (tiflags & TH_RST)
2481 goto drop;
2482
2483 switch (af) {
2484 #ifdef INET6
2485 case AF_INET6:
2486 /* For following calls to tcp_respond */
2487 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
2488 goto drop;
2489 break;
2490 #endif /* INET6 */
2491 case AF_INET:
2492 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
2493 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2494 goto drop;
2495 }
2496
2497 {
2498 /*
2499 * need to recover version # field, which was overwritten on
2500 * ip_cksum computation.
2501 */
2502 struct ip *sip;
2503 sip = mtod(m, struct ip *);
2504 switch (af) {
2505 #ifdef INET
2506 case AF_INET:
2507 sip->ip_v = 4;
2508 break;
2509 #endif
2510 #ifdef INET6
2511 case AF_INET6:
2512 sip->ip_v = 6;
2513 break;
2514 #endif
2515 }
2516 }
2517 if (tiflags & TH_ACK)
2518 (void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
2519 else {
2520 if (tiflags & TH_SYN)
2521 tlen++;
2522 (void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
2523 TH_RST|TH_ACK);
2524 }
2525 if (tcp_saveti)
2526 m_freem(tcp_saveti);
2527 return;
2528
2529 badcsum:
2530 tcpstat.tcps_rcvbadsum++;
2531 drop:
2532 /*
2533 * Drop space held by incoming segment and return.
2534 */
2535 if (tp) {
2536 if (tp->t_inpcb)
2537 so = tp->t_inpcb->inp_socket;
2538 #ifdef INET6
2539 else if (tp->t_in6pcb)
2540 so = tp->t_in6pcb->in6p_socket;
2541 #endif
2542 else
2543 so = NULL;
2544 #ifdef TCP_DEBUG
2545 if (so && (so->so_options & SO_DEBUG) != 0)
2546 tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
2547 #endif
2548 }
2549 if (tcp_saveti)
2550 m_freem(tcp_saveti);
2551 m_freem(m);
2552 return;
2553 }
2554
2555 void
2556 tcp_dooptions(tp, cp, cnt, th, oi)
2557 struct tcpcb *tp;
2558 u_char *cp;
2559 int cnt;
2560 struct tcphdr *th;
2561 struct tcp_opt_info *oi;
2562 {
2563 u_int16_t mss;
2564 int opt, optlen;
2565
2566 for (; cnt > 0; cnt -= optlen, cp += optlen) {
2567 opt = cp[0];
2568 if (opt == TCPOPT_EOL)
2569 break;
2570 if (opt == TCPOPT_NOP)
2571 optlen = 1;
2572 else {
2573 if (cnt < 2)
2574 break;
2575 optlen = cp[1];
2576 if (optlen < 2 || optlen > cnt)
2577 break;
2578 }
2579 switch (opt) {
2580
2581 default:
2582 continue;
2583
2584 case TCPOPT_MAXSEG:
2585 if (optlen != TCPOLEN_MAXSEG)
2586 continue;
2587 if (!(th->th_flags & TH_SYN))
2588 continue;
2589 bcopy(cp + 2, &mss, sizeof(mss));
2590 oi->maxseg = ntohs(mss);
2591 break;
2592
2593 case TCPOPT_WINDOW:
2594 if (optlen != TCPOLEN_WINDOW)
2595 continue;
2596 if (!(th->th_flags & TH_SYN))
2597 continue;
2598 tp->t_flags |= TF_RCVD_SCALE;
2599 tp->requested_s_scale = cp[2];
2600 if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
2601 #if 0 /*XXX*/
2602 char *p;
2603
2604 if (ip)
2605 p = ntohl(ip->ip_src);
2606 #ifdef INET6
2607 else if (ip6)
2608 p = ip6_sprintf(&ip6->ip6_src);
2609 #endif
2610 else
2611 p = "(unknown)";
2612 log(LOG_ERR, "TCP: invalid wscale %d from %s, "
2613 "assuming %d\n",
2614 tp->requested_s_scale, p,
2615 TCP_MAX_WINSHIFT);
2616 #else
2617 log(LOG_ERR, "TCP: invalid wscale %d, "
2618 "assuming %d\n",
2619 tp->requested_s_scale,
2620 TCP_MAX_WINSHIFT);
2621 #endif
2622 tp->requested_s_scale = TCP_MAX_WINSHIFT;
2623 }
2624 break;
2625
2626 case TCPOPT_TIMESTAMP:
2627 if (optlen != TCPOLEN_TIMESTAMP)
2628 continue;
2629 oi->ts_present = 1;
2630 bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
2631 NTOHL(oi->ts_val);
2632 bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
2633 NTOHL(oi->ts_ecr);
2634
2635 /*
2636 * A timestamp received in a SYN makes
2637 * it ok to send timestamp requests and replies.
2638 */
2639 if (th->th_flags & TH_SYN) {
2640 tp->t_flags |= TF_RCVD_TSTMP;
2641 tp->ts_recent = oi->ts_val;
2642 tp->ts_recent_age = TCP_TIMESTAMP(tp);
2643 }
2644 break;
2645 case TCPOPT_SACK_PERMITTED:
2646 if (optlen != TCPOLEN_SACK_PERMITTED)
2647 continue;
2648 if (!(th->th_flags & TH_SYN))
2649 continue;
2650 tp->t_flags &= ~TF_CANT_TXSACK;
2651 break;
2652
2653 case TCPOPT_SACK:
2654 if (tp->t_flags & TF_IGNR_RXSACK)
2655 continue;
2656 if (optlen % 8 != 2 || optlen < 10)
2657 continue;
2658 cp += 2;
2659 optlen -= 2;
2660 for (; optlen > 0; cp -= 8, optlen -= 8) {
2661 tcp_seq lwe, rwe;
2662 bcopy((char *)cp, (char *) &lwe, sizeof(lwe));
2663 NTOHL(lwe);
2664 bcopy((char *)cp, (char *) &rwe, sizeof(rwe));
2665 NTOHL(rwe);
2666 /* tcp_mark_sacked(tp, lwe, rwe); */
2667 }
2668 break;
2669 }
2670 }
2671 }
2672
2673 /*
2674 * Pull out of band byte out of a segment so
2675 * it doesn't appear in the user's data queue.
