tcp_input.c revision 1.172 1 /* $NetBSD: tcp_input.c,v 1.172 2003/07/02 19:33:20 ragge Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * @(#)COPYRIGHT 1.1 (NRL) 17 January 1995
34 *
35 * NRL grants permission for redistribution and use in source and binary
36 * forms, with or without modification, of the software and documentation
37 * created at NRL provided that the following conditions are met:
38 *
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgements:
46 * This product includes software developed by the University of
47 * California, Berkeley and its contributors.
48 * This product includes software developed at the Information
49 * Technology Division, US Naval Research Laboratory.
50 * 4. Neither the name of the NRL nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
55 * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
57 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NRL OR
58 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
59 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
61 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
62 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
63 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
64 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65 *
66 * The views and conclusions contained in the software and documentation
67 * are those of the authors and should not be interpreted as representing
68 * official policies, either expressed or implied, of the US Naval
69 * Research Laboratory (NRL).
70 */
71
72 /*-
73 * Copyright (c) 1997, 1998, 1999, 2001 The NetBSD Foundation, Inc.
74 * All rights reserved.
75 *
76 * This code is derived from software contributed to The NetBSD Foundation
77 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
78 * Facility, NASA Ames Research Center.
79 *
80 * Redistribution and use in source and binary forms, with or without
81 * modification, are permitted provided that the following conditions
82 * are met:
83 * 1. Redistributions of source code must retain the above copyright
84 * notice, this list of conditions and the following disclaimer.
85 * 2. Redistributions in binary form must reproduce the above copyright
86 * notice, this list of conditions and the following disclaimer in the
87 * documentation and/or other materials provided with the distribution.
88 * 3. All advertising materials mentioning features or use of this software
89 * must display the following acknowledgement:
90 * This product includes software developed by the NetBSD
91 * Foundation, Inc. and its contributors.
92 * 4. Neither the name of The NetBSD Foundation nor the names of its
93 * contributors may be used to endorse or promote products derived
94 * from this software without specific prior written permission.
95 *
96 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
97 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
98 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
99 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
100 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
101 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
102 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
103 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
104 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
105 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
106 * POSSIBILITY OF SUCH DAMAGE.
107 */
108
109 /*
110 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
111 * The Regents of the University of California. All rights reserved.
112 *
113 * Redistribution and use in source and binary forms, with or without
114 * modification, are permitted provided that the following conditions
115 * are met:
116 * 1. Redistributions of source code must retain the above copyright
117 * notice, this list of conditions and the following disclaimer.
118 * 2. Redistributions in binary form must reproduce the above copyright
119 * notice, this list of conditions and the following disclaimer in the
120 * documentation and/or other materials provided with the distribution.
121 * 3. All advertising materials mentioning features or use of this software
122 * must display the following acknowledgement:
123 * This product includes software developed by the University of
124 * California, Berkeley and its contributors.
125 * 4. Neither the name of the University nor the names of its contributors
126 * may be used to endorse or promote products derived from this software
127 * without specific prior written permission.
128 *
129 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
130 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
131 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
132 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
133 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
134 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
135 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
136 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
137 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
138 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
139 * SUCH DAMAGE.
140 *
141 * @(#)tcp_input.c 8.12 (Berkeley) 5/24/95
142 */
143
144 /*
145 * TODO list for SYN cache stuff:
146 *
147 * Find room for a "state" field, which is needed to keep a
148 * compressed state for TIME_WAIT TCBs. It's been noted already
149 * that this is fairly important for very high-volume web and
150 * mail servers, which use a large number of short-lived
151 * connections.
152 */
153
154 #include <sys/cdefs.h>
155 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.172 2003/07/02 19:33:20 ragge Exp $");
156
157 #include "opt_inet.h"
158 #include "opt_ipsec.h"
159 #include "opt_inet_csum.h"
160 #include "opt_tcp_debug.h"
161
162 #include <sys/param.h>
163 #include <sys/systm.h>
164 #include <sys/malloc.h>
165 #include <sys/mbuf.h>
166 #include <sys/protosw.h>
167 #include <sys/socket.h>
168 #include <sys/socketvar.h>
169 #include <sys/errno.h>
170 #include <sys/syslog.h>
171 #include <sys/pool.h>
172 #include <sys/domain.h>
173 #include <sys/kernel.h>
174
175 #include <net/if.h>
176 #include <net/route.h>
177 #include <net/if_types.h>
178
179 #include <netinet/in.h>
180 #include <netinet/in_systm.h>
181 #include <netinet/ip.h>
182 #include <netinet/in_pcb.h>
183 #include <netinet/in_var.h>
184 #include <netinet/ip_var.h>
185
186 #ifdef INET6
187 #ifndef INET
188 #include <netinet/in.h>
189 #endif
190 #include <netinet/ip6.h>
191 #include <netinet6/ip6_var.h>
192 #include <netinet6/in6_pcb.h>
193 #include <netinet6/ip6_var.h>
194 #include <netinet6/in6_var.h>
195 #include <netinet/icmp6.h>
196 #include <netinet6/nd6.h>
197 #endif
198
199 #ifndef INET6
200 /* always need ip6.h for IP6_EXTHDR_GET */
201 #include <netinet/ip6.h>
202 #endif
203
204 #include <netinet/tcp.h>
205 #include <netinet/tcp_fsm.h>
206 #include <netinet/tcp_seq.h>
207 #include <netinet/tcp_timer.h>
208 #include <netinet/tcp_var.h>
209 #include <netinet/tcpip.h>
210 #include <netinet/tcp_debug.h>
211
212 #include <machine/stdarg.h>
213
214 #ifdef IPSEC
215 #include <netinet6/ipsec.h>
216 #include <netkey/key.h>
217 #endif /*IPSEC*/
218 #ifdef INET6
219 #include "faith.h"
220 #if defined(NFAITH) && NFAITH > 0
221 #include <net/if_faith.h>
222 #endif
223 #endif
224
225 int tcprexmtthresh = 3;
226 int tcp_log_refused;
227
228 static int tcp_rst_ppslim_count = 0;
229 static struct timeval tcp_rst_ppslim_last;
230
231 #define TCP_PAWS_IDLE (24 * 24 * 60 * 60 * PR_SLOWHZ)
232
233 /* for modulo comparisons of timestamps */
234 #define TSTMP_LT(a,b) ((int)((a)-(b)) < 0)
235 #define TSTMP_GEQ(a,b) ((int)((a)-(b)) >= 0)
236
237 /*
238 * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
239 */
240 #ifdef INET6
241 #define ND6_HINT(tp) \
242 do { \
243 if (tp && tp->t_in6pcb && tp->t_family == AF_INET6 \
244 && tp->t_in6pcb->in6p_route.ro_rt) { \
245 nd6_nud_hint(tp->t_in6pcb->in6p_route.ro_rt, NULL, 0); \
246 } \
247 } while (/*CONSTCOND*/ 0)
248 #else
249 #define ND6_HINT(tp)
250 #endif
251
252 /*
253 * Macro to compute ACK transmission behavior. Delay the ACK unless
254 * we have already delayed an ACK (must send an ACK every two segments).
255 * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
256 * option is enabled.
257 */
258 #define TCP_SETUP_ACK(tp, th) \
259 do { \
260 if ((tp)->t_flags & TF_DELACK || \
261 (tcp_ack_on_push && (th)->th_flags & TH_PUSH)) \
262 tp->t_flags |= TF_ACKNOW; \
263 else \
264 TCP_SET_DELACK(tp); \
265 } while (/*CONSTCOND*/ 0)
266
267 /*
268 * Convert TCP protocol fields to host order for easier processing.
269 */
270 #define TCP_FIELDS_TO_HOST(th) \
271 do { \
272 NTOHL((th)->th_seq); \
273 NTOHL((th)->th_ack); \
274 NTOHS((th)->th_win); \
275 NTOHS((th)->th_urp); \
276 } while (/*CONSTCOND*/ 0)
277
278 /*
279 * ... and reverse the above.
280 */
281 #define TCP_FIELDS_TO_NET(th) \
282 do { \
283 HTONL((th)->th_seq); \
284 HTONL((th)->th_ack); \
285 HTONS((th)->th_win); \
286 HTONS((th)->th_urp); \
287 } while (/*CONSTCOND*/ 0)
288
289 #ifdef TCP_CSUM_COUNTERS
290 #include <sys/device.h>
291
292 extern struct evcnt tcp_hwcsum_ok;
293 extern struct evcnt tcp_hwcsum_bad;
294 extern struct evcnt tcp_hwcsum_data;
295 extern struct evcnt tcp_swcsum;
296
297 #define TCP_CSUM_COUNTER_INCR(ev) (ev)->ev_count++
298
299 #else
300
301 #define TCP_CSUM_COUNTER_INCR(ev) /* nothing */
302
303 #endif /* TCP_CSUM_COUNTERS */
304
305 #ifdef TCP_REASS_COUNTERS
306 #include <sys/device.h>
307
308 extern struct evcnt tcp_reass_;
309 extern struct evcnt tcp_reass_empty;
310 extern struct evcnt tcp_reass_iteration[8];
311 extern struct evcnt tcp_reass_prependfirst;
312 extern struct evcnt tcp_reass_prepend;
313 extern struct evcnt tcp_reass_insert;
314 extern struct evcnt tcp_reass_inserttail;
315 extern struct evcnt tcp_reass_append;
316 extern struct evcnt tcp_reass_appendtail;
317 extern struct evcnt tcp_reass_overlaptail;
318 extern struct evcnt tcp_reass_overlapfront;
319 extern struct evcnt tcp_reass_segdup;
320 extern struct evcnt tcp_reass_fragdup;
321
322 #define TCP_REASS_COUNTER_INCR(ev) (ev)->ev_count++
323
324 #else
325
326 #define TCP_REASS_COUNTER_INCR(ev) /* nothing */
327
328 #endif /* TCP_REASS_COUNTERS */
329
330 #ifdef INET
331 static void tcp4_log_refused __P((const struct ip *, const struct tcphdr *));
332 #endif
333 #ifdef INET6
334 static void tcp6_log_refused
335 __P((const struct ip6_hdr *, const struct tcphdr *));
336 #endif
337
338 int
339 tcp_reass(tp, th, m, tlen)
340 struct tcpcb *tp;
341 struct tcphdr *th;
342 struct mbuf *m;
343 int *tlen;
344 {
345 struct ipqent *p, *q, *nq, *tiqe = NULL;
346 struct socket *so = NULL;
347 int pkt_flags;
348 tcp_seq pkt_seq;
349 unsigned pkt_len;
350 u_long rcvpartdupbyte = 0;
351 u_long rcvoobyte;
352 #ifdef TCP_REASS_COUNTERS
353 u_int count = 0;
354 #endif
355
356 if (tp->t_inpcb)
357 so = tp->t_inpcb->inp_socket;
358 #ifdef INET6
359 else if (tp->t_in6pcb)
360 so = tp->t_in6pcb->in6p_socket;
361 #endif
362
363 TCP_REASS_LOCK_CHECK(tp);
364
365 /*
366 * Call with th==0 after become established to
367 * force pre-ESTABLISHED data up to user socket.
368 */
369 if (th == 0)
370 goto present;
371
372 rcvoobyte = *tlen;
373 /*
374 * Copy these to local variables because the tcpiphdr
375 * gets munged while we are collapsing mbufs.
376 */
377 pkt_seq = th->th_seq;
378 pkt_len = *tlen;
379 pkt_flags = th->th_flags;
380
381 TCP_REASS_COUNTER_INCR(&tcp_reass_);
382
383 if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
384 /*
385 * When we miss a packet, the vast majority of time we get
386 * packets that follow it in order. So optimize for that.
387 */
388 if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
389 p->ipqe_len += pkt_len;
390 p->ipqe_flags |= pkt_flags;
391 m_cat(p->ipqe_m, m);
392 tiqe = p;
393 TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
394 TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
395 goto skip_replacement;
396 }
397 /*
398 * While we're here, if the pkt is completely beyond
399 * anything we have, just insert it at the tail.
400 */
401 if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
402 TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
403 goto insert_it;
404 }
405 }
406
407 q = TAILQ_FIRST(&tp->segq);
408
409 if (q != NULL) {
410 /*
411 * If this segment immediately precedes the first out-of-order
412 * block, simply slap the segment in front of it and (mostly)
413 * skip the complicated logic.
414 */
415 if (pkt_seq + pkt_len == q->ipqe_seq) {
416 q->ipqe_seq = pkt_seq;
417 q->ipqe_len += pkt_len;
418 q->ipqe_flags |= pkt_flags;
419 m_cat(m, q->ipqe_m);
420 q->ipqe_m = m;
421 tiqe = q;
422 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
423 TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
424 goto skip_replacement;
425 }
426 } else {
427 TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
428 }
429
430 /*
431 * Find a segment which begins after this one does.
432 */
433 for (p = NULL; q != NULL; q = nq) {
434 nq = TAILQ_NEXT(q, ipqe_q);
435 #ifdef TCP_REASS_COUNTERS
436 count++;
437 #endif
438 /*
439 * If the received segment is just right after this
440 * fragment, merge the two together and then check
441 * for further overlaps.
442 */
443 if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
444 #ifdef TCPREASS_DEBUG
445 printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
446 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
447 q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
448 #endif
449 pkt_len += q->ipqe_len;
450 pkt_flags |= q->ipqe_flags;
451 pkt_seq = q->ipqe_seq;
452 m_cat(q->ipqe_m, m);
453 m = q->ipqe_m;
454 TCP_REASS_COUNTER_INCR(&tcp_reass_append);
455 goto free_ipqe;
456 }
457 /*
458 * If the received segment is completely past this
459 * fragment, we need to go the next fragment.
460 */
461 if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
462 p = q;
463 continue;
464 }
465 /*
466 * If the fragment is past the received segment,
467 * it (or any following) can't be concatenated.
468 */
469 if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
470 TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
471 break;
472 }
473
474 /*
475 * We've received all the data in this segment before.
476 * mark it as a duplicate and return.
477 */
478 if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
479 SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
480 tcpstat.tcps_rcvduppack++;
481 tcpstat.tcps_rcvdupbyte += pkt_len;
482 m_freem(m);
483 if (tiqe != NULL)
484 pool_put(&ipqent_pool, tiqe);
485 TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
486 return (0);
487 }
488 /*
489 * Received segment completely overlaps this fragment
490 * so we drop the fragment (this keeps the temporal
491 * ordering of segments correct).
492 */
493 if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
494 SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
495 rcvpartdupbyte += q->ipqe_len;
496 m_freem(q->ipqe_m);
497 TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
498 goto free_ipqe;
499 }
500 /*
501 * RX'ed segment extends past the end of the
502 * fragment. Drop the overlapping bytes. Then
503 * merge the fragment and segment then treat as
504 * a longer received packet.
505 */
506 if (SEQ_LT(q->ipqe_seq, pkt_seq)
507 && SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
508 int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
509 #ifdef TCPREASS_DEBUG
510 printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
511 tp, overlap,
512 pkt_seq, pkt_seq + pkt_len, pkt_len);
513 #endif
514 m_adj(m, overlap);
515 rcvpartdupbyte += overlap;
516 m_cat(q->ipqe_m, m);
517 m = q->ipqe_m;
518 pkt_seq = q->ipqe_seq;
519 pkt_len += q->ipqe_len - overlap;
520 rcvoobyte -= overlap;
521 TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
522 goto free_ipqe;
523 }
524 /*
525 * RX'ed segment extends past the front of the
526 * fragment. Drop the overlapping bytes on the
527 * received packet. The packet will then be
528 * contatentated with this fragment a bit later.
