tcp_input.c revision 1.178 1 /* $NetBSD: tcp_input.c,v 1.178 2003/08/22 21:53:05 itojun Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * @(#)COPYRIGHT 1.1 (NRL) 17 January 1995
34 *
35 * NRL grants permission for redistribution and use in source and binary
36 * forms, with or without modification, of the software and documentation
37 * created at NRL provided that the following conditions are met:
38 *
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgements:
46 * This product includes software developed by the University of
47 * California, Berkeley and its contributors.
48 * This product includes software developed at the Information
49 * Technology Division, US Naval Research Laboratory.
50 * 4. Neither the name of the NRL nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
55 * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
57 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NRL OR
58 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
59 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
61 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
62 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
63 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
64 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65 *
66 * The views and conclusions contained in the software and documentation
67 * are those of the authors and should not be interpreted as representing
68 * official policies, either expressed or implied, of the US Naval
69 * Research Laboratory (NRL).
70 */
71
72 /*-
73 * Copyright (c) 1997, 1998, 1999, 2001 The NetBSD Foundation, Inc.
74 * All rights reserved.
75 *
76 * This code is derived from software contributed to The NetBSD Foundation
77 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
78 * Facility, NASA Ames Research Center.
79 *
80 * Redistribution and use in source and binary forms, with or without
81 * modification, are permitted provided that the following conditions
82 * are met:
83 * 1. Redistributions of source code must retain the above copyright
84 * notice, this list of conditions and the following disclaimer.
85 * 2. Redistributions in binary form must reproduce the above copyright
86 * notice, this list of conditions and the following disclaimer in the
87 * documentation and/or other materials provided with the distribution.
88 * 3. All advertising materials mentioning features or use of this software
89 * must display the following acknowledgement:
90 * This product includes software developed by the NetBSD
91 * Foundation, Inc. and its contributors.
92 * 4. Neither the name of The NetBSD Foundation nor the names of its
93 * contributors may be used to endorse or promote products derived
94 * from this software without specific prior written permission.
95 *
96 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
97 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
98 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
99 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
100 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
101 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
102 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
103 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
104 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
105 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
106 * POSSIBILITY OF SUCH DAMAGE.
107 */
108
109 /*
110 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
111 * The Regents of the University of California. All rights reserved.
112 *
113 * Redistribution and use in source and binary forms, with or without
114 * modification, are permitted provided that the following conditions
115 * are met:
116 * 1. Redistributions of source code must retain the above copyright
117 * notice, this list of conditions and the following disclaimer.
118 * 2. Redistributions in binary form must reproduce the above copyright
119 * notice, this list of conditions and the following disclaimer in the
120 * documentation and/or other materials provided with the distribution.
121 * 3. Neither the name of the University nor the names of its contributors
122 * may be used to endorse or promote products derived from this software
123 * without specific prior written permission.
124 *
125 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
126 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
127 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
128 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
129 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
130 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
131 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
132 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
133 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
134 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
135 * SUCH DAMAGE.
136 *
137 * @(#)tcp_input.c 8.12 (Berkeley) 5/24/95
138 */
139
140 /*
141 * TODO list for SYN cache stuff:
142 *
143 * Find room for a "state" field, which is needed to keep a
144 * compressed state for TIME_WAIT TCBs. It's been noted already
145 * that this is fairly important for very high-volume web and
146 * mail servers, which use a large number of short-lived
147 * connections.
148 */
149
150 #include <sys/cdefs.h>
151 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.178 2003/08/22 21:53:05 itojun Exp $");
152
153 #include "opt_inet.h"
154 #include "opt_ipsec.h"
155 #include "opt_inet_csum.h"
156 #include "opt_tcp_debug.h"
157
158 #include <sys/param.h>
159 #include <sys/systm.h>
160 #include <sys/malloc.h>
161 #include <sys/mbuf.h>
162 #include <sys/protosw.h>
163 #include <sys/socket.h>
164 #include <sys/socketvar.h>
165 #include <sys/errno.h>
166 #include <sys/syslog.h>
167 #include <sys/pool.h>
168 #include <sys/domain.h>
169 #include <sys/kernel.h>
170
171 #include <net/if.h>
172 #include <net/route.h>
173 #include <net/if_types.h>
174
175 #include <netinet/in.h>
176 #include <netinet/in_systm.h>
177 #include <netinet/ip.h>
178 #include <netinet/in_pcb.h>
179 #include <netinet/in_var.h>
180 #include <netinet/ip_var.h>
181
182 #ifdef INET6
183 #ifndef INET
184 #include <netinet/in.h>
185 #endif
186 #include <netinet/ip6.h>
187 #include <netinet6/ip6_var.h>
188 #include <netinet6/in6_pcb.h>
189 #include <netinet6/ip6_var.h>
190 #include <netinet6/in6_var.h>
191 #include <netinet/icmp6.h>
192 #include <netinet6/nd6.h>
193 #endif
194
195 #ifndef INET6
196 /* always need ip6.h for IP6_EXTHDR_GET */
197 #include <netinet/ip6.h>
198 #endif
199
200 #include <netinet/tcp.h>
201 #include <netinet/tcp_fsm.h>
202 #include <netinet/tcp_seq.h>
203 #include <netinet/tcp_timer.h>
204 #include <netinet/tcp_var.h>
205 #include <netinet/tcpip.h>
206 #include <netinet/tcp_debug.h>
207
208 #include <machine/stdarg.h>
209
210 #ifdef IPSEC
211 #include <netinet6/ipsec.h>
212 #include <netkey/key.h>
213 #endif /*IPSEC*/
214 #ifdef INET6
215 #include "faith.h"
216 #if defined(NFAITH) && NFAITH > 0
217 #include <net/if_faith.h>
218 #endif
219 #endif /* IPSEC */
220
221 #ifdef FAST_IPSEC
222 #include <netipsec/ipsec.h>
223 #include <netipsec/key.h>
224 #endif /* FAST_IPSEC*/
225
226
227 int tcprexmtthresh = 3;
228 int tcp_log_refused;
229
230 static int tcp_rst_ppslim_count = 0;
231 static struct timeval tcp_rst_ppslim_last;
232
233 #define TCP_PAWS_IDLE (24 * 24 * 60 * 60 * PR_SLOWHZ)
234
235 /* for modulo comparisons of timestamps */
236 #define TSTMP_LT(a,b) ((int)((a)-(b)) < 0)
237 #define TSTMP_GEQ(a,b) ((int)((a)-(b)) >= 0)
238
239 /*
240 * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
241 */
242 #ifdef INET6
243 #define ND6_HINT(tp) \
244 do { \
245 if (tp && tp->t_in6pcb && tp->t_family == AF_INET6 \
246 && tp->t_in6pcb->in6p_route.ro_rt) { \
247 nd6_nud_hint(tp->t_in6pcb->in6p_route.ro_rt, NULL, 0); \
248 } \
249 } while (/*CONSTCOND*/ 0)
250 #else
251 #define ND6_HINT(tp)
252 #endif
253
254 /*
255 * Macro to compute ACK transmission behavior. Delay the ACK unless
256 * we have already delayed an ACK (must send an ACK every two segments).
257 * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
258 * option is enabled.
259 */
260 #define TCP_SETUP_ACK(tp, th) \
261 do { \
262 if ((tp)->t_flags & TF_DELACK || \
263 (tcp_ack_on_push && (th)->th_flags & TH_PUSH)) \
264 tp->t_flags |= TF_ACKNOW; \
265 else \
266 TCP_SET_DELACK(tp); \
267 } while (/*CONSTCOND*/ 0)
268
269 /*
270 * Convert TCP protocol fields to host order for easier processing.
271 */
272 #define TCP_FIELDS_TO_HOST(th) \
273 do { \
274 NTOHL((th)->th_seq); \
275 NTOHL((th)->th_ack); \
276 NTOHS((th)->th_win); \
277 NTOHS((th)->th_urp); \
278 } while (/*CONSTCOND*/ 0)
279
280 /*
281 * ... and reverse the above.
282 */
283 #define TCP_FIELDS_TO_NET(th) \
284 do { \
285 HTONL((th)->th_seq); \
286 HTONL((th)->th_ack); \
287 HTONS((th)->th_win); \
288 HTONS((th)->th_urp); \
289 } while (/*CONSTCOND*/ 0)
290
291 #ifdef TCP_CSUM_COUNTERS
292 #include <sys/device.h>
293
294 extern struct evcnt tcp_hwcsum_ok;
295 extern struct evcnt tcp_hwcsum_bad;
296 extern struct evcnt tcp_hwcsum_data;
297 extern struct evcnt tcp_swcsum;
298
299 #define TCP_CSUM_COUNTER_INCR(ev) (ev)->ev_count++
300
301 #else
302
303 #define TCP_CSUM_COUNTER_INCR(ev) /* nothing */
304
305 #endif /* TCP_CSUM_COUNTERS */
306
307 #ifdef TCP_REASS_COUNTERS
308 #include <sys/device.h>
309
310 extern struct evcnt tcp_reass_;
311 extern struct evcnt tcp_reass_empty;
312 extern struct evcnt tcp_reass_iteration[8];
313 extern struct evcnt tcp_reass_prependfirst;
314 extern struct evcnt tcp_reass_prepend;
315 extern struct evcnt tcp_reass_insert;
316 extern struct evcnt tcp_reass_inserttail;
317 extern struct evcnt tcp_reass_append;
318 extern struct evcnt tcp_reass_appendtail;
319 extern struct evcnt tcp_reass_overlaptail;
320 extern struct evcnt tcp_reass_overlapfront;
321 extern struct evcnt tcp_reass_segdup;
322 extern struct evcnt tcp_reass_fragdup;
323
324 #define TCP_REASS_COUNTER_INCR(ev) (ev)->ev_count++
325
326 #else
327
328 #define TCP_REASS_COUNTER_INCR(ev) /* nothing */
329
330 #endif /* TCP_REASS_COUNTERS */
331
332 #ifdef INET
333 static void tcp4_log_refused __P((const struct ip *, const struct tcphdr *));
334 #endif
335 #ifdef INET6
336 static void tcp6_log_refused
337 __P((const struct ip6_hdr *, const struct tcphdr *));
338 #endif
339
340 int
341 tcp_reass(tp, th, m, tlen)
342 struct tcpcb *tp;
343 struct tcphdr *th;
344 struct mbuf *m;
345 int *tlen;
346 {
347 struct ipqent *p, *q, *nq, *tiqe = NULL;
348 struct socket *so = NULL;
349 int pkt_flags;
350 tcp_seq pkt_seq;
351 unsigned pkt_len;
352 u_long rcvpartdupbyte = 0;
353 u_long rcvoobyte;
354 #ifdef TCP_REASS_COUNTERS
355 u_int count = 0;
356 #endif
357
358 if (tp->t_inpcb)
359 so = tp->t_inpcb->inp_socket;
360 #ifdef INET6
361 else if (tp->t_in6pcb)
362 so = tp->t_in6pcb->in6p_socket;
363 #endif
364
365 TCP_REASS_LOCK_CHECK(tp);
366
367 /*
368 * Call with th==0 after become established to
369 * force pre-ESTABLISHED data up to user socket.
370 */
371 if (th == 0)
372 goto present;
373
374 rcvoobyte = *tlen;
375 /*
376 * Copy these to local variables because the tcpiphdr
377 * gets munged while we are collapsing mbufs.
378 */
379 pkt_seq = th->th_seq;
380 pkt_len = *tlen;
381 pkt_flags = th->th_flags;
382
383 TCP_REASS_COUNTER_INCR(&tcp_reass_);
384
385 if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
386 /*
387 * When we miss a packet, the vast majority of time we get
388 * packets that follow it in order. So optimize for that.
389 */
390 if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
391 p->ipqe_len += pkt_len;
392 p->ipqe_flags |= pkt_flags;
393 m_cat(p->ipqe_m, m);
394 tiqe = p;
395 TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
396 TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
397 goto skip_replacement;
398 }
399 /*
400 * While we're here, if the pkt is completely beyond
401 * anything we have, just insert it at the tail.
402 */
403 if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
404 TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
405 goto insert_it;
406 }
407 }
408
409 q = TAILQ_FIRST(&tp->segq);
410
411 if (q != NULL) {
412 /*
413 * If this segment immediately precedes the first out-of-order
414 * block, simply slap the segment in front of it and (mostly)
415 * skip the complicated logic.
416 */
417 if (pkt_seq + pkt_len == q->ipqe_seq) {
418 q->ipqe_seq = pkt_seq;
419 q->ipqe_len += pkt_len;
420 q->ipqe_flags |= pkt_flags;
421 m_cat(m, q->ipqe_m);
422 q->ipqe_m = m;
423 tiqe = q;
424 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
425 TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
426 goto skip_replacement;
427 }
428 } else {
429 TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
430 }
431
432 /*
433 * Find a segment which begins after this one does.
434 */
435 for (p = NULL; q != NULL; q = nq) {
436 nq = TAILQ_NEXT(q, ipqe_q);
437 #ifdef TCP_REASS_COUNTERS
438 count++;
439 #endif
440 /*
441 * If the received segment is just right after this
442 * fragment, merge the two together and then check
443 * for further overlaps.
444 */
445 if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
446 #ifdef TCPREASS_DEBUG
447 printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
448 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
449 q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
450 #endif
451 pkt_len += q->ipqe_len;
452 pkt_flags |= q->ipqe_flags;
453 pkt_seq = q->ipqe_seq;
454 m_cat(q->ipqe_m, m);
455 m = q->ipqe_m;
456 TCP_REASS_COUNTER_INCR(&tcp_reass_append);
457 goto free_ipqe;
458 }
459 /*
460 * If the received segment is completely past this
461 * fragment, we need to go the next fragment.
462 */
463 if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
464 p = q;
465 continue;
466 }
467 /*
468 * If the fragment is past the received segment,
469 * it (or any following) can't be concatenated.
470 */
471 if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
472 TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
473 break;
474 }
475
476 /*
477 * We've received all the data in this segment before.
478 * mark it as a duplicate and return.
479 */
480 if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
481 SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
482 tcpstat.tcps_rcvduppack++;
483 tcpstat.tcps_rcvdupbyte += pkt_len;
484 m_freem(m);
485 if (tiqe != NULL)
486 pool_put(&ipqent_pool, tiqe);
487 TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
488 return (0);
489 }
490 /*
491 * Received segment completely overlaps this fragment
492 * so we drop the fragment (this keeps the temporal
493 * ordering of segments correct).
494 */
495 if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
496 SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
497 rcvpartdupbyte += q->ipqe_len;
498 m_freem(q->ipqe_m);
499 TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
500 goto free_ipqe;
501 }
502 /*
503 * RX'ed segment extends past the end of the
504 * fragment. Drop the overlapping bytes. Then
505 * merge the fragment and segment then treat as
506 * a longer received packet.
507 */
508 if (SEQ_LT(q->ipqe_seq, pkt_seq)
509 && SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
510 int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
511 #ifdef TCPREASS_DEBUG
512 printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
513 tp, overlap,
514 pkt_seq, pkt_seq + pkt_len, pkt_len);
515 #endif
516 m_adj(m, overlap);
517 rcvpartdupbyte += overlap;
518 m_cat(q->ipqe_m, m);
519 m = q->ipqe_m;
520 pkt_seq = q->ipqe_seq;
521 pkt_len += q->ipqe_len - overlap;
522 rcvoobyte -= overlap;
523 TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
524 goto free_ipqe;
525 }
526 /*
527 * RX'ed segment extends past the front of the
528 * fragment. Drop the overlapping bytes on the
529 * received packet. The packet will then be
530 * contatentated with this fragment a bit later.
