tcp_input.c revision 1.169 1 /* $NetBSD: tcp_input.c,v 1.169 2003/06/15 02:49:33 matt Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * @(#)COPYRIGHT 1.1 (NRL) 17 January 1995
34 *
35 * NRL grants permission for redistribution and use in source and binary
36 * forms, with or without modification, of the software and documentation
37 * created at NRL provided that the following conditions are met:
38 *
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgements:
46 * This product includes software developed by the University of
47 * California, Berkeley and its contributors.
48 * This product includes software developed at the Information
49 * Technology Division, US Naval Research Laboratory.
50 * 4. Neither the name of the NRL nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
55 * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
57 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NRL OR
58 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
59 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
61 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
62 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
63 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
64 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65 *
66 * The views and conclusions contained in the software and documentation
67 * are those of the authors and should not be interpreted as representing
68 * official policies, either expressed or implied, of the US Naval
69 * Research Laboratory (NRL).
70 */
71
72 /*-
73 * Copyright (c) 1997, 1998, 1999, 2001 The NetBSD Foundation, Inc.
74 * All rights reserved.
75 *
76 * This code is derived from software contributed to The NetBSD Foundation
77 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
78 * Facility, NASA Ames Research Center.
79 *
80 * Redistribution and use in source and binary forms, with or without
81 * modification, are permitted provided that the following conditions
82 * are met:
83 * 1. Redistributions of source code must retain the above copyright
84 * notice, this list of conditions and the following disclaimer.
85 * 2. Redistributions in binary form must reproduce the above copyright
86 * notice, this list of conditions and the following disclaimer in the
87 * documentation and/or other materials provided with the distribution.
88 * 3. All advertising materials mentioning features or use of this software
89 * must display the following acknowledgement:
90 * This product includes software developed by the NetBSD
91 * Foundation, Inc. and its contributors.
92 * 4. Neither the name of The NetBSD Foundation nor the names of its
93 * contributors may be used to endorse or promote products derived
94 * from this software without specific prior written permission.
95 *
96 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
97 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
98 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
99 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
100 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
101 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
102 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
103 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
104 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
105 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
106 * POSSIBILITY OF SUCH DAMAGE.
107 */
108
109 /*
110 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
111 * The Regents of the University of California. All rights reserved.
112 *
113 * Redistribution and use in source and binary forms, with or without
114 * modification, are permitted provided that the following conditions
115 * are met:
116 * 1. Redistributions of source code must retain the above copyright
117 * notice, this list of conditions and the following disclaimer.
118 * 2. Redistributions in binary form must reproduce the above copyright
119 * notice, this list of conditions and the following disclaimer in the
120 * documentation and/or other materials provided with the distribution.
121 * 3. All advertising materials mentioning features or use of this software
122 * must display the following acknowledgement:
123 * This product includes software developed by the University of
124 * California, Berkeley and its contributors.
125 * 4. Neither the name of the University nor the names of its contributors
126 * may be used to endorse or promote products derived from this software
127 * without specific prior written permission.
128 *
129 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
130 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
131 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
132 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
133 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
134 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
135 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
136 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
137 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
138 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
139 * SUCH DAMAGE.
140 *
141 * @(#)tcp_input.c 8.12 (Berkeley) 5/24/95
142 */
143
144 /*
145 * TODO list for SYN cache stuff:
146 *
147 * Find room for a "state" field, which is needed to keep a
148 * compressed state for TIME_WAIT TCBs. It's been noted already
149 * that this is fairly important for very high-volume web and
150 * mail servers, which use a large number of short-lived
151 * connections.
152 */
153
154 #include <sys/cdefs.h>
155 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.169 2003/06/15 02:49:33 matt Exp $");
156
157 #include "opt_inet.h"
158 #include "opt_ipsec.h"
159 #include "opt_inet_csum.h"
160 #include "opt_tcp_debug.h"
161
162 #include <sys/param.h>
163 #include <sys/systm.h>
164 #include <sys/malloc.h>
165 #include <sys/mbuf.h>
166 #include <sys/protosw.h>
167 #include <sys/socket.h>
168 #include <sys/socketvar.h>
169 #include <sys/errno.h>
170 #include <sys/syslog.h>
171 #include <sys/pool.h>
172 #include <sys/domain.h>
173 #include <sys/kernel.h>
174
175 #include <net/if.h>
176 #include <net/route.h>
177 #include <net/if_types.h>
178
179 #include <netinet/in.h>
180 #include <netinet/in_systm.h>
181 #include <netinet/ip.h>
182 #include <netinet/in_pcb.h>
183 #include <netinet/in_var.h>
184 #include <netinet/ip_var.h>
185
186 #ifdef INET6
187 #ifndef INET
188 #include <netinet/in.h>
189 #endif
190 #include <netinet/ip6.h>
191 #include <netinet6/ip6_var.h>
192 #include <netinet6/in6_pcb.h>
193 #include <netinet6/ip6_var.h>
194 #include <netinet6/in6_var.h>
195 #include <netinet/icmp6.h>
196 #include <netinet6/nd6.h>
197 #endif
198
199 #ifndef INET6
200 /* always need ip6.h for IP6_EXTHDR_GET */
201 #include <netinet/ip6.h>
202 #endif
203
204 #include <netinet/tcp.h>
205 #include <netinet/tcp_fsm.h>
206 #include <netinet/tcp_seq.h>
207 #include <netinet/tcp_timer.h>
208 #include <netinet/tcp_var.h>
209 #include <netinet/tcpip.h>
210 #include <netinet/tcp_debug.h>
211
212 #include <machine/stdarg.h>
213
214 #ifdef IPSEC
215 #include <netinet6/ipsec.h>
216 #include <netkey/key.h>
217 #endif /*IPSEC*/
218 #ifdef INET6
219 #include "faith.h"
220 #if defined(NFAITH) && NFAITH > 0
221 #include <net/if_faith.h>
222 #endif
223 #endif
224
225 int tcprexmtthresh = 3;
226 int tcp_log_refused;
227
228 static int tcp_rst_ppslim_count = 0;
229 static struct timeval tcp_rst_ppslim_last;
230
231 #define TCP_PAWS_IDLE (24 * 24 * 60 * 60 * PR_SLOWHZ)
232
233 /* for modulo comparisons of timestamps */
234 #define TSTMP_LT(a,b) ((int)((a)-(b)) < 0)
235 #define TSTMP_GEQ(a,b) ((int)((a)-(b)) >= 0)
236
237 /*
238 * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
239 */
240 #ifdef INET6
241 #define ND6_HINT(tp) \
242 do { \
243 if (tp && tp->t_in6pcb && tp->t_family == AF_INET6 \
244 && tp->t_in6pcb->in6p_route.ro_rt) { \
245 nd6_nud_hint(tp->t_in6pcb->in6p_route.ro_rt, NULL, 0); \
246 } \
247 } while (/*CONSTCOND*/ 0)
248 #else
249 #define ND6_HINT(tp)
250 #endif
251
252 /*
253 * Macro to compute ACK transmission behavior. Delay the ACK unless
254 * we have already delayed an ACK (must send an ACK every two segments).
255 * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
256 * option is enabled.
257 */
258 #define TCP_SETUP_ACK(tp, th) \
259 do { \
260 if ((tp)->t_flags & TF_DELACK || \
261 (tcp_ack_on_push && (th)->th_flags & TH_PUSH)) \
262 tp->t_flags |= TF_ACKNOW; \
263 else \
264 TCP_SET_DELACK(tp); \
265 } while (/*CONSTCOND*/ 0)
266
267 /*
268 * Convert TCP protocol fields to host order for easier processing.
269 */
270 #define TCP_FIELDS_TO_HOST(th) \
271 do { \
272 NTOHL((th)->th_seq); \
273 NTOHL((th)->th_ack); \
274 NTOHS((th)->th_win); \
275 NTOHS((th)->th_urp); \
276 } while (/*CONSTCOND*/ 0)
277
278 /*
279 * ... and reverse the above.
280 */
281 #define TCP_FIELDS_TO_NET(th) \
282 do { \
283 HTONL((th)->th_seq); \
284 HTONL((th)->th_ack); \
285 HTONS((th)->th_win); \
286 HTONS((th)->th_urp); \
287 } while (/*CONSTCOND*/ 0)
288
289 #ifdef TCP_CSUM_COUNTERS
290 #include <sys/device.h>
291
292 extern struct evcnt tcp_hwcsum_ok;
293 extern struct evcnt tcp_hwcsum_bad;
294 extern struct evcnt tcp_hwcsum_data;
295 extern struct evcnt tcp_swcsum;
296
297 #define TCP_CSUM_COUNTER_INCR(ev) (ev)->ev_count++
298
299 #else
300
301 #define TCP_CSUM_COUNTER_INCR(ev) /* nothing */
302
303 #endif /* TCP_CSUM_COUNTERS */
304
305 #ifdef TCP_REASS_COUNTERS
306 #include <sys/device.h>
307
308 extern struct evcnt tcp_reass_;
309 extern struct evcnt tcp_reass_empty;
310 extern struct evcnt tcp_reass_iteration[8];
311 extern struct evcnt tcp_reass_prependfirst;
312 extern struct evcnt tcp_reass_prepend;
313 extern struct evcnt tcp_reass_insert;
314 extern struct evcnt tcp_reass_inserttail;
315 extern struct evcnt tcp_reass_append;
316 extern struct evcnt tcp_reass_appendtail;
317 extern struct evcnt tcp_reass_overlaptail;
318 extern struct evcnt tcp_reass_overlapfront;
319 extern struct evcnt tcp_reass_segdup;
320 extern struct evcnt tcp_reass_fragdup;
321
322 #define TCP_REASS_COUNTER_INCR(ev) (ev)->ev_count++
323
324 #else
325
326 #define TCP_REASS_COUNTER_INCR(ev) /* nothing */
327
328 #endif /* TCP_REASS_COUNTERS */
329
330 #ifdef INET
331 static void tcp4_log_refused __P((const struct ip *, const struct tcphdr *));
332 #endif
333 #ifdef INET6
334 static void tcp6_log_refused
335 __P((const struct ip6_hdr *, const struct tcphdr *));
336 #endif
337
338 int
339 tcp_reass(tp, th, m, tlen)
340 struct tcpcb *tp;
341 struct tcphdr *th;
342 struct mbuf *m;
343 int *tlen;
344 {
345 struct ipqent *p, *q, *nq, *tiqe = NULL;
346 struct socket *so = NULL;
347 int pkt_flags;
348 tcp_seq pkt_seq;
349 unsigned pkt_len;
350 u_long rcvpartdupbyte = 0;
351 u_long rcvoobyte;
352 #ifdef TCP_REASS_COUNTERS
353 u_int count = 0;
354 #endif
355
356 if (tp->t_inpcb)
357 so = tp->t_inpcb->inp_socket;
358 #ifdef INET6
359 else if (tp->t_in6pcb)
360 so = tp->t_in6pcb->in6p_socket;
361 #endif
362
363 TCP_REASS_LOCK_CHECK(tp);
364
365 /*
366 * Call with th==0 after become established to
367 * force pre-ESTABLISHED data up to user socket.
368 */
369 if (th == 0)
370 goto present;
371
372 rcvoobyte = *tlen;
373 /*
374 * Copy these to local variables because the tcpiphdr
375 * gets munged while we are collapsing mbufs.
376 */
377 pkt_seq = th->th_seq;
378 pkt_len = *tlen;
379 pkt_flags = th->th_flags;
380
381 TCP_REASS_COUNTER_INCR(&tcp_reass_);
382
383 if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
384 /*
385 * When we miss a packet, the vast majority of time we get
386 * packets that follow it in order. So optimize for that.
387 */
388 if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
389 p->ipqe_len += pkt_len;
390 p->ipqe_flags |= pkt_flags;
391 m_cat(p->ipqe_m, m);
392 tiqe = p;
393 TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
394 TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
395 goto skip_replacement;
396 }
397 /*
398 * While we're here, if the pkt is completely beyond
399 * anything we have, just insert it at the tail.
400 */
401 if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
402 TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
403 goto insert_it;
404 }
405 }
406
407 q = TAILQ_FIRST(&tp->segq);
408
409 if (q != NULL) {
410 /*
411 * If this segment immediately precedes the first out-of-order
412 * block, simply slap the segment in front of it and (mostly)
413 * skip the complicated logic.
414 */
415 if (pkt_seq + pkt_len == q->ipqe_seq) {
416 q->ipqe_seq = pkt_seq;
417 q->ipqe_len += pkt_len;
418 q->ipqe_flags |= pkt_flags;
419 m_cat(m, q->ipqe_m);
420 q->ipqe_m = m;
421 tiqe = q;
422 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
423 TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
424 goto skip_replacement;
425 }
426 } else {
427 TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
428 }
429
430 /*
431 * Find a segment which begins after this one does.
432 */
433 for (p = NULL; q != NULL; q = nq) {
434 nq = TAILQ_NEXT(q, ipqe_q);
435 #ifdef TCP_REASS_COUNTERS
436 count++;
437 #endif
438 /*
439 * If the received segment is just right after this
440 * fragment, merge the two together and then check
441 * for further overlaps.
442 */
443 if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
444 #ifdef TCPREASS_DEBUG
445 printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
446 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
447 q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
448 #endif
449 pkt_len += q->ipqe_len;
450 pkt_flags |= q->ipqe_flags;
451 pkt_seq = q->ipqe_seq;
452 m_cat(q->ipqe_m, m);
453 m = q->ipqe_m;
454 TCP_REASS_COUNTER_INCR(&tcp_reass_append);
455 goto free_ipqe;
456 }
457 /*
458 * If the received segment is completely past this
459 * fragment, we need to go the next fragment.
460 */
461 if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
462 p = q;
463 continue;
464 }
465 /*
466 * If the fragment is past the received segment,
467 * it (or any following) can't be concatenated.
468 */
469 if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
470 TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
471 break;
472 }
473
474 /*
475 * We've received all the data in this segment before.
476 * mark it as a duplicate and return.
477 */
478 if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
479 SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
480 tcpstat.tcps_rcvduppack++;
481 tcpstat.tcps_rcvdupbyte += pkt_len;
482 m_freem(m);
483 if (tiqe != NULL)
484 pool_put(&ipqent_pool, tiqe);
485 TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
486 return (0);
487 }
488 /*
489 * Received segment completely overlaps this fragment
490 * so we drop the fragment (this keeps the temporal
491 * ordering of segments correct).
492 */
493 if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
494 SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
495 rcvpartdupbyte += q->ipqe_len;
496 m_freem(q->ipqe_m);
497 TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
498 goto free_ipqe;
499 }
500 /*
501 * RX'ed segment extends past the end of the
502 * fragment. Drop the overlapping bytes. Then
503 * merge the fragment and segment then treat as
504 * a longer received packet.
505 */
506 if (SEQ_LT(q->ipqe_seq, pkt_seq)
507 && SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
508 int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
509 #ifdef TCPREASS_DEBUG
510 printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
511 tp, overlap,
512 pkt_seq, pkt_seq + pkt_len, pkt_len);
513 #endif
514 m_adj(m, overlap);
515 rcvpartdupbyte += overlap;
516 m_cat(q->ipqe_m, m);
517 m = q->ipqe_m;
518 pkt_seq = q->ipqe_seq;
519 pkt_len += q->ipqe_len - overlap;
520 rcvoobyte -= overlap;
521 TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
522 goto free_ipqe;
523 }
524 /*
525 * RX'ed segment extends past the front of the
526 * fragment. Drop the overlapping bytes on the
527 * received packet. The packet will then be
528 * contatentated with this fragment a bit later.