2676 * It is still reflected in the segment length for
2677 * sequencing purposes.
2678 */
2679 void
2680 tcp_pulloutofband(so, th, m, off)
2681 struct socket *so;
2682 struct tcphdr *th;
2683 struct mbuf *m;
2684 int off;
2685 {
2686 int cnt = off + th->th_urp - 1;
2687
2688 while (cnt >= 0) {
2689 if (m->m_len > cnt) {
2690 char *cp = mtod(m, caddr_t) + cnt;
2691 struct tcpcb *tp = sototcpcb(so);
2692
2693 tp->t_iobc = *cp;
2694 tp->t_oobflags |= TCPOOB_HAVEDATA;
2695 bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
2696 m->m_len--;
2697 return;
2698 }
2699 cnt -= m->m_len;
2700 m = m->m_next;
2701 if (m == 0)
2702 break;
2703 }
2704 panic("tcp_pulloutofband");
2705 }
2706
2707 /*
2708 * Collect new round-trip time estimate
2709 * and update averages and current timeout.
2710 */
2711 void
2712 tcp_xmit_timer(tp, rtt)
2713 struct tcpcb *tp;
2714 uint32_t rtt;
2715 {
2716 int32_t delta;
2717
2718 tcpstat.tcps_rttupdated++;
2719 if (tp->t_srtt != 0) {
2720 /*
2721 * srtt is stored as fixed point with 3 bits after the
2722 * binary point (i.e., scaled by 8). The following magic
2723 * is equivalent to the smoothing algorithm in rfc793 with
2724 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2725 * point). Adjust rtt to origin 0.
2726 */
2727 delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
2728 if ((tp->t_srtt += delta) <= 0)
2729 tp->t_srtt = 1 << 2;
2730 /*
2731 * We accumulate a smoothed rtt variance (actually, a
2732 * smoothed mean difference), then set the retransmit
2733 * timer to smoothed rtt + 4 times the smoothed variance.
2734 * rttvar is stored as fixed point with 2 bits after the
2735 * binary point (scaled by 4). The following is
2736 * equivalent to rfc793 smoothing with an alpha of .75
2737 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces
2738 * rfc793's wired-in beta.
2739 */
2740 if (delta < 0)
2741 delta = -delta;
2742 delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
2743 if ((tp->t_rttvar += delta) <= 0)
2744 tp->t_rttvar = 1 << 2;
2745 } else {
2746 /*
2747 * No rtt measurement yet - use the unsmoothed rtt.
2748 * Set the variance to half the rtt (so our first
2749 * retransmit happens at 3*rtt).
2750 */
2751 tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
2752 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
2753 }
2754 tp->t_rtttime = 0;
2755 tp->t_rxtshift = 0;
2756
2757 /*
2758 * the retransmit should happen at rtt + 4 * rttvar.
2759 * Because of the way we do the smoothing, srtt and rttvar
2760 * will each average +1/2 tick of bias. When we compute
2761 * the retransmit timer, we want 1/2 tick of rounding and
2762 * 1 extra tick because of +-1/2 tick uncertainty in the
2763 * firing of the timer. The bias will give us exactly the
2764 * 1.5 tick we need. But, because the bias is
2765 * statistical, we have to test that we don't drop below
2766 * the minimum feasible timer (which is 2 ticks).
2767 */
2768 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
2769 max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
2770
2771 /*
2772 * We received an ack for a packet that wasn't retransmitted;
2773 * it is probably safe to discard any error indications we've
2774 * received recently. This isn't quite right, but close enough
2775 * for now (a route might have failed after we sent a segment,
2776 * and the return path might not be symmetrical).
2777 */
2778 tp->t_softerror = 0;
2779 }
2780
2781 /*
2782 * Checks for partial ack. If partial ack arrives, force the retransmission
2783 * of the next unacknowledged segment, do not clear tp->t_dupacks, and return
2784 * 1. By setting snd_nxt to th_ack, this forces retransmission timer to
2785 * be started again. If the ack advances at least to tp->snd_recover, return 0.
2786 */
2787 int
2788 tcp_newreno(tp, th)
2789 struct tcpcb *tp;
2790 struct tcphdr *th;
2791 {
2792 tcp_seq onxt = tp->snd_nxt;
2793 u_long ocwnd = tp->snd_cwnd;
2794
2795 if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2796 /*
2797 * snd_una has not yet been updated and the socket's send
2798 * buffer has not yet drained off the ACK'd data, so we
2799 * have to leave snd_una as it was to get the correct data
2800 * offset in tcp_output().
2801 */
2802 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2803 tp->t_rtttime = 0;
2804 tp->snd_nxt = th->th_ack;
2805 /*
2806 * Set snd_cwnd to one segment beyond ACK'd offset. snd_una
2807 * is not yet updated when we're called.
2808 */
2809 tp->snd_cwnd = tp->t_segsz + (th->th_ack - tp->snd_una);
2810 (void) tcp_output(tp);
2811 tp->snd_cwnd = ocwnd;
2812 if (SEQ_GT(onxt, tp->snd_nxt))
2813 tp->snd_nxt = onxt;
2814 /*
2815 * Partial window deflation. Relies on fact that tp->snd_una
2816 * not updated yet.
2817 */
2818 tp->snd_cwnd -= (th->th_ack - tp->snd_una - tp->t_segsz);
2819 return 1;
2820 }
2821 return 0;
2822 }
2823
2824
2825 /*
2826 * TCP compressed state engine. Currently used to hold compressed
2827 * state for SYN_RECEIVED.
