Home | History | Annotate | Line # | Download | only in netinet
tcp_input.c revision 1.174
      1 /*	$NetBSD: tcp_input.c,v 1.174 2003/08/07 16:33:15 agc Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  *      @(#)COPYRIGHT   1.1 (NRL) 17 January 1995
     34  *
     35  * NRL grants permission for redistribution and use in source and binary
     36  * forms, with or without modification, of the software and documentation
     37  * created at NRL provided that the following conditions are met:
     38  *
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. All advertising materials mentioning features or use of this software
     45  *    must display the following acknowledgements:
     46  *      This product includes software developed by the University of
     47  *      California, Berkeley and its contributors.
     48  *      This product includes software developed at the Information
     49  *      Technology Division, US Naval Research Laboratory.
     50  * 4. Neither the name of the NRL nor the names of its contributors
     51  *    may be used to endorse or promote products derived from this software
     52  *    without specific prior written permission.
     53  *
     54  * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
     55  * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     56  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
     57  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL NRL OR
     58  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
     59  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     60  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
     61  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
     62  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
     63  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
     64  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     65  *
     66  * The views and conclusions contained in the software and documentation
     67  * are those of the authors and should not be interpreted as representing
     68  * official policies, either expressed or implied, of the US Naval
     69  * Research Laboratory (NRL).
     70  */
     71 
     72 /*-
     73  * Copyright (c) 1997, 1998, 1999, 2001 The NetBSD Foundation, Inc.
     74  * All rights reserved.
     75  *
     76  * This code is derived from software contributed to The NetBSD Foundation
     77  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
     78  * Facility, NASA Ames Research Center.
     79  *
     80  * Redistribution and use in source and binary forms, with or without
     81  * modification, are permitted provided that the following conditions
     82  * are met:
     83  * 1. Redistributions of source code must retain the above copyright
     84  *    notice, this list of conditions and the following disclaimer.
     85  * 2. Redistributions in binary form must reproduce the above copyright
     86  *    notice, this list of conditions and the following disclaimer in the
     87  *    documentation and/or other materials provided with the distribution.
     88  * 3. All advertising materials mentioning features or use of this software
     89  *    must display the following acknowledgement:
     90  *	This product includes software developed by the NetBSD
     91  *	Foundation, Inc. and its contributors.
     92  * 4. Neither the name of The NetBSD Foundation nor the names of its
     93  *    contributors may be used to endorse or promote products derived
     94  *    from this software without specific prior written permission.
     95  *
     96  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     97  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     98  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     99  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
    100  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
    101  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
    102  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
    103  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
    104  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
    105  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
    106  * POSSIBILITY OF SUCH DAMAGE.
    107  */
    108 
    109 /*
    110  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
    111  *	The Regents of the University of California.  All rights reserved.
    112  *
    113  * Redistribution and use in source and binary forms, with or without
    114  * modification, are permitted provided that the following conditions
    115  * are met:
    116  * 1. Redistributions of source code must retain the above copyright
    117  *    notice, this list of conditions and the following disclaimer.
    118  * 2. Redistributions in binary form must reproduce the above copyright
    119  *    notice, this list of conditions and the following disclaimer in the
    120  *    documentation and/or other materials provided with the distribution.
    121  * 3. Neither the name of the University nor the names of its contributors
    122  *    may be used to endorse or promote products derived from this software
    123  *    without specific prior written permission.
    124  *
    125  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
    126  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
    127  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
    128  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
    129  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
    130  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
    131  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    132  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    133  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    134  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    135  * SUCH DAMAGE.
    136  *
    137  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
    138  */
    139 
    140 /*
    141  *	TODO list for SYN cache stuff:
    142  *
    143  *	Find room for a "state" field, which is needed to keep a
    144  *	compressed state for TIME_WAIT TCBs.  It's been noted already
    145  *	that this is fairly important for very high-volume web and
    146  *	mail servers, which use a large number of short-lived
    147  *	connections.
    148  */
    149 
    150 #include <sys/cdefs.h>
    151 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.174 2003/08/07 16:33:15 agc Exp $");
    152 
    153 #include "opt_inet.h"
    154 #include "opt_ipsec.h"
    155 #include "opt_inet_csum.h"
    156 #include "opt_tcp_debug.h"
    157 
    158 #include <sys/param.h>
    159 #include <sys/systm.h>
    160 #include <sys/malloc.h>
    161 #include <sys/mbuf.h>
    162 #include <sys/protosw.h>
    163 #include <sys/socket.h>
    164 #include <sys/socketvar.h>
    165 #include <sys/errno.h>
    166 #include <sys/syslog.h>
    167 #include <sys/pool.h>
    168 #include <sys/domain.h>
    169 #include <sys/kernel.h>
    170 
    171 #include <net/if.h>
    172 #include <net/route.h>
    173 #include <net/if_types.h>
    174 
    175 #include <netinet/in.h>
    176 #include <netinet/in_systm.h>
    177 #include <netinet/ip.h>
    178 #include <netinet/in_pcb.h>
    179 #include <netinet/in_var.h>
    180 #include <netinet/ip_var.h>
    181 
    182 #ifdef INET6
    183 #ifndef INET
    184 #include <netinet/in.h>
    185 #endif
    186 #include <netinet/ip6.h>
    187 #include <netinet6/ip6_var.h>
    188 #include <netinet6/in6_pcb.h>
    189 #include <netinet6/ip6_var.h>
    190 #include <netinet6/in6_var.h>
    191 #include <netinet/icmp6.h>
    192 #include <netinet6/nd6.h>
    193 #endif
    194 
    195 #ifndef INET6
    196 /* always need ip6.h for IP6_EXTHDR_GET */
    197 #include <netinet/ip6.h>
    198 #endif
    199 
    200 #include <netinet/tcp.h>
    201 #include <netinet/tcp_fsm.h>
    202 #include <netinet/tcp_seq.h>
    203 #include <netinet/tcp_timer.h>
    204 #include <netinet/tcp_var.h>
    205 #include <netinet/tcpip.h>
    206 #include <netinet/tcp_debug.h>
    207 
    208 #include <machine/stdarg.h>
    209 
    210 #ifdef IPSEC
    211 #include <netinet6/ipsec.h>
    212 #include <netkey/key.h>
    213 #endif /*IPSEC*/
    214 #ifdef INET6
    215 #include "faith.h"
    216 #if defined(NFAITH) && NFAITH > 0
    217 #include <net/if_faith.h>
    218 #endif
    219 #endif
    220 
    221 int	tcprexmtthresh = 3;
    222 int	tcp_log_refused;
    223 
    224 static int tcp_rst_ppslim_count = 0;
    225 static struct timeval tcp_rst_ppslim_last;
    226 
    227 #define TCP_PAWS_IDLE	(24 * 24 * 60 * 60 * PR_SLOWHZ)
    228 
    229 /* for modulo comparisons of timestamps */
    230 #define TSTMP_LT(a,b)	((int)((a)-(b)) < 0)
    231 #define TSTMP_GEQ(a,b)	((int)((a)-(b)) >= 0)
    232 
    233 /*
    234  * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
    235  */
    236 #ifdef INET6
    237 #define ND6_HINT(tp) \
    238 do { \
    239 	if (tp && tp->t_in6pcb && tp->t_family == AF_INET6 \
    240 	 && tp->t_in6pcb->in6p_route.ro_rt) { \
    241 		nd6_nud_hint(tp->t_in6pcb->in6p_route.ro_rt, NULL, 0); \
    242 	} \
    243 } while (/*CONSTCOND*/ 0)
    244 #else
    245 #define ND6_HINT(tp)
    246 #endif
    247 
    248 /*
    249  * Macro to compute ACK transmission behavior.  Delay the ACK unless
    250  * we have already delayed an ACK (must send an ACK every two segments).
    251  * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
    252  * option is enabled.
    253  */
    254 #define	TCP_SETUP_ACK(tp, th) \
    255 do { \
    256 	if ((tp)->t_flags & TF_DELACK || \
    257 	    (tcp_ack_on_push && (th)->th_flags & TH_PUSH)) \
    258 		tp->t_flags |= TF_ACKNOW; \
    259 	else \
    260 		TCP_SET_DELACK(tp); \
    261 } while (/*CONSTCOND*/ 0)
    262 
    263 /*
    264  * Convert TCP protocol fields to host order for easier processing.
    265  */
    266 #define	TCP_FIELDS_TO_HOST(th)						\
    267 do {									\
    268 	NTOHL((th)->th_seq);						\
    269 	NTOHL((th)->th_ack);						\
    270 	NTOHS((th)->th_win);						\
    271 	NTOHS((th)->th_urp);						\
    272 } while (/*CONSTCOND*/ 0)
    273 
    274 /*
    275  * ... and reverse the above.
    276  */
    277 #define	TCP_FIELDS_TO_NET(th)						\
    278 do {									\
    279 	HTONL((th)->th_seq);						\
    280 	HTONL((th)->th_ack);						\
    281 	HTONS((th)->th_win);						\
    282 	HTONS((th)->th_urp);						\
    283 } while (/*CONSTCOND*/ 0)
    284 
    285 #ifdef TCP_CSUM_COUNTERS
    286 #include <sys/device.h>
    287 
    288 extern struct evcnt tcp_hwcsum_ok;
    289 extern struct evcnt tcp_hwcsum_bad;
    290 extern struct evcnt tcp_hwcsum_data;
    291 extern struct evcnt tcp_swcsum;
    292 
    293 #define	TCP_CSUM_COUNTER_INCR(ev)	(ev)->ev_count++
    294 
    295 #else
    296 
    297 #define	TCP_CSUM_COUNTER_INCR(ev)	/* nothing */
    298 
    299 #endif /* TCP_CSUM_COUNTERS */
    300 
    301 #ifdef TCP_REASS_COUNTERS
    302 #include <sys/device.h>
    303 
    304 extern struct evcnt tcp_reass_;
    305 extern struct evcnt tcp_reass_empty;
    306 extern struct evcnt tcp_reass_iteration[8];
    307 extern struct evcnt tcp_reass_prependfirst;
    308 extern struct evcnt tcp_reass_prepend;
    309 extern struct evcnt tcp_reass_insert;
    310 extern struct evcnt tcp_reass_inserttail;
    311 extern struct evcnt tcp_reass_append;
    312 extern struct evcnt tcp_reass_appendtail;
    313 extern struct evcnt tcp_reass_overlaptail;
    314 extern struct evcnt tcp_reass_overlapfront;
    315 extern struct evcnt tcp_reass_segdup;
    316 extern struct evcnt tcp_reass_fragdup;
    317 
    318 #define	TCP_REASS_COUNTER_INCR(ev)	(ev)->ev_count++
    319 
    320 #else
    321 
    322 #define	TCP_REASS_COUNTER_INCR(ev)	/* nothing */
    323 
    324 #endif /* TCP_REASS_COUNTERS */
    325 
    326 #ifdef INET
    327 static void tcp4_log_refused __P((const struct ip *, const struct tcphdr *));
    328 #endif
    329 #ifdef INET6
    330 static void tcp6_log_refused
    331     __P((const struct ip6_hdr *, const struct tcphdr *));
    332 #endif
    333 
    334 int
    335 tcp_reass(tp, th, m, tlen)
    336 	struct tcpcb *tp;
    337 	struct tcphdr *th;
    338 	struct mbuf *m;
    339 	int *tlen;
    340 {
    341 	struct ipqent *p, *q, *nq, *tiqe = NULL;
    342 	struct socket *so = NULL;
    343 	int pkt_flags;
    344 	tcp_seq pkt_seq;
    345 	unsigned pkt_len;
    346 	u_long rcvpartdupbyte = 0;
    347 	u_long rcvoobyte;
    348 #ifdef TCP_REASS_COUNTERS
    349 	u_int count = 0;
    350 #endif
    351 
    352 	if (tp->t_inpcb)
    353 		so = tp->t_inpcb->inp_socket;
    354 #ifdef INET6
    355 	else if (tp->t_in6pcb)
    356 		so = tp->t_in6pcb->in6p_socket;
    357 #endif
    358 
    359 	TCP_REASS_LOCK_CHECK(tp);
    360 
    361 	/*
    362 	 * Call with th==0 after become established to
    363 	 * force pre-ESTABLISHED data up to user socket.
    364 	 */
    365 	if (th == 0)
    366 		goto present;
    367 
    368 	rcvoobyte = *tlen;
    369 	/*
    370 	 * Copy these to local variables because the tcpiphdr
    371 	 * gets munged while we are collapsing mbufs.
    372 	 */
    373 	pkt_seq = th->th_seq;
    374 	pkt_len = *tlen;
    375 	pkt_flags = th->th_flags;
    376 
    377 	TCP_REASS_COUNTER_INCR(&tcp_reass_);
    378 
    379 	if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
    380 		/*
    381 		 * When we miss a packet, the vast majority of time we get
    382 		 * packets that follow it in order.  So optimize for that.
    383 		 */
    384 		if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
    385 			p->ipqe_len += pkt_len;
    386 			p->ipqe_flags |= pkt_flags;
    387 			m_cat(p->ipqe_m, m);
    388 			tiqe = p;
    389 			TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
    390 			TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
    391 			goto skip_replacement;
    392 		}
    393 		/*
    394 		 * While we're here, if the pkt is completely beyond
    395 		 * anything we have, just insert it at the tail.
    396 		 */
    397 		if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
    398 			TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
    399 			goto insert_it;
    400 		}
    401 	}
    402 
    403 	q = TAILQ_FIRST(&tp->segq);
    404 
    405 	if (q != NULL) {
    406 		/*
    407 		 * If this segment immediately precedes the first out-of-order
    408 		 * block, simply slap the segment in front of it and (mostly)
    409 		 * skip the complicated logic.
    410 		 */
    411 		if (pkt_seq + pkt_len == q->ipqe_seq) {
    412 			q->ipqe_seq = pkt_seq;
    413 			q->ipqe_len += pkt_len;
    414 			q->ipqe_flags |= pkt_flags;
    415 			m_cat(m, q->ipqe_m);
    416 			q->ipqe_m = m;
    417 			tiqe = q;
    418 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    419 			TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
    420 			goto skip_replacement;
    421 		}
    422 	} else {
    423 		TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
    424 	}
    425 
    426 	/*
    427 	 * Find a segment which begins after this one does.
    428 	 */
    429 	for (p = NULL; q != NULL; q = nq) {
    430 		nq = TAILQ_NEXT(q, ipqe_q);
    431 #ifdef TCP_REASS_COUNTERS
    432 		count++;
    433 #endif
    434 		/*
    435 		 * If the received segment is just right after this
    436 		 * fragment, merge the two together and then check
    437 		 * for further overlaps.
    438 		 */
    439 		if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
    440 #ifdef TCPREASS_DEBUG
    441 			printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
    442 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
    443 			       q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
    444 #endif
    445 			pkt_len += q->ipqe_len;
    446 			pkt_flags |= q->ipqe_flags;
    447 			pkt_seq = q->ipqe_seq;
    448 			m_cat(q->ipqe_m, m);
    449 			m = q->ipqe_m;
    450 			TCP_REASS_COUNTER_INCR(&tcp_reass_append);
    451 			goto free_ipqe;
    452 		}
    453 		/*
    454 		 * If the received segment is completely past this
    455 		 * fragment, we need to go the next fragment.
    456 		 */
    457 		if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
    458 			p = q;
    459 			continue;
    460 		}
    461 		/*
    462 		 * If the fragment is past the received segment,
    463 		 * it (or any following) can't be concatenated.
    464 		 */
    465 		if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
    466 			TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
    467 			break;
    468 		}
    469 
    470 		/*
    471 		 * We've received all the data in this segment before.
    472 		 * mark it as a duplicate and return.
    473 		 */
    474 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
    475 		    SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
    476 			tcpstat.tcps_rcvduppack++;
    477 			tcpstat.tcps_rcvdupbyte += pkt_len;
    478 			m_freem(m);
    479 			if (tiqe != NULL)
    480 				pool_put(&ipqent_pool, tiqe);
    481 			TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
    482 			return (0);
    483 		}
    484 		/*
    485 		 * Received segment completely overlaps this fragment
    486 		 * so we drop the fragment (this keeps the temporal
    487 		 * ordering of segments correct).
    488 		 */
    489 		if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
    490 		    SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
    491 			rcvpartdupbyte += q->ipqe_len;
    492 			m_freem(q->ipqe_m);
    493 			TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
    494 			goto free_ipqe;
    495 		}
    496 		/*
    497 		 * RX'ed segment extends past the end of the
    498 		 * fragment.  Drop the overlapping bytes.  Then
    499 		 * merge the fragment and segment then treat as
    500 		 * a longer received packet.
    501 		 */
    502 		if (SEQ_LT(q->ipqe_seq, pkt_seq)
    503 		    && SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq))  {
    504 			int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
    505 #ifdef TCPREASS_DEBUG
    506 			printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
    507 			       tp, overlap,
    508 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
    509 #endif
    510 			m_adj(m, overlap);
    511 			rcvpartdupbyte += overlap;
    512 			m_cat(q->ipqe_m, m);
    513 			m = q->ipqe_m;
    514 			pkt_seq = q->ipqe_seq;
    515 			pkt_len += q->ipqe_len - overlap;
    516 			rcvoobyte -= overlap;
    517 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
    518 			goto free_ipqe;
    519 		}
    520 		/*
    521 		 * RX'ed segment extends past the front of the
    522 		 * fragment.  Drop the overlapping bytes on the
    523 		 * received packet.  The packet will then be
    524 		 * contatentated with this fragment a bit later.
    525 		 */
    526 		if (SEQ_GT(q->ipqe_seq, pkt_seq)
    527 		    && SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len))  {
    528 			int overlap = pkt_seq + pkt_len - q->ipqe_seq;
    529 #ifdef TCPREASS_DEBUG
    530 			printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
    531 			       tp, overlap,
    532 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
    533 #endif
    534 			m_adj(m, -overlap);
    535 			pkt_len -= overlap;
    536 			rcvpartdupbyte += overlap;
    537 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
    538 			rcvoobyte -= overlap;
    539 		}
    540 		/*
    541 		 * If the received segment immediates precedes this
    542 		 * fragment then tack the fragment onto this segment
    543 		 * and reinsert the data.