529 */
530 if (SEQ_GT(q->ipqe_seq, pkt_seq)
531 && SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len)) {
532 int overlap = pkt_seq + pkt_len - q->ipqe_seq;
533 #ifdef TCPREASS_DEBUG
534 printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
535 tp, overlap,
536 pkt_seq, pkt_seq + pkt_len, pkt_len);
537 #endif
538 m_adj(m, -overlap);
539 pkt_len -= overlap;
540 rcvpartdupbyte += overlap;
541 TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
542 rcvoobyte -= overlap;
543 }
544 /*
545 * If the received segment immediates precedes this
546 * fragment then tack the fragment onto this segment
547 * and reinsert the data.
548 */
549 if (q->ipqe_seq == pkt_seq + pkt_len) {
550 #ifdef TCPREASS_DEBUG
551 printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
552 tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
553 pkt_seq, pkt_seq + pkt_len, pkt_len);
554 #endif
555 pkt_len += q->ipqe_len;
556 pkt_flags |= q->ipqe_flags;
557 m_cat(m, q->ipqe_m);
558 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
559 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
560 if (tiqe == NULL) {
561 tiqe = q;
562 } else {
563 pool_put(&ipqent_pool, q);
564 }
565 TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
566 break;
567 }
568 /*
569 * If the fragment is before the segment, remember it.
570 * When this loop is terminated, p will contain the
571 * pointer to fragment that is right before the received
572 * segment.
573 */
574 if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
575 p = q;
576
577 continue;
578
579 /*
580 * This is a common operation. It also will allow
581 * to save doing a malloc/free in most instances.
582 */
583 free_ipqe:
584 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
585 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
586 if (tiqe == NULL) {
587 tiqe = q;
588 } else {
589 pool_put(&ipqent_pool, q);
590 }
591 }
592
593 #ifdef TCP_REASS_COUNTERS
594 if (count > 7)
595 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
596 else if (count > 0)
597 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
598 #endif
599
600 insert_it:
601
602 /*
603 * Allocate a new queue entry since the received segment did not
604 * collapse onto any other out-of-order block; thus we are allocating
605 * a new block. If it had collapsed, tiqe would not be NULL and
606 * we would be reusing it.
607 * XXX If we can't, just drop the packet. XXX
608 */
609 if (tiqe == NULL) {
610 tiqe = pool_get(&ipqent_pool, PR_NOWAIT);
611 if (tiqe == NULL) {
612 tcpstat.tcps_rcvmemdrop++;
613 m_freem(m);
614 return (0);
615 }
616 }
617
618 /*
619 * Update the counters.
620 */
621 tcpstat.tcps_rcvoopack++;
622 tcpstat.tcps_rcvoobyte += rcvoobyte;
623 if (rcvpartdupbyte) {
624 tcpstat.tcps_rcvpartduppack++;
625 tcpstat.tcps_rcvpartdupbyte += rcvpartdupbyte;
626 }
627
628 /*
629 * Insert the new fragment queue entry into both queues.
630 */
631 tiqe->ipqe_m = m;
632 tiqe->ipqe_seq = pkt_seq;
633 tiqe->ipqe_len = pkt_len;
634 tiqe->ipqe_flags = pkt_flags;
635 if (p == NULL) {
636 TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
637 #ifdef TCPREASS_DEBUG
638 if (tiqe->ipqe_seq != tp->rcv_nxt)
639 printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
640 tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
641 #endif
642 } else {
643 TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
644 #ifdef TCPREASS_DEBUG
645 printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
646 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
647 p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
648 #endif
649 }
650
651 skip_replacement:
652
653 TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
654
655 present:
656 /*
657 * Present data to user, advancing rcv_nxt through
658 * completed sequence space.
659 */
660 if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
661 return (0);
662 q = TAILQ_FIRST(&tp->segq);
663 if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
664 return (0);
665 if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
666 return (0);
667
668 tp->rcv_nxt += q->ipqe_len;
669 pkt_flags = q->ipqe_flags & TH_FIN;
670 ND6_HINT(tp);
671
672 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
673 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
674 if (so->so_state & SS_CANTRCVMORE)
675 m_freem(q->ipqe_m);
676 else
677 sbappendstream(&so->so_rcv, q->ipqe_m);
678 pool_put(&ipqent_pool, q);
679 sorwakeup(so);
680 return (pkt_flags);
681 }
682
683 #ifdef INET6
684 int
685 tcp6_input(mp, offp, proto)
686 struct mbuf **mp;
687 int *offp, proto;
688 {
689 struct mbuf *m = *mp;
690
691 /*
692 * draft-itojun-ipv6-tcp-to-anycast
693 * better place to put this in?
694 */
695 if (m->m_flags & M_ANYCAST6) {
696 struct ip6_hdr *ip6;
697 if (m->m_len < sizeof(struct ip6_hdr)) {
698 if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
699 tcpstat.tcps_rcvshort++;
700 return IPPROTO_DONE;
701 }
702 }
703 ip6 = mtod(m, struct ip6_hdr *);
704 icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
705 (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
706 return IPPROTO_DONE;
707 }
708
709 tcp_input(m, *offp, proto);
710 return IPPROTO_DONE;
711 }
712 #endif
713
714 #ifdef INET
715 static void
716 tcp4_log_refused(ip, th)
717 const struct ip *ip;
718 const struct tcphdr *th;
719 {
720 char src[4*sizeof "123"];
721 char dst[4*sizeof "123"];
722
723 if (ip) {
724 strlcpy(src, inet_ntoa(ip->ip_src), sizeof(src));
725 strlcpy(dst, inet_ntoa(ip->ip_dst), sizeof(dst));
726 }
727 else {
728 strlcpy(src, "(unknown)", sizeof(src));
729 strlcpy(dst, "(unknown)", sizeof(dst));
730 }
731 log(LOG_INFO,
732 "Connection attempt to TCP %s:%d from %s:%d\n",
733 dst, ntohs(th->th_dport),
734 src, ntohs(th->th_sport));
735 }
736 #endif
737
738 #ifdef INET6
739 static void
740 tcp6_log_refused(ip6, th)
741 const struct ip6_hdr *ip6;
742 const struct tcphdr *th;
743 {
744 char src[INET6_ADDRSTRLEN];
745 char dst[INET6_ADDRSTRLEN];
746
747 if (ip6) {
748 strlcpy(src, ip6_sprintf(&ip6->ip6_src), sizeof(src));
749 strlcpy(dst, ip6_sprintf(&ip6->ip6_dst), sizeof(dst));
750 }
751 else {
752 strlcpy(src, "(unknown v6)", sizeof(src));
753 strlcpy(dst, "(unknown v6)", sizeof(dst));
754 }
755 log(LOG_INFO,
756 "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
757 dst, ntohs(th->th_dport),
758 src, ntohs(th->th_sport));
759 }
760 #endif
761
762 /*
763 * TCP input routine, follows pages 65-76 of the
764 * protocol specification dated September, 1981 very closely.
765 */
766 void
767 #if __STDC__
768 tcp_input(struct mbuf *m, ...)
769 #else
770 tcp_input(m, va_alist)
771 struct mbuf *m;
772 #endif
773 {
774 struct tcphdr *th;
775 struct ip *ip;
776 struct inpcb *inp;
777 #ifdef INET6
778 struct ip6_hdr *ip6;
779 struct in6pcb *in6p;
780 #endif
781 u_int8_t *optp = NULL;
782 int optlen = 0;
783 int len, tlen, toff, hdroptlen = 0;
784 struct tcpcb *tp = 0;
785 int tiflags;
786 struct socket *so = NULL;
787 int todrop, acked, ourfinisacked, needoutput = 0;
788 #ifdef TCP_DEBUG
789 short ostate = 0;
790 #endif
791 int iss = 0;
792 u_long tiwin;
793 struct tcp_opt_info opti;
794 int off, iphlen;
795 va_list ap;
796 int af; /* af on the wire */
797 struct mbuf *tcp_saveti = NULL;
798
799 MCLAIM(m, &tcp_rx_mowner);
800 va_start(ap, m);
801 toff = va_arg(ap, int);
802 (void)va_arg(ap, int); /* ignore value, advance ap */
803 va_end(ap);
804
805 tcpstat.tcps_rcvtotal++;
806
807 bzero(&opti, sizeof(opti));
808 opti.ts_present = 0;
809 opti.maxseg = 0;
810
811 /*
812 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
813 *
814 * TCP is, by definition, unicast, so we reject all
815 * multicast outright.
816 *
817 * Note, there are additional src/dst address checks in
818 * the AF-specific code below.
819 */
820 if (m->m_flags & (M_BCAST|M_MCAST)) {
821 /* XXX stat */
822 goto drop;
823 }
824 #ifdef INET6
825 if (m->m_flags & M_ANYCAST6) {
826 /* XXX stat */
827 goto drop;
828 }
829 #endif
830
831 /*
832 * Get IP and TCP header together in first mbuf.
833 * Note: IP leaves IP header in first mbuf.
834 */
835 ip = mtod(m, struct ip *);
836 #ifdef INET6
837 ip6 = NULL;
838 #endif
839 switch (ip->ip_v) {
840 #ifdef INET
841 case 4:
842 af = AF_INET;
843 iphlen = sizeof(struct ip);
844 ip = mtod(m, struct ip *);
845 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
846 sizeof(struct tcphdr));
847 if (th == NULL) {
848 tcpstat.tcps_rcvshort++;
849 return;
850 }
851 /* We do the checksum after PCB lookup... */
852 len = ntohs(ip->ip_len);
853 tlen = len - toff;
854 break;
855 #endif
856 #ifdef INET6
857 case 6:
858 ip = NULL;
859 iphlen = sizeof(struct ip6_hdr);
860 af = AF_INET6;
861 ip6 = mtod(m, struct ip6_hdr *);
862 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
863 sizeof(struct tcphdr));
864 if (th == NULL) {
865 tcpstat.tcps_rcvshort++;
866 return;
867 }
868
869 /* Be proactive about malicious use of IPv4 mapped address */
870 if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
871 IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
872 /* XXX stat */
873 goto drop;
874 }
875
876 /*
877 * Be proactive about unspecified IPv6 address in source.
878 * As we use all-zero to indicate unbounded/unconnected pcb,
879 * unspecified IPv6 address can be used to confuse us.
880 *
881 * Note that packets with unspecified IPv6 destination is
882 * already dropped in ip6_input.
883 */
884 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
885 /* XXX stat */
886 goto drop;
887 }
888
889 /*
890 * Make sure destination address is not multicast.
891 * Source address checked in ip6_input().
892 */
893 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
894 /* XXX stat */
895 goto drop;
896 }
897
898 /* We do the checksum after PCB lookup... */
899 len = m->m_pkthdr.len;
900 tlen = len - toff;
901 break;
902 #endif
903 default:
904 m_freem(m);
905 return;
906 }
907
908 KASSERT(TCP_HDR_ALIGNED_P(th));
909
910 /*
911 * Check that TCP offset makes sense,
912 * pull out TCP options and adjust length. XXX
913 */
914 off = th->th_off << 2;
915 if (off < sizeof (struct tcphdr) || off > tlen) {
916 tcpstat.tcps_rcvbadoff++;
917 goto drop;
918 }
919 tlen -= off;
920
921 /*
922 * tcp_input() has been modified to use tlen to mean the TCP data
923 * length throughout the function. Other functions can use
924 * m->m_pkthdr.len as the basis for calculating the TCP data length.
925 * rja
926 */
927
928 if (off > sizeof (struct tcphdr)) {
929 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
930 if (th == NULL) {
931 tcpstat.tcps_rcvshort++;
932 return;
933 }
934 /*
935 * NOTE: ip/ip6 will not be affected by m_pulldown()
936 * (as they're before toff) and we don't need to update those.
937 */
938 KASSERT(TCP_HDR_ALIGNED_P(th));
939 optlen = off - sizeof (struct tcphdr);
940 optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
941 /*
942 * Do quick retrieval of timestamp options ("options
943 * prediction?"). If timestamp is the only option and it's
944 * formatted as recommended in RFC 1323 appendix A, we
945 * quickly get the values now and not bother calling
946 * tcp_dooptions(), etc.
947 */
948 if ((optlen == TCPOLEN_TSTAMP_APPA ||
949 (optlen > TCPOLEN_TSTAMP_APPA &&
950 optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
951 *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
952 (th->th_flags & TH_SYN) == 0) {
953 opti.ts_present = 1;
954 opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
955 opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
956 optp = NULL; /* we've parsed the options */
957 }
958 }
959 tiflags = th->th_flags;
960
961 /*
962 * Locate pcb for segment.
963 */
964 findpcb:
965 inp = NULL;
966 #ifdef INET6
967 in6p = NULL;
968 #endif
969 switch (af) {
970 #ifdef INET
971 case AF_INET:
972 inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
973 ip->ip_dst, th->th_dport);
974 if (inp == 0) {
975 ++tcpstat.tcps_pcbhashmiss;
976 inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
977 }
978 #ifdef INET6
979 if (inp == 0) {
980 struct in6_addr s, d;
981
982 /* mapped addr case */
983 bzero(&s, sizeof(s));
984 s.s6_addr16[5] = htons(0xffff);
985 bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
986 bzero(&d, sizeof(d));
987 d.s6_addr16[5] = htons(0xffff);
988 bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
989 in6p = in6_pcblookup_connect(&tcb6, &s, th->th_sport,
990 &d, th->th_dport, 0);
991 if (in6p == 0) {
992 ++tcpstat.tcps_pcbhashmiss;
993 in6p = in6_pcblookup_bind(&tcb6, &d,
994 th->th_dport, 0);
995 }
996 }
997 #endif
998 #ifndef INET6
999 if (inp == 0)
1000 #else
1001 if (inp == 0 && in6p == 0)
1002 #endif
1003 {
1004 ++tcpstat.tcps_noport;
1005 if (tcp_log_refused &&
1006 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1007 tcp4_log_refused(ip, th);
1008 }
1009 TCP_FIELDS_TO_HOST(th);
1010 goto dropwithreset_ratelim;
1011 }
1012 #ifdef IPSEC
1013 if (inp && ipsec4_in_reject(m, inp)) {
1014 ipsecstat.in_polvio++;
1015 goto drop;
1016 }
1017 #ifdef INET6
1018 else if (in6p && ipsec4_in_reject_so(m, in6p->in6p_socket)) {
1019 ipsecstat.in_polvio++;
1020 goto drop;
1021 }
1022 #endif
1023 #endif /*IPSEC*/
1024 break;
1025 #endif /*INET*/
1026 #ifdef INET6
1027 case AF_INET6:
1028 {
1029 int faith;
1030
1031 #if defined(NFAITH) && NFAITH > 0
1032 faith = faithprefix(&ip6->ip6_dst);
1033 #else
1034 faith = 0;
1035 #endif
1036 in6p = in6_pcblookup_connect(&tcb6, &ip6->ip6_src, th->th_sport,
1037 &ip6->ip6_dst, th->th_dport, faith);
1038 if (in6p == NULL) {
1039 ++tcpstat.tcps_pcbhashmiss;
1040 in6p = in6_pcblookup_bind(&tcb6, &ip6->ip6_dst,
1041 th->th_dport, faith);
1042 }
1043 if (in6p == NULL) {
1044 ++tcpstat.tcps_noport;
1045 if (tcp_log_refused &&
1046 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1047 tcp6_log_refused(ip6, th);
1048 }
1049 TCP_FIELDS_TO_HOST(th);
1050 goto dropwithreset_ratelim;
1051 }
1052 #ifdef IPSEC
1053 if (ipsec6_in_reject(m, in6p)) {
1054 ipsec6stat.in_polvio++;
1055 goto drop;
1056 }
1057 #endif /*IPSEC*/
1058 break;
1059 }
1060 #endif
1061 }
1062
1063 /*
1064 * If the state is CLOSED (i.e., TCB does not exist) then
1065 * all data in the incoming segment is discarded.