529 */
530 if (SEQ_GT(q->ipqe_seq, pkt_seq)
531 && SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len)) {
532 int overlap = pkt_seq + pkt_len - q->ipqe_seq;
533 #ifdef TCPREASS_DEBUG
534 printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
535 tp, overlap,
536 pkt_seq, pkt_seq + pkt_len, pkt_len);
537 #endif
538 m_adj(m, -overlap);
539 pkt_len -= overlap;
540 rcvpartdupbyte += overlap;
541 TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
542 rcvoobyte -= overlap;
543 }
544 /*
545 * If the received segment immediates precedes this
546 * fragment then tack the fragment onto this segment
547 * and reinsert the data.
548 */
549 if (q->ipqe_seq == pkt_seq + pkt_len) {
550 #ifdef TCPREASS_DEBUG
551 printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
552 tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
553 pkt_seq, pkt_seq + pkt_len, pkt_len);
554 #endif
555 pkt_len += q->ipqe_len;
556 pkt_flags |= q->ipqe_flags;
557 m_cat(m, q->ipqe_m);
558 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
559 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
560 if (tiqe == NULL) {
561 tiqe = q;
562 } else {
563 pool_put(&ipqent_pool, q);
564 }
565 TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
566 break;
567 }
568 /*
569 * If the fragment is before the segment, remember it.
570 * When this loop is terminated, p will contain the
571 * pointer to fragment that is right before the received
572 * segment.
573 */
574 if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
575 p = q;
576
577 continue;
578
579 /*
580 * This is a common operation. It also will allow
581 * to save doing a malloc/free in most instances.
582 */
583 free_ipqe:
584 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
585 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
586 if (tiqe == NULL) {
587 tiqe = q;
588 } else {
589 pool_put(&ipqent_pool, q);
590 }
591 }
592
593 #ifdef TCP_REASS_COUNTERS
594 if (count > 7)
595 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
596 else if (count > 0)
597 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
598 #endif
599
600 insert_it:
601
602 /*
603 * Allocate a new queue entry since the received segment did not
604 * collapse onto any other out-of-order block; thus we are allocating
605 * a new block. If it had collapsed, tiqe would not be NULL and
606 * we would be reusing it.
607 * XXX If we can't, just drop the packet. XXX
608 */
609 if (tiqe == NULL) {
610 tiqe = pool_get(&ipqent_pool, PR_NOWAIT);
611 if (tiqe == NULL) {
612 tcpstat.tcps_rcvmemdrop++;
613 m_freem(m);
614 return (0);
615 }
616 }
617
618 /*
619 * Update the counters.
620 */
621 tcpstat.tcps_rcvoopack++;
622 tcpstat.tcps_rcvoobyte += rcvoobyte;
623 if (rcvpartdupbyte) {
624 tcpstat.tcps_rcvpartduppack++;
625 tcpstat.tcps_rcvpartdupbyte += rcvpartdupbyte;
626 }
627
628 /*
629 * Insert the new fragment queue entry into both queues.
630 */
631 tiqe->ipqe_m = m;
632 tiqe->ipqe_seq = pkt_seq;
633 tiqe->ipqe_len = pkt_len;
634 tiqe->ipqe_flags = pkt_flags;
635 if (p == NULL) {
636 TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
637 #ifdef TCPREASS_DEBUG
638 if (tiqe->ipqe_seq != tp->rcv_nxt)
639 printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
640 tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
641 #endif
642 } else {
643 TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
644 #ifdef TCPREASS_DEBUG
645 printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
646 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
647 p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
648 #endif
649 }
650
651 skip_replacement:
652
653 TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
654
655 present:
656 /*
657 * Present data to user, advancing rcv_nxt through
658 * completed sequence space.
659 */
660 if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
661 return (0);
662 q = TAILQ_FIRST(&tp->segq);
663 if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
664 return (0);
665 if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
666 return (0);
667
668 tp->rcv_nxt += q->ipqe_len;
669 pkt_flags = q->ipqe_flags & TH_FIN;
670 ND6_HINT(tp);
671
672 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
673 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
674 if (so->so_state & SS_CANTRCVMORE)
675 m_freem(q->ipqe_m);
676 else
677 sbappendstream(&so->so_rcv, q->ipqe_m);
678 pool_put(&ipqent_pool, q);
679 sorwakeup(so);
680 return (pkt_flags);
681 }
682
683 #ifdef INET6
684 int
685 tcp6_input(mp, offp, proto)
686 struct mbuf **mp;
687 int *offp, proto;
688 {
689 struct mbuf *m = *mp;
690
691 /*
692 * draft-itojun-ipv6-tcp-to-anycast
693 * better place to put this in?
694 */
695 if (m->m_flags & M_ANYCAST6) {
696 struct ip6_hdr *ip6;
697 if (m->m_len < sizeof(struct ip6_hdr)) {
698 if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
699 tcpstat.tcps_rcvshort++;
700 return IPPROTO_DONE;
701 }
702 }
703 ip6 = mtod(m, struct ip6_hdr *);
704 icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
705 (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
706 return IPPROTO_DONE;
707 }
708
709 tcp_input(m, *offp, proto);
710 return IPPROTO_DONE;
711 }
712 #endif
713
714 #ifdef INET
715 static void
716 tcp4_log_refused(ip, th)
717 const struct ip *ip;
718 const struct tcphdr *th;
719 {
720 char src[4*sizeof "123"];
721 char dst[4*sizeof "123"];
722
723 if (ip) {
724 strlcpy(src, inet_ntoa(ip->ip_src), sizeof(src));
725 strlcpy(dst, inet_ntoa(ip->ip_dst), sizeof(dst));
726 }
727 else {
728 strlcpy(src, "(unknown)", sizeof(src));
729 strlcpy(dst, "(unknown)", sizeof(dst));
730 }
731 log(LOG_INFO,
732 "Connection attempt to TCP %s:%d from %s:%d\n",
733 dst, ntohs(th->th_dport),
734 src, ntohs(th->th_sport));
735 }
736 #endif
737
738 #ifdef INET6
739 static void
740 tcp6_log_refused(ip6, th)
741 const struct ip6_hdr *ip6;
742 const struct tcphdr *th;
743 {
744 char src[INET6_ADDRSTRLEN];
745 char dst[INET6_ADDRSTRLEN];
746
747 if (ip6) {
748 strlcpy(src, ip6_sprintf(&ip6->ip6_src), sizeof(src));
749 strlcpy(dst, ip6_sprintf(&ip6->ip6_dst), sizeof(dst));
750 }
751 else {
752 strlcpy(src, "(unknown v6)", sizeof(src));
753 strlcpy(dst, "(unknown v6)", sizeof(dst));
754 }
755 log(LOG_INFO,
756 "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
757 dst, ntohs(th->th_dport),
758 src, ntohs(th->th_sport));
759 }
760 #endif
761
762 /*
763 * TCP input routine, follows pages 65-76 of the
764 * protocol specification dated September, 1981 very closely.
765 */
766 void
767 #if __STDC__
768 tcp_input(struct mbuf *m, ...)
769 #else
770 tcp_input(m, va_alist)
771 struct mbuf *m;
772 #endif
773 {
774 struct tcphdr *th;
775 struct ip *ip;
776 struct inpcb *inp;
777 #ifdef INET6
778 struct ip6_hdr *ip6;
779 struct in6pcb *in6p;
780 #endif
781 u_int8_t *optp = NULL;
782 int optlen = 0;
783 int len, tlen, toff, hdroptlen = 0;
784 struct tcpcb *tp = 0;
785 int tiflags;
786 struct socket *so = NULL;
787 int todrop, acked, ourfinisacked, needoutput = 0;
788 #ifdef TCP_DEBUG
789 short ostate = 0;
790 #endif
791 int iss = 0;
792 u_long tiwin;
793 struct tcp_opt_info opti;
794 int off, iphlen;
795 va_list ap;
796 int af; /* af on the wire */
797 struct mbuf *tcp_saveti = NULL;
798
799 MCLAIM(m, &tcp_rx_mowner);
800 va_start(ap, m);
801 toff = va_arg(ap, int);
802 (void)va_arg(ap, int); /* ignore value, advance ap */
803 va_end(ap);
804
805 tcpstat.tcps_rcvtotal++;
806
807 bzero(&opti, sizeof(opti));
808 opti.ts_present = 0;
809 opti.maxseg = 0;
810
811 /*
812 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
813 *
814 * TCP is, by definition, unicast, so we reject all
815 * multicast outright.
816 *
817 * Note, there are additional src/dst address checks in
818 * the AF-specific code below.
819 */
820 if (m->m_flags & (M_BCAST|M_MCAST)) {
821 /* XXX stat */
822 goto drop;
823 }
824 #ifdef INET6
825 if (m->m_flags & M_ANYCAST6) {
826 /* XXX stat */
827 goto drop;
828 }
829 #endif
830
831 /*
832 * Get IP and TCP header together in first mbuf.
833 * Note: IP leaves IP header in first mbuf.
834 */
835 ip = mtod(m, struct ip *);
836 #ifdef INET6
837 ip6 = NULL;
838 #endif
839 switch (ip->ip_v) {
840 #ifdef INET
841 case 4:
842 af = AF_INET;
843 iphlen = sizeof(struct ip);
844 ip = mtod(m, struct ip *);
845 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
846 sizeof(struct tcphdr));
847 if (th == NULL) {
848 tcpstat.tcps_rcvshort++;
849 return;
850 }
851 /* We do the checksum after PCB lookup... */
852 len = ntohs(ip->ip_len);
853 tlen = len - toff;
854 break;
855 #endif
856 #ifdef INET6
857 case 6:
858 ip = NULL;
859 iphlen = sizeof(struct ip6_hdr);
860 af = AF_INET6;
861 ip6 = mtod(m, struct ip6_hdr *);
862 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
863 sizeof(struct tcphdr));
864 if (th == NULL) {
865 tcpstat.tcps_rcvshort++;
866 return;
867 }
868
869 /* Be proactive about malicious use of IPv4 mapped address */
870 if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
871 IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
872 /* XXX stat */
873 goto drop;
874 }
875
876 /*
877 * Be proactive about unspecified IPv6 address in source.
878 * As we use all-zero to indicate unbounded/unconnected pcb,
879 * unspecified IPv6 address can be used to confuse us.
880 *
881 * Note that packets with unspecified IPv6 destination is
882 * already dropped in ip6_input.
883 */
884 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
885 /* XXX stat */
886 goto drop;
887 }
888
889 /*
890 * Make sure destination address is not multicast.
891 * Source address checked in ip6_input().
892 */
893 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
894 /* XXX stat */
895 goto drop;
896 }
897
898 /* We do the checksum after PCB lookup... */
899 len = m->m_pkthdr.len;
900 tlen = len - toff;
901 break;
902 #endif
903 default:
904 m_freem(m);
905 return;
906 }
907
908 KASSERT(TCP_HDR_ALIGNED_P(th));
909
910 /*
911 * Check that TCP offset makes sense,
912 * pull out TCP options and adjust length. XXX
913 */
914 off = th->th_off << 2;
915 if (off < sizeof (struct tcphdr) || off > tlen) {
916 tcpstat.tcps_rcvbadoff++;
917 goto drop;
918 }
919 tlen -= off;
920
921 /*
922 * tcp_input() has been modified to use tlen to mean the TCP data
923 * length throughout the function. Other functions can use
924 * m->m_pkthdr.len as the basis for calculating the TCP data length.
925 * rja
926 */
927
928 if (off > sizeof (struct tcphdr)) {
929 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
930 if (th == NULL) {
931 tcpstat.tcps_rcvshort++;
932 return;
933 }
934 /*
935 * NOTE: ip/ip6 will not be affected by m_pulldown()
936 * (as they're before toff) and we don't need to update those.
937 */
938 KASSERT(TCP_HDR_ALIGNED_P(th));
939 optlen = off - sizeof (struct tcphdr);
940 optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
941 /*
942 * Do quick retrieval of timestamp options ("options
943 * prediction?"). If timestamp is the only option and it's
944 * formatted as recommended in RFC 1323 appendix A, we
945 * quickly get the values now and not bother calling
946 * tcp_dooptions(), etc.
947 */
948 if ((optlen == TCPOLEN_TSTAMP_APPA ||
949 (optlen > TCPOLEN_TSTAMP_APPA &&
950 optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
951 *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
952 (th->th_flags & TH_SYN) == 0) {
953 opti.ts_present = 1;
954 opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
955 opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
956 optp = NULL; /* we've parsed the options */
957 }
958 }
959 tiflags = th->th_flags;
960
961 /*
962 * Locate pcb for segment.
963 */
964 findpcb:
965 inp = NULL;
966 #ifdef INET6
967 in6p = NULL;
968 #endif
969 switch (af) {
970 #ifdef INET
971 case AF_INET:
972 inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
973 ip->ip_dst, th->th_dport);
974 if (inp == 0) {
975 ++tcpstat.tcps_pcbhashmiss;
976 inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
977 }
978 #ifdef INET6
979 if (inp == 0) {
980 struct in6_addr s, d;
981
982 /* mapped addr case */
983 bzero(&s, sizeof(s));
984 s.s6_addr16[5] = htons(0xffff);
985 bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
986 bzero(&d, sizeof(d));
987 d.s6_addr16[5] = htons(0xffff);
988 bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
989 in6p = in6_pcblookup_connect(&tcb6, &s, th->th_sport,
990 &d, th->th_dport, 0);
991 if (in6p == 0) {
992 ++tcpstat.tcps_pcbhashmiss;
993 in6p = in6_pcblookup_bind(&tcb6, &d,
994 th->th_dport, 0);
995 }
996 }
997 #endif
998 #ifndef INET6
999 if (inp == 0)
1000 #else
1001 if (inp == 0 && in6p == 0)
1002 #endif
1003 {
1004 ++tcpstat.tcps_noport;
1005 if (tcp_log_refused &&
1006 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1007 tcp4_log_refused(ip, th);
1008 }
1009 TCP_FIELDS_TO_HOST(th);
1010 goto dropwithreset_ratelim;
1011 }
1012 #ifdef IPSEC
1013 if (inp && ipsec4_in_reject(m, inp)) {
1014 ipsecstat.in_polvio++;
1015 goto drop;
1016 }
1017 #ifdef INET6
1018 else if (in6p && ipsec4_in_reject_so(m, in6p->in6p_socket)) {
1019 ipsecstat.in_polvio++;
1020 goto drop;
1021 }
1022 #endif
1023 #endif /*IPSEC*/
1024 break;
1025 #endif /*INET*/
1026 #ifdef INET6
1027 case AF_INET6:
1028 {
1029 int faith;
1030
1031 #if defined(NFAITH) && NFAITH > 0
1032 faith = faithprefix(&ip6->ip6_dst);
1033 #else
1034 faith = 0;
1035 #endif
1036 in6p = in6_pcblookup_connect(&tcb6, &ip6->ip6_src, th->th_sport,
1037 &ip6->ip6_dst, th->th_dport, faith);
1038 if (in6p == NULL) {
1039 ++tcpstat.tcps_pcbhashmiss;
1040 in6p = in6_pcblookup_bind(&tcb6, &ip6->ip6_dst,
1041 th->th_dport, faith);
1042 }
1043 if (in6p == NULL) {
1044 ++tcpstat.tcps_noport;
1045 if (tcp_log_refused &&
1046 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1047 tcp6_log_refused(ip6, th);
1048 }
1049 TCP_FIELDS_TO_HOST(th);
1050 goto dropwithreset_ratelim;
1051 }
1052 #ifdef IPSEC
1053 if (ipsec6_in_reject(m, in6p)) {
1054 ipsec6stat.in_polvio++;
1055 goto drop;
1056 }
1057 #endif /*IPSEC*/
1058 break;
1059 }
1060 #endif
1061 }
1062
1063 /*
1064 * If the state is CLOSED (i.e., TCB does not exist) then
1065 * all data in the incoming segment is discarded.
1066 * If the TCB exists but is in CLOSED state, it is embryonic,
1067 * but should either do a listen or a connect soon.