    544 		 */
    545 		if (q->ipqe_seq == pkt_seq + pkt_len) {
    546 #ifdef TCPREASS_DEBUG
    547 			printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
    548 			       tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
    549 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
    550 #endif
    551 			pkt_len += q->ipqe_len;
    552 			pkt_flags |= q->ipqe_flags;
    553 			m_cat(m, q->ipqe_m);
    554 			TAILQ_REMOVE(&tp->segq, q, ipqe_q);
    555 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    556 			if (tiqe == NULL) {
    557 			    tiqe = q;
    558 			} else {
    559 			    pool_put(&ipqent_pool, q);
    560 			}
    561 			TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
    562 			break;
    563 		}
    564 		/*
    565 		 * If the fragment is before the segment, remember it.
    566 		 * When this loop is terminated, p will contain the
    567 		 * pointer to fragment that is right before the received
    568 		 * segment.
    569 		 */
    570 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
    571 			p = q;
    572 
    573 		continue;
    574 
    575 		/*
    576 		 * This is a common operation.  It also will allow
    577 		 * to save doing a malloc/free in most instances.
    578 		 */
    579 	  free_ipqe:
    580 		TAILQ_REMOVE(&tp->segq, q, ipqe_q);
    581 		TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    582 		if (tiqe == NULL) {
    583 		    tiqe = q;
    584 		} else {
    585 		    pool_put(&ipqent_pool, q);
    586 		}
    587 	}
    588 
    589 #ifdef TCP_REASS_COUNTERS
    590 	if (count > 7)
    591 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
    592 	else if (count > 0)
    593 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
    594 #endif
    595 
    596     insert_it:
    597 
    598 	/*
    599 	 * Allocate a new queue entry since the received segment did not
    600 	 * collapse onto any other out-of-order block; thus we are allocating
    601 	 * a new block.  If it had collapsed, tiqe would not be NULL and
    602 	 * we would be reusing it.
    603 	 * XXX If we can't, just drop the packet.  XXX
    604 	 */
    605 	if (tiqe == NULL) {
    606 		tiqe = pool_get(&ipqent_pool, PR_NOWAIT);
    607 		if (tiqe == NULL) {
    608 			tcpstat.tcps_rcvmemdrop++;
    609 			m_freem(m);
    610 			return (0);
    611 		}
    612 	}
    613 
    614 	/*
    615 	 * Update the counters.
    616 	 */
    617 	tcpstat.tcps_rcvoopack++;
    618 	tcpstat.tcps_rcvoobyte += rcvoobyte;
    619 	if (rcvpartdupbyte) {
    620 	    tcpstat.tcps_rcvpartduppack++;
    621 	    tcpstat.tcps_rcvpartdupbyte += rcvpartdupbyte;
    622 	}
    623 
    624 	/*
    625 	 * Insert the new fragment queue entry into both queues.
    626 	 */
    627 	tiqe->ipqe_m = m;
    628 	tiqe->ipqe_seq = pkt_seq;
    629 	tiqe->ipqe_len = pkt_len;
    630 	tiqe->ipqe_flags = pkt_flags;
    631 	if (p == NULL) {
    632 		TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
    633 #ifdef TCPREASS_DEBUG
    634 		if (tiqe->ipqe_seq != tp->rcv_nxt)
    635 			printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
    636 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
    637 #endif
    638 	} else {
    639 		TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
    640 #ifdef TCPREASS_DEBUG
    641 		printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
    642 		       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
    643 		       p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
    644 #endif
    645 	}
    646 
    647 skip_replacement:
    648 
    649 	TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
    650 
    651 present:
    652 	/*
    653 	 * Present data to user, advancing rcv_nxt through
    654 	 * completed sequence space.
    655 	 */
    656 	if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
    657 		return (0);
    658 	q = TAILQ_FIRST(&tp->segq);
    659 	if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
    660 		return (0);
    661 	if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
    662 		return (0);
    663 
    664 	tp->rcv_nxt += q->ipqe_len;
    665 	pkt_flags = q->ipqe_flags & TH_FIN;
    666 	ND6_HINT(tp);
    667 
    668 	TAILQ_REMOVE(&tp->segq, q, ipqe_q);
    669 	TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    670 	if (so->so_state & SS_CANTRCVMORE)
    671 		m_freem(q->ipqe_m);
    672 	else
    673 		sbappendstream(&so->so_rcv, q->ipqe_m);
    674 	pool_put(&ipqent_pool, q);
    675 	sorwakeup(so);
    676 	return (pkt_flags);
    677 }
    678 
    679 #ifdef INET6
    680 int
    681 tcp6_input(mp, offp, proto)
    682 	struct mbuf **mp;
    683 	int *offp, proto;
    684 {
    685 	struct mbuf *m = *mp;
    686 
    687 	/*
    688 	 * draft-itojun-ipv6-tcp-to-anycast
    689 	 * better place to put this in?
    690 	 */
    691 	if (m->m_flags & M_ANYCAST6) {
    692 		struct ip6_hdr *ip6;
    693 		if (m->m_len < sizeof(struct ip6_hdr)) {
    694 			if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
    695 				tcpstat.tcps_rcvshort++;
    696 				return IPPROTO_DONE;
    697 			}
    698 		}
    699 		ip6 = mtod(m, struct ip6_hdr *);
    700 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
    701 		    (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
    702 		return IPPROTO_DONE;
    703 	}
    704 
    705 	tcp_input(m, *offp, proto);
    706 	return IPPROTO_DONE;
    707 }
    708 #endif
    709 
    710 #ifdef INET
    711 static void
    712 tcp4_log_refused(ip, th)
    713 	const struct ip *ip;
    714 	const struct tcphdr *th;
    715 {
    716 	char src[4*sizeof "123"];
    717 	char dst[4*sizeof "123"];
    718 
    719 	if (ip) {
    720 		strlcpy(src, inet_ntoa(ip->ip_src), sizeof(src));
    721 		strlcpy(dst, inet_ntoa(ip->ip_dst), sizeof(dst));
    722 	}
    723 	else {
    724 		strlcpy(src, "(unknown)", sizeof(src));
    725 		strlcpy(dst, "(unknown)", sizeof(dst));
    726 	}
    727 	log(LOG_INFO,
    728 	    "Connection attempt to TCP %s:%d from %s:%d\n",
    729 	    dst, ntohs(th->th_dport),
    730 	    src, ntohs(th->th_sport));
    731 }
    732 #endif
    733 
    734 #ifdef INET6
    735 static void
    736 tcp6_log_refused(ip6, th)
    737 	const struct ip6_hdr *ip6;
    738 	const struct tcphdr *th;
    739 {
    740 	char src[INET6_ADDRSTRLEN];
    741 	char dst[INET6_ADDRSTRLEN];
    742 
    743 	if (ip6) {
    744 		strlcpy(src, ip6_sprintf(&ip6->ip6_src), sizeof(src));
    745 		strlcpy(dst, ip6_sprintf(&ip6->ip6_dst), sizeof(dst));
    746 	}
    747 	else {
    748 		strlcpy(src, "(unknown v6)", sizeof(src));
    749 		strlcpy(dst, "(unknown v6)", sizeof(dst));
    750 	}
    751 	log(LOG_INFO,
    752 	    "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
    753 	    dst, ntohs(th->th_dport),
    754 	    src, ntohs(th->th_sport));
    755 }
    756 #endif
    757 
    758 /*
    759  * TCP input routine, follows pages 65-76 of the
    760  * protocol specification dated September, 1981 very closely.
    761  */
    762 void
    763 #if __STDC__
    764 tcp_input(struct mbuf *m, ...)
    765 #else
    766 tcp_input(m, va_alist)
    767 	struct mbuf *m;
    768 #endif
    769 {
    770 	struct tcphdr *th;
    771 	struct ip *ip;
    772 	struct inpcb *inp;
    773 #ifdef INET6
    774 	struct ip6_hdr *ip6;
    775 	struct in6pcb *in6p;
    776 #endif
    777 	u_int8_t *optp = NULL;
    778 	int optlen = 0;
    779 	int len, tlen, toff, hdroptlen = 0;
    780 	struct tcpcb *tp = 0;
    781 	int tiflags;
    782 	struct socket *so = NULL;
    783 	int todrop, acked, ourfinisacked, needoutput = 0;
    784 #ifdef TCP_DEBUG
    785 	short ostate = 0;
    786 #endif
    787 	int iss = 0;
    788 	u_long tiwin;
    789 	struct tcp_opt_info opti;
    790 	int off, iphlen;
    791 	va_list ap;
    792 	int af;		/* af on the wire */
    793 	struct mbuf *tcp_saveti = NULL;
    794 
    795 	MCLAIM(m, &tcp_rx_mowner);
    796 	va_start(ap, m);
    797 	toff = va_arg(ap, int);
    798 	(void)va_arg(ap, int);		/* ignore value, advance ap */
    799 	va_end(ap);
    800 
    801 	tcpstat.tcps_rcvtotal++;
    802 
    803 	bzero(&opti, sizeof(opti));
    804 	opti.ts_present = 0;
    805 	opti.maxseg = 0;
    806 
    807 	/*
    808 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
    809 	 *
    810 	 * TCP is, by definition, unicast, so we reject all
    811 	 * multicast outright.
    812 	 *
    813 	 * Note, there are additional src/dst address checks in
    814 	 * the AF-specific code below.
    815 	 */
    816 	if (m->m_flags & (M_BCAST|M_MCAST)) {
    817 		/* XXX stat */
    818 		goto drop;
    819 	}
    820 #ifdef INET6
    821 	if (m->m_flags & M_ANYCAST6) {
    822 		/* XXX stat */
    823 		goto drop;
    824 	}
    825 #endif
    826 
    827 	/*
    828 	 * Get IP and TCP header together in first mbuf.
    829 	 * Note: IP leaves IP header in first mbuf.
    830 	 */
    831 	ip = mtod(m, struct ip *);
    832 #ifdef INET6
    833 	ip6 = NULL;
    834 #endif
    835 	switch (ip->ip_v) {
    836 #ifdef INET
    837 	case 4:
    838 		af = AF_INET;
    839 		iphlen = sizeof(struct ip);
    840 		ip = mtod(m, struct ip *);
    841 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
    842 			sizeof(struct tcphdr));
    843 		if (th == NULL) {
    844 			tcpstat.tcps_rcvshort++;
    845 			return;
    846 		}
    847 		/* We do the checksum after PCB lookup... */
    848 		len = ntohs(ip->ip_len);
    849 		tlen = len - toff;
    850 		break;
    851 #endif
    852 #ifdef INET6
    853 	case 6:
    854 		ip = NULL;
    855 		iphlen = sizeof(struct ip6_hdr);
    856 		af = AF_INET6;
    857 		ip6 = mtod(m, struct ip6_hdr *);
    858 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
    859 			sizeof(struct tcphdr));
    860 		if (th == NULL) {
    861 			tcpstat.tcps_rcvshort++;
    862 			return;
    863 		}
    864 
    865 		/* Be proactive about malicious use of IPv4 mapped address */
    866 		if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
    867 		    IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
    868 			/* XXX stat */
    869 			goto drop;
    870 		}
    871 
    872 		/*
    873 		 * Be proactive about unspecified IPv6 address in source.
    874 		 * As we use all-zero to indicate unbounded/unconnected pcb,
    875 		 * unspecified IPv6 address can be used to confuse us.
    876 		 *
    877 		 * Note that packets with unspecified IPv6 destination is
    878 		 * already dropped in ip6_input.
    879 		 */
    880 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
    881 			/* XXX stat */
    882 			goto drop;
    883 		}
    884 
    885 		/*
    886 		 * Make sure destination address is not multicast.
    887 		 * Source address checked in ip6_input().
    888 		 */
    889 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
    890 			/* XXX stat */
    891 			goto drop;
    892 		}
    893 
    894 		/* We do the checksum after PCB lookup... */
    895 		len = m->m_pkthdr.len;
    896 		tlen = len - toff;
    897 		break;
    898 #endif
    899 	default:
    900 		m_freem(m);
    901 		return;
    902 	}
    903 
    904 	KASSERT(TCP_HDR_ALIGNED_P(th));
    905 
    906 	/*
    907 	 * Check that TCP offset makes sense,
    908 	 * pull out TCP options and adjust length.		XXX
    909 	 */
    910 	off = th->th_off << 2;
    911 	if (off < sizeof (struct tcphdr) || off > tlen) {
    912 		tcpstat.tcps_rcvbadoff++;
    913 		goto drop;
    914 	}
    915 	tlen -= off;
    916 
    917 	/*
    918 	 * tcp_input() has been modified to use tlen to mean the TCP data
    919 	 * length throughout the function.  Other functions can use
    920 	 * m->m_pkthdr.len as the basis for calculating the TCP data length.
    921 	 * rja
    922 	 */
    923 
    924 	if (off > sizeof (struct tcphdr)) {
    925 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
    926 		if (th == NULL) {
    927 			tcpstat.tcps_rcvshort++;
    928 			return;
    929 		}
    930 		/*
    931 		 * NOTE: ip/ip6 will not be affected by m_pulldown()
    932 		 * (as they're before toff) and we don't need to update those.
    933 		 */
    934 		KASSERT(TCP_HDR_ALIGNED_P(th));
    935 		optlen = off - sizeof (struct tcphdr);
    936 		optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
    937 		/*
    938 		 * Do quick retrieval of timestamp options ("options
    939 		 * prediction?").  If timestamp is the only option and it's
    940 		 * formatted as recommended in RFC 1323 appendix A, we
    941 		 * quickly get the values now and not bother calling
    942 		 * tcp_dooptions(), etc.
    943 		 */
    944 		if ((optlen == TCPOLEN_TSTAMP_APPA ||
    945 		     (optlen > TCPOLEN_TSTAMP_APPA &&
    946 			optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
    947 		     *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
    948 		     (th->th_flags & TH_SYN) == 0) {
    949 			opti.ts_present = 1;
    950 			opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
    951 			opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
    952 			optp = NULL;	/* we've parsed the options */
    953 		}
    954 	}
    955 	tiflags = th->th_flags;
    956 
    957 	/*
    958 	 * Locate pcb for segment.
    959 	 */
    960 findpcb:
    961 	inp = NULL;
    962 #ifdef INET6
    963 	in6p = NULL;
    964 #endif
    965 	switch (af) {
    966 #ifdef INET
    967 	case AF_INET:
    968 		inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
    969 		    ip->ip_dst, th->th_dport);
    970 		if (inp == 0) {
    971 			++tcpstat.tcps_pcbhashmiss;
    972 			inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
    973 		}
    974 #ifdef INET6
    975 		if (inp == 0) {
    976 			struct in6_addr s, d;
    977 
    978 			/* mapped addr case */
    979 			bzero(&s, sizeof(s));
    980 			s.s6_addr16[5] = htons(0xffff);
    981 			bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
    982 			bzero(&d, sizeof(d));
    983 			d.s6_addr16[5] = htons(0xffff);
    984 			bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
    985 			in6p = in6_pcblookup_connect(&tcb6, &s, th->th_sport,
    986 				&d, th->th_dport, 0);
    987 			if (in6p == 0) {
    988 				++tcpstat.tcps_pcbhashmiss;
    989 				in6p = in6_pcblookup_bind(&tcb6, &d,
    990 					th->th_dport, 0);
    991 			}
    992 		}
    993 #endif
    994 #ifndef INET6
    995 		if (inp == 0)
    996 #else
    997 		if (inp == 0 && in6p == 0)
    998 #endif
    999 		{
   1000 			++tcpstat.tcps_noport;
   1001 			if (tcp_log_refused &&
   1002 			    (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
   1003 				tcp4_log_refused(ip, th);
   1004 			}
   1005 			TCP_FIELDS_TO_HOST(th);
   1006 			goto dropwithreset_ratelim;
   1007 		}
   1008 #ifdef IPSEC
   1009 		if (inp && ipsec4_in_reject(m, inp)) {
   1010 			ipsecstat.in_polvio++;
   1011 			goto drop;
   1012 		}
   1013 #ifdef INET6
   1014 		else if (in6p && ipsec4_in_reject_so(m, in6p->in6p_socket)) {
   1015 			ipsecstat.in_polvio++;
   1016 			goto drop;
   1017 		}
   1018 #endif
   1019 #endif /*IPSEC*/
   1020 		break;
   1021 #endif /*INET*/
   1022 #ifdef INET6
   1023 	case AF_INET6:
   1024 	    {
   1025 		int faith;
   1026 
   1027 #if defined(NFAITH) && NFAITH > 0
   1028 		faith = faithprefix(&ip6->ip6_dst);
   1029 #else
   1030 		faith = 0;
   1031 #endif
   1032 		in6p = in6_pcblookup_connect(&tcb6, &ip6->ip6_src, th->th_sport,
   1033 			&ip6->ip6_dst, th->th_dport, faith);
   1034 		if (in6p == NULL) {
   1035 			++tcpstat.tcps_pcbhashmiss;
   1036 			in6p = in6_pcblookup_bind(&tcb6, &ip6->ip6_dst,
   1037 				th->th_dport, faith);
   1038 		}
   1039 		if (in6p == NULL) {
   1040 			++tcpstat.tcps_noport;
   1041 			if (tcp_log_refused &&
   1042 			    (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
   1043 				tcp6_log_refused(ip6, th);
   1044 			}
   1045 			TCP_FIELDS_TO_HOST(th);
   1046 			goto dropwithreset_ratelim;
   1047 		}
   1048 #ifdef IPSEC
   1049 		if (ipsec6_in_reject(m, in6p)) {
   1050 			ipsec6stat.in_polvio++;
   1051 			goto drop;
   1052 		}
   1053 #endif /*IPSEC*/
   1054 		break;
   1055 	    }
   1056 #endif
   1057 	}
   1058 
   1059 	/*
   1060 	 * If the state is CLOSED (i.e., TCB does not exist) then
   1061 	 * all data in the incoming segment is discarded.
   1062 	 * If the TCB exists but is in CLOSED state, it is embryonic,
   1063 	 * but should either do a listen or a connect soon.