1066 * If the TCB exists but is in CLOSED state, it is embryonic,
1067 * but should either do a listen or a connect soon.
1068 */
1069 tp = NULL;
1070 so = NULL;
1071 if (inp) {
1072 tp = intotcpcb(inp);
1073 so = inp->inp_socket;
1074 }
1075 #ifdef INET6
1076 else if (in6p) {
1077 tp = in6totcpcb(in6p);
1078 so = in6p->in6p_socket;
1079 }
1080 #endif
1081 if (tp == 0) {
1082 TCP_FIELDS_TO_HOST(th);
1083 goto dropwithreset_ratelim;
1084 }
1085 if (tp->t_state == TCPS_CLOSED)
1086 goto drop;
1087
1088 /*
1089 * Checksum extended TCP header and data.
1090 */
1091 switch (af) {
1092 #ifdef INET
1093 case AF_INET:
1094 switch (m->m_pkthdr.csum_flags &
1095 ((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
1096 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
1097 case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
1098 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
1099 goto badcsum;
1100
1101 case M_CSUM_TCPv4|M_CSUM_DATA:
1102 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
1103 if ((m->m_pkthdr.csum_data ^ 0xffff) != 0)
1104 goto badcsum;
1105 break;
1106
1107 case M_CSUM_TCPv4:
1108 /* Checksum was okay. */
1109 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
1110 break;
1111
1112 default:
1113 /* Must compute it ourselves. */
1114 TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
1115 if (in4_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0)
1116 goto badcsum;
1117 break;
1118 }
1119 break;
1120 #endif /* INET4 */
1121
1122 #ifdef INET6
1123 case AF_INET6:
1124 if (in6_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0)
1125 goto badcsum;
1126 break;
1127 #endif /* INET6 */
1128 }
1129
1130 TCP_FIELDS_TO_HOST(th);
1131
1132 /* Unscale the window into a 32-bit value. */
1133 if ((tiflags & TH_SYN) == 0)
1134 tiwin = th->th_win << tp->snd_scale;
1135 else
1136 tiwin = th->th_win;
1137
1138 #ifdef INET6
1139 /* save packet options if user wanted */
1140 if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
1141 if (in6p->in6p_options) {
1142 m_freem(in6p->in6p_options);
1143 in6p->in6p_options = 0;
1144 }
1145 ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
1146 }
1147 #endif
1148
1149 if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
1150 union syn_cache_sa src;
1151 union syn_cache_sa dst;
1152
1153 bzero(&src, sizeof(src));
1154 bzero(&dst, sizeof(dst));
1155 switch (af) {
1156 #ifdef INET
1157 case AF_INET:
1158 src.sin.sin_len = sizeof(struct sockaddr_in);
1159 src.sin.sin_family = AF_INET;
1160 src.sin.sin_addr = ip->ip_src;
1161 src.sin.sin_port = th->th_sport;
1162
1163 dst.sin.sin_len = sizeof(struct sockaddr_in);
1164 dst.sin.sin_family = AF_INET;
1165 dst.sin.sin_addr = ip->ip_dst;
1166 dst.sin.sin_port = th->th_dport;
1167 break;
1168 #endif
1169 #ifdef INET6
1170 case AF_INET6:
1171 src.sin6.sin6_len = sizeof(struct sockaddr_in6);
1172 src.sin6.sin6_family = AF_INET6;
1173 src.sin6.sin6_addr = ip6->ip6_src;
1174 src.sin6.sin6_port = th->th_sport;
1175
1176 dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
1177 dst.sin6.sin6_family = AF_INET6;
1178 dst.sin6.sin6_addr = ip6->ip6_dst;
1179 dst.sin6.sin6_port = th->th_dport;
1180 break;
1181 #endif /* INET6 */
1182 default:
1183 goto badsyn; /*sanity*/
1184 }
1185
1186 if (so->so_options & SO_DEBUG) {
1187 #ifdef TCP_DEBUG
1188 ostate = tp->t_state;
1189 #endif
1190
1191 tcp_saveti = NULL;
1192 if (iphlen + sizeof(struct tcphdr) > MHLEN)
1193 goto nosave;
1194
1195 if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
1196 tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
1197 if (!tcp_saveti)
1198 goto nosave;
1199 } else {
1200 MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
1201 if (!tcp_saveti)
1202 goto nosave;
1203 MCLAIM(m, &tcp_mowner);
1204 tcp_saveti->m_len = iphlen;
1205 m_copydata(m, 0, iphlen,
1206 mtod(tcp_saveti, caddr_t));
1207 }
1208
1209 if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
1210 m_freem(tcp_saveti);
1211 tcp_saveti = NULL;
1212 } else {
1213 tcp_saveti->m_len += sizeof(struct tcphdr);
1214 bcopy(th, mtod(tcp_saveti, caddr_t) + iphlen,
1215 sizeof(struct tcphdr));
1216 }
1217 nosave:;
1218 }
1219 if (so->so_options & SO_ACCEPTCONN) {
1220 if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1221 if (tiflags & TH_RST) {
1222 syn_cache_reset(&src.sa, &dst.sa, th);
1223 } else if ((tiflags & (TH_ACK|TH_SYN)) ==
1224 (TH_ACK|TH_SYN)) {
1225 /*
1226 * Received a SYN,ACK. This should
1227 * never happen while we are in
1228 * LISTEN. Send an RST.
1229 */
1230 goto badsyn;
1231 } else if (tiflags & TH_ACK) {
1232 so = syn_cache_get(&src.sa, &dst.sa,
1233 th, toff, tlen, so, m);
1234 if (so == NULL) {
1235 /*
1236 * We don't have a SYN for
1237 * this ACK; send an RST.
1238 */
1239 goto badsyn;
1240 } else if (so ==
1241 (struct socket *)(-1)) {
1242 /*
1243 * We were unable to create
1244 * the connection. If the
1245 * 3-way handshake was
1246 * completed, and RST has
1247 * been sent to the peer.
1248 * Since the mbuf might be
1249 * in use for the reply,
1250 * do not free it.
1251 */
1252 m = NULL;
1253 } else {
1254 /*
1255 * We have created a
1256 * full-blown connection.
1257 */
1258 tp = NULL;
1259 inp = NULL;
1260 #ifdef INET6
1261 in6p = NULL;
1262 #endif
1263 switch (so->so_proto->pr_domain->dom_family) {
1264 #ifdef INET
1265 case AF_INET:
1266 inp = sotoinpcb(so);
1267 tp = intotcpcb(inp);
1268 break;
1269 #endif
1270 #ifdef INET6
1271 case AF_INET6:
1272 in6p = sotoin6pcb(so);
1273 tp = in6totcpcb(in6p);
1274 break;
1275 #endif
1276 }
1277 if (tp == NULL)
1278 goto badsyn; /*XXX*/
1279 tiwin <<= tp->snd_scale;
1280 goto after_listen;
1281 }
1282 } else {
1283 /*
1284 * None of RST, SYN or ACK was set.
1285 * This is an invalid packet for a
1286 * TCB in LISTEN state. Send a RST.
1287 */
1288 goto badsyn;
1289 }
1290 } else {
1291 /*
1292 * Received a SYN.
1293 */
1294
1295 #ifdef INET6
1296 /*
1297 * If deprecated address is forbidden, we do
1298 * not accept SYN to deprecated interface
1299 * address to prevent any new inbound
1300 * connection from getting established.
1301 * When we do not accept SYN, we send a TCP
1302 * RST, with deprecated source address (instead
1303 * of dropping it). We compromise it as it is
1304 * much better for peer to send a RST, and
1305 * RST will be the final packet for the
1306 * exchange.
1307 *
1308 * If we do not forbid deprecated addresses, we
1309 * accept the SYN packet. RFC2462 does not
1310 * suggest dropping SYN in this case.
1311 * If we decipher RFC2462 5.5.4, it says like
1312 * this:
1313 * 1. use of deprecated addr with existing
1314 * communication is okay - "SHOULD continue
1315 * to be used"
1316 * 2. use of it with new communication:
1317 * (2a) "SHOULD NOT be used if alternate
1318 * address with sufficient scope is
1319 * available"
1320 * (2b) nothing mentioned otherwise.
1321 * Here we fall into (2b) case as we have no
1322 * choice in our source address selection - we
1323 * must obey the peer.
1324 *
1325 * The wording in RFC2462 is confusing, and
1326 * there are multiple description text for
1327 * deprecated address handling - worse, they
1328 * are not exactly the same. I believe 5.5.4
1329 * is the best one, so we follow 5.5.4.
1330 */
1331 if (af == AF_INET6 && !ip6_use_deprecated) {
1332 struct in6_ifaddr *ia6;
1333 if ((ia6 = in6ifa_ifpwithaddr(m->m_pkthdr.rcvif,
1334 &ip6->ip6_dst)) &&
1335 (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1336 tp = NULL;
1337 goto dropwithreset;
1338 }
1339 }
1340 #endif
1341
1342 /*
1343 * LISTEN socket received a SYN
1344 * from itself? This can't possibly
1345 * be valid; drop the packet.
1346 */
1347 if (th->th_sport == th->th_dport) {
1348 int i;
1349
1350 switch (af) {
1351 #ifdef INET
1352 case AF_INET:
1353 i = in_hosteq(ip->ip_src, ip->ip_dst);
1354 break;
1355 #endif
1356 #ifdef INET6
1357 case AF_INET6:
1358 i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
1359 break;
1360 #endif
1361 default:
1362 i = 1;
1363 }
1364 if (i) {
1365 tcpstat.tcps_badsyn++;
1366 goto drop;
1367 }
1368 }
1369
1370 /*
1371 * SYN looks ok; create compressed TCP
1372 * state for it.
1373 */
1374 if (so->so_qlen <= so->so_qlimit &&
1375 syn_cache_add(&src.sa, &dst.sa, th, tlen,
1376 so, m, optp, optlen, &opti))
1377 m = NULL;
1378 }
1379 goto drop;
1380 }
1381 }
1382
1383 after_listen:
1384 #ifdef DIAGNOSTIC
1385 /*
1386 * Should not happen now that all embryonic connections
1387 * are handled with compressed state.
1388 */
1389 if (tp->t_state == TCPS_LISTEN)
1390 panic("tcp_input: TCPS_LISTEN");
1391 #endif
1392
1393 /*
1394 * Segment received on connection.
1395 * Reset idle time and keep-alive timer.
1396 */
1397 tp->t_rcvtime = tcp_now;
1398 if (TCPS_HAVEESTABLISHED(tp->t_state))
1399 TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1400
1401 /*
1402 * Process options.
1403 */
1404 if (optp)
1405 tcp_dooptions(tp, optp, optlen, th, &opti);
1406
1407 /*
1408 * Header prediction: check for the two common cases
1409 * of a uni-directional data xfer. If the packet has
1410 * no control flags, is in-sequence, the window didn't
1411 * change and we're not retransmitting, it's a
1412 * candidate. If the length is zero and the ack moved
1413 * forward, we're the sender side of the xfer. Just
1414 * free the data acked & wake any higher level process
1415 * that was blocked waiting for space. If the length
1416 * is non-zero and the ack didn't move, we're the
1417 * receiver side. If we're getting packets in-order
1418 * (the reassembly queue is empty), add the data to
1419 * the socket buffer and note that we need a delayed ack.
1420 */
1421 if (tp->t_state == TCPS_ESTABLISHED &&
1422 (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1423 (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
1424 th->th_seq == tp->rcv_nxt &&
1425 tiwin && tiwin == tp->snd_wnd &&
1426 tp->snd_nxt == tp->snd_max) {
1427
1428 /*
1429 * If last ACK falls within this segment's sequence numbers,
1430 * record the timestamp.
1431 */
1432 if (opti.ts_present &&
1433 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1434 SEQ_LT(tp->last_ack_sent, th->th_seq + tlen)) {
1435 tp->ts_recent_age = TCP_TIMESTAMP(tp);
1436 tp->ts_recent = opti.ts_val;
1437 }
1438
1439 if (tlen == 0) {
1440 if (SEQ_GT(th->th_ack, tp->snd_una) &&
1441 SEQ_LEQ(th->th_ack, tp->snd_max) &&
1442 tp->snd_cwnd >= tp->snd_wnd &&
1443 tp->t_dupacks < tcprexmtthresh) {
1444 /*
1445 * this is a pure ack for outstanding data.
1446 */
1447 ++tcpstat.tcps_predack;
1448 if (opti.ts_present && opti.ts_ecr)
1449 tcp_xmit_timer(tp,
1450 TCP_TIMESTAMP(tp) - opti.ts_ecr + 1);
1451 else if (tp->t_rtttime &&
1452 SEQ_GT(th->th_ack, tp->t_rtseq))
1453 tcp_xmit_timer(tp,
1454 tcp_now - tp->t_rtttime);
1455 acked = th->th_ack - tp->snd_una;
1456 tcpstat.tcps_rcvackpack++;
1457 tcpstat.tcps_rcvackbyte += acked;
1458 ND6_HINT(tp);
1459 sbdrop(&so->so_snd, acked);
1460 /*
1461 * We want snd_recover to track snd_una to
1462 * avoid sequence wraparound problems for
1463 * very large transfers.
1464 */
1465 tp->snd_una = tp->snd_recover = th->th_ack;
1466 m_freem(m);
1467
1468 /*
1469 * If all outstanding data are acked, stop
1470 * retransmit timer, otherwise restart timer
1471 * using current (possibly backed-off) value.
1472 * If process is waiting for space,
1473 * wakeup/selwakeup/signal. If data
1474 * are ready to send, let tcp_output
1475 * decide between more output or persist.
1476 */
1477 if (tp->snd_una == tp->snd_max)
1478 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1479 else if (TCP_TIMER_ISARMED(tp,
1480 TCPT_PERSIST) == 0)
1481 TCP_TIMER_ARM(tp, TCPT_REXMT,
1482 tp->t_rxtcur);
1483
1484 sowwakeup(so);
1485 if (so->so_snd.sb_cc)
1486 (void) tcp_output(tp);
1487 if (tcp_saveti)
1488 m_freem(tcp_saveti);
1489 return;
1490 }
1491 } else if (th->th_ack == tp->snd_una &&
1492 TAILQ_FIRST(&tp->segq) == NULL &&
1493 tlen <= sbspace(&so->so_rcv)) {
1494 /*
1495 * this is a pure, in-sequence data packet
1496 * with nothing on the reassembly queue and
1497 * we have enough buffer space to take it.
1498 */
1499 ++tcpstat.tcps_preddat;
1500 tp->rcv_nxt += tlen;
1501 tcpstat.tcps_rcvpack++;
1502 tcpstat.tcps_rcvbyte += tlen;
1503 ND6_HINT(tp);
1504 /*
1505 * Drop TCP, IP headers and TCP options then add data
1506 * to socket buffer.
1507 */
1508 if (so->so_state & SS_CANTRCVMORE)
1509 m_freem(m);
1510 else {
1511 m_adj(m, toff + off);
1512 sbappendstream(&so->so_rcv, m);
1513 }
1514 sorwakeup(so);
1515 TCP_SETUP_ACK(tp, th);
1516 if (tp->t_flags & TF_ACKNOW)
1517 (void) tcp_output(tp);
1518 if (tcp_saveti)
1519 m_freem(tcp_saveti);
1520 return;
1521 }
1522 }
1523
1524 /*
1525 * Compute mbuf offset to TCP data segment.
1526 */
1527 hdroptlen = toff + off;
1528
1529 /*
1530 * Calculate amount of space in receive window,
1531 * and then do TCP input processing.
1532 * Receive window is amount of space in rcv queue,
1533 * but not less than advertised window.