2828 */
2829
2830 u_long syn_cache_count;
2831 u_int32_t syn_hash1, syn_hash2;
2832
2833 #define SYN_HASH(sa, sp, dp) \
2834 ((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
2835 ((u_int32_t)(sp)))^syn_hash2)))
2836 #ifndef INET6
2837 #define SYN_HASHALL(hash, src, dst) \
2838 do { \
2839 hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
2840 ((struct sockaddr_in *)(src))->sin_port, \
2841 ((struct sockaddr_in *)(dst))->sin_port); \
2842 } while (/*CONSTCOND*/ 0)
2843 #else
2844 #define SYN_HASH6(sa, sp, dp) \
2845 ((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
2846 (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
2847 & 0x7fffffff)
2848
2849 #define SYN_HASHALL(hash, src, dst) \
2850 do { \
2851 switch ((src)->sa_family) { \
2852 case AF_INET: \
2853 hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
2854 ((struct sockaddr_in *)(src))->sin_port, \
2855 ((struct sockaddr_in *)(dst))->sin_port); \
2856 break; \
2857 case AF_INET6: \
2858 hash = SYN_HASH6(&((struct sockaddr_in6 *)(src))->sin6_addr, \
2859 ((struct sockaddr_in6 *)(src))->sin6_port, \
2860 ((struct sockaddr_in6 *)(dst))->sin6_port); \
2861 break; \
2862 default: \
2863 hash = 0; \
2864 } \
2865 } while (/*CONSTCOND*/0)
2866 #endif /* INET6 */
2867
2868 #define SYN_CACHE_RM(sc) \
2869 do { \
2870 TAILQ_REMOVE(&tcp_syn_cache[(sc)->sc_bucketidx].sch_bucket, \
2871 (sc), sc_bucketq); \
2872 (sc)->sc_tp = NULL; \
2873 LIST_REMOVE((sc), sc_tpq); \
2874 tcp_syn_cache[(sc)->sc_bucketidx].sch_length--; \
2875 callout_stop(&(sc)->sc_timer); \
2876 syn_cache_count--; \
2877 } while (/*CONSTCOND*/0)
2878
2879 #define SYN_CACHE_PUT(sc) \
2880 do { \
2881 if ((sc)->sc_ipopts) \
2882 (void) m_free((sc)->sc_ipopts); \
2883 if ((sc)->sc_route4.ro_rt != NULL) \
2884 RTFREE((sc)->sc_route4.ro_rt); \
2885 pool_put(&syn_cache_pool, (sc)); \
2886 } while (/*CONSTCOND*/0)
2887
2888 struct pool syn_cache_pool;
2889
2890 /*
2891 * We don't estimate RTT with SYNs, so each packet starts with the default
2892 * RTT and each timer step has a fixed timeout value.
2893 */
2894 #define SYN_CACHE_TIMER_ARM(sc) \
2895 do { \
2896 TCPT_RANGESET((sc)->sc_rxtcur, \
2897 TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN, \
2898 TCPTV_REXMTMAX); \
2899 callout_reset(&(sc)->sc_timer, \
2900 (sc)->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, (sc)); \
2901 } while (/*CONSTCOND*/0)
2902
2903 #define SYN_CACHE_TIMESTAMP(sc) (tcp_now - (sc)->sc_timebase)
2904
2905 void
2906 syn_cache_init()
2907 {
2908 int i;
2909
2910 /* Initialize the hash buckets. */
2911 for (i = 0; i < tcp_syn_cache_size; i++)
2912 TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
2913
2914 /* Initialize the syn cache pool. */
2915 pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
2916 "synpl", NULL);
2917 }
2918
2919 void
2920 syn_cache_insert(sc, tp)
2921 struct syn_cache *sc;
2922 struct tcpcb *tp;
2923 {
2924 struct syn_cache_head *scp;
2925 struct syn_cache *sc2;
2926 int s;
2927
2928 /*
2929 * If there are no entries in the hash table, reinitialize
2930 * the hash secrets.
2931 */
2932 if (syn_cache_count == 0) {
2933 struct timeval tv;
2934 microtime(&tv);
2935 syn_hash1 = arc4random() ^ (u_long)≻
2936 syn_hash2 = arc4random() ^ tv.tv_usec;
2937 }
2938
2939 SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
2940 sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
2941 scp = &tcp_syn_cache[sc->sc_bucketidx];
2942
2943 /*
2944 * Make sure that we don't overflow the per-bucket
2945 * limit or the total cache size limit.
2946 */
2947 s = splsoftnet();
2948 if (scp->sch_length >= tcp_syn_bucket_limit) {
2949 tcpstat.tcps_sc_bucketoverflow++;
2950 /*
2951 * The bucket is full. Toss the oldest element in the
2952 * bucket. This will be the first entry in the bucket.
2953 */
2954 sc2 = TAILQ_FIRST(&scp->sch_bucket);
2955 #ifdef DIAGNOSTIC
2956 /*
2957 * This should never happen; we should always find an
2958 * entry in our bucket.
2959 */
2960 if (sc2 == NULL)
2961 panic("syn_cache_insert: bucketoverflow: impossible");
2962 #endif
2963 SYN_CACHE_RM(sc2);
2964 SYN_CACHE_PUT(sc2);
2965 } else if (syn_cache_count >= tcp_syn_cache_limit) {
2966 struct syn_cache_head *scp2, *sce;
2967
2968 tcpstat.tcps_sc_overflowed++;
2969 /*
2970 * The cache is full. Toss the oldest entry in the
2971 * first non-empty bucket we can find.
2972 *
2973 * XXX We would really like to toss the oldest
2974 * entry in the cache, but we hope that this
2975 * condition doesn't happen very often.
2976 */
2977 scp2 = scp;
2978 if (TAILQ_EMPTY(&scp2->sch_bucket)) {
2979 sce = &tcp_syn_cache[tcp_syn_cache_size];
2980 for (++scp2; scp2 != scp; scp2++) {
2981 if (scp2 >= sce)
2982 scp2 = &tcp_syn_cache[0];
2983 if (! TAILQ_EMPTY(&scp2->sch_bucket))
2984 break;
2985 }
2986 #ifdef DIAGNOSTIC
2987 /*
2988 * This should never happen; we should always find a
2989 * non-empty bucket.
2990 */
2991 if (scp2 == scp)
2992 panic("syn_cache_insert: cacheoverflow: "
2993 "impossible");
2994 #endif
2995 }
2996 sc2 = TAILQ_FIRST(&scp2->sch_bucket);
2997 SYN_CACHE_RM(sc2);
2998 SYN_CACHE_PUT(sc2);
2999 }
3000
3001 /*
3002 * Initialize the entry's timer.