   1064 	 */
   1065 	tp = NULL;
   1066 	so = NULL;
   1067 	if (inp) {
   1068 		tp = intotcpcb(inp);
   1069 		so = inp->inp_socket;
   1070 	}
   1071 #ifdef INET6
   1072 	else if (in6p) {
   1073 		tp = in6totcpcb(in6p);
   1074 		so = in6p->in6p_socket;
   1075 	}
   1076 #endif
   1077 	if (tp == 0) {
   1078 		TCP_FIELDS_TO_HOST(th);
   1079 		goto dropwithreset_ratelim;
   1080 	}
   1081 	if (tp->t_state == TCPS_CLOSED)
   1082 		goto drop;
   1083 
   1084 	/*
   1085 	 * Checksum extended TCP header and data.
   1086 	 */
   1087 	switch (af) {
   1088 #ifdef INET
   1089 	case AF_INET:
   1090 		switch (m->m_pkthdr.csum_flags &
   1091 			((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
   1092 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
   1093 		case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
   1094 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
   1095 			goto badcsum;
   1096 
   1097 		case M_CSUM_TCPv4|M_CSUM_DATA:
   1098 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
   1099 			if ((m->m_pkthdr.csum_data ^ 0xffff) != 0)
   1100 				goto badcsum;
   1101 			break;
   1102 
   1103 		case M_CSUM_TCPv4:
   1104 			/* Checksum was okay. */
   1105 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
   1106 			break;
   1107 
   1108 		default:
   1109 			/* Must compute it ourselves. */
   1110 			TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
   1111 			if (in4_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0)
   1112 				goto badcsum;
   1113 			break;
   1114 		}
   1115 		break;
   1116 #endif /* INET4 */
   1117 
   1118 #ifdef INET6
   1119 	case AF_INET6:
   1120 		if (in6_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0)
   1121 			goto badcsum;
   1122 		break;
   1123 #endif /* INET6 */
   1124 	}
   1125 
   1126 	TCP_FIELDS_TO_HOST(th);
   1127 
   1128 	/* Unscale the window into a 32-bit value. */
   1129 	if ((tiflags & TH_SYN) == 0)
   1130 		tiwin = th->th_win << tp->snd_scale;
   1131 	else
   1132 		tiwin = th->th_win;
   1133 
   1134 #ifdef INET6
   1135 	/* save packet options if user wanted */
   1136 	if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
   1137 		if (in6p->in6p_options) {
   1138 			m_freem(in6p->in6p_options);
   1139 			in6p->in6p_options = 0;
   1140 		}
   1141 		ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
   1142 	}
   1143 #endif
   1144 
   1145 	if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
   1146 		union syn_cache_sa src;
   1147 		union syn_cache_sa dst;
   1148 
   1149 		bzero(&src, sizeof(src));
   1150 		bzero(&dst, sizeof(dst));
   1151 		switch (af) {
   1152 #ifdef INET
   1153 		case AF_INET:
   1154 			src.sin.sin_len = sizeof(struct sockaddr_in);
   1155 			src.sin.sin_family = AF_INET;
   1156 			src.sin.sin_addr = ip->ip_src;
   1157 			src.sin.sin_port = th->th_sport;
   1158 
   1159 			dst.sin.sin_len = sizeof(struct sockaddr_in);
   1160 			dst.sin.sin_family = AF_INET;
   1161 			dst.sin.sin_addr = ip->ip_dst;
   1162 			dst.sin.sin_port = th->th_dport;
   1163 			break;
   1164 #endif
   1165 #ifdef INET6
   1166 		case AF_INET6:
   1167 			src.sin6.sin6_len = sizeof(struct sockaddr_in6);
   1168 			src.sin6.sin6_family = AF_INET6;
   1169 			src.sin6.sin6_addr = ip6->ip6_src;
   1170 			src.sin6.sin6_port = th->th_sport;
   1171 
   1172 			dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
   1173 			dst.sin6.sin6_family = AF_INET6;
   1174 			dst.sin6.sin6_addr = ip6->ip6_dst;
   1175 			dst.sin6.sin6_port = th->th_dport;
   1176 			break;
   1177 #endif /* INET6 */
   1178 		default:
   1179 			goto badsyn;	/*sanity*/
   1180 		}
   1181 
   1182 		if (so->so_options & SO_DEBUG) {
   1183 #ifdef TCP_DEBUG
   1184 			ostate = tp->t_state;
   1185 #endif
   1186 
   1187 			tcp_saveti = NULL;
   1188 			if (iphlen + sizeof(struct tcphdr) > MHLEN)
   1189 				goto nosave;
   1190 
   1191 			if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
   1192 				tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
   1193 				if (!tcp_saveti)
   1194 					goto nosave;
   1195 			} else {
   1196 				MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
   1197 				if (!tcp_saveti)
   1198 					goto nosave;
   1199 				MCLAIM(m, &tcp_mowner);
   1200 				tcp_saveti->m_len = iphlen;
   1201 				m_copydata(m, 0, iphlen,
   1202 				    mtod(tcp_saveti, caddr_t));
   1203 			}
   1204 
   1205 			if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
   1206 				m_freem(tcp_saveti);
   1207 				tcp_saveti = NULL;
   1208 			} else {
   1209 				tcp_saveti->m_len += sizeof(struct tcphdr);
   1210 				bcopy(th, mtod(tcp_saveti, caddr_t) + iphlen,
   1211 				    sizeof(struct tcphdr));
   1212 			}
   1213 	nosave:;
   1214 		}
   1215 		if (so->so_options & SO_ACCEPTCONN) {
   1216 			if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
   1217 				if (tiflags & TH_RST) {
   1218 					syn_cache_reset(&src.sa, &dst.sa, th);
   1219 				} else if ((tiflags & (TH_ACK|TH_SYN)) ==
   1220 				    (TH_ACK|TH_SYN)) {
   1221 					/*
   1222 					 * Received a SYN,ACK.  This should
   1223 					 * never happen while we are in
   1224 					 * LISTEN.  Send an RST.
   1225 					 */
   1226 					goto badsyn;
   1227 				} else if (tiflags & TH_ACK) {
   1228 					so = syn_cache_get(&src.sa, &dst.sa,
   1229 						th, toff, tlen, so, m);
   1230 					if (so == NULL) {
   1231 						/*
   1232 						 * We don't have a SYN for
   1233 						 * this ACK; send an RST.
   1234 						 */
   1235 						goto badsyn;
   1236 					} else if (so ==
   1237 					    (struct socket *)(-1)) {
   1238 						/*
   1239 						 * We were unable to create
   1240 						 * the connection.  If the
   1241 						 * 3-way handshake was
   1242 						 * completed, and RST has
   1243 						 * been sent to the peer.
   1244 						 * Since the mbuf might be
   1245 						 * in use for the reply,
   1246 						 * do not free it.
   1247 						 */
   1248 						m = NULL;
   1249 					} else {
   1250 						/*
   1251 						 * We have created a
   1252 						 * full-blown connection.
   1253 						 */
   1254 						tp = NULL;
   1255 						inp = NULL;
   1256 #ifdef INET6
   1257 						in6p = NULL;
   1258 #endif
   1259 						switch (so->so_proto->pr_domain->dom_family) {
   1260 #ifdef INET
   1261 						case AF_INET:
   1262 							inp = sotoinpcb(so);
   1263 							tp = intotcpcb(inp);
   1264 							break;
   1265 #endif
   1266 #ifdef INET6
   1267 						case AF_INET6:
   1268 							in6p = sotoin6pcb(so);
   1269 							tp = in6totcpcb(in6p);
   1270 							break;
   1271 #endif
   1272 						}
   1273 						if (tp == NULL)
   1274 							goto badsyn;	/*XXX*/
   1275 						tiwin <<= tp->snd_scale;
   1276 						goto after_listen;
   1277 					}
   1278 				} else {
   1279 					/*
   1280 					 * None of RST, SYN or ACK was set.
   1281 					 * This is an invalid packet for a
   1282 					 * TCB in LISTEN state.  Send a RST.
   1283 					 */
   1284 					goto badsyn;
   1285 				}
   1286 			} else {
   1287 				/*
   1288 				 * Received a SYN.
   1289 				 */
   1290 
   1291 #ifdef INET6
   1292 				/*
   1293 				 * If deprecated address is forbidden, we do
   1294 				 * not accept SYN to deprecated interface
   1295 				 * address to prevent any new inbound
   1296 				 * connection from getting established.
   1297 				 * When we do not accept SYN, we send a TCP
   1298 				 * RST, with deprecated source address (instead
   1299 				 * of dropping it).  We compromise it as it is
   1300 				 * much better for peer to send a RST, and
   1301 				 * RST will be the final packet for the
   1302 				 * exchange.
   1303 				 *
   1304 				 * If we do not forbid deprecated addresses, we
   1305 				 * accept the SYN packet.  RFC2462 does not
   1306 				 * suggest dropping SYN in this case.
   1307 				 * If we decipher RFC2462 5.5.4, it says like
   1308 				 * this:
   1309 				 * 1. use of deprecated addr with existing
   1310 				 *    communication is okay - "SHOULD continue
   1311 				 *    to be used"
   1312 				 * 2. use of it with new communication:
   1313 				 *   (2a) "SHOULD NOT be used if alternate
   1314 				 *        address with sufficient scope is
   1315 				 *        available"
   1316 				 *   (2b) nothing mentioned otherwise.
   1317 				 * Here we fall into (2b) case as we have no
   1318 				 * choice in our source address selection - we
   1319 				 * must obey the peer.
   1320 				 *
   1321 				 * The wording in RFC2462 is confusing, and
   1322 				 * there are multiple description text for
   1323 				 * deprecated address handling - worse, they
   1324 				 * are not exactly the same.  I believe 5.5.4
   1325 				 * is the best one, so we follow 5.5.4.
   1326 				 */
   1327 				if (af == AF_INET6 && !ip6_use_deprecated) {
   1328 					struct in6_ifaddr *ia6;
   1329 					if ((ia6 = in6ifa_ifpwithaddr(m->m_pkthdr.rcvif,
   1330 					    &ip6->ip6_dst)) &&
   1331 					    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
   1332 						tp = NULL;
   1333 						goto dropwithreset;
   1334 					}
   1335 				}
   1336 #endif
   1337 
   1338 				/*
   1339 				 * LISTEN socket received a SYN
   1340 				 * from itself?  This can't possibly
   1341 				 * be valid; drop the packet.
   1342 				 */
   1343 				if (th->th_sport == th->th_dport) {
   1344 					int i;
   1345 
   1346 					switch (af) {
   1347 #ifdef INET
   1348 					case AF_INET:
   1349 						i = in_hosteq(ip->ip_src, ip->ip_dst);
   1350 						break;
   1351 #endif
   1352 #ifdef INET6
   1353 					case AF_INET6:
   1354 						i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
   1355 						break;
   1356 #endif
   1357 					default:
   1358 						i = 1;
   1359 					}
   1360 					if (i) {
   1361 						tcpstat.tcps_badsyn++;
   1362 						goto drop;
   1363 					}
   1364 				}
   1365 
   1366 				/*
   1367 				 * SYN looks ok; create compressed TCP
   1368 				 * state for it.
   1369 				 */
   1370 				if (so->so_qlen <= so->so_qlimit &&
   1371 				    syn_cache_add(&src.sa, &dst.sa, th, tlen,
   1372 						so, m, optp, optlen, &opti))
   1373 					m = NULL;
   1374 			}
   1375 			goto drop;
   1376 		}
   1377 	}
   1378 
   1379 after_listen:
   1380 #ifdef DIAGNOSTIC
   1381 	/*
   1382 	 * Should not happen now that all embryonic connections
   1383 	 * are handled with compressed state.
   1384 	 */
   1385 	if (tp->t_state == TCPS_LISTEN)
   1386 		panic("tcp_input: TCPS_LISTEN");
   1387 #endif
   1388 
   1389 	/*
   1390 	 * Segment received on connection.
   1391 	 * Reset idle time and keep-alive timer.
   1392 	 */
   1393 	tp->t_rcvtime = tcp_now;
   1394 	if (TCPS_HAVEESTABLISHED(tp->t_state))
   1395 		TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
   1396 
   1397 	/*
   1398 	 * Process options.
   1399 	 */
   1400 	if (optp)
   1401 		tcp_dooptions(tp, optp, optlen, th, &opti);
   1402 
   1403 	/*
   1404 	 * Header prediction: check for the two common cases
   1405 	 * of a uni-directional data xfer.  If the packet has
   1406 	 * no control flags, is in-sequence, the window didn't
   1407 	 * change and we're not retransmitting, it's a
   1408 	 * candidate.  If the length is zero and the ack moved
   1409 	 * forward, we're the sender side of the xfer.  Just
   1410 	 * free the data acked & wake any higher level process
   1411 	 * that was blocked waiting for space.  If the length
   1412 	 * is non-zero and the ack didn't move, we're the
   1413 	 * receiver side.  If we're getting packets in-order
   1414 	 * (the reassembly queue is empty), add the data to
   1415 	 * the socket buffer and note that we need a delayed ack.
   1416 	 */
   1417 	if (tp->t_state == TCPS_ESTABLISHED &&
   1418 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
   1419 	    (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
   1420 	    th->th_seq == tp->rcv_nxt &&
   1421 	    tiwin && tiwin == tp->snd_wnd &&
   1422 	    tp->snd_nxt == tp->snd_max) {
   1423 
   1424 		/*
   1425 		 * If last ACK falls within this segment's sequence numbers,
   1426 		 *  record the timestamp.
   1427 		 */
   1428 		if (opti.ts_present &&
   1429 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
   1430 		    SEQ_LT(tp->last_ack_sent, th->th_seq + tlen)) {
   1431 			tp->ts_recent_age = TCP_TIMESTAMP(tp);
   1432 			tp->ts_recent = opti.ts_val;
   1433 		}
   1434 
   1435 		if (tlen == 0) {
   1436 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
   1437 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
   1438 			    tp->snd_cwnd >= tp->snd_wnd &&
   1439 			    tp->t_dupacks < tcprexmtthresh) {
   1440 				int slen;
   1441 
   1442 				/*
   1443 				 * this is a pure ack for outstanding data.
   1444 				 */
   1445 				++tcpstat.tcps_predack;
   1446 				if (opti.ts_present && opti.ts_ecr)
   1447 					tcp_xmit_timer(tp,
   1448 					  TCP_TIMESTAMP(tp) - opti.ts_ecr + 1);
   1449 				else if (tp->t_rtttime &&
   1450 				    SEQ_GT(th->th_ack, tp->t_rtseq))
   1451 					tcp_xmit_timer(tp,
   1452 					tcp_now - tp->t_rtttime);
   1453 				acked = th->th_ack - tp->snd_una;
   1454 				tcpstat.tcps_rcvackpack++;
   1455 				tcpstat.tcps_rcvackbyte += acked;
   1456 				ND6_HINT(tp);
   1457 
   1458 				slen = tp->t_lastm->m_len;
   1459 				sbdrop(&so->so_snd, acked);
   1460 				if (so->so_snd.sb_cc != 0) {
   1461 					tp->t_lastoff -= acked;
   1462 					if (tp->t_lastm->m_len < slen)
   1463 						tp->t_inoff -=
   1464 						    (slen - tp->t_lastm->m_len);
   1465 				}
   1466 
   1467 				/*
   1468 				 * We want snd_recover to track snd_una to
   1469 				 * avoid sequence wraparound problems for
   1470 				 * very large transfers.
   1471 				 */
   1472 				tp->snd_una = tp->snd_recover = th->th_ack;
   1473 				m_freem(m);
   1474 
   1475 				/*
   1476 				 * If all outstanding data are acked, stop
   1477 				 * retransmit timer, otherwise restart timer
   1478 				 * using current (possibly backed-off) value.
   1479 				 * If process is waiting for space,
   1480 				 * wakeup/selwakeup/signal.  If data
   1481 				 * are ready to send, let tcp_output
   1482 				 * decide between more output or persist.
   1483 				 */
   1484 				if (tp->snd_una == tp->snd_max)
   1485 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
   1486 				else if (TCP_TIMER_ISARMED(tp,
   1487 				    TCPT_PERSIST) == 0)
   1488 					TCP_TIMER_ARM(tp, TCPT_REXMT,
   1489 					    tp->t_rxtcur);
   1490 
   1491 				sowwakeup(so);
   1492 				if (so->so_snd.sb_cc)
   1493 					(void) tcp_output(tp);
   1494 				if (tcp_saveti)
   1495 					m_freem(tcp_saveti);
   1496 				return;
   1497 			}
   1498 		} else if (th->th_ack == tp->snd_una &&
   1499 		    TAILQ_FIRST(&tp->segq) == NULL &&
   1500 		    tlen <= sbspace(&so->so_rcv)) {
   1501 			/*
   1502 			 * this is a pure, in-sequence data packet
   1503 			 * with nothing on the reassembly queue and
   1504 			 * we have enough buffer space to take it.
   1505 			 */
   1506 			++tcpstat.tcps_preddat;
   1507 			tp->rcv_nxt += tlen;
   1508 			tcpstat.tcps_rcvpack++;
   1509 			tcpstat.tcps_rcvbyte += tlen;
   1510 			ND6_HINT(tp);
   1511 			/*
   1512 			 * Drop TCP, IP headers and TCP options then add data
   1513 			 * to socket buffer.
   1514 			 */
   1515 			if (so->so_state & SS_CANTRCVMORE)
   1516 				m_freem(m);
   1517 			else {
   1518 				m_adj(m, toff + off);
   1519 				sbappendstream(&so->so_rcv, m);
   1520 			}
   1521 			sorwakeup(so);
   1522 			TCP_SETUP_ACK(tp, th);
   1523 			if (tp->t_flags & TF_ACKNOW)
   1524 				(void) tcp_output(tp);
   1525 			if (tcp_saveti)
   1526 				m_freem(tcp_saveti);
   1527 			return;
   1528 		}
   1529 	}
   1530 
   1531 	/*
   1532 	 * Compute mbuf offset to TCP data segment.
   1533 	 */
   1534 	hdroptlen = toff + off;
   1535 
   1536 	/*
   1537 	 * Calculate amount of space in receive window,
   1538 	 * and then do TCP input processing.
   1539 	 * Receive window is amount of space in rcv queue,
   1540 	 * but not less than advertised window.