1534 */
1535 { int win;
1536
1537 win = sbspace(&so->so_rcv);
1538 if (win < 0)
1539 win = 0;
1540 tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1541 }
1542
1543 switch (tp->t_state) {
1544 case TCPS_LISTEN:
1545 /*
1546 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
1547 */
1548 if (m->m_flags & (M_BCAST|M_MCAST))
1549 goto drop;
1550 switch (af) {
1551 #ifdef INET6
1552 case AF_INET6:
1553 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
1554 goto drop;
1555 break;
1556 #endif /* INET6 */
1557 case AF_INET:
1558 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
1559 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
1560 goto drop;
1561 break;
1562 }
1563 break;
1564
1565 /*
1566 * If the state is SYN_SENT:
1567 * if seg contains an ACK, but not for our SYN, drop the input.
1568 * if seg contains a RST, then drop the connection.
1569 * if seg does not contain SYN, then drop it.
1570 * Otherwise this is an acceptable SYN segment
1571 * initialize tp->rcv_nxt and tp->irs
1572 * if seg contains ack then advance tp->snd_una
1573 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1574 * arrange for segment to be acked (eventually)
1575 * continue processing rest of data/controls, beginning with URG
1576 */
1577 case TCPS_SYN_SENT:
1578 if ((tiflags & TH_ACK) &&
1579 (SEQ_LEQ(th->th_ack, tp->iss) ||
1580 SEQ_GT(th->th_ack, tp->snd_max)))
1581 goto dropwithreset;
1582 if (tiflags & TH_RST) {
1583 if (tiflags & TH_ACK)
1584 tp = tcp_drop(tp, ECONNREFUSED);
1585 goto drop;
1586 }
1587 if ((tiflags & TH_SYN) == 0)
1588 goto drop;
1589 if (tiflags & TH_ACK) {
1590 tp->snd_una = tp->snd_recover = th->th_ack;
1591 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1592 tp->snd_nxt = tp->snd_una;
1593 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1594 }
1595 tp->irs = th->th_seq;
1596 tcp_rcvseqinit(tp);
1597 tp->t_flags |= TF_ACKNOW;
1598 tcp_mss_from_peer(tp, opti.maxseg);
1599
1600 /*
1601 * Initialize the initial congestion window. If we
1602 * had to retransmit the SYN, we must initialize cwnd
1603 * to 1 segment (i.e. the Loss Window).
1604 */
1605 if (tp->t_flags & TF_SYN_REXMT)
1606 tp->snd_cwnd = tp->t_peermss;
1607 else {
1608 int ss = tcp_init_win;
1609 #ifdef INET
1610 if (inp != NULL && in_localaddr(inp->inp_faddr))
1611 ss = tcp_init_win_local;
1612 #endif
1613 #ifdef INET6
1614 if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
1615 ss = tcp_init_win_local;
1616 #endif
1617 tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
1618 }
1619
1620 tcp_rmx_rtt(tp);
1621 if (tiflags & TH_ACK) {
1622 tcpstat.tcps_connects++;
1623 soisconnected(so);
1624 tcp_established(tp);
1625 /* Do window scaling on this connection? */
1626 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1627 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1628 tp->snd_scale = tp->requested_s_scale;
1629 tp->rcv_scale = tp->request_r_scale;
1630 }
1631 TCP_REASS_LOCK(tp);
1632 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1633 TCP_REASS_UNLOCK(tp);
1634 /*
1635 * if we didn't have to retransmit the SYN,
1636 * use its rtt as our initial srtt & rtt var.
1637 */
1638 if (tp->t_rtttime)
1639 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
1640 } else
1641 tp->t_state = TCPS_SYN_RECEIVED;
1642
1643 /*
1644 * Advance th->th_seq to correspond to first data byte.
1645 * If data, trim to stay within window,
1646 * dropping FIN if necessary.
1647 */
1648 th->th_seq++;
1649 if (tlen > tp->rcv_wnd) {
1650 todrop = tlen - tp->rcv_wnd;
1651 m_adj(m, -todrop);
1652 tlen = tp->rcv_wnd;
1653 tiflags &= ~TH_FIN;
1654 tcpstat.tcps_rcvpackafterwin++;
1655 tcpstat.tcps_rcvbyteafterwin += todrop;
1656 }
1657 tp->snd_wl1 = th->th_seq - 1;
1658 tp->rcv_up = th->th_seq;
1659 goto step6;
1660
1661 /*
1662 * If the state is SYN_RECEIVED:
1663 * If seg contains an ACK, but not for our SYN, drop the input
1664 * and generate an RST. See page 36, rfc793
1665 */
1666 case TCPS_SYN_RECEIVED:
1667 if ((tiflags & TH_ACK) &&
1668 (SEQ_LEQ(th->th_ack, tp->iss) ||
1669 SEQ_GT(th->th_ack, tp->snd_max)))
1670 goto dropwithreset;
1671 break;
1672 }
1673
1674 /*
1675 * States other than LISTEN or SYN_SENT.
1676 * First check timestamp, if present.
1677 * Then check that at least some bytes of segment are within
1678 * receive window. If segment begins before rcv_nxt,
1679 * drop leading data (and SYN); if nothing left, just ack.
1680 *
1681 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1682 * and it's less than ts_recent, drop it.
1683 */
1684 if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
1685 TSTMP_LT(opti.ts_val, tp->ts_recent)) {
1686
1687 /* Check to see if ts_recent is over 24 days old. */
1688 if ((int)(TCP_TIMESTAMP(tp) - tp->ts_recent_age) >
1689 TCP_PAWS_IDLE) {
1690 /*
1691 * Invalidate ts_recent. If this segment updates
1692 * ts_recent, the age will be reset later and ts_recent
1693 * will get a valid value. If it does not, setting
1694 * ts_recent to zero will at least satisfy the
1695 * requirement that zero be placed in the timestamp
1696 * echo reply when ts_recent isn't valid. The
1697 * age isn't reset until we get a valid ts_recent
1698 * because we don't want out-of-order segments to be
1699 * dropped when ts_recent is old.
1700 */
1701 tp->ts_recent = 0;
1702 } else {
1703 tcpstat.tcps_rcvduppack++;
1704 tcpstat.tcps_rcvdupbyte += tlen;
1705 tcpstat.tcps_pawsdrop++;
1706 goto dropafterack;
1707 }
1708 }
1709
1710 todrop = tp->rcv_nxt - th->th_seq;
1711 if (todrop > 0) {
1712 if (tiflags & TH_SYN) {
1713 tiflags &= ~TH_SYN;
1714 th->th_seq++;
1715 if (th->th_urp > 1)
1716 th->th_urp--;
1717 else {
1718 tiflags &= ~TH_URG;
1719 th->th_urp = 0;
1720 }
1721 todrop--;
1722 }
1723 if (todrop > tlen ||
1724 (todrop == tlen && (tiflags & TH_FIN) == 0)) {
1725 /*
1726 * Any valid FIN must be to the left of the window.
1727 * At this point the FIN must be a duplicate or
1728 * out of sequence; drop it.
1729 */
1730 tiflags &= ~TH_FIN;
1731 /*
1732 * Send an ACK to resynchronize and drop any data.
1733 * But keep on processing for RST or ACK.
1734 */
1735 tp->t_flags |= TF_ACKNOW;
1736 todrop = tlen;
1737 tcpstat.tcps_rcvdupbyte += todrop;
1738 tcpstat.tcps_rcvduppack++;
1739 } else {
1740 tcpstat.tcps_rcvpartduppack++;
1741 tcpstat.tcps_rcvpartdupbyte += todrop;
1742 }
1743 hdroptlen += todrop; /*drop from head afterwards*/
1744 th->th_seq += todrop;
1745 tlen -= todrop;
1746 if (th->th_urp > todrop)
1747 th->th_urp -= todrop;
1748 else {
1749 tiflags &= ~TH_URG;
1750 th->th_urp = 0;
1751 }
1752 }
1753
1754 /*
1755 * If new data are received on a connection after the
1756 * user processes are gone, then RST the other end.
1757 */
1758 if ((so->so_state & SS_NOFDREF) &&
1759 tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1760 tp = tcp_close(tp);
1761 tcpstat.tcps_rcvafterclose++;
1762 goto dropwithreset;
1763 }
1764
1765 /*
1766 * If segment ends after window, drop trailing data
1767 * (and PUSH and FIN); if nothing left, just ACK.
1768 */
1769 todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
1770 if (todrop > 0) {
1771 tcpstat.tcps_rcvpackafterwin++;
1772 if (todrop >= tlen) {
1773 tcpstat.tcps_rcvbyteafterwin += tlen;
1774 /*
1775 * If a new connection request is received
1776 * while in TIME_WAIT, drop the old connection
1777 * and start over if the sequence numbers
1778 * are above the previous ones.
1779 *
1780 * NOTE: We will checksum the packet again, and
1781 * so we need to put the header fields back into
1782 * network order!
1783 * XXX This kind of sucks, but we don't expect
1784 * XXX this to happen very often, so maybe it
1785 * XXX doesn't matter so much.
1786 */
1787 if (tiflags & TH_SYN &&
1788 tp->t_state == TCPS_TIME_WAIT &&
1789 SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1790 iss = tcp_new_iss(tp, tp->snd_nxt);
1791 tp = tcp_close(tp);
1792 TCP_FIELDS_TO_NET(th);
1793 goto findpcb;
1794 }
1795 /*
1796 * If window is closed can only take segments at
1797 * window edge, and have to drop data and PUSH from
1798 * incoming segments. Continue processing, but
1799 * remember to ack. Otherwise, drop segment
1800 * and ack.
1801 */
1802 if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1803 tp->t_flags |= TF_ACKNOW;
1804 tcpstat.tcps_rcvwinprobe++;
1805 } else
1806 goto dropafterack;
1807 } else
1808 tcpstat.tcps_rcvbyteafterwin += todrop;
1809 m_adj(m, -todrop);
1810 tlen -= todrop;
1811 tiflags &= ~(TH_PUSH|TH_FIN);
1812 }
1813
1814 /*
1815 * If last ACK falls within this segment's sequence numbers,
1816 * and the timestamp is newer, record it.
1817 */
1818 if (opti.ts_present && TSTMP_GEQ(opti.ts_val, tp->ts_recent) &&
1819 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1820 SEQ_LT(tp->last_ack_sent, th->th_seq + tlen +
1821 ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
1822 tp->ts_recent_age = TCP_TIMESTAMP(tp);
1823 tp->ts_recent = opti.ts_val;
1824 }
1825
1826 /*
1827 * If the RST bit is set examine the state:
1828 * SYN_RECEIVED STATE:
1829 * If passive open, return to LISTEN state.
1830 * If active open, inform user that connection was refused.
1831 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
1832 * Inform user that connection was reset, and close tcb.
1833 * CLOSING, LAST_ACK, TIME_WAIT STATES
1834 * Close the tcb.
1835 */
1836 if (tiflags&TH_RST) switch (tp->t_state) {
1837
1838 case TCPS_SYN_RECEIVED:
1839 so->so_error = ECONNREFUSED;
1840 goto close;
1841
1842 case TCPS_ESTABLISHED:
1843 case TCPS_FIN_WAIT_1:
1844 case TCPS_FIN_WAIT_2:
1845 case TCPS_CLOSE_WAIT:
1846 so->so_error = ECONNRESET;
1847 close:
1848 tp->t_state = TCPS_CLOSED;
1849 tcpstat.tcps_drops++;
1850 tp = tcp_close(tp);
1851 goto drop;
1852
1853 case TCPS_CLOSING:
1854 case TCPS_LAST_ACK:
1855 case TCPS_TIME_WAIT:
1856 tp = tcp_close(tp);
1857 goto drop;
1858 }
1859
1860 /*
1861 * If a SYN is in the window, then this is an
1862 * error and we send an RST and drop the connection.
1863 */
1864 if (tiflags & TH_SYN) {
1865 tp = tcp_drop(tp, ECONNRESET);
1866 goto dropwithreset;
1867 }
1868
1869 /*
1870 * If the ACK bit is off we drop the segment and return.
1871 */
1872 if ((tiflags & TH_ACK) == 0) {
1873 if (tp->t_flags & TF_ACKNOW)
1874 goto dropafterack;
1875 else
1876 goto drop;
1877 }
1878
1879 /*
1880 * Ack processing.
1881 */
1882 switch (tp->t_state) {
1883
1884 /*
1885 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
1886 * ESTABLISHED state and continue processing, otherwise
1887 * send an RST.
1888 */
1889 case TCPS_SYN_RECEIVED:
1890 if (SEQ_GT(tp->snd_una, th->th_ack) ||
1891 SEQ_GT(th->th_ack, tp->snd_max))
1892 goto dropwithreset;
1893 tcpstat.tcps_connects++;
1894 soisconnected(so);
1895 tcp_established(tp);
1896 /* Do window scaling? */
1897 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1898 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1899 tp->snd_scale = tp->requested_s_scale;
1900 tp->rcv_scale = tp->request_r_scale;
1901 }
1902 TCP_REASS_LOCK(tp);
1903 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1904 TCP_REASS_UNLOCK(tp);
1905 tp->snd_wl1 = th->th_seq - 1;
1906 /* fall into ... */
1907
1908 /*
1909 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1910 * ACKs. If the ack is in the range
1911 * tp->snd_una < th->th_ack <= tp->snd_max
1912 * then advance tp->snd_una to th->th_ack and drop
1913 * data from the retransmission queue. If this ACK reflects
1914 * more up to date window information we update our window information.
1915 */
1916 case TCPS_ESTABLISHED:
1917 case TCPS_FIN_WAIT_1:
1918 case TCPS_FIN_WAIT_2:
1919 case TCPS_CLOSE_WAIT:
1920 case TCPS_CLOSING:
1921 case TCPS_LAST_ACK:
1922 case TCPS_TIME_WAIT:
1923
1924 if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
1925 if (tlen == 0 && tiwin == tp->snd_wnd) {
1926 tcpstat.tcps_rcvdupack++;
1927 /*
1928 * If we have outstanding data (other than
1929 * a window probe), this is a completely
1930 * duplicate ack (ie, window info didn't
1931 * change), the ack is the biggest we've
1932 * seen and we've seen exactly our rexmt
1933 * threshhold of them, assume a packet
1934 * has been dropped and retransmit it.
1935 * Kludge snd_nxt & the congestion
1936 * window so we send only this one
1937 * packet.
1938 *
1939 * We know we're losing at the current
1940 * window size so do congestion avoidance
1941 * (set ssthresh to half the current window
1942 * and pull our congestion window back to
1943 * the new ssthresh).
1944 *
1945 * Dup acks mean that packets have left the
1946 * network (they're now cached at the receiver)
1947 * so bump cwnd by the amount in the receiver
1948 * to keep a constant cwnd packets in the
1949 * network.
1950 */
1951 if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
1952 th->th_ack != tp->snd_una)
1953 tp->t_dupacks = 0;
1954 else if (++tp->t_dupacks == tcprexmtthresh) {
1955 tcp_seq onxt = tp->snd_nxt;
1956 u_int win =
1957 min(tp->snd_wnd, tp->snd_cwnd) /
1958 2 / tp->t_segsz;
1959 if (tcp_do_newreno && SEQ_LT(th->th_ack,
1960 tp->snd_recover)) {
1961 /*
1962 * False fast retransmit after
1963 * timeout. Do not cut window.