3003 */
3004 sc->sc_rxttot = 0;
3005 sc->sc_rxtshift = 0;
3006 SYN_CACHE_TIMER_ARM(sc);
3007
3008 /* Link it from tcpcb entry */
3009 LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
3010
3011 /* Put it into the bucket. */
3012 TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
3013 scp->sch_length++;
3014 syn_cache_count++;
3015
3016 tcpstat.tcps_sc_added++;
3017 splx(s);
3018 }
3019
3020 /*
3021 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
3022 * If we have retransmitted an entry the maximum number of times, expire
3023 * that entry.
3024 */
3025 void
3026 syn_cache_timer(void *arg)
3027 {
3028 struct syn_cache *sc = arg;
3029 int s;
3030
3031 s = splsoftnet();
3032
3033 if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
3034 /* Drop it -- too many retransmissions. */
3035 goto dropit;
3036 }
3037
3038 /*
3039 * Compute the total amount of time this entry has
3040 * been on a queue. If this entry has been on longer
3041 * than the keep alive timer would allow, expire it.
3042 */
3043 sc->sc_rxttot += sc->sc_rxtcur;
3044 if (sc->sc_rxttot >= TCPTV_KEEP_INIT)
3045 goto dropit;
3046
3047 tcpstat.tcps_sc_retransmitted++;
3048 (void) syn_cache_respond(sc, NULL);
3049
3050 /* Advance the timer back-off. */
3051 sc->sc_rxtshift++;
3052 SYN_CACHE_TIMER_ARM(sc);
3053
3054 splx(s);
3055 return;
3056
3057 dropit:
3058 tcpstat.tcps_sc_timed_out++;
3059 SYN_CACHE_RM(sc);
3060 SYN_CACHE_PUT(sc);
3061 splx(s);
3062 }
3063
3064 /*
3065 * Remove syn cache created by the specified tcb entry,
3066 * because this does not make sense to keep them
3067 * (if there's no tcb entry, syn cache entry will never be used)
3068 */
3069 void
3070 syn_cache_cleanup(tp)
3071 struct tcpcb *tp;
3072 {
3073 struct syn_cache *sc, *nsc;
3074 int s;
3075
3076 s = splsoftnet();
3077
3078 for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
3079 nsc = LIST_NEXT(sc, sc_tpq);
3080
3081 #ifdef DIAGNOSTIC
3082 if (sc->sc_tp != tp)
3083 panic("invalid sc_tp in syn_cache_cleanup");
3084 #endif
3085 SYN_CACHE_RM(sc);
3086 SYN_CACHE_PUT(sc);
3087 }
3088 /* just for safety */
3089 LIST_INIT(&tp->t_sc);
3090
3091 splx(s);
3092 }
3093
3094 /*
3095 * Find an entry in the syn cache.
3096 */
3097 struct syn_cache *
3098 syn_cache_lookup(src, dst, headp)
3099 struct sockaddr *src;
3100 struct sockaddr *dst;
3101 struct syn_cache_head **headp;
3102 {
3103 struct syn_cache *sc;
3104 struct syn_cache_head *scp;
3105 u_int32_t hash;
3106 int s;
3107
3108 SYN_HASHALL(hash, src, dst);
3109
3110 scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
3111 *headp = scp;
3112 s = splsoftnet();
3113 for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
3114 sc = TAILQ_NEXT(sc, sc_bucketq)) {
3115 if (sc->sc_hash != hash)
3116 continue;
3117 if (!bcmp(&sc->sc_src, src, src->sa_len) &&
3118 !bcmp(&sc->sc_dst, dst, dst->sa_len)) {
3119 splx(s);
3120 return (sc);
3121 }
3122 }
3123 splx(s);
3124 return (NULL);
3125 }
3126
3127 /*
3128 * This function gets called when we receive an ACK for a
3129 * socket in the LISTEN state. We look up the connection
3130 * in the syn cache, and if its there, we pull it out of
3131 * the cache and turn it into a full-blown connection in
3132 * the SYN-RECEIVED state.
3133 *
3134 * The return values may not be immediately obvious, and their effects
3135 * can be subtle, so here they are:
3136 *
3137 * NULL SYN was not found in cache; caller should drop the
3138 * packet and send an RST.
3139 *
3140 * -1 We were unable to create the new connection, and are
3141 * aborting it. An ACK,RST is being sent to the peer
3142 * (unless we got screwey sequence numbners; see below),
3143 * because the 3-way handshake has been completed. Caller
3144 * should not free the mbuf, since we may be using it. If
3145 * we are not, we will free it.
3146 *
3147 * Otherwise, the return value is a pointer to the new socket
3148 * associated with the connection.
3149 */
3150 struct socket *
3151 syn_cache_get(src, dst, th, hlen, tlen, so, m)
3152 struct sockaddr *src;
3153 struct sockaddr *dst;
3154 struct tcphdr *th;
3155 unsigned int hlen, tlen;
3156 struct socket *so;
3157 struct mbuf *m;
3158 {
3159 struct syn_cache *sc;
3160 struct syn_cache_head *scp;
3161 struct inpcb *inp = NULL;
3162 #ifdef INET6
3163 struct in6pcb *in6p = NULL;
3164 #endif
3165 struct tcpcb *tp = 0;
3166 struct mbuf *am;
3167 int s;
3168 struct socket *oso;
3169
3170 s = splsoftnet();
3171 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3172 splx(s);
3173 return (NULL);
3174 }
3175
3176 /*
3177 * Verify the sequence and ack numbers. Try getting the correct
3178 * response again.
3179 */
3180 if ((th->th_ack != sc->sc_iss + 1) ||
3181 SEQ_LEQ(th->th_seq, sc->sc_irs) ||
3182 SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
3183 (void) syn_cache_respond(sc, m);
3184 splx(s);
3185 return ((struct socket *)(-1));
3186 }
3187
3188 /* Remove this cache entry */
3189 SYN_CACHE_RM(sc);
3190 splx(s);
3191
3192 /*
3193 * Ok, create the full blown connection, and set things up
3194 * as they would have been set up if we had created the
3195 * connection when the SYN arrived. If we can't create
3196 * the connection, abort it.