1068 */
1069 tp = NULL;
1070 so = NULL;
1071 if (inp) {
1072 tp = intotcpcb(inp);
1073 so = inp->inp_socket;
1074 }
1075 #ifdef INET6
1076 else if (in6p) {
1077 tp = in6totcpcb(in6p);
1078 so = in6p->in6p_socket;
1079 }
1080 #endif
1081 if (tp == 0) {
1082 TCP_FIELDS_TO_HOST(th);
1083 goto dropwithreset_ratelim;
1084 }
1085 if (tp->t_state == TCPS_CLOSED)
1086 goto drop;
1087
1088 /*
1089 * Checksum extended TCP header and data.
1090 */
1091 switch (af) {
1092 #ifdef INET
1093 case AF_INET:
1094 switch (m->m_pkthdr.csum_flags &
1095 ((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
1096 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
1097 case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
1098 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
1099 goto badcsum;
1100
1101 case M_CSUM_TCPv4|M_CSUM_DATA:
1102 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
1103 if ((m->m_pkthdr.csum_data ^ 0xffff) != 0)
1104 goto badcsum;
1105 break;
1106
1107 case M_CSUM_TCPv4:
1108 /* Checksum was okay. */
1109 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
1110 break;
1111
1112 default:
1113 /* Must compute it ourselves. */
1114 TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
1115 if (in4_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0)
1116 goto badcsum;
1117 break;
1118 }
1119 break;
1120 #endif /* INET4 */
1121
1122 #ifdef INET6
1123 case AF_INET6:
1124 if (in6_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0)
1125 goto badcsum;
1126 break;
1127 #endif /* INET6 */
1128 }
1129
1130 TCP_FIELDS_TO_HOST(th);
1131
1132 /* Unscale the window into a 32-bit value. */
1133 if ((tiflags & TH_SYN) == 0)
1134 tiwin = th->th_win << tp->snd_scale;
1135 else
1136 tiwin = th->th_win;
1137
1138 #ifdef INET6
1139 /* save packet options if user wanted */
1140 if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
1141 if (in6p->in6p_options) {
1142 m_freem(in6p->in6p_options);
1143 in6p->in6p_options = 0;
1144 }
1145 ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
1146 }
1147 #endif
1148
1149 if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
1150 union syn_cache_sa src;
1151 union syn_cache_sa dst;
1152
1153 bzero(&src, sizeof(src));
1154 bzero(&dst, sizeof(dst));
1155 switch (af) {
1156 #ifdef INET
1157 case AF_INET:
1158 src.sin.sin_len = sizeof(struct sockaddr_in);
1159 src.sin.sin_family = AF_INET;
1160 src.sin.sin_addr = ip->ip_src;
1161 src.sin.sin_port = th->th_sport;
1162
1163 dst.sin.sin_len = sizeof(struct sockaddr_in);
1164 dst.sin.sin_family = AF_INET;
1165 dst.sin.sin_addr = ip->ip_dst;
1166 dst.sin.sin_port = th->th_dport;
1167 break;
1168 #endif
1169 #ifdef INET6
1170 case AF_INET6:
1171 src.sin6.sin6_len = sizeof(struct sockaddr_in6);
1172 src.sin6.sin6_family = AF_INET6;
1173 src.sin6.sin6_addr = ip6->ip6_src;
1174 src.sin6.sin6_port = th->th_sport;
1175
1176 dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
1177 dst.sin6.sin6_family = AF_INET6;
1178 dst.sin6.sin6_addr = ip6->ip6_dst;
1179 dst.sin6.sin6_port = th->th_dport;
1180 break;
1181 #endif /* INET6 */
1182 default:
1183 goto badsyn; /*sanity*/
1184 }
1185
1186 if (so->so_options & SO_DEBUG) {
1187 #ifdef TCP_DEBUG
1188 ostate = tp->t_state;
1189 #endif
1190
1191 tcp_saveti = NULL;
1192 if (iphlen + sizeof(struct tcphdr) > MHLEN)
1193 goto nosave;
1194
1195 if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
1196 tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
1197 if (!tcp_saveti)
1198 goto nosave;
1199 } else {
1200 MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
1201 if (!tcp_saveti)
1202 goto nosave;
1203 MCLAIM(m, &tcp_mowner);
1204 tcp_saveti->m_len = iphlen;
1205 m_copydata(m, 0, iphlen,
1206 mtod(tcp_saveti, caddr_t));
1207 }
1208
1209 if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
1210 m_freem(tcp_saveti);
1211 tcp_saveti = NULL;
1212 } else {
1213 tcp_saveti->m_len += sizeof(struct tcphdr);
1214 bcopy(th, mtod(tcp_saveti, caddr_t) + iphlen,
1215 sizeof(struct tcphdr));
1216 }
1217 nosave:;
1218 }
1219 if (so->so_options & SO_ACCEPTCONN) {
1220 if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1221 if (tiflags & TH_RST) {
1222 syn_cache_reset(&src.sa, &dst.sa, th);
1223 } else if ((tiflags & (TH_ACK|TH_SYN)) ==
1224 (TH_ACK|TH_SYN)) {
1225 /*
1226 * Received a SYN,ACK. This should
1227 * never happen while we are in
1228 * LISTEN. Send an RST.
1229 */
1230 goto badsyn;
1231 } else if (tiflags & TH_ACK) {
1232 so = syn_cache_get(&src.sa, &dst.sa,
1233 th, toff, tlen, so, m);
1234 if (so == NULL) {
1235 /*
1236 * We don't have a SYN for
1237 * this ACK; send an RST.
1238 */
1239 goto badsyn;
1240 } else if (so ==
1241 (struct socket *)(-1)) {
1242 /*
1243 * We were unable to create
1244 * the connection. If the
1245 * 3-way handshake was
1246 * completed, and RST has
1247 * been sent to the peer.
1248 * Since the mbuf might be
1249 * in use for the reply,
1250 * do not free it.
1251 */
1252 m = NULL;
1253 } else {
1254 /*
1255 * We have created a
1256 * full-blown connection.
1257 */
1258 tp = NULL;
1259 inp = NULL;
1260 #ifdef INET6
1261 in6p = NULL;
1262 #endif
1263 switch (so->so_proto->pr_domain->dom_family) {
1264 #ifdef INET
1265 case AF_INET:
1266 inp = sotoinpcb(so);
1267 tp = intotcpcb(inp);
1268 break;
1269 #endif
1270 #ifdef INET6
1271 case AF_INET6:
1272 in6p = sotoin6pcb(so);
1273 tp = in6totcpcb(in6p);
1274 break;
1275 #endif
1276 }
1277 if (tp == NULL)
1278 goto badsyn; /*XXX*/
1279 tiwin <<= tp->snd_scale;
1280 goto after_listen;
1281 }
1282 } else {
1283 /*
1284 * None of RST, SYN or ACK was set.
1285 * This is an invalid packet for a
1286 * TCB in LISTEN state. Send a RST.
1287 */
1288 goto badsyn;
1289 }
1290 } else {
1291 /*
1292 * Received a SYN.
1293 */
1294
1295 #ifdef INET6
1296 /*
1297 * If deprecated address is forbidden, we do
1298 * not accept SYN to deprecated interface
1299 * address to prevent any new inbound
1300 * connection from getting established.
1301 * When we do not accept SYN, we send a TCP
1302 * RST, with deprecated source address (instead
1303 * of dropping it). We compromise it as it is
1304 * much better for peer to send a RST, and
1305 * RST will be the final packet for the
1306 * exchange.
1307 *
1308 * If we do not forbid deprecated addresses, we
1309 * accept the SYN packet. RFC2462 does not
1310 * suggest dropping SYN in this case.
1311 * If we decipher RFC2462 5.5.4, it says like
1312 * this:
1313 * 1. use of deprecated addr with existing
1314 * communication is okay - "SHOULD continue
1315 * to be used"
1316 * 2. use of it with new communication:
1317 * (2a) "SHOULD NOT be used if alternate
1318 * address with sufficient scope is
1319 * available"
1320 * (2b) nothing mentioned otherwise.
1321 * Here we fall into (2b) case as we have no
1322 * choice in our source address selection - we
1323 * must obey the peer.
1324 *
1325 * The wording in RFC2462 is confusing, and
1326 * there are multiple description text for
1327 * deprecated address handling - worse, they
1328 * are not exactly the same. I believe 5.5.4
1329 * is the best one, so we follow 5.5.4.
1330 */
1331 if (af == AF_INET6 && !ip6_use_deprecated) {
1332 struct in6_ifaddr *ia6;
1333 if ((ia6 = in6ifa_ifpwithaddr(m->m_pkthdr.rcvif,
1334 &ip6->ip6_dst)) &&
1335 (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1336 tp = NULL;
1337 goto dropwithreset;
1338 }
1339 }
1340 #endif
1341
1342 /*
1343 * LISTEN socket received a SYN
1344 * from itself? This can't possibly
1345 * be valid; drop the packet.
1346 */
1347 if (th->th_sport == th->th_dport) {
1348 int i;
1349
1350 switch (af) {
1351 #ifdef INET
1352 case AF_INET:
1353 i = in_hosteq(ip->ip_src, ip->ip_dst);
1354 break;
1355 #endif
1356 #ifdef INET6
1357 case AF_INET6:
1358 i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
1359 break;
1360 #endif
1361 default:
1362 i = 1;
1363 }
1364 if (i) {
1365 tcpstat.tcps_badsyn++;
1366 goto drop;
1367 }
1368 }
1369
1370 /*
1371 * SYN looks ok; create compressed TCP
1372 * state for it.
1373 */
1374 if (so->so_qlen <= so->so_qlimit &&
1375 syn_cache_add(&src.sa, &dst.sa, th, tlen,
1376 so, m, optp, optlen, &opti))
1377 m = NULL;
1378 }
1379 goto drop;
1380 }
1381 }
1382
1383 after_listen:
1384 #ifdef DIAGNOSTIC
1385 /*
1386 * Should not happen now that all embryonic connections
1387 * are handled with compressed state.
1388 */
1389 if (tp->t_state == TCPS_LISTEN)
1390 panic("tcp_input: TCPS_LISTEN");
1391 #endif
1392
1393 /*
1394 * Segment received on connection.
1395 * Reset idle time and keep-alive timer.
1396 */
1397 tp->t_rcvtime = tcp_now;
1398 if (TCPS_HAVEESTABLISHED(tp->t_state))
1399 TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1400
1401 /*
1402 * Process options.
1403 */
1404 if (optp)
1405 tcp_dooptions(tp, optp, optlen, th, &opti);
1406
1407 /*
1408 * Header prediction: check for the two common cases
1409 * of a uni-directional data xfer. If the packet has
1410 * no control flags, is in-sequence, the window didn't
1411 * change and we're not retransmitting, it's a
1412 * candidate. If the length is zero and the ack moved
1413 * forward, we're the sender side of the xfer. Just
1414 * free the data acked & wake any higher level process
1415 * that was blocked waiting for space. If the length
1416 * is non-zero and the ack didn't move, we're the
1417 * receiver side. If we're getting packets in-order
1418 * (the reassembly queue is empty), add the data to
1419 * the socket buffer and note that we need a delayed ack.
1420 */
1421 if (tp->t_state == TCPS_ESTABLISHED &&
1422 (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1423 (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
1424 th->th_seq == tp->rcv_nxt &&
1425 tiwin && tiwin == tp->snd_wnd &&
1426 tp->snd_nxt == tp->snd_max) {
1427
1428 /*
1429 * If last ACK falls within this segment's sequence numbers,
1430 * record the timestamp.
1431 */
1432 if (opti.ts_present &&
1433 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1434 SEQ_LT(tp->last_ack_sent, th->th_seq + tlen)) {
1435 tp->ts_recent_age = TCP_TIMESTAMP(tp);
1436 tp->ts_recent = opti.ts_val;
1437 }
1438
1439 if (tlen == 0) {
1440 if (SEQ_GT(th->th_ack, tp->snd_una) &&
1441 SEQ_LEQ(th->th_ack, tp->snd_max) &&
1442 tp->snd_cwnd >= tp->snd_wnd &&
1443 tp->t_dupacks < tcprexmtthresh) {
1444 int slen;
1445
1446 /*
1447 * this is a pure ack for outstanding data.
1448 */
1449 ++tcpstat.tcps_predack;
1450 if (opti.ts_present && opti.ts_ecr)
1451 tcp_xmit_timer(tp,
1452 TCP_TIMESTAMP(tp) - opti.ts_ecr + 1);
1453 else if (tp->t_rtttime &&
1454 SEQ_GT(th->th_ack, tp->t_rtseq))
1455 tcp_xmit_timer(tp,
1456 tcp_now - tp->t_rtttime);
1457 acked = th->th_ack - tp->snd_una;
1458 tcpstat.tcps_rcvackpack++;
1459 tcpstat.tcps_rcvackbyte += acked;
1460 ND6_HINT(tp);
1461
1462 slen = tp->t_lastm->m_len;
1463 sbdrop(&so->so_snd, acked);
1464 if (so->so_snd.sb_cc != 0) {
1465 tp->t_lastoff -= acked;
1466 if (tp->t_lastm->m_len < slen)
1467 tp->t_inoff -=
1468 (slen - tp->t_lastm->m_len);
1469 }
1470
1471 /*
1472 * We want snd_recover to track snd_una to
1473 * avoid sequence wraparound problems for
1474 * very large transfers.
1475 */
1476 tp->snd_una = tp->snd_recover = th->th_ack;
1477 m_freem(m);
1478
1479 /*
1480 * If all outstanding data are acked, stop
1481 * retransmit timer, otherwise restart timer
1482 * using current (possibly backed-off) value.
1483 * If process is waiting for space,
1484 * wakeup/selwakeup/signal. If data
1485 * are ready to send, let tcp_output
1486 * decide between more output or persist.
1487 */
1488 if (tp->snd_una == tp->snd_max)
1489 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1490 else if (TCP_TIMER_ISARMED(tp,
1491 TCPT_PERSIST) == 0)
1492 TCP_TIMER_ARM(tp, TCPT_REXMT,
1493 tp->t_rxtcur);
1494
1495 sowwakeup(so);
1496 if (so->so_snd.sb_cc)
1497 (void) tcp_output(tp);
1498 if (tcp_saveti)
1499 m_freem(tcp_saveti);
1500 return;
1501 }
1502 } else if (th->th_ack == tp->snd_una &&
1503 TAILQ_FIRST(&tp->segq) == NULL &&
1504 tlen <= sbspace(&so->so_rcv)) {
1505 /*
1506 * this is a pure, in-sequence data packet
1507 * with nothing on the reassembly queue and
1508 * we have enough buffer space to take it.
1509 */
1510 ++tcpstat.tcps_preddat;
1511 tp->rcv_nxt += tlen;
1512 tcpstat.tcps_rcvpack++;
1513 tcpstat.tcps_rcvbyte += tlen;
1514 ND6_HINT(tp);
1515 /*
1516 * Drop TCP, IP headers and TCP options then add data
1517 * to socket buffer.
1518 */
1519 if (so->so_state & SS_CANTRCVMORE)
1520 m_freem(m);
1521 else {
1522 m_adj(m, toff + off);
1523 sbappendstream(&so->so_rcv, m);
1524 }
1525 sorwakeup(so);
1526 TCP_SETUP_ACK(tp, th);
1527 if (tp->t_flags & TF_ACKNOW)
1528 (void) tcp_output(tp);
1529 if (tcp_saveti)
1530 m_freem(tcp_saveti);
1531 return;
1532 }
1533 }
1534
1535 /*
1536 * Compute mbuf offset to TCP data segment.
1537 */
1538 hdroptlen = toff + off;
1539
1540 /*
1541 * Calculate amount of space in receive window,
1542 * and then do TCP input processing.
1543 * Receive window is amount of space in rcv queue,
1544 * but not less than advertised window.