   1541 	 */
   1542 	{ int win;
   1543 
   1544 	win = sbspace(&so->so_rcv);
   1545 	if (win < 0)
   1546 		win = 0;
   1547 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
   1548 	}
   1549 
   1550 	switch (tp->t_state) {
   1551 	case TCPS_LISTEN:
   1552 		/*
   1553 		 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
   1554 		 */
   1555 		if (m->m_flags & (M_BCAST|M_MCAST))
   1556 			goto drop;
   1557 		switch (af) {
   1558 #ifdef INET6
   1559 		case AF_INET6:
   1560 			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
   1561 				goto drop;
   1562 			break;
   1563 #endif /* INET6 */
   1564 		case AF_INET:
   1565 			if (IN_MULTICAST(ip->ip_dst.s_addr) ||
   1566 			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
   1567 				goto drop;
   1568 			break;
   1569 		}
   1570 		break;
   1571 
   1572 	/*
   1573 	 * If the state is SYN_SENT:
   1574 	 *	if seg contains an ACK, but not for our SYN, drop the input.
   1575 	 *	if seg contains a RST, then drop the connection.
   1576 	 *	if seg does not contain SYN, then drop it.
   1577 	 * Otherwise this is an acceptable SYN segment
   1578 	 *	initialize tp->rcv_nxt and tp->irs
   1579 	 *	if seg contains ack then advance tp->snd_una
   1580 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
   1581 	 *	arrange for segment to be acked (eventually)
   1582 	 *	continue processing rest of data/controls, beginning with URG
   1583 	 */
   1584 	case TCPS_SYN_SENT:
   1585 		if ((tiflags & TH_ACK) &&
   1586 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
   1587 		     SEQ_GT(th->th_ack, tp->snd_max)))
   1588 			goto dropwithreset;
   1589 		if (tiflags & TH_RST) {
   1590 			if (tiflags & TH_ACK)
   1591 				tp = tcp_drop(tp, ECONNREFUSED);
   1592 			goto drop;
   1593 		}
   1594 		if ((tiflags & TH_SYN) == 0)
   1595 			goto drop;
   1596 		if (tiflags & TH_ACK) {
   1597 			tp->snd_una = tp->snd_recover = th->th_ack;
   1598 			if (SEQ_LT(tp->snd_nxt, tp->snd_una))
   1599 				tp->snd_nxt = tp->snd_una;
   1600 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
   1601 		}
   1602 		tp->irs = th->th_seq;
   1603 		tcp_rcvseqinit(tp);
   1604 		tp->t_flags |= TF_ACKNOW;
   1605 		tcp_mss_from_peer(tp, opti.maxseg);
   1606 
   1607 		/*
   1608 		 * Initialize the initial congestion window.  If we
   1609 		 * had to retransmit the SYN, we must initialize cwnd
   1610 		 * to 1 segment (i.e. the Loss Window).
   1611 		 */
   1612 		if (tp->t_flags & TF_SYN_REXMT)
   1613 			tp->snd_cwnd = tp->t_peermss;
   1614 		else {
   1615 			int ss = tcp_init_win;
   1616 #ifdef INET
   1617 			if (inp != NULL && in_localaddr(inp->inp_faddr))
   1618 				ss = tcp_init_win_local;
   1619 #endif
   1620 #ifdef INET6
   1621 			if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
   1622 				ss = tcp_init_win_local;
   1623 #endif
   1624 			tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
   1625 		}
   1626 
   1627 		tcp_rmx_rtt(tp);
   1628 		if (tiflags & TH_ACK) {
   1629 			tcpstat.tcps_connects++;
   1630 			soisconnected(so);
   1631 			tcp_established(tp);
   1632 			/* Do window scaling on this connection? */
   1633 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   1634 			    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
   1635 				tp->snd_scale = tp->requested_s_scale;
   1636 				tp->rcv_scale = tp->request_r_scale;
   1637 			}
   1638 			TCP_REASS_LOCK(tp);
   1639 			(void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
   1640 			TCP_REASS_UNLOCK(tp);
   1641 			/*
   1642 			 * if we didn't have to retransmit the SYN,
   1643 			 * use its rtt as our initial srtt & rtt var.
   1644 			 */
   1645 			if (tp->t_rtttime)
   1646 				tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
   1647 		} else
   1648 			tp->t_state = TCPS_SYN_RECEIVED;
   1649 
   1650 		/*
   1651 		 * Advance th->th_seq to correspond to first data byte.
   1652 		 * If data, trim to stay within window,
   1653 		 * dropping FIN if necessary.
   1654 		 */
   1655 		th->th_seq++;
   1656 		if (tlen > tp->rcv_wnd) {
   1657 			todrop = tlen - tp->rcv_wnd;
   1658 			m_adj(m, -todrop);
   1659 			tlen = tp->rcv_wnd;
   1660 			tiflags &= ~TH_FIN;
   1661 			tcpstat.tcps_rcvpackafterwin++;
   1662 			tcpstat.tcps_rcvbyteafterwin += todrop;
   1663 		}
   1664 		tp->snd_wl1 = th->th_seq - 1;
   1665 		tp->rcv_up = th->th_seq;
   1666 		goto step6;
   1667 
   1668 	/*
   1669 	 * If the state is SYN_RECEIVED:
   1670 	 *	If seg contains an ACK, but not for our SYN, drop the input
   1671 	 *	and generate an RST.  See page 36, rfc793
   1672 	 */
   1673 	case TCPS_SYN_RECEIVED:
   1674 		if ((tiflags & TH_ACK) &&
   1675 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
   1676 		     SEQ_GT(th->th_ack, tp->snd_max)))
   1677 			goto dropwithreset;
   1678 		break;
   1679 	}
   1680 
   1681 	/*
   1682 	 * States other than LISTEN or SYN_SENT.
   1683 	 * First check timestamp, if present.
   1684 	 * Then check that at least some bytes of segment are within
   1685 	 * receive window.  If segment begins before rcv_nxt,
   1686 	 * drop leading data (and SYN); if nothing left, just ack.
   1687 	 *
   1688 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
   1689 	 * and it's less than ts_recent, drop it.
   1690 	 */
   1691 	if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
   1692 	    TSTMP_LT(opti.ts_val, tp->ts_recent)) {
   1693 
   1694 		/* Check to see if ts_recent is over 24 days old.  */
   1695 		if ((int)(TCP_TIMESTAMP(tp) - tp->ts_recent_age) >
   1696 		    TCP_PAWS_IDLE) {
   1697 			/*
   1698 			 * Invalidate ts_recent.  If this segment updates
   1699 			 * ts_recent, the age will be reset later and ts_recent
   1700 			 * will get a valid value.  If it does not, setting
   1701 			 * ts_recent to zero will at least satisfy the
   1702 			 * requirement that zero be placed in the timestamp
   1703 			 * echo reply when ts_recent isn't valid.  The
   1704 			 * age isn't reset until we get a valid ts_recent
   1705 			 * because we don't want out-of-order segments to be
   1706 			 * dropped when ts_recent is old.
   1707 			 */
   1708 			tp->ts_recent = 0;
   1709 		} else {
   1710 			tcpstat.tcps_rcvduppack++;
   1711 			tcpstat.tcps_rcvdupbyte += tlen;
   1712 			tcpstat.tcps_pawsdrop++;
   1713 			goto dropafterack;
   1714 		}
   1715 	}
   1716 
   1717 	todrop = tp->rcv_nxt - th->th_seq;
   1718 	if (todrop > 0) {
   1719 		if (tiflags & TH_SYN) {
   1720 			tiflags &= ~TH_SYN;
   1721 			th->th_seq++;
   1722 			if (th->th_urp > 1)
   1723 				th->th_urp--;
   1724 			else {
   1725 				tiflags &= ~TH_URG;
   1726 				th->th_urp = 0;
   1727 			}
   1728 			todrop--;
   1729 		}
   1730 		if (todrop > tlen ||
   1731 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
   1732 			/*
   1733 			 * Any valid FIN must be to the left of the window.
   1734 			 * At this point the FIN must be a duplicate or
   1735 			 * out of sequence; drop it.
   1736 			 */
   1737 			tiflags &= ~TH_FIN;
   1738 			/*
   1739 			 * Send an ACK to resynchronize and drop any data.
   1740 			 * But keep on processing for RST or ACK.
   1741 			 */
   1742 			tp->t_flags |= TF_ACKNOW;
   1743 			todrop = tlen;
   1744 			tcpstat.tcps_rcvdupbyte += todrop;
   1745 			tcpstat.tcps_rcvduppack++;
   1746 		} else {
   1747 			tcpstat.tcps_rcvpartduppack++;
   1748 			tcpstat.tcps_rcvpartdupbyte += todrop;
   1749 		}
   1750 		hdroptlen += todrop;	/*drop from head afterwards*/
   1751 		th->th_seq += todrop;
   1752 		tlen -= todrop;
   1753 		if (th->th_urp > todrop)
   1754 			th->th_urp -= todrop;
   1755 		else {
   1756 			tiflags &= ~TH_URG;
   1757 			th->th_urp = 0;
   1758 		}
   1759 	}
   1760 
   1761 	/*
   1762 	 * If new data are received on a connection after the
   1763 	 * user processes are gone, then RST the other end.
   1764 	 */
   1765 	if ((so->so_state & SS_NOFDREF) &&
   1766 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
   1767 		tp = tcp_close(tp);
   1768 		tcpstat.tcps_rcvafterclose++;
   1769 		goto dropwithreset;
   1770 	}
   1771 
   1772 	/*
   1773 	 * If segment ends after window, drop trailing data
   1774 	 * (and PUSH and FIN); if nothing left, just ACK.
   1775 	 */
   1776 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
   1777 	if (todrop > 0) {
   1778 		tcpstat.tcps_rcvpackafterwin++;
   1779 		if (todrop >= tlen) {
   1780 			tcpstat.tcps_rcvbyteafterwin += tlen;
   1781 			/*
   1782 			 * If a new connection request is received
   1783 			 * while in TIME_WAIT, drop the old connection
   1784 			 * and start over if the sequence numbers
   1785 			 * are above the previous ones.
   1786 			 *
   1787 			 * NOTE: We will checksum the packet again, and
   1788 			 * so we need to put the header fields back into
   1789 			 * network order!
   1790 			 * XXX This kind of sucks, but we don't expect
   1791 			 * XXX this to happen very often, so maybe it
   1792 			 * XXX doesn't matter so much.
   1793 			 */
   1794 			if (tiflags & TH_SYN &&
   1795 			    tp->t_state == TCPS_TIME_WAIT &&
   1796 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
   1797 				iss = tcp_new_iss(tp, tp->snd_nxt);
   1798 				tp = tcp_close(tp);
   1799 				TCP_FIELDS_TO_NET(th);
   1800 				goto findpcb;
   1801 			}
   1802 			/*
   1803 			 * If window is closed can only take segments at
   1804 			 * window edge, and have to drop data and PUSH from
   1805 			 * incoming segments.  Continue processing, but
   1806 			 * remember to ack.  Otherwise, drop segment
   1807 			 * and ack.
   1808 			 */
   1809 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
   1810 				tp->t_flags |= TF_ACKNOW;
   1811 				tcpstat.tcps_rcvwinprobe++;
   1812 			} else
   1813 				goto dropafterack;
   1814 		} else
   1815 			tcpstat.tcps_rcvbyteafterwin += todrop;
   1816 		m_adj(m, -todrop);
   1817 		tlen -= todrop;
   1818 		tiflags &= ~(TH_PUSH|TH_FIN);
   1819 	}
   1820 
   1821 	/*
   1822 	 * If last ACK falls within this segment's sequence numbers,
   1823 	 * and the timestamp is newer, record it.
   1824 	 */
   1825 	if (opti.ts_present && TSTMP_GEQ(opti.ts_val, tp->ts_recent) &&
   1826 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
   1827 	    SEQ_LT(tp->last_ack_sent, th->th_seq + tlen +
   1828 		   ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
   1829 		tp->ts_recent_age = TCP_TIMESTAMP(tp);
   1830 		tp->ts_recent = opti.ts_val;
   1831 	}
   1832 
   1833 	/*
   1834 	 * If the RST bit is set examine the state:
   1835 	 *    SYN_RECEIVED STATE:
   1836 	 *	If passive open, return to LISTEN state.
   1837 	 *	If active open, inform user that connection was refused.
   1838 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
   1839 	 *	Inform user that connection was reset, and close tcb.
   1840 	 *    CLOSING, LAST_ACK, TIME_WAIT STATES
   1841 	 *	Close the tcb.
   1842 	 */
   1843 	if (tiflags&TH_RST) switch (tp->t_state) {
   1844 
   1845 	case TCPS_SYN_RECEIVED:
   1846 		so->so_error = ECONNREFUSED;
   1847 		goto close;
   1848 
   1849 	case TCPS_ESTABLISHED:
   1850 	case TCPS_FIN_WAIT_1:
   1851 	case TCPS_FIN_WAIT_2:
   1852 	case TCPS_CLOSE_WAIT:
   1853 		so->so_error = ECONNRESET;
   1854 	close:
   1855 		tp->t_state = TCPS_CLOSED;
   1856 		tcpstat.tcps_drops++;
   1857 		tp = tcp_close(tp);
   1858 		goto drop;
   1859 
   1860 	case TCPS_CLOSING:
   1861 	case TCPS_LAST_ACK:
   1862 	case TCPS_TIME_WAIT:
   1863 		tp = tcp_close(tp);
   1864 		goto drop;
   1865 	}
   1866 
   1867 	/*
   1868 	 * If a SYN is in the window, then this is an
   1869 	 * error and we send an RST and drop the connection.
   1870 	 */
   1871 	if (tiflags & TH_SYN) {
   1872 		tp = tcp_drop(tp, ECONNRESET);
   1873 		goto dropwithreset;
   1874 	}
   1875 
   1876 	/*
   1877 	 * If the ACK bit is off we drop the segment and return.
   1878 	 */
   1879 	if ((tiflags & TH_ACK) == 0) {
   1880 		if (tp->t_flags & TF_ACKNOW)
   1881 			goto dropafterack;
   1882 		else
   1883 			goto drop;
   1884 	}
   1885 
   1886 	/*
   1887 	 * Ack processing.
   1888 	 */
   1889 	switch (tp->t_state) {
   1890 
   1891 	/*
   1892 	 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
   1893 	 * ESTABLISHED state and continue processing, otherwise
   1894 	 * send an RST.
   1895 	 */
   1896 	case TCPS_SYN_RECEIVED:
   1897 		if (SEQ_GT(tp->snd_una, th->th_ack) ||
   1898 		    SEQ_GT(th->th_ack, tp->snd_max))
   1899 			goto dropwithreset;
   1900 		tcpstat.tcps_connects++;
   1901 		soisconnected(so);
   1902 		tcp_established(tp);
   1903 		/* Do window scaling? */
   1904 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   1905 		    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
   1906 			tp->snd_scale = tp->requested_s_scale;
   1907 			tp->rcv_scale = tp->request_r_scale;
   1908 		}
   1909 		TCP_REASS_LOCK(tp);
   1910 		(void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
   1911 		TCP_REASS_UNLOCK(tp);
   1912 		tp->snd_wl1 = th->th_seq - 1;
   1913 		/* fall into ... */
   1914 
   1915 	/*
   1916 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
   1917 	 * ACKs.  If the ack is in the range
   1918 	 *	tp->snd_una < th->th_ack <= tp->snd_max
   1919 	 * then advance tp->snd_una to th->th_ack and drop
   1920 	 * data from the retransmission queue.  If this ACK reflects
   1921 	 * more up to date window information we update our window information.
   1922 	 */
   1923 	case TCPS_ESTABLISHED:
   1924 	case TCPS_FIN_WAIT_1:
   1925 	case TCPS_FIN_WAIT_2:
   1926 	case TCPS_CLOSE_WAIT:
   1927 	case TCPS_CLOSING:
   1928 	case TCPS_LAST_ACK:
   1929 	case TCPS_TIME_WAIT:
   1930 
   1931 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
   1932 			if (tlen == 0 && tiwin == tp->snd_wnd) {
   1933 				tcpstat.tcps_rcvdupack++;
   1934 				/*
   1935 				 * If we have outstanding data (other than
   1936 				 * a window probe), this is a completely
   1937 				 * duplicate ack (ie, window info didn't
   1938 				 * change), the ack is the biggest we've
   1939 				 * seen and we've seen exactly our rexmt
   1940 				 * threshhold of them, assume a packet
   1941 				 * has been dropped and retransmit it.
   1942 				 * Kludge snd_nxt & the congestion
   1943 				 * window so we send only this one
   1944 				 * packet.
   1945 				 *
   1946 				 * We know we're losing at the current
   1947 				 * window size so do congestion avoidance
   1948 				 * (set ssthresh to half the current window
   1949 				 * and pull our congestion window back to
   1950 				 * the new ssthresh).
   1951 				 *
   1952 				 * Dup acks mean that packets have left the
   1953 				 * network (they're now cached at the receiver)
   1954 				 * so bump cwnd by the amount in the receiver
   1955 				 * to keep a constant cwnd packets in the
   1956 				 * network.
   1957 				 */
   1958 				if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
   1959 				    th->th_ack != tp->snd_una)
   1960 					tp->t_dupacks = 0;
   1961 				else if (++tp->t_dupacks == tcprexmtthresh) {
   1962 					tcp_seq onxt = tp->snd_nxt;
   1963 					u_int win =
   1964 					    min(tp->snd_wnd, tp->snd_cwnd) /
   1965 					    2 /	tp->t_segsz;
   1966 					if (tcp_do_newreno && SEQ_LT(th->th_ack,
   1967 					    tp->snd_recover)) {
   1968 						/*
   1969 						 * False fast retransmit after
   1970 						 * timeout.  Do not cut window.
