tcp_input.c revision 1.174 1 /* $NetBSD: tcp_input.c,v 1.174 2003/08/07 16:33:15 agc Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * @(#)COPYRIGHT 1.1 (NRL) 17 January 1995
34 *
35 * NRL grants permission for redistribution and use in source and binary
36 * forms, with or without modification, of the software and documentation
37 * created at NRL provided that the following conditions are met:
38 *
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgements:
46 * This product includes software developed by the University of
47 * California, Berkeley and its contributors.
48 * This product includes software developed at the Information
49 * Technology Division, US Naval Research Laboratory.
50 * 4. Neither the name of the NRL nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
55 * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
57 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NRL OR
58 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
59 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
61 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
62 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
63 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
64 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65 *
66 * The views and conclusions contained in the software and documentation
67 * are those of the authors and should not be interpreted as representing
68 * official policies, either expressed or implied, of the US Naval
69 * Research Laboratory (NRL).
70 */
71
72 /*-
73 * Copyright (c) 1997, 1998, 1999, 2001 The NetBSD Foundation, Inc.
74 * All rights reserved.
75 *
76 * This code is derived from software contributed to The NetBSD Foundation
77 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
78 * Facility, NASA Ames Research Center.
79 *
80 * Redistribution and use in source and binary forms, with or without
81 * modification, are permitted provided that the following conditions
82 * are met:
83 * 1. Redistributions of source code must retain the above copyright
84 * notice, this list of conditions and the following disclaimer.
85 * 2. Redistributions in binary form must reproduce the above copyright
86 * notice, this list of conditions and the following disclaimer in the
87 * documentation and/or other materials provided with the distribution.
88 * 3. All advertising materials mentioning features or use of this software
89 * must display the following acknowledgement:
90 * This product includes software developed by the NetBSD
91 * Foundation, Inc. and its contributors.
92 * 4. Neither the name of The NetBSD Foundation nor the names of its
93 * contributors may be used to endorse or promote products derived
94 * from this software without specific prior written permission.
95 *
96 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
97 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
98 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
99 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
100 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
101 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
102 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
103 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
104 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
105 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
106 * POSSIBILITY OF SUCH DAMAGE.
107 */
108
109 /*
110 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
111 * The Regents of the University of California. All rights reserved.
112 *
113 * Redistribution and use in source and binary forms, with or without
114 * modification, are permitted provided that the following conditions
115 * are met:
116 * 1. Redistributions of source code must retain the above copyright
117 * notice, this list of conditions and the following disclaimer.
118 * 2. Redistributions in binary form must reproduce the above copyright
119 * notice, this list of conditions and the following disclaimer in the
120 * documentation and/or other materials provided with the distribution.
121 * 3. Neither the name of the University nor the names of its contributors
122 * may be used to endorse or promote products derived from this software
123 * without specific prior written permission.
124 *
125 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
126 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
127 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
128 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
129 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
130 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
131 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
132 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
133 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
134 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
135 * SUCH DAMAGE.
136 *
137 * @(#)tcp_input.c 8.12 (Berkeley) 5/24/95
138 */
139
140 /*
141 * TODO list for SYN cache stuff:
142 *
143 * Find room for a "state" field, which is needed to keep a
144 * compressed state for TIME_WAIT TCBs. It's been noted already
145 * that this is fairly important for very high-volume web and
146 * mail servers, which use a large number of short-lived
147 * connections.
148 */
149
150 #include <sys/cdefs.h>
151 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.174 2003/08/07 16:33:15 agc Exp $");
152
153 #include "opt_inet.h"
154 #include "opt_ipsec.h"
155 #include "opt_inet_csum.h"
156 #include "opt_tcp_debug.h"
157
158 #include <sys/param.h>
159 #include <sys/systm.h>
160 #include <sys/malloc.h>
161 #include <sys/mbuf.h>
162 #include <sys/protosw.h>
163 #include <sys/socket.h>
164 #include <sys/socketvar.h>
165 #include <sys/errno.h>
166 #include <sys/syslog.h>
167 #include <sys/pool.h>
168 #include <sys/domain.h>
169 #include <sys/kernel.h>
170
171 #include <net/if.h>
172 #include <net/route.h>
173 #include <net/if_types.h>
174
175 #include <netinet/in.h>
176 #include <netinet/in_systm.h>
177 #include <netinet/ip.h>
178 #include <netinet/in_pcb.h>
179 #include <netinet/in_var.h>
180 #include <netinet/ip_var.h>
181
182 #ifdef INET6
183 #ifndef INET
184 #include <netinet/in.h>
185 #endif
186 #include <netinet/ip6.h>
187 #include <netinet6/ip6_var.h>
188 #include <netinet6/in6_pcb.h>
189 #include <netinet6/ip6_var.h>
190 #include <netinet6/in6_var.h>
191 #include <netinet/icmp6.h>
192 #include <netinet6/nd6.h>
193 #endif
194
195 #ifndef INET6
196 /* always need ip6.h for IP6_EXTHDR_GET */
197 #include <netinet/ip6.h>
198 #endif
199
200 #include <netinet/tcp.h>
201 #include <netinet/tcp_fsm.h>
202 #include <netinet/tcp_seq.h>
203 #include <netinet/tcp_timer.h>
204 #include <netinet/tcp_var.h>
205 #include <netinet/tcpip.h>
206 #include <netinet/tcp_debug.h>
207
208 #include <machine/stdarg.h>
209
210 #ifdef IPSEC
211 #include <netinet6/ipsec.h>
212 #include <netkey/key.h>
213 #endif /*IPSEC*/
214 #ifdef INET6
215 #include "faith.h"
216 #if defined(NFAITH) && NFAITH > 0
217 #include <net/if_faith.h>
218 #endif
219 #endif
220
221 int tcprexmtthresh = 3;
222 int tcp_log_refused;
223
224 static int tcp_rst_ppslim_count = 0;
225 static struct timeval tcp_rst_ppslim_last;
226
227 #define TCP_PAWS_IDLE (24 * 24 * 60 * 60 * PR_SLOWHZ)
228
229 /* for modulo comparisons of timestamps */
230 #define TSTMP_LT(a,b) ((int)((a)-(b)) < 0)
231 #define TSTMP_GEQ(a,b) ((int)((a)-(b)) >= 0)
232
233 /*
234 * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
235 */
236 #ifdef INET6
237 #define ND6_HINT(tp) \
238 do { \
239 if (tp && tp->t_in6pcb && tp->t_family == AF_INET6 \
240 && tp->t_in6pcb->in6p_route.ro_rt) { \
241 nd6_nud_hint(tp->t_in6pcb->in6p_route.ro_rt, NULL, 0); \
242 } \
243 } while (/*CONSTCOND*/ 0)
244 #else
245 #define ND6_HINT(tp)
246 #endif
247
248 /*
249 * Macro to compute ACK transmission behavior. Delay the ACK unless
250 * we have already delayed an ACK (must send an ACK every two segments).
251 * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
252 * option is enabled.
253 */
254 #define TCP_SETUP_ACK(tp, th) \
255 do { \
256 if ((tp)->t_flags & TF_DELACK || \
257 (tcp_ack_on_push && (th)->th_flags & TH_PUSH)) \
258 tp->t_flags |= TF_ACKNOW; \
259 else \
260 TCP_SET_DELACK(tp); \
261 } while (/*CONSTCOND*/ 0)
262
263 /*
264 * Convert TCP protocol fields to host order for easier processing.
265 */
266 #define TCP_FIELDS_TO_HOST(th) \
267 do { \
268 NTOHL((th)->th_seq); \
269 NTOHL((th)->th_ack); \
270 NTOHS((th)->th_win); \
271 NTOHS((th)->th_urp); \
272 } while (/*CONSTCOND*/ 0)
273
274 /*
275 * ... and reverse the above.
276 */
277 #define TCP_FIELDS_TO_NET(th) \
278 do { \
279 HTONL((th)->th_seq); \
280 HTONL((th)->th_ack); \
281 HTONS((th)->th_win); \
282 HTONS((th)->th_urp); \
283 } while (/*CONSTCOND*/ 0)
284
285 #ifdef TCP_CSUM_COUNTERS
286 #include <sys/device.h>
287
288 extern struct evcnt tcp_hwcsum_ok;
289 extern struct evcnt tcp_hwcsum_bad;
290 extern struct evcnt tcp_hwcsum_data;
291 extern struct evcnt tcp_swcsum;
292
293 #define TCP_CSUM_COUNTER_INCR(ev) (ev)->ev_count++
294
295 #else
296
297 #define TCP_CSUM_COUNTER_INCR(ev) /* nothing */
298
299 #endif /* TCP_CSUM_COUNTERS */
300
301 #ifdef TCP_REASS_COUNTERS
302 #include <sys/device.h>
303
304 extern struct evcnt tcp_reass_;
305 extern struct evcnt tcp_reass_empty;
306 extern struct evcnt tcp_reass_iteration[8];
307 extern struct evcnt tcp_reass_prependfirst;
308 extern struct evcnt tcp_reass_prepend;
309 extern struct evcnt tcp_reass_insert;
310 extern struct evcnt tcp_reass_inserttail;
311 extern struct evcnt tcp_reass_append;
312 extern struct evcnt tcp_reass_appendtail;
313 extern struct evcnt tcp_reass_overlaptail;
314 extern struct evcnt tcp_reass_overlapfront;
315 extern struct evcnt tcp_reass_segdup;
316 extern struct evcnt tcp_reass_fragdup;
317
318 #define TCP_REASS_COUNTER_INCR(ev) (ev)->ev_count++
319
320 #else
321
322 #define TCP_REASS_COUNTER_INCR(ev) /* nothing */
323
324 #endif /* TCP_REASS_COUNTERS */
325
326 #ifdef INET
327 static void tcp4_log_refused __P((const struct ip *, const struct tcphdr *));
328 #endif
329 #ifdef INET6
330 static void tcp6_log_refused
331 __P((const struct ip6_hdr *, const struct tcphdr *));
332 #endif
333
334 int
335 tcp_reass(tp, th, m, tlen)
336 struct tcpcb *tp;
337 struct tcphdr *th;
338 struct mbuf *m;
339 int *tlen;
340 {
341 struct ipqent *p, *q, *nq, *tiqe = NULL;
342 struct socket *so = NULL;
343 int pkt_flags;
344 tcp_seq pkt_seq;
345 unsigned pkt_len;
346 u_long rcvpartdupbyte = 0;
347 u_long rcvoobyte;
348 #ifdef TCP_REASS_COUNTERS
349 u_int count = 0;
350 #endif
351
352 if (tp->t_inpcb)
353 so = tp->t_inpcb->inp_socket;
354 #ifdef INET6
355 else if (tp->t_in6pcb)
356 so = tp->t_in6pcb->in6p_socket;
357 #endif
358
359 TCP_REASS_LOCK_CHECK(tp);
360
361 /*
362 * Call with th==0 after become established to
363 * force pre-ESTABLISHED data up to user socket.
364 */
365 if (th == 0)
366 goto present;
367
368 rcvoobyte = *tlen;
369 /*
370 * Copy these to local variables because the tcpiphdr
371 * gets munged while we are collapsing mbufs.
372 */
373 pkt_seq = th->th_seq;
374 pkt_len = *tlen;
375 pkt_flags = th->th_flags;
376
377 TCP_REASS_COUNTER_INCR(&tcp_reass_);
378
379 if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
380 /*
381 * When we miss a packet, the vast majority of time we get
382 * packets that follow it in order. So optimize for that.
383 */
384 if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
385 p->ipqe_len += pkt_len;
386 p->ipqe_flags |= pkt_flags;
387 m_cat(p->ipqe_m, m);
388 tiqe = p;
389 TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
390 TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
391 goto skip_replacement;
392 }
393 /*
394 * While we're here, if the pkt is completely beyond
395 * anything we have, just insert it at the tail.
396 */
397 if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
398 TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
399 goto insert_it;
400 }
401 }
402
403 q = TAILQ_FIRST(&tp->segq);
404
405 if (q != NULL) {
406 /*
407 * If this segment immediately precedes the first out-of-order
408 * block, simply slap the segment in front of it and (mostly)
409 * skip the complicated logic.
410 */
411 if (pkt_seq + pkt_len == q->ipqe_seq) {
412 q->ipqe_seq = pkt_seq;
413 q->ipqe_len += pkt_len;
414 q->ipqe_flags |= pkt_flags;
415 m_cat(m, q->ipqe_m);
416 q->ipqe_m = m;
417 tiqe = q;
418 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
419 TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
420 goto skip_replacement;
421 }
422 } else {
423 TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
424 }
425
426 /*
427 * Find a segment which begins after this one does.
428 */
429 for (p = NULL; q != NULL; q = nq) {
430 nq = TAILQ_NEXT(q, ipqe_q);
431 #ifdef TCP_REASS_COUNTERS
432 count++;
433 #endif
434 /*
435 * If the received segment is just right after this
436 * fragment, merge the two together and then check
437 * for further overlaps.
438 */
439 if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
440 #ifdef TCPREASS_DEBUG
441 printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
442 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
443 q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
444 #endif
445 pkt_len += q->ipqe_len;
446 pkt_flags |= q->ipqe_flags;
447 pkt_seq = q->ipqe_seq;
448 m_cat(q->ipqe_m, m);
449 m = q->ipqe_m;
450 TCP_REASS_COUNTER_INCR(&tcp_reass_append);
451 goto free_ipqe;
452 }
453 /*
454 * If the received segment is completely past this
455 * fragment, we need to go the next fragment.
456 */
457 if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
458 p = q;
459 continue;
460 }
461 /*
462 * If the fragment is past the received segment,
463 * it (or any following) can't be concatenated.
464 */
465 if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
466 TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
467 break;
468 }
469
470 /*
471 * We've received all the data in this segment before.
472 * mark it as a duplicate and return.
473 */
474 if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
475 SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
476 tcpstat.tcps_rcvduppack++;
477 tcpstat.tcps_rcvdupbyte += pkt_len;
478 m_freem(m);
479 if (tiqe != NULL)
480 pool_put(&ipqent_pool, tiqe);
481 TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
482 return (0);
483 }
484 /*
485 * Received segment completely overlaps this fragment
486 * so we drop the fragment (this keeps the temporal
487 * ordering of segments correct).
488 */
489 if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
490 SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
491 rcvpartdupbyte += q->ipqe_len;
492 m_freem(q->ipqe_m);
493 TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
494 goto free_ipqe;
495 }
496 /*
497 * RX'ed segment extends past the end of the
498 * fragment. Drop the overlapping bytes. Then
499 * merge the fragment and segment then treat as
500 * a longer received packet.
501 */
502 if (SEQ_LT(q->ipqe_seq, pkt_seq)
503 && SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
504 int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
505 #ifdef TCPREASS_DEBUG
506 printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
507 tp, overlap,
508 pkt_seq, pkt_seq + pkt_len, pkt_len);
509 #endif
510 m_adj(m, overlap);
511 rcvpartdupbyte += overlap;
512 m_cat(q->ipqe_m, m);
513 m = q->ipqe_m;
514 pkt_seq = q->ipqe_seq;
515 pkt_len += q->ipqe_len - overlap;
516 rcvoobyte -= overlap;
517 TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
518 goto free_ipqe;
519 }
520 /*
521 * RX'ed segment extends past the front of the
522 * fragment. Drop the overlapping bytes on the
523 * received packet. The packet will then be
524 * contatentated with this fragment a bit later.
525 */
526 if (SEQ_GT(q->ipqe_seq, pkt_seq)
527 && SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len)) {
528 int overlap = pkt_seq + pkt_len - q->ipqe_seq;
529 #ifdef TCPREASS_DEBUG
530 printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
531 tp, overlap,
532 pkt_seq, pkt_seq + pkt_len, pkt_len);
533 #endif
534 m_adj(m, -overlap);
535 pkt_len -= overlap;
536 rcvpartdupbyte += overlap;
537 TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
538 rcvoobyte -= overlap;
539 }
540 /*
541 * If the received segment immediates precedes this
542 * fragment then tack the fragment onto this segment
543 * and reinsert the data.