1545 */
1546 { int win;
1547
1548 win = sbspace(&so->so_rcv);
1549 if (win < 0)
1550 win = 0;
1551 tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1552 }
1553
1554 switch (tp->t_state) {
1555 case TCPS_LISTEN:
1556 /*
1557 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
1558 */
1559 if (m->m_flags & (M_BCAST|M_MCAST))
1560 goto drop;
1561 switch (af) {
1562 #ifdef INET6
1563 case AF_INET6:
1564 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
1565 goto drop;
1566 break;
1567 #endif /* INET6 */
1568 case AF_INET:
1569 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
1570 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
1571 goto drop;
1572 break;
1573 }
1574 break;
1575
1576 /*
1577 * If the state is SYN_SENT:
1578 * if seg contains an ACK, but not for our SYN, drop the input.
1579 * if seg contains a RST, then drop the connection.
1580 * if seg does not contain SYN, then drop it.
1581 * Otherwise this is an acceptable SYN segment
1582 * initialize tp->rcv_nxt and tp->irs
1583 * if seg contains ack then advance tp->snd_una
1584 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1585 * arrange for segment to be acked (eventually)
1586 * continue processing rest of data/controls, beginning with URG
1587 */
1588 case TCPS_SYN_SENT:
1589 if ((tiflags & TH_ACK) &&
1590 (SEQ_LEQ(th->th_ack, tp->iss) ||
1591 SEQ_GT(th->th_ack, tp->snd_max)))
1592 goto dropwithreset;
1593 if (tiflags & TH_RST) {
1594 if (tiflags & TH_ACK)
1595 tp = tcp_drop(tp, ECONNREFUSED);
1596 goto drop;
1597 }
1598 if ((tiflags & TH_SYN) == 0)
1599 goto drop;
1600 if (tiflags & TH_ACK) {
1601 tp->snd_una = tp->snd_recover = th->th_ack;
1602 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1603 tp->snd_nxt = tp->snd_una;
1604 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1605 }
1606 tp->irs = th->th_seq;
1607 tcp_rcvseqinit(tp);
1608 tp->t_flags |= TF_ACKNOW;
1609 tcp_mss_from_peer(tp, opti.maxseg);
1610
1611 /*
1612 * Initialize the initial congestion window. If we
1613 * had to retransmit the SYN, we must initialize cwnd
1614 * to 1 segment (i.e. the Loss Window).
1615 */
1616 if (tp->t_flags & TF_SYN_REXMT)
1617 tp->snd_cwnd = tp->t_peermss;
1618 else {
1619 int ss = tcp_init_win;
1620 #ifdef INET
1621 if (inp != NULL && in_localaddr(inp->inp_faddr))
1622 ss = tcp_init_win_local;
1623 #endif
1624 #ifdef INET6
1625 if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
1626 ss = tcp_init_win_local;
1627 #endif
1628 tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
1629 }
1630
1631 tcp_rmx_rtt(tp);
1632 if (tiflags & TH_ACK) {
1633 tcpstat.tcps_connects++;
1634 soisconnected(so);
1635 tcp_established(tp);
1636 /* Do window scaling on this connection? */
1637 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1638 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1639 tp->snd_scale = tp->requested_s_scale;
1640 tp->rcv_scale = tp->request_r_scale;
1641 }
1642 TCP_REASS_LOCK(tp);
1643 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1644 TCP_REASS_UNLOCK(tp);
1645 /*
1646 * if we didn't have to retransmit the SYN,
1647 * use its rtt as our initial srtt & rtt var.
1648 */
1649 if (tp->t_rtttime)
1650 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
1651 } else
1652 tp->t_state = TCPS_SYN_RECEIVED;
1653
1654 /*
1655 * Advance th->th_seq to correspond to first data byte.
1656 * If data, trim to stay within window,
1657 * dropping FIN if necessary.
1658 */
1659 th->th_seq++;
1660 if (tlen > tp->rcv_wnd) {
1661 todrop = tlen - tp->rcv_wnd;
1662 m_adj(m, -todrop);
1663 tlen = tp->rcv_wnd;
1664 tiflags &= ~TH_FIN;
1665 tcpstat.tcps_rcvpackafterwin++;
1666 tcpstat.tcps_rcvbyteafterwin += todrop;
1667 }
1668 tp->snd_wl1 = th->th_seq - 1;
1669 tp->rcv_up = th->th_seq;
1670 goto step6;
1671
1672 /*
1673 * If the state is SYN_RECEIVED:
1674 * If seg contains an ACK, but not for our SYN, drop the input
1675 * and generate an RST. See page 36, rfc793
1676 */
1677 case TCPS_SYN_RECEIVED:
1678 if ((tiflags & TH_ACK) &&
1679 (SEQ_LEQ(th->th_ack, tp->iss) ||
1680 SEQ_GT(th->th_ack, tp->snd_max)))
1681 goto dropwithreset;
1682 break;
1683 }
1684
1685 /*
1686 * States other than LISTEN or SYN_SENT.
1687 * First check timestamp, if present.
1688 * Then check that at least some bytes of segment are within
1689 * receive window. If segment begins before rcv_nxt,
1690 * drop leading data (and SYN); if nothing left, just ack.
1691 *
1692 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1693 * and it's less than ts_recent, drop it.
1694 */
1695 if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
1696 TSTMP_LT(opti.ts_val, tp->ts_recent)) {
1697
1698 /* Check to see if ts_recent is over 24 days old. */
1699 if ((int)(TCP_TIMESTAMP(tp) - tp->ts_recent_age) >
1700 TCP_PAWS_IDLE) {
1701 /*
1702 * Invalidate ts_recent. If this segment updates
1703 * ts_recent, the age will be reset later and ts_recent
1704 * will get a valid value. If it does not, setting
1705 * ts_recent to zero will at least satisfy the
1706 * requirement that zero be placed in the timestamp
1707 * echo reply when ts_recent isn't valid. The
1708 * age isn't reset until we get a valid ts_recent
1709 * because we don't want out-of-order segments to be
1710 * dropped when ts_recent is old.
1711 */
1712 tp->ts_recent = 0;
1713 } else {
1714 tcpstat.tcps_rcvduppack++;
1715 tcpstat.tcps_rcvdupbyte += tlen;
1716 tcpstat.tcps_pawsdrop++;
1717 goto dropafterack;
1718 }
1719 }
1720
1721 todrop = tp->rcv_nxt - th->th_seq;
1722 if (todrop > 0) {
1723 if (tiflags & TH_SYN) {
1724 tiflags &= ~TH_SYN;
1725 th->th_seq++;
1726 if (th->th_urp > 1)
1727 th->th_urp--;
1728 else {
1729 tiflags &= ~TH_URG;
1730 th->th_urp = 0;
1731 }
1732 todrop--;
1733 }
1734 if (todrop > tlen ||
1735 (todrop == tlen && (tiflags & TH_FIN) == 0)) {
1736 /*
1737 * Any valid FIN must be to the left of the window.
1738 * At this point the FIN must be a duplicate or
1739 * out of sequence; drop it.
1740 */
1741 tiflags &= ~TH_FIN;
1742 /*
1743 * Send an ACK to resynchronize and drop any data.
1744 * But keep on processing for RST or ACK.
1745 */
1746 tp->t_flags |= TF_ACKNOW;
1747 todrop = tlen;
1748 tcpstat.tcps_rcvdupbyte += todrop;
1749 tcpstat.tcps_rcvduppack++;
1750 } else {
1751 tcpstat.tcps_rcvpartduppack++;
1752 tcpstat.tcps_rcvpartdupbyte += todrop;
1753 }
1754 hdroptlen += todrop; /*drop from head afterwards*/
1755 th->th_seq += todrop;
1756 tlen -= todrop;
1757 if (th->th_urp > todrop)
1758 th->th_urp -= todrop;
1759 else {
1760 tiflags &= ~TH_URG;
1761 th->th_urp = 0;
1762 }
1763 }
1764
1765 /*
1766 * If new data are received on a connection after the
1767 * user processes are gone, then RST the other end.
1768 */
1769 if ((so->so_state & SS_NOFDREF) &&
1770 tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1771 tp = tcp_close(tp);
1772 tcpstat.tcps_rcvafterclose++;
1773 goto dropwithreset;
1774 }
1775
1776 /*
1777 * If segment ends after window, drop trailing data
1778 * (and PUSH and FIN); if nothing left, just ACK.
1779 */
1780 todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
1781 if (todrop > 0) {
1782 tcpstat.tcps_rcvpackafterwin++;
1783 if (todrop >= tlen) {
1784 tcpstat.tcps_rcvbyteafterwin += tlen;
1785 /*
1786 * If a new connection request is received
1787 * while in TIME_WAIT, drop the old connection
1788 * and start over if the sequence numbers
1789 * are above the previous ones.
1790 *
1791 * NOTE: We will checksum the packet again, and
1792 * so we need to put the header fields back into
1793 * network order!
1794 * XXX This kind of sucks, but we don't expect
1795 * XXX this to happen very often, so maybe it
1796 * XXX doesn't matter so much.
1797 */
1798 if (tiflags & TH_SYN &&
1799 tp->t_state == TCPS_TIME_WAIT &&
1800 SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1801 iss = tcp_new_iss(tp, tp->snd_nxt);
1802 tp = tcp_close(tp);
1803 TCP_FIELDS_TO_NET(th);
1804 goto findpcb;
1805 }
1806 /*
1807 * If window is closed can only take segments at
1808 * window edge, and have to drop data and PUSH from
1809 * incoming segments. Continue processing, but
1810 * remember to ack. Otherwise, drop segment
1811 * and ack.
1812 */
1813 if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1814 tp->t_flags |= TF_ACKNOW;
1815 tcpstat.tcps_rcvwinprobe++;
1816 } else
1817 goto dropafterack;
1818 } else
1819 tcpstat.tcps_rcvbyteafterwin += todrop;
1820 m_adj(m, -todrop);
1821 tlen -= todrop;
1822 tiflags &= ~(TH_PUSH|TH_FIN);
1823 }
1824
1825 /*
1826 * If last ACK falls within this segment's sequence numbers,
1827 * and the timestamp is newer, record it.
1828 */
1829 if (opti.ts_present && TSTMP_GEQ(opti.ts_val, tp->ts_recent) &&
1830 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1831 SEQ_LT(tp->last_ack_sent, th->th_seq + tlen +
1832 ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
1833 tp->ts_recent_age = TCP_TIMESTAMP(tp);
1834 tp->ts_recent = opti.ts_val;
1835 }
1836
1837 /*
1838 * If the RST bit is set examine the state:
1839 * SYN_RECEIVED STATE:
1840 * If passive open, return to LISTEN state.
1841 * If active open, inform user that connection was refused.
1842 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
1843 * Inform user that connection was reset, and close tcb.
1844 * CLOSING, LAST_ACK, TIME_WAIT STATES
1845 * Close the tcb.
1846 */
1847 if (tiflags&TH_RST) switch (tp->t_state) {
1848
1849 case TCPS_SYN_RECEIVED:
1850 so->so_error = ECONNREFUSED;
1851 goto close;
1852
1853 case TCPS_ESTABLISHED:
1854 case TCPS_FIN_WAIT_1:
1855 case TCPS_FIN_WAIT_2:
1856 case TCPS_CLOSE_WAIT:
1857 so->so_error = ECONNRESET;
1858 close:
1859 tp->t_state = TCPS_CLOSED;
1860 tcpstat.tcps_drops++;
1861 tp = tcp_close(tp);
1862 goto drop;
1863
1864 case TCPS_CLOSING:
1865 case TCPS_LAST_ACK:
1866 case TCPS_TIME_WAIT:
1867 tp = tcp_close(tp);
1868 goto drop;
1869 }
1870
1871 /*
1872 * If a SYN is in the window, then this is an
1873 * error and we send an RST and drop the connection.
1874 */
1875 if (tiflags & TH_SYN) {
1876 tp = tcp_drop(tp, ECONNRESET);
1877 goto dropwithreset;
1878 }
1879
1880 /*
1881 * If the ACK bit is off we drop the segment and return.
1882 */
1883 if ((tiflags & TH_ACK) == 0) {
1884 if (tp->t_flags & TF_ACKNOW)
1885 goto dropafterack;
1886 else
1887 goto drop;
1888 }
1889
1890 /*
1891 * Ack processing.
1892 */
1893 switch (tp->t_state) {
1894
1895 /*
1896 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
1897 * ESTABLISHED state and continue processing, otherwise
1898 * send an RST.
1899 */
1900 case TCPS_SYN_RECEIVED:
1901 if (SEQ_GT(tp->snd_una, th->th_ack) ||
1902 SEQ_GT(th->th_ack, tp->snd_max))
1903 goto dropwithreset;
1904 tcpstat.tcps_connects++;
1905 soisconnected(so);
1906 tcp_established(tp);
1907 /* Do window scaling? */
1908 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1909 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1910 tp->snd_scale = tp->requested_s_scale;
1911 tp->rcv_scale = tp->request_r_scale;
1912 }
1913 TCP_REASS_LOCK(tp);
1914 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1915 TCP_REASS_UNLOCK(tp);
1916 tp->snd_wl1 = th->th_seq - 1;
1917 /* fall into ... */
1918
1919 /*
1920 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1921 * ACKs. If the ack is in the range
1922 * tp->snd_una < th->th_ack <= tp->snd_max
1923 * then advance tp->snd_una to th->th_ack and drop
1924 * data from the retransmission queue. If this ACK reflects
1925 * more up to date window information we update our window information.
1926 */
1927 case TCPS_ESTABLISHED:
1928 case TCPS_FIN_WAIT_1:
1929 case TCPS_FIN_WAIT_2:
1930 case TCPS_CLOSE_WAIT:
1931 case TCPS_CLOSING:
1932 case TCPS_LAST_ACK:
1933 case TCPS_TIME_WAIT:
1934
1935 if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
1936 if (tlen == 0 && tiwin == tp->snd_wnd) {
1937 tcpstat.tcps_rcvdupack++;
1938 /*
1939 * If we have outstanding data (other than
1940 * a window probe), this is a completely
1941 * duplicate ack (ie, window info didn't
1942 * change), the ack is the biggest we've
1943 * seen and we've seen exactly our rexmt
1944 * threshhold of them, assume a packet
1945 * has been dropped and retransmit it.
1946 * Kludge snd_nxt & the congestion
1947 * window so we send only this one
1948 * packet.
1949 *
1950 * We know we're losing at the current
1951 * window size so do congestion avoidance
1952 * (set ssthresh to half the current window
1953 * and pull our congestion window back to
1954 * the new ssthresh).
1955 *
1956 * Dup acks mean that packets have left the
1957 * network (they're now cached at the receiver)
1958 * so bump cwnd by the amount in the receiver
1959 * to keep a constant cwnd packets in the
1960 * network.
1961 */
1962 if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
1963 th->th_ack != tp->snd_una)
1964 tp->t_dupacks = 0;
1965 else if (++tp->t_dupacks == tcprexmtthresh) {
1966 tcp_seq onxt = tp->snd_nxt;
1967 u_int win =
1968 min(tp->snd_wnd, tp->snd_cwnd) /
1969 2 / tp->t_segsz;
1970 if (tcp_do_newreno && SEQ_LT(th->th_ack,
1971 tp->snd_recover)) {
1972 /*
1973 * False fast retransmit after
1974 * timeout. Do not cut window.