531 */
532 if (SEQ_GT(q->ipqe_seq, pkt_seq)
533 && SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len)) {
534 int overlap = pkt_seq + pkt_len - q->ipqe_seq;
535 #ifdef TCPREASS_DEBUG
536 printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
537 tp, overlap,
538 pkt_seq, pkt_seq + pkt_len, pkt_len);
539 #endif
540 m_adj(m, -overlap);
541 pkt_len -= overlap;
542 rcvpartdupbyte += overlap;
543 TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
544 rcvoobyte -= overlap;
545 }
546 /*
547 * If the received segment immediates precedes this
548 * fragment then tack the fragment onto this segment
549 * and reinsert the data.
550 */
551 if (q->ipqe_seq == pkt_seq + pkt_len) {
552 #ifdef TCPREASS_DEBUG
553 printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
554 tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
555 pkt_seq, pkt_seq + pkt_len, pkt_len);
556 #endif
557 pkt_len += q->ipqe_len;
558 pkt_flags |= q->ipqe_flags;
559 m_cat(m, q->ipqe_m);
560 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
561 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
562 if (tiqe == NULL) {
563 tiqe = q;
564 } else {
565 pool_put(&ipqent_pool, q);
566 }
567 TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
568 break;
569 }
570 /*
571 * If the fragment is before the segment, remember it.
572 * When this loop is terminated, p will contain the
573 * pointer to fragment that is right before the received
574 * segment.
575 */
576 if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
577 p = q;
578
579 continue;
580
581 /*
582 * This is a common operation. It also will allow
583 * to save doing a malloc/free in most instances.
584 */
585 free_ipqe:
586 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
587 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
588 if (tiqe == NULL) {
589 tiqe = q;
590 } else {
591 pool_put(&ipqent_pool, q);
592 }
593 }
594
595 #ifdef TCP_REASS_COUNTERS
596 if (count > 7)
597 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
598 else if (count > 0)
599 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
600 #endif
601
602 insert_it:
603
604 /*
605 * Allocate a new queue entry since the received segment did not
606 * collapse onto any other out-of-order block; thus we are allocating
607 * a new block. If it had collapsed, tiqe would not be NULL and
608 * we would be reusing it.
609 * XXX If we can't, just drop the packet. XXX
610 */
611 if (tiqe == NULL) {
612 tiqe = pool_get(&ipqent_pool, PR_NOWAIT);
613 if (tiqe == NULL) {
614 tcpstat.tcps_rcvmemdrop++;
615 m_freem(m);
616 return (0);
617 }
618 }
619
620 /*
621 * Update the counters.
622 */
623 tcpstat.tcps_rcvoopack++;
624 tcpstat.tcps_rcvoobyte += rcvoobyte;
625 if (rcvpartdupbyte) {
626 tcpstat.tcps_rcvpartduppack++;
627 tcpstat.tcps_rcvpartdupbyte += rcvpartdupbyte;
628 }
629
630 /*
631 * Insert the new fragment queue entry into both queues.
632 */
633 tiqe->ipqe_m = m;
634 tiqe->ipqe_seq = pkt_seq;
635 tiqe->ipqe_len = pkt_len;
636 tiqe->ipqe_flags = pkt_flags;
637 if (p == NULL) {
638 TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
639 #ifdef TCPREASS_DEBUG
640 if (tiqe->ipqe_seq != tp->rcv_nxt)
641 printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
642 tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
643 #endif
644 } else {
645 TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
646 #ifdef TCPREASS_DEBUG
647 printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
648 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
649 p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
650 #endif
651 }
652
653 skip_replacement:
654
655 TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
656
657 present:
658 /*
659 * Present data to user, advancing rcv_nxt through
660 * completed sequence space.
661 */
662 if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
663 return (0);
664 q = TAILQ_FIRST(&tp->segq);
665 if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
666 return (0);
667 if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
668 return (0);
669
670 tp->rcv_nxt += q->ipqe_len;
671 pkt_flags = q->ipqe_flags & TH_FIN;
672 ND6_HINT(tp);
673
674 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
675 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
676 if (so->so_state & SS_CANTRCVMORE)
677 m_freem(q->ipqe_m);
678 else
679 sbappendstream(&so->so_rcv, q->ipqe_m);
680 pool_put(&ipqent_pool, q);
681 sorwakeup(so);
682 return (pkt_flags);
683 }
684
685 #ifdef INET6
686 int
687 tcp6_input(mp, offp, proto)
688 struct mbuf **mp;
689 int *offp, proto;
690 {
691 struct mbuf *m = *mp;
692
693 /*
694 * draft-itojun-ipv6-tcp-to-anycast
695 * better place to put this in?
696 */
697 if (m->m_flags & M_ANYCAST6) {
698 struct ip6_hdr *ip6;
699 if (m->m_len < sizeof(struct ip6_hdr)) {
700 if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
701 tcpstat.tcps_rcvshort++;
702 return IPPROTO_DONE;
703 }
704 }
705 ip6 = mtod(m, struct ip6_hdr *);
706 icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
707 (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
708 return IPPROTO_DONE;
709 }
710
711 tcp_input(m, *offp, proto);
712 return IPPROTO_DONE;
713 }
714 #endif
715
716 #ifdef INET
717 static void
718 tcp4_log_refused(ip, th)
719 const struct ip *ip;
720 const struct tcphdr *th;
721 {
722 char src[4*sizeof "123"];
723 char dst[4*sizeof "123"];
724
725 if (ip) {
726 strlcpy(src, inet_ntoa(ip->ip_src), sizeof(src));
727 strlcpy(dst, inet_ntoa(ip->ip_dst), sizeof(dst));
728 }
729 else {
730 strlcpy(src, "(unknown)", sizeof(src));
731 strlcpy(dst, "(unknown)", sizeof(dst));
732 }
733 log(LOG_INFO,
734 "Connection attempt to TCP %s:%d from %s:%d\n",
735 dst, ntohs(th->th_dport),
736 src, ntohs(th->th_sport));
737 }
738 #endif
739
740 #ifdef INET6
741 static void
742 tcp6_log_refused(ip6, th)
743 const struct ip6_hdr *ip6;
744 const struct tcphdr *th;
745 {
746 char src[INET6_ADDRSTRLEN];
747 char dst[INET6_ADDRSTRLEN];
748
749 if (ip6) {
750 strlcpy(src, ip6_sprintf(&ip6->ip6_src), sizeof(src));
751 strlcpy(dst, ip6_sprintf(&ip6->ip6_dst), sizeof(dst));
752 }
753 else {
754 strlcpy(src, "(unknown v6)", sizeof(src));
755 strlcpy(dst, "(unknown v6)", sizeof(dst));
756 }
757 log(LOG_INFO,
758 "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
759 dst, ntohs(th->th_dport),
760 src, ntohs(th->th_sport));
761 }
762 #endif
763
764 /*
765 * TCP input routine, follows pages 65-76 of the
766 * protocol specification dated September, 1981 very closely.
767 */
768 void
769 #if __STDC__
770 tcp_input(struct mbuf *m, ...)
771 #else
772 tcp_input(m, va_alist)
773 struct mbuf *m;
774 #endif
775 {
776 struct tcphdr *th;
777 struct ip *ip;
778 struct inpcb *inp;
779 #ifdef INET6
780 struct ip6_hdr *ip6;
781 struct in6pcb *in6p;
782 #endif
783 u_int8_t *optp = NULL;
784 int optlen = 0;
785 int len, tlen, toff, hdroptlen = 0;
786 struct tcpcb *tp = 0;
787 int tiflags;
788 struct socket *so = NULL;
789 int todrop, acked, ourfinisacked, needoutput = 0;
790 #ifdef TCP_DEBUG
791 short ostate = 0;
792 #endif
793 int iss = 0;
794 u_long tiwin;
795 struct tcp_opt_info opti;
796 int off, iphlen;
797 va_list ap;
798 int af; /* af on the wire */
799 struct mbuf *tcp_saveti = NULL;
800
801 MCLAIM(m, &tcp_rx_mowner);
802 va_start(ap, m);
803 toff = va_arg(ap, int);
804 (void)va_arg(ap, int); /* ignore value, advance ap */
805 va_end(ap);
806
807 tcpstat.tcps_rcvtotal++;
808
809 bzero(&opti, sizeof(opti));
810 opti.ts_present = 0;
811 opti.maxseg = 0;
812
813 /*
814 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
815 *
816 * TCP is, by definition, unicast, so we reject all
817 * multicast outright.
818 *
819 * Note, there are additional src/dst address checks in
820 * the AF-specific code below.
821 */
822 if (m->m_flags & (M_BCAST|M_MCAST)) {
823 /* XXX stat */
824 goto drop;
825 }
826 #ifdef INET6
827 if (m->m_flags & M_ANYCAST6) {
828 /* XXX stat */
829 goto drop;
830 }
831 #endif
832
833 /*
834 * Get IP and TCP header together in first mbuf.
835 * Note: IP leaves IP header in first mbuf.
836 */
837 ip = mtod(m, struct ip *);
838 #ifdef INET6
839 ip6 = NULL;
840 #endif
841 switch (ip->ip_v) {
842 #ifdef INET
843 case 4:
844 af = AF_INET;
845 iphlen = sizeof(struct ip);
846 ip = mtod(m, struct ip *);
847 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
848 sizeof(struct tcphdr));
849 if (th == NULL) {
850 tcpstat.tcps_rcvshort++;
851 return;
852 }
853 /* We do the checksum after PCB lookup... */
854 len = ntohs(ip->ip_len);
855 tlen = len - toff;
856 break;
857 #endif
858 #ifdef INET6
859 case 6:
860 ip = NULL;
861 iphlen = sizeof(struct ip6_hdr);
862 af = AF_INET6;
863 ip6 = mtod(m, struct ip6_hdr *);
864 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
865 sizeof(struct tcphdr));
866 if (th == NULL) {
867 tcpstat.tcps_rcvshort++;
868 return;
869 }
870
871 /* Be proactive about malicious use of IPv4 mapped address */
872 if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
873 IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
874 /* XXX stat */
875 goto drop;
876 }
877
878 /*
879 * Be proactive about unspecified IPv6 address in source.
880 * As we use all-zero to indicate unbounded/unconnected pcb,
881 * unspecified IPv6 address can be used to confuse us.
882 *
883 * Note that packets with unspecified IPv6 destination is
884 * already dropped in ip6_input.
885 */
886 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
887 /* XXX stat */
888 goto drop;
889 }
890
891 /*
892 * Make sure destination address is not multicast.
893 * Source address checked in ip6_input().
894 */
895 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
896 /* XXX stat */
897 goto drop;
898 }
899
900 /* We do the checksum after PCB lookup... */
901 len = m->m_pkthdr.len;
902 tlen = len - toff;
903 break;
904 #endif
905 default:
906 m_freem(m);
907 return;
908 }
909
910 KASSERT(TCP_HDR_ALIGNED_P(th));
911
912 /*
913 * Check that TCP offset makes sense,
914 * pull out TCP options and adjust length. XXX
915 */
916 off = th->th_off << 2;
917 if (off < sizeof (struct tcphdr) || off > tlen) {
918 tcpstat.tcps_rcvbadoff++;
919 goto drop;
920 }
921 tlen -= off;
922
923 /*
924 * tcp_input() has been modified to use tlen to mean the TCP data
925 * length throughout the function. Other functions can use
926 * m->m_pkthdr.len as the basis for calculating the TCP data length.
927 * rja
928 */
929
930 if (off > sizeof (struct tcphdr)) {
931 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
932 if (th == NULL) {
933 tcpstat.tcps_rcvshort++;
934 return;
935 }
936 /*
937 * NOTE: ip/ip6 will not be affected by m_pulldown()
938 * (as they're before toff) and we don't need to update those.
939 */
940 KASSERT(TCP_HDR_ALIGNED_P(th));
941 optlen = off - sizeof (struct tcphdr);
942 optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
943 /*
944 * Do quick retrieval of timestamp options ("options
945 * prediction?"). If timestamp is the only option and it's
946 * formatted as recommended in RFC 1323 appendix A, we
947 * quickly get the values now and not bother calling
948 * tcp_dooptions(), etc.
949 */
950 if ((optlen == TCPOLEN_TSTAMP_APPA ||
951 (optlen > TCPOLEN_TSTAMP_APPA &&
952 optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
953 *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
954 (th->th_flags & TH_SYN) == 0) {
955 opti.ts_present = 1;
956 opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
957 opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
958 optp = NULL; /* we've parsed the options */
959 }
960 }
961 tiflags = th->th_flags;
962
963 /*
964 * Locate pcb for segment.
965 */
966 findpcb:
967 inp = NULL;
968 #ifdef INET6
969 in6p = NULL;
970 #endif
971 switch (af) {
972 #ifdef INET
973 case AF_INET:
974 inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
975 ip->ip_dst, th->th_dport);
976 if (inp == 0) {
977 ++tcpstat.tcps_pcbhashmiss;
978 inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
979 }
980 #ifdef INET6
981 if (inp == 0) {
982 struct in6_addr s, d;
983
984 /* mapped addr case */
985 bzero(&s, sizeof(s));
986 s.s6_addr16[5] = htons(0xffff);
987 bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
988 bzero(&d, sizeof(d));
989 d.s6_addr16[5] = htons(0xffff);
990 bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
991 in6p = in6_pcblookup_connect(&tcb6, &s, th->th_sport,
992 &d, th->th_dport, 0);
993 if (in6p == 0) {
994 ++tcpstat.tcps_pcbhashmiss;
995 in6p = in6_pcblookup_bind(&tcb6, &d,
996 th->th_dport, 0);
997 }
998 }
999 #endif
1000 #ifndef INET6
1001 if (inp == 0)
1002 #else
1003 if (inp == 0 && in6p == 0)
1004 #endif
1005 {
1006 ++tcpstat.tcps_noport;
1007 if (tcp_log_refused &&
1008 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1009 tcp4_log_refused(ip, th);
1010 }
1011 TCP_FIELDS_TO_HOST(th);
1012 goto dropwithreset_ratelim;
1013 }
1014 #if defined(IPSEC) || defined(FAST_IPSEC)
1015 if (inp && ipsec4_in_reject(m, inp)) {
1016 ipsecstat.in_polvio++;
1017 goto drop;
1018 }
1019 #ifdef INET6
1020 else if (in6p && ipsec4_in_reject_so(m, in6p->in6p_socket)) {
1021 ipsecstat.in_polvio++;
1022 goto drop;
1023 }
1024 #endif
1025 #endif /*IPSEC*/
1026 break;
1027 #endif /*INET*/
1028 #ifdef INET6
1029 case AF_INET6:
1030 {
1031 int faith;
1032
1033 #if defined(NFAITH) && NFAITH > 0
1034 faith = faithprefix(&ip6->ip6_dst);
1035 #else
1036 faith = 0;
1037 #endif
1038 in6p = in6_pcblookup_connect(&tcb6, &ip6->ip6_src, th->th_sport,
1039 &ip6->ip6_dst, th->th_dport, faith);
1040 if (in6p == NULL) {
1041 ++tcpstat.tcps_pcbhashmiss;
1042 in6p = in6_pcblookup_bind(&tcb6, &ip6->ip6_dst,
1043 th->th_dport, faith);
1044 }
1045 if (in6p == NULL) {
1046 ++tcpstat.tcps_noport;
1047 if (tcp_log_refused &&
1048 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1049 tcp6_log_refused(ip6, th);
1050 }
1051 TCP_FIELDS_TO_HOST(th);
1052 goto dropwithreset_ratelim;
1053 }
1054 #if defined(IPSEC) || defined(FAST_IPSEC)
1055 if (ipsec6_in_reject(m, in6p)) {
1056 ipsec6stat.in_polvio++;
1057 goto drop;
1058 }
1059 #endif /*IPSEC*/
1060 break;
1061 }
1062 #endif
1063 }
1064
1065 /*
1066 * If the state is CLOSED (i.e., TCB does not exist) then
1067 * all data in the incoming segment is discarded.