544 */
545 if (q->ipqe_seq == pkt_seq + pkt_len) {
546 #ifdef TCPREASS_DEBUG
547 printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
548 tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
549 pkt_seq, pkt_seq + pkt_len, pkt_len);
550 #endif
551 pkt_len += q->ipqe_len;
552 pkt_flags |= q->ipqe_flags;
553 m_cat(m, q->ipqe_m);
554 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
555 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
556 if (tiqe == NULL) {
557 tiqe = q;
558 } else {
559 pool_put(&ipqent_pool, q);
560 }
561 TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
562 break;
563 }
564 /*
565 * If the fragment is before the segment, remember it.
566 * When this loop is terminated, p will contain the
567 * pointer to fragment that is right before the received
568 * segment.
569 */
570 if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
571 p = q;
572
573 continue;
574
575 /*
576 * This is a common operation. It also will allow
577 * to save doing a malloc/free in most instances.
578 */
579 free_ipqe:
580 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
581 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
582 if (tiqe == NULL) {
583 tiqe = q;
584 } else {
585 pool_put(&ipqent_pool, q);
586 }
587 }
588
589 #ifdef TCP_REASS_COUNTERS
590 if (count > 7)
591 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
592 else if (count > 0)
593 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
594 #endif
595
596 insert_it:
597
598 /*
599 * Allocate a new queue entry since the received segment did not
600 * collapse onto any other out-of-order block; thus we are allocating
601 * a new block. If it had collapsed, tiqe would not be NULL and
602 * we would be reusing it.
603 * XXX If we can't, just drop the packet. XXX
604 */
605 if (tiqe == NULL) {
606 tiqe = pool_get(&ipqent_pool, PR_NOWAIT);
607 if (tiqe == NULL) {
608 tcpstat.tcps_rcvmemdrop++;
609 m_freem(m);
610 return (0);
611 }
612 }
613
614 /*
615 * Update the counters.
616 */
617 tcpstat.tcps_rcvoopack++;
618 tcpstat.tcps_rcvoobyte += rcvoobyte;
619 if (rcvpartdupbyte) {
620 tcpstat.tcps_rcvpartduppack++;
621 tcpstat.tcps_rcvpartdupbyte += rcvpartdupbyte;
622 }
623
624 /*
625 * Insert the new fragment queue entry into both queues.
626 */
627 tiqe->ipqe_m = m;
628 tiqe->ipqe_seq = pkt_seq;
629 tiqe->ipqe_len = pkt_len;
630 tiqe->ipqe_flags = pkt_flags;
631 if (p == NULL) {
632 TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
633 #ifdef TCPREASS_DEBUG
634 if (tiqe->ipqe_seq != tp->rcv_nxt)
635 printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
636 tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
637 #endif
638 } else {
639 TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
640 #ifdef TCPREASS_DEBUG
641 printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
642 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
643 p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
644 #endif
645 }
646
647 skip_replacement:
648
649 TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
650
651 present:
652 /*
653 * Present data to user, advancing rcv_nxt through
654 * completed sequence space.
655 */
656 if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
657 return (0);
658 q = TAILQ_FIRST(&tp->segq);
659 if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
660 return (0);
661 if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
662 return (0);
663
664 tp->rcv_nxt += q->ipqe_len;
665 pkt_flags = q->ipqe_flags & TH_FIN;
666 ND6_HINT(tp);
667
668 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
669 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
670 if (so->so_state & SS_CANTRCVMORE)
671 m_freem(q->ipqe_m);
672 else
673 sbappendstream(&so->so_rcv, q->ipqe_m);
674 pool_put(&ipqent_pool, q);
675 sorwakeup(so);
676 return (pkt_flags);
677 }
678
679 #ifdef INET6
680 int
681 tcp6_input(mp, offp, proto)
682 struct mbuf **mp;
683 int *offp, proto;
684 {
685 struct mbuf *m = *mp;
686
687 /*
688 * draft-itojun-ipv6-tcp-to-anycast
689 * better place to put this in?
690 */
691 if (m->m_flags & M_ANYCAST6) {
692 struct ip6_hdr *ip6;
693 if (m->m_len < sizeof(struct ip6_hdr)) {
694 if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
695 tcpstat.tcps_rcvshort++;
696 return IPPROTO_DONE;
697 }
698 }
699 ip6 = mtod(m, struct ip6_hdr *);
700 icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
701 (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
702 return IPPROTO_DONE;
703 }
704
705 tcp_input(m, *offp, proto);
706 return IPPROTO_DONE;
707 }
708 #endif
709
710 #ifdef INET
711 static void
712 tcp4_log_refused(ip, th)
713 const struct ip *ip;
714 const struct tcphdr *th;
715 {
716 char src[4*sizeof "123"];
717 char dst[4*sizeof "123"];
718
719 if (ip) {
720 strlcpy(src, inet_ntoa(ip->ip_src), sizeof(src));
721 strlcpy(dst, inet_ntoa(ip->ip_dst), sizeof(dst));
722 }
723 else {
724 strlcpy(src, "(unknown)", sizeof(src));
725 strlcpy(dst, "(unknown)", sizeof(dst));
726 }
727 log(LOG_INFO,
728 "Connection attempt to TCP %s:%d from %s:%d\n",
729 dst, ntohs(th->th_dport),
730 src, ntohs(th->th_sport));
731 }
732 #endif
733
734 #ifdef INET6
735 static void
736 tcp6_log_refused(ip6, th)
737 const struct ip6_hdr *ip6;
738 const struct tcphdr *th;
739 {
740 char src[INET6_ADDRSTRLEN];
741 char dst[INET6_ADDRSTRLEN];
742
743 if (ip6) {
744 strlcpy(src, ip6_sprintf(&ip6->ip6_src), sizeof(src));
745 strlcpy(dst, ip6_sprintf(&ip6->ip6_dst), sizeof(dst));
746 }
747 else {
748 strlcpy(src, "(unknown v6)", sizeof(src));
749 strlcpy(dst, "(unknown v6)", sizeof(dst));
750 }
751 log(LOG_INFO,
752 "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
753 dst, ntohs(th->th_dport),
754 src, ntohs(th->th_sport));
755 }
756 #endif
757
758 /*
759 * TCP input routine, follows pages 65-76 of the
760 * protocol specification dated September, 1981 very closely.
761 */
762 void
763 #if __STDC__
764 tcp_input(struct mbuf *m, ...)
765 #else
766 tcp_input(m, va_alist)
767 struct mbuf *m;
768 #endif
769 {
770 struct tcphdr *th;
771 struct ip *ip;
772 struct inpcb *inp;
773 #ifdef INET6
774 struct ip6_hdr *ip6;
775 struct in6pcb *in6p;
776 #endif
777 u_int8_t *optp = NULL;
778 int optlen = 0;
779 int len, tlen, toff, hdroptlen = 0;
780 struct tcpcb *tp = 0;
781 int tiflags;
782 struct socket *so = NULL;
783 int todrop, acked, ourfinisacked, needoutput = 0;
784 #ifdef TCP_DEBUG
785 short ostate = 0;
786 #endif
787 int iss = 0;
788 u_long tiwin;
789 struct tcp_opt_info opti;
790 int off, iphlen;
791 va_list ap;
792 int af; /* af on the wire */
793 struct mbuf *tcp_saveti = NULL;
794
795 MCLAIM(m, &tcp_rx_mowner);
796 va_start(ap, m);
797 toff = va_arg(ap, int);
798 (void)va_arg(ap, int); /* ignore value, advance ap */
799 va_end(ap);
800
801 tcpstat.tcps_rcvtotal++;
802
803 bzero(&opti, sizeof(opti));
804 opti.ts_present = 0;
805 opti.maxseg = 0;
806
807 /*
808 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
809 *
810 * TCP is, by definition, unicast, so we reject all
811 * multicast outright.
812 *
813 * Note, there are additional src/dst address checks in
814 * the AF-specific code below.
815 */
816 if (m->m_flags & (M_BCAST|M_MCAST)) {
817 /* XXX stat */
818 goto drop;
819 }
820 #ifdef INET6
821 if (m->m_flags & M_ANYCAST6) {
822 /* XXX stat */
823 goto drop;
824 }
825 #endif
826
827 /*
828 * Get IP and TCP header together in first mbuf.
829 * Note: IP leaves IP header in first mbuf.
830 */
831 ip = mtod(m, struct ip *);
832 #ifdef INET6
833 ip6 = NULL;
834 #endif
835 switch (ip->ip_v) {
836 #ifdef INET
837 case 4:
838 af = AF_INET;
839 iphlen = sizeof(struct ip);
840 ip = mtod(m, struct ip *);
841 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
842 sizeof(struct tcphdr));
843 if (th == NULL) {
844 tcpstat.tcps_rcvshort++;
845 return;
846 }
847 /* We do the checksum after PCB lookup... */
848 len = ntohs(ip->ip_len);
849 tlen = len - toff;
850 break;
851 #endif
852 #ifdef INET6
853 case 6:
854 ip = NULL;
855 iphlen = sizeof(struct ip6_hdr);
856 af = AF_INET6;
857 ip6 = mtod(m, struct ip6_hdr *);
858 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
859 sizeof(struct tcphdr));
860 if (th == NULL) {
861 tcpstat.tcps_rcvshort++;
862 return;
863 }
864
865 /* Be proactive about malicious use of IPv4 mapped address */
866 if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
867 IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
868 /* XXX stat */
869 goto drop;
870 }
871
872 /*
873 * Be proactive about unspecified IPv6 address in source.
874 * As we use all-zero to indicate unbounded/unconnected pcb,
875 * unspecified IPv6 address can be used to confuse us.
876 *
877 * Note that packets with unspecified IPv6 destination is
878 * already dropped in ip6_input.
879 */
880 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
881 /* XXX stat */
882 goto drop;
883 }
884
885 /*
886 * Make sure destination address is not multicast.
887 * Source address checked in ip6_input().
888 */
889 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
890 /* XXX stat */
891 goto drop;
892 }
893
894 /* We do the checksum after PCB lookup... */
895 len = m->m_pkthdr.len;
896 tlen = len - toff;
897 break;
898 #endif
899 default:
900 m_freem(m);
901 return;
902 }
903
904 KASSERT(TCP_HDR_ALIGNED_P(th));
905
906 /*
907 * Check that TCP offset makes sense,
908 * pull out TCP options and adjust length. XXX
909 */
910 off = th->th_off << 2;
911 if (off < sizeof (struct tcphdr) || off > tlen) {
912 tcpstat.tcps_rcvbadoff++;
913 goto drop;
914 }
915 tlen -= off;
916
917 /*
918 * tcp_input() has been modified to use tlen to mean the TCP data
919 * length throughout the function. Other functions can use
920 * m->m_pkthdr.len as the basis for calculating the TCP data length.
921 * rja
922 */
923
924 if (off > sizeof (struct tcphdr)) {
925 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
926 if (th == NULL) {
927 tcpstat.tcps_rcvshort++;
928 return;
929 }
930 /*
931 * NOTE: ip/ip6 will not be affected by m_pulldown()
932 * (as they're before toff) and we don't need to update those.
933 */
934 KASSERT(TCP_HDR_ALIGNED_P(th));
935 optlen = off - sizeof (struct tcphdr);
936 optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
937 /*
938 * Do quick retrieval of timestamp options ("options
939 * prediction?"). If timestamp is the only option and it's
940 * formatted as recommended in RFC 1323 appendix A, we
941 * quickly get the values now and not bother calling
942 * tcp_dooptions(), etc.
943 */
944 if ((optlen == TCPOLEN_TSTAMP_APPA ||
945 (optlen > TCPOLEN_TSTAMP_APPA &&
946 optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
947 *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
948 (th->th_flags & TH_SYN) == 0) {
949 opti.ts_present = 1;
950 opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
951 opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
952 optp = NULL; /* we've parsed the options */
953 }
954 }
955 tiflags = th->th_flags;
956
957 /*
958 * Locate pcb for segment.
959 */
960 findpcb:
961 inp = NULL;
962 #ifdef INET6
963 in6p = NULL;
964 #endif
965 switch (af) {
966 #ifdef INET
967 case AF_INET:
968 inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
969 ip->ip_dst, th->th_dport);
970 if (inp == 0) {
971 ++tcpstat.tcps_pcbhashmiss;
972 inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
973 }
974 #ifdef INET6
975 if (inp == 0) {
976 struct in6_addr s, d;
977
978 /* mapped addr case */
979 bzero(&s, sizeof(s));
980 s.s6_addr16[5] = htons(0xffff);
981 bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
982 bzero(&d, sizeof(d));
983 d.s6_addr16[5] = htons(0xffff);
984 bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
985 in6p = in6_pcblookup_connect(&tcb6, &s, th->th_sport,
986 &d, th->th_dport, 0);
987 if (in6p == 0) {
988 ++tcpstat.tcps_pcbhashmiss;
989 in6p = in6_pcblookup_bind(&tcb6, &d,
990 th->th_dport, 0);
991 }
992 }
993 #endif
994 #ifndef INET6
995 if (inp == 0)
996 #else
997 if (inp == 0 && in6p == 0)
998 #endif
999 {
1000 ++tcpstat.tcps_noport;
1001 if (tcp_log_refused &&
1002 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1003 tcp4_log_refused(ip, th);
1004 }
1005 TCP_FIELDS_TO_HOST(th);
1006 goto dropwithreset_ratelim;
1007 }
1008 #ifdef IPSEC
1009 if (inp && ipsec4_in_reject(m, inp)) {
1010 ipsecstat.in_polvio++;
1011 goto drop;
1012 }
1013 #ifdef INET6
1014 else if (in6p && ipsec4_in_reject_so(m, in6p->in6p_socket)) {
1015 ipsecstat.in_polvio++;
1016 goto drop;
1017 }
1018 #endif
1019 #endif /*IPSEC*/
1020 break;
1021 #endif /*INET*/
1022 #ifdef INET6
1023 case AF_INET6:
1024 {
1025 int faith;
1026
1027 #if defined(NFAITH) && NFAITH > 0
1028 faith = faithprefix(&ip6->ip6_dst);
1029 #else
1030 faith = 0;
1031 #endif
1032 in6p = in6_pcblookup_connect(&tcb6, &ip6->ip6_src, th->th_sport,
1033 &ip6->ip6_dst, th->th_dport, faith);
1034 if (in6p == NULL) {
1035 ++tcpstat.tcps_pcbhashmiss;
1036 in6p = in6_pcblookup_bind(&tcb6, &ip6->ip6_dst,
1037 th->th_dport, faith);
1038 }
1039 if (in6p == NULL) {
1040 ++tcpstat.tcps_noport;
1041 if (tcp_log_refused &&
1042 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1043 tcp6_log_refused(ip6, th);
1044 }
1045 TCP_FIELDS_TO_HOST(th);
1046 goto dropwithreset_ratelim;
1047 }
1048 #ifdef IPSEC
1049 if (ipsec6_in_reject(m, in6p)) {
1050 ipsec6stat.in_polvio++;
1051 goto drop;
1052 }
1053 #endif /*IPSEC*/
1054 break;
1055 }
1056 #endif
1057 }
1058
1059 /*
1060 * If the state is CLOSED (i.e., TCB does not exist) then
1061 * all data in the incoming segment is discarded.
1062 * If the TCB exists but is in CLOSED state, it is embryonic,
1063 * but should either do a listen or a connect soon.