1964 */
1965 tp->snd_cwnd += tp->t_segsz;
1966 tp->t_dupacks = 0;
1967 (void) tcp_output(tp);
1968 goto drop;
1969 }
1970
1971 if (win < 2)
1972 win = 2;
1973 tp->snd_ssthresh = win * tp->t_segsz;
1974 tp->snd_recover = tp->snd_max;
1975 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1976 tp->t_rtttime = 0;
1977 tp->snd_nxt = th->th_ack;
1978 tp->snd_cwnd = tp->t_segsz;
1979 (void) tcp_output(tp);
1980 tp->snd_cwnd = tp->snd_ssthresh +
1981 tp->t_segsz * tp->t_dupacks;
1982 if (SEQ_GT(onxt, tp->snd_nxt))
1983 tp->snd_nxt = onxt;
1984 goto drop;
1985 } else if (tp->t_dupacks > tcprexmtthresh) {
1986 tp->snd_cwnd += tp->t_segsz;
1987 (void) tcp_output(tp);
1988 goto drop;
1989 }
1990 } else
1991 tp->t_dupacks = 0;
1992 break;
1993 }
1994 /*
1995 * If the congestion window was inflated to account
1996 * for the other side's cached packets, retract it.
1997 */
1998 if (tcp_do_newreno == 0) {
1999 if (tp->t_dupacks >= tcprexmtthresh &&
2000 tp->snd_cwnd > tp->snd_ssthresh)
2001 tp->snd_cwnd = tp->snd_ssthresh;
2002 tp->t_dupacks = 0;
2003 } else if (tp->t_dupacks >= tcprexmtthresh &&
2004 tcp_newreno(tp, th) == 0) {
2005 tp->snd_cwnd = tp->snd_ssthresh;
2006 /*
2007 * Window inflation should have left us with approx.
2008 * snd_ssthresh outstanding data. But in case we
2009 * would be inclined to send a burst, better to do
2010 * it via the slow start mechanism.
2011 */
2012 if (SEQ_SUB(tp->snd_max, th->th_ack) < tp->snd_ssthresh)
2013 tp->snd_cwnd = SEQ_SUB(tp->snd_max, th->th_ack)
2014 + tp->t_segsz;
2015 tp->t_dupacks = 0;
2016 }
2017 if (SEQ_GT(th->th_ack, tp->snd_max)) {
2018 tcpstat.tcps_rcvacktoomuch++;
2019 goto dropafterack;
2020 }
2021 acked = th->th_ack - tp->snd_una;
2022 tcpstat.tcps_rcvackpack++;
2023 tcpstat.tcps_rcvackbyte += acked;
2024
2025 /*
2026 * If we have a timestamp reply, update smoothed
2027 * round trip time. If no timestamp is present but
2028 * transmit timer is running and timed sequence
2029 * number was acked, update smoothed round trip time.
2030 * Since we now have an rtt measurement, cancel the
2031 * timer backoff (cf., Phil Karn's retransmit alg.).
2032 * Recompute the initial retransmit timer.
2033 */
2034 if (opti.ts_present && opti.ts_ecr)
2035 tcp_xmit_timer(tp, TCP_TIMESTAMP(tp) - opti.ts_ecr + 1);
2036 else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2037 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2038
2039 /*
2040 * If all outstanding data is acked, stop retransmit
2041 * timer and remember to restart (more output or persist).
2042 * If there is more data to be acked, restart retransmit
2043 * timer, using current (possibly backed-off) value.
2044 */
2045 if (th->th_ack == tp->snd_max) {
2046 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2047 needoutput = 1;
2048 } else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
2049 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
2050 /*
2051 * When new data is acked, open the congestion window.
2052 * If the window gives us less than ssthresh packets
2053 * in flight, open exponentially (segsz per packet).
2054 * Otherwise open linearly: segsz per window
2055 * (segsz^2 / cwnd per packet), plus a constant
2056 * fraction of a packet (segsz/8) to help larger windows
2057 * open quickly enough.
2058 */
2059 {
2060 u_int cw = tp->snd_cwnd;
2061 u_int incr = tp->t_segsz;
2062
2063 if (cw > tp->snd_ssthresh)
2064 incr = incr * incr / cw;
2065 if (tcp_do_newreno == 0 || SEQ_GEQ(th->th_ack, tp->snd_recover))
2066 tp->snd_cwnd = min(cw + incr,
2067 TCP_MAXWIN << tp->snd_scale);
2068 }
2069 ND6_HINT(tp);
2070 if (acked > so->so_snd.sb_cc) {
2071 tp->snd_wnd -= so->so_snd.sb_cc;
2072 sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
2073 ourfinisacked = 1;
2074 } else {
2075 sbdrop(&so->so_snd, acked);
2076 tp->snd_wnd -= acked;
2077 ourfinisacked = 0;
2078 }
2079 sowwakeup(so);
2080 /*
2081 * We want snd_recover to track snd_una to
2082 * avoid sequence wraparound problems for
2083 * very large transfers.
2084 */
2085 tp->snd_una = tp->snd_recover = th->th_ack;
2086 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2087 tp->snd_nxt = tp->snd_una;
2088
2089 switch (tp->t_state) {
2090
2091 /*
2092 * In FIN_WAIT_1 STATE in addition to the processing
2093 * for the ESTABLISHED state if our FIN is now acknowledged
2094 * then enter FIN_WAIT_2.
2095 */
2096 case TCPS_FIN_WAIT_1:
2097 if (ourfinisacked) {
2098 /*
2099 * If we can't receive any more
2100 * data, then closing user can proceed.
2101 * Starting the timer is contrary to the
2102 * specification, but if we don't get a FIN
2103 * we'll hang forever.
2104 */
2105 if (so->so_state & SS_CANTRCVMORE) {
2106 soisdisconnected(so);
2107 if (tcp_maxidle > 0)
2108 TCP_TIMER_ARM(tp, TCPT_2MSL,
2109 tcp_maxidle);
2110 }
2111 tp->t_state = TCPS_FIN_WAIT_2;
2112 }
2113 break;
2114
2115 /*
2116 * In CLOSING STATE in addition to the processing for
2117 * the ESTABLISHED state if the ACK acknowledges our FIN
2118 * then enter the TIME-WAIT state, otherwise ignore
2119 * the segment.
2120 */
2121 case TCPS_CLOSING:
2122 if (ourfinisacked) {
2123 tp->t_state = TCPS_TIME_WAIT;
2124 tcp_canceltimers(tp);
2125 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2126 soisdisconnected(so);
2127 }
2128 break;
2129
2130 /*
2131 * In LAST_ACK, we may still be waiting for data to drain
2132 * and/or to be acked, as well as for the ack of our FIN.
2133 * If our FIN is now acknowledged, delete the TCB,
2134 * enter the closed state and return.
2135 */
2136 case TCPS_LAST_ACK:
2137 if (ourfinisacked) {
2138 tp = tcp_close(tp);
2139 goto drop;
2140 }
2141 break;
2142
2143 /*
2144 * In TIME_WAIT state the only thing that should arrive
2145 * is a retransmission of the remote FIN. Acknowledge
2146 * it and restart the finack timer.
2147 */
2148 case TCPS_TIME_WAIT:
2149 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2150 goto dropafterack;
2151 }
2152 }
2153
2154 step6:
2155 /*
2156 * Update window information.
2157 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2158 */
2159 if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2160 (tp->snd_wl1 == th->th_seq && SEQ_LT(tp->snd_wl2, th->th_ack)) ||
2161 (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))) {
2162 /* keep track of pure window updates */
2163 if (tlen == 0 &&
2164 tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2165 tcpstat.tcps_rcvwinupd++;
2166 tp->snd_wnd = tiwin;
2167 tp->snd_wl1 = th->th_seq;
2168 tp->snd_wl2 = th->th_ack;
2169 if (tp->snd_wnd > tp->max_sndwnd)
2170 tp->max_sndwnd = tp->snd_wnd;
2171 needoutput = 1;
2172 }
2173
2174 /*
2175 * Process segments with URG.
2176 */
2177 if ((tiflags & TH_URG) && th->th_urp &&
2178 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2179 /*
2180 * This is a kludge, but if we receive and accept
2181 * random urgent pointers, we'll crash in
2182 * soreceive. It's hard to imagine someone
2183 * actually wanting to send this much urgent data.
2184 */
2185 if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2186 th->th_urp = 0; /* XXX */
2187 tiflags &= ~TH_URG; /* XXX */
2188 goto dodata; /* XXX */
2189 }
2190 /*
2191 * If this segment advances the known urgent pointer,
2192 * then mark the data stream. This should not happen
2193 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2194 * a FIN has been received from the remote side.
2195 * In these states we ignore the URG.
2196 *
2197 * According to RFC961 (Assigned Protocols),
2198 * the urgent pointer points to the last octet
2199 * of urgent data. We continue, however,
2200 * to consider it to indicate the first octet
2201 * of data past the urgent section as the original
2202 * spec states (in one of two places).
2203 */
2204 if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2205 tp->rcv_up = th->th_seq + th->th_urp;
2206 so->so_oobmark = so->so_rcv.sb_cc +
2207 (tp->rcv_up - tp->rcv_nxt) - 1;
2208 if (so->so_oobmark == 0)
2209 so->so_state |= SS_RCVATMARK;
2210 sohasoutofband(so);
2211 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2212 }
2213 /*
2214 * Remove out of band data so doesn't get presented to user.
2215 * This can happen independent of advancing the URG pointer,
2216 * but if two URG's are pending at once, some out-of-band
2217 * data may creep in... ick.
2218 */
2219 if (th->th_urp <= (u_int16_t) tlen
2220 #ifdef SO_OOBINLINE
2221 && (so->so_options & SO_OOBINLINE) == 0
2222 #endif
2223 )
2224 tcp_pulloutofband(so, th, m, hdroptlen);
2225 } else
2226 /*
2227 * If no out of band data is expected,
2228 * pull receive urgent pointer along
2229 * with the receive window.
2230 */
2231 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2232 tp->rcv_up = tp->rcv_nxt;
2233 dodata: /* XXX */
2234
2235 /*
2236 * Process the segment text, merging it into the TCP sequencing queue,
2237 * and arranging for acknowledgement of receipt if necessary.
2238 * This process logically involves adjusting tp->rcv_wnd as data
2239 * is presented to the user (this happens in tcp_usrreq.c,
2240 * case PRU_RCVD). If a FIN has already been received on this
2241 * connection then we just ignore the text.
2242 */
2243 if ((tlen || (tiflags & TH_FIN)) &&
2244 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2245 /*
2246 * Insert segment ti into reassembly queue of tcp with
2247 * control block tp. Return TH_FIN if reassembly now includes
2248 * a segment with FIN. The macro form does the common case
2249 * inline (segment is the next to be received on an
2250 * established connection, and the queue is empty),
2251 * avoiding linkage into and removal from the queue and
2252 * repetition of various conversions.
2253 * Set DELACK for segments received in order, but ack
2254 * immediately when segments are out of order
2255 * (so fast retransmit can work).
2256 */
2257 /* NOTE: this was TCP_REASS() macro, but used only once */
2258 TCP_REASS_LOCK(tp);
2259 if (th->th_seq == tp->rcv_nxt &&
2260 TAILQ_FIRST(&tp->segq) == NULL &&
2261 tp->t_state == TCPS_ESTABLISHED) {
2262 TCP_SETUP_ACK(tp, th);
2263 tp->rcv_nxt += tlen;
2264 tiflags = th->th_flags & TH_FIN;
2265 tcpstat.tcps_rcvpack++;
2266 tcpstat.tcps_rcvbyte += tlen;
2267 ND6_HINT(tp);
2268 if (so->so_state & SS_CANTRCVMORE)
2269 m_freem(m);
2270 else {
2271 m_adj(m, hdroptlen);
2272 sbappendstream(&(so)->so_rcv, m);
2273 }
2274 sorwakeup(so);
2275 } else {
2276 m_adj(m, hdroptlen);
2277 tiflags = tcp_reass(tp, th, m, &tlen);
2278 tp->t_flags |= TF_ACKNOW;
2279 }
2280 TCP_REASS_UNLOCK(tp);
2281
2282 /*
2283 * Note the amount of data that peer has sent into
2284 * our window, in order to estimate the sender's
2285 * buffer size.
2286 */
2287 len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2288 } else {
2289 m_freem(m);
2290 m = NULL;
2291 tiflags &= ~TH_FIN;
2292 }
2293
2294 /*
2295 * If FIN is received ACK the FIN and let the user know
2296 * that the connection is closing. Ignore a FIN received before
2297 * the connection is fully established.
2298 */
2299 if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2300 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2301 socantrcvmore(so);
2302 tp->t_flags |= TF_ACKNOW;
2303 tp->rcv_nxt++;
2304 }
2305 switch (tp->t_state) {
2306
2307 /*
2308 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2309 */
2310 case TCPS_ESTABLISHED:
2311 tp->t_state = TCPS_CLOSE_WAIT;
2312 break;
2313
2314 /*
2315 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2316 * enter the CLOSING state.
2317 */
2318 case TCPS_FIN_WAIT_1:
2319 tp->t_state = TCPS_CLOSING;
2320 break;
2321
2322 /*
2323 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2324 * starting the time-wait timer, turning off the other
2325 * standard timers.
2326 */
2327 case TCPS_FIN_WAIT_2:
2328 tp->t_state = TCPS_TIME_WAIT;
2329 tcp_canceltimers(tp);
2330 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2331 soisdisconnected(so);
2332 break;
2333
2334 /*
2335 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2336 */
2337 case TCPS_TIME_WAIT:
2338 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2339 break;
2340 }
2341 }
2342 #ifdef TCP_DEBUG
2343 if (so->so_options & SO_DEBUG)
2344 tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
2345 #endif
2346
2347 /*
2348 * Return any desired output.
2349 */
2350 if (needoutput || (tp->t_flags & TF_ACKNOW))
2351 (void) tcp_output(tp);
2352 if (tcp_saveti)
2353 m_freem(tcp_saveti);
2354 return;
2355
2356 badsyn:
2357 /*
2358 * Received a bad SYN. Increment counters and dropwithreset.
2359 */
2360 tcpstat.tcps_badsyn++;
2361 tp = NULL;
2362 goto dropwithreset;
2363
2364 dropafterack:
2365 /*
2366 * Generate an ACK dropping incoming segment if it occupies
2367 * sequence space, where the ACK reflects our state.
2368 */
2369 if (tiflags & TH_RST)
2370 goto drop;
2371 m_freem(m);
2372 tp->t_flags |= TF_ACKNOW;
2373 (void) tcp_output(tp);
2374 if (tcp_saveti)
2375 m_freem(tcp_saveti);
2376 return;
2377
2378 dropwithreset_ratelim:
2379 /*
2380 * We may want to rate-limit RSTs in certain situations,
2381 * particularly if we are sending an RST in response to
2382 * an attempt to connect to or otherwise communicate with
2383 * a port for which we have no socket.
2384 */
2385 if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
2386 tcp_rst_ppslim) == 0) {
2387 /* XXX stat */
2388 goto drop;
2389 }
2390 /* ...fall into dropwithreset... */
2391
2392 dropwithreset:
2393 /*
2394 * Generate a RST, dropping incoming segment.
2395 * Make ACK acceptable to originator of segment.
2396 */
2397 if (tiflags & TH_RST)
2398 goto drop;
2399
2400 switch (af) {
2401 #ifdef INET6
2402 case AF_INET6:
2403 /* For following calls to tcp_respond */
2404 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
2405 goto drop;
2406 break;
2407 #endif /* INET6 */
2408 case AF_INET:
2409 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
2410 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2411 goto drop;
2412 }
2413
2414 if (tiflags & TH_ACK)
2415 (void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
2416 else {
2417 if (tiflags & TH_SYN)
2418 tlen++;
2419 (void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
2420 TH_RST|TH_ACK);
2421 }
2422 if (tcp_saveti)
2423 m_freem(tcp_saveti);
2424 return;
2425
2426 badcsum:
2427 tcpstat.tcps_rcvbadsum++;
2428 drop:
2429 /*
2430 * Drop space held by incoming segment and return.