1975 */
1976 tp->snd_cwnd += tp->t_segsz;
1977 tp->t_dupacks = 0;
1978 (void) tcp_output(tp);
1979 goto drop;
1980 }
1981
1982 if (win < 2)
1983 win = 2;
1984 tp->snd_ssthresh = win * tp->t_segsz;
1985 tp->snd_recover = tp->snd_max;
1986 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1987 tp->t_rtttime = 0;
1988 tp->snd_nxt = th->th_ack;
1989 tp->snd_cwnd = tp->t_segsz;
1990 (void) tcp_output(tp);
1991 tp->snd_cwnd = tp->snd_ssthresh +
1992 tp->t_segsz * tp->t_dupacks;
1993 if (SEQ_GT(onxt, tp->snd_nxt))
1994 tp->snd_nxt = onxt;
1995 goto drop;
1996 } else if (tp->t_dupacks > tcprexmtthresh) {
1997 tp->snd_cwnd += tp->t_segsz;
1998 (void) tcp_output(tp);
1999 goto drop;
2000 }
2001 } else
2002 tp->t_dupacks = 0;
2003 break;
2004 }
2005 /*
2006 * If the congestion window was inflated to account
2007 * for the other side's cached packets, retract it.
2008 */
2009 if (tcp_do_newreno == 0) {
2010 if (tp->t_dupacks >= tcprexmtthresh &&
2011 tp->snd_cwnd > tp->snd_ssthresh)
2012 tp->snd_cwnd = tp->snd_ssthresh;
2013 tp->t_dupacks = 0;
2014 } else if (tp->t_dupacks >= tcprexmtthresh &&
2015 tcp_newreno(tp, th) == 0) {
2016 tp->snd_cwnd = tp->snd_ssthresh;
2017 /*
2018 * Window inflation should have left us with approx.
2019 * snd_ssthresh outstanding data. But in case we
2020 * would be inclined to send a burst, better to do
2021 * it via the slow start mechanism.
2022 */
2023 if (SEQ_SUB(tp->snd_max, th->th_ack) < tp->snd_ssthresh)
2024 tp->snd_cwnd = SEQ_SUB(tp->snd_max, th->th_ack)
2025 + tp->t_segsz;
2026 tp->t_dupacks = 0;
2027 }
2028 if (SEQ_GT(th->th_ack, tp->snd_max)) {
2029 tcpstat.tcps_rcvacktoomuch++;
2030 goto dropafterack;
2031 }
2032 acked = th->th_ack - tp->snd_una;
2033 tcpstat.tcps_rcvackpack++;
2034 tcpstat.tcps_rcvackbyte += acked;
2035
2036 /*
2037 * If we have a timestamp reply, update smoothed
2038 * round trip time. If no timestamp is present but
2039 * transmit timer is running and timed sequence
2040 * number was acked, update smoothed round trip time.
2041 * Since we now have an rtt measurement, cancel the
2042 * timer backoff (cf., Phil Karn's retransmit alg.).
2043 * Recompute the initial retransmit timer.
2044 */
2045 if (opti.ts_present && opti.ts_ecr)
2046 tcp_xmit_timer(tp, TCP_TIMESTAMP(tp) - opti.ts_ecr + 1);
2047 else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2048 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2049
2050 /*
2051 * If all outstanding data is acked, stop retransmit
2052 * timer and remember to restart (more output or persist).
2053 * If there is more data to be acked, restart retransmit
2054 * timer, using current (possibly backed-off) value.
2055 */
2056 if (th->th_ack == tp->snd_max) {
2057 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2058 needoutput = 1;
2059 } else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
2060 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
2061 /*
2062 * When new data is acked, open the congestion window.
2063 * If the window gives us less than ssthresh packets
2064 * in flight, open exponentially (segsz per packet).
2065 * Otherwise open linearly: segsz per window
2066 * (segsz^2 / cwnd per packet), plus a constant
2067 * fraction of a packet (segsz/8) to help larger windows
2068 * open quickly enough.
2069 */
2070 {
2071 u_int cw = tp->snd_cwnd;
2072 u_int incr = tp->t_segsz;
2073
2074 if (cw > tp->snd_ssthresh)
2075 incr = incr * incr / cw;
2076 if (tcp_do_newreno == 0 || SEQ_GEQ(th->th_ack, tp->snd_recover))
2077 tp->snd_cwnd = min(cw + incr,
2078 TCP_MAXWIN << tp->snd_scale);
2079 }
2080 ND6_HINT(tp);
2081 if (acked > so->so_snd.sb_cc) {
2082 tp->snd_wnd -= so->so_snd.sb_cc;
2083 sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
2084 ourfinisacked = 1;
2085 } else {
2086 int slen;
2087
2088 slen = tp->t_lastm->m_len;
2089 sbdrop(&so->so_snd, acked);
2090 tp->snd_wnd -= acked;
2091 if (so->so_snd.sb_cc != 0) {
2092 tp->t_lastoff -= acked;
2093 if (tp->t_lastm->m_len != slen)
2094 tp->t_inoff -=
2095 (slen - tp->t_lastm->m_len);
2096 }
2097 ourfinisacked = 0;
2098 }
2099 sowwakeup(so);
2100 /*
2101 * We want snd_recover to track snd_una to
2102 * avoid sequence wraparound problems for
2103 * very large transfers.
2104 */
2105 tp->snd_una = tp->snd_recover = th->th_ack;
2106 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2107 tp->snd_nxt = tp->snd_una;
2108
2109 switch (tp->t_state) {
2110
2111 /*
2112 * In FIN_WAIT_1 STATE in addition to the processing
2113 * for the ESTABLISHED state if our FIN is now acknowledged
2114 * then enter FIN_WAIT_2.
2115 */
2116 case TCPS_FIN_WAIT_1:
2117 if (ourfinisacked) {
2118 /*
2119 * If we can't receive any more
2120 * data, then closing user can proceed.
2121 * Starting the timer is contrary to the
2122 * specification, but if we don't get a FIN
2123 * we'll hang forever.
2124 */
2125 if (so->so_state & SS_CANTRCVMORE) {
2126 soisdisconnected(so);
2127 if (tcp_maxidle > 0)
2128 TCP_TIMER_ARM(tp, TCPT_2MSL,
2129 tcp_maxidle);
2130 }
2131 tp->t_state = TCPS_FIN_WAIT_2;
2132 }
2133 break;
2134
2135 /*
2136 * In CLOSING STATE in addition to the processing for
2137 * the ESTABLISHED state if the ACK acknowledges our FIN
2138 * then enter the TIME-WAIT state, otherwise ignore
2139 * the segment.
2140 */
2141 case TCPS_CLOSING:
2142 if (ourfinisacked) {
2143 tp->t_state = TCPS_TIME_WAIT;
2144 tcp_canceltimers(tp);
2145 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2146 soisdisconnected(so);
2147 }
2148 break;
2149
2150 /*
2151 * In LAST_ACK, we may still be waiting for data to drain
2152 * and/or to be acked, as well as for the ack of our FIN.
2153 * If our FIN is now acknowledged, delete the TCB,
2154 * enter the closed state and return.
2155 */
2156 case TCPS_LAST_ACK:
2157 if (ourfinisacked) {
2158 tp = tcp_close(tp);
2159 goto drop;
2160 }
2161 break;
2162
2163 /*
2164 * In TIME_WAIT state the only thing that should arrive
2165 * is a retransmission of the remote FIN. Acknowledge
2166 * it and restart the finack timer.
2167 */
2168 case TCPS_TIME_WAIT:
2169 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2170 goto dropafterack;
2171 }
2172 }
2173
2174 step6:
2175 /*
2176 * Update window information.
2177 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2178 */
2179 if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2180 (tp->snd_wl1 == th->th_seq && SEQ_LT(tp->snd_wl2, th->th_ack)) ||
2181 (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))) {
2182 /* keep track of pure window updates */
2183 if (tlen == 0 &&
2184 tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2185 tcpstat.tcps_rcvwinupd++;
2186 tp->snd_wnd = tiwin;
2187 tp->snd_wl1 = th->th_seq;
2188 tp->snd_wl2 = th->th_ack;
2189 if (tp->snd_wnd > tp->max_sndwnd)
2190 tp->max_sndwnd = tp->snd_wnd;
2191 needoutput = 1;
2192 }
2193
2194 /*
2195 * Process segments with URG.
2196 */
2197 if ((tiflags & TH_URG) && th->th_urp &&
2198 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2199 /*
2200 * This is a kludge, but if we receive and accept
2201 * random urgent pointers, we'll crash in
2202 * soreceive. It's hard to imagine someone
2203 * actually wanting to send this much urgent data.
2204 */
2205 if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2206 th->th_urp = 0; /* XXX */
2207 tiflags &= ~TH_URG; /* XXX */
2208 goto dodata; /* XXX */
2209 }
2210 /*
2211 * If this segment advances the known urgent pointer,
2212 * then mark the data stream. This should not happen
2213 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2214 * a FIN has been received from the remote side.
2215 * In these states we ignore the URG.
2216 *
2217 * According to RFC961 (Assigned Protocols),
2218 * the urgent pointer points to the last octet
2219 * of urgent data. We continue, however,
2220 * to consider it to indicate the first octet
2221 * of data past the urgent section as the original
2222 * spec states (in one of two places).
2223 */
2224 if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2225 tp->rcv_up = th->th_seq + th->th_urp;
2226 so->so_oobmark = so->so_rcv.sb_cc +
2227 (tp->rcv_up - tp->rcv_nxt) - 1;
2228 if (so->so_oobmark == 0)
2229 so->so_state |= SS_RCVATMARK;
2230 sohasoutofband(so);
2231 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2232 }
2233 /*
2234 * Remove out of band data so doesn't get presented to user.
2235 * This can happen independent of advancing the URG pointer,
2236 * but if two URG's are pending at once, some out-of-band
2237 * data may creep in... ick.
2238 */
2239 if (th->th_urp <= (u_int16_t) tlen
2240 #ifdef SO_OOBINLINE
2241 && (so->so_options & SO_OOBINLINE) == 0
2242 #endif
2243 )
2244 tcp_pulloutofband(so, th, m, hdroptlen);
2245 } else
2246 /*
2247 * If no out of band data is expected,
2248 * pull receive urgent pointer along
2249 * with the receive window.
2250 */
2251 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2252 tp->rcv_up = tp->rcv_nxt;
2253 dodata: /* XXX */
2254
2255 /*
2256 * Process the segment text, merging it into the TCP sequencing queue,
2257 * and arranging for acknowledgement of receipt if necessary.
2258 * This process logically involves adjusting tp->rcv_wnd as data
2259 * is presented to the user (this happens in tcp_usrreq.c,
2260 * case PRU_RCVD). If a FIN has already been received on this
2261 * connection then we just ignore the text.
2262 */
2263 if ((tlen || (tiflags & TH_FIN)) &&
2264 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2265 /*
2266 * Insert segment ti into reassembly queue of tcp with
2267 * control block tp. Return TH_FIN if reassembly now includes
2268 * a segment with FIN. The macro form does the common case
2269 * inline (segment is the next to be received on an
2270 * established connection, and the queue is empty),
2271 * avoiding linkage into and removal from the queue and
2272 * repetition of various conversions.
2273 * Set DELACK for segments received in order, but ack
2274 * immediately when segments are out of order
2275 * (so fast retransmit can work).
2276 */
2277 /* NOTE: this was TCP_REASS() macro, but used only once */
2278 TCP_REASS_LOCK(tp);
2279 if (th->th_seq == tp->rcv_nxt &&
2280 TAILQ_FIRST(&tp->segq) == NULL &&
2281 tp->t_state == TCPS_ESTABLISHED) {
2282 TCP_SETUP_ACK(tp, th);
2283 tp->rcv_nxt += tlen;
2284 tiflags = th->th_flags & TH_FIN;
2285 tcpstat.tcps_rcvpack++;
2286 tcpstat.tcps_rcvbyte += tlen;
2287 ND6_HINT(tp);
2288 if (so->so_state & SS_CANTRCVMORE)
2289 m_freem(m);
2290 else {
2291 m_adj(m, hdroptlen);
2292 sbappendstream(&(so)->so_rcv, m);
2293 }
2294 sorwakeup(so);
2295 } else {
2296 m_adj(m, hdroptlen);
2297 tiflags = tcp_reass(tp, th, m, &tlen);
2298 tp->t_flags |= TF_ACKNOW;
2299 }
2300 TCP_REASS_UNLOCK(tp);
2301
2302 /*
2303 * Note the amount of data that peer has sent into
2304 * our window, in order to estimate the sender's
2305 * buffer size.
2306 */
2307 len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2308 } else {
2309 m_freem(m);
2310 m = NULL;
2311 tiflags &= ~TH_FIN;
2312 }
2313
2314 /*
2315 * If FIN is received ACK the FIN and let the user know
2316 * that the connection is closing. Ignore a FIN received before
2317 * the connection is fully established.
2318 */
2319 if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2320 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2321 socantrcvmore(so);
2322 tp->t_flags |= TF_ACKNOW;
2323 tp->rcv_nxt++;
2324 }
2325 switch (tp->t_state) {
2326
2327 /*
2328 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2329 */
2330 case TCPS_ESTABLISHED:
2331 tp->t_state = TCPS_CLOSE_WAIT;
2332 break;
2333
2334 /*
2335 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2336 * enter the CLOSING state.
2337 */
2338 case TCPS_FIN_WAIT_1:
2339 tp->t_state = TCPS_CLOSING;
2340 break;
2341
2342 /*
2343 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2344 * starting the time-wait timer, turning off the other
2345 * standard timers.
2346 */
2347 case TCPS_FIN_WAIT_2:
2348 tp->t_state = TCPS_TIME_WAIT;
2349 tcp_canceltimers(tp);
2350 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2351 soisdisconnected(so);
2352 break;
2353
2354 /*
2355 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2356 */
2357 case TCPS_TIME_WAIT:
2358 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2359 break;
2360 }
2361 }
2362 #ifdef TCP_DEBUG
2363 if (so->so_options & SO_DEBUG)
2364 tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
2365 #endif
2366
2367 /*
2368 * Return any desired output.
2369 */
2370 if (needoutput || (tp->t_flags & TF_ACKNOW))
2371 (void) tcp_output(tp);
2372 if (tcp_saveti)
2373 m_freem(tcp_saveti);
2374 return;
2375
2376 badsyn:
2377 /*
2378 * Received a bad SYN. Increment counters and dropwithreset.
2379 */
2380 tcpstat.tcps_badsyn++;
2381 tp = NULL;
2382 goto dropwithreset;
2383
2384 dropafterack:
2385 /*
2386 * Generate an ACK dropping incoming segment if it occupies
2387 * sequence space, where the ACK reflects our state.
2388 */
2389 if (tiflags & TH_RST)
2390 goto drop;
2391 m_freem(m);
2392 tp->t_flags |= TF_ACKNOW;
2393 (void) tcp_output(tp);
2394 if (tcp_saveti)
2395 m_freem(tcp_saveti);
2396 return;
2397
2398 dropwithreset_ratelim:
2399 /*
2400 * We may want to rate-limit RSTs in certain situations,
2401 * particularly if we are sending an RST in response to
2402 * an attempt to connect to or otherwise communicate with
2403 * a port for which we have no socket.
2404 */
2405 if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
2406 tcp_rst_ppslim) == 0) {
2407 /* XXX stat */
2408 goto drop;
2409 }
2410 /* ...fall into dropwithreset... */
2411
2412 dropwithreset:
2413 /*
2414 * Generate a RST, dropping incoming segment.
2415 * Make ACK acceptable to originator of segment.
2416 */
2417 if (tiflags & TH_RST)
2418 goto drop;
2419
2420 switch (af) {
2421 #ifdef INET6
2422 case AF_INET6:
2423 /* For following calls to tcp_respond */
2424 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
2425 goto drop;
2426 break;
2427 #endif /* INET6 */
2428 case AF_INET:
2429 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
2430 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2431 goto drop;
2432 }
2433
2434 if (tiflags & TH_ACK)
2435 (void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
2436 else {
2437 if (tiflags & TH_SYN)
2438 tlen++;
2439 (void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
2440 TH_RST|TH_ACK);
2441 }
2442 if (tcp_saveti)
2443 m_freem(tcp_saveti);
2444 return;
2445
2446 badcsum:
2447 tcpstat.tcps_rcvbadsum++;
2448 drop:
2449 /*
2450 * Drop space held by incoming segment and return.