1064 */
1065 tp = NULL;
1066 so = NULL;
1067 if (inp) {
1068 tp = intotcpcb(inp);
1069 so = inp->inp_socket;
1070 }
1071 #ifdef INET6
1072 else if (in6p) {
1073 tp = in6totcpcb(in6p);
1074 so = in6p->in6p_socket;
1075 }
1076 #endif
1077 if (tp == 0) {
1078 TCP_FIELDS_TO_HOST(th);
1079 goto dropwithreset_ratelim;
1080 }
1081 if (tp->t_state == TCPS_CLOSED)
1082 goto drop;
1083
1084 /*
1085 * Checksum extended TCP header and data.
1086 */
1087 switch (af) {
1088 #ifdef INET
1089 case AF_INET:
1090 switch (m->m_pkthdr.csum_flags &
1091 ((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
1092 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
1093 case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
1094 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
1095 goto badcsum;
1096
1097 case M_CSUM_TCPv4|M_CSUM_DATA:
1098 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
1099 if ((m->m_pkthdr.csum_data ^ 0xffff) != 0)
1100 goto badcsum;
1101 break;
1102
1103 case M_CSUM_TCPv4:
1104 /* Checksum was okay. */
1105 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
1106 break;
1107
1108 default:
1109 /* Must compute it ourselves. */
1110 TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
1111 if (in4_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0)
1112 goto badcsum;
1113 break;
1114 }
1115 break;
1116 #endif /* INET4 */
1117
1118 #ifdef INET6
1119 case AF_INET6:
1120 if (in6_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0)
1121 goto badcsum;
1122 break;
1123 #endif /* INET6 */
1124 }
1125
1126 TCP_FIELDS_TO_HOST(th);
1127
1128 /* Unscale the window into a 32-bit value. */
1129 if ((tiflags & TH_SYN) == 0)
1130 tiwin = th->th_win << tp->snd_scale;
1131 else
1132 tiwin = th->th_win;
1133
1134 #ifdef INET6
1135 /* save packet options if user wanted */
1136 if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
1137 if (in6p->in6p_options) {
1138 m_freem(in6p->in6p_options);
1139 in6p->in6p_options = 0;
1140 }
1141 ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
1142 }
1143 #endif
1144
1145 if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
1146 union syn_cache_sa src;
1147 union syn_cache_sa dst;
1148
1149 bzero(&src, sizeof(src));
1150 bzero(&dst, sizeof(dst));
1151 switch (af) {
1152 #ifdef INET
1153 case AF_INET:
1154 src.sin.sin_len = sizeof(struct sockaddr_in);
1155 src.sin.sin_family = AF_INET;
1156 src.sin.sin_addr = ip->ip_src;
1157 src.sin.sin_port = th->th_sport;
1158
1159 dst.sin.sin_len = sizeof(struct sockaddr_in);
1160 dst.sin.sin_family = AF_INET;
1161 dst.sin.sin_addr = ip->ip_dst;
1162 dst.sin.sin_port = th->th_dport;
1163 break;
1164 #endif
1165 #ifdef INET6
1166 case AF_INET6:
1167 src.sin6.sin6_len = sizeof(struct sockaddr_in6);
1168 src.sin6.sin6_family = AF_INET6;
1169 src.sin6.sin6_addr = ip6->ip6_src;
1170 src.sin6.sin6_port = th->th_sport;
1171
1172 dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
1173 dst.sin6.sin6_family = AF_INET6;
1174 dst.sin6.sin6_addr = ip6->ip6_dst;
1175 dst.sin6.sin6_port = th->th_dport;
1176 break;
1177 #endif /* INET6 */
1178 default:
1179 goto badsyn; /*sanity*/
1180 }
1181
1182 if (so->so_options & SO_DEBUG) {
1183 #ifdef TCP_DEBUG
1184 ostate = tp->t_state;
1185 #endif
1186
1187 tcp_saveti = NULL;
1188 if (iphlen + sizeof(struct tcphdr) > MHLEN)
1189 goto nosave;
1190
1191 if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
1192 tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
1193 if (!tcp_saveti)
1194 goto nosave;
1195 } else {
1196 MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
1197 if (!tcp_saveti)
1198 goto nosave;
1199 MCLAIM(m, &tcp_mowner);
1200 tcp_saveti->m_len = iphlen;
1201 m_copydata(m, 0, iphlen,
1202 mtod(tcp_saveti, caddr_t));
1203 }
1204
1205 if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
1206 m_freem(tcp_saveti);
1207 tcp_saveti = NULL;
1208 } else {
1209 tcp_saveti->m_len += sizeof(struct tcphdr);
1210 bcopy(th, mtod(tcp_saveti, caddr_t) + iphlen,
1211 sizeof(struct tcphdr));
1212 }
1213 nosave:;
1214 }
1215 if (so->so_options & SO_ACCEPTCONN) {
1216 if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1217 if (tiflags & TH_RST) {
1218 syn_cache_reset(&src.sa, &dst.sa, th);
1219 } else if ((tiflags & (TH_ACK|TH_SYN)) ==
1220 (TH_ACK|TH_SYN)) {
1221 /*
1222 * Received a SYN,ACK. This should
1223 * never happen while we are in
1224 * LISTEN. Send an RST.
1225 */
1226 goto badsyn;
1227 } else if (tiflags & TH_ACK) {
1228 so = syn_cache_get(&src.sa, &dst.sa,
1229 th, toff, tlen, so, m);
1230 if (so == NULL) {
1231 /*
1232 * We don't have a SYN for
1233 * this ACK; send an RST.
1234 */
1235 goto badsyn;
1236 } else if (so ==
1237 (struct socket *)(-1)) {
1238 /*
1239 * We were unable to create
1240 * the connection. If the
1241 * 3-way handshake was
1242 * completed, and RST has
1243 * been sent to the peer.
1244 * Since the mbuf might be
1245 * in use for the reply,
1246 * do not free it.
1247 */
1248 m = NULL;
1249 } else {
1250 /*
1251 * We have created a
1252 * full-blown connection.
1253 */
1254 tp = NULL;
1255 inp = NULL;
1256 #ifdef INET6
1257 in6p = NULL;
1258 #endif
1259 switch (so->so_proto->pr_domain->dom_family) {
1260 #ifdef INET
1261 case AF_INET:
1262 inp = sotoinpcb(so);
1263 tp = intotcpcb(inp);
1264 break;
1265 #endif
1266 #ifdef INET6
1267 case AF_INET6:
1268 in6p = sotoin6pcb(so);
1269 tp = in6totcpcb(in6p);
1270 break;
1271 #endif
1272 }
1273 if (tp == NULL)
1274 goto badsyn; /*XXX*/
1275 tiwin <<= tp->snd_scale;
1276 goto after_listen;
1277 }
1278 } else {
1279 /*
1280 * None of RST, SYN or ACK was set.
1281 * This is an invalid packet for a
1282 * TCB in LISTEN state. Send a RST.
1283 */
1284 goto badsyn;
1285 }
1286 } else {
1287 /*
1288 * Received a SYN.
1289 */
1290
1291 #ifdef INET6
1292 /*
1293 * If deprecated address is forbidden, we do
1294 * not accept SYN to deprecated interface
1295 * address to prevent any new inbound
1296 * connection from getting established.
1297 * When we do not accept SYN, we send a TCP
1298 * RST, with deprecated source address (instead
1299 * of dropping it). We compromise it as it is
1300 * much better for peer to send a RST, and
1301 * RST will be the final packet for the
1302 * exchange.
1303 *
1304 * If we do not forbid deprecated addresses, we
1305 * accept the SYN packet. RFC2462 does not
1306 * suggest dropping SYN in this case.
1307 * If we decipher RFC2462 5.5.4, it says like
1308 * this:
1309 * 1. use of deprecated addr with existing
1310 * communication is okay - "SHOULD continue
1311 * to be used"
1312 * 2. use of it with new communication:
1313 * (2a) "SHOULD NOT be used if alternate
1314 * address with sufficient scope is
1315 * available"
1316 * (2b) nothing mentioned otherwise.
1317 * Here we fall into (2b) case as we have no
1318 * choice in our source address selection - we
1319 * must obey the peer.
1320 *
1321 * The wording in RFC2462 is confusing, and
1322 * there are multiple description text for
1323 * deprecated address handling - worse, they
1324 * are not exactly the same. I believe 5.5.4
1325 * is the best one, so we follow 5.5.4.
1326 */
1327 if (af == AF_INET6 && !ip6_use_deprecated) {
1328 struct in6_ifaddr *ia6;
1329 if ((ia6 = in6ifa_ifpwithaddr(m->m_pkthdr.rcvif,
1330 &ip6->ip6_dst)) &&
1331 (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1332 tp = NULL;
1333 goto dropwithreset;
1334 }
1335 }
1336 #endif
1337
1338 /*
1339 * LISTEN socket received a SYN
1340 * from itself? This can't possibly
1341 * be valid; drop the packet.
1342 */
1343 if (th->th_sport == th->th_dport) {
1344 int i;
1345
1346 switch (af) {
1347 #ifdef INET
1348 case AF_INET:
1349 i = in_hosteq(ip->ip_src, ip->ip_dst);
1350 break;
1351 #endif
1352 #ifdef INET6
1353 case AF_INET6:
1354 i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
1355 break;
1356 #endif
1357 default:
1358 i = 1;
1359 }
1360 if (i) {
1361 tcpstat.tcps_badsyn++;
1362 goto drop;
1363 }
1364 }
1365
1366 /*
1367 * SYN looks ok; create compressed TCP
1368 * state for it.
1369 */
1370 if (so->so_qlen <= so->so_qlimit &&
1371 syn_cache_add(&src.sa, &dst.sa, th, tlen,
1372 so, m, optp, optlen, &opti))
1373 m = NULL;
1374 }
1375 goto drop;
1376 }
1377 }
1378
1379 after_listen:
1380 #ifdef DIAGNOSTIC
1381 /*
1382 * Should not happen now that all embryonic connections
1383 * are handled with compressed state.
1384 */
1385 if (tp->t_state == TCPS_LISTEN)
1386 panic("tcp_input: TCPS_LISTEN");
1387 #endif
1388
1389 /*
1390 * Segment received on connection.
1391 * Reset idle time and keep-alive timer.
1392 */
1393 tp->t_rcvtime = tcp_now;
1394 if (TCPS_HAVEESTABLISHED(tp->t_state))
1395 TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1396
1397 /*
1398 * Process options.
1399 */
1400 if (optp)
1401 tcp_dooptions(tp, optp, optlen, th, &opti);
1402
1403 /*
1404 * Header prediction: check for the two common cases
1405 * of a uni-directional data xfer. If the packet has
1406 * no control flags, is in-sequence, the window didn't
1407 * change and we're not retransmitting, it's a
1408 * candidate. If the length is zero and the ack moved
1409 * forward, we're the sender side of the xfer. Just
1410 * free the data acked & wake any higher level process
1411 * that was blocked waiting for space. If the length
1412 * is non-zero and the ack didn't move, we're the
1413 * receiver side. If we're getting packets in-order
1414 * (the reassembly queue is empty), add the data to
1415 * the socket buffer and note that we need a delayed ack.
1416 */
1417 if (tp->t_state == TCPS_ESTABLISHED &&
1418 (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1419 (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
1420 th->th_seq == tp->rcv_nxt &&
1421 tiwin && tiwin == tp->snd_wnd &&
1422 tp->snd_nxt == tp->snd_max) {
1423
1424 /*
1425 * If last ACK falls within this segment's sequence numbers,
1426 * record the timestamp.
1427 */
1428 if (opti.ts_present &&
1429 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1430 SEQ_LT(tp->last_ack_sent, th->th_seq + tlen)) {
1431 tp->ts_recent_age = TCP_TIMESTAMP(tp);
1432 tp->ts_recent = opti.ts_val;
1433 }
1434
1435 if (tlen == 0) {
1436 if (SEQ_GT(th->th_ack, tp->snd_una) &&
1437 SEQ_LEQ(th->th_ack, tp->snd_max) &&
1438 tp->snd_cwnd >= tp->snd_wnd &&
1439 tp->t_dupacks < tcprexmtthresh) {
1440 int slen;
1441
1442 /*
1443 * this is a pure ack for outstanding data.
1444 */
1445 ++tcpstat.tcps_predack;
1446 if (opti.ts_present && opti.ts_ecr)
1447 tcp_xmit_timer(tp,
1448 TCP_TIMESTAMP(tp) - opti.ts_ecr + 1);
1449 else if (tp->t_rtttime &&
1450 SEQ_GT(th->th_ack, tp->t_rtseq))
1451 tcp_xmit_timer(tp,
1452 tcp_now - tp->t_rtttime);
1453 acked = th->th_ack - tp->snd_una;
1454 tcpstat.tcps_rcvackpack++;
1455 tcpstat.tcps_rcvackbyte += acked;
1456 ND6_HINT(tp);
1457
1458 slen = tp->t_lastm->m_len;
1459 sbdrop(&so->so_snd, acked);
1460 if (so->so_snd.sb_cc != 0) {
1461 tp->t_lastoff -= acked;
1462 if (tp->t_lastm->m_len < slen)
1463 tp->t_inoff -=
1464 (slen - tp->t_lastm->m_len);
1465 }
1466
1467 /*
1468 * We want snd_recover to track snd_una to
1469 * avoid sequence wraparound problems for
1470 * very large transfers.
1471 */
1472 tp->snd_una = tp->snd_recover = th->th_ack;
1473 m_freem(m);
1474
1475 /*
1476 * If all outstanding data are acked, stop
1477 * retransmit timer, otherwise restart timer
1478 * using current (possibly backed-off) value.
1479 * If process is waiting for space,
1480 * wakeup/selwakeup/signal. If data
1481 * are ready to send, let tcp_output
1482 * decide between more output or persist.
1483 */
1484 if (tp->snd_una == tp->snd_max)
1485 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1486 else if (TCP_TIMER_ISARMED(tp,
1487 TCPT_PERSIST) == 0)
1488 TCP_TIMER_ARM(tp, TCPT_REXMT,
1489 tp->t_rxtcur);
1490
1491 sowwakeup(so);
1492 if (so->so_snd.sb_cc)
1493 (void) tcp_output(tp);
1494 if (tcp_saveti)
1495 m_freem(tcp_saveti);
1496 return;
1497 }
1498 } else if (th->th_ack == tp->snd_una &&
1499 TAILQ_FIRST(&tp->segq) == NULL &&
1500 tlen <= sbspace(&so->so_rcv)) {
1501 /*
1502 * this is a pure, in-sequence data packet
1503 * with nothing on the reassembly queue and
1504 * we have enough buffer space to take it.
1505 */
1506 ++tcpstat.tcps_preddat;
1507 tp->rcv_nxt += tlen;
1508 tcpstat.tcps_rcvpack++;
1509 tcpstat.tcps_rcvbyte += tlen;
1510 ND6_HINT(tp);
1511 /*
1512 * Drop TCP, IP headers and TCP options then add data
1513 * to socket buffer.
1514 */
1515 if (so->so_state & SS_CANTRCVMORE)
1516 m_freem(m);
1517 else {
1518 m_adj(m, toff + off);
1519 sbappendstream(&so->so_rcv, m);
1520 }
1521 sorwakeup(so);
1522 TCP_SETUP_ACK(tp, th);
1523 if (tp->t_flags & TF_ACKNOW)
1524 (void) tcp_output(tp);
1525 if (tcp_saveti)
1526 m_freem(tcp_saveti);
1527 return;
1528 }
1529 }
1530
1531 /*
1532 * Compute mbuf offset to TCP data segment.
1533 */
1534 hdroptlen = toff + off;
1535
1536 /*
1537 * Calculate amount of space in receive window,
1538 * and then do TCP input processing.
1539 * Receive window is amount of space in rcv queue,
1540 * but not less than advertised window.