1068 * If the TCB exists but is in CLOSED state, it is embryonic,
1069 * but should either do a listen or a connect soon.
1070 */
1071 tp = NULL;
1072 so = NULL;
1073 if (inp) {
1074 tp = intotcpcb(inp);
1075 so = inp->inp_socket;
1076 }
1077 #ifdef INET6
1078 else if (in6p) {
1079 tp = in6totcpcb(in6p);
1080 so = in6p->in6p_socket;
1081 }
1082 #endif
1083 if (tp == 0) {
1084 TCP_FIELDS_TO_HOST(th);
1085 goto dropwithreset_ratelim;
1086 }
1087 if (tp->t_state == TCPS_CLOSED)
1088 goto drop;
1089
1090 /*
1091 * Checksum extended TCP header and data.
1092 */
1093 switch (af) {
1094 #ifdef INET
1095 case AF_INET:
1096 switch (m->m_pkthdr.csum_flags &
1097 ((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
1098 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
1099 case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
1100 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
1101 goto badcsum;
1102
1103 case M_CSUM_TCPv4|M_CSUM_DATA: {
1104 u_int32_t hw_csum = m->m_pkthdr.csum_data;
1105 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
1106 if (m->m_pkthdr.csum_flags & M_CSUM_NO_PSEUDOHDR) {
1107 hw_csum = in_cksum_phdr(ip->ip_src.s_addr,
1108 ip->ip_dst.s_addr,
1109 htonl(hw_csum + ntohs(ip->ip_len) +
1110 IPPROTO_UDP));
1111 }
1112 if ((hw_csum ^ 0xffff) != 0)
1113 goto badcsum;
1114 break;
1115 }
1116
1117 case M_CSUM_TCPv4:
1118 /* Checksum was okay. */
1119 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
1120 break;
1121
1122 default:
1123 /* Must compute it ourselves. */
1124 TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
1125 if (in4_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0)
1126 goto badcsum;
1127 break;
1128 }
1129 break;
1130 #endif /* INET4 */
1131
1132 #ifdef INET6
1133 case AF_INET6:
1134 if (in6_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0)
1135 goto badcsum;
1136 break;
1137 #endif /* INET6 */
1138 }
1139
1140 TCP_FIELDS_TO_HOST(th);
1141
1142 /* Unscale the window into a 32-bit value. */
1143 if ((tiflags & TH_SYN) == 0)
1144 tiwin = th->th_win << tp->snd_scale;
1145 else
1146 tiwin = th->th_win;
1147
1148 #ifdef INET6
1149 /* save packet options if user wanted */
1150 if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
1151 if (in6p->in6p_options) {
1152 m_freem(in6p->in6p_options);
1153 in6p->in6p_options = 0;
1154 }
1155 ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
1156 }
1157 #endif
1158
1159 if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
1160 union syn_cache_sa src;
1161 union syn_cache_sa dst;
1162
1163 bzero(&src, sizeof(src));
1164 bzero(&dst, sizeof(dst));
1165 switch (af) {
1166 #ifdef INET
1167 case AF_INET:
1168 src.sin.sin_len = sizeof(struct sockaddr_in);
1169 src.sin.sin_family = AF_INET;
1170 src.sin.sin_addr = ip->ip_src;
1171 src.sin.sin_port = th->th_sport;
1172
1173 dst.sin.sin_len = sizeof(struct sockaddr_in);
1174 dst.sin.sin_family = AF_INET;
1175 dst.sin.sin_addr = ip->ip_dst;
1176 dst.sin.sin_port = th->th_dport;
1177 break;
1178 #endif
1179 #ifdef INET6
1180 case AF_INET6:
1181 src.sin6.sin6_len = sizeof(struct sockaddr_in6);
1182 src.sin6.sin6_family = AF_INET6;
1183 src.sin6.sin6_addr = ip6->ip6_src;
1184 src.sin6.sin6_port = th->th_sport;
1185
1186 dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
1187 dst.sin6.sin6_family = AF_INET6;
1188 dst.sin6.sin6_addr = ip6->ip6_dst;
1189 dst.sin6.sin6_port = th->th_dport;
1190 break;
1191 #endif /* INET6 */
1192 default:
1193 goto badsyn; /*sanity*/
1194 }
1195
1196 if (so->so_options & SO_DEBUG) {
1197 #ifdef TCP_DEBUG
1198 ostate = tp->t_state;
1199 #endif
1200
1201 tcp_saveti = NULL;
1202 if (iphlen + sizeof(struct tcphdr) > MHLEN)
1203 goto nosave;
1204
1205 if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
1206 tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
1207 if (!tcp_saveti)
1208 goto nosave;
1209 } else {
1210 MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
1211 if (!tcp_saveti)
1212 goto nosave;
1213 MCLAIM(m, &tcp_mowner);
1214 tcp_saveti->m_len = iphlen;
1215 m_copydata(m, 0, iphlen,
1216 mtod(tcp_saveti, caddr_t));
1217 }
1218
1219 if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
1220 m_freem(tcp_saveti);
1221 tcp_saveti = NULL;
1222 } else {
1223 tcp_saveti->m_len += sizeof(struct tcphdr);
1224 bcopy(th, mtod(tcp_saveti, caddr_t) + iphlen,
1225 sizeof(struct tcphdr));
1226 }
1227 nosave:;
1228 }
1229 if (so->so_options & SO_ACCEPTCONN) {
1230 if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1231 if (tiflags & TH_RST) {
1232 syn_cache_reset(&src.sa, &dst.sa, th);
1233 } else if ((tiflags & (TH_ACK|TH_SYN)) ==
1234 (TH_ACK|TH_SYN)) {
1235 /*
1236 * Received a SYN,ACK. This should
1237 * never happen while we are in
1238 * LISTEN. Send an RST.
1239 */
1240 goto badsyn;
1241 } else if (tiflags & TH_ACK) {
1242 so = syn_cache_get(&src.sa, &dst.sa,
1243 th, toff, tlen, so, m);
1244 if (so == NULL) {
1245 /*
1246 * We don't have a SYN for
1247 * this ACK; send an RST.
1248 */
1249 goto badsyn;
1250 } else if (so ==
1251 (struct socket *)(-1)) {
1252 /*
1253 * We were unable to create
1254 * the connection. If the
1255 * 3-way handshake was
1256 * completed, and RST has
1257 * been sent to the peer.
1258 * Since the mbuf might be
1259 * in use for the reply,
1260 * do not free it.
1261 */
1262 m = NULL;
1263 } else {
1264 /*
1265 * We have created a
1266 * full-blown connection.
1267 */
1268 tp = NULL;
1269 inp = NULL;
1270 #ifdef INET6
1271 in6p = NULL;
1272 #endif
1273 switch (so->so_proto->pr_domain->dom_family) {
1274 #ifdef INET
1275 case AF_INET:
1276 inp = sotoinpcb(so);
1277 tp = intotcpcb(inp);
1278 break;
1279 #endif
1280 #ifdef INET6
1281 case AF_INET6:
1282 in6p = sotoin6pcb(so);
1283 tp = in6totcpcb(in6p);
1284 break;
1285 #endif
1286 }
1287 if (tp == NULL)
1288 goto badsyn; /*XXX*/
1289 tiwin <<= tp->snd_scale;
1290 goto after_listen;
1291 }
1292 } else {
1293 /*
1294 * None of RST, SYN or ACK was set.
1295 * This is an invalid packet for a
1296 * TCB in LISTEN state. Send a RST.
1297 */
1298 goto badsyn;
1299 }
1300 } else {
1301 /*
1302 * Received a SYN.
1303 */
1304
1305 #ifdef INET6
1306 /*
1307 * If deprecated address is forbidden, we do
1308 * not accept SYN to deprecated interface
1309 * address to prevent any new inbound
1310 * connection from getting established.
1311 * When we do not accept SYN, we send a TCP
1312 * RST, with deprecated source address (instead
1313 * of dropping it). We compromise it as it is
1314 * much better for peer to send a RST, and
1315 * RST will be the final packet for the
1316 * exchange.
1317 *
1318 * If we do not forbid deprecated addresses, we
1319 * accept the SYN packet. RFC2462 does not
1320 * suggest dropping SYN in this case.
1321 * If we decipher RFC2462 5.5.4, it says like
1322 * this:
1323 * 1. use of deprecated addr with existing
1324 * communication is okay - "SHOULD continue
1325 * to be used"
1326 * 2. use of it with new communication:
1327 * (2a) "SHOULD NOT be used if alternate
1328 * address with sufficient scope is
1329 * available"
1330 * (2b) nothing mentioned otherwise.
1331 * Here we fall into (2b) case as we have no
1332 * choice in our source address selection - we
1333 * must obey the peer.
1334 *
1335 * The wording in RFC2462 is confusing, and
1336 * there are multiple description text for
1337 * deprecated address handling - worse, they
1338 * are not exactly the same. I believe 5.5.4
1339 * is the best one, so we follow 5.5.4.
1340 */
1341 if (af == AF_INET6 && !ip6_use_deprecated) {
1342 struct in6_ifaddr *ia6;
1343 if ((ia6 = in6ifa_ifpwithaddr(m->m_pkthdr.rcvif,
1344 &ip6->ip6_dst)) &&
1345 (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1346 tp = NULL;
1347 goto dropwithreset;
1348 }
1349 }
1350 #endif
1351
1352 /*
1353 * LISTEN socket received a SYN
1354 * from itself? This can't possibly
1355 * be valid; drop the packet.
1356 */
1357 if (th->th_sport == th->th_dport) {
1358 int i;
1359
1360 switch (af) {
1361 #ifdef INET
1362 case AF_INET:
1363 i = in_hosteq(ip->ip_src, ip->ip_dst);
1364 break;
1365 #endif
1366 #ifdef INET6
1367 case AF_INET6:
1368 i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
1369 break;
1370 #endif
1371 default:
1372 i = 1;
1373 }
1374 if (i) {
1375 tcpstat.tcps_badsyn++;
1376 goto drop;
1377 }
1378 }
1379
1380 /*
1381 * SYN looks ok; create compressed TCP
1382 * state for it.
1383 */
1384 if (so->so_qlen <= so->so_qlimit &&
1385 syn_cache_add(&src.sa, &dst.sa, th, tlen,
1386 so, m, optp, optlen, &opti))
1387 m = NULL;
1388 }
1389 goto drop;
1390 }
1391 }
1392
1393 after_listen:
1394 #ifdef DIAGNOSTIC
1395 /*
1396 * Should not happen now that all embryonic connections
1397 * are handled with compressed state.
1398 */
1399 if (tp->t_state == TCPS_LISTEN)
1400 panic("tcp_input: TCPS_LISTEN");
1401 #endif
1402
1403 /*
1404 * Segment received on connection.
1405 * Reset idle time and keep-alive timer.
1406 */
1407 tp->t_rcvtime = tcp_now;
1408 if (TCPS_HAVEESTABLISHED(tp->t_state))
1409 TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1410
1411 /*
1412 * Process options.
1413 */
1414 if (optp)
1415 tcp_dooptions(tp, optp, optlen, th, &opti);
1416
1417 /*
1418 * Header prediction: check for the two common cases
1419 * of a uni-directional data xfer. If the packet has
1420 * no control flags, is in-sequence, the window didn't
1421 * change and we're not retransmitting, it's a
1422 * candidate. If the length is zero and the ack moved
1423 * forward, we're the sender side of the xfer. Just
1424 * free the data acked & wake any higher level process
1425 * that was blocked waiting for space. If the length
1426 * is non-zero and the ack didn't move, we're the
1427 * receiver side. If we're getting packets in-order
1428 * (the reassembly queue is empty), add the data to
1429 * the socket buffer and note that we need a delayed ack.
1430 */
1431 if (tp->t_state == TCPS_ESTABLISHED &&
1432 (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1433 (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
1434 th->th_seq == tp->rcv_nxt &&
1435 tiwin && tiwin == tp->snd_wnd &&
1436 tp->snd_nxt == tp->snd_max) {
1437
1438 /*
1439 * If last ACK falls within this segment's sequence numbers,
1440 * record the timestamp.
1441 */
1442 if (opti.ts_present &&
1443 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1444 SEQ_LT(tp->last_ack_sent, th->th_seq + tlen)) {
1445 tp->ts_recent_age = TCP_TIMESTAMP(tp);
1446 tp->ts_recent = opti.ts_val;
1447 }
1448
1449 if (tlen == 0) {
1450 if (SEQ_GT(th->th_ack, tp->snd_una) &&
1451 SEQ_LEQ(th->th_ack, tp->snd_max) &&
1452 tp->snd_cwnd >= tp->snd_wnd &&
1453 tp->t_dupacks < tcprexmtthresh) {
1454 int slen;
1455
1456 /*
1457 * this is a pure ack for outstanding data.
1458 */
1459 ++tcpstat.tcps_predack;
1460 if (opti.ts_present && opti.ts_ecr)
1461 tcp_xmit_timer(tp,
1462 TCP_TIMESTAMP(tp) - opti.ts_ecr + 1);
1463 else if (tp->t_rtttime &&
1464 SEQ_GT(th->th_ack, tp->t_rtseq))
1465 tcp_xmit_timer(tp,
1466 tcp_now - tp->t_rtttime);
1467 acked = th->th_ack - tp->snd_una;
1468 tcpstat.tcps_rcvackpack++;
1469 tcpstat.tcps_rcvackbyte += acked;
1470 ND6_HINT(tp);
1471
1472 slen = tp->t_lastm->m_len;
1473 sbdrop(&so->so_snd, acked);
1474 if (so->so_snd.sb_cc != 0) {
1475 tp->t_lastoff -= acked;
1476 if (tp->t_lastm->m_len < slen)
1477 tp->t_inoff -=
1478 (slen - tp->t_lastm->m_len);
1479 }
1480
1481 /*
1482 * We want snd_recover to track snd_una to
1483 * avoid sequence wraparound problems for
1484 * very large transfers.
1485 */
1486 tp->snd_una = tp->snd_recover = th->th_ack;
1487 m_freem(m);
1488
1489 /*
1490 * If all outstanding data are acked, stop
1491 * retransmit timer, otherwise restart timer
1492 * using current (possibly backed-off) value.
1493 * If process is waiting for space,
1494 * wakeup/selwakeup/signal. If data
1495 * are ready to send, let tcp_output
1496 * decide between more output or persist.
1497 */
1498 if (tp->snd_una == tp->snd_max)
1499 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1500 else if (TCP_TIMER_ISARMED(tp,
1501 TCPT_PERSIST) == 0)
1502 TCP_TIMER_ARM(tp, TCPT_REXMT,
1503 tp->t_rxtcur);
1504
1505 sowwakeup(so);
1506 if (so->so_snd.sb_cc)
1507 (void) tcp_output(tp);
1508 if (tcp_saveti)
1509 m_freem(tcp_saveti);
1510 return;
1511 }
1512 } else if (th->th_ack == tp->snd_una &&
1513 TAILQ_FIRST(&tp->segq) == NULL &&
1514 tlen <= sbspace(&so->so_rcv)) {
1515 /*
1516 * this is a pure, in-sequence data packet
1517 * with nothing on the reassembly queue and
1518 * we have enough buffer space to take it.
1519 */
1520 ++tcpstat.tcps_preddat;
1521 tp->rcv_nxt += tlen;
1522 tcpstat.tcps_rcvpack++;
1523 tcpstat.tcps_rcvbyte += tlen;
1524 ND6_HINT(tp);
1525 /*
1526 * Drop TCP, IP headers and TCP options then add data
1527 * to socket buffer.