3197 */
3198 /*
3199 * inp still has the OLD in_pcb stuff, set the
3200 * v6-related flags on the new guy, too. This is
3201 * done particularly for the case where an AF_INET6
3202 * socket is bound only to a port, and a v4 connection
3203 * comes in on that port.
3204 * we also copy the flowinfo from the original pcb
3205 * to the new one.
3206 */
3207 oso = so;
3208 so = sonewconn(so, SS_ISCONNECTED);
3209 if (so == NULL)
3210 goto resetandabort;
3211
3212 switch (so->so_proto->pr_domain->dom_family) {
3213 #ifdef INET
3214 case AF_INET:
3215 inp = sotoinpcb(so);
3216 break;
3217 #endif
3218 #ifdef INET6
3219 case AF_INET6:
3220 in6p = sotoin6pcb(so);
3221 break;
3222 #endif
3223 }
3224 switch (src->sa_family) {
3225 #ifdef INET
3226 case AF_INET:
3227 if (inp) {
3228 inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
3229 inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
3230 inp->inp_options = ip_srcroute();
3231 in_pcbstate(inp, INP_BOUND);
3232 if (inp->inp_options == NULL) {
3233 inp->inp_options = sc->sc_ipopts;
3234 sc->sc_ipopts = NULL;
3235 }
3236 }
3237 #ifdef INET6
3238 else if (in6p) {
3239 /* IPv4 packet to AF_INET6 socket */
3240 bzero(&in6p->in6p_laddr, sizeof(in6p->in6p_laddr));
3241 in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
3242 bcopy(&((struct sockaddr_in *)dst)->sin_addr,
3243 &in6p->in6p_laddr.s6_addr32[3],
3244 sizeof(((struct sockaddr_in *)dst)->sin_addr));
3245 in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
3246 in6totcpcb(in6p)->t_family = AF_INET;
3247 }
3248 #endif
3249 break;
3250 #endif
3251 #ifdef INET6
3252 case AF_INET6:
3253 if (in6p) {
3254 in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
3255 in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
3256 #if 0
3257 in6p->in6p_flowinfo = ip6->ip6_flow & IPV6_FLOWINFO_MASK;
3258 /*inp->inp_options = ip6_srcroute();*/ /* soon. */
3259 #endif
3260 }
3261 break;
3262 #endif
3263 }
3264 #ifdef INET6
3265 if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
3266 struct in6pcb *oin6p = sotoin6pcb(oso);
3267 /* inherit socket options from the listening socket */
3268 in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
3269 if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
3270 m_freem(in6p->in6p_options);
3271 in6p->in6p_options = 0;
3272 }
3273 ip6_savecontrol(in6p, &in6p->in6p_options,
3274 mtod(m, struct ip6_hdr *), m);
3275 }
3276 #endif
3277
3278 #ifdef IPSEC
3279 /*
3280 * we make a copy of policy, instead of sharing the policy,
3281 * for better behavior in terms of SA lookup and dead SA removal.
3282 */
3283 if (inp) {
3284 /* copy old policy into new socket's */
3285 if (ipsec_copy_pcbpolicy(sotoinpcb(oso)->inp_sp, inp->inp_sp))
3286 printf("tcp_input: could not copy policy\n");
3287 }
3288 #ifdef INET6
3289 else if (in6p) {
3290 /* copy old policy into new socket's */
3291 if (ipsec_copy_pcbpolicy(sotoin6pcb(oso)->in6p_sp,
3292 in6p->in6p_sp))
3293 printf("tcp_input: could not copy policy\n");
3294 }
3295 #endif
3296 #endif
3297
3298 /*
3299 * Give the new socket our cached route reference.
3300 */
3301 if (inp)
3302 inp->inp_route = sc->sc_route4; /* struct assignment */
3303 #ifdef INET6
3304 else
3305 in6p->in6p_route = sc->sc_route6;
3306 #endif
3307 sc->sc_route4.ro_rt = NULL;
3308
3309 am = m_get(M_DONTWAIT, MT_SONAME); /* XXX */
3310 if (am == NULL)
3311 goto resetandabort;
3312 MCLAIM(am, &tcp_mowner);
3313 am->m_len = src->sa_len;
3314 bcopy(src, mtod(am, caddr_t), src->sa_len);
3315 if (inp) {
3316 if (in_pcbconnect(inp, am)) {
3317 (void) m_free(am);
3318 goto resetandabort;
3319 }
3320 }
3321 #ifdef INET6
3322 else if (in6p) {
3323 if (src->sa_family == AF_INET) {
3324 /* IPv4 packet to AF_INET6 socket */
3325 struct sockaddr_in6 *sin6;
3326 sin6 = mtod(am, struct sockaddr_in6 *);
3327 am->m_len = sizeof(*sin6);
3328 bzero(sin6, sizeof(*sin6));
3329 sin6->sin6_family = AF_INET6;
3330 sin6->sin6_len = sizeof(*sin6);
3331 sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port;
3332 sin6->sin6_addr.s6_addr16[5] = htons(0xffff);
3333 bcopy(&((struct sockaddr_in *)src)->sin_addr,
3334 &sin6->sin6_addr.s6_addr32[3],
3335 sizeof(sin6->sin6_addr.s6_addr32[3]));
3336 }
3337 if (in6_pcbconnect(in6p, am)) {
3338 (void) m_free(am);
3339 goto resetandabort;
3340 }
3341 }
3342 #endif
3343 else {
3344 (void) m_free(am);
3345 goto resetandabort;
3346 }
3347 (void) m_free(am);
3348
3349 if (inp)
3350 tp = intotcpcb(inp);
3351 #ifdef INET6
3352 else if (in6p)
3353 tp = in6totcpcb(in6p);
3354 #endif
3355 else
3356 tp = NULL;
3357 tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
3358 if (sc->sc_request_r_scale != 15) {
3359 tp->requested_s_scale = sc->sc_requested_s_scale;
3360 tp->request_r_scale = sc->sc_request_r_scale;
3361 tp->snd_scale = sc->sc_requested_s_scale;
3362 tp->rcv_scale = sc->sc_request_r_scale;
3363 tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
3364 }
3365 if (sc->sc_flags & SCF_TIMESTAMP)
3366 tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
3367 tp->ts_timebase = sc->sc_timebase;
3368
3369 tp->t_template = tcp_template(tp);
3370 if (tp->t_template == 0) {
3371 tp = tcp_drop(tp, ENOBUFS); /* destroys socket */
3372 so = NULL;
3373 m_freem(m);
3374 goto abort;
3375 }
3376
3377 tp->iss = sc->sc_iss;
3378 tp->irs = sc->sc_irs;
3379 tcp_sendseqinit(tp);
3380 tcp_rcvseqinit(tp);
3381 tp->t_state = TCPS_SYN_RECEIVED;
3382 TCP_TIMER_ARM(tp, TCPT_KEEP, TCPTV_KEEP_INIT);
3383 tcpstat.tcps_accepts++;
3384
3385 /* Initialize tp->t_ourmss before we deal with the peer's! */
3386 tp->t_ourmss = sc->sc_ourmaxseg;
3387 tcp_mss_from_peer(tp, sc->sc_peermaxseg);
3388
3389 /*
3390 * Initialize the initial congestion window. If we
3391 * had to retransmit the SYN,ACK, we must initialize cwnd
3392 * to 1 segment (i.e. the Loss Window).