1541 */
1542 { int win;
1543
1544 win = sbspace(&so->so_rcv);
1545 if (win < 0)
1546 win = 0;
1547 tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1548 }
1549
1550 switch (tp->t_state) {
1551 case TCPS_LISTEN:
1552 /*
1553 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
1554 */
1555 if (m->m_flags & (M_BCAST|M_MCAST))
1556 goto drop;
1557 switch (af) {
1558 #ifdef INET6
1559 case AF_INET6:
1560 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
1561 goto drop;
1562 break;
1563 #endif /* INET6 */
1564 case AF_INET:
1565 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
1566 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
1567 goto drop;
1568 break;
1569 }
1570 break;
1571
1572 /*
1573 * If the state is SYN_SENT:
1574 * if seg contains an ACK, but not for our SYN, drop the input.
1575 * if seg contains a RST, then drop the connection.
1576 * if seg does not contain SYN, then drop it.
1577 * Otherwise this is an acceptable SYN segment
1578 * initialize tp->rcv_nxt and tp->irs
1579 * if seg contains ack then advance tp->snd_una
1580 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1581 * arrange for segment to be acked (eventually)
1582 * continue processing rest of data/controls, beginning with URG
1583 */
1584 case TCPS_SYN_SENT:
1585 if ((tiflags & TH_ACK) &&
1586 (SEQ_LEQ(th->th_ack, tp->iss) ||
1587 SEQ_GT(th->th_ack, tp->snd_max)))
1588 goto dropwithreset;
1589 if (tiflags & TH_RST) {
1590 if (tiflags & TH_ACK)
1591 tp = tcp_drop(tp, ECONNREFUSED);
1592 goto drop;
1593 }
1594 if ((tiflags & TH_SYN) == 0)
1595 goto drop;
1596 if (tiflags & TH_ACK) {
1597 tp->snd_una = tp->snd_recover = th->th_ack;
1598 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1599 tp->snd_nxt = tp->snd_una;
1600 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1601 }
1602 tp->irs = th->th_seq;
1603 tcp_rcvseqinit(tp);
1604 tp->t_flags |= TF_ACKNOW;
1605 tcp_mss_from_peer(tp, opti.maxseg);
1606
1607 /*
1608 * Initialize the initial congestion window. If we
1609 * had to retransmit the SYN, we must initialize cwnd
1610 * to 1 segment (i.e. the Loss Window).
1611 */
1612 if (tp->t_flags & TF_SYN_REXMT)
1613 tp->snd_cwnd = tp->t_peermss;
1614 else {
1615 int ss = tcp_init_win;
1616 #ifdef INET
1617 if (inp != NULL && in_localaddr(inp->inp_faddr))
1618 ss = tcp_init_win_local;
1619 #endif
1620 #ifdef INET6
1621 if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
1622 ss = tcp_init_win_local;
1623 #endif
1624 tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
1625 }
1626
1627 tcp_rmx_rtt(tp);
1628 if (tiflags & TH_ACK) {
1629 tcpstat.tcps_connects++;
1630 soisconnected(so);
1631 tcp_established(tp);
1632 /* Do window scaling on this connection? */
1633 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1634 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1635 tp->snd_scale = tp->requested_s_scale;
1636 tp->rcv_scale = tp->request_r_scale;
1637 }
1638 TCP_REASS_LOCK(tp);
1639 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1640 TCP_REASS_UNLOCK(tp);
1641 /*
1642 * if we didn't have to retransmit the SYN,
1643 * use its rtt as our initial srtt & rtt var.
1644 */
1645 if (tp->t_rtttime)
1646 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
1647 } else
1648 tp->t_state = TCPS_SYN_RECEIVED;
1649
1650 /*
1651 * Advance th->th_seq to correspond to first data byte.
1652 * If data, trim to stay within window,
1653 * dropping FIN if necessary.
1654 */
1655 th->th_seq++;
1656 if (tlen > tp->rcv_wnd) {
1657 todrop = tlen - tp->rcv_wnd;
1658 m_adj(m, -todrop);
1659 tlen = tp->rcv_wnd;
1660 tiflags &= ~TH_FIN;
1661 tcpstat.tcps_rcvpackafterwin++;
1662 tcpstat.tcps_rcvbyteafterwin += todrop;
1663 }
1664 tp->snd_wl1 = th->th_seq - 1;
1665 tp->rcv_up = th->th_seq;
1666 goto step6;
1667
1668 /*
1669 * If the state is SYN_RECEIVED:
1670 * If seg contains an ACK, but not for our SYN, drop the input
1671 * and generate an RST. See page 36, rfc793
1672 */
1673 case TCPS_SYN_RECEIVED:
1674 if ((tiflags & TH_ACK) &&
1675 (SEQ_LEQ(th->th_ack, tp->iss) ||
1676 SEQ_GT(th->th_ack, tp->snd_max)))
1677 goto dropwithreset;
1678 break;
1679 }
1680
1681 /*
1682 * States other than LISTEN or SYN_SENT.
1683 * First check timestamp, if present.
1684 * Then check that at least some bytes of segment are within
1685 * receive window. If segment begins before rcv_nxt,
1686 * drop leading data (and SYN); if nothing left, just ack.
1687 *
1688 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1689 * and it's less than ts_recent, drop it.
1690 */
1691 if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
1692 TSTMP_LT(opti.ts_val, tp->ts_recent)) {
1693
1694 /* Check to see if ts_recent is over 24 days old. */
1695 if ((int)(TCP_TIMESTAMP(tp) - tp->ts_recent_age) >
1696 TCP_PAWS_IDLE) {
1697 /*
1698 * Invalidate ts_recent. If this segment updates
1699 * ts_recent, the age will be reset later and ts_recent
1700 * will get a valid value. If it does not, setting
1701 * ts_recent to zero will at least satisfy the
1702 * requirement that zero be placed in the timestamp
1703 * echo reply when ts_recent isn't valid. The
1704 * age isn't reset until we get a valid ts_recent
1705 * because we don't want out-of-order segments to be
1706 * dropped when ts_recent is old.
1707 */
1708 tp->ts_recent = 0;
1709 } else {
1710 tcpstat.tcps_rcvduppack++;
1711 tcpstat.tcps_rcvdupbyte += tlen;
1712 tcpstat.tcps_pawsdrop++;
1713 goto dropafterack;
1714 }
1715 }
1716
1717 todrop = tp->rcv_nxt - th->th_seq;
1718 if (todrop > 0) {
1719 if (tiflags & TH_SYN) {
1720 tiflags &= ~TH_SYN;
1721 th->th_seq++;
1722 if (th->th_urp > 1)
1723 th->th_urp--;
1724 else {
1725 tiflags &= ~TH_URG;
1726 th->th_urp = 0;
1727 }
1728 todrop--;
1729 }
1730 if (todrop > tlen ||
1731 (todrop == tlen && (tiflags & TH_FIN) == 0)) {
1732 /*
1733 * Any valid FIN must be to the left of the window.
1734 * At this point the FIN must be a duplicate or
1735 * out of sequence; drop it.
1736 */
1737 tiflags &= ~TH_FIN;
1738 /*
1739 * Send an ACK to resynchronize and drop any data.
1740 * But keep on processing for RST or ACK.
1741 */
1742 tp->t_flags |= TF_ACKNOW;
1743 todrop = tlen;
1744 tcpstat.tcps_rcvdupbyte += todrop;
1745 tcpstat.tcps_rcvduppack++;
1746 } else {
1747 tcpstat.tcps_rcvpartduppack++;
1748 tcpstat.tcps_rcvpartdupbyte += todrop;
1749 }
1750 hdroptlen += todrop; /*drop from head afterwards*/
1751 th->th_seq += todrop;
1752 tlen -= todrop;
1753 if (th->th_urp > todrop)
1754 th->th_urp -= todrop;
1755 else {
1756 tiflags &= ~TH_URG;
1757 th->th_urp = 0;
1758 }
1759 }
1760
1761 /*
1762 * If new data are received on a connection after the
1763 * user processes are gone, then RST the other end.
1764 */
1765 if ((so->so_state & SS_NOFDREF) &&
1766 tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1767 tp = tcp_close(tp);
1768 tcpstat.tcps_rcvafterclose++;
1769 goto dropwithreset;
1770 }
1771
1772 /*
1773 * If segment ends after window, drop trailing data
1774 * (and PUSH and FIN); if nothing left, just ACK.
1775 */
1776 todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
1777 if (todrop > 0) {
1778 tcpstat.tcps_rcvpackafterwin++;
1779 if (todrop >= tlen) {
1780 tcpstat.tcps_rcvbyteafterwin += tlen;
1781 /*
1782 * If a new connection request is received
1783 * while in TIME_WAIT, drop the old connection
1784 * and start over if the sequence numbers
1785 * are above the previous ones.
1786 *
1787 * NOTE: We will checksum the packet again, and
1788 * so we need to put the header fields back into
1789 * network order!
1790 * XXX This kind of sucks, but we don't expect
1791 * XXX this to happen very often, so maybe it
1792 * XXX doesn't matter so much.
1793 */
1794 if (tiflags & TH_SYN &&
1795 tp->t_state == TCPS_TIME_WAIT &&
1796 SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1797 iss = tcp_new_iss(tp, tp->snd_nxt);
1798 tp = tcp_close(tp);
1799 TCP_FIELDS_TO_NET(th);
1800 goto findpcb;
1801 }
1802 /*
1803 * If window is closed can only take segments at
1804 * window edge, and have to drop data and PUSH from
1805 * incoming segments. Continue processing, but
1806 * remember to ack. Otherwise, drop segment
1807 * and ack.
1808 */
1809 if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1810 tp->t_flags |= TF_ACKNOW;
1811 tcpstat.tcps_rcvwinprobe++;
1812 } else
1813 goto dropafterack;
1814 } else
1815 tcpstat.tcps_rcvbyteafterwin += todrop;
1816 m_adj(m, -todrop);
1817 tlen -= todrop;
1818 tiflags &= ~(TH_PUSH|TH_FIN);
1819 }
1820
1821 /*
1822 * If last ACK falls within this segment's sequence numbers,
1823 * and the timestamp is newer, record it.
1824 */
1825 if (opti.ts_present && TSTMP_GEQ(opti.ts_val, tp->ts_recent) &&
1826 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1827 SEQ_LT(tp->last_ack_sent, th->th_seq + tlen +
1828 ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
1829 tp->ts_recent_age = TCP_TIMESTAMP(tp);
1830 tp->ts_recent = opti.ts_val;
1831 }
1832
1833 /*
1834 * If the RST bit is set examine the state:
1835 * SYN_RECEIVED STATE:
1836 * If passive open, return to LISTEN state.
1837 * If active open, inform user that connection was refused.
1838 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
1839 * Inform user that connection was reset, and close tcb.
1840 * CLOSING, LAST_ACK, TIME_WAIT STATES
1841 * Close the tcb.
1842 */
1843 if (tiflags&TH_RST) switch (tp->t_state) {
1844
1845 case TCPS_SYN_RECEIVED:
1846 so->so_error = ECONNREFUSED;
1847 goto close;
1848
1849 case TCPS_ESTABLISHED:
1850 case TCPS_FIN_WAIT_1:
1851 case TCPS_FIN_WAIT_2:
1852 case TCPS_CLOSE_WAIT:
1853 so->so_error = ECONNRESET;
1854 close:
1855 tp->t_state = TCPS_CLOSED;
1856 tcpstat.tcps_drops++;
1857 tp = tcp_close(tp);
1858 goto drop;
1859
1860 case TCPS_CLOSING:
1861 case TCPS_LAST_ACK:
1862 case TCPS_TIME_WAIT:
1863 tp = tcp_close(tp);
1864 goto drop;
1865 }
1866
1867 /*
1868 * If a SYN is in the window, then this is an
1869 * error and we send an RST and drop the connection.
1870 */
1871 if (tiflags & TH_SYN) {
1872 tp = tcp_drop(tp, ECONNRESET);
1873 goto dropwithreset;
1874 }
1875
1876 /*
1877 * If the ACK bit is off we drop the segment and return.
1878 */
1879 if ((tiflags & TH_ACK) == 0) {
1880 if (tp->t_flags & TF_ACKNOW)
1881 goto dropafterack;
1882 else
1883 goto drop;
1884 }
1885
1886 /*
1887 * Ack processing.
1888 */
1889 switch (tp->t_state) {
1890
1891 /*
1892 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
1893 * ESTABLISHED state and continue processing, otherwise
1894 * send an RST.
1895 */
1896 case TCPS_SYN_RECEIVED:
1897 if (SEQ_GT(tp->snd_una, th->th_ack) ||
1898 SEQ_GT(th->th_ack, tp->snd_max))
1899 goto dropwithreset;
1900 tcpstat.tcps_connects++;
1901 soisconnected(so);
1902 tcp_established(tp);
1903 /* Do window scaling? */
1904 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1905 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1906 tp->snd_scale = tp->requested_s_scale;
1907 tp->rcv_scale = tp->request_r_scale;
1908 }
1909 TCP_REASS_LOCK(tp);
1910 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1911 TCP_REASS_UNLOCK(tp);
1912 tp->snd_wl1 = th->th_seq - 1;
1913 /* fall into ... */
1914
1915 /*
1916 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1917 * ACKs. If the ack is in the range
1918 * tp->snd_una < th->th_ack <= tp->snd_max
1919 * then advance tp->snd_una to th->th_ack and drop
1920 * data from the retransmission queue. If this ACK reflects
1921 * more up to date window information we update our window information.
1922 */
1923 case TCPS_ESTABLISHED:
1924 case TCPS_FIN_WAIT_1:
1925 case TCPS_FIN_WAIT_2:
1926 case TCPS_CLOSE_WAIT:
1927 case TCPS_CLOSING:
1928 case TCPS_LAST_ACK:
1929 case TCPS_TIME_WAIT:
1930
1931 if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
1932 if (tlen == 0 && tiwin == tp->snd_wnd) {
1933 tcpstat.tcps_rcvdupack++;
1934 /*
1935 * If we have outstanding data (other than
1936 * a window probe), this is a completely
1937 * duplicate ack (ie, window info didn't
1938 * change), the ack is the biggest we've
1939 * seen and we've seen exactly our rexmt
1940 * threshhold of them, assume a packet
1941 * has been dropped and retransmit it.
1942 * Kludge snd_nxt & the congestion
1943 * window so we send only this one
1944 * packet.
1945 *
1946 * We know we're losing at the current
1947 * window size so do congestion avoidance
1948 * (set ssthresh to half the current window
1949 * and pull our congestion window back to
1950 * the new ssthresh).
1951 *
1952 * Dup acks mean that packets have left the
1953 * network (they're now cached at the receiver)
1954 * so bump cwnd by the amount in the receiver
1955 * to keep a constant cwnd packets in the
1956 * network.
1957 */
1958 if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
1959 th->th_ack != tp->snd_una)
1960 tp->t_dupacks = 0;
1961 else if (++tp->t_dupacks == tcprexmtthresh) {
1962 tcp_seq onxt = tp->snd_nxt;
1963 u_int win =
1964 min(tp->snd_wnd, tp->snd_cwnd) /
1965 2 / tp->t_segsz;
1966 if (tcp_do_newreno && SEQ_LT(th->th_ack,
1967 tp->snd_recover)) {
1968 /*
1969 * False fast retransmit after
1970 * timeout. Do not cut window.
1971 */
1972 tp->snd_cwnd += tp->t_segsz;
1973 tp->t_dupacks = 0;
1974 (void) tcp_output(tp);
1975 goto drop;
1976 }
1977
1978 if (win < 2)
1979 win = 2;
1980 tp->snd_ssthresh = win * tp->t_segsz;
1981 tp->snd_recover = tp->snd_max;
1982 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1983 tp->t_rtttime = 0;
1984 tp->snd_nxt = th->th_ack;
1985 tp->snd_cwnd = tp->t_segsz;
1986 (void) tcp_output(tp);
1987 tp->snd_cwnd = tp->snd_ssthresh +
1988 tp->t_segsz * tp->t_dupacks;
1989 if (SEQ_GT(onxt, tp->snd_nxt))
1990 tp->snd_nxt = onxt;
1991 goto drop;
1992 } else if (tp->t_dupacks > tcprexmtthresh) {
1993 tp->snd_cwnd += tp->t_segsz;
1994 (void) tcp_output(tp);
1995 goto drop;
1996 }
1997 } else
1998 tp->t_dupacks = 0;
1999 break;
2000 }
2001 /*
2002 * If the congestion window was inflated to account
2003 * for the other side's cached packets, retract it.