2451 */
2452 if (tp) {
2453 if (tp->t_inpcb)
2454 so = tp->t_inpcb->inp_socket;
2455 #ifdef INET6
2456 else if (tp->t_in6pcb)
2457 so = tp->t_in6pcb->in6p_socket;
2458 #endif
2459 else
2460 so = NULL;
2461 #ifdef TCP_DEBUG
2462 if (so && (so->so_options & SO_DEBUG) != 0)
2463 tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
2464 #endif
2465 }
2466 if (tcp_saveti)
2467 m_freem(tcp_saveti);
2468 m_freem(m);
2469 return;
2470 }
2471
2472 void
2473 tcp_dooptions(tp, cp, cnt, th, oi)
2474 struct tcpcb *tp;
2475 u_char *cp;
2476 int cnt;
2477 struct tcphdr *th;
2478 struct tcp_opt_info *oi;
2479 {
2480 u_int16_t mss;
2481 int opt, optlen;
2482
2483 for (; cnt > 0; cnt -= optlen, cp += optlen) {
2484 opt = cp[0];
2485 if (opt == TCPOPT_EOL)
2486 break;
2487 if (opt == TCPOPT_NOP)
2488 optlen = 1;
2489 else {
2490 if (cnt < 2)
2491 break;
2492 optlen = cp[1];
2493 if (optlen < 2 || optlen > cnt)
2494 break;
2495 }
2496 switch (opt) {
2497
2498 default:
2499 continue;
2500
2501 case TCPOPT_MAXSEG:
2502 if (optlen != TCPOLEN_MAXSEG)
2503 continue;
2504 if (!(th->th_flags & TH_SYN))
2505 continue;
2506 bcopy(cp + 2, &mss, sizeof(mss));
2507 oi->maxseg = ntohs(mss);
2508 break;
2509
2510 case TCPOPT_WINDOW:
2511 if (optlen != TCPOLEN_WINDOW)
2512 continue;
2513 if (!(th->th_flags & TH_SYN))
2514 continue;
2515 tp->t_flags |= TF_RCVD_SCALE;
2516 tp->requested_s_scale = cp[2];
2517 if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
2518 #if 0 /*XXX*/
2519 char *p;
2520
2521 if (ip)
2522 p = ntohl(ip->ip_src);
2523 #ifdef INET6
2524 else if (ip6)
2525 p = ip6_sprintf(&ip6->ip6_src);
2526 #endif
2527 else
2528 p = "(unknown)";
2529 log(LOG_ERR, "TCP: invalid wscale %d from %s, "
2530 "assuming %d\n",
2531 tp->requested_s_scale, p,
2532 TCP_MAX_WINSHIFT);
2533 #else
2534 log(LOG_ERR, "TCP: invalid wscale %d, "
2535 "assuming %d\n",
2536 tp->requested_s_scale,
2537 TCP_MAX_WINSHIFT);
2538 #endif
2539 tp->requested_s_scale = TCP_MAX_WINSHIFT;
2540 }
2541 break;
2542
2543 case TCPOPT_TIMESTAMP:
2544 if (optlen != TCPOLEN_TIMESTAMP)
2545 continue;
2546 oi->ts_present = 1;
2547 bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
2548 NTOHL(oi->ts_val);
2549 bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
2550 NTOHL(oi->ts_ecr);
2551
2552 /*
2553 * A timestamp received in a SYN makes
2554 * it ok to send timestamp requests and replies.
2555 */
2556 if (th->th_flags & TH_SYN) {
2557 tp->t_flags |= TF_RCVD_TSTMP;
2558 tp->ts_recent = oi->ts_val;
2559 tp->ts_recent_age = TCP_TIMESTAMP(tp);
2560 }
2561 break;
2562 case TCPOPT_SACK_PERMITTED:
2563 if (optlen != TCPOLEN_SACK_PERMITTED)
2564 continue;
2565 if (!(th->th_flags & TH_SYN))
2566 continue;
2567 tp->t_flags &= ~TF_CANT_TXSACK;
2568 break;
2569
2570 case TCPOPT_SACK:
2571 if (tp->t_flags & TF_IGNR_RXSACK)
2572 continue;
2573 if (optlen % 8 != 2 || optlen < 10)
2574 continue;
2575 cp += 2;
2576 optlen -= 2;
2577 for (; optlen > 0; cp -= 8, optlen -= 8) {
2578 tcp_seq lwe, rwe;
2579 bcopy((char *)cp, (char *) &lwe, sizeof(lwe));
2580 NTOHL(lwe);
2581 bcopy((char *)cp, (char *) &rwe, sizeof(rwe));
2582 NTOHL(rwe);
2583 /* tcp_mark_sacked(tp, lwe, rwe); */
2584 }
2585 break;
2586 }
2587 }
2588 }
2589
2590 /*
2591 * Pull out of band byte out of a segment so
2592 * it doesn't appear in the user's data queue.
2593 * It is still reflected in the segment length for
2594 * sequencing purposes.
2595 */
2596 void
2597 tcp_pulloutofband(so, th, m, off)
2598 struct socket *so;
2599 struct tcphdr *th;
2600 struct mbuf *m;
2601 int off;
2602 {
2603 int cnt = off + th->th_urp - 1;
2604
2605 while (cnt >= 0) {
2606 if (m->m_len > cnt) {
2607 char *cp = mtod(m, caddr_t) + cnt;
2608 struct tcpcb *tp = sototcpcb(so);
2609
2610 tp->t_iobc = *cp;
2611 tp->t_oobflags |= TCPOOB_HAVEDATA;
2612 bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
2613 m->m_len--;
2614 return;
2615 }
2616 cnt -= m->m_len;
2617 m = m->m_next;
2618 if (m == 0)
2619 break;
2620 }
2621 panic("tcp_pulloutofband");
2622 }
2623
2624 /*
2625 * Collect new round-trip time estimate
2626 * and update averages and current timeout.
2627 */
2628 void
2629 tcp_xmit_timer(tp, rtt)
2630 struct tcpcb *tp;
2631 uint32_t rtt;
2632 {
2633 int32_t delta;
2634
2635 tcpstat.tcps_rttupdated++;
2636 if (tp->t_srtt != 0) {
2637 /*
2638 * srtt is stored as fixed point with 3 bits after the
2639 * binary point (i.e., scaled by 8). The following magic
2640 * is equivalent to the smoothing algorithm in rfc793 with
2641 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2642 * point). Adjust rtt to origin 0.
2643 */
2644 delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
2645 if ((tp->t_srtt += delta) <= 0)
2646 tp->t_srtt = 1 << 2;
2647 /*
2648 * We accumulate a smoothed rtt variance (actually, a
2649 * smoothed mean difference), then set the retransmit
2650 * timer to smoothed rtt + 4 times the smoothed variance.
2651 * rttvar is stored as fixed point with 2 bits after the
2652 * binary point (scaled by 4). The following is
2653 * equivalent to rfc793 smoothing with an alpha of .75
2654 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces
2655 * rfc793's wired-in beta.
2656 */
2657 if (delta < 0)
2658 delta = -delta;
2659 delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
2660 if ((tp->t_rttvar += delta) <= 0)
2661 tp->t_rttvar = 1 << 2;
2662 } else {
2663 /*
2664 * No rtt measurement yet - use the unsmoothed rtt.
2665 * Set the variance to half the rtt (so our first
2666 * retransmit happens at 3*rtt).
2667 */
2668 tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
2669 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
2670 }
2671 tp->t_rtttime = 0;
2672 tp->t_rxtshift = 0;
2673
2674 /*
2675 * the retransmit should happen at rtt + 4 * rttvar.
2676 * Because of the way we do the smoothing, srtt and rttvar
2677 * will each average +1/2 tick of bias. When we compute
2678 * the retransmit timer, we want 1/2 tick of rounding and
2679 * 1 extra tick because of +-1/2 tick uncertainty in the
2680 * firing of the timer. The bias will give us exactly the
2681 * 1.5 tick we need. But, because the bias is
2682 * statistical, we have to test that we don't drop below
2683 * the minimum feasible timer (which is 2 ticks).
2684 */
2685 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
2686 max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
2687
2688 /*
2689 * We received an ack for a packet that wasn't retransmitted;
2690 * it is probably safe to discard any error indications we've
2691 * received recently. This isn't quite right, but close enough
2692 * for now (a route might have failed after we sent a segment,
2693 * and the return path might not be symmetrical).
2694 */
2695 tp->t_softerror = 0;
2696 }
2697
2698 /*
2699 * Checks for partial ack. If partial ack arrives, force the retransmission
2700 * of the next unacknowledged segment, do not clear tp->t_dupacks, and return
2701 * 1. By setting snd_nxt to th_ack, this forces retransmission timer to
2702 * be started again. If the ack advances at least to tp->snd_recover, return 0.
2703 */
2704 int
2705 tcp_newreno(tp, th)
2706 struct tcpcb *tp;
2707 struct tcphdr *th;
2708 {
2709 tcp_seq onxt = tp->snd_nxt;
2710 u_long ocwnd = tp->snd_cwnd;
2711
2712 if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2713 /*
2714 * snd_una has not yet been updated and the socket's send
2715 * buffer has not yet drained off the ACK'd data, so we
2716 * have to leave snd_una as it was to get the correct data
2717 * offset in tcp_output().
2718 */
2719 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2720 tp->t_rtttime = 0;
2721 tp->snd_nxt = th->th_ack;
2722 /*
2723 * Set snd_cwnd to one segment beyond ACK'd offset. snd_una
2724 * is not yet updated when we're called.
2725 */
2726 tp->snd_cwnd = tp->t_segsz + (th->th_ack - tp->snd_una);
2727 (void) tcp_output(tp);
2728 tp->snd_cwnd = ocwnd;
2729 if (SEQ_GT(onxt, tp->snd_nxt))
2730 tp->snd_nxt = onxt;
2731 /*
2732 * Partial window deflation. Relies on fact that tp->snd_una
2733 * not updated yet.
2734 */
2735 tp->snd_cwnd -= (th->th_ack - tp->snd_una - tp->t_segsz);
2736 return 1;
2737 }
2738 return 0;
2739 }
2740
2741
2742 /*
2743 * TCP compressed state engine. Currently used to hold compressed
2744 * state for SYN_RECEIVED.
2745 */
2746
2747 u_long syn_cache_count;
2748 u_int32_t syn_hash1, syn_hash2;
2749
2750 #define SYN_HASH(sa, sp, dp) \
2751 ((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
2752 ((u_int32_t)(sp)))^syn_hash2)))
2753 #ifndef INET6
2754 #define SYN_HASHALL(hash, src, dst) \
2755 do { \
2756 hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
2757 ((struct sockaddr_in *)(src))->sin_port, \
2758 ((struct sockaddr_in *)(dst))->sin_port); \
2759 } while (/*CONSTCOND*/ 0)
2760 #else
2761 #define SYN_HASH6(sa, sp, dp) \
2762 ((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
2763 (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
2764 & 0x7fffffff)
2765
2766 #define SYN_HASHALL(hash, src, dst) \
2767 do { \
2768 switch ((src)->sa_family) { \
2769 case AF_INET: \
2770 hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
2771 ((struct sockaddr_in *)(src))->sin_port, \
2772 ((struct sockaddr_in *)(dst))->sin_port); \
2773 break; \
2774 case AF_INET6: \
2775 hash = SYN_HASH6(&((struct sockaddr_in6 *)(src))->sin6_addr, \
2776 ((struct sockaddr_in6 *)(src))->sin6_port, \
2777 ((struct sockaddr_in6 *)(dst))->sin6_port); \
2778 break; \
2779 default: \
2780 hash = 0; \
2781 } \
2782 } while (/*CONSTCOND*/0)
2783 #endif /* INET6 */
2784
2785 #define SYN_CACHE_RM(sc) \
2786 do { \
2787 TAILQ_REMOVE(&tcp_syn_cache[(sc)->sc_bucketidx].sch_bucket, \
2788 (sc), sc_bucketq); \
2789 (sc)->sc_tp = NULL; \
2790 LIST_REMOVE((sc), sc_tpq); \
2791 tcp_syn_cache[(sc)->sc_bucketidx].sch_length--; \
2792 callout_stop(&(sc)->sc_timer); \
2793 syn_cache_count--; \
2794 } while (/*CONSTCOND*/0)
2795
2796 #define SYN_CACHE_PUT(sc) \
2797 do { \
2798 if ((sc)->sc_ipopts) \
2799 (void) m_free((sc)->sc_ipopts); \
2800 if ((sc)->sc_route4.ro_rt != NULL) \
2801 RTFREE((sc)->sc_route4.ro_rt); \
2802 pool_put(&syn_cache_pool, (sc)); \
2803 } while (/*CONSTCOND*/0)
2804
2805 struct pool syn_cache_pool;
2806
2807 /*
2808 * We don't estimate RTT with SYNs, so each packet starts with the default
2809 * RTT and each timer step has a fixed timeout value.
2810 */
2811 #define SYN_CACHE_TIMER_ARM(sc) \
2812 do { \
2813 TCPT_RANGESET((sc)->sc_rxtcur, \
2814 TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN, \
2815 TCPTV_REXMTMAX); \
2816 callout_reset(&(sc)->sc_timer, \
2817 (sc)->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, (sc)); \
2818 } while (/*CONSTCOND*/0)
2819
2820 #define SYN_CACHE_TIMESTAMP(sc) (tcp_now - (sc)->sc_timebase)
2821
2822 void
2823 syn_cache_init()
2824 {
2825 int i;
2826
2827 /* Initialize the hash buckets. */
2828 for (i = 0; i < tcp_syn_cache_size; i++)
2829 TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
2830
2831 /* Initialize the syn cache pool. */
2832 pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
2833 "synpl", NULL);
2834 }
2835
2836 void
2837 syn_cache_insert(sc, tp)
2838 struct syn_cache *sc;
2839 struct tcpcb *tp;
2840 {
2841 struct syn_cache_head *scp;
2842 struct syn_cache *sc2;
2843 int s;
2844
2845 /*
2846 * If there are no entries in the hash table, reinitialize
2847 * the hash secrets.
2848 */
2849 if (syn_cache_count == 0) {
2850 struct timeval tv;
2851 microtime(&tv);
2852 syn_hash1 = arc4random() ^ (u_long)≻
2853 syn_hash2 = arc4random() ^ tv.tv_usec;
2854 }
2855
2856 SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
2857 sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
2858 scp = &tcp_syn_cache[sc->sc_bucketidx];
2859
2860 /*
2861 * Make sure that we don't overflow the per-bucket
2862 * limit or the total cache size limit.
2863 */
2864 s = splsoftnet();
2865 if (scp->sch_length >= tcp_syn_bucket_limit) {
2866 tcpstat.tcps_sc_bucketoverflow++;
2867 /*
2868 * The bucket is full. Toss the oldest element in the
2869 * bucket. This will be the first entry in the bucket.
2870 */
2871 sc2 = TAILQ_FIRST(&scp->sch_bucket);
2872 #ifdef DIAGNOSTIC
2873 /*
2874 * This should never happen; we should always find an
2875 * entry in our bucket.
2876 */
2877 if (sc2 == NULL)
2878 panic("syn_cache_insert: bucketoverflow: impossible");
2879 #endif
2880 SYN_CACHE_RM(sc2);
2881 SYN_CACHE_PUT(sc2);
2882 } else if (syn_cache_count >= tcp_syn_cache_limit) {
2883 struct syn_cache_head *scp2, *sce;
2884
2885 tcpstat.tcps_sc_overflowed++;
2886 /*
2887 * The cache is full. Toss the oldest entry in the
2888 * first non-empty bucket we can find.