3393 */
3394 if (sc->sc_rxtshift)
3395 tp->snd_cwnd = tp->t_peermss;
3396 else {
3397 int ss = tcp_init_win;
3398 #ifdef INET
3399 if (inp != NULL && in_localaddr(inp->inp_faddr))
3400 ss = tcp_init_win_local;
3401 #endif
3402 #ifdef INET6
3403 if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
3404 ss = tcp_init_win_local;
3405 #endif
3406 tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
3407 }
3408
3409 tcp_rmx_rtt(tp);
3410 tp->snd_wl1 = sc->sc_irs;
3411 tp->rcv_up = sc->sc_irs + 1;
3412
3413 /*
3414 * This is what whould have happened in tcp_output() when
3415 * the SYN,ACK was sent.
3416 */
3417 tp->snd_up = tp->snd_una;
3418 tp->snd_max = tp->snd_nxt = tp->iss+1;
3419 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
3420 if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
3421 tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
3422 tp->last_ack_sent = tp->rcv_nxt;
3423
3424 tcpstat.tcps_sc_completed++;
3425 SYN_CACHE_PUT(sc);
3426 return (so);
3427
3428 resetandabort:
3429 (void) tcp_respond(NULL, m, m, th,
3430 th->th_seq + tlen, (tcp_seq)0, TH_RST|TH_ACK);
3431 abort:
3432 if (so != NULL)
3433 (void) soabort(so);
3434 SYN_CACHE_PUT(sc);
3435 tcpstat.tcps_sc_aborted++;
3436 return ((struct socket *)(-1));
3437 }
3438
3439 /*
3440 * This function is called when we get a RST for a
3441 * non-existent connection, so that we can see if the
3442 * connection is in the syn cache. If it is, zap it.
3443 */
3444
3445 void
3446 syn_cache_reset(src, dst, th)
3447 struct sockaddr *src;
3448 struct sockaddr *dst;
3449 struct tcphdr *th;
3450 {
3451 struct syn_cache *sc;
3452 struct syn_cache_head *scp;
3453 int s = splsoftnet();
3454
3455 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3456 splx(s);
3457 return;
3458 }
3459 if (SEQ_LT(th->th_seq, sc->sc_irs) ||
3460 SEQ_GT(th->th_seq, sc->sc_irs+1)) {
3461 splx(s);
3462 return;
3463 }
3464 SYN_CACHE_RM(sc);
3465 splx(s);
3466 tcpstat.tcps_sc_reset++;
3467 SYN_CACHE_PUT(sc);
3468 }
3469
3470 void
3471 syn_cache_unreach(src, dst, th)
3472 struct sockaddr *src;
3473 struct sockaddr *dst;
3474 struct tcphdr *th;
3475 {
3476 struct syn_cache *sc;
3477 struct syn_cache_head *scp;
3478 int s;
3479
3480 s = splsoftnet();
3481 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3482 splx(s);
3483 return;
3484 }
3485 /* If the sequence number != sc_iss, then it's a bogus ICMP msg */
3486 if (ntohl (th->th_seq) != sc->sc_iss) {
3487 splx(s);
3488 return;
3489 }
3490
3491 /*
3492 * If we've rertransmitted 3 times and this is our second error,
3493 * we remove the entry. Otherwise, we allow it to continue on.
3494 * This prevents us from incorrectly nuking an entry during a
3495 * spurious network outage.
3496 *
3497 * See tcp_notify().
3498 */
3499 if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
3500 sc->sc_flags |= SCF_UNREACH;
3501 splx(s);
3502 return;
3503 }
3504
3505 SYN_CACHE_RM(sc);
3506 splx(s);
3507 tcpstat.tcps_sc_unreach++;
3508 SYN_CACHE_PUT(sc);
3509 }
3510
3511 /*
3512 * Given a LISTEN socket and an inbound SYN request, add
3513 * this to the syn cache, and send back a segment:
3514 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
3515 * to the source.
3516 *
3517 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
3518 * Doing so would require that we hold onto the data and deliver it
3519 * to the application. However, if we are the target of a SYN-flood
3520 * DoS attack, an attacker could send data which would eventually
3521 * consume all available buffer space if it were ACKed. By not ACKing
3522 * the data, we avoid this DoS scenario.
3523 */
3524
3525 int
3526 syn_cache_add(src, dst, th, hlen, so, m, optp, optlen, oi)
3527 struct sockaddr *src;
3528 struct sockaddr *dst;
3529 struct tcphdr *th;
3530 unsigned int hlen;
3531 struct socket *so;
3532 struct mbuf *m;
3533 u_char *optp;
3534 int optlen;
3535 struct tcp_opt_info *oi;
3536 {
3537 struct tcpcb tb, *tp;
3538 long win;
3539 struct syn_cache *sc;
3540 struct syn_cache_head *scp;
3541 struct mbuf *ipopts;
3542
3543 tp = sototcpcb(so);
3544
3545 /*
3546 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
3547 *
3548 * Note this check is performed in tcp_input() very early on.