2004 */
2005 if (tcp_do_newreno == 0) {
2006 if (tp->t_dupacks >= tcprexmtthresh &&
2007 tp->snd_cwnd > tp->snd_ssthresh)
2008 tp->snd_cwnd = tp->snd_ssthresh;
2009 tp->t_dupacks = 0;
2010 } else if (tp->t_dupacks >= tcprexmtthresh &&
2011 tcp_newreno(tp, th) == 0) {
2012 tp->snd_cwnd = tp->snd_ssthresh;
2013 /*
2014 * Window inflation should have left us with approx.
2015 * snd_ssthresh outstanding data. But in case we
2016 * would be inclined to send a burst, better to do
2017 * it via the slow start mechanism.
2018 */
2019 if (SEQ_SUB(tp->snd_max, th->th_ack) < tp->snd_ssthresh)
2020 tp->snd_cwnd = SEQ_SUB(tp->snd_max, th->th_ack)
2021 + tp->t_segsz;
2022 tp->t_dupacks = 0;
2023 }
2024 if (SEQ_GT(th->th_ack, tp->snd_max)) {
2025 tcpstat.tcps_rcvacktoomuch++;
2026 goto dropafterack;
2027 }
2028 acked = th->th_ack - tp->snd_una;
2029 tcpstat.tcps_rcvackpack++;
2030 tcpstat.tcps_rcvackbyte += acked;
2031
2032 /*
2033 * If we have a timestamp reply, update smoothed
2034 * round trip time. If no timestamp is present but
2035 * transmit timer is running and timed sequence
2036 * number was acked, update smoothed round trip time.
2037 * Since we now have an rtt measurement, cancel the
2038 * timer backoff (cf., Phil Karn's retransmit alg.).
2039 * Recompute the initial retransmit timer.
2040 */
2041 if (opti.ts_present && opti.ts_ecr)
2042 tcp_xmit_timer(tp, TCP_TIMESTAMP(tp) - opti.ts_ecr + 1);
2043 else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2044 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2045
2046 /*
2047 * If all outstanding data is acked, stop retransmit
2048 * timer and remember to restart (more output or persist).
2049 * If there is more data to be acked, restart retransmit
2050 * timer, using current (possibly backed-off) value.
2051 */
2052 if (th->th_ack == tp->snd_max) {
2053 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2054 needoutput = 1;
2055 } else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
2056 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
2057 /*
2058 * When new data is acked, open the congestion window.
2059 * If the window gives us less than ssthresh packets
2060 * in flight, open exponentially (segsz per packet).
2061 * Otherwise open linearly: segsz per window
2062 * (segsz^2 / cwnd per packet), plus a constant
2063 * fraction of a packet (segsz/8) to help larger windows
2064 * open quickly enough.
2065 */
2066 {
2067 u_int cw = tp->snd_cwnd;
2068 u_int incr = tp->t_segsz;
2069
2070 if (cw > tp->snd_ssthresh)
2071 incr = incr * incr / cw;
2072 if (tcp_do_newreno == 0 || SEQ_GEQ(th->th_ack, tp->snd_recover))
2073 tp->snd_cwnd = min(cw + incr,
2074 TCP_MAXWIN << tp->snd_scale);
2075 }
2076 ND6_HINT(tp);
2077 if (acked > so->so_snd.sb_cc) {
2078 tp->snd_wnd -= so->so_snd.sb_cc;
2079 sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
2080 ourfinisacked = 1;
2081 } else {
2082 int slen;
2083
2084 slen = tp->t_lastm->m_len;
2085 sbdrop(&so->so_snd, acked);
2086 tp->snd_wnd -= acked;
2087 if (so->so_snd.sb_cc != 0) {
2088 tp->t_lastoff -= acked;
2089 if (tp->t_lastm->m_len != slen)
2090 tp->t_inoff -=
2091 (slen - tp->t_lastm->m_len);
2092 }
2093 ourfinisacked = 0;
2094 }
2095 sowwakeup(so);
2096 /*
2097 * We want snd_recover to track snd_una to
2098 * avoid sequence wraparound problems for
2099 * very large transfers.
2100 */
2101 tp->snd_una = tp->snd_recover = th->th_ack;
2102 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2103 tp->snd_nxt = tp->snd_una;
2104
2105 switch (tp->t_state) {
2106
2107 /*
2108 * In FIN_WAIT_1 STATE in addition to the processing
2109 * for the ESTABLISHED state if our FIN is now acknowledged
2110 * then enter FIN_WAIT_2.
2111 */
2112 case TCPS_FIN_WAIT_1:
2113 if (ourfinisacked) {
2114 /*
2115 * If we can't receive any more
2116 * data, then closing user can proceed.
2117 * Starting the timer is contrary to the
2118 * specification, but if we don't get a FIN
2119 * we'll hang forever.
2120 */
2121 if (so->so_state & SS_CANTRCVMORE) {
2122 soisdisconnected(so);
2123 if (tcp_maxidle > 0)
2124 TCP_TIMER_ARM(tp, TCPT_2MSL,
2125 tcp_maxidle);
2126 }
2127 tp->t_state = TCPS_FIN_WAIT_2;
2128 }
2129 break;
2130
2131 /*
2132 * In CLOSING STATE in addition to the processing for
2133 * the ESTABLISHED state if the ACK acknowledges our FIN
2134 * then enter the TIME-WAIT state, otherwise ignore
2135 * the segment.
2136 */
2137 case TCPS_CLOSING:
2138 if (ourfinisacked) {
2139 tp->t_state = TCPS_TIME_WAIT;
2140 tcp_canceltimers(tp);
2141 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2142 soisdisconnected(so);
2143 }
2144 break;
2145
2146 /*
2147 * In LAST_ACK, we may still be waiting for data to drain
2148 * and/or to be acked, as well as for the ack of our FIN.
2149 * If our FIN is now acknowledged, delete the TCB,
2150 * enter the closed state and return.
2151 */
2152 case TCPS_LAST_ACK:
2153 if (ourfinisacked) {
2154 tp = tcp_close(tp);
2155 goto drop;
2156 }
2157 break;
2158
2159 /*
2160 * In TIME_WAIT state the only thing that should arrive
2161 * is a retransmission of the remote FIN. Acknowledge
2162 * it and restart the finack timer.
2163 */
2164 case TCPS_TIME_WAIT:
2165 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2166 goto dropafterack;
2167 }
2168 }
2169
2170 step6:
2171 /*
2172 * Update window information.
2173 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2174 */
2175 if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2176 (tp->snd_wl1 == th->th_seq && SEQ_LT(tp->snd_wl2, th->th_ack)) ||
2177 (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))) {
2178 /* keep track of pure window updates */
2179 if (tlen == 0 &&
2180 tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2181 tcpstat.tcps_rcvwinupd++;
2182 tp->snd_wnd = tiwin;
2183 tp->snd_wl1 = th->th_seq;
2184 tp->snd_wl2 = th->th_ack;
2185 if (tp->snd_wnd > tp->max_sndwnd)
2186 tp->max_sndwnd = tp->snd_wnd;
2187 needoutput = 1;
2188 }
2189
2190 /*
2191 * Process segments with URG.
2192 */
2193 if ((tiflags & TH_URG) && th->th_urp &&
2194 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2195 /*
2196 * This is a kludge, but if we receive and accept
2197 * random urgent pointers, we'll crash in
2198 * soreceive. It's hard to imagine someone
2199 * actually wanting to send this much urgent data.
2200 */
2201 if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2202 th->th_urp = 0; /* XXX */
2203 tiflags &= ~TH_URG; /* XXX */
2204 goto dodata; /* XXX */
2205 }
2206 /*
2207 * If this segment advances the known urgent pointer,
2208 * then mark the data stream. This should not happen
2209 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2210 * a FIN has been received from the remote side.
2211 * In these states we ignore the URG.
2212 *
2213 * According to RFC961 (Assigned Protocols),
2214 * the urgent pointer points to the last octet
2215 * of urgent data. We continue, however,
2216 * to consider it to indicate the first octet
2217 * of data past the urgent section as the original
2218 * spec states (in one of two places).
2219 */
2220 if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2221 tp->rcv_up = th->th_seq + th->th_urp;
2222 so->so_oobmark = so->so_rcv.sb_cc +
2223 (tp->rcv_up - tp->rcv_nxt) - 1;
2224 if (so->so_oobmark == 0)
2225 so->so_state |= SS_RCVATMARK;
2226 sohasoutofband(so);
2227 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2228 }
2229 /*
2230 * Remove out of band data so doesn't get presented to user.
2231 * This can happen independent of advancing the URG pointer,
2232 * but if two URG's are pending at once, some out-of-band
2233 * data may creep in... ick.
2234 */
2235 if (th->th_urp <= (u_int16_t) tlen
2236 #ifdef SO_OOBINLINE
2237 && (so->so_options & SO_OOBINLINE) == 0
2238 #endif
2239 )
2240 tcp_pulloutofband(so, th, m, hdroptlen);
2241 } else
2242 /*
2243 * If no out of band data is expected,
2244 * pull receive urgent pointer along
2245 * with the receive window.
2246 */
2247 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2248 tp->rcv_up = tp->rcv_nxt;
2249 dodata: /* XXX */
2250
2251 /*
2252 * Process the segment text, merging it into the TCP sequencing queue,
2253 * and arranging for acknowledgement of receipt if necessary.
2254 * This process logically involves adjusting tp->rcv_wnd as data
2255 * is presented to the user (this happens in tcp_usrreq.c,
2256 * case PRU_RCVD). If a FIN has already been received on this
2257 * connection then we just ignore the text.
2258 */
2259 if ((tlen || (tiflags & TH_FIN)) &&
2260 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2261 /*
2262 * Insert segment ti into reassembly queue of tcp with
2263 * control block tp. Return TH_FIN if reassembly now includes
2264 * a segment with FIN. The macro form does the common case
2265 * inline (segment is the next to be received on an
2266 * established connection, and the queue is empty),
2267 * avoiding linkage into and removal from the queue and
2268 * repetition of various conversions.
2269 * Set DELACK for segments received in order, but ack
2270 * immediately when segments are out of order
2271 * (so fast retransmit can work).
2272 */
2273 /* NOTE: this was TCP_REASS() macro, but used only once */
2274 TCP_REASS_LOCK(tp);
2275 if (th->th_seq == tp->rcv_nxt &&
2276 TAILQ_FIRST(&tp->segq) == NULL &&
2277 tp->t_state == TCPS_ESTABLISHED) {
2278 TCP_SETUP_ACK(tp, th);
2279 tp->rcv_nxt += tlen;
2280 tiflags = th->th_flags & TH_FIN;
2281 tcpstat.tcps_rcvpack++;
2282 tcpstat.tcps_rcvbyte += tlen;
2283 ND6_HINT(tp);
2284 if (so->so_state & SS_CANTRCVMORE)
2285 m_freem(m);
2286 else {
2287 m_adj(m, hdroptlen);
2288 sbappendstream(&(so)->so_rcv, m);
2289 }
2290 sorwakeup(so);
2291 } else {
2292 m_adj(m, hdroptlen);
2293 tiflags = tcp_reass(tp, th, m, &tlen);
2294 tp->t_flags |= TF_ACKNOW;
2295 }
2296 TCP_REASS_UNLOCK(tp);
2297
2298 /*
2299 * Note the amount of data that peer has sent into
2300 * our window, in order to estimate the sender's
2301 * buffer size.
2302 */
2303 len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2304 } else {
2305 m_freem(m);
2306 m = NULL;
2307 tiflags &= ~TH_FIN;
2308 }
2309
2310 /*
2311 * If FIN is received ACK the FIN and let the user know
2312 * that the connection is closing. Ignore a FIN received before
2313 * the connection is fully established.
2314 */
2315 if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2316 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2317 socantrcvmore(so);
2318 tp->t_flags |= TF_ACKNOW;
2319 tp->rcv_nxt++;
2320 }
2321 switch (tp->t_state) {
2322
2323 /*
2324 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2325 */
2326 case TCPS_ESTABLISHED:
2327 tp->t_state = TCPS_CLOSE_WAIT;
2328 break;
2329
2330 /*
2331 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2332 * enter the CLOSING state.
2333 */
2334 case TCPS_FIN_WAIT_1:
2335 tp->t_state = TCPS_CLOSING;
2336 break;
2337
2338 /*
2339 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2340 * starting the time-wait timer, turning off the other
2341 * standard timers.
2342 */
2343 case TCPS_FIN_WAIT_2:
2344 tp->t_state = TCPS_TIME_WAIT;
2345 tcp_canceltimers(tp);
2346 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2347 soisdisconnected(so);
2348 break;
2349
2350 /*
2351 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2352 */
2353 case TCPS_TIME_WAIT:
2354 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2355 break;
2356 }
2357 }
2358 #ifdef TCP_DEBUG
2359 if (so->so_options & SO_DEBUG)
2360 tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
2361 #endif
2362
2363 /*
2364 * Return any desired output.
2365 */
2366 if (needoutput || (tp->t_flags & TF_ACKNOW))
2367 (void) tcp_output(tp);
2368 if (tcp_saveti)
2369 m_freem(tcp_saveti);
2370 return;
2371
2372 badsyn:
2373 /*
2374 * Received a bad SYN. Increment counters and dropwithreset.
2375 */
2376 tcpstat.tcps_badsyn++;
2377 tp = NULL;
2378 goto dropwithreset;
2379
2380 dropafterack:
2381 /*
2382 * Generate an ACK dropping incoming segment if it occupies
2383 * sequence space, where the ACK reflects our state.
2384 */
2385 if (tiflags & TH_RST)
2386 goto drop;
2387 m_freem(m);
2388 tp->t_flags |= TF_ACKNOW;
2389 (void) tcp_output(tp);
2390 if (tcp_saveti)
2391 m_freem(tcp_saveti);
2392 return;
2393
2394 dropwithreset_ratelim:
2395 /*
2396 * We may want to rate-limit RSTs in certain situations,
2397 * particularly if we are sending an RST in response to
2398 * an attempt to connect to or otherwise communicate with
2399 * a port for which we have no socket.
2400 */
2401 if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
2402 tcp_rst_ppslim) == 0) {
2403 /* XXX stat */
2404 goto drop;
2405 }
2406 /* ...fall into dropwithreset... */
2407
2408 dropwithreset:
2409 /*
2410 * Generate a RST, dropping incoming segment.
2411 * Make ACK acceptable to originator of segment.
2412 */
2413 if (tiflags & TH_RST)
2414 goto drop;
2415
2416 switch (af) {
2417 #ifdef INET6
2418 case AF_INET6:
2419 /* For following calls to tcp_respond */
2420 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
2421 goto drop;
2422 break;
2423 #endif /* INET6 */
2424 case AF_INET:
2425 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
2426 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2427 goto drop;
2428 }
2429
2430 if (tiflags & TH_ACK)
2431 (void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
2432 else {
2433 if (tiflags & TH_SYN)
2434 tlen++;
2435 (void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
2436 TH_RST|TH_ACK);
2437 }
2438 if (tcp_saveti)
2439 m_freem(tcp_saveti);
2440 return;
2441
2442 badcsum:
2443 tcpstat.tcps_rcvbadsum++;
2444 drop:
2445 /*
2446 * Drop space held by incoming segment and return.