2889 *
2890 * XXX We would really like to toss the oldest
2891 * entry in the cache, but we hope that this
2892 * condition doesn't happen very often.
2893 */
2894 scp2 = scp;
2895 if (TAILQ_EMPTY(&scp2->sch_bucket)) {
2896 sce = &tcp_syn_cache[tcp_syn_cache_size];
2897 for (++scp2; scp2 != scp; scp2++) {
2898 if (scp2 >= sce)
2899 scp2 = &tcp_syn_cache[0];
2900 if (! TAILQ_EMPTY(&scp2->sch_bucket))
2901 break;
2902 }
2903 #ifdef DIAGNOSTIC
2904 /*
2905 * This should never happen; we should always find a
2906 * non-empty bucket.
2907 */
2908 if (scp2 == scp)
2909 panic("syn_cache_insert: cacheoverflow: "
2910 "impossible");
2911 #endif
2912 }
2913 sc2 = TAILQ_FIRST(&scp2->sch_bucket);
2914 SYN_CACHE_RM(sc2);
2915 SYN_CACHE_PUT(sc2);
2916 }
2917
2918 /*
2919 * Initialize the entry's timer.
2920 */
2921 sc->sc_rxttot = 0;
2922 sc->sc_rxtshift = 0;
2923 SYN_CACHE_TIMER_ARM(sc);
2924
2925 /* Link it from tcpcb entry */
2926 LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
2927
2928 /* Put it into the bucket. */
2929 TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
2930 scp->sch_length++;
2931 syn_cache_count++;
2932
2933 tcpstat.tcps_sc_added++;
2934 splx(s);
2935 }
2936
2937 /*
2938 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
2939 * If we have retransmitted an entry the maximum number of times, expire
2940 * that entry.
2941 */
2942 void
2943 syn_cache_timer(void *arg)
2944 {
2945 struct syn_cache *sc = arg;
2946 int s;
2947
2948 s = splsoftnet();
2949
2950 if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
2951 /* Drop it -- too many retransmissions. */
2952 goto dropit;
2953 }
2954
2955 /*
2956 * Compute the total amount of time this entry has
2957 * been on a queue. If this entry has been on longer
2958 * than the keep alive timer would allow, expire it.
2959 */
2960 sc->sc_rxttot += sc->sc_rxtcur;
2961 if (sc->sc_rxttot >= TCPTV_KEEP_INIT)
2962 goto dropit;
2963
2964 tcpstat.tcps_sc_retransmitted++;
2965 (void) syn_cache_respond(sc, NULL);
2966
2967 /* Advance the timer back-off. */
2968 sc->sc_rxtshift++;
2969 SYN_CACHE_TIMER_ARM(sc);
2970
2971 splx(s);
2972 return;
2973
2974 dropit:
2975 tcpstat.tcps_sc_timed_out++;
2976 SYN_CACHE_RM(sc);
2977 SYN_CACHE_PUT(sc);
2978 splx(s);
2979 }
2980
2981 /*
2982 * Remove syn cache created by the specified tcb entry,
2983 * because this does not make sense to keep them
2984 * (if there's no tcb entry, syn cache entry will never be used)
2985 */
2986 void
2987 syn_cache_cleanup(tp)
2988 struct tcpcb *tp;
2989 {
2990 struct syn_cache *sc, *nsc;
2991 int s;
2992
2993 s = splsoftnet();
2994
2995 for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
2996 nsc = LIST_NEXT(sc, sc_tpq);
2997
2998 #ifdef DIAGNOSTIC
2999 if (sc->sc_tp != tp)
3000 panic("invalid sc_tp in syn_cache_cleanup");
3001 #endif
3002 SYN_CACHE_RM(sc);
3003 SYN_CACHE_PUT(sc);
3004 }
3005 /* just for safety */
3006 LIST_INIT(&tp->t_sc);
3007
3008 splx(s);
3009 }
3010
3011 /*
3012 * Find an entry in the syn cache.
3013 */
3014 struct syn_cache *
3015 syn_cache_lookup(src, dst, headp)
3016 struct sockaddr *src;
3017 struct sockaddr *dst;
3018 struct syn_cache_head **headp;
3019 {
3020 struct syn_cache *sc;
3021 struct syn_cache_head *scp;
3022 u_int32_t hash;
3023 int s;
3024
3025 SYN_HASHALL(hash, src, dst);
3026
3027 scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
3028 *headp = scp;
3029 s = splsoftnet();
3030 for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
3031 sc = TAILQ_NEXT(sc, sc_bucketq)) {
3032 if (sc->sc_hash != hash)
3033 continue;
3034 if (!bcmp(&sc->sc_src, src, src->sa_len) &&
3035 !bcmp(&sc->sc_dst, dst, dst->sa_len)) {
3036 splx(s);
3037 return (sc);
3038 }
3039 }
3040 splx(s);
3041 return (NULL);
3042 }
3043
3044 /*
3045 * This function gets called when we receive an ACK for a
3046 * socket in the LISTEN state. We look up the connection
3047 * in the syn cache, and if its there, we pull it out of
3048 * the cache and turn it into a full-blown connection in
3049 * the SYN-RECEIVED state.
3050 *
3051 * The return values may not be immediately obvious, and their effects
3052 * can be subtle, so here they are:
3053 *
3054 * NULL SYN was not found in cache; caller should drop the
3055 * packet and send an RST.
3056 *
3057 * -1 We were unable to create the new connection, and are
3058 * aborting it. An ACK,RST is being sent to the peer
3059 * (unless we got screwey sequence numbners; see below),
3060 * because the 3-way handshake has been completed. Caller
3061 * should not free the mbuf, since we may be using it. If
3062 * we are not, we will free it.
3063 *
3064 * Otherwise, the return value is a pointer to the new socket
3065 * associated with the connection.
3066 */
3067 struct socket *
3068 syn_cache_get(src, dst, th, hlen, tlen, so, m)
3069 struct sockaddr *src;
3070 struct sockaddr *dst;
3071 struct tcphdr *th;
3072 unsigned int hlen, tlen;
3073 struct socket *so;
3074 struct mbuf *m;
3075 {
3076 struct syn_cache *sc;
3077 struct syn_cache_head *scp;
3078 struct inpcb *inp = NULL;
3079 #ifdef INET6
3080 struct in6pcb *in6p = NULL;
3081 #endif
3082 struct tcpcb *tp = 0;
3083 struct mbuf *am;
3084 int s;
3085 struct socket *oso;
3086
3087 s = splsoftnet();
3088 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3089 splx(s);
3090 return (NULL);
3091 }
3092
3093 /*
3094 * Verify the sequence and ack numbers. Try getting the correct
3095 * response again.
3096 */
3097 if ((th->th_ack != sc->sc_iss + 1) ||
3098 SEQ_LEQ(th->th_seq, sc->sc_irs) ||
3099 SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
3100 (void) syn_cache_respond(sc, m);
3101 splx(s);
3102 return ((struct socket *)(-1));
3103 }
3104
3105 /* Remove this cache entry */
3106 SYN_CACHE_RM(sc);
3107 splx(s);
3108
3109 /*
3110 * Ok, create the full blown connection, and set things up
3111 * as they would have been set up if we had created the
3112 * connection when the SYN arrived. If we can't create
3113 * the connection, abort it.
3114 */
3115 /*
3116 * inp still has the OLD in_pcb stuff, set the
3117 * v6-related flags on the new guy, too. This is
3118 * done particularly for the case where an AF_INET6
3119 * socket is bound only to a port, and a v4 connection
3120 * comes in on that port.
3121 * we also copy the flowinfo from the original pcb
3122 * to the new one.
3123 */
3124 oso = so;
3125 so = sonewconn(so, SS_ISCONNECTED);
3126 if (so == NULL)
3127 goto resetandabort;
3128
3129 switch (so->so_proto->pr_domain->dom_family) {
3130 #ifdef INET
3131 case AF_INET:
3132 inp = sotoinpcb(so);
3133 break;
3134 #endif
3135 #ifdef INET6
3136 case AF_INET6:
3137 in6p = sotoin6pcb(so);
3138 break;
3139 #endif
3140 }
3141 switch (src->sa_family) {
3142 #ifdef INET
3143 case AF_INET:
3144 if (inp) {
3145 struct in_ifaddr *ia;
3146 inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
3147 inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
3148 inp->inp_options = ip_srcroute();
3149 INADDR_TO_IA(inp->inp_laddr, ia);
3150 KASSERT(ia != NULL);
3151 KASSERT(inp->inp_ia == NULL);
3152 inp->inp_ia = ia;
3153 LIST_INSERT_HEAD(&ia->ia_inpcbs, inp, inp_ialink);
3154 IFAREF(&ia->ia_ifa);
3155 in_pcbstate(inp, INP_BOUND);
3156 if (inp->inp_options == NULL) {
3157 inp->inp_options = sc->sc_ipopts;
3158 sc->sc_ipopts = NULL;
3159 }
3160 }
3161 #ifdef INET6
3162 else if (in6p) {
3163 /* IPv4 packet to AF_INET6 socket */
3164 bzero(&in6p->in6p_laddr, sizeof(in6p->in6p_laddr));
3165 in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
3166 bcopy(&((struct sockaddr_in *)dst)->sin_addr,
3167 &in6p->in6p_laddr.s6_addr32[3],
3168 sizeof(((struct sockaddr_in *)dst)->sin_addr));
3169 in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
3170 in6totcpcb(in6p)->t_family = AF_INET;
3171 if (sotoin6pcb(oso)->in6p_flags & IN6P_IPV6_V6ONLY)
3172 in6p->in6p_flags |= IN6P_IPV6_V6ONLY;
3173 else
3174 in6p->in6p_flags &= ~IN6P_IPV6_V6ONLY;
3175 }
3176 #endif
3177 break;
3178 #endif
3179 #ifdef INET6
3180 case AF_INET6:
3181 if (in6p) {
3182 in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
3183 in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
3184 #if 0
3185 in6p->in6p_flowinfo = ip6->ip6_flow & IPV6_FLOWINFO_MASK;
3186 /*inp->inp_options = ip6_srcroute();*/ /* soon. */
3187 #endif
3188 }
3189 break;
3190 #endif
3191 }
3192 #ifdef INET6
3193 if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
3194 struct in6pcb *oin6p = sotoin6pcb(oso);
3195 /* inherit socket options from the listening socket */
3196 in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
3197 if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
3198 m_freem(in6p->in6p_options);
3199 in6p->in6p_options = 0;
3200 }
3201 ip6_savecontrol(in6p, &in6p->in6p_options,
3202 mtod(m, struct ip6_hdr *), m);
3203 }
3204 #endif
3205
3206 #ifdef IPSEC
3207 /*
3208 * we make a copy of policy, instead of sharing the policy,
3209 * for better behavior in terms of SA lookup and dead SA removal.
3210 */
3211 if (inp) {
3212 /* copy old policy into new socket's */
3213 if (ipsec_copy_pcbpolicy(sotoinpcb(oso)->inp_sp, inp->inp_sp))
3214 printf("tcp_input: could not copy policy\n");
3215 }
3216 #ifdef INET6
3217 else if (in6p) {
3218 /* copy old policy into new socket's */
3219 if (ipsec_copy_pcbpolicy(sotoin6pcb(oso)->in6p_sp,
3220 in6p->in6p_sp))
3221 printf("tcp_input: could not copy policy\n");
3222 }
3223 #endif
3224 #endif
3225
3226 /*
3227 * Give the new socket our cached route reference.
3228 */
3229 if (inp)
3230 inp->inp_route = sc->sc_route4; /* struct assignment */
3231 #ifdef INET6
3232 else
3233 in6p->in6p_route = sc->sc_route6;
3234 #endif
3235 sc->sc_route4.ro_rt = NULL;
3236
3237 am = m_get(M_DONTWAIT, MT_SONAME); /* XXX */
3238 if (am == NULL)
3239 goto resetandabort;
3240 MCLAIM(am, &tcp_mowner);
3241 am->m_len = src->sa_len;
3242 bcopy(src, mtod(am, caddr_t), src->sa_len);
3243 if (inp) {
3244 if (in_pcbconnect(inp, am)) {
3245 (void) m_free(am);
3246 goto resetandabort;
3247 }
3248 }
3249 #ifdef INET6
3250 else if (in6p) {
3251 if (src->sa_family == AF_INET) {
3252 /* IPv4 packet to AF_INET6 socket */
3253 struct sockaddr_in6 *sin6;
3254 sin6 = mtod(am, struct sockaddr_in6 *);
3255 am->m_len = sizeof(*sin6);
3256 bzero(sin6, sizeof(*sin6));
3257 sin6->sin6_family = AF_INET6;
3258 sin6->sin6_len = sizeof(*sin6);
3259 sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port;
3260 sin6->sin6_addr.s6_addr16[5] = htons(0xffff);
3261 bcopy(&((struct sockaddr_in *)src)->sin_addr,
3262 &sin6->sin6_addr.s6_addr32[3],
3263 sizeof(sin6->sin6_addr.s6_addr32[3]));
3264 }
3265 if (in6_pcbconnect(in6p, am)) {
3266 (void) m_free(am);
3267 goto resetandabort;
3268 }
3269 }
3270 #endif
3271 else {
3272 (void) m_free(am);
3273 goto resetandabort;
3274 }
3275 (void) m_free(am);
3276
3277 if (inp)
3278 tp = intotcpcb(inp);
3279 #ifdef INET6
3280 else if (in6p)
3281 tp = in6totcpcb(in6p);
3282 #endif
3283 else
3284 tp = NULL;
3285 tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
3286 if (sc->sc_request_r_scale != 15) {
3287 tp->requested_s_scale = sc->sc_requested_s_scale;
3288 tp->request_r_scale = sc->sc_request_r_scale;
3289 tp->snd_scale = sc->sc_requested_s_scale;
3290 tp->rcv_scale = sc->sc_request_r_scale;
3291 tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
3292 }
3293 if (sc->sc_flags & SCF_TIMESTAMP)
3294 tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
3295 tp->ts_timebase = sc->sc_timebase;
3296
3297 tp->t_template = tcp_template(tp);
3298 if (tp->t_template == 0) {
3299 tp = tcp_drop(tp, ENOBUFS); /* destroys socket */
3300 so = NULL;
3301 m_freem(m);
3302 goto abort;
3303 }
3304
3305 tp->iss = sc->sc_iss;
3306 tp->irs = sc->sc_irs;
3307 tcp_sendseqinit(tp);
3308 tcp_rcvseqinit(tp);
3309 tp->t_state = TCPS_SYN_RECEIVED;
3310 TCP_TIMER_ARM(tp, TCPT_KEEP, TCPTV_KEEP_INIT);
3311 tcpstat.tcps_accepts++;
3312
3313 /* Initialize tp->t_ourmss before we deal with the peer's! */
3314 tp->t_ourmss = sc->sc_ourmaxseg;
3315 tcp_mss_from_peer(tp, sc->sc_peermaxseg);
3316
3317 /*
3318 * Initialize the initial congestion window. If we
3319 * had to retransmit the SYN,ACK, we must initialize cwnd
3320 * to 1 segment (i.e. the Loss Window).
3321 */
3322 if (sc->sc_rxtshift)
3323 tp->snd_cwnd = tp->t_peermss;
3324 else {
3325 int ss = tcp_init_win;
3326 #ifdef INET
3327 if (inp != NULL && in_localaddr(inp->inp_faddr))
3328 ss = tcp_init_win_local;
3329 #endif
3330 #ifdef INET6
3331 if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
3332 ss = tcp_init_win_local;
3333 #endif
3334 tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
3335 }
3336
3337 tcp_rmx_rtt(tp);
3338 tp->snd_wl1 = sc->sc_irs;
3339 tp->rcv_up = sc->sc_irs + 1;
3340
3341 /*
3342 * This is what whould have happened in tcp_output() when
3343 * the SYN,ACK was sent.