2431 */
2432 if (tp) {
2433 if (tp->t_inpcb)
2434 so = tp->t_inpcb->inp_socket;
2435 #ifdef INET6
2436 else if (tp->t_in6pcb)
2437 so = tp->t_in6pcb->in6p_socket;
2438 #endif
2439 else
2440 so = NULL;
2441 #ifdef TCP_DEBUG
2442 if (so && (so->so_options & SO_DEBUG) != 0)
2443 tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
2444 #endif
2445 }
2446 if (tcp_saveti)
2447 m_freem(tcp_saveti);
2448 m_freem(m);
2449 return;
2450 }
2451
2452 void
2453 tcp_dooptions(tp, cp, cnt, th, oi)
2454 struct tcpcb *tp;
2455 u_char *cp;
2456 int cnt;
2457 struct tcphdr *th;
2458 struct tcp_opt_info *oi;
2459 {
2460 u_int16_t mss;
2461 int opt, optlen;
2462
2463 for (; cnt > 0; cnt -= optlen, cp += optlen) {
2464 opt = cp[0];
2465 if (opt == TCPOPT_EOL)
2466 break;
2467 if (opt == TCPOPT_NOP)
2468 optlen = 1;
2469 else {
2470 if (cnt < 2)
2471 break;
2472 optlen = cp[1];
2473 if (optlen < 2 || optlen > cnt)
2474 break;
2475 }
2476 switch (opt) {
2477
2478 default:
2479 continue;
2480
2481 case TCPOPT_MAXSEG:
2482 if (optlen != TCPOLEN_MAXSEG)
2483 continue;
2484 if (!(th->th_flags & TH_SYN))
2485 continue;
2486 bcopy(cp + 2, &mss, sizeof(mss));
2487 oi->maxseg = ntohs(mss);
2488 break;
2489
2490 case TCPOPT_WINDOW:
2491 if (optlen != TCPOLEN_WINDOW)
2492 continue;
2493 if (!(th->th_flags & TH_SYN))
2494 continue;
2495 tp->t_flags |= TF_RCVD_SCALE;
2496 tp->requested_s_scale = cp[2];
2497 if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
2498 #if 0 /*XXX*/
2499 char *p;
2500
2501 if (ip)
2502 p = ntohl(ip->ip_src);
2503 #ifdef INET6
2504 else if (ip6)
2505 p = ip6_sprintf(&ip6->ip6_src);
2506 #endif
2507 else
2508 p = "(unknown)";
2509 log(LOG_ERR, "TCP: invalid wscale %d from %s, "
2510 "assuming %d\n",
2511 tp->requested_s_scale, p,
2512 TCP_MAX_WINSHIFT);
2513 #else
2514 log(LOG_ERR, "TCP: invalid wscale %d, "
2515 "assuming %d\n",
2516 tp->requested_s_scale,
2517 TCP_MAX_WINSHIFT);
2518 #endif
2519 tp->requested_s_scale = TCP_MAX_WINSHIFT;
2520 }
2521 break;
2522
2523 case TCPOPT_TIMESTAMP:
2524 if (optlen != TCPOLEN_TIMESTAMP)
2525 continue;
2526 oi->ts_present = 1;
2527 bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
2528 NTOHL(oi->ts_val);
2529 bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
2530 NTOHL(oi->ts_ecr);
2531
2532 /*
2533 * A timestamp received in a SYN makes
2534 * it ok to send timestamp requests and replies.
2535 */
2536 if (th->th_flags & TH_SYN) {
2537 tp->t_flags |= TF_RCVD_TSTMP;
2538 tp->ts_recent = oi->ts_val;
2539 tp->ts_recent_age = TCP_TIMESTAMP(tp);
2540 }
2541 break;
2542 case TCPOPT_SACK_PERMITTED:
2543 if (optlen != TCPOLEN_SACK_PERMITTED)
2544 continue;
2545 if (!(th->th_flags & TH_SYN))
2546 continue;
2547 tp->t_flags &= ~TF_CANT_TXSACK;
2548 break;
2549
2550 case TCPOPT_SACK:
2551 if (tp->t_flags & TF_IGNR_RXSACK)
2552 continue;
2553 if (optlen % 8 != 2 || optlen < 10)
2554 continue;
2555 cp += 2;
2556 optlen -= 2;
2557 for (; optlen > 0; cp -= 8, optlen -= 8) {
2558 tcp_seq lwe, rwe;
2559 bcopy((char *)cp, (char *) &lwe, sizeof(lwe));
2560 NTOHL(lwe);
2561 bcopy((char *)cp, (char *) &rwe, sizeof(rwe));
2562 NTOHL(rwe);
2563 /* tcp_mark_sacked(tp, lwe, rwe); */
2564 }
2565 break;
2566 }
2567 }
2568 }
2569
2570 /*
2571 * Pull out of band byte out of a segment so
2572 * it doesn't appear in the user's data queue.
2573 * It is still reflected in the segment length for
2574 * sequencing purposes.
2575 */
2576 void
2577 tcp_pulloutofband(so, th, m, off)
2578 struct socket *so;
2579 struct tcphdr *th;
2580 struct mbuf *m;
2581 int off;
2582 {
2583 int cnt = off + th->th_urp - 1;
2584
2585 while (cnt >= 0) {
2586 if (m->m_len > cnt) {
2587 char *cp = mtod(m, caddr_t) + cnt;
2588 struct tcpcb *tp = sototcpcb(so);
2589
2590 tp->t_iobc = *cp;
2591 tp->t_oobflags |= TCPOOB_HAVEDATA;
2592 bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
2593 m->m_len--;
2594 return;
2595 }
2596 cnt -= m->m_len;
2597 m = m->m_next;
2598 if (m == 0)
2599 break;
2600 }
2601 panic("tcp_pulloutofband");
2602 }
2603
2604 /*
2605 * Collect new round-trip time estimate
2606 * and update averages and current timeout.
2607 */
2608 void
2609 tcp_xmit_timer(tp, rtt)
2610 struct tcpcb *tp;
2611 uint32_t rtt;
2612 {
2613 int32_t delta;
2614
2615 tcpstat.tcps_rttupdated++;
2616 if (tp->t_srtt != 0) {
2617 /*
2618 * srtt is stored as fixed point with 3 bits after the
2619 * binary point (i.e., scaled by 8). The following magic
2620 * is equivalent to the smoothing algorithm in rfc793 with
2621 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2622 * point). Adjust rtt to origin 0.
2623 */
2624 delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
2625 if ((tp->t_srtt += delta) <= 0)
2626 tp->t_srtt = 1 << 2;
2627 /*
2628 * We accumulate a smoothed rtt variance (actually, a
2629 * smoothed mean difference), then set the retransmit
2630 * timer to smoothed rtt + 4 times the smoothed variance.
2631 * rttvar is stored as fixed point with 2 bits after the
2632 * binary point (scaled by 4). The following is
2633 * equivalent to rfc793 smoothing with an alpha of .75
2634 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces
2635 * rfc793's wired-in beta.
2636 */
2637 if (delta < 0)
2638 delta = -delta;
2639 delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
2640 if ((tp->t_rttvar += delta) <= 0)
2641 tp->t_rttvar = 1 << 2;
2642 } else {
2643 /*
2644 * No rtt measurement yet - use the unsmoothed rtt.
2645 * Set the variance to half the rtt (so our first
2646 * retransmit happens at 3*rtt).
2647 */
2648 tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
2649 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
2650 }
2651 tp->t_rtttime = 0;
2652 tp->t_rxtshift = 0;
2653
2654 /*
2655 * the retransmit should happen at rtt + 4 * rttvar.
2656 * Because of the way we do the smoothing, srtt and rttvar
2657 * will each average +1/2 tick of bias. When we compute
2658 * the retransmit timer, we want 1/2 tick of rounding and
2659 * 1 extra tick because of +-1/2 tick uncertainty in the
2660 * firing of the timer. The bias will give us exactly the
2661 * 1.5 tick we need. But, because the bias is
2662 * statistical, we have to test that we don't drop below
2663 * the minimum feasible timer (which is 2 ticks).
2664 */
2665 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
2666 max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
2667
2668 /*
2669 * We received an ack for a packet that wasn't retransmitted;
2670 * it is probably safe to discard any error indications we've
2671 * received recently. This isn't quite right, but close enough
2672 * for now (a route might have failed after we sent a segment,
2673 * and the return path might not be symmetrical).
2674 */
2675 tp->t_softerror = 0;
2676 }
2677
2678 /*
2679 * Checks for partial ack. If partial ack arrives, force the retransmission
2680 * of the next unacknowledged segment, do not clear tp->t_dupacks, and return
2681 * 1. By setting snd_nxt to th_ack, this forces retransmission timer to
2682 * be started again. If the ack advances at least to tp->snd_recover, return 0.
2683 */
2684 int
2685 tcp_newreno(tp, th)
2686 struct tcpcb *tp;
2687 struct tcphdr *th;
2688 {
2689 tcp_seq onxt = tp->snd_nxt;
2690 u_long ocwnd = tp->snd_cwnd;
2691
2692 if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2693 /*
2694 * snd_una has not yet been updated and the socket's send
2695 * buffer has not yet drained off the ACK'd data, so we
2696 * have to leave snd_una as it was to get the correct data
2697 * offset in tcp_output().
2698 */
2699 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2700 tp->t_rtttime = 0;
2701 tp->snd_nxt = th->th_ack;
2702 /*
2703 * Set snd_cwnd to one segment beyond ACK'd offset. snd_una
2704 * is not yet updated when we're called.
2705 */
2706 tp->snd_cwnd = tp->t_segsz + (th->th_ack - tp->snd_una);
2707 (void) tcp_output(tp);
2708 tp->snd_cwnd = ocwnd;
2709 if (SEQ_GT(onxt, tp->snd_nxt))
2710 tp->snd_nxt = onxt;
2711 /*
2712 * Partial window deflation. Relies on fact that tp->snd_una
2713 * not updated yet.
2714 */
2715 tp->snd_cwnd -= (th->th_ack - tp->snd_una - tp->t_segsz);
2716 return 1;
2717 }
2718 return 0;
2719 }
2720
2721
2722 /*
2723 * TCP compressed state engine. Currently used to hold compressed
2724 * state for SYN_RECEIVED.
2725 */
2726
2727 u_long syn_cache_count;
2728 u_int32_t syn_hash1, syn_hash2;
2729
2730 #define SYN_HASH(sa, sp, dp) \
2731 ((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
2732 ((u_int32_t)(sp)))^syn_hash2)))
2733 #ifndef INET6
2734 #define SYN_HASHALL(hash, src, dst) \
2735 do { \
2736 hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
2737 ((struct sockaddr_in *)(src))->sin_port, \
2738 ((struct sockaddr_in *)(dst))->sin_port); \
2739 } while (/*CONSTCOND*/ 0)
2740 #else
2741 #define SYN_HASH6(sa, sp, dp) \
2742 ((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
2743 (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
2744 & 0x7fffffff)
2745
2746 #define SYN_HASHALL(hash, src, dst) \
2747 do { \
2748 switch ((src)->sa_family) { \
2749 case AF_INET: \
2750 hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
2751 ((struct sockaddr_in *)(src))->sin_port, \
2752 ((struct sockaddr_in *)(dst))->sin_port); \
2753 break; \
2754 case AF_INET6: \
2755 hash = SYN_HASH6(&((struct sockaddr_in6 *)(src))->sin6_addr, \
2756 ((struct sockaddr_in6 *)(src))->sin6_port, \
2757 ((struct sockaddr_in6 *)(dst))->sin6_port); \
2758 break; \
2759 default: \
2760 hash = 0; \
2761 } \
2762 } while (/*CONSTCOND*/0)
2763 #endif /* INET6 */
2764
2765 #define SYN_CACHE_RM(sc) \
2766 do { \
2767 TAILQ_REMOVE(&tcp_syn_cache[(sc)->sc_bucketidx].sch_bucket, \
2768 (sc), sc_bucketq); \
2769 (sc)->sc_tp = NULL; \
2770 LIST_REMOVE((sc), sc_tpq); \
2771 tcp_syn_cache[(sc)->sc_bucketidx].sch_length--; \
2772 callout_stop(&(sc)->sc_timer); \
2773 syn_cache_count--; \
2774 } while (/*CONSTCOND*/0)
2775
2776 #define SYN_CACHE_PUT(sc) \
2777 do { \
2778 if ((sc)->sc_ipopts) \
2779 (void) m_free((sc)->sc_ipopts); \
2780 if ((sc)->sc_route4.ro_rt != NULL) \
2781 RTFREE((sc)->sc_route4.ro_rt); \
2782 pool_put(&syn_cache_pool, (sc)); \
2783 } while (/*CONSTCOND*/0)
2784
2785 struct pool syn_cache_pool;
2786
2787 /*
2788 * We don't estimate RTT with SYNs, so each packet starts with the default
2789 * RTT and each timer step has a fixed timeout value.
2790 */
2791 #define SYN_CACHE_TIMER_ARM(sc) \
2792 do { \
2793 TCPT_RANGESET((sc)->sc_rxtcur, \
2794 TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN, \
2795 TCPTV_REXMTMAX); \
2796 callout_reset(&(sc)->sc_timer, \
2797 (sc)->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, (sc)); \
2798 } while (/*CONSTCOND*/0)
2799
2800 #define SYN_CACHE_TIMESTAMP(sc) (tcp_now - (sc)->sc_timebase)
2801
2802 void
2803 syn_cache_init()
2804 {
2805 int i;
2806
2807 /* Initialize the hash buckets. */
2808 for (i = 0; i < tcp_syn_cache_size; i++)
2809 TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
2810
2811 /* Initialize the syn cache pool. */
2812 pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
2813 "synpl", NULL);
2814 }
2815
2816 void
2817 syn_cache_insert(sc, tp)
2818 struct syn_cache *sc;
2819 struct tcpcb *tp;
2820 {
2821 struct syn_cache_head *scp;
2822 struct syn_cache *sc2;
2823 int s;
2824
2825 /*
2826 * If there are no entries in the hash table, reinitialize
2827 * the hash secrets.
2828 */
2829 if (syn_cache_count == 0) {
2830 struct timeval tv;
2831 microtime(&tv);
2832 syn_hash1 = arc4random() ^ (u_long)≻
2833 syn_hash2 = arc4random() ^ tv.tv_usec;
2834 }
2835
2836 SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
2837 sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
2838 scp = &tcp_syn_cache[sc->sc_bucketidx];
2839
2840 /*
2841 * Make sure that we don't overflow the per-bucket
2842 * limit or the total cache size limit.
2843 */
2844 s = splsoftnet();
2845 if (scp->sch_length >= tcp_syn_bucket_limit) {
2846 tcpstat.tcps_sc_bucketoverflow++;
2847 /*
2848 * The bucket is full. Toss the oldest element in the
2849 * bucket. This will be the first entry in the bucket.
2850 */
2851 sc2 = TAILQ_FIRST(&scp->sch_bucket);
2852 #ifdef DIAGNOSTIC
2853 /*
2854 * This should never happen; we should always find an
2855 * entry in our bucket.
2856 */
2857 if (sc2 == NULL)
2858 panic("syn_cache_insert: bucketoverflow: impossible");
2859 #endif
2860 SYN_CACHE_RM(sc2);
2861 SYN_CACHE_PUT(sc2);
2862 } else if (syn_cache_count >= tcp_syn_cache_limit) {
2863 struct syn_cache_head *scp2, *sce;
2864
2865 tcpstat.tcps_sc_overflowed++;
2866 /*
2867 * The cache is full. Toss the oldest entry in the
2868 * first non-empty bucket we can find.
2869 *
2870 * XXX We would really like to toss the oldest
2871 * entry in the cache, but we hope that this
2872 * condition doesn't happen very often.