2447 */
2448 if (tp) {
2449 if (tp->t_inpcb)
2450 so = tp->t_inpcb->inp_socket;
2451 #ifdef INET6
2452 else if (tp->t_in6pcb)
2453 so = tp->t_in6pcb->in6p_socket;
2454 #endif
2455 else
2456 so = NULL;
2457 #ifdef TCP_DEBUG
2458 if (so && (so->so_options & SO_DEBUG) != 0)
2459 tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
2460 #endif
2461 }
2462 if (tcp_saveti)
2463 m_freem(tcp_saveti);
2464 m_freem(m);
2465 return;
2466 }
2467
2468 void
2469 tcp_dooptions(tp, cp, cnt, th, oi)
2470 struct tcpcb *tp;
2471 u_char *cp;
2472 int cnt;
2473 struct tcphdr *th;
2474 struct tcp_opt_info *oi;
2475 {
2476 u_int16_t mss;
2477 int opt, optlen;
2478
2479 for (; cnt > 0; cnt -= optlen, cp += optlen) {
2480 opt = cp[0];
2481 if (opt == TCPOPT_EOL)
2482 break;
2483 if (opt == TCPOPT_NOP)
2484 optlen = 1;
2485 else {
2486 if (cnt < 2)
2487 break;
2488 optlen = cp[1];
2489 if (optlen < 2 || optlen > cnt)
2490 break;
2491 }
2492 switch (opt) {
2493
2494 default:
2495 continue;
2496
2497 case TCPOPT_MAXSEG:
2498 if (optlen != TCPOLEN_MAXSEG)
2499 continue;
2500 if (!(th->th_flags & TH_SYN))
2501 continue;
2502 bcopy(cp + 2, &mss, sizeof(mss));
2503 oi->maxseg = ntohs(mss);
2504 break;
2505
2506 case TCPOPT_WINDOW:
2507 if (optlen != TCPOLEN_WINDOW)
2508 continue;
2509 if (!(th->th_flags & TH_SYN))
2510 continue;
2511 tp->t_flags |= TF_RCVD_SCALE;
2512 tp->requested_s_scale = cp[2];
2513 if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
2514 #if 0 /*XXX*/
2515 char *p;
2516
2517 if (ip)
2518 p = ntohl(ip->ip_src);
2519 #ifdef INET6
2520 else if (ip6)
2521 p = ip6_sprintf(&ip6->ip6_src);
2522 #endif
2523 else
2524 p = "(unknown)";
2525 log(LOG_ERR, "TCP: invalid wscale %d from %s, "
2526 "assuming %d\n",
2527 tp->requested_s_scale, p,
2528 TCP_MAX_WINSHIFT);
2529 #else
2530 log(LOG_ERR, "TCP: invalid wscale %d, "
2531 "assuming %d\n",
2532 tp->requested_s_scale,
2533 TCP_MAX_WINSHIFT);
2534 #endif
2535 tp->requested_s_scale = TCP_MAX_WINSHIFT;
2536 }
2537 break;
2538
2539 case TCPOPT_TIMESTAMP:
2540 if (optlen != TCPOLEN_TIMESTAMP)
2541 continue;
2542 oi->ts_present = 1;
2543 bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
2544 NTOHL(oi->ts_val);
2545 bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
2546 NTOHL(oi->ts_ecr);
2547
2548 /*
2549 * A timestamp received in a SYN makes
2550 * it ok to send timestamp requests and replies.
2551 */
2552 if (th->th_flags & TH_SYN) {
2553 tp->t_flags |= TF_RCVD_TSTMP;
2554 tp->ts_recent = oi->ts_val;
2555 tp->ts_recent_age = TCP_TIMESTAMP(tp);
2556 }
2557 break;
2558 case TCPOPT_SACK_PERMITTED:
2559 if (optlen != TCPOLEN_SACK_PERMITTED)
2560 continue;
2561 if (!(th->th_flags & TH_SYN))
2562 continue;
2563 tp->t_flags &= ~TF_CANT_TXSACK;
2564 break;
2565
2566 case TCPOPT_SACK:
2567 if (tp->t_flags & TF_IGNR_RXSACK)
2568 continue;
2569 if (optlen % 8 != 2 || optlen < 10)
2570 continue;
2571 cp += 2;
2572 optlen -= 2;
2573 for (; optlen > 0; cp -= 8, optlen -= 8) {
2574 tcp_seq lwe, rwe;
2575 bcopy((char *)cp, (char *) &lwe, sizeof(lwe));
2576 NTOHL(lwe);
2577 bcopy((char *)cp, (char *) &rwe, sizeof(rwe));
2578 NTOHL(rwe);
2579 /* tcp_mark_sacked(tp, lwe, rwe); */
2580 }
2581 break;
2582 }
2583 }
2584 }
2585
2586 /*
2587 * Pull out of band byte out of a segment so
2588 * it doesn't appear in the user's data queue.
2589 * It is still reflected in the segment length for
2590 * sequencing purposes.
2591 */
2592 void
2593 tcp_pulloutofband(so, th, m, off)
2594 struct socket *so;
2595 struct tcphdr *th;
2596 struct mbuf *m;
2597 int off;
2598 {
2599 int cnt = off + th->th_urp - 1;
2600
2601 while (cnt >= 0) {
2602 if (m->m_len > cnt) {
2603 char *cp = mtod(m, caddr_t) + cnt;
2604 struct tcpcb *tp = sototcpcb(so);
2605
2606 tp->t_iobc = *cp;
2607 tp->t_oobflags |= TCPOOB_HAVEDATA;
2608 bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
2609 m->m_len--;
2610 return;
2611 }
2612 cnt -= m->m_len;
2613 m = m->m_next;
2614 if (m == 0)
2615 break;
2616 }
2617 panic("tcp_pulloutofband");
2618 }
2619
2620 /*
2621 * Collect new round-trip time estimate
2622 * and update averages and current timeout.
2623 */
2624 void
2625 tcp_xmit_timer(tp, rtt)
2626 struct tcpcb *tp;
2627 uint32_t rtt;
2628 {
2629 int32_t delta;
2630
2631 tcpstat.tcps_rttupdated++;
2632 if (tp->t_srtt != 0) {
2633 /*
2634 * srtt is stored as fixed point with 3 bits after the
2635 * binary point (i.e., scaled by 8). The following magic
2636 * is equivalent to the smoothing algorithm in rfc793 with
2637 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2638 * point). Adjust rtt to origin 0.
2639 */
2640 delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
2641 if ((tp->t_srtt += delta) <= 0)
2642 tp->t_srtt = 1 << 2;
2643 /*
2644 * We accumulate a smoothed rtt variance (actually, a
2645 * smoothed mean difference), then set the retransmit
2646 * timer to smoothed rtt + 4 times the smoothed variance.
2647 * rttvar is stored as fixed point with 2 bits after the
2648 * binary point (scaled by 4). The following is
2649 * equivalent to rfc793 smoothing with an alpha of .75
2650 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces
2651 * rfc793's wired-in beta.
2652 */
2653 if (delta < 0)
2654 delta = -delta;
2655 delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
2656 if ((tp->t_rttvar += delta) <= 0)
2657 tp->t_rttvar = 1 << 2;
2658 } else {
2659 /*
2660 * No rtt measurement yet - use the unsmoothed rtt.
2661 * Set the variance to half the rtt (so our first
2662 * retransmit happens at 3*rtt).
2663 */
2664 tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
2665 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
2666 }
2667 tp->t_rtttime = 0;
2668 tp->t_rxtshift = 0;
2669
2670 /*
2671 * the retransmit should happen at rtt + 4 * rttvar.
2672 * Because of the way we do the smoothing, srtt and rttvar
2673 * will each average +1/2 tick of bias. When we compute
2674 * the retransmit timer, we want 1/2 tick of rounding and
2675 * 1 extra tick because of +-1/2 tick uncertainty in the
2676 * firing of the timer. The bias will give us exactly the
2677 * 1.5 tick we need. But, because the bias is
2678 * statistical, we have to test that we don't drop below
2679 * the minimum feasible timer (which is 2 ticks).
2680 */
2681 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
2682 max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
2683
2684 /*
2685 * We received an ack for a packet that wasn't retransmitted;
2686 * it is probably safe to discard any error indications we've
2687 * received recently. This isn't quite right, but close enough
2688 * for now (a route might have failed after we sent a segment,
2689 * and the return path might not be symmetrical).
2690 */
2691 tp->t_softerror = 0;
2692 }
2693
2694 /*
2695 * Checks for partial ack. If partial ack arrives, force the retransmission
2696 * of the next unacknowledged segment, do not clear tp->t_dupacks, and return
2697 * 1. By setting snd_nxt to th_ack, this forces retransmission timer to
2698 * be started again. If the ack advances at least to tp->snd_recover, return 0.
2699 */
2700 int
2701 tcp_newreno(tp, th)
2702 struct tcpcb *tp;
2703 struct tcphdr *th;
2704 {
2705 tcp_seq onxt = tp->snd_nxt;
2706 u_long ocwnd = tp->snd_cwnd;
2707
2708 if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2709 /*
2710 * snd_una has not yet been updated and the socket's send
2711 * buffer has not yet drained off the ACK'd data, so we
2712 * have to leave snd_una as it was to get the correct data
2713 * offset in tcp_output().
2714 */
2715 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2716 tp->t_rtttime = 0;
2717 tp->snd_nxt = th->th_ack;
2718 /*
2719 * Set snd_cwnd to one segment beyond ACK'd offset. snd_una
2720 * is not yet updated when we're called.
2721 */
2722 tp->snd_cwnd = tp->t_segsz + (th->th_ack - tp->snd_una);
2723 (void) tcp_output(tp);
2724 tp->snd_cwnd = ocwnd;
2725 if (SEQ_GT(onxt, tp->snd_nxt))
2726 tp->snd_nxt = onxt;
2727 /*
2728 * Partial window deflation. Relies on fact that tp->snd_una
2729 * not updated yet.
2730 */
2731 tp->snd_cwnd -= (th->th_ack - tp->snd_una - tp->t_segsz);
2732 return 1;
2733 }
2734 return 0;
2735 }
2736
2737
2738 /*
2739 * TCP compressed state engine. Currently used to hold compressed
2740 * state for SYN_RECEIVED.
2741 */
2742
2743 u_long syn_cache_count;
2744 u_int32_t syn_hash1, syn_hash2;
2745
2746 #define SYN_HASH(sa, sp, dp) \
2747 ((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
2748 ((u_int32_t)(sp)))^syn_hash2)))
2749 #ifndef INET6
2750 #define SYN_HASHALL(hash, src, dst) \
2751 do { \
2752 hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
2753 ((struct sockaddr_in *)(src))->sin_port, \
2754 ((struct sockaddr_in *)(dst))->sin_port); \
2755 } while (/*CONSTCOND*/ 0)
2756 #else
2757 #define SYN_HASH6(sa, sp, dp) \
2758 ((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
2759 (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
2760 & 0x7fffffff)
2761
2762 #define SYN_HASHALL(hash, src, dst) \
2763 do { \
2764 switch ((src)->sa_family) { \
2765 case AF_INET: \
2766 hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
2767 ((struct sockaddr_in *)(src))->sin_port, \
2768 ((struct sockaddr_in *)(dst))->sin_port); \
2769 break; \
2770 case AF_INET6: \
2771 hash = SYN_HASH6(&((struct sockaddr_in6 *)(src))->sin6_addr, \
2772 ((struct sockaddr_in6 *)(src))->sin6_port, \
2773 ((struct sockaddr_in6 *)(dst))->sin6_port); \
2774 break; \
2775 default: \
2776 hash = 0; \
2777 } \
2778 } while (/*CONSTCOND*/0)
2779 #endif /* INET6 */
2780
2781 #define SYN_CACHE_RM(sc) \
2782 do { \
2783 TAILQ_REMOVE(&tcp_syn_cache[(sc)->sc_bucketidx].sch_bucket, \
2784 (sc), sc_bucketq); \
2785 (sc)->sc_tp = NULL; \
2786 LIST_REMOVE((sc), sc_tpq); \
2787 tcp_syn_cache[(sc)->sc_bucketidx].sch_length--; \
2788 callout_stop(&(sc)->sc_timer); \
2789 syn_cache_count--; \
2790 } while (/*CONSTCOND*/0)
2791
2792 #define SYN_CACHE_PUT(sc) \
2793 do { \
2794 if ((sc)->sc_ipopts) \
2795 (void) m_free((sc)->sc_ipopts); \
2796 if ((sc)->sc_route4.ro_rt != NULL) \
2797 RTFREE((sc)->sc_route4.ro_rt); \
2798 if (callout_invoking(&(sc)->sc_timer)) \
2799 (sc)->sc_flags |= SCF_DEAD; \
2800 else \
2801 pool_put(&syn_cache_pool, (sc)); \
2802 } while (/*CONSTCOND*/0)
2803
2804 struct pool syn_cache_pool;
2805
2806 /*
2807 * We don't estimate RTT with SYNs, so each packet starts with the default
2808 * RTT and each timer step has a fixed timeout value.
2809 */
2810 #define SYN_CACHE_TIMER_ARM(sc) \
2811 do { \
2812 TCPT_RANGESET((sc)->sc_rxtcur, \
2813 TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN, \
2814 TCPTV_REXMTMAX); \
2815 callout_reset(&(sc)->sc_timer, \
2816 (sc)->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, (sc)); \
2817 } while (/*CONSTCOND*/0)
2818
2819 #define SYN_CACHE_TIMESTAMP(sc) (tcp_now - (sc)->sc_timebase)
2820
2821 void
2822 syn_cache_init()
2823 {
2824 int i;
2825
2826 /* Initialize the hash buckets. */
2827 for (i = 0; i < tcp_syn_cache_size; i++)
2828 TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
2829
2830 /* Initialize the syn cache pool. */
2831 pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
2832 "synpl", NULL);
2833 }
2834
2835 void
2836 syn_cache_insert(sc, tp)
2837 struct syn_cache *sc;
2838 struct tcpcb *tp;
2839 {
2840 struct syn_cache_head *scp;
2841 struct syn_cache *sc2;
2842 int s;
2843
2844 /*
2845 * If there are no entries in the hash table, reinitialize
2846 * the hash secrets.
2847 */
2848 if (syn_cache_count == 0) {
2849 struct timeval tv;
2850 microtime(&tv);
2851 syn_hash1 = arc4random() ^ (u_long)≻
2852 syn_hash2 = arc4random() ^ tv.tv_usec;
2853 }
2854
2855 SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
2856 sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
2857 scp = &tcp_syn_cache[sc->sc_bucketidx];
2858
2859 /*
2860 * Make sure that we don't overflow the per-bucket
2861 * limit or the total cache size limit.
2862 */
2863 s = splsoftnet();
2864 if (scp->sch_length >= tcp_syn_bucket_limit) {
2865 tcpstat.tcps_sc_bucketoverflow++;
2866 /*
2867 * The bucket is full. Toss the oldest element in the
2868 * bucket. This will be the first entry in the bucket.
2869 */
2870 sc2 = TAILQ_FIRST(&scp->sch_bucket);
2871 #ifdef DIAGNOSTIC
2872 /*
2873 * This should never happen; we should always find an
2874 * entry in our bucket.
2875 */
2876 if (sc2 == NULL)
2877 panic("syn_cache_insert: bucketoverflow: impossible");
2878 #endif
2879 SYN_CACHE_RM(sc2);
2880 SYN_CACHE_PUT(sc2);
2881 } else if (syn_cache_count >= tcp_syn_cache_limit) {
2882 struct syn_cache_head *scp2, *sce;
2883
2884 tcpstat.tcps_sc_overflowed++;
2885 /*
2886 * The cache is full. Toss the oldest entry in the
2887 * first non-empty bucket we can find.
2888 *
2889 * XXX We would really like to toss the oldest
2890 * entry in the cache, but we hope that this
2891 * condition doesn't happen very often.