1528 */
1529 if (so->so_state & SS_CANTRCVMORE)
1530 m_freem(m);
1531 else {
1532 m_adj(m, toff + off);
1533 sbappendstream(&so->so_rcv, m);
1534 }
1535 sorwakeup(so);
1536 TCP_SETUP_ACK(tp, th);
1537 if (tp->t_flags & TF_ACKNOW)
1538 (void) tcp_output(tp);
1539 if (tcp_saveti)
1540 m_freem(tcp_saveti);
1541 return;
1542 }
1543 }
1544
1545 /*
1546 * Compute mbuf offset to TCP data segment.
1547 */
1548 hdroptlen = toff + off;
1549
1550 /*
1551 * Calculate amount of space in receive window,
1552 * and then do TCP input processing.
1553 * Receive window is amount of space in rcv queue,
1554 * but not less than advertised window.
1555 */
1556 { int win;
1557
1558 win = sbspace(&so->so_rcv);
1559 if (win < 0)
1560 win = 0;
1561 tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1562 }
1563
1564 switch (tp->t_state) {
1565 case TCPS_LISTEN:
1566 /*
1567 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
1568 */
1569 if (m->m_flags & (M_BCAST|M_MCAST))
1570 goto drop;
1571 switch (af) {
1572 #ifdef INET6
1573 case AF_INET6:
1574 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
1575 goto drop;
1576 break;
1577 #endif /* INET6 */
1578 case AF_INET:
1579 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
1580 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
1581 goto drop;
1582 break;
1583 }
1584 break;
1585
1586 /*
1587 * If the state is SYN_SENT:
1588 * if seg contains an ACK, but not for our SYN, drop the input.
1589 * if seg contains a RST, then drop the connection.
1590 * if seg does not contain SYN, then drop it.
1591 * Otherwise this is an acceptable SYN segment
1592 * initialize tp->rcv_nxt and tp->irs
1593 * if seg contains ack then advance tp->snd_una
1594 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1595 * arrange for segment to be acked (eventually)
1596 * continue processing rest of data/controls, beginning with URG
1597 */
1598 case TCPS_SYN_SENT:
1599 if ((tiflags & TH_ACK) &&
1600 (SEQ_LEQ(th->th_ack, tp->iss) ||
1601 SEQ_GT(th->th_ack, tp->snd_max)))
1602 goto dropwithreset;
1603 if (tiflags & TH_RST) {
1604 if (tiflags & TH_ACK)
1605 tp = tcp_drop(tp, ECONNREFUSED);
1606 goto drop;
1607 }
1608 if ((tiflags & TH_SYN) == 0)
1609 goto drop;
1610 if (tiflags & TH_ACK) {
1611 tp->snd_una = tp->snd_recover = th->th_ack;
1612 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1613 tp->snd_nxt = tp->snd_una;
1614 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1615 }
1616 tp->irs = th->th_seq;
1617 tcp_rcvseqinit(tp);
1618 tp->t_flags |= TF_ACKNOW;
1619 tcp_mss_from_peer(tp, opti.maxseg);
1620
1621 /*
1622 * Initialize the initial congestion window. If we
1623 * had to retransmit the SYN, we must initialize cwnd
1624 * to 1 segment (i.e. the Loss Window).
1625 */
1626 if (tp->t_flags & TF_SYN_REXMT)
1627 tp->snd_cwnd = tp->t_peermss;
1628 else {
1629 int ss = tcp_init_win;
1630 #ifdef INET
1631 if (inp != NULL && in_localaddr(inp->inp_faddr))
1632 ss = tcp_init_win_local;
1633 #endif
1634 #ifdef INET6
1635 if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
1636 ss = tcp_init_win_local;
1637 #endif
1638 tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
1639 }
1640
1641 tcp_rmx_rtt(tp);
1642 if (tiflags & TH_ACK) {
1643 tcpstat.tcps_connects++;
1644 soisconnected(so);
1645 tcp_established(tp);
1646 /* Do window scaling on this connection? */
1647 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1648 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1649 tp->snd_scale = tp->requested_s_scale;
1650 tp->rcv_scale = tp->request_r_scale;
1651 }
1652 TCP_REASS_LOCK(tp);
1653 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1654 TCP_REASS_UNLOCK(tp);
1655 /*
1656 * if we didn't have to retransmit the SYN,
1657 * use its rtt as our initial srtt & rtt var.
1658 */
1659 if (tp->t_rtttime)
1660 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
1661 } else
1662 tp->t_state = TCPS_SYN_RECEIVED;
1663
1664 /*
1665 * Advance th->th_seq to correspond to first data byte.
1666 * If data, trim to stay within window,
1667 * dropping FIN if necessary.
1668 */
1669 th->th_seq++;
1670 if (tlen > tp->rcv_wnd) {
1671 todrop = tlen - tp->rcv_wnd;
1672 m_adj(m, -todrop);
1673 tlen = tp->rcv_wnd;
1674 tiflags &= ~TH_FIN;
1675 tcpstat.tcps_rcvpackafterwin++;
1676 tcpstat.tcps_rcvbyteafterwin += todrop;
1677 }
1678 tp->snd_wl1 = th->th_seq - 1;
1679 tp->rcv_up = th->th_seq;
1680 goto step6;
1681
1682 /*
1683 * If the state is SYN_RECEIVED:
1684 * If seg contains an ACK, but not for our SYN, drop the input
1685 * and generate an RST. See page 36, rfc793
1686 */
1687 case TCPS_SYN_RECEIVED:
1688 if ((tiflags & TH_ACK) &&
1689 (SEQ_LEQ(th->th_ack, tp->iss) ||
1690 SEQ_GT(th->th_ack, tp->snd_max)))
1691 goto dropwithreset;
1692 break;
1693 }
1694
1695 /*
1696 * States other than LISTEN or SYN_SENT.
1697 * First check timestamp, if present.
1698 * Then check that at least some bytes of segment are within
1699 * receive window. If segment begins before rcv_nxt,
1700 * drop leading data (and SYN); if nothing left, just ack.
1701 *
1702 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1703 * and it's less than ts_recent, drop it.
1704 */
1705 if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
1706 TSTMP_LT(opti.ts_val, tp->ts_recent)) {
1707
1708 /* Check to see if ts_recent is over 24 days old. */
1709 if ((int)(TCP_TIMESTAMP(tp) - tp->ts_recent_age) >
1710 TCP_PAWS_IDLE) {
1711 /*
1712 * Invalidate ts_recent. If this segment updates
1713 * ts_recent, the age will be reset later and ts_recent
1714 * will get a valid value. If it does not, setting
1715 * ts_recent to zero will at least satisfy the
1716 * requirement that zero be placed in the timestamp
1717 * echo reply when ts_recent isn't valid. The
1718 * age isn't reset until we get a valid ts_recent
1719 * because we don't want out-of-order segments to be
1720 * dropped when ts_recent is old.
1721 */
1722 tp->ts_recent = 0;
1723 } else {
1724 tcpstat.tcps_rcvduppack++;
1725 tcpstat.tcps_rcvdupbyte += tlen;
1726 tcpstat.tcps_pawsdrop++;
1727 goto dropafterack;
1728 }
1729 }
1730
1731 todrop = tp->rcv_nxt - th->th_seq;
1732 if (todrop > 0) {
1733 if (tiflags & TH_SYN) {
1734 tiflags &= ~TH_SYN;
1735 th->th_seq++;
1736 if (th->th_urp > 1)
1737 th->th_urp--;
1738 else {
1739 tiflags &= ~TH_URG;
1740 th->th_urp = 0;
1741 }
1742 todrop--;
1743 }
1744 if (todrop > tlen ||
1745 (todrop == tlen && (tiflags & TH_FIN) == 0)) {
1746 /*
1747 * Any valid FIN must be to the left of the window.
1748 * At this point the FIN must be a duplicate or
1749 * out of sequence; drop it.
1750 */
1751 tiflags &= ~TH_FIN;
1752 /*
1753 * Send an ACK to resynchronize and drop any data.
1754 * But keep on processing for RST or ACK.
1755 */
1756 tp->t_flags |= TF_ACKNOW;
1757 todrop = tlen;
1758 tcpstat.tcps_rcvdupbyte += todrop;
1759 tcpstat.tcps_rcvduppack++;
1760 } else {
1761 tcpstat.tcps_rcvpartduppack++;
1762 tcpstat.tcps_rcvpartdupbyte += todrop;
1763 }
1764 hdroptlen += todrop; /*drop from head afterwards*/
1765 th->th_seq += todrop;
1766 tlen -= todrop;
1767 if (th->th_urp > todrop)
1768 th->th_urp -= todrop;
1769 else {
1770 tiflags &= ~TH_URG;
1771 th->th_urp = 0;
1772 }
1773 }
1774
1775 /*
1776 * If new data are received on a connection after the
1777 * user processes are gone, then RST the other end.
1778 */
1779 if ((so->so_state & SS_NOFDREF) &&
1780 tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1781 tp = tcp_close(tp);
1782 tcpstat.tcps_rcvafterclose++;
1783 goto dropwithreset;
1784 }
1785
1786 /*
1787 * If segment ends after window, drop trailing data
1788 * (and PUSH and FIN); if nothing left, just ACK.
1789 */
1790 todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
1791 if (todrop > 0) {
1792 tcpstat.tcps_rcvpackafterwin++;
1793 if (todrop >= tlen) {
1794 tcpstat.tcps_rcvbyteafterwin += tlen;
1795 /*
1796 * If a new connection request is received
1797 * while in TIME_WAIT, drop the old connection
1798 * and start over if the sequence numbers
1799 * are above the previous ones.
1800 *
1801 * NOTE: We will checksum the packet again, and
1802 * so we need to put the header fields back into
1803 * network order!
1804 * XXX This kind of sucks, but we don't expect
1805 * XXX this to happen very often, so maybe it
1806 * XXX doesn't matter so much.
1807 */
1808 if (tiflags & TH_SYN &&
1809 tp->t_state == TCPS_TIME_WAIT &&
1810 SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1811 iss = tcp_new_iss(tp, tp->snd_nxt);
1812 tp = tcp_close(tp);
1813 TCP_FIELDS_TO_NET(th);
1814 goto findpcb;
1815 }
1816 /*
1817 * If window is closed can only take segments at
1818 * window edge, and have to drop data and PUSH from
1819 * incoming segments. Continue processing, but
1820 * remember to ack. Otherwise, drop segment
1821 * and ack.
1822 */
1823 if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1824 tp->t_flags |= TF_ACKNOW;
1825 tcpstat.tcps_rcvwinprobe++;
1826 } else
1827 goto dropafterack;
1828 } else
1829 tcpstat.tcps_rcvbyteafterwin += todrop;
1830 m_adj(m, -todrop);
1831 tlen -= todrop;
1832 tiflags &= ~(TH_PUSH|TH_FIN);
1833 }
1834
1835 /*
1836 * If last ACK falls within this segment's sequence numbers,
1837 * and the timestamp is newer, record it.
1838 */
1839 if (opti.ts_present && TSTMP_GEQ(opti.ts_val, tp->ts_recent) &&
1840 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1841 SEQ_LT(tp->last_ack_sent, th->th_seq + tlen +
1842 ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
1843 tp->ts_recent_age = TCP_TIMESTAMP(tp);
1844 tp->ts_recent = opti.ts_val;
1845 }
1846
1847 /*
1848 * If the RST bit is set examine the state:
1849 * SYN_RECEIVED STATE:
1850 * If passive open, return to LISTEN state.
1851 * If active open, inform user that connection was refused.
1852 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
1853 * Inform user that connection was reset, and close tcb.
1854 * CLOSING, LAST_ACK, TIME_WAIT STATES
1855 * Close the tcb.
1856 */
1857 if (tiflags&TH_RST) switch (tp->t_state) {
1858
1859 case TCPS_SYN_RECEIVED:
1860 so->so_error = ECONNREFUSED;
1861 goto close;
1862
1863 case TCPS_ESTABLISHED:
1864 case TCPS_FIN_WAIT_1:
1865 case TCPS_FIN_WAIT_2:
1866 case TCPS_CLOSE_WAIT:
1867 so->so_error = ECONNRESET;
1868 close:
1869 tp->t_state = TCPS_CLOSED;
1870 tcpstat.tcps_drops++;
1871 tp = tcp_close(tp);
1872 goto drop;
1873
1874 case TCPS_CLOSING:
1875 case TCPS_LAST_ACK:
1876 case TCPS_TIME_WAIT:
1877 tp = tcp_close(tp);
1878 goto drop;
1879 }
1880
1881 /*
1882 * If a SYN is in the window, then this is an
1883 * error and we send an RST and drop the connection.
1884 */
1885 if (tiflags & TH_SYN) {
1886 tp = tcp_drop(tp, ECONNRESET);
1887 goto dropwithreset;
1888 }
1889
1890 /*
1891 * If the ACK bit is off we drop the segment and return.
1892 */
1893 if ((tiflags & TH_ACK) == 0) {
1894 if (tp->t_flags & TF_ACKNOW)
1895 goto dropafterack;
1896 else
1897 goto drop;
1898 }
1899
1900 /*
1901 * Ack processing.
1902 */
1903 switch (tp->t_state) {
1904
1905 /*
1906 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
1907 * ESTABLISHED state and continue processing, otherwise
1908 * send an RST.
1909 */
1910 case TCPS_SYN_RECEIVED:
1911 if (SEQ_GT(tp->snd_una, th->th_ack) ||
1912 SEQ_GT(th->th_ack, tp->snd_max))
1913 goto dropwithreset;
1914 tcpstat.tcps_connects++;
1915 soisconnected(so);
1916 tcp_established(tp);
1917 /* Do window scaling? */
1918 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1919 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1920 tp->snd_scale = tp->requested_s_scale;
1921 tp->rcv_scale = tp->request_r_scale;
1922 }
1923 TCP_REASS_LOCK(tp);
1924 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1925 TCP_REASS_UNLOCK(tp);
1926 tp->snd_wl1 = th->th_seq - 1;
1927 /* fall into ... */
1928
1929 /*
1930 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1931 * ACKs. If the ack is in the range
1932 * tp->snd_una < th->th_ack <= tp->snd_max
1933 * then advance tp->snd_una to th->th_ack and drop
1934 * data from the retransmission queue. If this ACK reflects
1935 * more up to date window information we update our window information.
1936 */
1937 case TCPS_ESTABLISHED:
1938 case TCPS_FIN_WAIT_1:
1939 case TCPS_FIN_WAIT_2:
1940 case TCPS_CLOSE_WAIT:
1941 case TCPS_CLOSING:
1942 case TCPS_LAST_ACK:
1943 case TCPS_TIME_WAIT:
1944
1945 if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
1946 if (tlen == 0 && tiwin == tp->snd_wnd) {
1947 tcpstat.tcps_rcvdupack++;
1948 /*
1949 * If we have outstanding data (other than
1950 * a window probe), this is a completely
1951 * duplicate ack (ie, window info didn't
1952 * change), the ack is the biggest we've
1953 * seen and we've seen exactly our rexmt
1954 * threshhold of them, assume a packet
1955 * has been dropped and retransmit it.
1956 * Kludge snd_nxt & the congestion
1957 * window so we send only this one
1958 * packet.
1959 *
1960 * We know we're losing at the current
1961 * window size so do congestion avoidance
1962 * (set ssthresh to half the current window
1963 * and pull our congestion window back to
1964 * the new ssthresh).
1965 *
1966 * Dup acks mean that packets have left the
1967 * network (they're now cached at the receiver)
1968 * so bump cwnd by the amount in the receiver
1969 * to keep a constant cwnd packets in the
1970 * network.