   1971 						 */
   1972 						tp->snd_cwnd += tp->t_segsz;
   1973 						tp->t_dupacks = 0;
   1974 						(void) tcp_output(tp);
   1975 						goto drop;
   1976 					}
   1977 
   1978 					if (win < 2)
   1979 						win = 2;
   1980 					tp->snd_ssthresh = win * tp->t_segsz;
   1981 					tp->snd_recover = tp->snd_max;
   1982 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
   1983 					tp->t_rtttime = 0;
   1984 					tp->snd_nxt = th->th_ack;
   1985 					tp->snd_cwnd = tp->t_segsz;
   1986 					(void) tcp_output(tp);
   1987 					tp->snd_cwnd = tp->snd_ssthresh +
   1988 					       tp->t_segsz * tp->t_dupacks;
   1989 					if (SEQ_GT(onxt, tp->snd_nxt))
   1990 						tp->snd_nxt = onxt;
   1991 					goto drop;
   1992 				} else if (tp->t_dupacks > tcprexmtthresh) {
   1993 					tp->snd_cwnd += tp->t_segsz;
   1994 					(void) tcp_output(tp);
   1995 					goto drop;
   1996 				}
   1997 			} else
   1998 				tp->t_dupacks = 0;
   1999 			break;
   2000 		}
   2001 		/*
   2002 		 * If the congestion window was inflated to account
   2003 		 * for the other side's cached packets, retract it.
   2004 		 */
   2005 		if (tcp_do_newreno == 0) {
   2006 			if (tp->t_dupacks >= tcprexmtthresh &&
   2007 			    tp->snd_cwnd > tp->snd_ssthresh)
   2008 				tp->snd_cwnd = tp->snd_ssthresh;
   2009 			tp->t_dupacks = 0;
   2010 		} else if (tp->t_dupacks >= tcprexmtthresh &&
   2011 			   tcp_newreno(tp, th) == 0) {
   2012 			tp->snd_cwnd = tp->snd_ssthresh;
   2013 			/*
   2014 			 * Window inflation should have left us with approx.
   2015 			 * snd_ssthresh outstanding data.  But in case we
   2016 			 * would be inclined to send a burst, better to do
   2017 			 * it via the slow start mechanism.
   2018 			 */
   2019 			if (SEQ_SUB(tp->snd_max, th->th_ack) < tp->snd_ssthresh)
   2020 				tp->snd_cwnd = SEQ_SUB(tp->snd_max, th->th_ack)
   2021 				    + tp->t_segsz;
   2022 			tp->t_dupacks = 0;
   2023 		}
   2024 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
   2025 			tcpstat.tcps_rcvacktoomuch++;
   2026 			goto dropafterack;
   2027 		}
   2028 		acked = th->th_ack - tp->snd_una;
   2029 		tcpstat.tcps_rcvackpack++;
   2030 		tcpstat.tcps_rcvackbyte += acked;
   2031 
   2032 		/*
   2033 		 * If we have a timestamp reply, update smoothed
   2034 		 * round trip time.  If no timestamp is present but
   2035 		 * transmit timer is running and timed sequence
   2036 		 * number was acked, update smoothed round trip time.
   2037 		 * Since we now have an rtt measurement, cancel the
   2038 		 * timer backoff (cf., Phil Karn's retransmit alg.).
   2039 		 * Recompute the initial retransmit timer.
   2040 		 */
   2041 		if (opti.ts_present && opti.ts_ecr)
   2042 			tcp_xmit_timer(tp, TCP_TIMESTAMP(tp) - opti.ts_ecr + 1);
   2043 		else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
   2044 			tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
   2045 
   2046 		/*
   2047 		 * If all outstanding data is acked, stop retransmit
   2048 		 * timer and remember to restart (more output or persist).
   2049 		 * If there is more data to be acked, restart retransmit
   2050 		 * timer, using current (possibly backed-off) value.
   2051 		 */
   2052 		if (th->th_ack == tp->snd_max) {
   2053 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
   2054 			needoutput = 1;
   2055 		} else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
   2056 			TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
   2057 		/*
   2058 		 * When new data is acked, open the congestion window.
   2059 		 * If the window gives us less than ssthresh packets
   2060 		 * in flight, open exponentially (segsz per packet).
   2061 		 * Otherwise open linearly: segsz per window
   2062 		 * (segsz^2 / cwnd per packet), plus a constant
   2063 		 * fraction of a packet (segsz/8) to help larger windows
   2064 		 * open quickly enough.
   2065 		 */
   2066 		{
   2067 		u_int cw = tp->snd_cwnd;
   2068 		u_int incr = tp->t_segsz;
   2069 
   2070 		if (cw > tp->snd_ssthresh)
   2071 			incr = incr * incr / cw;
   2072 		if (tcp_do_newreno == 0 || SEQ_GEQ(th->th_ack, tp->snd_recover))
   2073 			tp->snd_cwnd = min(cw + incr,
   2074 			    TCP_MAXWIN << tp->snd_scale);
   2075 		}
   2076 		ND6_HINT(tp);
   2077 		if (acked > so->so_snd.sb_cc) {
   2078 			tp->snd_wnd -= so->so_snd.sb_cc;
   2079 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
   2080 			ourfinisacked = 1;
   2081 		} else {
   2082 			int slen;
   2083 
   2084 			slen = tp->t_lastm->m_len;
   2085 			sbdrop(&so->so_snd, acked);
   2086 			tp->snd_wnd -= acked;
   2087 			if (so->so_snd.sb_cc != 0) {
   2088 				tp->t_lastoff -= acked;
   2089 				if (tp->t_lastm->m_len != slen)
   2090 					tp->t_inoff -=
   2091 					    (slen - tp->t_lastm->m_len);
   2092 			}
   2093 			ourfinisacked = 0;
   2094 		}
   2095 		sowwakeup(so);
   2096 		/*
   2097 		 * We want snd_recover to track snd_una to
   2098 		 * avoid sequence wraparound problems for
   2099 		 * very large transfers.
   2100 		 */
   2101 		tp->snd_una = tp->snd_recover = th->th_ack;
   2102 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
   2103 			tp->snd_nxt = tp->snd_una;
   2104 
   2105 		switch (tp->t_state) {
   2106 
   2107 		/*
   2108 		 * In FIN_WAIT_1 STATE in addition to the processing
   2109 		 * for the ESTABLISHED state if our FIN is now acknowledged
   2110 		 * then enter FIN_WAIT_2.
   2111 		 */
   2112 		case TCPS_FIN_WAIT_1:
   2113 			if (ourfinisacked) {
   2114 				/*
   2115 				 * If we can't receive any more
   2116 				 * data, then closing user can proceed.
   2117 				 * Starting the timer is contrary to the
   2118 				 * specification, but if we don't get a FIN
   2119 				 * we'll hang forever.
   2120 				 */
   2121 				if (so->so_state & SS_CANTRCVMORE) {
   2122 					soisdisconnected(so);
   2123 					if (tcp_maxidle > 0)
   2124 						TCP_TIMER_ARM(tp, TCPT_2MSL,
   2125 						    tcp_maxidle);
   2126 				}
   2127 				tp->t_state = TCPS_FIN_WAIT_2;
   2128 			}
   2129 			break;
   2130 
   2131 	 	/*
   2132 		 * In CLOSING STATE in addition to the processing for
   2133 		 * the ESTABLISHED state if the ACK acknowledges our FIN
   2134 		 * then enter the TIME-WAIT state, otherwise ignore
   2135 		 * the segment.
   2136 		 */
   2137 		case TCPS_CLOSING:
   2138 			if (ourfinisacked) {
   2139 				tp->t_state = TCPS_TIME_WAIT;
   2140 				tcp_canceltimers(tp);
   2141 				TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
   2142 				soisdisconnected(so);
   2143 			}
   2144 			break;
   2145 
   2146 		/*
   2147 		 * In LAST_ACK, we may still be waiting for data to drain
   2148 		 * and/or to be acked, as well as for the ack of our FIN.
   2149 		 * If our FIN is now acknowledged, delete the TCB,
   2150 		 * enter the closed state and return.
   2151 		 */
   2152 		case TCPS_LAST_ACK:
   2153 			if (ourfinisacked) {
   2154 				tp = tcp_close(tp);
   2155 				goto drop;
   2156 			}
   2157 			break;
   2158 
   2159 		/*
   2160 		 * In TIME_WAIT state the only thing that should arrive
   2161 		 * is a retransmission of the remote FIN.  Acknowledge
   2162 		 * it and restart the finack timer.
   2163 		 */
   2164 		case TCPS_TIME_WAIT:
   2165 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
   2166 			goto dropafterack;
   2167 		}
   2168 	}
   2169 
   2170 step6:
   2171 	/*
   2172 	 * Update window information.
   2173 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
   2174 	 */
   2175 	if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
   2176 	    (tp->snd_wl1 == th->th_seq && SEQ_LT(tp->snd_wl2, th->th_ack)) ||
   2177 	    (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))) {
   2178 		/* keep track of pure window updates */
   2179 		if (tlen == 0 &&
   2180 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
   2181 			tcpstat.tcps_rcvwinupd++;
   2182 		tp->snd_wnd = tiwin;
   2183 		tp->snd_wl1 = th->th_seq;
   2184 		tp->snd_wl2 = th->th_ack;
   2185 		if (tp->snd_wnd > tp->max_sndwnd)
   2186 			tp->max_sndwnd = tp->snd_wnd;
   2187 		needoutput = 1;
   2188 	}
   2189 
   2190 	/*
   2191 	 * Process segments with URG.
   2192 	 */
   2193 	if ((tiflags & TH_URG) && th->th_urp &&
   2194 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   2195 		/*
   2196 		 * This is a kludge, but if we receive and accept
   2197 		 * random urgent pointers, we'll crash in
   2198 		 * soreceive.  It's hard to imagine someone
   2199 		 * actually wanting to send this much urgent data.
   2200 		 */
   2201 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
   2202 			th->th_urp = 0;			/* XXX */
   2203 			tiflags &= ~TH_URG;		/* XXX */
   2204 			goto dodata;			/* XXX */
   2205 		}
   2206 		/*
   2207 		 * If this segment advances the known urgent pointer,
   2208 		 * then mark the data stream.  This should not happen
   2209 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
   2210 		 * a FIN has been received from the remote side.
   2211 		 * In these states we ignore the URG.
   2212 		 *
   2213 		 * According to RFC961 (Assigned Protocols),
   2214 		 * the urgent pointer points to the last octet
   2215 		 * of urgent data.  We continue, however,
   2216 		 * to consider it to indicate the first octet
   2217 		 * of data past the urgent section as the original
   2218 		 * spec states (in one of two places).
   2219 		 */
   2220 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
   2221 			tp->rcv_up = th->th_seq + th->th_urp;
   2222 			so->so_oobmark = so->so_rcv.sb_cc +
   2223 			    (tp->rcv_up - tp->rcv_nxt) - 1;
   2224 			if (so->so_oobmark == 0)
   2225 				so->so_state |= SS_RCVATMARK;
   2226 			sohasoutofband(so);
   2227 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
   2228 		}
   2229 		/*
   2230 		 * Remove out of band data so doesn't get presented to user.
   2231 		 * This can happen independent of advancing the URG pointer,
   2232 		 * but if two URG's are pending at once, some out-of-band
   2233 		 * data may creep in... ick.
   2234 		 */
   2235 		if (th->th_urp <= (u_int16_t) tlen
   2236 #ifdef SO_OOBINLINE
   2237 		     && (so->so_options & SO_OOBINLINE) == 0
   2238 #endif
   2239 		     )
   2240 			tcp_pulloutofband(so, th, m, hdroptlen);
   2241 	} else
   2242 		/*
   2243 		 * If no out of band data is expected,
   2244 		 * pull receive urgent pointer along
   2245 		 * with the receive window.
   2246 		 */
   2247 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
   2248 			tp->rcv_up = tp->rcv_nxt;
   2249 dodata:							/* XXX */
   2250 
   2251 	/*
   2252 	 * Process the segment text, merging it into the TCP sequencing queue,
   2253 	 * and arranging for acknowledgement of receipt if necessary.
   2254 	 * This process logically involves adjusting tp->rcv_wnd as data
   2255 	 * is presented to the user (this happens in tcp_usrreq.c,
   2256 	 * case PRU_RCVD).  If a FIN has already been received on this
   2257 	 * connection then we just ignore the text.
   2258 	 */
   2259 	if ((tlen || (tiflags & TH_FIN)) &&
   2260 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   2261 		/*
   2262 		 * Insert segment ti into reassembly queue of tcp with
   2263 		 * control block tp.  Return TH_FIN if reassembly now includes
   2264 		 * a segment with FIN.  The macro form does the common case
   2265 		 * inline (segment is the next to be received on an
   2266 		 * established connection, and the queue is empty),
   2267 		 * avoiding linkage into and removal from the queue and
   2268 		 * repetition of various conversions.
   2269 		 * Set DELACK for segments received in order, but ack
   2270 		 * immediately when segments are out of order
   2271 		 * (so fast retransmit can work).
   2272 		 */
   2273 		/* NOTE: this was TCP_REASS() macro, but used only once */
   2274 		TCP_REASS_LOCK(tp);
   2275 		if (th->th_seq == tp->rcv_nxt &&
   2276 		    TAILQ_FIRST(&tp->segq) == NULL &&
   2277 		    tp->t_state == TCPS_ESTABLISHED) {
   2278 			TCP_SETUP_ACK(tp, th);
   2279 			tp->rcv_nxt += tlen;
   2280 			tiflags = th->th_flags & TH_FIN;
   2281 			tcpstat.tcps_rcvpack++;
   2282 			tcpstat.tcps_rcvbyte += tlen;
   2283 			ND6_HINT(tp);
   2284 			if (so->so_state & SS_CANTRCVMORE)
   2285 				m_freem(m);
   2286 			else {
   2287 				m_adj(m, hdroptlen);
   2288 				sbappendstream(&(so)->so_rcv, m);
   2289 			}
   2290 			sorwakeup(so);
   2291 		} else {
   2292 			m_adj(m, hdroptlen);
   2293 			tiflags = tcp_reass(tp, th, m, &tlen);
   2294 			tp->t_flags |= TF_ACKNOW;
   2295 		}
   2296 		TCP_REASS_UNLOCK(tp);
   2297 
   2298 		/*
   2299 		 * Note the amount of data that peer has sent into
   2300 		 * our window, in order to estimate the sender's
   2301 		 * buffer size.
   2302 		 */
   2303 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
   2304 	} else {
   2305 		m_freem(m);
   2306 		m = NULL;
   2307 		tiflags &= ~TH_FIN;
   2308 	}
   2309 
   2310 	/*
   2311 	 * If FIN is received ACK the FIN and let the user know
   2312 	 * that the connection is closing.  Ignore a FIN received before
   2313 	 * the connection is fully established.
   2314 	 */
   2315 	if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
   2316 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   2317 			socantrcvmore(so);
   2318 			tp->t_flags |= TF_ACKNOW;
   2319 			tp->rcv_nxt++;
   2320 		}
   2321 		switch (tp->t_state) {
   2322 
   2323 	 	/*
   2324 		 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
   2325 		 */
   2326 		case TCPS_ESTABLISHED:
   2327 			tp->t_state = TCPS_CLOSE_WAIT;
   2328 			break;
   2329 
   2330 	 	/*
   2331 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
   2332 		 * enter the CLOSING state.
   2333 		 */
   2334 		case TCPS_FIN_WAIT_1:
   2335 			tp->t_state = TCPS_CLOSING;
   2336 			break;
   2337 
   2338 	 	/*
   2339 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
   2340 		 * starting the time-wait timer, turning off the other
   2341 		 * standard timers.
   2342 		 */
   2343 		case TCPS_FIN_WAIT_2:
   2344 			tp->t_state = TCPS_TIME_WAIT;
   2345 			tcp_canceltimers(tp);
   2346 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
   2347 			soisdisconnected(so);
   2348 			break;
   2349 
   2350 		/*
   2351 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
   2352 		 */
   2353 		case TCPS_TIME_WAIT:
   2354 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
   2355 			break;
   2356 		}
   2357 	}
   2358 #ifdef TCP_DEBUG
   2359 	if (so->so_options & SO_DEBUG)
   2360 		tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
   2361 #endif
   2362 
   2363 	/*
   2364 	 * Return any desired output.
   2365 	 */
   2366 	if (needoutput || (tp->t_flags & TF_ACKNOW))
   2367 		(void) tcp_output(tp);
   2368 	if (tcp_saveti)
   2369 		m_freem(tcp_saveti);
   2370 	return;
   2371 
   2372 badsyn:
   2373 	/*
   2374 	 * Received a bad SYN.  Increment counters and dropwithreset.
   2375 	 */
   2376 	tcpstat.tcps_badsyn++;
   2377 	tp = NULL;
   2378 	goto dropwithreset;
   2379 
   2380 dropafterack:
   2381 	/*
   2382 	 * Generate an ACK dropping incoming segment if it occupies
   2383 	 * sequence space, where the ACK reflects our state.
   2384 	 */
   2385 	if (tiflags & TH_RST)
   2386 		goto drop;
   2387 	m_freem(m);
   2388 	tp->t_flags |= TF_ACKNOW;
   2389 	(void) tcp_output(tp);
   2390 	if (tcp_saveti)
   2391 		m_freem(tcp_saveti);
   2392 	return;
   2393 
   2394 dropwithreset_ratelim:
   2395 	/*
   2396 	 * We may want to rate-limit RSTs in certain situations,
   2397 	 * particularly if we are sending an RST in response to
   2398 	 * an attempt to connect to or otherwise communicate with
   2399 	 * a port for which we have no socket.
   2400 	 */
   2401 	if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
   2402 	    tcp_rst_ppslim) == 0) {
   2403 		/* XXX stat */
   2404 		goto drop;
   2405 	}
   2406 	/* ...fall into dropwithreset... */
   2407 
   2408 dropwithreset:
   2409 	/*
   2410 	 * Generate a RST, dropping incoming segment.
   2411 	 * Make ACK acceptable to originator of segment.
   2412 	 */
   2413 	if (tiflags & TH_RST)
   2414 		goto drop;
   2415 
   2416 	switch (af) {
   2417 #ifdef INET6
   2418 	case AF_INET6:
   2419 		/* For following calls to tcp_respond */
   2420 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
   2421 			goto drop;
   2422 		break;
   2423 #endif /* INET6 */
   2424 	case AF_INET:
   2425 		if (IN_MULTICAST(ip->ip_dst.s_addr) ||
   2426 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
   2427 			goto drop;
   2428 	}
   2429 
   2430 	if (tiflags & TH_ACK)
   2431 		(void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
   2432 	else {
   2433 		if (tiflags & TH_SYN)
   2434 			tlen++;
   2435 		(void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
   2436 		    TH_RST|TH_ACK);
   2437 	}
   2438 	if (tcp_saveti)
   2439 		m_freem(tcp_saveti);
   2440 	return;
   2441 
   2442 badcsum:
   2443 	tcpstat.tcps_rcvbadsum++;
   2444 drop:
   2445 	/*
   2446 	 * Drop space held by incoming segment and return.