2892 */
2893 scp2 = scp;
2894 if (TAILQ_EMPTY(&scp2->sch_bucket)) {
2895 sce = &tcp_syn_cache[tcp_syn_cache_size];
2896 for (++scp2; scp2 != scp; scp2++) {
2897 if (scp2 >= sce)
2898 scp2 = &tcp_syn_cache[0];
2899 if (! TAILQ_EMPTY(&scp2->sch_bucket))
2900 break;
2901 }
2902 #ifdef DIAGNOSTIC
2903 /*
2904 * This should never happen; we should always find a
2905 * non-empty bucket.
2906 */
2907 if (scp2 == scp)
2908 panic("syn_cache_insert: cacheoverflow: "
2909 "impossible");
2910 #endif
2911 }
2912 sc2 = TAILQ_FIRST(&scp2->sch_bucket);
2913 SYN_CACHE_RM(sc2);
2914 SYN_CACHE_PUT(sc2);
2915 }
2916
2917 /*
2918 * Initialize the entry's timer.
2919 */
2920 sc->sc_rxttot = 0;
2921 sc->sc_rxtshift = 0;
2922 SYN_CACHE_TIMER_ARM(sc);
2923
2924 /* Link it from tcpcb entry */
2925 LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
2926
2927 /* Put it into the bucket. */
2928 TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
2929 scp->sch_length++;
2930 syn_cache_count++;
2931
2932 tcpstat.tcps_sc_added++;
2933 splx(s);
2934 }
2935
2936 /*
2937 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
2938 * If we have retransmitted an entry the maximum number of times, expire
2939 * that entry.
2940 */
2941 void
2942 syn_cache_timer(void *arg)
2943 {
2944 struct syn_cache *sc = arg;
2945 int s;
2946
2947 s = splsoftnet();
2948 callout_ack(&sc->sc_timer);
2949
2950 if (__predict_false(sc->sc_flags & SCF_DEAD)) {
2951 tcpstat.tcps_sc_delayed_free++;
2952 pool_put(&syn_cache_pool, sc);
2953 splx(s);
2954 return;
2955 }
2956
2957 if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
2958 /* Drop it -- too many retransmissions. */
2959 goto dropit;
2960 }
2961
2962 /*
2963 * Compute the total amount of time this entry has
2964 * been on a queue. If this entry has been on longer
2965 * than the keep alive timer would allow, expire it.
2966 */
2967 sc->sc_rxttot += sc->sc_rxtcur;
2968 if (sc->sc_rxttot >= TCPTV_KEEP_INIT)
2969 goto dropit;
2970
2971 tcpstat.tcps_sc_retransmitted++;
2972 (void) syn_cache_respond(sc, NULL);
2973
2974 /* Advance the timer back-off. */
2975 sc->sc_rxtshift++;
2976 SYN_CACHE_TIMER_ARM(sc);
2977
2978 splx(s);
2979 return;
2980
2981 dropit:
2982 tcpstat.tcps_sc_timed_out++;
2983 SYN_CACHE_RM(sc);
2984 SYN_CACHE_PUT(sc);
2985 splx(s);
2986 }
2987
2988 /*
2989 * Remove syn cache created by the specified tcb entry,
2990 * because this does not make sense to keep them
2991 * (if there's no tcb entry, syn cache entry will never be used)
2992 */
2993 void
2994 syn_cache_cleanup(tp)
2995 struct tcpcb *tp;
2996 {
2997 struct syn_cache *sc, *nsc;
2998 int s;
2999
3000 s = splsoftnet();
3001
3002 for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
3003 nsc = LIST_NEXT(sc, sc_tpq);
3004
3005 #ifdef DIAGNOSTIC
3006 if (sc->sc_tp != tp)
3007 panic("invalid sc_tp in syn_cache_cleanup");
3008 #endif
3009 SYN_CACHE_RM(sc);
3010 SYN_CACHE_PUT(sc);
3011 }
3012 /* just for safety */
3013 LIST_INIT(&tp->t_sc);
3014
3015 splx(s);
3016 }
3017
3018 /*
3019 * Find an entry in the syn cache.
3020 */
3021 struct syn_cache *
3022 syn_cache_lookup(src, dst, headp)
3023 struct sockaddr *src;
3024 struct sockaddr *dst;
3025 struct syn_cache_head **headp;
3026 {
3027 struct syn_cache *sc;
3028 struct syn_cache_head *scp;
3029 u_int32_t hash;
3030 int s;
3031
3032 SYN_HASHALL(hash, src, dst);
3033
3034 scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
3035 *headp = scp;
3036 s = splsoftnet();
3037 for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
3038 sc = TAILQ_NEXT(sc, sc_bucketq)) {
3039 if (sc->sc_hash != hash)
3040 continue;
3041 if (!bcmp(&sc->sc_src, src, src->sa_len) &&
3042 !bcmp(&sc->sc_dst, dst, dst->sa_len)) {
3043 splx(s);
3044 return (sc);
3045 }
3046 }
3047 splx(s);
3048 return (NULL);
3049 }
3050
3051 /*
3052 * This function gets called when we receive an ACK for a
3053 * socket in the LISTEN state. We look up the connection
3054 * in the syn cache, and if its there, we pull it out of
3055 * the cache and turn it into a full-blown connection in
3056 * the SYN-RECEIVED state.
3057 *
3058 * The return values may not be immediately obvious, and their effects
3059 * can be subtle, so here they are:
3060 *
3061 * NULL SYN was not found in cache; caller should drop the
3062 * packet and send an RST.
3063 *
3064 * -1 We were unable to create the new connection, and are
3065 * aborting it. An ACK,RST is being sent to the peer
3066 * (unless we got screwey sequence numbners; see below),
3067 * because the 3-way handshake has been completed. Caller
3068 * should not free the mbuf, since we may be using it. If
3069 * we are not, we will free it.
3070 *
3071 * Otherwise, the return value is a pointer to the new socket
3072 * associated with the connection.
3073 */
3074 struct socket *
3075 syn_cache_get(src, dst, th, hlen, tlen, so, m)
3076 struct sockaddr *src;
3077 struct sockaddr *dst;
3078 struct tcphdr *th;
3079 unsigned int hlen, tlen;
3080 struct socket *so;
3081 struct mbuf *m;
3082 {
3083 struct syn_cache *sc;
3084 struct syn_cache_head *scp;
3085 struct inpcb *inp = NULL;
3086 #ifdef INET6
3087 struct in6pcb *in6p = NULL;
3088 #endif
3089 struct tcpcb *tp = 0;
3090 struct mbuf *am;
3091 int s;
3092 struct socket *oso;
3093
3094 s = splsoftnet();
3095 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3096 splx(s);
3097 return (NULL);
3098 }
3099
3100 /*
3101 * Verify the sequence and ack numbers. Try getting the correct
3102 * response again.
3103 */
3104 if ((th->th_ack != sc->sc_iss + 1) ||
3105 SEQ_LEQ(th->th_seq, sc->sc_irs) ||
3106 SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
3107 (void) syn_cache_respond(sc, m);
3108 splx(s);
3109 return ((struct socket *)(-1));
3110 }
3111
3112 /* Remove this cache entry */
3113 SYN_CACHE_RM(sc);
3114 splx(s);
3115
3116 /*
3117 * Ok, create the full blown connection, and set things up
3118 * as they would have been set up if we had created the
3119 * connection when the SYN arrived. If we can't create
3120 * the connection, abort it.
3121 */
3122 /*
3123 * inp still has the OLD in_pcb stuff, set the
3124 * v6-related flags on the new guy, too. This is
3125 * done particularly for the case where an AF_INET6
3126 * socket is bound only to a port, and a v4 connection
3127 * comes in on that port.
3128 * we also copy the flowinfo from the original pcb
3129 * to the new one.
3130 */
3131 oso = so;
3132 so = sonewconn(so, SS_ISCONNECTED);
3133 if (so == NULL)
3134 goto resetandabort;
3135
3136 switch (so->so_proto->pr_domain->dom_family) {
3137 #ifdef INET
3138 case AF_INET:
3139 inp = sotoinpcb(so);
3140 break;
3141 #endif
3142 #ifdef INET6
3143 case AF_INET6:
3144 in6p = sotoin6pcb(so);
3145 break;
3146 #endif
3147 }
3148 switch (src->sa_family) {
3149 #ifdef INET
3150 case AF_INET:
3151 if (inp) {
3152 struct in_ifaddr *ia;
3153 inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
3154 inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
3155 inp->inp_options = ip_srcroute();
3156 INADDR_TO_IA(inp->inp_laddr, ia);
3157 KASSERT(ia != NULL);
3158 KASSERT(inp->inp_ia == NULL);
3159 inp->inp_ia = ia;
3160 LIST_INSERT_HEAD(&ia->ia_inpcbs, inp, inp_ialink);
3161 IFAREF(&ia->ia_ifa);
3162 in_pcbstate(inp, INP_BOUND);
3163 if (inp->inp_options == NULL) {
3164 inp->inp_options = sc->sc_ipopts;
3165 sc->sc_ipopts = NULL;
3166 }
3167 }
3168 #ifdef INET6
3169 else if (in6p) {
3170 /* IPv4 packet to AF_INET6 socket */
3171 bzero(&in6p->in6p_laddr, sizeof(in6p->in6p_laddr));
3172 in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
3173 bcopy(&((struct sockaddr_in *)dst)->sin_addr,
3174 &in6p->in6p_laddr.s6_addr32[3],
3175 sizeof(((struct sockaddr_in *)dst)->sin_addr));
3176 in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
3177 in6totcpcb(in6p)->t_family = AF_INET;
3178 if (sotoin6pcb(oso)->in6p_flags & IN6P_IPV6_V6ONLY)
3179 in6p->in6p_flags |= IN6P_IPV6_V6ONLY;
3180 else
3181 in6p->in6p_flags &= ~IN6P_IPV6_V6ONLY;
3182 }
3183 #endif
3184 break;
3185 #endif
3186 #ifdef INET6
3187 case AF_INET6:
3188 if (in6p) {
3189 in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
3190 in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
3191 #if 0
3192 in6p->in6p_flowinfo = ip6->ip6_flow & IPV6_FLOWINFO_MASK;
3193 /*inp->inp_options = ip6_srcroute();*/ /* soon. */
3194 #endif
3195 }
3196 break;
3197 #endif
3198 }
3199 #ifdef INET6
3200 if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
3201 struct in6pcb *oin6p = sotoin6pcb(oso);
3202 /* inherit socket options from the listening socket */
3203 in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
3204 if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
3205 m_freem(in6p->in6p_options);
3206 in6p->in6p_options = 0;
3207 }
3208 ip6_savecontrol(in6p, &in6p->in6p_options,
3209 mtod(m, struct ip6_hdr *), m);
3210 }
3211 #endif
3212
3213 #ifdef IPSEC
3214 /*
3215 * we make a copy of policy, instead of sharing the policy,
3216 * for better behavior in terms of SA lookup and dead SA removal.
3217 */
3218 if (inp) {
3219 /* copy old policy into new socket's */
3220 if (ipsec_copy_pcbpolicy(sotoinpcb(oso)->inp_sp, inp->inp_sp))
3221 printf("tcp_input: could not copy policy\n");
3222 }
3223 #ifdef INET6
3224 else if (in6p) {
3225 /* copy old policy into new socket's */
3226 if (ipsec_copy_pcbpolicy(sotoin6pcb(oso)->in6p_sp,
3227 in6p->in6p_sp))
3228 printf("tcp_input: could not copy policy\n");
3229 }
3230 #endif
3231 #endif
3232
3233 /*
3234 * Give the new socket our cached route reference.
3235 */
3236 if (inp)
3237 inp->inp_route = sc->sc_route4; /* struct assignment */
3238 #ifdef INET6
3239 else
3240 in6p->in6p_route = sc->sc_route6;
3241 #endif
3242 sc->sc_route4.ro_rt = NULL;
3243
3244 am = m_get(M_DONTWAIT, MT_SONAME); /* XXX */
3245 if (am == NULL)
3246 goto resetandabort;
3247 MCLAIM(am, &tcp_mowner);
3248 am->m_len = src->sa_len;
3249 bcopy(src, mtod(am, caddr_t), src->sa_len);
3250 if (inp) {
3251 if (in_pcbconnect(inp, am)) {
3252 (void) m_free(am);
3253 goto resetandabort;
3254 }
3255 }
3256 #ifdef INET6
3257 else if (in6p) {
3258 if (src->sa_family == AF_INET) {
3259 /* IPv4 packet to AF_INET6 socket */
3260 struct sockaddr_in6 *sin6;
3261 sin6 = mtod(am, struct sockaddr_in6 *);
3262 am->m_len = sizeof(*sin6);
3263 bzero(sin6, sizeof(*sin6));
3264 sin6->sin6_family = AF_INET6;
3265 sin6->sin6_len = sizeof(*sin6);
3266 sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port;
3267 sin6->sin6_addr.s6_addr16[5] = htons(0xffff);
3268 bcopy(&((struct sockaddr_in *)src)->sin_addr,
3269 &sin6->sin6_addr.s6_addr32[3],
3270 sizeof(sin6->sin6_addr.s6_addr32[3]));
3271 }
3272 if (in6_pcbconnect(in6p, am)) {
3273 (void) m_free(am);
3274 goto resetandabort;
3275 }
3276 }
3277 #endif
3278 else {
3279 (void) m_free(am);
3280 goto resetandabort;
3281 }
3282 (void) m_free(am);
3283
3284 if (inp)
3285 tp = intotcpcb(inp);
3286 #ifdef INET6
3287 else if (in6p)
3288 tp = in6totcpcb(in6p);
3289 #endif
3290 else
3291 tp = NULL;
3292 tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
3293 if (sc->sc_request_r_scale != 15) {
3294 tp->requested_s_scale = sc->sc_requested_s_scale;
3295 tp->request_r_scale = sc->sc_request_r_scale;
3296 tp->snd_scale = sc->sc_requested_s_scale;
3297 tp->rcv_scale = sc->sc_request_r_scale;
3298 tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
3299 }
3300 if (sc->sc_flags & SCF_TIMESTAMP)
3301 tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
3302 tp->ts_timebase = sc->sc_timebase;
3303
3304 tp->t_template = tcp_template(tp);
3305 if (tp->t_template == 0) {
3306 tp = tcp_drop(tp, ENOBUFS); /* destroys socket */
3307 so = NULL;
3308 m_freem(m);
3309 goto abort;
3310 }
3311
3312 tp->iss = sc->sc_iss;
3313 tp->irs = sc->sc_irs;
3314 tcp_sendseqinit(tp);
3315 tcp_rcvseqinit(tp);
3316 tp->t_state = TCPS_SYN_RECEIVED;
3317 TCP_TIMER_ARM(tp, TCPT_KEEP, TCPTV_KEEP_INIT);
3318 tcpstat.tcps_accepts++;
3319
3320 /* Initialize tp->t_ourmss before we deal with the peer's! */
3321 tp->t_ourmss = sc->sc_ourmaxseg;
3322 tcp_mss_from_peer(tp, sc->sc_peermaxseg);
3323
3324 /*
3325 * Initialize the initial congestion window. If we
3326 * had to retransmit the SYN,ACK, we must initialize cwnd
3327 * to 1 segment (i.e. the Loss Window).
3328 */
3329 if (sc->sc_rxtshift)
3330 tp->snd_cwnd = tp->t_peermss;
3331 else {
3332 int ss = tcp_init_win;
3333 #ifdef INET
3334 if (inp != NULL && in_localaddr(inp->inp_faddr))
3335 ss = tcp_init_win_local;
3336 #endif
3337 #ifdef INET6
3338 if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
3339 ss = tcp_init_win_local;
3340 #endif
3341 tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
3342 }
3343
3344 tcp_rmx_rtt(tp);
3345 tp->snd_wl1 = sc->sc_irs;
3346 tp->rcv_up = sc->sc_irs + 1;
3347
3348 /*
3349 * This is what whould have happened in tcp_output() when
3350 * the SYN,ACK was sent.