2873 */
2874 scp2 = scp;
2875 if (TAILQ_EMPTY(&scp2->sch_bucket)) {
2876 sce = &tcp_syn_cache[tcp_syn_cache_size];
2877 for (++scp2; scp2 != scp; scp2++) {
2878 if (scp2 >= sce)
2879 scp2 = &tcp_syn_cache[0];
2880 if (! TAILQ_EMPTY(&scp2->sch_bucket))
2881 break;
2882 }
2883 #ifdef DIAGNOSTIC
2884 /*
2885 * This should never happen; we should always find a
2886 * non-empty bucket.
2887 */
2888 if (scp2 == scp)
2889 panic("syn_cache_insert: cacheoverflow: "
2890 "impossible");
2891 #endif
2892 }
2893 sc2 = TAILQ_FIRST(&scp2->sch_bucket);
2894 SYN_CACHE_RM(sc2);
2895 SYN_CACHE_PUT(sc2);
2896 }
2897
2898 /*
2899 * Initialize the entry's timer.
2900 */
2901 sc->sc_rxttot = 0;
2902 sc->sc_rxtshift = 0;
2903 SYN_CACHE_TIMER_ARM(sc);
2904
2905 /* Link it from tcpcb entry */
2906 LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
2907
2908 /* Put it into the bucket. */
2909 TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
2910 scp->sch_length++;
2911 syn_cache_count++;
2912
2913 tcpstat.tcps_sc_added++;
2914 splx(s);
2915 }
2916
2917 /*
2918 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
2919 * If we have retransmitted an entry the maximum number of times, expire
2920 * that entry.
2921 */
2922 void
2923 syn_cache_timer(void *arg)
2924 {
2925 struct syn_cache *sc = arg;
2926 int s;
2927
2928 s = splsoftnet();
2929
2930 if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
2931 /* Drop it -- too many retransmissions. */
2932 goto dropit;
2933 }
2934
2935 /*
2936 * Compute the total amount of time this entry has
2937 * been on a queue. If this entry has been on longer
2938 * than the keep alive timer would allow, expire it.
2939 */
2940 sc->sc_rxttot += sc->sc_rxtcur;
2941 if (sc->sc_rxttot >= TCPTV_KEEP_INIT)
2942 goto dropit;
2943
2944 tcpstat.tcps_sc_retransmitted++;
2945 (void) syn_cache_respond(sc, NULL);
2946
2947 /* Advance the timer back-off. */
2948 sc->sc_rxtshift++;
2949 SYN_CACHE_TIMER_ARM(sc);
2950
2951 splx(s);
2952 return;
2953
2954 dropit:
2955 tcpstat.tcps_sc_timed_out++;
2956 SYN_CACHE_RM(sc);
2957 SYN_CACHE_PUT(sc);
2958 splx(s);
2959 }
2960
2961 /*
2962 * Remove syn cache created by the specified tcb entry,
2963 * because this does not make sense to keep them
2964 * (if there's no tcb entry, syn cache entry will never be used)
2965 */
2966 void
2967 syn_cache_cleanup(tp)
2968 struct tcpcb *tp;
2969 {
2970 struct syn_cache *sc, *nsc;
2971 int s;
2972
2973 s = splsoftnet();
2974
2975 for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
2976 nsc = LIST_NEXT(sc, sc_tpq);
2977
2978 #ifdef DIAGNOSTIC
2979 if (sc->sc_tp != tp)
2980 panic("invalid sc_tp in syn_cache_cleanup");
2981 #endif
2982 SYN_CACHE_RM(sc);
2983 SYN_CACHE_PUT(sc);
2984 }
2985 /* just for safety */
2986 LIST_INIT(&tp->t_sc);
2987
2988 splx(s);
2989 }
2990
2991 /*
2992 * Find an entry in the syn cache.
2993 */
2994 struct syn_cache *
2995 syn_cache_lookup(src, dst, headp)
2996 struct sockaddr *src;
2997 struct sockaddr *dst;
2998 struct syn_cache_head **headp;
2999 {
3000 struct syn_cache *sc;
3001 struct syn_cache_head *scp;
3002 u_int32_t hash;
3003 int s;
3004
3005 SYN_HASHALL(hash, src, dst);
3006
3007 scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
3008 *headp = scp;
3009 s = splsoftnet();
3010 for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
3011 sc = TAILQ_NEXT(sc, sc_bucketq)) {
3012 if (sc->sc_hash != hash)
3013 continue;
3014 if (!bcmp(&sc->sc_src, src, src->sa_len) &&
3015 !bcmp(&sc->sc_dst, dst, dst->sa_len)) {
3016 splx(s);
3017 return (sc);
3018 }
3019 }
3020 splx(s);
3021 return (NULL);
3022 }
3023
3024 /*
3025 * This function gets called when we receive an ACK for a
3026 * socket in the LISTEN state. We look up the connection
3027 * in the syn cache, and if its there, we pull it out of
3028 * the cache and turn it into a full-blown connection in
3029 * the SYN-RECEIVED state.
3030 *
3031 * The return values may not be immediately obvious, and their effects
3032 * can be subtle, so here they are:
3033 *
3034 * NULL SYN was not found in cache; caller should drop the
3035 * packet and send an RST.
3036 *
3037 * -1 We were unable to create the new connection, and are
3038 * aborting it. An ACK,RST is being sent to the peer
3039 * (unless we got screwey sequence numbners; see below),
3040 * because the 3-way handshake has been completed. Caller
3041 * should not free the mbuf, since we may be using it. If
3042 * we are not, we will free it.
3043 *
3044 * Otherwise, the return value is a pointer to the new socket
3045 * associated with the connection.
3046 */
3047 struct socket *
3048 syn_cache_get(src, dst, th, hlen, tlen, so, m)
3049 struct sockaddr *src;
3050 struct sockaddr *dst;
3051 struct tcphdr *th;
3052 unsigned int hlen, tlen;
3053 struct socket *so;
3054 struct mbuf *m;
3055 {
3056 struct syn_cache *sc;
3057 struct syn_cache_head *scp;
3058 struct inpcb *inp = NULL;
3059 #ifdef INET6
3060 struct in6pcb *in6p = NULL;
3061 #endif
3062 struct tcpcb *tp = 0;
3063 struct mbuf *am;
3064 int s;
3065 struct socket *oso;
3066
3067 s = splsoftnet();
3068 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3069 splx(s);
3070 return (NULL);
3071 }
3072
3073 /*
3074 * Verify the sequence and ack numbers. Try getting the correct
3075 * response again.
3076 */
3077 if ((th->th_ack != sc->sc_iss + 1) ||
3078 SEQ_LEQ(th->th_seq, sc->sc_irs) ||
3079 SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
3080 (void) syn_cache_respond(sc, m);
3081 splx(s);
3082 return ((struct socket *)(-1));
3083 }
3084
3085 /* Remove this cache entry */
3086 SYN_CACHE_RM(sc);
3087 splx(s);
3088
3089 /*
3090 * Ok, create the full blown connection, and set things up
3091 * as they would have been set up if we had created the
3092 * connection when the SYN arrived. If we can't create
3093 * the connection, abort it.
3094 */
3095 /*
3096 * inp still has the OLD in_pcb stuff, set the
3097 * v6-related flags on the new guy, too. This is
3098 * done particularly for the case where an AF_INET6
3099 * socket is bound only to a port, and a v4 connection
3100 * comes in on that port.
3101 * we also copy the flowinfo from the original pcb
3102 * to the new one.
3103 */
3104 oso = so;
3105 so = sonewconn(so, SS_ISCONNECTED);
3106 if (so == NULL)
3107 goto resetandabort;
3108
3109 switch (so->so_proto->pr_domain->dom_family) {
3110 #ifdef INET
3111 case AF_INET:
3112 inp = sotoinpcb(so);
3113 break;
3114 #endif
3115 #ifdef INET6
3116 case AF_INET6:
3117 in6p = sotoin6pcb(so);
3118 break;
3119 #endif
3120 }
3121 switch (src->sa_family) {
3122 #ifdef INET
3123 case AF_INET:
3124 if (inp) {
3125 struct in_ifaddr *ia;
3126 inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
3127 inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
3128 inp->inp_options = ip_srcroute();
3129 INADDR_TO_IA(inp->inp_laddr, ia);
3130 KASSERT(ia != NULL);
3131 KASSERT(inp->inp_ia == NULL);
3132 inp->inp_ia = ia;
3133 LIST_INSERT_HEAD(&ia->ia_inpcbs, inp, inp_ialink);
3134 IFAREF(&ia->ia_ifa);
3135 in_pcbstate(inp, INP_BOUND);
3136 if (inp->inp_options == NULL) {
3137 inp->inp_options = sc->sc_ipopts;
3138 sc->sc_ipopts = NULL;
3139 }
3140 }
3141 #ifdef INET6
3142 else if (in6p) {
3143 /* IPv4 packet to AF_INET6 socket */
3144 bzero(&in6p->in6p_laddr, sizeof(in6p->in6p_laddr));
3145 in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
3146 bcopy(&((struct sockaddr_in *)dst)->sin_addr,
3147 &in6p->in6p_laddr.s6_addr32[3],
3148 sizeof(((struct sockaddr_in *)dst)->sin_addr));
3149 in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
3150 in6totcpcb(in6p)->t_family = AF_INET;
3151 if (sotoin6pcb(oso)->in6p_flags & IN6P_IPV6_V6ONLY)
3152 in6p->in6p_flags |= IN6P_IPV6_V6ONLY;
3153 else
3154 in6p->in6p_flags &= ~IN6P_IPV6_V6ONLY;
3155 }
3156 #endif
3157 break;
3158 #endif
3159 #ifdef INET6
3160 case AF_INET6:
3161 if (in6p) {
3162 in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
3163 in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
3164 #if 0
3165 in6p->in6p_flowinfo = ip6->ip6_flow & IPV6_FLOWINFO_MASK;
3166 /*inp->inp_options = ip6_srcroute();*/ /* soon. */
3167 #endif
3168 }
3169 break;
3170 #endif
3171 }
3172 #ifdef INET6
3173 if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
3174 struct in6pcb *oin6p = sotoin6pcb(oso);
3175 /* inherit socket options from the listening socket */
3176 in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
3177 if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
3178 m_freem(in6p->in6p_options);
3179 in6p->in6p_options = 0;
3180 }
3181 ip6_savecontrol(in6p, &in6p->in6p_options,
3182 mtod(m, struct ip6_hdr *), m);
3183 }
3184 #endif
3185
3186 #ifdef IPSEC
3187 /*
3188 * we make a copy of policy, instead of sharing the policy,
3189 * for better behavior in terms of SA lookup and dead SA removal.
3190 */
3191 if (inp) {
3192 /* copy old policy into new socket's */
3193 if (ipsec_copy_pcbpolicy(sotoinpcb(oso)->inp_sp, inp->inp_sp))
3194 printf("tcp_input: could not copy policy\n");
3195 }
3196 #ifdef INET6
3197 else if (in6p) {
3198 /* copy old policy into new socket's */
3199 if (ipsec_copy_pcbpolicy(sotoin6pcb(oso)->in6p_sp,
3200 in6p->in6p_sp))
3201 printf("tcp_input: could not copy policy\n");
3202 }
3203 #endif
3204 #endif
3205
3206 /*
3207 * Give the new socket our cached route reference.
3208 */
3209 if (inp)
3210 inp->inp_route = sc->sc_route4; /* struct assignment */
3211 #ifdef INET6
3212 else
3213 in6p->in6p_route = sc->sc_route6;
3214 #endif
3215 sc->sc_route4.ro_rt = NULL;
3216
3217 am = m_get(M_DONTWAIT, MT_SONAME); /* XXX */
3218 if (am == NULL)
3219 goto resetandabort;
3220 MCLAIM(am, &tcp_mowner);
3221 am->m_len = src->sa_len;
3222 bcopy(src, mtod(am, caddr_t), src->sa_len);
3223 if (inp) {
3224 if (in_pcbconnect(inp, am)) {
3225 (void) m_free(am);
3226 goto resetandabort;
3227 }
3228 }
3229 #ifdef INET6
3230 else if (in6p) {
3231 if (src->sa_family == AF_INET) {
3232 /* IPv4 packet to AF_INET6 socket */
3233 struct sockaddr_in6 *sin6;
3234 sin6 = mtod(am, struct sockaddr_in6 *);
3235 am->m_len = sizeof(*sin6);
3236 bzero(sin6, sizeof(*sin6));
3237 sin6->sin6_family = AF_INET6;
3238 sin6->sin6_len = sizeof(*sin6);
3239 sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port;
3240 sin6->sin6_addr.s6_addr16[5] = htons(0xffff);
3241 bcopy(&((struct sockaddr_in *)src)->sin_addr,
3242 &sin6->sin6_addr.s6_addr32[3],
3243 sizeof(sin6->sin6_addr.s6_addr32[3]));
3244 }
3245 if (in6_pcbconnect(in6p, am)) {
3246 (void) m_free(am);
3247 goto resetandabort;
3248 }
3249 }
3250 #endif
3251 else {
3252 (void) m_free(am);
3253 goto resetandabort;
3254 }
3255 (void) m_free(am);
3256
3257 if (inp)
3258 tp = intotcpcb(inp);
3259 #ifdef INET6
3260 else if (in6p)
3261 tp = in6totcpcb(in6p);
3262 #endif
3263 else
3264 tp = NULL;
3265 tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
3266 if (sc->sc_request_r_scale != 15) {
3267 tp->requested_s_scale = sc->sc_requested_s_scale;
3268 tp->request_r_scale = sc->sc_request_r_scale;
3269 tp->snd_scale = sc->sc_requested_s_scale;
3270 tp->rcv_scale = sc->sc_request_r_scale;
3271 tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
3272 }
3273 if (sc->sc_flags & SCF_TIMESTAMP)
3274 tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
3275 tp->ts_timebase = sc->sc_timebase;
3276
3277 tp->t_template = tcp_template(tp);
3278 if (tp->t_template == 0) {
3279 tp = tcp_drop(tp, ENOBUFS); /* destroys socket */
3280 so = NULL;
3281 m_freem(m);
3282 goto abort;
3283 }
3284
3285 tp->iss = sc->sc_iss;
3286 tp->irs = sc->sc_irs;
3287 tcp_sendseqinit(tp);
3288 tcp_rcvseqinit(tp);
3289 tp->t_state = TCPS_SYN_RECEIVED;
3290 TCP_TIMER_ARM(tp, TCPT_KEEP, TCPTV_KEEP_INIT);
3291 tcpstat.tcps_accepts++;
3292
3293 /* Initialize tp->t_ourmss before we deal with the peer's! */
3294 tp->t_ourmss = sc->sc_ourmaxseg;
3295 tcp_mss_from_peer(tp, sc->sc_peermaxseg);
3296
3297 /*
3298 * Initialize the initial congestion window. If we
3299 * had to retransmit the SYN,ACK, we must initialize cwnd
3300 * to 1 segment (i.e. the Loss Window).
3301 */
3302 if (sc->sc_rxtshift)
3303 tp->snd_cwnd = tp->t_peermss;
3304 else {
3305 int ss = tcp_init_win;
3306 #ifdef INET
3307 if (inp != NULL && in_localaddr(inp->inp_faddr))
3308 ss = tcp_init_win_local;
3309 #endif
3310 #ifdef INET6
3311 if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
3312 ss = tcp_init_win_local;
3313 #endif
3314 tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
3315 }
3316
3317 tcp_rmx_rtt(tp);
3318 tp->snd_wl1 = sc->sc_irs;
3319 tp->rcv_up = sc->sc_irs + 1;
3320
3321 /*
3322 * This is what whould have happened in tcp_output() when
3323 * the SYN,ACK was sent.