   2447 	 */
   2448 	if (tp) {
   2449 		if (tp->t_inpcb)
   2450 			so = tp->t_inpcb->inp_socket;
   2451 #ifdef INET6
   2452 		else if (tp->t_in6pcb)
   2453 			so = tp->t_in6pcb->in6p_socket;
   2454 #endif
   2455 		else
   2456 			so = NULL;
   2457 #ifdef TCP_DEBUG
   2458 		if (so && (so->so_options & SO_DEBUG) != 0)
   2459 			tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
   2460 #endif
   2461 	}
   2462 	if (tcp_saveti)
   2463 		m_freem(tcp_saveti);
   2464 	m_freem(m);
   2465 	return;
   2466 }
   2467 
   2468 void
   2469 tcp_dooptions(tp, cp, cnt, th, oi)
   2470 	struct tcpcb *tp;
   2471 	u_char *cp;
   2472 	int cnt;
   2473 	struct tcphdr *th;
   2474 	struct tcp_opt_info *oi;
   2475 {
   2476 	u_int16_t mss;
   2477 	int opt, optlen;
   2478 
   2479 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
   2480 		opt = cp[0];
   2481 		if (opt == TCPOPT_EOL)
   2482 			break;
   2483 		if (opt == TCPOPT_NOP)
   2484 			optlen = 1;
   2485 		else {
   2486 			if (cnt < 2)
   2487 				break;
   2488 			optlen = cp[1];
   2489 			if (optlen < 2 || optlen > cnt)
   2490 				break;
   2491 		}
   2492 		switch (opt) {
   2493 
   2494 		default:
   2495 			continue;
   2496 
   2497 		case TCPOPT_MAXSEG:
   2498 			if (optlen != TCPOLEN_MAXSEG)
   2499 				continue;
   2500 			if (!(th->th_flags & TH_SYN))
   2501 				continue;
   2502 			bcopy(cp + 2, &mss, sizeof(mss));
   2503 			oi->maxseg = ntohs(mss);
   2504 			break;
   2505 
   2506 		case TCPOPT_WINDOW:
   2507 			if (optlen != TCPOLEN_WINDOW)
   2508 				continue;
   2509 			if (!(th->th_flags & TH_SYN))
   2510 				continue;
   2511 			tp->t_flags |= TF_RCVD_SCALE;
   2512 			tp->requested_s_scale = cp[2];
   2513 			if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
   2514 #if 0	/*XXX*/
   2515 				char *p;
   2516 
   2517 				if (ip)
   2518 					p = ntohl(ip->ip_src);
   2519 #ifdef INET6
   2520 				else if (ip6)
   2521 					p = ip6_sprintf(&ip6->ip6_src);
   2522 #endif
   2523 				else
   2524 					p = "(unknown)";
   2525 				log(LOG_ERR, "TCP: invalid wscale %d from %s, "
   2526 				    "assuming %d\n",
   2527 				    tp->requested_s_scale, p,
   2528 				    TCP_MAX_WINSHIFT);
   2529 #else
   2530 				log(LOG_ERR, "TCP: invalid wscale %d, "
   2531 				    "assuming %d\n",
   2532 				    tp->requested_s_scale,
   2533 				    TCP_MAX_WINSHIFT);
   2534 #endif
   2535 				tp->requested_s_scale = TCP_MAX_WINSHIFT;
   2536 			}
   2537 			break;
   2538 
   2539 		case TCPOPT_TIMESTAMP:
   2540 			if (optlen != TCPOLEN_TIMESTAMP)
   2541 				continue;
   2542 			oi->ts_present = 1;
   2543 			bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
   2544 			NTOHL(oi->ts_val);
   2545 			bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
   2546 			NTOHL(oi->ts_ecr);
   2547 
   2548 			/*
   2549 			 * A timestamp received in a SYN makes
   2550 			 * it ok to send timestamp requests and replies.
   2551 			 */
   2552 			if (th->th_flags & TH_SYN) {
   2553 				tp->t_flags |= TF_RCVD_TSTMP;
   2554 				tp->ts_recent = oi->ts_val;
   2555 				tp->ts_recent_age = TCP_TIMESTAMP(tp);
   2556 			}
   2557 			break;
   2558 		case TCPOPT_SACK_PERMITTED:
   2559 			if (optlen != TCPOLEN_SACK_PERMITTED)
   2560 				continue;
   2561 			if (!(th->th_flags & TH_SYN))
   2562 				continue;
   2563 			tp->t_flags &= ~TF_CANT_TXSACK;
   2564 			break;
   2565 
   2566 		case TCPOPT_SACK:
   2567 			if (tp->t_flags & TF_IGNR_RXSACK)
   2568 				continue;
   2569 			if (optlen % 8 != 2 || optlen < 10)
   2570 				continue;
   2571 			cp += 2;
   2572 			optlen -= 2;
   2573 			for (; optlen > 0; cp -= 8, optlen -= 8) {
   2574 				tcp_seq lwe, rwe;
   2575 				bcopy((char *)cp, (char *) &lwe, sizeof(lwe));
   2576 				NTOHL(lwe);
   2577 				bcopy((char *)cp, (char *) &rwe, sizeof(rwe));
   2578 				NTOHL(rwe);
   2579 				/* tcp_mark_sacked(tp, lwe, rwe); */
   2580 			}
   2581 			break;
   2582 		}
   2583 	}
   2584 }
   2585 
   2586 /*
   2587  * Pull out of band byte out of a segment so
   2588  * it doesn't appear in the user's data queue.
   2589  * It is still reflected in the segment length for
   2590  * sequencing purposes.
   2591  */
   2592 void
   2593 tcp_pulloutofband(so, th, m, off)
   2594 	struct socket *so;
   2595 	struct tcphdr *th;
   2596 	struct mbuf *m;
   2597 	int off;
   2598 {
   2599 	int cnt = off + th->th_urp - 1;
   2600 
   2601 	while (cnt >= 0) {
   2602 		if (m->m_len > cnt) {
   2603 			char *cp = mtod(m, caddr_t) + cnt;
   2604 			struct tcpcb *tp = sototcpcb(so);
   2605 
   2606 			tp->t_iobc = *cp;
   2607 			tp->t_oobflags |= TCPOOB_HAVEDATA;
   2608 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
   2609 			m->m_len--;
   2610 			return;
   2611 		}
   2612 		cnt -= m->m_len;
   2613 		m = m->m_next;
   2614 		if (m == 0)
   2615 			break;
   2616 	}
   2617 	panic("tcp_pulloutofband");
   2618 }
   2619 
   2620 /*
   2621  * Collect new round-trip time estimate
   2622  * and update averages and current timeout.
   2623  */
   2624 void
   2625 tcp_xmit_timer(tp, rtt)
   2626 	struct tcpcb *tp;
   2627 	uint32_t rtt;
   2628 {
   2629 	int32_t delta;
   2630 
   2631 	tcpstat.tcps_rttupdated++;
   2632 	if (tp->t_srtt != 0) {
   2633 		/*
   2634 		 * srtt is stored as fixed point with 3 bits after the
   2635 		 * binary point (i.e., scaled by 8).  The following magic
   2636 		 * is equivalent to the smoothing algorithm in rfc793 with
   2637 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
   2638 		 * point).  Adjust rtt to origin 0.
   2639 		 */
   2640 		delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
   2641 		if ((tp->t_srtt += delta) <= 0)
   2642 			tp->t_srtt = 1 << 2;
   2643 		/*
   2644 		 * We accumulate a smoothed rtt variance (actually, a
   2645 		 * smoothed mean difference), then set the retransmit
   2646 		 * timer to smoothed rtt + 4 times the smoothed variance.
   2647 		 * rttvar is stored as fixed point with 2 bits after the
   2648 		 * binary point (scaled by 4).  The following is
   2649 		 * equivalent to rfc793 smoothing with an alpha of .75
   2650 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
   2651 		 * rfc793's wired-in beta.
   2652 		 */
   2653 		if (delta < 0)
   2654 			delta = -delta;
   2655 		delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
   2656 		if ((tp->t_rttvar += delta) <= 0)
   2657 			tp->t_rttvar = 1 << 2;
   2658 	} else {
   2659 		/*
   2660 		 * No rtt measurement yet - use the unsmoothed rtt.
   2661 		 * Set the variance to half the rtt (so our first
   2662 		 * retransmit happens at 3*rtt).
   2663 		 */
   2664 		tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
   2665 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
   2666 	}
   2667 	tp->t_rtttime = 0;
   2668 	tp->t_rxtshift = 0;
   2669 
   2670 	/*
   2671 	 * the retransmit should happen at rtt + 4 * rttvar.
   2672 	 * Because of the way we do the smoothing, srtt and rttvar
   2673 	 * will each average +1/2 tick of bias.  When we compute
   2674 	 * the retransmit timer, we want 1/2 tick of rounding and
   2675 	 * 1 extra tick because of +-1/2 tick uncertainty in the
   2676 	 * firing of the timer.  The bias will give us exactly the
   2677 	 * 1.5 tick we need.  But, because the bias is
   2678 	 * statistical, we have to test that we don't drop below
   2679 	 * the minimum feasible timer (which is 2 ticks).
   2680 	 */
   2681 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
   2682 	    max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
   2683 
   2684 	/*
   2685 	 * We received an ack for a packet that wasn't retransmitted;
   2686 	 * it is probably safe to discard any error indications we've
   2687 	 * received recently.  This isn't quite right, but close enough
   2688 	 * for now (a route might have failed after we sent a segment,
   2689 	 * and the return path might not be symmetrical).
   2690 	 */
   2691 	tp->t_softerror = 0;
   2692 }
   2693 
   2694 /*
   2695  * Checks for partial ack.  If partial ack arrives, force the retransmission
   2696  * of the next unacknowledged segment, do not clear tp->t_dupacks, and return
   2697  * 1.  By setting snd_nxt to th_ack, this forces retransmission timer to
   2698  * be started again.  If the ack advances at least to tp->snd_recover, return 0.
   2699  */
   2700 int
   2701 tcp_newreno(tp, th)
   2702 	struct tcpcb *tp;
   2703 	struct tcphdr *th;
   2704 {
   2705 	tcp_seq onxt = tp->snd_nxt;
   2706 	u_long ocwnd = tp->snd_cwnd;
   2707 
   2708 	if (SEQ_LT(th->th_ack, tp->snd_recover)) {
   2709 		/*
   2710 		 * snd_una has not yet been updated and the socket's send
   2711 		 * buffer has not yet drained off the ACK'd data, so we
   2712 		 * have to leave snd_una as it was to get the correct data
   2713 		 * offset in tcp_output().
   2714 		 */
   2715 		TCP_TIMER_DISARM(tp, TCPT_REXMT);
   2716 		tp->t_rtttime = 0;
   2717 		tp->snd_nxt = th->th_ack;
   2718 		/*
   2719 		 * Set snd_cwnd to one segment beyond ACK'd offset.  snd_una
   2720 		 * is not yet updated when we're called.
   2721 		 */
   2722 		tp->snd_cwnd = tp->t_segsz + (th->th_ack - tp->snd_una);
   2723 		(void) tcp_output(tp);
   2724 		tp->snd_cwnd = ocwnd;
   2725 		if (SEQ_GT(onxt, tp->snd_nxt))
   2726 			tp->snd_nxt = onxt;
   2727 		/*
   2728 		 * Partial window deflation.  Relies on fact that tp->snd_una
   2729 		 * not updated yet.
   2730 		 */
   2731 		tp->snd_cwnd -= (th->th_ack - tp->snd_una - tp->t_segsz);
   2732 		return 1;
   2733 	}
   2734 	return 0;
   2735 }
   2736 
   2737 
   2738 /*
   2739  * TCP compressed state engine.  Currently used to hold compressed
   2740  * state for SYN_RECEIVED.
   2741  */
   2742 
   2743 u_long	syn_cache_count;
   2744 u_int32_t syn_hash1, syn_hash2;
   2745 
   2746 #define SYN_HASH(sa, sp, dp) \
   2747 	((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
   2748 				     ((u_int32_t)(sp)))^syn_hash2)))
   2749 #ifndef INET6
   2750 #define	SYN_HASHALL(hash, src, dst) \
   2751 do {									\
   2752 	hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr,	\
   2753 		((struct sockaddr_in *)(src))->sin_port,		\
   2754 		((struct sockaddr_in *)(dst))->sin_port);		\
   2755 } while (/*CONSTCOND*/ 0)
   2756 #else
   2757 #define SYN_HASH6(sa, sp, dp) \
   2758 	((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
   2759 	  (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
   2760 	 & 0x7fffffff)
   2761 
   2762 #define SYN_HASHALL(hash, src, dst) \
   2763 do {									\
   2764 	switch ((src)->sa_family) {					\
   2765 	case AF_INET:							\
   2766 		hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
   2767 			((struct sockaddr_in *)(src))->sin_port,	\
   2768 			((struct sockaddr_in *)(dst))->sin_port);	\
   2769 		break;							\
   2770 	case AF_INET6:							\
   2771 		hash = SYN_HASH6(&((struct sockaddr_in6 *)(src))->sin6_addr, \
   2772 			((struct sockaddr_in6 *)(src))->sin6_port,	\
   2773 			((struct sockaddr_in6 *)(dst))->sin6_port);	\
   2774 		break;							\
   2775 	default:							\
   2776 		hash = 0;						\
   2777 	}								\
   2778 } while (/*CONSTCOND*/0)
   2779 #endif /* INET6 */
   2780 
   2781 #define	SYN_CACHE_RM(sc)						\
   2782 do {									\
   2783 	TAILQ_REMOVE(&tcp_syn_cache[(sc)->sc_bucketidx].sch_bucket,	\
   2784 	    (sc), sc_bucketq);						\
   2785 	(sc)->sc_tp = NULL;						\
   2786 	LIST_REMOVE((sc), sc_tpq);					\
   2787 	tcp_syn_cache[(sc)->sc_bucketidx].sch_length--;			\
   2788 	callout_stop(&(sc)->sc_timer);					\
   2789 	syn_cache_count--;						\
   2790 } while (/*CONSTCOND*/0)
   2791 
   2792 #define	SYN_CACHE_PUT(sc)						\
   2793 do {									\
   2794 	if ((sc)->sc_ipopts)						\
   2795 		(void) m_free((sc)->sc_ipopts);				\
   2796 	if ((sc)->sc_route4.ro_rt != NULL)				\
   2797 		RTFREE((sc)->sc_route4.ro_rt);				\
   2798 	if (callout_invoking(&(sc)->sc_timer))				\
   2799 		(sc)->sc_flags |= SCF_DEAD;				\
   2800 	else								\
   2801 		pool_put(&syn_cache_pool, (sc));			\
   2802 } while (/*CONSTCOND*/0)
   2803 
   2804 struct pool syn_cache_pool;
   2805 
   2806 /*
   2807  * We don't estimate RTT with SYNs, so each packet starts with the default
   2808  * RTT and each timer step has a fixed timeout value.
   2809  */
   2810 #define	SYN_CACHE_TIMER_ARM(sc)						\
   2811 do {									\
   2812 	TCPT_RANGESET((sc)->sc_rxtcur,					\
   2813 	    TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN,	\
   2814 	    TCPTV_REXMTMAX);						\
   2815 	callout_reset(&(sc)->sc_timer,					\
   2816 	    (sc)->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, (sc));	\
   2817 } while (/*CONSTCOND*/0)
   2818 
   2819 #define	SYN_CACHE_TIMESTAMP(sc)	(tcp_now - (sc)->sc_timebase)
   2820 
   2821 void
   2822 syn_cache_init()
   2823 {
   2824 	int i;
   2825 
   2826 	/* Initialize the hash buckets. */
   2827 	for (i = 0; i < tcp_syn_cache_size; i++)
   2828 		TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
   2829 
   2830 	/* Initialize the syn cache pool. */
   2831 	pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
   2832 	    "synpl", NULL);
   2833 }
   2834 
   2835 void
   2836 syn_cache_insert(sc, tp)
   2837 	struct syn_cache *sc;
   2838 	struct tcpcb *tp;
   2839 {
   2840 	struct syn_cache_head *scp;
   2841 	struct syn_cache *sc2;
   2842 	int s;
   2843 
   2844 	/*
   2845 	 * If there are no entries in the hash table, reinitialize
   2846 	 * the hash secrets.
   2847 	 */
   2848 	if (syn_cache_count == 0) {
   2849 		struct timeval tv;
   2850 		microtime(&tv);
   2851 		syn_hash1 = arc4random() ^ (u_long)&sc;
   2852 		syn_hash2 = arc4random() ^ tv.tv_usec;
   2853 	}
   2854 
   2855 	SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
   2856 	sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
   2857 	scp = &tcp_syn_cache[sc->sc_bucketidx];
   2858 
   2859 	/*
   2860 	 * Make sure that we don't overflow the per-bucket
   2861 	 * limit or the total cache size limit.
   2862 	 */
   2863 	s = splsoftnet();
   2864 	if (scp->sch_length >= tcp_syn_bucket_limit) {
   2865 		tcpstat.tcps_sc_bucketoverflow++;
   2866 		/*
   2867 		 * The bucket is full.  Toss the oldest element in the
   2868 		 * bucket.  This will be the first entry in the bucket.
   2869 		 */
   2870 		sc2 = TAILQ_FIRST(&scp->sch_bucket);
   2871 #ifdef DIAGNOSTIC
   2872 		/*
   2873 		 * This should never happen; we should always find an
   2874 		 * entry in our bucket.
   2875 		 */
   2876 		if (sc2 == NULL)
   2877 			panic("syn_cache_insert: bucketoverflow: impossible");
   2878 #endif
   2879 		SYN_CACHE_RM(sc2);
   2880 		SYN_CACHE_PUT(sc2);
   2881 	} else if (syn_cache_count >= tcp_syn_cache_limit) {
   2882 		struct syn_cache_head *scp2, *sce;
   2883 
   2884 		tcpstat.tcps_sc_overflowed++;
   2885 		/*
   2886 		 * The cache is full.  Toss the oldest entry in the
   2887 		 * first non-empty bucket we can find.