1971 */
1972 if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
1973 th->th_ack != tp->snd_una)
1974 tp->t_dupacks = 0;
1975 else if (++tp->t_dupacks == tcprexmtthresh) {
1976 tcp_seq onxt = tp->snd_nxt;
1977 u_int win =
1978 min(tp->snd_wnd, tp->snd_cwnd) /
1979 2 / tp->t_segsz;
1980 if (tcp_do_newreno && SEQ_LT(th->th_ack,
1981 tp->snd_recover)) {
1982 /*
1983 * False fast retransmit after
1984 * timeout. Do not cut window.
1985 */
1986 tp->snd_cwnd += tp->t_segsz;
1987 tp->t_dupacks = 0;
1988 (void) tcp_output(tp);
1989 goto drop;
1990 }
1991
1992 if (win < 2)
1993 win = 2;
1994 tp->snd_ssthresh = win * tp->t_segsz;
1995 tp->snd_recover = tp->snd_max;
1996 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1997 tp->t_rtttime = 0;
1998 tp->snd_nxt = th->th_ack;
1999 tp->snd_cwnd = tp->t_segsz;
2000 (void) tcp_output(tp);
2001 tp->snd_cwnd = tp->snd_ssthresh +
2002 tp->t_segsz * tp->t_dupacks;
2003 if (SEQ_GT(onxt, tp->snd_nxt))
2004 tp->snd_nxt = onxt;
2005 goto drop;
2006 } else if (tp->t_dupacks > tcprexmtthresh) {
2007 tp->snd_cwnd += tp->t_segsz;
2008 (void) tcp_output(tp);
2009 goto drop;
2010 }
2011 } else
2012 tp->t_dupacks = 0;
2013 break;
2014 }
2015 /*
2016 * If the congestion window was inflated to account
2017 * for the other side's cached packets, retract it.
2018 */
2019 if (tcp_do_newreno == 0) {
2020 if (tp->t_dupacks >= tcprexmtthresh &&
2021 tp->snd_cwnd > tp->snd_ssthresh)
2022 tp->snd_cwnd = tp->snd_ssthresh;
2023 tp->t_dupacks = 0;
2024 } else if (tp->t_dupacks >= tcprexmtthresh &&
2025 tcp_newreno(tp, th) == 0) {
2026 tp->snd_cwnd = tp->snd_ssthresh;
2027 /*
2028 * Window inflation should have left us with approx.
2029 * snd_ssthresh outstanding data. But in case we
2030 * would be inclined to send a burst, better to do
2031 * it via the slow start mechanism.
2032 */
2033 if (SEQ_SUB(tp->snd_max, th->th_ack) < tp->snd_ssthresh)
2034 tp->snd_cwnd = SEQ_SUB(tp->snd_max, th->th_ack)
2035 + tp->t_segsz;
2036 tp->t_dupacks = 0;
2037 }
2038 if (SEQ_GT(th->th_ack, tp->snd_max)) {
2039 tcpstat.tcps_rcvacktoomuch++;
2040 goto dropafterack;
2041 }
2042 acked = th->th_ack - tp->snd_una;
2043 tcpstat.tcps_rcvackpack++;
2044 tcpstat.tcps_rcvackbyte += acked;
2045
2046 /*
2047 * If we have a timestamp reply, update smoothed
2048 * round trip time. If no timestamp is present but
2049 * transmit timer is running and timed sequence
2050 * number was acked, update smoothed round trip time.
2051 * Since we now have an rtt measurement, cancel the
2052 * timer backoff (cf., Phil Karn's retransmit alg.).
2053 * Recompute the initial retransmit timer.
2054 */
2055 if (opti.ts_present && opti.ts_ecr)
2056 tcp_xmit_timer(tp, TCP_TIMESTAMP(tp) - opti.ts_ecr + 1);
2057 else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2058 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2059
2060 /*
2061 * If all outstanding data is acked, stop retransmit
2062 * timer and remember to restart (more output or persist).
2063 * If there is more data to be acked, restart retransmit
2064 * timer, using current (possibly backed-off) value.
2065 */
2066 if (th->th_ack == tp->snd_max) {
2067 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2068 needoutput = 1;
2069 } else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
2070 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
2071 /*
2072 * When new data is acked, open the congestion window.
2073 * If the window gives us less than ssthresh packets
2074 * in flight, open exponentially (segsz per packet).
2075 * Otherwise open linearly: segsz per window
2076 * (segsz^2 / cwnd per packet), plus a constant
2077 * fraction of a packet (segsz/8) to help larger windows
2078 * open quickly enough.
2079 */
2080 {
2081 u_int cw = tp->snd_cwnd;
2082 u_int incr = tp->t_segsz;
2083
2084 if (cw > tp->snd_ssthresh)
2085 incr = incr * incr / cw;
2086 if (tcp_do_newreno == 0 || SEQ_GEQ(th->th_ack, tp->snd_recover))
2087 tp->snd_cwnd = min(cw + incr,
2088 TCP_MAXWIN << tp->snd_scale);
2089 }
2090 ND6_HINT(tp);
2091 if (acked > so->so_snd.sb_cc) {
2092 tp->snd_wnd -= so->so_snd.sb_cc;
2093 sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
2094 ourfinisacked = 1;
2095 } else {
2096 int slen;
2097
2098 slen = tp->t_lastm->m_len;
2099 sbdrop(&so->so_snd, acked);
2100 tp->snd_wnd -= acked;
2101 if (so->so_snd.sb_cc != 0) {
2102 tp->t_lastoff -= acked;
2103 if (tp->t_lastm->m_len != slen)
2104 tp->t_inoff -=
2105 (slen - tp->t_lastm->m_len);
2106 }
2107 ourfinisacked = 0;
2108 }
2109 sowwakeup(so);
2110 /*
2111 * We want snd_recover to track snd_una to
2112 * avoid sequence wraparound problems for
2113 * very large transfers.
2114 */
2115 tp->snd_una = tp->snd_recover = th->th_ack;
2116 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2117 tp->snd_nxt = tp->snd_una;
2118
2119 switch (tp->t_state) {
2120
2121 /*
2122 * In FIN_WAIT_1 STATE in addition to the processing
2123 * for the ESTABLISHED state if our FIN is now acknowledged
2124 * then enter FIN_WAIT_2.
2125 */
2126 case TCPS_FIN_WAIT_1:
2127 if (ourfinisacked) {
2128 /*
2129 * If we can't receive any more
2130 * data, then closing user can proceed.
2131 * Starting the timer is contrary to the
2132 * specification, but if we don't get a FIN
2133 * we'll hang forever.
2134 */
2135 if (so->so_state & SS_CANTRCVMORE) {
2136 soisdisconnected(so);
2137 if (tcp_maxidle > 0)
2138 TCP_TIMER_ARM(tp, TCPT_2MSL,
2139 tcp_maxidle);
2140 }
2141 tp->t_state = TCPS_FIN_WAIT_2;
2142 }
2143 break;
2144
2145 /*
2146 * In CLOSING STATE in addition to the processing for
2147 * the ESTABLISHED state if the ACK acknowledges our FIN
2148 * then enter the TIME-WAIT state, otherwise ignore
2149 * the segment.
2150 */
2151 case TCPS_CLOSING:
2152 if (ourfinisacked) {
2153 tp->t_state = TCPS_TIME_WAIT;
2154 tcp_canceltimers(tp);
2155 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2156 soisdisconnected(so);
2157 }
2158 break;
2159
2160 /*
2161 * In LAST_ACK, we may still be waiting for data to drain
2162 * and/or to be acked, as well as for the ack of our FIN.
2163 * If our FIN is now acknowledged, delete the TCB,
2164 * enter the closed state and return.
2165 */
2166 case TCPS_LAST_ACK:
2167 if (ourfinisacked) {
2168 tp = tcp_close(tp);
2169 goto drop;
2170 }
2171 break;
2172
2173 /*
2174 * In TIME_WAIT state the only thing that should arrive
2175 * is a retransmission of the remote FIN. Acknowledge
2176 * it and restart the finack timer.
2177 */
2178 case TCPS_TIME_WAIT:
2179 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2180 goto dropafterack;
2181 }
2182 }
2183
2184 step6:
2185 /*
2186 * Update window information.
2187 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2188 */
2189 if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2190 (tp->snd_wl1 == th->th_seq && SEQ_LT(tp->snd_wl2, th->th_ack)) ||
2191 (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))) {
2192 /* keep track of pure window updates */
2193 if (tlen == 0 &&
2194 tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2195 tcpstat.tcps_rcvwinupd++;
2196 tp->snd_wnd = tiwin;
2197 tp->snd_wl1 = th->th_seq;
2198 tp->snd_wl2 = th->th_ack;
2199 if (tp->snd_wnd > tp->max_sndwnd)
2200 tp->max_sndwnd = tp->snd_wnd;
2201 needoutput = 1;
2202 }
2203
2204 /*
2205 * Process segments with URG.
2206 */
2207 if ((tiflags & TH_URG) && th->th_urp &&
2208 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2209 /*
2210 * This is a kludge, but if we receive and accept
2211 * random urgent pointers, we'll crash in
2212 * soreceive. It's hard to imagine someone
2213 * actually wanting to send this much urgent data.
2214 */
2215 if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2216 th->th_urp = 0; /* XXX */
2217 tiflags &= ~TH_URG; /* XXX */
2218 goto dodata; /* XXX */
2219 }
2220 /*
2221 * If this segment advances the known urgent pointer,
2222 * then mark the data stream. This should not happen
2223 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2224 * a FIN has been received from the remote side.
2225 * In these states we ignore the URG.
2226 *
2227 * According to RFC961 (Assigned Protocols),
2228 * the urgent pointer points to the last octet
2229 * of urgent data. We continue, however,
2230 * to consider it to indicate the first octet
2231 * of data past the urgent section as the original
2232 * spec states (in one of two places).
2233 */
2234 if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2235 tp->rcv_up = th->th_seq + th->th_urp;
2236 so->so_oobmark = so->so_rcv.sb_cc +
2237 (tp->rcv_up - tp->rcv_nxt) - 1;
2238 if (so->so_oobmark == 0)
2239 so->so_state |= SS_RCVATMARK;
2240 sohasoutofband(so);
2241 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2242 }
2243 /*
2244 * Remove out of band data so doesn't get presented to user.
2245 * This can happen independent of advancing the URG pointer,
2246 * but if two URG's are pending at once, some out-of-band
2247 * data may creep in... ick.
2248 */
2249 if (th->th_urp <= (u_int16_t) tlen
2250 #ifdef SO_OOBINLINE
2251 && (so->so_options & SO_OOBINLINE) == 0
2252 #endif
2253 )
2254 tcp_pulloutofband(so, th, m, hdroptlen);
2255 } else
2256 /*
2257 * If no out of band data is expected,
2258 * pull receive urgent pointer along
2259 * with the receive window.
2260 */
2261 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2262 tp->rcv_up = tp->rcv_nxt;
2263 dodata: /* XXX */
2264
2265 /*
2266 * Process the segment text, merging it into the TCP sequencing queue,
2267 * and arranging for acknowledgement of receipt if necessary.
2268 * This process logically involves adjusting tp->rcv_wnd as data
2269 * is presented to the user (this happens in tcp_usrreq.c,
2270 * case PRU_RCVD). If a FIN has already been received on this
2271 * connection then we just ignore the text.
2272 */
2273 if ((tlen || (tiflags & TH_FIN)) &&
2274 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2275 /*
2276 * Insert segment ti into reassembly queue of tcp with
2277 * control block tp. Return TH_FIN if reassembly now includes
2278 * a segment with FIN. The macro form does the common case
2279 * inline (segment is the next to be received on an
2280 * established connection, and the queue is empty),
2281 * avoiding linkage into and removal from the queue and
2282 * repetition of various conversions.
2283 * Set DELACK for segments received in order, but ack
2284 * immediately when segments are out of order
2285 * (so fast retransmit can work).
2286 */
2287 /* NOTE: this was TCP_REASS() macro, but used only once */
2288 TCP_REASS_LOCK(tp);
2289 if (th->th_seq == tp->rcv_nxt &&
2290 TAILQ_FIRST(&tp->segq) == NULL &&
2291 tp->t_state == TCPS_ESTABLISHED) {
2292 TCP_SETUP_ACK(tp, th);
2293 tp->rcv_nxt += tlen;
2294 tiflags = th->th_flags & TH_FIN;
2295 tcpstat.tcps_rcvpack++;
2296 tcpstat.tcps_rcvbyte += tlen;
2297 ND6_HINT(tp);
2298 if (so->so_state & SS_CANTRCVMORE)
2299 m_freem(m);
2300 else {
2301 m_adj(m, hdroptlen);
2302 sbappendstream(&(so)->so_rcv, m);
2303 }
2304 sorwakeup(so);
2305 } else {
2306 m_adj(m, hdroptlen);
2307 tiflags = tcp_reass(tp, th, m, &tlen);
2308 tp->t_flags |= TF_ACKNOW;
2309 }
2310 TCP_REASS_UNLOCK(tp);
2311
2312 /*
2313 * Note the amount of data that peer has sent into
2314 * our window, in order to estimate the sender's
2315 * buffer size.
2316 */
2317 len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2318 } else {
2319 m_freem(m);
2320 m = NULL;
2321 tiflags &= ~TH_FIN;
2322 }
2323
2324 /*
2325 * If FIN is received ACK the FIN and let the user know
2326 * that the connection is closing. Ignore a FIN received before
2327 * the connection is fully established.
2328 */
2329 if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2330 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2331 socantrcvmore(so);
2332 tp->t_flags |= TF_ACKNOW;
2333 tp->rcv_nxt++;
2334 }
2335 switch (tp->t_state) {
2336
2337 /*
2338 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2339 */
2340 case TCPS_ESTABLISHED:
2341 tp->t_state = TCPS_CLOSE_WAIT;
2342 break;
2343
2344 /*
2345 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2346 * enter the CLOSING state.
2347 */
2348 case TCPS_FIN_WAIT_1:
2349 tp->t_state = TCPS_CLOSING;
2350 break;
2351
2352 /*
2353 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2354 * starting the time-wait timer, turning off the other
2355 * standard timers.
2356 */
2357 case TCPS_FIN_WAIT_2:
2358 tp->t_state = TCPS_TIME_WAIT;
2359 tcp_canceltimers(tp);
2360 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2361 soisdisconnected(so);
2362 break;
2363
2364 /*
2365 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2366 */
2367 case TCPS_TIME_WAIT:
2368 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2369 break;
2370 }
2371 }
2372 #ifdef TCP_DEBUG
2373 if (so->so_options & SO_DEBUG)
2374 tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
2375 #endif
2376
2377 /*
2378 * Return any desired output.
2379 */
2380 if (needoutput || (tp->t_flags & TF_ACKNOW))
2381 (void) tcp_output(tp);
2382 if (tcp_saveti)
2383 m_freem(tcp_saveti);
2384 return;
2385
2386 badsyn:
2387 /*
2388 * Received a bad SYN. Increment counters and dropwithreset.
2389 */
2390 tcpstat.tcps_badsyn++;
2391 tp = NULL;
2392 goto dropwithreset;
2393
2394 dropafterack:
2395 /*
2396 * Generate an ACK dropping incoming segment if it occupies
2397 * sequence space, where the ACK reflects our state.