3324 */
3325 tp->snd_up = tp->snd_una;
3326 tp->snd_max = tp->snd_nxt = tp->iss+1;
3327 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
3328 if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
3329 tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
3330 tp->last_ack_sent = tp->rcv_nxt;
3331
3332 tcpstat.tcps_sc_completed++;
3333 SYN_CACHE_PUT(sc);
3334 return (so);
3335
3336 resetandabort:
3337 (void) tcp_respond(NULL, m, m, th,
3338 th->th_seq + tlen, (tcp_seq)0, TH_RST|TH_ACK);
3339 abort:
3340 if (so != NULL)
3341 (void) soabort(so);
3342 SYN_CACHE_PUT(sc);
3343 tcpstat.tcps_sc_aborted++;
3344 return ((struct socket *)(-1));
3345 }
3346
3347 /*
3348 * This function is called when we get a RST for a
3349 * non-existent connection, so that we can see if the
3350 * connection is in the syn cache. If it is, zap it.
3351 */
3352
3353 void
3354 syn_cache_reset(src, dst, th)
3355 struct sockaddr *src;
3356 struct sockaddr *dst;
3357 struct tcphdr *th;
3358 {
3359 struct syn_cache *sc;
3360 struct syn_cache_head *scp;
3361 int s = splsoftnet();
3362
3363 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3364 splx(s);
3365 return;
3366 }
3367 if (SEQ_LT(th->th_seq, sc->sc_irs) ||
3368 SEQ_GT(th->th_seq, sc->sc_irs+1)) {
3369 splx(s);
3370 return;
3371 }
3372 SYN_CACHE_RM(sc);
3373 splx(s);
3374 tcpstat.tcps_sc_reset++;
3375 SYN_CACHE_PUT(sc);
3376 }
3377
3378 void
3379 syn_cache_unreach(src, dst, th)
3380 struct sockaddr *src;
3381 struct sockaddr *dst;
3382 struct tcphdr *th;
3383 {
3384 struct syn_cache *sc;
3385 struct syn_cache_head *scp;
3386 int s;
3387
3388 s = splsoftnet();
3389 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3390 splx(s);
3391 return;
3392 }
3393 /* If the sequence number != sc_iss, then it's a bogus ICMP msg */
3394 if (ntohl (th->th_seq) != sc->sc_iss) {
3395 splx(s);
3396 return;
3397 }
3398
3399 /*
3400 * If we've rertransmitted 3 times and this is our second error,
3401 * we remove the entry. Otherwise, we allow it to continue on.
3402 * This prevents us from incorrectly nuking an entry during a
3403 * spurious network outage.
3404 *
3405 * See tcp_notify().
3406 */
3407 if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
3408 sc->sc_flags |= SCF_UNREACH;
3409 splx(s);
3410 return;
3411 }
3412
3413 SYN_CACHE_RM(sc);
3414 splx(s);
3415 tcpstat.tcps_sc_unreach++;
3416 SYN_CACHE_PUT(sc);
3417 }
3418
3419 /*
3420 * Given a LISTEN socket and an inbound SYN request, add
3421 * this to the syn cache, and send back a segment:
3422 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
3423 * to the source.
3424 *
3425 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
3426 * Doing so would require that we hold onto the data and deliver it
3427 * to the application. However, if we are the target of a SYN-flood
3428 * DoS attack, an attacker could send data which would eventually
3429 * consume all available buffer space if it were ACKed. By not ACKing
3430 * the data, we avoid this DoS scenario.
3431 */
3432
3433 int
3434 syn_cache_add(src, dst, th, hlen, so, m, optp, optlen, oi)
3435 struct sockaddr *src;
3436 struct sockaddr *dst;
3437 struct tcphdr *th;
3438 unsigned int hlen;
3439 struct socket *so;
3440 struct mbuf *m;
3441 u_char *optp;
3442 int optlen;
3443 struct tcp_opt_info *oi;
3444 {
3445 struct tcpcb tb, *tp;
3446 long win;
3447 struct syn_cache *sc;
3448 struct syn_cache_head *scp;
3449 struct mbuf *ipopts;
3450
3451 tp = sototcpcb(so);
3452
3453 /*
3454 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
3455 *
3456 * Note this check is performed in tcp_input() very early on.
3457 */
3458
3459 /*
3460 * Initialize some local state.
3461 */
3462 win = sbspace(&so->so_rcv);
3463 if (win > TCP_MAXWIN)
3464 win = TCP_MAXWIN;
3465
3466 switch (src->sa_family) {
3467 #ifdef INET
3468 case AF_INET:
3469 /*
3470 * Remember the IP options, if any.
3471 */
3472 ipopts = ip_srcroute();
3473 break;
3474 #endif
3475 default:
3476 ipopts = NULL;
3477 }
3478
3479 if (optp) {
3480 tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
3481 tcp_dooptions(&tb, optp, optlen, th, oi);
3482 } else
3483 tb.t_flags = 0;
3484
3485 /*
3486 * See if we already have an entry for this connection.
3487 * If we do, resend the SYN,ACK. We do not count this
3488 * as a retransmission (XXX though maybe we should).
3489 */
3490 if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
3491 tcpstat.tcps_sc_dupesyn++;
3492 if (ipopts) {
3493 /*
3494 * If we were remembering a previous source route,
3495 * forget it and use the new one we've been given.
3496 */
3497 if (sc->sc_ipopts)
3498 (void) m_free(sc->sc_ipopts);
3499 sc->sc_ipopts = ipopts;
3500 }
3501 sc->sc_timestamp = tb.ts_recent;
3502 if (syn_cache_respond(sc, m) == 0) {
3503 tcpstat.tcps_sndacks++;
3504 tcpstat.tcps_sndtotal++;
3505 }
3506 return (1);
3507 }
3508
3509 sc = pool_get(&syn_cache_pool, PR_NOWAIT);
3510 if (sc == NULL) {
3511 if (ipopts)
3512 (void) m_free(ipopts);
3513 return (0);
3514 }
3515
3516 /*
3517 * Fill in the cache, and put the necessary IP and TCP
3518 * options into the reply.
3519 */
3520 bzero(sc, sizeof(struct syn_cache));
3521 callout_init(&sc->sc_timer);
3522 bcopy(src, &sc->sc_src, src->sa_len);
3523 bcopy(dst, &sc->sc_dst, dst->sa_len);
3524 sc->sc_flags = 0;
3525 sc->sc_ipopts = ipopts;
3526 sc->sc_irs = th->th_seq;
3527 switch (src->sa_family) {
3528 #ifdef INET
3529 case AF_INET:
3530 {
3531 struct sockaddr_in *srcin = (void *) src;
3532 struct sockaddr_in *dstin = (void *) dst;
3533
3534 sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
3535 &srcin->sin_addr, dstin->sin_port,
3536 srcin->sin_port, sizeof(dstin->sin_addr), 0);
3537 break;
3538 }
3539 #endif /* INET */
3540 #ifdef INET6
3541 case AF_INET6:
3542 {
3543 struct sockaddr_in6 *srcin6 = (void *) src;
3544 struct sockaddr_in6 *dstin6 = (void *) dst;
3545
3546 sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
3547 &srcin6->sin6_addr, dstin6->sin6_port,
3548 srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
3549 break;
3550 }
3551 #endif /* INET6 */
3552 }
3553 sc->sc_peermaxseg = oi->maxseg;
3554 sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
3555 m->m_pkthdr.rcvif : NULL,
3556 sc->sc_src.sa.sa_family);
3557 sc->sc_win = win;
3558 sc->sc_timebase = tcp_now; /* see tcp_newtcpcb() */
3559 sc->sc_timestamp = tb.ts_recent;
3560 if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
3561 (TF_REQ_TSTMP|TF_RCVD_TSTMP))
3562 sc->sc_flags |= SCF_TIMESTAMP;
3563 if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
3564 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
3565 sc->sc_requested_s_scale = tb.requested_s_scale;
3566 sc->sc_request_r_scale = 0;
3567 while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
3568 TCP_MAXWIN << sc->sc_request_r_scale <
3569 so->so_rcv.sb_hiwat)
3570 sc->sc_request_r_scale++;
3571 } else {
3572 sc->sc_requested_s_scale = 15;
3573 sc->sc_request_r_scale = 15;
3574 }
3575 sc->sc_tp = tp;
3576 if (syn_cache_respond(sc, m) == 0) {
3577 syn_cache_insert(sc, tp);
3578 tcpstat.tcps_sndacks++;
3579 tcpstat.tcps_sndtotal++;
3580 } else {
3581 SYN_CACHE_PUT(sc);
3582 tcpstat.tcps_sc_dropped++;
3583 }
3584 return (1);
3585 }
3586
3587 int
3588 syn_cache_respond(sc, m)
3589 struct syn_cache *sc;
3590 struct mbuf *m;
3591 {
3592 struct route *ro;
3593 u_int8_t *optp;
3594 int optlen, error;
3595 u_int16_t tlen;
3596 struct ip *ip = NULL;
3597 #ifdef INET6
3598 struct ip6_hdr *ip6 = NULL;
3599 #endif
3600 struct tcphdr *th;
3601 u_int hlen;
3602
3603 switch (sc->sc_src.sa.sa_family) {
3604 case AF_INET:
3605 hlen = sizeof(struct ip);
3606 ro = &sc->sc_route4;
3607 break;
3608 #ifdef INET6
3609 case AF_INET6:
3610 hlen = sizeof(struct ip6_hdr);
3611 ro = (struct route *)&sc->sc_route6;
3612 break;
3613 #endif
3614 default:
3615 if (m)
3616 m_freem(m);
3617 return EAFNOSUPPORT;
3618 }
3619
3620 /* Compute the size of the TCP options. */
3621 optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
3622 ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
3623
3624 tlen = hlen + sizeof(struct tcphdr) + optlen;
3625
3626 /*
3627 * Create the IP+TCP header from scratch.
3628 */
3629 if (m)
3630 m_freem(m);
3631 #ifdef DIAGNOSTIC
3632 if (max_linkhdr + tlen > MCLBYTES)
3633 return (ENOBUFS);
3634 #endif
3635 MGETHDR(m, M_DONTWAIT, MT_DATA);
3636 if (m && tlen > MHLEN) {
3637 MCLGET(m, M_DONTWAIT);
3638 if ((m->m_flags & M_EXT) == 0) {
3639 m_freem(m);
3640 m = NULL;
3641 }
3642 }
3643 if (m == NULL)
3644 return (ENOBUFS);
3645 MCLAIM(m, &tcp_tx_mowner);
3646
3647 /* Fixup the mbuf. */
3648 m->m_data += max_linkhdr;
3649 m->m_len = m->m_pkthdr.len = tlen;
3650 #ifdef IPSEC
3651 if (sc->sc_tp) {
3652 struct tcpcb *tp;
3653 struct socket *so;
3654
3655 tp = sc->sc_tp;
3656 if (tp->t_inpcb)
3657 so = tp->t_inpcb->inp_socket;
3658 #ifdef INET6
3659 else if (tp->t_in6pcb)
3660 so = tp->t_in6pcb->in6p_socket;
3661 #endif
3662 else
3663 so = NULL;
3664 /* use IPsec policy on listening socket, on SYN ACK */
3665 if (ipsec_setsocket(m, so) != 0) {
3666 m_freem(m);
3667 return ENOBUFS;
3668 }
3669 }
3670 #endif
3671 m->m_pkthdr.rcvif = NULL;
3672 memset(mtod(m, u_char *), 0, tlen);
3673
3674 switch (sc->sc_src.sa.sa_family) {
3675 case AF_INET:
3676 ip = mtod(m, struct ip *);
3677 ip->ip_dst = sc->sc_src.sin.sin_addr;
3678 ip->ip_src = sc->sc_dst.sin.sin_addr;
3679 ip->ip_p = IPPROTO_TCP;
3680 th = (struct tcphdr *)(ip + 1);
3681 th->th_dport = sc->sc_src.sin.sin_port;
3682 th->th_sport = sc->sc_dst.sin.sin_port;
3683 break;
3684 #ifdef INET6
3685 case AF_INET6:
3686 ip6 = mtod(m, struct ip6_hdr *);
3687 ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
3688 ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
3689 ip6->ip6_nxt = IPPROTO_TCP;
3690 /* ip6_plen will be updated in ip6_output() */
3691 th = (struct tcphdr *)(ip6 + 1);
3692 th->th_dport = sc->sc_src.sin6.sin6_port;
3693 th->th_sport = sc->sc_dst.sin6.sin6_port;
3694 break;
3695 #endif
3696 default:
3697 th = NULL;
3698 }
3699
3700 th->th_seq = htonl(sc->sc_iss);
3701 th->th_ack = htonl(sc->sc_irs + 1);
3702 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
3703 th->th_flags = TH_SYN|TH_ACK;
3704 th->th_win = htons(sc->sc_win);
3705 /* th_sum already 0 */
3706 /* th_urp already 0 */
3707
3708 /* Tack on the TCP options. */
3709 optp = (u_int8_t *)(th + 1);
3710 *optp++ = TCPOPT_MAXSEG;
3711 *optp++ = 4;
3712 *optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
3713 *optp++ = sc->sc_ourmaxseg & 0xff;
3714
3715 if (sc->sc_request_r_scale != 15) {
3716 *((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
3717 TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
3718 sc->sc_request_r_scale);
3719 optp += 4;
3720 }
3721
3722 if (sc->sc_flags & SCF_TIMESTAMP) {
3723 u_int32_t *lp = (u_int32_t *)(optp);
3724 /* Form timestamp option as shown in appendix A of RFC 1323. */
3725 *lp++ = htonl(TCPOPT_TSTAMP_HDR);
3726 *lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
3727 *lp = htonl(sc->sc_timestamp);
3728 optp += TCPOLEN_TSTAMP_APPA;
3729 }
3730
3731 /* Compute the packet's checksum. */
3732 switch (sc->sc_src.sa.sa_family) {
3733 case AF_INET:
3734 ip->ip_len = htons(tlen - hlen);
3735 th->th_sum = 0;
3736 th->th_sum = in_cksum(m, tlen);
3737 break;
3738 #ifdef INET6
3739 case AF_INET6:
3740 ip6->ip6_plen = htons(tlen - hlen);
3741 th->th_sum = 0;
3742 th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
3743 break;
3744 #endif
3745 }
3746
3747 /*
3748 * Fill in some straggling IP bits. Note the stack expects
3749 * ip_len to be in host order, for convenience.
3750 */
3751 switch (sc->sc_src.sa.sa_family) {
3752 #ifdef INET
3753 case AF_INET:
3754 ip->ip_len = htons(tlen);
3755 ip->ip_ttl = ip_defttl;
3756 /* XXX tos? */
3757 break;
3758 #endif
3759 #ifdef INET6
3760 case AF_INET6:
3761 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
3762 ip6->ip6_vfc |= IPV6_VERSION;
3763 ip6->ip6_plen = htons(tlen - hlen);
3764 /* ip6_hlim will be initialized afterwards */
3765 /* XXX flowlabel? */
3766 break;
3767 #endif
3768 }
3769
3770 switch (sc->sc_src.sa.sa_family) {
3771 #ifdef INET
3772 case AF_INET:
3773 error = ip_output(m, sc->sc_ipopts, ro,
3774 (ip_mtudisc ? IP_MTUDISC : 0),
3775 NULL);
3776 break;
3777 #endif
3778 #ifdef INET6
3779 case AF_INET6:
3780 ip6->ip6_hlim = in6_selecthlim(NULL,
3781 ro->ro_rt ? ro->ro_rt->rt_ifp : NULL);
3782
3783 error = ip6_output(m, NULL /*XXX*/, (struct route_in6 *)ro,
3784 0, NULL, NULL);
3785 break;
3786 #endif
3787 default:
3788 error = EAFNOSUPPORT;
3789 break;
3790 }
3791 return (error);
3792 }
3793