   2888 		 *
   2889 		 * XXX We would really like to toss the oldest
   2890 		 * entry in the cache, but we hope that this
   2891 		 * condition doesn't happen very often.
   2892 		 */
   2893 		scp2 = scp;
   2894 		if (TAILQ_EMPTY(&scp2->sch_bucket)) {
   2895 			sce = &tcp_syn_cache[tcp_syn_cache_size];
   2896 			for (++scp2; scp2 != scp; scp2++) {
   2897 				if (scp2 >= sce)
   2898 					scp2 = &tcp_syn_cache[0];
   2899 				if (! TAILQ_EMPTY(&scp2->sch_bucket))
   2900 					break;
   2901 			}
   2902 #ifdef DIAGNOSTIC
   2903 			/*
   2904 			 * This should never happen; we should always find a
   2905 			 * non-empty bucket.
   2906 			 */
   2907 			if (scp2 == scp)
   2908 				panic("syn_cache_insert: cacheoverflow: "
   2909 				    "impossible");
   2910 #endif
   2911 		}
   2912 		sc2 = TAILQ_FIRST(&scp2->sch_bucket);
   2913 		SYN_CACHE_RM(sc2);
   2914 		SYN_CACHE_PUT(sc2);
   2915 	}
   2916 
   2917 	/*
   2918 	 * Initialize the entry's timer.
   2919 	 */
   2920 	sc->sc_rxttot = 0;
   2921 	sc->sc_rxtshift = 0;
   2922 	SYN_CACHE_TIMER_ARM(sc);
   2923 
   2924 	/* Link it from tcpcb entry */
   2925 	LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
   2926 
   2927 	/* Put it into the bucket. */
   2928 	TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
   2929 	scp->sch_length++;
   2930 	syn_cache_count++;
   2931 
   2932 	tcpstat.tcps_sc_added++;
   2933 	splx(s);
   2934 }
   2935 
   2936 /*
   2937  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
   2938  * If we have retransmitted an entry the maximum number of times, expire
   2939  * that entry.
   2940  */
   2941 void
   2942 syn_cache_timer(void *arg)
   2943 {
   2944 	struct syn_cache *sc = arg;
   2945 	int s;
   2946 
   2947 	s = splsoftnet();
   2948 	callout_ack(&sc->sc_timer);
   2949 
   2950 	if (__predict_false(sc->sc_flags & SCF_DEAD)) {
   2951 		tcpstat.tcps_sc_delayed_free++;
   2952 		pool_put(&syn_cache_pool, sc);
   2953 		splx(s);
   2954 		return;
   2955 	}
   2956 
   2957 	if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
   2958 		/* Drop it -- too many retransmissions. */
   2959 		goto dropit;
   2960 	}
   2961 
   2962 	/*
   2963 	 * Compute the total amount of time this entry has
   2964 	 * been on a queue.  If this entry has been on longer
   2965 	 * than the keep alive timer would allow, expire it.
   2966 	 */
   2967 	sc->sc_rxttot += sc->sc_rxtcur;
   2968 	if (sc->sc_rxttot >= TCPTV_KEEP_INIT)
   2969 		goto dropit;
   2970 
   2971 	tcpstat.tcps_sc_retransmitted++;
   2972 	(void) syn_cache_respond(sc, NULL);
   2973 
   2974 	/* Advance the timer back-off. */
   2975 	sc->sc_rxtshift++;
   2976 	SYN_CACHE_TIMER_ARM(sc);
   2977 
   2978 	splx(s);
   2979 	return;
   2980 
   2981  dropit:
   2982 	tcpstat.tcps_sc_timed_out++;
   2983 	SYN_CACHE_RM(sc);
   2984 	SYN_CACHE_PUT(sc);
   2985 	splx(s);
   2986 }
   2987 
   2988 /*
   2989  * Remove syn cache created by the specified tcb entry,
   2990  * because this does not make sense to keep them
   2991  * (if there's no tcb entry, syn cache entry will never be used)
   2992  */
   2993 void
   2994 syn_cache_cleanup(tp)
   2995 	struct tcpcb *tp;
   2996 {
   2997 	struct syn_cache *sc, *nsc;
   2998 	int s;
   2999 
   3000 	s = splsoftnet();
   3001 
   3002 	for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
   3003 		nsc = LIST_NEXT(sc, sc_tpq);
   3004 
   3005 #ifdef DIAGNOSTIC
   3006 		if (sc->sc_tp != tp)
   3007 			panic("invalid sc_tp in syn_cache_cleanup");
   3008 #endif
   3009 		SYN_CACHE_RM(sc);
   3010 		SYN_CACHE_PUT(sc);
   3011 	}
   3012 	/* just for safety */
   3013 	LIST_INIT(&tp->t_sc);
   3014 
   3015 	splx(s);
   3016 }
   3017 
   3018 /*
   3019  * Find an entry in the syn cache.
   3020  */
   3021 struct syn_cache *
   3022 syn_cache_lookup(src, dst, headp)
   3023 	struct sockaddr *src;
   3024 	struct sockaddr *dst;
   3025 	struct syn_cache_head **headp;
   3026 {
   3027 	struct syn_cache *sc;
   3028 	struct syn_cache_head *scp;
   3029 	u_int32_t hash;
   3030 	int s;
   3031 
   3032 	SYN_HASHALL(hash, src, dst);
   3033 
   3034 	scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
   3035 	*headp = scp;
   3036 	s = splsoftnet();
   3037 	for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
   3038 	     sc = TAILQ_NEXT(sc, sc_bucketq)) {
   3039 		if (sc->sc_hash != hash)
   3040 			continue;
   3041 		if (!bcmp(&sc->sc_src, src, src->sa_len) &&
   3042 		    !bcmp(&sc->sc_dst, dst, dst->sa_len)) {
   3043 			splx(s);
   3044 			return (sc);
   3045 		}
   3046 	}
   3047 	splx(s);
   3048 	return (NULL);
   3049 }
   3050 
   3051 /*
   3052  * This function gets called when we receive an ACK for a
   3053  * socket in the LISTEN state.  We look up the connection
   3054  * in the syn cache, and if its there, we pull it out of
   3055  * the cache and turn it into a full-blown connection in
   3056  * the SYN-RECEIVED state.
   3057  *
   3058  * The return values may not be immediately obvious, and their effects
   3059  * can be subtle, so here they are:
   3060  *
   3061  *	NULL	SYN was not found in cache; caller should drop the
   3062  *		packet and send an RST.
   3063  *
   3064  *	-1	We were unable to create the new connection, and are
   3065  *		aborting it.  An ACK,RST is being sent to the peer
   3066  *		(unless we got screwey sequence numbners; see below),
   3067  *		because the 3-way handshake has been completed.  Caller
   3068  *		should not free the mbuf, since we may be using it.  If
   3069  *		we are not, we will free it.
   3070  *
   3071  *	Otherwise, the return value is a pointer to the new socket
   3072  *	associated with the connection.
   3073  */
   3074 struct socket *
   3075 syn_cache_get(src, dst, th, hlen, tlen, so, m)
   3076 	struct sockaddr *src;
   3077 	struct sockaddr *dst;
   3078 	struct tcphdr *th;
   3079 	unsigned int hlen, tlen;
   3080 	struct socket *so;
   3081 	struct mbuf *m;
   3082 {
   3083 	struct syn_cache *sc;
   3084 	struct syn_cache_head *scp;
   3085 	struct inpcb *inp = NULL;
   3086 #ifdef INET6
   3087 	struct in6pcb *in6p = NULL;
   3088 #endif
   3089 	struct tcpcb *tp = 0;
   3090 	struct mbuf *am;
   3091 	int s;
   3092 	struct socket *oso;
   3093 
   3094 	s = splsoftnet();
   3095 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
   3096 		splx(s);
   3097 		return (NULL);
   3098 	}
   3099 
   3100 	/*
   3101 	 * Verify the sequence and ack numbers.  Try getting the correct
   3102 	 * response again.
   3103 	 */
   3104 	if ((th->th_ack != sc->sc_iss + 1) ||
   3105 	    SEQ_LEQ(th->th_seq, sc->sc_irs) ||
   3106 	    SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
   3107 		(void) syn_cache_respond(sc, m);
   3108 		splx(s);
   3109 		return ((struct socket *)(-1));
   3110 	}
   3111 
   3112 	/* Remove this cache entry */
   3113 	SYN_CACHE_RM(sc);
   3114 	splx(s);
   3115 
   3116 	/*
   3117 	 * Ok, create the full blown connection, and set things up
   3118 	 * as they would have been set up if we had created the
   3119 	 * connection when the SYN arrived.  If we can't create
   3120 	 * the connection, abort it.
   3121 	 */
   3122 	/*
   3123 	 * inp still has the OLD in_pcb stuff, set the
   3124 	 * v6-related flags on the new guy, too.   This is
   3125 	 * done particularly for the case where an AF_INET6
   3126 	 * socket is bound only to a port, and a v4 connection
   3127 	 * comes in on that port.
   3128 	 * we also copy the flowinfo from the original pcb
   3129 	 * to the new one.
   3130 	 */
   3131 	oso = so;
   3132 	so = sonewconn(so, SS_ISCONNECTED);
   3133 	if (so == NULL)
   3134 		goto resetandabort;
   3135 
   3136 	switch (so->so_proto->pr_domain->dom_family) {
   3137 #ifdef INET
   3138 	case AF_INET:
   3139 		inp = sotoinpcb(so);
   3140 		break;
   3141 #endif
   3142 #ifdef INET6
   3143 	case AF_INET6:
   3144 		in6p = sotoin6pcb(so);
   3145 		break;
   3146 #endif
   3147 	}
   3148 	switch (src->sa_family) {
   3149 #ifdef INET
   3150 	case AF_INET:
   3151 		if (inp) {
   3152 			struct in_ifaddr *ia;
   3153 			inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
   3154 			inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
   3155 			inp->inp_options = ip_srcroute();
   3156 			INADDR_TO_IA(inp->inp_laddr, ia);
   3157 			KASSERT(ia != NULL);
   3158 			KASSERT(inp->inp_ia == NULL);
   3159 			inp->inp_ia = ia;
   3160 			LIST_INSERT_HEAD(&ia->ia_inpcbs, inp, inp_ialink);
   3161 			IFAREF(&ia->ia_ifa);
   3162 			in_pcbstate(inp, INP_BOUND);
   3163 			if (inp->inp_options == NULL) {
   3164 				inp->inp_options = sc->sc_ipopts;
   3165 				sc->sc_ipopts = NULL;
   3166 			}
   3167 		}
   3168 #ifdef INET6
   3169 		else if (in6p) {
   3170 			/* IPv4 packet to AF_INET6 socket */
   3171 			bzero(&in6p->in6p_laddr, sizeof(in6p->in6p_laddr));
   3172 			in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
   3173 			bcopy(&((struct sockaddr_in *)dst)->sin_addr,
   3174 				&in6p->in6p_laddr.s6_addr32[3],
   3175 				sizeof(((struct sockaddr_in *)dst)->sin_addr));
   3176 			in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
   3177 			in6totcpcb(in6p)->t_family = AF_INET;
   3178 			if (sotoin6pcb(oso)->in6p_flags & IN6P_IPV6_V6ONLY)
   3179 				in6p->in6p_flags |= IN6P_IPV6_V6ONLY;
   3180 			else
   3181 				in6p->in6p_flags &= ~IN6P_IPV6_V6ONLY;
   3182 		}
   3183 #endif
   3184 		break;
   3185 #endif
   3186 #ifdef INET6
   3187 	case AF_INET6:
   3188 		if (in6p) {
   3189 			in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
   3190 			in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
   3191 #if 0
   3192 			in6p->in6p_flowinfo = ip6->ip6_flow & IPV6_FLOWINFO_MASK;
   3193 			/*inp->inp_options = ip6_srcroute();*/ /* soon. */
   3194 #endif
   3195 		}
   3196 		break;
   3197 #endif
   3198 	}
   3199 #ifdef INET6
   3200 	if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
   3201 		struct in6pcb *oin6p = sotoin6pcb(oso);
   3202 		/* inherit socket options from the listening socket */
   3203 		in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
   3204 		if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
   3205 			m_freem(in6p->in6p_options);
   3206 			in6p->in6p_options = 0;
   3207 		}
   3208 		ip6_savecontrol(in6p, &in6p->in6p_options,
   3209 			mtod(m, struct ip6_hdr *), m);
   3210 	}
   3211 #endif
   3212 
   3213 #ifdef IPSEC
   3214 	/*
   3215 	 * we make a copy of policy, instead of sharing the policy,
   3216 	 * for better behavior in terms of SA lookup and dead SA removal.
   3217 	 */
   3218 	if (inp) {
   3219 		/* copy old policy into new socket's */
   3220 		if (ipsec_copy_pcbpolicy(sotoinpcb(oso)->inp_sp, inp->inp_sp))
   3221 			printf("tcp_input: could not copy policy\n");
   3222 	}
   3223 #ifdef INET6
   3224 	else if (in6p) {
   3225 		/* copy old policy into new socket's */
   3226 		if (ipsec_copy_pcbpolicy(sotoin6pcb(oso)->in6p_sp,
   3227 		    in6p->in6p_sp))
   3228 			printf("tcp_input: could not copy policy\n");
   3229 	}
   3230 #endif
   3231 #endif
   3232 
   3233 	/*
   3234 	 * Give the new socket our cached route reference.
   3235 	 */
   3236 	if (inp)
   3237 		inp->inp_route = sc->sc_route4;		/* struct assignment */
   3238 #ifdef INET6
   3239 	else
   3240 		in6p->in6p_route = sc->sc_route6;
   3241 #endif
   3242 	sc->sc_route4.ro_rt = NULL;
   3243 
   3244 	am = m_get(M_DONTWAIT, MT_SONAME);	/* XXX */
   3245 	if (am == NULL)
   3246 		goto resetandabort;
   3247 	MCLAIM(am, &tcp_mowner);
   3248 	am->m_len = src->sa_len;
   3249 	bcopy(src, mtod(am, caddr_t), src->sa_len);
   3250 	if (inp) {
   3251 		if (in_pcbconnect(inp, am)) {
   3252 			(void) m_free(am);
   3253 			goto resetandabort;
   3254 		}
   3255 	}
   3256 #ifdef INET6
   3257 	else if (in6p) {
   3258 		if (src->sa_family == AF_INET) {
   3259 			/* IPv4 packet to AF_INET6 socket */
   3260 			struct sockaddr_in6 *sin6;
   3261 			sin6 = mtod(am, struct sockaddr_in6 *);
   3262 			am->m_len = sizeof(*sin6);
   3263 			bzero(sin6, sizeof(*sin6));
   3264 			sin6->sin6_family = AF_INET6;
   3265 			sin6->sin6_len = sizeof(*sin6);
   3266 			sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port;
   3267 			sin6->sin6_addr.s6_addr16[5] = htons(0xffff);
   3268 			bcopy(&((struct sockaddr_in *)src)->sin_addr,
   3269 				&sin6->sin6_addr.s6_addr32[3],
   3270 				sizeof(sin6->sin6_addr.s6_addr32[3]));
   3271 		}
   3272 		if (in6_pcbconnect(in6p, am)) {
   3273 			(void) m_free(am);
   3274 			goto resetandabort;
   3275 		}
   3276 	}
   3277 #endif
   3278 	else {
   3279 		(void) m_free(am);
   3280 		goto resetandabort;
   3281 	}
   3282 	(void) m_free(am);
   3283 
   3284 	if (inp)
   3285 		tp = intotcpcb(inp);
   3286 #ifdef INET6
   3287 	else if (in6p)
   3288 		tp = in6totcpcb(in6p);
   3289 #endif
   3290 	else
   3291 		tp = NULL;
   3292 	tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
   3293 	if (sc->sc_request_r_scale != 15) {
   3294 		tp->requested_s_scale = sc->sc_requested_s_scale;
   3295 		tp->request_r_scale = sc->sc_request_r_scale;
   3296 		tp->snd_scale = sc->sc_requested_s_scale;
   3297 		tp->rcv_scale = sc->sc_request_r_scale;
   3298 		tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
   3299 	}
   3300 	if (sc->sc_flags & SCF_TIMESTAMP)
   3301 		tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
   3302 	tp->ts_timebase = sc->sc_timebase;
   3303 
   3304 	tp->t_template = tcp_template(tp);
   3305 	if (tp->t_template == 0) {
   3306 		tp = tcp_drop(tp, ENOBUFS);	/* destroys socket */
   3307 		so = NULL;
   3308 		m_freem(m);
   3309 		goto abort;
   3310 	}
   3311 
   3312 	tp->iss = sc->sc_iss;
   3313 	tp->irs = sc->sc_irs;
   3314 	tcp_sendseqinit(tp);
   3315 	tcp_rcvseqinit(tp);
   3316 	tp->t_state = TCPS_SYN_RECEIVED;
   3317 	TCP_TIMER_ARM(tp, TCPT_KEEP, TCPTV_KEEP_INIT);
   3318 	tcpstat.tcps_accepts++;
   3319 
   3320 	/* Initialize tp->t_ourmss before we deal with the peer's! */
   3321 	tp->t_ourmss = sc->sc_ourmaxseg;
   3322 	tcp_mss_from_peer(tp, sc->sc_peermaxseg);
   3323 
   3324 	/*
   3325 	 * Initialize the initial congestion window.  If we
   3326 	 * had to retransmit the SYN,ACK, we must initialize cwnd
   3327 	 * to 1 segment (i.e. the Loss Window).
   3328 	 */
   3329 	if (sc->sc_rxtshift)
   3330 		tp->snd_cwnd = tp->t_peermss;
   3331 	else {
   3332 		int ss = tcp_init_win;
   3333 #ifdef INET
   3334 		if (inp != NULL && in_localaddr(inp->inp_faddr))
   3335 			ss = tcp_init_win_local;
   3336 #endif
   3337 #ifdef INET6
   3338 		if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
   3339 			ss = tcp_init_win_local;
   3340 #endif
   3341 		tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
   3342 	}
   3343 
   3344 	tcp_rmx_rtt(tp);
   3345 	tp->snd_wl1 = sc->sc_irs;
   3346 	tp->rcv_up = sc->sc_irs + 1;
   3347 
   3348 	/*
   3349 	 * This is what whould have happened in tcp_output() when
   3350 	 * the SYN,ACK was sent.