2398 */
2399 if (tiflags & TH_RST)
2400 goto drop;
2401 m_freem(m);
2402 tp->t_flags |= TF_ACKNOW;
2403 (void) tcp_output(tp);
2404 if (tcp_saveti)
2405 m_freem(tcp_saveti);
2406 return;
2407
2408 dropwithreset_ratelim:
2409 /*
2410 * We may want to rate-limit RSTs in certain situations,
2411 * particularly if we are sending an RST in response to
2412 * an attempt to connect to or otherwise communicate with
2413 * a port for which we have no socket.
2414 */
2415 if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
2416 tcp_rst_ppslim) == 0) {
2417 /* XXX stat */
2418 goto drop;
2419 }
2420 /* ...fall into dropwithreset... */
2421
2422 dropwithreset:
2423 /*
2424 * Generate a RST, dropping incoming segment.
2425 * Make ACK acceptable to originator of segment.
2426 */
2427 if (tiflags & TH_RST)
2428 goto drop;
2429
2430 switch (af) {
2431 #ifdef INET6
2432 case AF_INET6:
2433 /* For following calls to tcp_respond */
2434 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
2435 goto drop;
2436 break;
2437 #endif /* INET6 */
2438 case AF_INET:
2439 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
2440 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2441 goto drop;
2442 }
2443
2444 if (tiflags & TH_ACK)
2445 (void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
2446 else {
2447 if (tiflags & TH_SYN)
2448 tlen++;
2449 (void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
2450 TH_RST|TH_ACK);
2451 }
2452 if (tcp_saveti)
2453 m_freem(tcp_saveti);
2454 return;
2455
2456 badcsum:
2457 tcpstat.tcps_rcvbadsum++;
2458 drop:
2459 /*
2460 * Drop space held by incoming segment and return.
2461 */
2462 if (tp) {
2463 if (tp->t_inpcb)
2464 so = tp->t_inpcb->inp_socket;
2465 #ifdef INET6
2466 else if (tp->t_in6pcb)
2467 so = tp->t_in6pcb->in6p_socket;
2468 #endif
2469 else
2470 so = NULL;
2471 #ifdef TCP_DEBUG
2472 if (so && (so->so_options & SO_DEBUG) != 0)
2473 tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
2474 #endif
2475 }
2476 if (tcp_saveti)
2477 m_freem(tcp_saveti);
2478 m_freem(m);
2479 return;
2480 }
2481
2482 void
2483 tcp_dooptions(tp, cp, cnt, th, oi)
2484 struct tcpcb *tp;
2485 u_char *cp;
2486 int cnt;
2487 struct tcphdr *th;
2488 struct tcp_opt_info *oi;
2489 {
2490 u_int16_t mss;
2491 int opt, optlen;
2492
2493 for (; cnt > 0; cnt -= optlen, cp += optlen) {
2494 opt = cp[0];
2495 if (opt == TCPOPT_EOL)
2496 break;
2497 if (opt == TCPOPT_NOP)
2498 optlen = 1;
2499 else {
2500 if (cnt < 2)
2501 break;
2502 optlen = cp[1];
2503 if (optlen < 2 || optlen > cnt)
2504 break;
2505 }
2506 switch (opt) {
2507
2508 default:
2509 continue;
2510
2511 case TCPOPT_MAXSEG:
2512 if (optlen != TCPOLEN_MAXSEG)
2513 continue;
2514 if (!(th->th_flags & TH_SYN))
2515 continue;
2516 bcopy(cp + 2, &mss, sizeof(mss));
2517 oi->maxseg = ntohs(mss);
2518 break;
2519
2520 case TCPOPT_WINDOW:
2521 if (optlen != TCPOLEN_WINDOW)
2522 continue;
2523 if (!(th->th_flags & TH_SYN))
2524 continue;
2525 tp->t_flags |= TF_RCVD_SCALE;
2526 tp->requested_s_scale = cp[2];
2527 if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
2528 #if 0 /*XXX*/
2529 char *p;
2530
2531 if (ip)
2532 p = ntohl(ip->ip_src);
2533 #ifdef INET6
2534 else if (ip6)
2535 p = ip6_sprintf(&ip6->ip6_src);
2536 #endif
2537 else
2538 p = "(unknown)";
2539 log(LOG_ERR, "TCP: invalid wscale %d from %s, "
2540 "assuming %d\n",
2541 tp->requested_s_scale, p,
2542 TCP_MAX_WINSHIFT);
2543 #else
2544 log(LOG_ERR, "TCP: invalid wscale %d, "
2545 "assuming %d\n",
2546 tp->requested_s_scale,
2547 TCP_MAX_WINSHIFT);
2548 #endif
2549 tp->requested_s_scale = TCP_MAX_WINSHIFT;
2550 }
2551 break;
2552
2553 case TCPOPT_TIMESTAMP:
2554 if (optlen != TCPOLEN_TIMESTAMP)
2555 continue;
2556 oi->ts_present = 1;
2557 bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
2558 NTOHL(oi->ts_val);
2559 bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
2560 NTOHL(oi->ts_ecr);
2561
2562 /*
2563 * A timestamp received in a SYN makes
2564 * it ok to send timestamp requests and replies.
2565 */
2566 if (th->th_flags & TH_SYN) {
2567 tp->t_flags |= TF_RCVD_TSTMP;
2568 tp->ts_recent = oi->ts_val;
2569 tp->ts_recent_age = TCP_TIMESTAMP(tp);
2570 }
2571 break;
2572 case TCPOPT_SACK_PERMITTED:
2573 if (optlen != TCPOLEN_SACK_PERMITTED)
2574 continue;
2575 if (!(th->th_flags & TH_SYN))
2576 continue;
2577 tp->t_flags &= ~TF_CANT_TXSACK;
2578 break;
2579
2580 case TCPOPT_SACK:
2581 if (tp->t_flags & TF_IGNR_RXSACK)
2582 continue;
2583 if (optlen % 8 != 2 || optlen < 10)
2584 continue;
2585 cp += 2;
2586 optlen -= 2;
2587 for (; optlen > 0; cp -= 8, optlen -= 8) {
2588 tcp_seq lwe, rwe;
2589 bcopy((char *)cp, (char *) &lwe, sizeof(lwe));
2590 NTOHL(lwe);
2591 bcopy((char *)cp, (char *) &rwe, sizeof(rwe));
2592 NTOHL(rwe);
2593 /* tcp_mark_sacked(tp, lwe, rwe); */
2594 }
2595 break;
2596 }
2597 }
2598 }
2599
2600 /*
2601 * Pull out of band byte out of a segment so
2602 * it doesn't appear in the user's data queue.
2603 * It is still reflected in the segment length for
2604 * sequencing purposes.
2605 */
2606 void
2607 tcp_pulloutofband(so, th, m, off)
2608 struct socket *so;
2609 struct tcphdr *th;
2610 struct mbuf *m;
2611 int off;
2612 {
2613 int cnt = off + th->th_urp - 1;
2614
2615 while (cnt >= 0) {
2616 if (m->m_len > cnt) {
2617 char *cp = mtod(m, caddr_t) + cnt;
2618 struct tcpcb *tp = sototcpcb(so);
2619
2620 tp->t_iobc = *cp;
2621 tp->t_oobflags |= TCPOOB_HAVEDATA;
2622 bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
2623 m->m_len--;
2624 return;
2625 }
2626 cnt -= m->m_len;
2627 m = m->m_next;
2628 if (m == 0)
2629 break;
2630 }
2631 panic("tcp_pulloutofband");
2632 }
2633
2634 /*
2635 * Collect new round-trip time estimate
2636 * and update averages and current timeout.
2637 */
2638 void
2639 tcp_xmit_timer(tp, rtt)
2640 struct tcpcb *tp;
2641 uint32_t rtt;
2642 {
2643 int32_t delta;
2644
2645 tcpstat.tcps_rttupdated++;
2646 if (tp->t_srtt != 0) {
2647 /*
2648 * srtt is stored as fixed point with 3 bits after the
2649 * binary point (i.e., scaled by 8). The following magic
2650 * is equivalent to the smoothing algorithm in rfc793 with
2651 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2652 * point). Adjust rtt to origin 0.
2653 */
2654 delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
2655 if ((tp->t_srtt += delta) <= 0)
2656 tp->t_srtt = 1 << 2;
2657 /*
2658 * We accumulate a smoothed rtt variance (actually, a
2659 * smoothed mean difference), then set the retransmit
2660 * timer to smoothed rtt + 4 times the smoothed variance.
2661 * rttvar is stored as fixed point with 2 bits after the
2662 * binary point (scaled by 4). The following is
2663 * equivalent to rfc793 smoothing with an alpha of .75
2664 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces
2665 * rfc793's wired-in beta.
2666 */
2667 if (delta < 0)
2668 delta = -delta;
2669 delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
2670 if ((tp->t_rttvar += delta) <= 0)
2671 tp->t_rttvar = 1 << 2;
2672 } else {
2673 /*
2674 * No rtt measurement yet - use the unsmoothed rtt.
2675 * Set the variance to half the rtt (so our first
2676 * retransmit happens at 3*rtt).
2677 */
2678 tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
2679 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
2680 }
2681 tp->t_rtttime = 0;
2682 tp->t_rxtshift = 0;
2683
2684 /*
2685 * the retransmit should happen at rtt + 4 * rttvar.
2686 * Because of the way we do the smoothing, srtt and rttvar
2687 * will each average +1/2 tick of bias. When we compute
2688 * the retransmit timer, we want 1/2 tick of rounding and
2689 * 1 extra tick because of +-1/2 tick uncertainty in the
2690 * firing of the timer. The bias will give us exactly the
2691 * 1.5 tick we need. But, because the bias is
2692 * statistical, we have to test that we don't drop below
2693 * the minimum feasible timer (which is 2 ticks).
2694 */
2695 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
2696 max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
2697
2698 /*
2699 * We received an ack for a packet that wasn't retransmitted;
2700 * it is probably safe to discard any error indications we've
2701 * received recently. This isn't quite right, but close enough
2702 * for now (a route might have failed after we sent a segment,
2703 * and the return path might not be symmetrical).
2704 */
2705 tp->t_softerror = 0;
2706 }
2707
2708 /*
2709 * Checks for partial ack. If partial ack arrives, force the retransmission
2710 * of the next unacknowledged segment, do not clear tp->t_dupacks, and return
2711 * 1. By setting snd_nxt to th_ack, this forces retransmission timer to
2712 * be started again. If the ack advances at least to tp->snd_recover, return 0.
2713 */
2714 int
2715 tcp_newreno(tp, th)
2716 struct tcpcb *tp;
2717 struct tcphdr *th;
2718 {
2719 tcp_seq onxt = tp->snd_nxt;
2720 u_long ocwnd = tp->snd_cwnd;
2721
2722 if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2723 /*
2724 * snd_una has not yet been updated and the socket's send
2725 * buffer has not yet drained off the ACK'd data, so we
2726 * have to leave snd_una as it was to get the correct data
2727 * offset in tcp_output().
2728 */
2729 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2730 tp->t_rtttime = 0;
2731 tp->snd_nxt = th->th_ack;
2732 /*
2733 * Set snd_cwnd to one segment beyond ACK'd offset. snd_una
2734 * is not yet updated when we're called.
2735 */
2736 tp->snd_cwnd = tp->t_segsz + (th->th_ack - tp->snd_una);
2737 (void) tcp_output(tp);
2738 tp->snd_cwnd = ocwnd;
2739 if (SEQ_GT(onxt, tp->snd_nxt))
2740 tp->snd_nxt = onxt;
2741 /*
2742 * Partial window deflation. Relies on fact that tp->snd_una
2743 * not updated yet.
2744 */
2745 tp->snd_cwnd -= (th->th_ack - tp->snd_una - tp->t_segsz);
2746 return 1;
2747 }
2748 return 0;
2749 }
2750
2751
2752 /*
2753 * TCP compressed state engine. Currently used to hold compressed
2754 * state for SYN_RECEIVED.
2755 */
2756
2757 u_long syn_cache_count;
2758 u_int32_t syn_hash1, syn_hash2;
2759
2760 #define SYN_HASH(sa, sp, dp) \
2761 ((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
2762 ((u_int32_t)(sp)))^syn_hash2)))
2763 #ifndef INET6
2764 #define SYN_HASHALL(hash, src, dst) \
2765 do { \
2766 hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
2767 ((struct sockaddr_in *)(src))->sin_port, \
2768 ((struct sockaddr_in *)(dst))->sin_port); \
2769 } while (/*CONSTCOND*/ 0)
2770 #else
2771 #define SYN_HASH6(sa, sp, dp) \
2772 ((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
2773 (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
2774 & 0x7fffffff)
2775
2776 #define SYN_HASHALL(hash, src, dst) \
2777 do { \
2778 switch ((src)->sa_family) { \
2779 case AF_INET: \
2780 hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
2781 ((struct sockaddr_in *)(src))->sin_port, \
2782 ((struct sockaddr_in *)(dst))->sin_port); \
2783 break; \
2784 case AF_INET6: \
2785 hash = SYN_HASH6(&((struct sockaddr_in6 *)(src))->sin6_addr, \
2786 ((struct sockaddr_in6 *)(src))->sin6_port, \
2787 ((struct sockaddr_in6 *)(dst))->sin6_port); \
2788 break; \
2789 default: \
2790 hash = 0; \
2791 } \
2792 } while (/*CONSTCOND*/0)
2793 #endif /* INET6 */
2794
2795 #define SYN_CACHE_RM(sc) \
2796 do { \
2797 TAILQ_REMOVE(&tcp_syn_cache[(sc)->sc_bucketidx].sch_bucket, \
2798 (sc), sc_bucketq); \
2799 (sc)->sc_tp = NULL; \
2800 LIST_REMOVE((sc), sc_tpq); \
2801 tcp_syn_cache[(sc)->sc_bucketidx].sch_length--; \
2802 callout_stop(&(sc)->sc_timer); \
2803 syn_cache_count--; \
2804 } while (/*CONSTCOND*/0)
2805
2806 #define SYN_CACHE_PUT(sc) \
2807 do { \
2808 if ((sc)->sc_ipopts) \
2809 (void) m_free((sc)->sc_ipopts); \
2810 if ((sc)->sc_route4.ro_rt != NULL) \
2811 RTFREE((sc)->sc_route4.ro_rt); \
2812 if (callout_invoking(&(sc)->sc_timer)) \
2813 (sc)->sc_flags |= SCF_DEAD; \
2814 else \
2815 pool_put(&syn_cache_pool, (sc)); \
2816 } while (/*CONSTCOND*/0)
2817
2818 struct pool syn_cache_pool;
2819
2820 /*
2821 * We don't estimate RTT with SYNs, so each packet starts with the default
2822 * RTT and each timer step has a fixed timeout value.
2823 */
2824 #define SYN_CACHE_TIMER_ARM(sc) \
2825 do { \
2826 TCPT_RANGESET((sc)->sc_rxtcur, \
2827 TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN, \
2828 TCPTV_REXMTMAX); \
2829 callout_reset(&(sc)->sc_timer, \
2830 (sc)->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, (sc)); \
2831 } while (/*CONSTCOND*/0)
2832
2833 #define SYN_CACHE_TIMESTAMP(sc) (tcp_now - (sc)->sc_timebase)
2834
2835 void
2836 syn_cache_init()
2837 {
2838 int i;
2839
2840 /* Initialize the hash buckets. */
2841 for (i = 0; i < tcp_syn_cache_size; i++)
2842 TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
2843
2844 /* Initialize the syn cache pool. */
2845 pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
2846 "synpl", NULL);
2847 }
2848
2849 void
2850 syn_cache_insert(sc, tp)
2851 struct syn_cache *sc;
2852 struct tcpcb *tp;
2853 {
2854 struct syn_cache_head *scp;
2855 struct syn_cache *sc2;
2856 int s;
2857
2858 /*
2859 * If there are no entries in the hash table, reinitialize
2860 * the hash secrets.