3549 */
3550
3551 /*
3552 * Initialize some local state.
3553 */
3554 win = sbspace(&so->so_rcv);
3555 if (win > TCP_MAXWIN)
3556 win = TCP_MAXWIN;
3557
3558 switch (src->sa_family) {
3559 #ifdef INET
3560 case AF_INET:
3561 /*
3562 * Remember the IP options, if any.
3563 */
3564 ipopts = ip_srcroute();
3565 break;
3566 #endif
3567 default:
3568 ipopts = NULL;
3569 }
3570
3571 if (optp) {
3572 tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
3573 tcp_dooptions(&tb, optp, optlen, th, oi);
3574 } else
3575 tb.t_flags = 0;
3576
3577 /*
3578 * See if we already have an entry for this connection.
3579 * If we do, resend the SYN,ACK. We do not count this
3580 * as a retransmission (XXX though maybe we should).
3581 */
3582 if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
3583 tcpstat.tcps_sc_dupesyn++;
3584 if (ipopts) {
3585 /*
3586 * If we were remembering a previous source route,
3587 * forget it and use the new one we've been given.
3588 */
3589 if (sc->sc_ipopts)
3590 (void) m_free(sc->sc_ipopts);
3591 sc->sc_ipopts = ipopts;
3592 }
3593 sc->sc_timestamp = tb.ts_recent;
3594 if (syn_cache_respond(sc, m) == 0) {
3595 tcpstat.tcps_sndacks++;
3596 tcpstat.tcps_sndtotal++;
3597 }
3598 return (1);
3599 }
3600
3601 sc = pool_get(&syn_cache_pool, PR_NOWAIT);
3602 if (sc == NULL) {
3603 if (ipopts)
3604 (void) m_free(ipopts);
3605 return (0);
3606 }
3607
3608 /*
3609 * Fill in the cache, and put the necessary IP and TCP
3610 * options into the reply.
3611 */
3612 bzero(sc, sizeof(struct syn_cache));
3613 callout_init(&sc->sc_timer);
3614 bcopy(src, &sc->sc_src, src->sa_len);
3615 bcopy(dst, &sc->sc_dst, dst->sa_len);
3616 sc->sc_flags = 0;
3617 sc->sc_ipopts = ipopts;
3618 sc->sc_irs = th->th_seq;
3619 switch (src->sa_family) {
3620 #ifdef INET
3621 case AF_INET:
3622 {
3623 struct sockaddr_in *srcin = (void *) src;
3624 struct sockaddr_in *dstin = (void *) dst;
3625
3626 sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
3627 &srcin->sin_addr, dstin->sin_port,
3628 srcin->sin_port, sizeof(dstin->sin_addr), 0);
3629 break;
3630 }
3631 #endif /* INET */
3632 #ifdef INET6
3633 case AF_INET6:
3634 {
3635 struct sockaddr_in6 *srcin6 = (void *) src;
3636 struct sockaddr_in6 *dstin6 = (void *) dst;
3637
3638 sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
3639 &srcin6->sin6_addr, dstin6->sin6_port,
3640 srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
3641 break;
3642 }
3643 #endif /* INET6 */
3644 }
3645 sc->sc_peermaxseg = oi->maxseg;
3646 sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
3647 m->m_pkthdr.rcvif : NULL,
3648 sc->sc_src.sa.sa_family);
3649 sc->sc_win = win;
3650 sc->sc_timebase = tcp_now; /* see tcp_newtcpcb() */
3651 sc->sc_timestamp = tb.ts_recent;
3652 if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
3653 (TF_REQ_TSTMP|TF_RCVD_TSTMP))
3654 sc->sc_flags |= SCF_TIMESTAMP;
3655 if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
3656 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
3657 sc->sc_requested_s_scale = tb.requested_s_scale;
3658 sc->sc_request_r_scale = 0;
3659 while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
3660 TCP_MAXWIN << sc->sc_request_r_scale <
3661 so->so_rcv.sb_hiwat)
3662 sc->sc_request_r_scale++;
3663 } else {
3664 sc->sc_requested_s_scale = 15;
3665 sc->sc_request_r_scale = 15;
3666 }
3667 sc->sc_tp = tp;
3668 if (syn_cache_respond(sc, m) == 0) {
3669 syn_cache_insert(sc, tp);
3670 tcpstat.tcps_sndacks++;
3671 tcpstat.tcps_sndtotal++;
3672 } else {
3673 SYN_CACHE_PUT(sc);
3674 tcpstat.tcps_sc_dropped++;
3675 }
3676 return (1);
3677 }
3678
3679 int
3680 syn_cache_respond(sc, m)
3681 struct syn_cache *sc;
3682 struct mbuf *m;
3683 {
3684 struct route *ro;
3685 u_int8_t *optp;
3686 int optlen, error;
3687 u_int16_t tlen;
3688 struct ip *ip = NULL;
3689 #ifdef INET6
3690 struct ip6_hdr *ip6 = NULL;
3691 #endif
3692 struct tcphdr *th;
3693 u_int hlen;
3694
3695 switch (sc->sc_src.sa.sa_family) {
3696 case AF_INET:
3697 hlen = sizeof(struct ip);
3698 ro = &sc->sc_route4;
3699 break;
3700 #ifdef INET6
3701 case AF_INET6:
3702 hlen = sizeof(struct ip6_hdr);
3703 ro = (struct route *)&sc->sc_route6;
3704 break;
3705 #endif
3706 default:
3707 if (m)
3708 m_freem(m);
3709 return EAFNOSUPPORT;
3710 }
3711
3712 /* Compute the size of the TCP options. */
3713 optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
3714 ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
3715
3716 tlen = hlen + sizeof(struct tcphdr) + optlen;
3717
3718 /*
3719 * Create the IP+TCP header from scratch.