   3351 	 */
   3352 	tp->snd_up = tp->snd_una;
   3353 	tp->snd_max = tp->snd_nxt = tp->iss+1;
   3354 	TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
   3355 	if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
   3356 		tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
   3357 	tp->last_ack_sent = tp->rcv_nxt;
   3358 
   3359 	tcpstat.tcps_sc_completed++;
   3360 	SYN_CACHE_PUT(sc);
   3361 	return (so);
   3362 
   3363 resetandabort:
   3364 	(void) tcp_respond(NULL, m, m, th,
   3365 			   th->th_seq + tlen, (tcp_seq)0, TH_RST|TH_ACK);
   3366 abort:
   3367 	if (so != NULL)
   3368 		(void) soabort(so);
   3369 	SYN_CACHE_PUT(sc);
   3370 	tcpstat.tcps_sc_aborted++;
   3371 	return ((struct socket *)(-1));
   3372 }
   3373 
   3374 /*
   3375  * This function is called when we get a RST for a
   3376  * non-existent connection, so that we can see if the
   3377  * connection is in the syn cache.  If it is, zap it.
   3378  */
   3379 
   3380 void
   3381 syn_cache_reset(src, dst, th)
   3382 	struct sockaddr *src;
   3383 	struct sockaddr *dst;
   3384 	struct tcphdr *th;
   3385 {
   3386 	struct syn_cache *sc;
   3387 	struct syn_cache_head *scp;
   3388 	int s = splsoftnet();
   3389 
   3390 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
   3391 		splx(s);
   3392 		return;
   3393 	}
   3394 	if (SEQ_LT(th->th_seq, sc->sc_irs) ||
   3395 	    SEQ_GT(th->th_seq, sc->sc_irs+1)) {
   3396 		splx(s);
   3397 		return;
   3398 	}
   3399 	SYN_CACHE_RM(sc);
   3400 	splx(s);
   3401 	tcpstat.tcps_sc_reset++;
   3402 	SYN_CACHE_PUT(sc);
   3403 }
   3404 
   3405 void
   3406 syn_cache_unreach(src, dst, th)
   3407 	struct sockaddr *src;
   3408 	struct sockaddr *dst;
   3409 	struct tcphdr *th;
   3410 {
   3411 	struct syn_cache *sc;
   3412 	struct syn_cache_head *scp;
   3413 	int s;
   3414 
   3415 	s = splsoftnet();
   3416 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
   3417 		splx(s);
   3418 		return;
   3419 	}
   3420 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
   3421 	if (ntohl (th->th_seq) != sc->sc_iss) {
   3422 		splx(s);
   3423 		return;
   3424 	}
   3425 
   3426 	/*
   3427 	 * If we've rertransmitted 3 times and this is our second error,
   3428 	 * we remove the entry.  Otherwise, we allow it to continue on.
   3429 	 * This prevents us from incorrectly nuking an entry during a
   3430 	 * spurious network outage.
   3431 	 *
   3432 	 * See tcp_notify().
   3433 	 */
   3434 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
   3435 		sc->sc_flags |= SCF_UNREACH;
   3436 		splx(s);
   3437 		return;
   3438 	}
   3439 
   3440 	SYN_CACHE_RM(sc);
   3441 	splx(s);
   3442 	tcpstat.tcps_sc_unreach++;
   3443 	SYN_CACHE_PUT(sc);
   3444 }
   3445 
   3446 /*
   3447  * Given a LISTEN socket and an inbound SYN request, add
   3448  * this to the syn cache, and send back a segment:
   3449  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
   3450  * to the source.
   3451  *
   3452  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
   3453  * Doing so would require that we hold onto the data and deliver it
   3454  * to the application.  However, if we are the target of a SYN-flood
   3455  * DoS attack, an attacker could send data which would eventually
   3456  * consume all available buffer space if it were ACKed.  By not ACKing
   3457  * the data, we avoid this DoS scenario.
   3458  */
   3459 
   3460 int
   3461 syn_cache_add(src, dst, th, hlen, so, m, optp, optlen, oi)
   3462 	struct sockaddr *src;
   3463 	struct sockaddr *dst;
   3464 	struct tcphdr *th;
   3465 	unsigned int hlen;
   3466 	struct socket *so;
   3467 	struct mbuf *m;
   3468 	u_char *optp;
   3469 	int optlen;
   3470 	struct tcp_opt_info *oi;
   3471 {
   3472 	struct tcpcb tb, *tp;
   3473 	long win;
   3474 	struct syn_cache *sc;
   3475 	struct syn_cache_head *scp;
   3476 	struct mbuf *ipopts;
   3477 
   3478 	tp = sototcpcb(so);
   3479 
   3480 	/*
   3481 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
   3482 	 *
   3483 	 * Note this check is performed in tcp_input() very early on.
   3484 	 */
   3485 
   3486 	/*
   3487 	 * Initialize some local state.
   3488 	 */
   3489 	win = sbspace(&so->so_rcv);
   3490 	if (win > TCP_MAXWIN)
   3491 		win = TCP_MAXWIN;
   3492 
   3493 	switch (src->sa_family) {
   3494 #ifdef INET
   3495 	case AF_INET:
   3496 		/*
   3497 		 * Remember the IP options, if any.
   3498 		 */
   3499 		ipopts = ip_srcroute();
   3500 		break;
   3501 #endif
   3502 	default:
   3503 		ipopts = NULL;
   3504 	}
   3505 
   3506 	if (optp) {
   3507 		tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
   3508 		tcp_dooptions(&tb, optp, optlen, th, oi);
   3509 	} else
   3510 		tb.t_flags = 0;
   3511 
   3512 	/*
   3513 	 * See if we already have an entry for this connection.
   3514 	 * If we do, resend the SYN,ACK.  We do not count this
   3515 	 * as a retransmission (XXX though maybe we should).
   3516 	 */
   3517 	if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
   3518 		tcpstat.tcps_sc_dupesyn++;
   3519 		if (ipopts) {
   3520 			/*
   3521 			 * If we were remembering a previous source route,
   3522 			 * forget it and use the new one we've been given.
   3523 			 */
   3524 			if (sc->sc_ipopts)
   3525 				(void) m_free(sc->sc_ipopts);
   3526 			sc->sc_ipopts = ipopts;
   3527 		}
   3528 		sc->sc_timestamp = tb.ts_recent;
   3529 		if (syn_cache_respond(sc, m) == 0) {
   3530 			tcpstat.tcps_sndacks++;
   3531 			tcpstat.tcps_sndtotal++;
   3532 		}
   3533 		return (1);
   3534 	}
   3535 
   3536 	sc = pool_get(&syn_cache_pool, PR_NOWAIT);
   3537 	if (sc == NULL) {
   3538 		if (ipopts)
   3539 			(void) m_free(ipopts);
   3540 		return (0);
   3541 	}
   3542 
   3543 	/*
   3544 	 * Fill in the cache, and put the necessary IP and TCP
   3545 	 * options into the reply.
   3546 	 */
   3547 	bzero(sc, sizeof(struct syn_cache));
   3548 	callout_init(&sc->sc_timer);
   3549 	bcopy(src, &sc->sc_src, src->sa_len);
   3550 	bcopy(dst, &sc->sc_dst, dst->sa_len);
   3551 	sc->sc_flags = 0;
   3552 	sc->sc_ipopts = ipopts;
   3553 	sc->sc_irs = th->th_seq;
   3554 	switch (src->sa_family) {
   3555 #ifdef INET
   3556 	case AF_INET:
   3557 	    {
   3558 		struct sockaddr_in *srcin = (void *) src;
   3559 		struct sockaddr_in *dstin = (void *) dst;
   3560 
   3561 		sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
   3562 		    &srcin->sin_addr, dstin->sin_port,
   3563 		    srcin->sin_port, sizeof(dstin->sin_addr), 0);
   3564 		break;
   3565 	    }
   3566 #endif /* INET */
   3567 #ifdef INET6
   3568 	case AF_INET6:
   3569 	    {
   3570 		struct sockaddr_in6 *srcin6 = (void *) src;
   3571 		struct sockaddr_in6 *dstin6 = (void *) dst;
   3572 
   3573 		sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
   3574 		    &srcin6->sin6_addr, dstin6->sin6_port,
   3575 		    srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
   3576 		break;
   3577 	    }
   3578 #endif /* INET6 */
   3579 	}
   3580 	sc->sc_peermaxseg = oi->maxseg;
   3581 	sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
   3582 						m->m_pkthdr.rcvif : NULL,
   3583 						sc->sc_src.sa.sa_family);
   3584 	sc->sc_win = win;
   3585 	sc->sc_timebase = tcp_now;	/* see tcp_newtcpcb() */
   3586 	sc->sc_timestamp = tb.ts_recent;
   3587 	if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
   3588 	    (TF_REQ_TSTMP|TF_RCVD_TSTMP))
   3589 		sc->sc_flags |= SCF_TIMESTAMP;
   3590 	if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   3591 	    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
   3592 		sc->sc_requested_s_scale = tb.requested_s_scale;
   3593 		sc->sc_request_r_scale = 0;
   3594 		while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
   3595 		    TCP_MAXWIN << sc->sc_request_r_scale <
   3596 		    so->so_rcv.sb_hiwat)
   3597 			sc->sc_request_r_scale++;
   3598 	} else {
   3599 		sc->sc_requested_s_scale = 15;
   3600 		sc->sc_request_r_scale = 15;
   3601 	}
   3602 	sc->sc_tp = tp;
   3603 	if (syn_cache_respond(sc, m) == 0) {
   3604 		syn_cache_insert(sc, tp);
   3605 		tcpstat.tcps_sndacks++;
   3606 		tcpstat.tcps_sndtotal++;
   3607 	} else {
   3608 		SYN_CACHE_PUT(sc);
   3609 		tcpstat.tcps_sc_dropped++;
   3610 	}
   3611 	return (1);
   3612 }
   3613 
   3614 int
   3615 syn_cache_respond(sc, m)
   3616 	struct syn_cache *sc;
   3617 	struct mbuf *m;
   3618 {
   3619 	struct route *ro;
   3620 	u_int8_t *optp;
   3621 	int optlen, error;
   3622 	u_int16_t tlen;
   3623 	struct ip *ip = NULL;
   3624 #ifdef INET6
   3625 	struct ip6_hdr *ip6 = NULL;
   3626 #endif
   3627 	struct tcphdr *th;
   3628 	u_int hlen;
   3629 
   3630 	switch (sc->sc_src.sa.sa_family) {
   3631 	case AF_INET:
   3632 		hlen = sizeof(struct ip);
   3633 		ro = &sc->sc_route4;
   3634 		break;
   3635 #ifdef INET6
   3636 	case AF_INET6:
   3637 		hlen = sizeof(struct ip6_hdr);
   3638 		ro = (struct route *)&sc->sc_route6;
   3639 		break;
   3640 #endif
   3641 	default:
   3642 		if (m)
   3643 			m_freem(m);
   3644 		return EAFNOSUPPORT;
   3645 	}
   3646 
   3647 	/* Compute the size of the TCP options. */
   3648 	optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
   3649 	    ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
   3650 
   3651 	tlen = hlen + sizeof(struct tcphdr) + optlen;
   3652 
   3653 	/*
   3654 	 * Create the IP+TCP header from scratch.
   3655 	 */
   3656 	if (m)
   3657 		m_freem(m);
   3658 #ifdef DIAGNOSTIC
   3659 	if (max_linkhdr + tlen > MCLBYTES)
   3660 		return (ENOBUFS);
   3661 #endif
   3662 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   3663 	if (m && tlen > MHLEN) {
   3664 		MCLGET(m, M_DONTWAIT);
   3665 		if ((m->m_flags & M_EXT) == 0) {
   3666 			m_freem(m);
   3667 			m = NULL;
   3668 		}
   3669 	}
   3670 	if (m == NULL)
   3671 		return (ENOBUFS);
   3672 	MCLAIM(m, &tcp_tx_mowner);
   3673 
   3674 	/* Fixup the mbuf. */
   3675 	m->m_data += max_linkhdr;
   3676 	m->m_len = m->m_pkthdr.len = tlen;
   3677 #ifdef IPSEC
   3678 	if (sc->sc_tp) {
   3679 		struct tcpcb *tp;
   3680 		struct socket *so;
   3681 
   3682 		tp = sc->sc_tp;
   3683 		if (tp->t_inpcb)
   3684 			so = tp->t_inpcb->inp_socket;
   3685 #ifdef INET6
   3686 		else if (tp->t_in6pcb)
   3687 			so = tp->t_in6pcb->in6p_socket;
   3688 #endif
   3689 		else
   3690 			so = NULL;
   3691 		/* use IPsec policy on listening socket, on SYN ACK */
   3692 		if (ipsec_setsocket(m, so) != 0) {
   3693 			m_freem(m);
   3694 			return ENOBUFS;
   3695 		}
   3696 	}
   3697 #endif
   3698 	m->m_pkthdr.rcvif = NULL;
   3699 	memset(mtod(m, u_char *), 0, tlen);
   3700 
   3701 	switch (sc->sc_src.sa.sa_family) {
   3702 	case AF_INET:
   3703 		ip = mtod(m, struct ip *);
   3704 		ip->ip_dst = sc->sc_src.sin.sin_addr;
   3705 		ip->ip_src = sc->sc_dst.sin.sin_addr;
   3706 		ip->ip_p = IPPROTO_TCP;
   3707 		th = (struct tcphdr *)(ip + 1);
   3708 		th->th_dport = sc->sc_src.sin.sin_port;
   3709 		th->th_sport = sc->sc_dst.sin.sin_port;
   3710 		break;
   3711 #ifdef INET6
   3712 	case AF_INET6:
   3713 		ip6 = mtod(m, struct ip6_hdr *);
   3714 		ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
   3715 		ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
   3716 		ip6->ip6_nxt = IPPROTO_TCP;
   3717 		/* ip6_plen will be updated in ip6_output() */
   3718 		th = (struct tcphdr *)(ip6 + 1);
   3719 		th->th_dport = sc->sc_src.sin6.sin6_port;
   3720 		th->th_sport = sc->sc_dst.sin6.sin6_port;
   3721 		break;
   3722 #endif
   3723 	default:
   3724 		th = NULL;
   3725 	}
   3726 
   3727 	th->th_seq = htonl(sc->sc_iss);
   3728 	th->th_ack = htonl(sc->sc_irs + 1);
   3729 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
   3730 	th->th_flags = TH_SYN|TH_ACK;
   3731 	th->th_win = htons(sc->sc_win);
   3732 	/* th_sum already 0 */
   3733 	/* th_urp already 0 */
   3734 
   3735 	/* Tack on the TCP options. */
   3736 	optp = (u_int8_t *)(th + 1);
   3737 	*optp++ = TCPOPT_MAXSEG;
   3738 	*optp++ = 4;
   3739 	*optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
   3740 	*optp++ = sc->sc_ourmaxseg & 0xff;
   3741 
   3742 	if (sc->sc_request_r_scale != 15) {
   3743 		*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
   3744 		    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
   3745 		    sc->sc_request_r_scale);
   3746 		optp += 4;
   3747 	}
   3748 
   3749 	if (sc->sc_flags & SCF_TIMESTAMP) {
   3750 		u_int32_t *lp = (u_int32_t *)(optp);
   3751 		/* Form timestamp option as shown in appendix A of RFC 1323. */
   3752 		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
   3753 		*lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
   3754 		*lp   = htonl(sc->sc_timestamp);
   3755 		optp += TCPOLEN_TSTAMP_APPA;
   3756 	}
   3757 
   3758 	/* Compute the packet's checksum. */
   3759 	switch (sc->sc_src.sa.sa_family) {
   3760 	case AF_INET:
   3761 		ip->ip_len = htons(tlen - hlen);
   3762 		th->th_sum = 0;
   3763 		th->th_sum = in_cksum(m, tlen);
   3764 		break;
   3765 #ifdef INET6
   3766 	case AF_INET6:
   3767 		ip6->ip6_plen = htons(tlen - hlen);
   3768 		th->th_sum = 0;
   3769 		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
   3770 		break;
   3771 #endif
   3772 	}
   3773 
   3774 	/*
   3775 	 * Fill in some straggling IP bits.  Note the stack expects
   3776 	 * ip_len to be in host order, for convenience.
   3777 	 */
   3778 	switch (sc->sc_src.sa.sa_family) {
   3779 #ifdef INET
   3780 	case AF_INET:
   3781 		ip->ip_len = htons(tlen);
   3782 		ip->ip_ttl = ip_defttl;
   3783 		/* XXX tos? */
   3784 		break;
   3785 #endif
   3786 #ifdef INET6
   3787 	case AF_INET6:
   3788 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
   3789 		ip6->ip6_vfc |= IPV6_VERSION;
   3790 		ip6->ip6_plen = htons(tlen - hlen);
   3791 		/* ip6_hlim will be initialized afterwards */
   3792 		/* XXX flowlabel? */
   3793 		break;
   3794 #endif
   3795 	}
   3796 
   3797 	switch (sc->sc_src.sa.sa_family) {
   3798 #ifdef INET
   3799 	case AF_INET:
   3800 		error = ip_output(m, sc->sc_ipopts, ro,
   3801 		    (ip_mtudisc ? IP_MTUDISC : 0),
   3802 		    NULL);
   3803 		break;
   3804 #endif
   3805 #ifdef INET6
   3806 	case AF_INET6:
   3807 		ip6->ip6_hlim = in6_selecthlim(NULL,
   3808 				ro->ro_rt ? ro->ro_rt->rt_ifp : NULL);
   3809 
   3810 		error = ip6_output(m, NULL /*XXX*/, (struct route_in6 *)ro,
   3811 			0, NULL, NULL);
   3812 		break;
   3813 #endif
   3814 	default:
   3815 		error = EAFNOSUPPORT;
   3816 		break;
   3817 	}
   3818 	return (error);
   3819 }
   3820