2861 */
2862 if (syn_cache_count == 0) {
2863 struct timeval tv;
2864 microtime(&tv);
2865 syn_hash1 = arc4random() ^ (u_long)≻
2866 syn_hash2 = arc4random() ^ tv.tv_usec;
2867 }
2868
2869 SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
2870 sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
2871 scp = &tcp_syn_cache[sc->sc_bucketidx];
2872
2873 /*
2874 * Make sure that we don't overflow the per-bucket
2875 * limit or the total cache size limit.
2876 */
2877 s = splsoftnet();
2878 if (scp->sch_length >= tcp_syn_bucket_limit) {
2879 tcpstat.tcps_sc_bucketoverflow++;
2880 /*
2881 * The bucket is full. Toss the oldest element in the
2882 * bucket. This will be the first entry in the bucket.
2883 */
2884 sc2 = TAILQ_FIRST(&scp->sch_bucket);
2885 #ifdef DIAGNOSTIC
2886 /*
2887 * This should never happen; we should always find an
2888 * entry in our bucket.
2889 */
2890 if (sc2 == NULL)
2891 panic("syn_cache_insert: bucketoverflow: impossible");
2892 #endif
2893 SYN_CACHE_RM(sc2);
2894 SYN_CACHE_PUT(sc2);
2895 } else if (syn_cache_count >= tcp_syn_cache_limit) {
2896 struct syn_cache_head *scp2, *sce;
2897
2898 tcpstat.tcps_sc_overflowed++;
2899 /*
2900 * The cache is full. Toss the oldest entry in the
2901 * first non-empty bucket we can find.
2902 *
2903 * XXX We would really like to toss the oldest
2904 * entry in the cache, but we hope that this
2905 * condition doesn't happen very often.
2906 */
2907 scp2 = scp;
2908 if (TAILQ_EMPTY(&scp2->sch_bucket)) {
2909 sce = &tcp_syn_cache[tcp_syn_cache_size];
2910 for (++scp2; scp2 != scp; scp2++) {
2911 if (scp2 >= sce)
2912 scp2 = &tcp_syn_cache[0];
2913 if (! TAILQ_EMPTY(&scp2->sch_bucket))
2914 break;
2915 }
2916 #ifdef DIAGNOSTIC
2917 /*
2918 * This should never happen; we should always find a
2919 * non-empty bucket.
2920 */
2921 if (scp2 == scp)
2922 panic("syn_cache_insert: cacheoverflow: "
2923 "impossible");
2924 #endif
2925 }
2926 sc2 = TAILQ_FIRST(&scp2->sch_bucket);
2927 SYN_CACHE_RM(sc2);
2928 SYN_CACHE_PUT(sc2);
2929 }
2930
2931 /*
2932 * Initialize the entry's timer.
2933 */
2934 sc->sc_rxttot = 0;
2935 sc->sc_rxtshift = 0;
2936 SYN_CACHE_TIMER_ARM(sc);
2937
2938 /* Link it from tcpcb entry */
2939 LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
2940
2941 /* Put it into the bucket. */
2942 TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
2943 scp->sch_length++;
2944 syn_cache_count++;
2945
2946 tcpstat.tcps_sc_added++;
2947 splx(s);
2948 }
2949
2950 /*
2951 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
2952 * If we have retransmitted an entry the maximum number of times, expire
2953 * that entry.
2954 */
2955 void
2956 syn_cache_timer(void *arg)
2957 {
2958 struct syn_cache *sc = arg;
2959 int s;
2960
2961 s = splsoftnet();
2962 callout_ack(&sc->sc_timer);
2963
2964 if (__predict_false(sc->sc_flags & SCF_DEAD)) {
2965 tcpstat.tcps_sc_delayed_free++;
2966 pool_put(&syn_cache_pool, sc);
2967 splx(s);
2968 return;
2969 }
2970
2971 if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
2972 /* Drop it -- too many retransmissions. */
2973 goto dropit;
2974 }
2975
2976 /*
2977 * Compute the total amount of time this entry has
2978 * been on a queue. If this entry has been on longer
2979 * than the keep alive timer would allow, expire it.
2980 */
2981 sc->sc_rxttot += sc->sc_rxtcur;
2982 if (sc->sc_rxttot >= TCPTV_KEEP_INIT)
2983 goto dropit;
2984
2985 tcpstat.tcps_sc_retransmitted++;
2986 (void) syn_cache_respond(sc, NULL);
2987
2988 /* Advance the timer back-off. */
2989 sc->sc_rxtshift++;
2990 SYN_CACHE_TIMER_ARM(sc);
2991
2992 splx(s);
2993 return;
2994
2995 dropit:
2996 tcpstat.tcps_sc_timed_out++;
2997 SYN_CACHE_RM(sc);
2998 SYN_CACHE_PUT(sc);
2999 splx(s);
3000 }
3001
3002 /*
3003 * Remove syn cache created by the specified tcb entry,
3004 * because this does not make sense to keep them
3005 * (if there's no tcb entry, syn cache entry will never be used)
3006 */
3007 void
3008 syn_cache_cleanup(tp)
3009 struct tcpcb *tp;
3010 {
3011 struct syn_cache *sc, *nsc;
3012 int s;
3013
3014 s = splsoftnet();
3015
3016 for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
3017 nsc = LIST_NEXT(sc, sc_tpq);
3018
3019 #ifdef DIAGNOSTIC
3020 if (sc->sc_tp != tp)
3021 panic("invalid sc_tp in syn_cache_cleanup");
3022 #endif
3023 SYN_CACHE_RM(sc);
3024 SYN_CACHE_PUT(sc);
3025 }
3026 /* just for safety */
3027 LIST_INIT(&tp->t_sc);
3028
3029 splx(s);
3030 }
3031
3032 /*
3033 * Find an entry in the syn cache.
3034 */
3035 struct syn_cache *
3036 syn_cache_lookup(src, dst, headp)
3037 struct sockaddr *src;
3038 struct sockaddr *dst;
3039 struct syn_cache_head **headp;
3040 {
3041 struct syn_cache *sc;
3042 struct syn_cache_head *scp;
3043 u_int32_t hash;
3044 int s;
3045
3046 SYN_HASHALL(hash, src, dst);
3047
3048 scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
3049 *headp = scp;
3050 s = splsoftnet();
3051 for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
3052 sc = TAILQ_NEXT(sc, sc_bucketq)) {
3053 if (sc->sc_hash != hash)
3054 continue;
3055 if (!bcmp(&sc->sc_src, src, src->sa_len) &&
3056 !bcmp(&sc->sc_dst, dst, dst->sa_len)) {
3057 splx(s);
3058 return (sc);
3059 }
3060 }
3061 splx(s);
3062 return (NULL);
3063 }
3064
3065 /*
3066 * This function gets called when we receive an ACK for a
3067 * socket in the LISTEN state. We look up the connection
3068 * in the syn cache, and if its there, we pull it out of
3069 * the cache and turn it into a full-blown connection in
3070 * the SYN-RECEIVED state.
3071 *
3072 * The return values may not be immediately obvious, and their effects
3073 * can be subtle, so here they are:
3074 *
3075 * NULL SYN was not found in cache; caller should drop the
3076 * packet and send an RST.
3077 *
3078 * -1 We were unable to create the new connection, and are
3079 * aborting it. An ACK,RST is being sent to the peer
3080 * (unless we got screwey sequence numbners; see below),
3081 * because the 3-way handshake has been completed. Caller
3082 * should not free the mbuf, since we may be using it. If
3083 * we are not, we will free it.
3084 *
3085 * Otherwise, the return value is a pointer to the new socket
3086 * associated with the connection.
3087 */
3088 struct socket *
3089 syn_cache_get(src, dst, th, hlen, tlen, so, m)
3090 struct sockaddr *src;
3091 struct sockaddr *dst;
3092 struct tcphdr *th;
3093 unsigned int hlen, tlen;
3094 struct socket *so;
3095 struct mbuf *m;
3096 {
3097 struct syn_cache *sc;
3098 struct syn_cache_head *scp;
3099 struct inpcb *inp = NULL;
3100 #ifdef INET6
3101 struct in6pcb *in6p = NULL;
3102 #endif
3103 struct tcpcb *tp = 0;
3104 struct mbuf *am;
3105 int s;
3106 struct socket *oso;
3107
3108 s = splsoftnet();
3109 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3110 splx(s);
3111 return (NULL);
3112 }
3113
3114 /*
3115 * Verify the sequence and ack numbers. Try getting the correct
3116 * response again.
3117 */
3118 if ((th->th_ack != sc->sc_iss + 1) ||
3119 SEQ_LEQ(th->th_seq, sc->sc_irs) ||
3120 SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
3121 (void) syn_cache_respond(sc, m);
3122 splx(s);
3123 return ((struct socket *)(-1));
3124 }
3125
3126 /* Remove this cache entry */
3127 SYN_CACHE_RM(sc);
3128 splx(s);
3129
3130 /*
3131 * Ok, create the full blown connection, and set things up
3132 * as they would have been set up if we had created the
3133 * connection when the SYN arrived. If we can't create
3134 * the connection, abort it.
3135 */
3136 /*
3137 * inp still has the OLD in_pcb stuff, set the
3138 * v6-related flags on the new guy, too. This is
3139 * done particularly for the case where an AF_INET6
3140 * socket is bound only to a port, and a v4 connection
3141 * comes in on that port.
3142 * we also copy the flowinfo from the original pcb
3143 * to the new one.
3144 */
3145 oso = so;
3146 so = sonewconn(so, SS_ISCONNECTED);
3147 if (so == NULL)
3148 goto resetandabort;
3149
3150 switch (so->so_proto->pr_domain->dom_family) {
3151 #ifdef INET
3152 case AF_INET:
3153 inp = sotoinpcb(so);
3154 break;
3155 #endif
3156 #ifdef INET6
3157 case AF_INET6:
3158 in6p = sotoin6pcb(so);
3159 break;
3160 #endif
3161 }
3162 switch (src->sa_family) {
3163 #ifdef INET
3164 case AF_INET:
3165 if (inp) {
3166 struct in_ifaddr *ia;
3167 inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
3168 inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
3169 inp->inp_options = ip_srcroute();
3170 INADDR_TO_IA(inp->inp_laddr, ia);
3171 KASSERT(ia != NULL);
3172 KASSERT(inp->inp_ia == NULL);
3173 inp->inp_ia = ia;
3174 LIST_INSERT_HEAD(&ia->ia_inpcbs, inp, inp_ialink);
3175 IFAREF(&ia->ia_ifa);
3176 in_pcbstate(inp, INP_BOUND);
3177 if (inp->inp_options == NULL) {
3178 inp->inp_options = sc->sc_ipopts;
3179 sc->sc_ipopts = NULL;
3180 }
3181 }
3182 #ifdef INET6
3183 else if (in6p) {
3184 /* IPv4 packet to AF_INET6 socket */
3185 bzero(&in6p->in6p_laddr, sizeof(in6p->in6p_laddr));
3186 in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
3187 bcopy(&((struct sockaddr_in *)dst)->sin_addr,
3188 &in6p->in6p_laddr.s6_addr32[3],
3189 sizeof(((struct sockaddr_in *)dst)->sin_addr));
3190 in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
3191 in6totcpcb(in6p)->t_family = AF_INET;
3192 if (sotoin6pcb(oso)->in6p_flags & IN6P_IPV6_V6ONLY)
3193 in6p->in6p_flags |= IN6P_IPV6_V6ONLY;
3194 else
3195 in6p->in6p_flags &= ~IN6P_IPV6_V6ONLY;
3196 }
3197 #endif
3198 break;
3199 #endif
3200 #ifdef INET6
3201 case AF_INET6:
3202 if (in6p) {
3203 in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
3204 in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
3205 #if 0
3206 in6p->in6p_flowinfo = ip6->ip6_flow & IPV6_FLOWINFO_MASK;
3207 /*inp->inp_options = ip6_srcroute();*/ /* soon. */
3208 #endif
3209 }
3210 break;
3211 #endif
3212 }
3213 #ifdef INET6
3214 if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
3215 struct in6pcb *oin6p = sotoin6pcb(oso);
3216 /* inherit socket options from the listening socket */
3217 in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
3218 if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
3219 m_freem(in6p->in6p_options);
3220 in6p->in6p_options = 0;
3221 }
3222 ip6_savecontrol(in6p, &in6p->in6p_options,
3223 mtod(m, struct ip6_hdr *), m);
3224 }
3225 #endif
3226
3227 #if defined(IPSEC) || defined(FAST_IPSEC)
3228 /*
3229 * we make a copy of policy, instead of sharing the policy,
3230 * for better behavior in terms of SA lookup and dead SA removal.
3231 */
3232 if (inp) {
3233 /* copy old policy into new socket's */
3234 if (ipsec_copy_pcbpolicy(sotoinpcb(oso)->inp_sp, inp->inp_sp))
3235 printf("tcp_input: could not copy policy\n");
3236 }
3237 #ifdef INET6
3238 else if (in6p) {
3239 /* copy old policy into new socket's */
3240 if (ipsec_copy_pcbpolicy(sotoin6pcb(oso)->in6p_sp,
3241 in6p->in6p_sp))
3242 printf("tcp_input: could not copy policy\n");
3243 }
3244 #endif
3245 #endif
3246
3247 /*
3248 * Give the new socket our cached route reference.
3249 */
3250 if (inp)
3251 inp->inp_route = sc->sc_route4; /* struct assignment */
3252 #ifdef INET6
3253 else
3254 in6p->in6p_route = sc->sc_route6;
3255 #endif
3256 sc->sc_route4.ro_rt = NULL;
3257
3258 am = m_get(M_DONTWAIT, MT_SONAME); /* XXX */
3259 if (am == NULL)
3260 goto resetandabort;
3261 MCLAIM(am, &tcp_mowner);
3262 am->m_len = src->sa_len;
3263 bcopy(src, mtod(am, caddr_t), src->sa_len);
3264 if (inp) {
3265 if (in_pcbconnect(inp, am)) {
3266 (void) m_free(am);
3267 goto resetandabort;
3268 }
3269 }
3270 #ifdef INET6
3271 else if (in6p) {
3272 if (src->sa_family == AF_INET) {
3273 /* IPv4 packet to AF_INET6 socket */
3274 struct sockaddr_in6 *sin6;
3275 sin6 = mtod(am, struct sockaddr_in6 *);
3276 am->m_len = sizeof(*sin6);
3277 bzero(sin6, sizeof(*sin6));
3278 sin6->sin6_family = AF_INET6;
3279 sin6->sin6_len = sizeof(*sin6);
3280 sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port;
3281 sin6->sin6_addr.s6_addr16[5] = htons(0xffff);
3282 bcopy(&((struct sockaddr_in *)src)->sin_addr,
3283 &sin6->sin6_addr.s6_addr32[3],
3284 sizeof(sin6->sin6_addr.s6_addr32[3]));
3285 }
3286 if (in6_pcbconnect(in6p, am)) {
3287 (void) m_free(am);
3288 goto resetandabort;
3289 }
3290 }
3291 #endif
3292 else {
3293 (void) m_free(am);
3294 goto resetandabort;
3295 }
3296 (void) m_free(am);
3297
3298 if (inp)
3299 tp = intotcpcb(inp);
3300 #ifdef INET6
3301 else if (in6p)
3302 tp = in6totcpcb(in6p);
3303 #endif
3304 else
3305 tp = NULL;
3306 tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
3307 if (sc->sc_request_r_scale != 15) {
3308 tp->requested_s_scale = sc->sc_requested_s_scale;
3309 tp->request_r_scale = sc->sc_request_r_scale;
3310 tp->snd_scale = sc->sc_requested_s_scale;
3311 tp->rcv_scale = sc->sc_request_r_scale;
3312 tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
3313 }
3314 if (sc->sc_flags & SCF_TIMESTAMP)
3315 tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
3316 tp->ts_timebase = sc->sc_timebase;
3317
3318 tp->t_template = tcp_template(tp);
3319 if (tp->t_template == 0) {
3320 tp = tcp_drop(tp, ENOBUFS); /* destroys socket */
3321 so = NULL;
3322 m_freem(m);
3323 goto abort;
3324 }
3325
3326 tp->iss = sc->sc_iss;
3327 tp->irs = sc->sc_irs;
3328 tcp_sendseqinit(tp);
3329 tcp_rcvseqinit(tp);
3330 tp->t_state = TCPS_SYN_RECEIVED;
3331 TCP_TIMER_ARM(tp, TCPT_KEEP, TCPTV_KEEP_INIT);
3332 tcpstat.tcps_accepts++;
3333
3334 /* Initialize tp->t_ourmss before we deal with the peer's! */
3335 tp->t_ourmss = sc->sc_ourmaxseg;
3336 tcp_mss_from_peer(tp, sc->sc_peermaxseg);
3337
3338 /*
3339 * Initialize the initial congestion window. If we
3340 * had to retransmit the SYN,ACK, we must initialize cwnd
3341 * to 1 segment (i.e. the Loss Window).