3720 */
3721 if (m)
3722 m_freem(m);
3723 #ifdef DIAGNOSTIC
3724 if (max_linkhdr + tlen > MCLBYTES)
3725 return (ENOBUFS);
3726 #endif
3727 MGETHDR(m, M_DONTWAIT, MT_DATA);
3728 if (m && tlen > MHLEN) {
3729 MCLGET(m, M_DONTWAIT);
3730 if ((m->m_flags & M_EXT) == 0) {
3731 m_freem(m);
3732 m = NULL;
3733 }
3734 }
3735 if (m == NULL)
3736 return (ENOBUFS);
3737 MCLAIM(m, &tcp_tx_mowner);
3738
3739 /* Fixup the mbuf. */
3740 m->m_data += max_linkhdr;
3741 m->m_len = m->m_pkthdr.len = tlen;
3742 #ifdef IPSEC
3743 if (sc->sc_tp) {
3744 struct tcpcb *tp;
3745 struct socket *so;
3746
3747 tp = sc->sc_tp;
3748 if (tp->t_inpcb)
3749 so = tp->t_inpcb->inp_socket;
3750 #ifdef INET6
3751 else if (tp->t_in6pcb)
3752 so = tp->t_in6pcb->in6p_socket;
3753 #endif
3754 else
3755 so = NULL;
3756 /* use IPsec policy on listening socket, on SYN ACK */
3757 if (ipsec_setsocket(m, so) != 0) {
3758 m_freem(m);
3759 return ENOBUFS;
3760 }
3761 }
3762 #endif
3763 m->m_pkthdr.rcvif = NULL;
3764 memset(mtod(m, u_char *), 0, tlen);
3765
3766 switch (sc->sc_src.sa.sa_family) {
3767 case AF_INET:
3768 ip = mtod(m, struct ip *);
3769 ip->ip_dst = sc->sc_src.sin.sin_addr;
3770 ip->ip_src = sc->sc_dst.sin.sin_addr;
3771 ip->ip_p = IPPROTO_TCP;
3772 th = (struct tcphdr *)(ip + 1);
3773 th->th_dport = sc->sc_src.sin.sin_port;
3774 th->th_sport = sc->sc_dst.sin.sin_port;
3775 break;
3776 #ifdef INET6
3777 case AF_INET6:
3778 ip6 = mtod(m, struct ip6_hdr *);
3779 ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
3780 ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
3781 ip6->ip6_nxt = IPPROTO_TCP;
3782 /* ip6_plen will be updated in ip6_output() */
3783 th = (struct tcphdr *)(ip6 + 1);
3784 th->th_dport = sc->sc_src.sin6.sin6_port;
3785 th->th_sport = sc->sc_dst.sin6.sin6_port;
3786 break;
3787 #endif
3788 default:
3789 th = NULL;
3790 }
3791
3792 th->th_seq = htonl(sc->sc_iss);
3793 th->th_ack = htonl(sc->sc_irs + 1);
3794 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
3795 th->th_flags = TH_SYN|TH_ACK;
3796 th->th_win = htons(sc->sc_win);
3797 /* th_sum already 0 */
3798 /* th_urp already 0 */
3799
3800 /* Tack on the TCP options. */
3801 optp = (u_int8_t *)(th + 1);
3802 *optp++ = TCPOPT_MAXSEG;
3803 *optp++ = 4;
3804 *optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
3805 *optp++ = sc->sc_ourmaxseg & 0xff;
3806
3807 if (sc->sc_request_r_scale != 15) {
3808 *((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
3809 TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
3810 sc->sc_request_r_scale);
3811 optp += 4;
3812 }
3813
3814 if (sc->sc_flags & SCF_TIMESTAMP) {
3815 u_int32_t *lp = (u_int32_t *)(optp);
3816 /* Form timestamp option as shown in appendix A of RFC 1323. */
3817 *lp++ = htonl(TCPOPT_TSTAMP_HDR);
3818 *lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
3819 *lp = htonl(sc->sc_timestamp);
3820 optp += TCPOLEN_TSTAMP_APPA;
3821 }
3822
3823 /* Compute the packet's checksum. */
3824 switch (sc->sc_src.sa.sa_family) {
3825 case AF_INET:
3826 ip->ip_len = htons(tlen - hlen);
3827 th->th_sum = 0;
3828 th->th_sum = in_cksum(m, tlen);
3829 break;
3830 #ifdef INET6
3831 case AF_INET6:
3832 ip6->ip6_plen = htons(tlen - hlen);
3833 th->th_sum = 0;
3834 th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
3835 break;
3836 #endif
3837 }
3838
3839 /*
3840 * Fill in some straggling IP bits. Note the stack expects
3841 * ip_len to be in host order, for convenience.
3842 */
3843 switch (sc->sc_src.sa.sa_family) {
3844 #ifdef INET
3845 case AF_INET:
3846 ip->ip_len = htons(tlen);
3847 ip->ip_ttl = ip_defttl;
3848 /* XXX tos? */
3849 break;
3850 #endif
3851 #ifdef INET6
3852 case AF_INET6:
3853 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
3854 ip6->ip6_vfc |= IPV6_VERSION;
3855 ip6->ip6_plen = htons(tlen - hlen);
3856 /* ip6_hlim will be initialized afterwards */
3857 /* XXX flowlabel? */
3858 break;
3859 #endif
3860 }
3861
3862 switch (sc->sc_src.sa.sa_family) {
3863 #ifdef INET
3864 case AF_INET:
3865 error = ip_output(m, sc->sc_ipopts, ro,
3866 (ip_mtudisc ? IP_MTUDISC : 0),
3867 NULL);
3868 break;
3869 #endif
3870 #ifdef INET6
3871 case AF_INET6:
3872 ip6->ip6_hlim = in6_selecthlim(NULL,
3873 ro->ro_rt ? ro->ro_rt->rt_ifp : NULL);
3874
3875 error = ip6_output(m, NULL /*XXX*/, (struct route_in6 *)ro,
3876 0, NULL, NULL);
3877 break;
3878 #endif
3879 default:
3880 error = EAFNOSUPPORT;
3881 break;
3882 }
3883 return (error);
3884 }
3885