3344 */
3345 tp->snd_up = tp->snd_una;
3346 tp->snd_max = tp->snd_nxt = tp->iss+1;
3347 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
3348 if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
3349 tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
3350 tp->last_ack_sent = tp->rcv_nxt;
3351
3352 tcpstat.tcps_sc_completed++;
3353 SYN_CACHE_PUT(sc);
3354 return (so);
3355
3356 resetandabort:
3357 (void) tcp_respond(NULL, m, m, th,
3358 th->th_seq + tlen, (tcp_seq)0, TH_RST|TH_ACK);
3359 abort:
3360 if (so != NULL)
3361 (void) soabort(so);
3362 SYN_CACHE_PUT(sc);
3363 tcpstat.tcps_sc_aborted++;
3364 return ((struct socket *)(-1));
3365 }
3366
3367 /*
3368 * This function is called when we get a RST for a
3369 * non-existent connection, so that we can see if the
3370 * connection is in the syn cache. If it is, zap it.
3371 */
3372
3373 void
3374 syn_cache_reset(src, dst, th)
3375 struct sockaddr *src;
3376 struct sockaddr *dst;
3377 struct tcphdr *th;
3378 {
3379 struct syn_cache *sc;
3380 struct syn_cache_head *scp;
3381 int s = splsoftnet();
3382
3383 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3384 splx(s);
3385 return;
3386 }
3387 if (SEQ_LT(th->th_seq, sc->sc_irs) ||
3388 SEQ_GT(th->th_seq, sc->sc_irs+1)) {
3389 splx(s);
3390 return;
3391 }
3392 SYN_CACHE_RM(sc);
3393 splx(s);
3394 tcpstat.tcps_sc_reset++;
3395 SYN_CACHE_PUT(sc);
3396 }
3397
3398 void
3399 syn_cache_unreach(src, dst, th)
3400 struct sockaddr *src;
3401 struct sockaddr *dst;
3402 struct tcphdr *th;
3403 {
3404 struct syn_cache *sc;
3405 struct syn_cache_head *scp;
3406 int s;
3407
3408 s = splsoftnet();
3409 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3410 splx(s);
3411 return;
3412 }
3413 /* If the sequence number != sc_iss, then it's a bogus ICMP msg */
3414 if (ntohl (th->th_seq) != sc->sc_iss) {
3415 splx(s);
3416 return;
3417 }
3418
3419 /*
3420 * If we've rertransmitted 3 times and this is our second error,
3421 * we remove the entry. Otherwise, we allow it to continue on.
3422 * This prevents us from incorrectly nuking an entry during a
3423 * spurious network outage.
3424 *
3425 * See tcp_notify().
3426 */
3427 if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
3428 sc->sc_flags |= SCF_UNREACH;
3429 splx(s);
3430 return;
3431 }
3432
3433 SYN_CACHE_RM(sc);
3434 splx(s);
3435 tcpstat.tcps_sc_unreach++;
3436 SYN_CACHE_PUT(sc);
3437 }
3438
3439 /*
3440 * Given a LISTEN socket and an inbound SYN request, add
3441 * this to the syn cache, and send back a segment:
3442 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
3443 * to the source.
3444 *
3445 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
3446 * Doing so would require that we hold onto the data and deliver it
3447 * to the application. However, if we are the target of a SYN-flood
3448 * DoS attack, an attacker could send data which would eventually
3449 * consume all available buffer space if it were ACKed. By not ACKing
3450 * the data, we avoid this DoS scenario.
3451 */
3452
3453 int
3454 syn_cache_add(src, dst, th, hlen, so, m, optp, optlen, oi)
3455 struct sockaddr *src;
3456 struct sockaddr *dst;
3457 struct tcphdr *th;
3458 unsigned int hlen;
3459 struct socket *so;
3460 struct mbuf *m;
3461 u_char *optp;
3462 int optlen;
3463 struct tcp_opt_info *oi;
3464 {
3465 struct tcpcb tb, *tp;
3466 long win;
3467 struct syn_cache *sc;
3468 struct syn_cache_head *scp;
3469 struct mbuf *ipopts;
3470
3471 tp = sototcpcb(so);
3472
3473 /*
3474 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
3475 *
3476 * Note this check is performed in tcp_input() very early on.
3477 */
3478
3479 /*
3480 * Initialize some local state.
3481 */
3482 win = sbspace(&so->so_rcv);
3483 if (win > TCP_MAXWIN)
3484 win = TCP_MAXWIN;
3485
3486 switch (src->sa_family) {
3487 #ifdef INET
3488 case AF_INET:
3489 /*
3490 * Remember the IP options, if any.
3491 */
3492 ipopts = ip_srcroute();
3493 break;
3494 #endif
3495 default:
3496 ipopts = NULL;
3497 }
3498
3499 if (optp) {
3500 tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
3501 tcp_dooptions(&tb, optp, optlen, th, oi);
3502 } else
3503 tb.t_flags = 0;
3504
3505 /*
3506 * See if we already have an entry for this connection.
3507 * If we do, resend the SYN,ACK. We do not count this
3508 * as a retransmission (XXX though maybe we should).
3509 */
3510 if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
3511 tcpstat.tcps_sc_dupesyn++;
3512 if (ipopts) {
3513 /*
3514 * If we were remembering a previous source route,
3515 * forget it and use the new one we've been given.
3516 */
3517 if (sc->sc_ipopts)
3518 (void) m_free(sc->sc_ipopts);
3519 sc->sc_ipopts = ipopts;
3520 }
3521 sc->sc_timestamp = tb.ts_recent;
3522 if (syn_cache_respond(sc, m) == 0) {
3523 tcpstat.tcps_sndacks++;
3524 tcpstat.tcps_sndtotal++;
3525 }
3526 return (1);
3527 }
3528
3529 sc = pool_get(&syn_cache_pool, PR_NOWAIT);
3530 if (sc == NULL) {
3531 if (ipopts)
3532 (void) m_free(ipopts);
3533 return (0);
3534 }
3535
3536 /*
3537 * Fill in the cache, and put the necessary IP and TCP
3538 * options into the reply.
3539 */
3540 bzero(sc, sizeof(struct syn_cache));
3541 callout_init(&sc->sc_timer);
3542 bcopy(src, &sc->sc_src, src->sa_len);
3543 bcopy(dst, &sc->sc_dst, dst->sa_len);
3544 sc->sc_flags = 0;
3545 sc->sc_ipopts = ipopts;
3546 sc->sc_irs = th->th_seq;
3547 switch (src->sa_family) {
3548 #ifdef INET
3549 case AF_INET:
3550 {
3551 struct sockaddr_in *srcin = (void *) src;
3552 struct sockaddr_in *dstin = (void *) dst;
3553
3554 sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
3555 &srcin->sin_addr, dstin->sin_port,
3556 srcin->sin_port, sizeof(dstin->sin_addr), 0);
3557 break;
3558 }
3559 #endif /* INET */
3560 #ifdef INET6
3561 case AF_INET6:
3562 {
3563 struct sockaddr_in6 *srcin6 = (void *) src;
3564 struct sockaddr_in6 *dstin6 = (void *) dst;
3565
3566 sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
3567 &srcin6->sin6_addr, dstin6->sin6_port,
3568 srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
3569 break;
3570 }
3571 #endif /* INET6 */
3572 }
3573 sc->sc_peermaxseg = oi->maxseg;
3574 sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
3575 m->m_pkthdr.rcvif : NULL,
3576 sc->sc_src.sa.sa_family);
3577 sc->sc_win = win;
3578 sc->sc_timebase = tcp_now; /* see tcp_newtcpcb() */
3579 sc->sc_timestamp = tb.ts_recent;
3580 if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
3581 (TF_REQ_TSTMP|TF_RCVD_TSTMP))
3582 sc->sc_flags |= SCF_TIMESTAMP;
3583 if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
3584 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
3585 sc->sc_requested_s_scale = tb.requested_s_scale;
3586 sc->sc_request_r_scale = 0;
3587 while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
3588 TCP_MAXWIN << sc->sc_request_r_scale <
3589 so->so_rcv.sb_hiwat)
3590 sc->sc_request_r_scale++;
3591 } else {
3592 sc->sc_requested_s_scale = 15;
3593 sc->sc_request_r_scale = 15;
3594 }
3595 sc->sc_tp = tp;
3596 if (syn_cache_respond(sc, m) == 0) {
3597 syn_cache_insert(sc, tp);
3598 tcpstat.tcps_sndacks++;
3599 tcpstat.tcps_sndtotal++;
3600 } else {
3601 SYN_CACHE_PUT(sc);
3602 tcpstat.tcps_sc_dropped++;
3603 }
3604 return (1);
3605 }
3606
3607 int
3608 syn_cache_respond(sc, m)
3609 struct syn_cache *sc;
3610 struct mbuf *m;
3611 {
3612 struct route *ro;
3613 u_int8_t *optp;
3614 int optlen, error;
3615 u_int16_t tlen;
3616 struct ip *ip = NULL;
3617 #ifdef INET6
3618 struct ip6_hdr *ip6 = NULL;
3619 #endif
3620 struct tcphdr *th;
3621 u_int hlen;
3622
3623 switch (sc->sc_src.sa.sa_family) {
3624 case AF_INET:
3625 hlen = sizeof(struct ip);
3626 ro = &sc->sc_route4;
3627 break;
3628 #ifdef INET6
3629 case AF_INET6:
3630 hlen = sizeof(struct ip6_hdr);
3631 ro = (struct route *)&sc->sc_route6;
3632 break;
3633 #endif
3634 default:
3635 if (m)
3636 m_freem(m);
3637 return EAFNOSUPPORT;
3638 }
3639
3640 /* Compute the size of the TCP options. */
3641 optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
3642 ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
3643
3644 tlen = hlen + sizeof(struct tcphdr) + optlen;
3645
3646 /*
3647 * Create the IP+TCP header from scratch.
3648 */
3649 if (m)
3650 m_freem(m);
3651 #ifdef DIAGNOSTIC
3652 if (max_linkhdr + tlen > MCLBYTES)
3653 return (ENOBUFS);
3654 #endif
3655 MGETHDR(m, M_DONTWAIT, MT_DATA);
3656 if (m && tlen > MHLEN) {
3657 MCLGET(m, M_DONTWAIT);
3658 if ((m->m_flags & M_EXT) == 0) {
3659 m_freem(m);
3660 m = NULL;
3661 }
3662 }
3663 if (m == NULL)
3664 return (ENOBUFS);
3665 MCLAIM(m, &tcp_tx_mowner);
3666
3667 /* Fixup the mbuf. */
3668 m->m_data += max_linkhdr;
3669 m->m_len = m->m_pkthdr.len = tlen;
3670 #ifdef IPSEC
3671 if (sc->sc_tp) {
3672 struct tcpcb *tp;
3673 struct socket *so;
3674
3675 tp = sc->sc_tp;
3676 if (tp->t_inpcb)
3677 so = tp->t_inpcb->inp_socket;
3678 #ifdef INET6
3679 else if (tp->t_in6pcb)
3680 so = tp->t_in6pcb->in6p_socket;
3681 #endif
3682 else
3683 so = NULL;
3684 /* use IPsec policy on listening socket, on SYN ACK */
3685 if (ipsec_setsocket(m, so) != 0) {
3686 m_freem(m);
3687 return ENOBUFS;
3688 }
3689 }
3690 #endif
3691 m->m_pkthdr.rcvif = NULL;
3692 memset(mtod(m, u_char *), 0, tlen);
3693
3694 switch (sc->sc_src.sa.sa_family) {
3695 case AF_INET:
3696 ip = mtod(m, struct ip *);
3697 ip->ip_dst = sc->sc_src.sin.sin_addr;
3698 ip->ip_src = sc->sc_dst.sin.sin_addr;
3699 ip->ip_p = IPPROTO_TCP;
3700 th = (struct tcphdr *)(ip + 1);
3701 th->th_dport = sc->sc_src.sin.sin_port;
3702 th->th_sport = sc->sc_dst.sin.sin_port;
3703 break;
3704 #ifdef INET6
3705 case AF_INET6:
3706 ip6 = mtod(m, struct ip6_hdr *);
3707 ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
3708 ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
3709 ip6->ip6_nxt = IPPROTO_TCP;
3710 /* ip6_plen will be updated in ip6_output() */
3711 th = (struct tcphdr *)(ip6 + 1);
3712 th->th_dport = sc->sc_src.sin6.sin6_port;
3713 th->th_sport = sc->sc_dst.sin6.sin6_port;
3714 break;
3715 #endif
3716 default:
3717 th = NULL;
3718 }
3719
3720 th->th_seq = htonl(sc->sc_iss);
3721 th->th_ack = htonl(sc->sc_irs + 1);
3722 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
3723 th->th_flags = TH_SYN|TH_ACK;
3724 th->th_win = htons(sc->sc_win);
3725 /* th_sum already 0 */
3726 /* th_urp already 0 */
3727
3728 /* Tack on the TCP options. */
3729 optp = (u_int8_t *)(th + 1);
3730 *optp++ = TCPOPT_MAXSEG;
3731 *optp++ = 4;
3732 *optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
3733 *optp++ = sc->sc_ourmaxseg & 0xff;
3734
3735 if (sc->sc_request_r_scale != 15) {
3736 *((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
3737 TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
3738 sc->sc_request_r_scale);
3739 optp += 4;
3740 }
3741
3742 if (sc->sc_flags & SCF_TIMESTAMP) {
3743 u_int32_t *lp = (u_int32_t *)(optp);
3744 /* Form timestamp option as shown in appendix A of RFC 1323. */
3745 *lp++ = htonl(TCPOPT_TSTAMP_HDR);
3746 *lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
3747 *lp = htonl(sc->sc_timestamp);
3748 optp += TCPOLEN_TSTAMP_APPA;
3749 }
3750
3751 /* Compute the packet's checksum. */
3752 switch (sc->sc_src.sa.sa_family) {
3753 case AF_INET:
3754 ip->ip_len = htons(tlen - hlen);
3755 th->th_sum = 0;
3756 th->th_sum = in_cksum(m, tlen);
3757 break;
3758 #ifdef INET6
3759 case AF_INET6:
3760 ip6->ip6_plen = htons(tlen - hlen);
3761 th->th_sum = 0;
3762 th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
3763 break;
3764 #endif
3765 }
3766
3767 /*
3768 * Fill in some straggling IP bits. Note the stack expects
3769 * ip_len to be in host order, for convenience.
3770 */
3771 switch (sc->sc_src.sa.sa_family) {
3772 #ifdef INET
3773 case AF_INET:
3774 ip->ip_len = htons(tlen);
3775 ip->ip_ttl = ip_defttl;
3776 /* XXX tos? */
3777 break;
3778 #endif
3779 #ifdef INET6
3780 case AF_INET6:
3781 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
3782 ip6->ip6_vfc |= IPV6_VERSION;
3783 ip6->ip6_plen = htons(tlen - hlen);
3784 /* ip6_hlim will be initialized afterwards */
3785 /* XXX flowlabel? */
3786 break;
3787 #endif
3788 }
3789
3790 switch (sc->sc_src.sa.sa_family) {
3791 #ifdef INET
3792 case AF_INET:
3793 error = ip_output(m, sc->sc_ipopts, ro,
3794 (ip_mtudisc ? IP_MTUDISC : 0),
3795 NULL);
3796 break;
3797 #endif
3798 #ifdef INET6
3799 case AF_INET6:
3800 ip6->ip6_hlim = in6_selecthlim(NULL,
3801 ro->ro_rt ? ro->ro_rt->rt_ifp : NULL);
3802
3803 error = ip6_output(m, NULL /*XXX*/, (struct route_in6 *)ro,
3804 0, NULL, NULL);
3805 break;
3806 #endif
3807 default:
3808 error = EAFNOSUPPORT;
3809 break;
3810 }
3811 return (error);
3812 }
3813