3351 */
3352 tp->snd_up = tp->snd_una;
3353 tp->snd_max = tp->snd_nxt = tp->iss+1;
3354 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
3355 if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
3356 tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
3357 tp->last_ack_sent = tp->rcv_nxt;
3358
3359 tcpstat.tcps_sc_completed++;
3360 SYN_CACHE_PUT(sc);
3361 return (so);
3362
3363 resetandabort:
3364 (void) tcp_respond(NULL, m, m, th,
3365 th->th_seq + tlen, (tcp_seq)0, TH_RST|TH_ACK);
3366 abort:
3367 if (so != NULL)
3368 (void) soabort(so);
3369 SYN_CACHE_PUT(sc);
3370 tcpstat.tcps_sc_aborted++;
3371 return ((struct socket *)(-1));
3372 }
3373
3374 /*
3375 * This function is called when we get a RST for a
3376 * non-existent connection, so that we can see if the
3377 * connection is in the syn cache. If it is, zap it.
3378 */
3379
3380 void
3381 syn_cache_reset(src, dst, th)
3382 struct sockaddr *src;
3383 struct sockaddr *dst;
3384 struct tcphdr *th;
3385 {
3386 struct syn_cache *sc;
3387 struct syn_cache_head *scp;
3388 int s = splsoftnet();
3389
3390 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3391 splx(s);
3392 return;
3393 }
3394 if (SEQ_LT(th->th_seq, sc->sc_irs) ||
3395 SEQ_GT(th->th_seq, sc->sc_irs+1)) {
3396 splx(s);
3397 return;
3398 }
3399 SYN_CACHE_RM(sc);
3400 splx(s);
3401 tcpstat.tcps_sc_reset++;
3402 SYN_CACHE_PUT(sc);
3403 }
3404
3405 void
3406 syn_cache_unreach(src, dst, th)
3407 struct sockaddr *src;
3408 struct sockaddr *dst;
3409 struct tcphdr *th;
3410 {
3411 struct syn_cache *sc;
3412 struct syn_cache_head *scp;
3413 int s;
3414
3415 s = splsoftnet();
3416 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3417 splx(s);
3418 return;
3419 }
3420 /* If the sequence number != sc_iss, then it's a bogus ICMP msg */
3421 if (ntohl (th->th_seq) != sc->sc_iss) {
3422 splx(s);
3423 return;
3424 }
3425
3426 /*
3427 * If we've rertransmitted 3 times and this is our second error,
3428 * we remove the entry. Otherwise, we allow it to continue on.
3429 * This prevents us from incorrectly nuking an entry during a
3430 * spurious network outage.
3431 *
3432 * See tcp_notify().
3433 */
3434 if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
3435 sc->sc_flags |= SCF_UNREACH;
3436 splx(s);
3437 return;
3438 }
3439
3440 SYN_CACHE_RM(sc);
3441 splx(s);
3442 tcpstat.tcps_sc_unreach++;
3443 SYN_CACHE_PUT(sc);
3444 }
3445
3446 /*
3447 * Given a LISTEN socket and an inbound SYN request, add
3448 * this to the syn cache, and send back a segment:
3449 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
3450 * to the source.
3451 *
3452 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
3453 * Doing so would require that we hold onto the data and deliver it
3454 * to the application. However, if we are the target of a SYN-flood
3455 * DoS attack, an attacker could send data which would eventually
3456 * consume all available buffer space if it were ACKed. By not ACKing
3457 * the data, we avoid this DoS scenario.
3458 */
3459
3460 int
3461 syn_cache_add(src, dst, th, hlen, so, m, optp, optlen, oi)
3462 struct sockaddr *src;
3463 struct sockaddr *dst;
3464 struct tcphdr *th;
3465 unsigned int hlen;
3466 struct socket *so;
3467 struct mbuf *m;
3468 u_char *optp;
3469 int optlen;
3470 struct tcp_opt_info *oi;
3471 {
3472 struct tcpcb tb, *tp;
3473 long win;
3474 struct syn_cache *sc;
3475 struct syn_cache_head *scp;
3476 struct mbuf *ipopts;
3477
3478 tp = sototcpcb(so);
3479
3480 /*
3481 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
3482 *
3483 * Note this check is performed in tcp_input() very early on.
3484 */
3485
3486 /*
3487 * Initialize some local state.
3488 */
3489 win = sbspace(&so->so_rcv);
3490 if (win > TCP_MAXWIN)
3491 win = TCP_MAXWIN;
3492
3493 switch (src->sa_family) {
3494 #ifdef INET
3495 case AF_INET:
3496 /*
3497 * Remember the IP options, if any.
3498 */
3499 ipopts = ip_srcroute();
3500 break;
3501 #endif
3502 default:
3503 ipopts = NULL;
3504 }
3505
3506 if (optp) {
3507 tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
3508 tcp_dooptions(&tb, optp, optlen, th, oi);
3509 } else
3510 tb.t_flags = 0;
3511
3512 /*
3513 * See if we already have an entry for this connection.
3514 * If we do, resend the SYN,ACK. We do not count this
3515 * as a retransmission (XXX though maybe we should).
3516 */
3517 if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
3518 tcpstat.tcps_sc_dupesyn++;
3519 if (ipopts) {
3520 /*
3521 * If we were remembering a previous source route,
3522 * forget it and use the new one we've been given.
3523 */
3524 if (sc->sc_ipopts)
3525 (void) m_free(sc->sc_ipopts);
3526 sc->sc_ipopts = ipopts;
3527 }
3528 sc->sc_timestamp = tb.ts_recent;
3529 if (syn_cache_respond(sc, m) == 0) {
3530 tcpstat.tcps_sndacks++;
3531 tcpstat.tcps_sndtotal++;
3532 }
3533 return (1);
3534 }
3535
3536 sc = pool_get(&syn_cache_pool, PR_NOWAIT);
3537 if (sc == NULL) {
3538 if (ipopts)
3539 (void) m_free(ipopts);
3540 return (0);
3541 }
3542
3543 /*
3544 * Fill in the cache, and put the necessary IP and TCP
3545 * options into the reply.
3546 */
3547 bzero(sc, sizeof(struct syn_cache));
3548 callout_init(&sc->sc_timer);
3549 bcopy(src, &sc->sc_src, src->sa_len);
3550 bcopy(dst, &sc->sc_dst, dst->sa_len);
3551 sc->sc_flags = 0;
3552 sc->sc_ipopts = ipopts;
3553 sc->sc_irs = th->th_seq;
3554 switch (src->sa_family) {
3555 #ifdef INET
3556 case AF_INET:
3557 {
3558 struct sockaddr_in *srcin = (void *) src;
3559 struct sockaddr_in *dstin = (void *) dst;
3560
3561 sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
3562 &srcin->sin_addr, dstin->sin_port,
3563 srcin->sin_port, sizeof(dstin->sin_addr), 0);
3564 break;
3565 }
3566 #endif /* INET */
3567 #ifdef INET6
3568 case AF_INET6:
3569 {
3570 struct sockaddr_in6 *srcin6 = (void *) src;
3571 struct sockaddr_in6 *dstin6 = (void *) dst;
3572
3573 sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
3574 &srcin6->sin6_addr, dstin6->sin6_port,
3575 srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
3576 break;
3577 }
3578 #endif /* INET6 */
3579 }
3580 sc->sc_peermaxseg = oi->maxseg;
3581 sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
3582 m->m_pkthdr.rcvif : NULL,
3583 sc->sc_src.sa.sa_family);
3584 sc->sc_win = win;
3585 sc->sc_timebase = tcp_now; /* see tcp_newtcpcb() */
3586 sc->sc_timestamp = tb.ts_recent;
3587 if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
3588 (TF_REQ_TSTMP|TF_RCVD_TSTMP))
3589 sc->sc_flags |= SCF_TIMESTAMP;
3590 if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
3591 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
3592 sc->sc_requested_s_scale = tb.requested_s_scale;
3593 sc->sc_request_r_scale = 0;
3594 while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
3595 TCP_MAXWIN << sc->sc_request_r_scale <
3596 so->so_rcv.sb_hiwat)
3597 sc->sc_request_r_scale++;
3598 } else {
3599 sc->sc_requested_s_scale = 15;
3600 sc->sc_request_r_scale = 15;
3601 }
3602 sc->sc_tp = tp;
3603 if (syn_cache_respond(sc, m) == 0) {
3604 syn_cache_insert(sc, tp);
3605 tcpstat.tcps_sndacks++;
3606 tcpstat.tcps_sndtotal++;
3607 } else {
3608 SYN_CACHE_PUT(sc);
3609 tcpstat.tcps_sc_dropped++;
3610 }
3611 return (1);
3612 }
3613
3614 int
3615 syn_cache_respond(sc, m)
3616 struct syn_cache *sc;
3617 struct mbuf *m;
3618 {
3619 struct route *ro;
3620 u_int8_t *optp;
3621 int optlen, error;
3622 u_int16_t tlen;
3623 struct ip *ip = NULL;
3624 #ifdef INET6
3625 struct ip6_hdr *ip6 = NULL;
3626 #endif
3627 struct tcphdr *th;
3628 u_int hlen;
3629
3630 switch (sc->sc_src.sa.sa_family) {
3631 case AF_INET:
3632 hlen = sizeof(struct ip);
3633 ro = &sc->sc_route4;
3634 break;
3635 #ifdef INET6
3636 case AF_INET6:
3637 hlen = sizeof(struct ip6_hdr);
3638 ro = (struct route *)&sc->sc_route6;
3639 break;
3640 #endif
3641 default:
3642 if (m)
3643 m_freem(m);
3644 return EAFNOSUPPORT;
3645 }
3646
3647 /* Compute the size of the TCP options. */
3648 optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
3649 ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
3650
3651 tlen = hlen + sizeof(struct tcphdr) + optlen;
3652
3653 /*
3654 * Create the IP+TCP header from scratch.
3655 */
3656 if (m)
3657 m_freem(m);
3658 #ifdef DIAGNOSTIC
3659 if (max_linkhdr + tlen > MCLBYTES)
3660 return (ENOBUFS);
3661 #endif
3662 MGETHDR(m, M_DONTWAIT, MT_DATA);
3663 if (m && tlen > MHLEN) {
3664 MCLGET(m, M_DONTWAIT);
3665 if ((m->m_flags & M_EXT) == 0) {
3666 m_freem(m);
3667 m = NULL;
3668 }
3669 }
3670 if (m == NULL)
3671 return (ENOBUFS);
3672 MCLAIM(m, &tcp_tx_mowner);
3673
3674 /* Fixup the mbuf. */
3675 m->m_data += max_linkhdr;
3676 m->m_len = m->m_pkthdr.len = tlen;
3677 #ifdef IPSEC
3678 if (sc->sc_tp) {
3679 struct tcpcb *tp;
3680 struct socket *so;
3681
3682 tp = sc->sc_tp;
3683 if (tp->t_inpcb)
3684 so = tp->t_inpcb->inp_socket;
3685 #ifdef INET6
3686 else if (tp->t_in6pcb)
3687 so = tp->t_in6pcb->in6p_socket;
3688 #endif
3689 else
3690 so = NULL;
3691 /* use IPsec policy on listening socket, on SYN ACK */
3692 if (ipsec_setsocket(m, so) != 0) {
3693 m_freem(m);
3694 return ENOBUFS;
3695 }
3696 }
3697 #endif
3698 m->m_pkthdr.rcvif = NULL;
3699 memset(mtod(m, u_char *), 0, tlen);
3700
3701 switch (sc->sc_src.sa.sa_family) {
3702 case AF_INET:
3703 ip = mtod(m, struct ip *);
3704 ip->ip_dst = sc->sc_src.sin.sin_addr;
3705 ip->ip_src = sc->sc_dst.sin.sin_addr;
3706 ip->ip_p = IPPROTO_TCP;
3707 th = (struct tcphdr *)(ip + 1);
3708 th->th_dport = sc->sc_src.sin.sin_port;
3709 th->th_sport = sc->sc_dst.sin.sin_port;
3710 break;
3711 #ifdef INET6
3712 case AF_INET6:
3713 ip6 = mtod(m, struct ip6_hdr *);
3714 ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
3715 ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
3716 ip6->ip6_nxt = IPPROTO_TCP;
3717 /* ip6_plen will be updated in ip6_output() */
3718 th = (struct tcphdr *)(ip6 + 1);
3719 th->th_dport = sc->sc_src.sin6.sin6_port;
3720 th->th_sport = sc->sc_dst.sin6.sin6_port;
3721 break;
3722 #endif
3723 default:
3724 th = NULL;
3725 }
3726
3727 th->th_seq = htonl(sc->sc_iss);
3728 th->th_ack = htonl(sc->sc_irs + 1);
3729 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
3730 th->th_flags = TH_SYN|TH_ACK;
3731 th->th_win = htons(sc->sc_win);
3732 /* th_sum already 0 */
3733 /* th_urp already 0 */
3734
3735 /* Tack on the TCP options. */
3736 optp = (u_int8_t *)(th + 1);
3737 *optp++ = TCPOPT_MAXSEG;
3738 *optp++ = 4;
3739 *optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
3740 *optp++ = sc->sc_ourmaxseg & 0xff;
3741
3742 if (sc->sc_request_r_scale != 15) {
3743 *((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
3744 TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
3745 sc->sc_request_r_scale);
3746 optp += 4;
3747 }
3748
3749 if (sc->sc_flags & SCF_TIMESTAMP) {
3750 u_int32_t *lp = (u_int32_t *)(optp);
3751 /* Form timestamp option as shown in appendix A of RFC 1323. */
3752 *lp++ = htonl(TCPOPT_TSTAMP_HDR);
3753 *lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
3754 *lp = htonl(sc->sc_timestamp);
3755 optp += TCPOLEN_TSTAMP_APPA;
3756 }
3757
3758 /* Compute the packet's checksum. */
3759 switch (sc->sc_src.sa.sa_family) {
3760 case AF_INET:
3761 ip->ip_len = htons(tlen - hlen);
3762 th->th_sum = 0;
3763 th->th_sum = in_cksum(m, tlen);
3764 break;
3765 #ifdef INET6
3766 case AF_INET6:
3767 ip6->ip6_plen = htons(tlen - hlen);
3768 th->th_sum = 0;
3769 th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
3770 break;
3771 #endif
3772 }
3773
3774 /*
3775 * Fill in some straggling IP bits. Note the stack expects
3776 * ip_len to be in host order, for convenience.
3777 */
3778 switch (sc->sc_src.sa.sa_family) {
3779 #ifdef INET
3780 case AF_INET:
3781 ip->ip_len = htons(tlen);
3782 ip->ip_ttl = ip_defttl;
3783 /* XXX tos? */
3784 break;
3785 #endif
3786 #ifdef INET6
3787 case AF_INET6:
3788 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
3789 ip6->ip6_vfc |= IPV6_VERSION;
3790 ip6->ip6_plen = htons(tlen - hlen);
3791 /* ip6_hlim will be initialized afterwards */
3792 /* XXX flowlabel? */
3793 break;
3794 #endif
3795 }
3796
3797 switch (sc->sc_src.sa.sa_family) {
3798 #ifdef INET
3799 case AF_INET:
3800 error = ip_output(m, sc->sc_ipopts, ro,
3801 (ip_mtudisc ? IP_MTUDISC : 0),
3802 NULL);
3803 break;
3804 #endif
3805 #ifdef INET6
3806 case AF_INET6:
3807 ip6->ip6_hlim = in6_selecthlim(NULL,
3808 ro->ro_rt ? ro->ro_rt->rt_ifp : NULL);
3809
3810 error = ip6_output(m, NULL /*XXX*/, (struct route_in6 *)ro,
3811 0, NULL, NULL);
3812 break;
3813 #endif
3814 default:
3815 error = EAFNOSUPPORT;
3816 break;
3817 }
3818 return (error);
3819 }
3820