3342 */
3343 if (sc->sc_rxtshift)
3344 tp->snd_cwnd = tp->t_peermss;
3345 else {
3346 int ss = tcp_init_win;
3347 #ifdef INET
3348 if (inp != NULL && in_localaddr(inp->inp_faddr))
3349 ss = tcp_init_win_local;
3350 #endif
3351 #ifdef INET6
3352 if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
3353 ss = tcp_init_win_local;
3354 #endif
3355 tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
3356 }
3357
3358 tcp_rmx_rtt(tp);
3359 tp->snd_wl1 = sc->sc_irs;
3360 tp->rcv_up = sc->sc_irs + 1;
3361
3362 /*
3363 * This is what whould have happened in tcp_output() when
3364 * the SYN,ACK was sent.
3365 */
3366 tp->snd_up = tp->snd_una;
3367 tp->snd_max = tp->snd_nxt = tp->iss+1;
3368 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
3369 if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
3370 tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
3371 tp->last_ack_sent = tp->rcv_nxt;
3372
3373 tcpstat.tcps_sc_completed++;
3374 SYN_CACHE_PUT(sc);
3375 return (so);
3376
3377 resetandabort:
3378 (void) tcp_respond(NULL, m, m, th,
3379 th->th_seq + tlen, (tcp_seq)0, TH_RST|TH_ACK);
3380 abort:
3381 if (so != NULL)
3382 (void) soabort(so);
3383 SYN_CACHE_PUT(sc);
3384 tcpstat.tcps_sc_aborted++;
3385 return ((struct socket *)(-1));
3386 }
3387
3388 /*
3389 * This function is called when we get a RST for a
3390 * non-existent connection, so that we can see if the
3391 * connection is in the syn cache. If it is, zap it.
3392 */
3393
3394 void
3395 syn_cache_reset(src, dst, th)
3396 struct sockaddr *src;
3397 struct sockaddr *dst;
3398 struct tcphdr *th;
3399 {
3400 struct syn_cache *sc;
3401 struct syn_cache_head *scp;
3402 int s = splsoftnet();
3403
3404 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3405 splx(s);
3406 return;
3407 }
3408 if (SEQ_LT(th->th_seq, sc->sc_irs) ||
3409 SEQ_GT(th->th_seq, sc->sc_irs+1)) {
3410 splx(s);
3411 return;
3412 }
3413 SYN_CACHE_RM(sc);
3414 splx(s);
3415 tcpstat.tcps_sc_reset++;
3416 SYN_CACHE_PUT(sc);
3417 }
3418
3419 void
3420 syn_cache_unreach(src, dst, th)
3421 struct sockaddr *src;
3422 struct sockaddr *dst;
3423 struct tcphdr *th;
3424 {
3425 struct syn_cache *sc;
3426 struct syn_cache_head *scp;
3427 int s;
3428
3429 s = splsoftnet();
3430 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3431 splx(s);
3432 return;
3433 }
3434 /* If the sequence number != sc_iss, then it's a bogus ICMP msg */
3435 if (ntohl (th->th_seq) != sc->sc_iss) {
3436 splx(s);
3437 return;
3438 }
3439
3440 /*
3441 * If we've rertransmitted 3 times and this is our second error,
3442 * we remove the entry. Otherwise, we allow it to continue on.
3443 * This prevents us from incorrectly nuking an entry during a
3444 * spurious network outage.
3445 *
3446 * See tcp_notify().
3447 */
3448 if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
3449 sc->sc_flags |= SCF_UNREACH;
3450 splx(s);
3451 return;
3452 }
3453
3454 SYN_CACHE_RM(sc);
3455 splx(s);
3456 tcpstat.tcps_sc_unreach++;
3457 SYN_CACHE_PUT(sc);
3458 }
3459
3460 /*
3461 * Given a LISTEN socket and an inbound SYN request, add
3462 * this to the syn cache, and send back a segment:
3463 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
3464 * to the source.
3465 *
3466 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
3467 * Doing so would require that we hold onto the data and deliver it
3468 * to the application. However, if we are the target of a SYN-flood
3469 * DoS attack, an attacker could send data which would eventually
3470 * consume all available buffer space if it were ACKed. By not ACKing
3471 * the data, we avoid this DoS scenario.
3472 */
3473
3474 int
3475 syn_cache_add(src, dst, th, hlen, so, m, optp, optlen, oi)
3476 struct sockaddr *src;
3477 struct sockaddr *dst;
3478 struct tcphdr *th;
3479 unsigned int hlen;
3480 struct socket *so;
3481 struct mbuf *m;
3482 u_char *optp;
3483 int optlen;
3484 struct tcp_opt_info *oi;
3485 {
3486 struct tcpcb tb, *tp;
3487 long win;
3488 struct syn_cache *sc;
3489 struct syn_cache_head *scp;
3490 struct mbuf *ipopts;
3491
3492 tp = sototcpcb(so);
3493
3494 /*
3495 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
3496 *
3497 * Note this check is performed in tcp_input() very early on.
3498 */
3499
3500 /*
3501 * Initialize some local state.
3502 */
3503 win = sbspace(&so->so_rcv);
3504 if (win > TCP_MAXWIN)
3505 win = TCP_MAXWIN;
3506
3507 switch (src->sa_family) {
3508 #ifdef INET
3509 case AF_INET:
3510 /*
3511 * Remember the IP options, if any.
3512 */
3513 ipopts = ip_srcroute();
3514 break;
3515 #endif
3516 default:
3517 ipopts = NULL;
3518 }
3519
3520 if (optp) {
3521 tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
3522 tcp_dooptions(&tb, optp, optlen, th, oi);
3523 } else
3524 tb.t_flags = 0;
3525
3526 /*
3527 * See if we already have an entry for this connection.
3528 * If we do, resend the SYN,ACK. We do not count this
3529 * as a retransmission (XXX though maybe we should).
3530 */
3531 if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
3532 tcpstat.tcps_sc_dupesyn++;
3533 if (ipopts) {
3534 /*
3535 * If we were remembering a previous source route,
3536 * forget it and use the new one we've been given.
3537 */
3538 if (sc->sc_ipopts)
3539 (void) m_free(sc->sc_ipopts);
3540 sc->sc_ipopts = ipopts;
3541 }
3542 sc->sc_timestamp = tb.ts_recent;
3543 if (syn_cache_respond(sc, m) == 0) {
3544 tcpstat.tcps_sndacks++;
3545 tcpstat.tcps_sndtotal++;
3546 }
3547 return (1);
3548 }
3549
3550 sc = pool_get(&syn_cache_pool, PR_NOWAIT);
3551 if (sc == NULL) {
3552 if (ipopts)
3553 (void) m_free(ipopts);
3554 return (0);
3555 }
3556
3557 /*
3558 * Fill in the cache, and put the necessary IP and TCP
3559 * options into the reply.
3560 */
3561 bzero(sc, sizeof(struct syn_cache));
3562 callout_init(&sc->sc_timer);
3563 bcopy(src, &sc->sc_src, src->sa_len);
3564 bcopy(dst, &sc->sc_dst, dst->sa_len);
3565 sc->sc_flags = 0;
3566 sc->sc_ipopts = ipopts;
3567 sc->sc_irs = th->th_seq;
3568 switch (src->sa_family) {
3569 #ifdef INET
3570 case AF_INET:
3571 {
3572 struct sockaddr_in *srcin = (void *) src;
3573 struct sockaddr_in *dstin = (void *) dst;
3574
3575 sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
3576 &srcin->sin_addr, dstin->sin_port,
3577 srcin->sin_port, sizeof(dstin->sin_addr), 0);
3578 break;
3579 }
3580 #endif /* INET */
3581 #ifdef INET6
3582 case AF_INET6:
3583 {
3584 struct sockaddr_in6 *srcin6 = (void *) src;
3585 struct sockaddr_in6 *dstin6 = (void *) dst;
3586
3587 sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
3588 &srcin6->sin6_addr, dstin6->sin6_port,
3589 srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
3590 break;
3591 }
3592 #endif /* INET6 */
3593 }
3594 sc->sc_peermaxseg = oi->maxseg;
3595 sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
3596 m->m_pkthdr.rcvif : NULL,
3597 sc->sc_src.sa.sa_family);
3598 sc->sc_win = win;
3599 sc->sc_timebase = tcp_now; /* see tcp_newtcpcb() */
3600 sc->sc_timestamp = tb.ts_recent;
3601 if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
3602 (TF_REQ_TSTMP|TF_RCVD_TSTMP))
3603 sc->sc_flags |= SCF_TIMESTAMP;
3604 if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
3605 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
3606 sc->sc_requested_s_scale = tb.requested_s_scale;
3607 sc->sc_request_r_scale = 0;
3608 while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
3609 TCP_MAXWIN << sc->sc_request_r_scale <
3610 so->so_rcv.sb_hiwat)
3611 sc->sc_request_r_scale++;
3612 } else {
3613 sc->sc_requested_s_scale = 15;
3614 sc->sc_request_r_scale = 15;
3615 }
3616 sc->sc_tp = tp;
3617 if (syn_cache_respond(sc, m) == 0) {
3618 syn_cache_insert(sc, tp);
3619 tcpstat.tcps_sndacks++;
3620 tcpstat.tcps_sndtotal++;
3621 } else {
3622 SYN_CACHE_PUT(sc);
3623 tcpstat.tcps_sc_dropped++;
3624 }
3625 return (1);
3626 }
3627
3628 int
3629 syn_cache_respond(sc, m)
3630 struct syn_cache *sc;
3631 struct mbuf *m;
3632 {
3633 struct route *ro;
3634 u_int8_t *optp;
3635 int optlen, error;
3636 u_int16_t tlen;
3637 struct ip *ip = NULL;
3638 #ifdef INET6
3639 struct ip6_hdr *ip6 = NULL;
3640 #endif
3641 struct tcpcb *tp;
3642 struct tcphdr *th;
3643 u_int hlen;
3644 struct socket *so;
3645
3646 switch (sc->sc_src.sa.sa_family) {
3647 case AF_INET:
3648 hlen = sizeof(struct ip);
3649 ro = &sc->sc_route4;
3650 break;
3651 #ifdef INET6
3652 case AF_INET6:
3653 hlen = sizeof(struct ip6_hdr);
3654 ro = (struct route *)&sc->sc_route6;
3655 break;
3656 #endif
3657 default:
3658 if (m)
3659 m_freem(m);
3660 return EAFNOSUPPORT;
3661 }
3662
3663 /* Compute the size of the TCP options. */
3664 optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
3665 ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
3666
3667 tlen = hlen + sizeof(struct tcphdr) + optlen;
3668
3669 /*
3670 * Create the IP+TCP header from scratch.
3671 */
3672 if (m)
3673 m_freem(m);
3674 #ifdef DIAGNOSTIC
3675 if (max_linkhdr + tlen > MCLBYTES)
3676 return (ENOBUFS);
3677 #endif
3678 MGETHDR(m, M_DONTWAIT, MT_DATA);
3679 if (m && tlen > MHLEN) {
3680 MCLGET(m, M_DONTWAIT);
3681 if ((m->m_flags & M_EXT) == 0) {
3682 m_freem(m);
3683 m = NULL;
3684 }
3685 }
3686 if (m == NULL)
3687 return (ENOBUFS);
3688 MCLAIM(m, &tcp_tx_mowner);
3689
3690 /* Fixup the mbuf. */
3691 m->m_data += max_linkhdr;
3692 m->m_len = m->m_pkthdr.len = tlen;
3693 if (sc->sc_tp) {
3694 struct socket *so;
3695
3696 tp = sc->sc_tp;
3697 if (tp->t_inpcb)
3698 so = tp->t_inpcb->inp_socket;
3699 #ifdef INET6
3700 else if (tp->t_in6pcb)
3701 so = tp->t_in6pcb->in6p_socket;
3702 #endif
3703 else
3704 so = NULL;
3705 #ifdef IPSEC
3706 /* use IPsec policy on listening socket, on SYN ACK */
3707 if (ipsec_setsocket(m, so) != 0) {
3708 m_freem(m);
3709 return ENOBUFS;
3710 }
3711 #endif
3712 }
3713 m->m_pkthdr.rcvif = NULL;
3714 memset(mtod(m, u_char *), 0, tlen);
3715
3716 switch (sc->sc_src.sa.sa_family) {
3717 case AF_INET:
3718 ip = mtod(m, struct ip *);
3719 ip->ip_dst = sc->sc_src.sin.sin_addr;
3720 ip->ip_src = sc->sc_dst.sin.sin_addr;
3721 ip->ip_p = IPPROTO_TCP;
3722 th = (struct tcphdr *)(ip + 1);
3723 th->th_dport = sc->sc_src.sin.sin_port;
3724 th->th_sport = sc->sc_dst.sin.sin_port;
3725 break;
3726 #ifdef INET6
3727 case AF_INET6:
3728 ip6 = mtod(m, struct ip6_hdr *);
3729 ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
3730 ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
3731 ip6->ip6_nxt = IPPROTO_TCP;
3732 /* ip6_plen will be updated in ip6_output() */
3733 th = (struct tcphdr *)(ip6 + 1);
3734 th->th_dport = sc->sc_src.sin6.sin6_port;
3735 th->th_sport = sc->sc_dst.sin6.sin6_port;
3736 break;
3737 #endif
3738 default:
3739 th = NULL;
3740 }
3741
3742 th->th_seq = htonl(sc->sc_iss);
3743 th->th_ack = htonl(sc->sc_irs + 1);
3744 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
3745 th->th_flags = TH_SYN|TH_ACK;
3746 th->th_win = htons(sc->sc_win);
3747 /* th_sum already 0 */
3748 /* th_urp already 0 */
3749
3750 /* Tack on the TCP options. */
3751 optp = (u_int8_t *)(th + 1);
3752 *optp++ = TCPOPT_MAXSEG;
3753 *optp++ = 4;
3754 *optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
3755 *optp++ = sc->sc_ourmaxseg & 0xff;
3756
3757 if (sc->sc_request_r_scale != 15) {
3758 *((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
3759 TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
3760 sc->sc_request_r_scale);
3761 optp += 4;
3762 }
3763
3764 if (sc->sc_flags & SCF_TIMESTAMP) {
3765 u_int32_t *lp = (u_int32_t *)(optp);
3766 /* Form timestamp option as shown in appendix A of RFC 1323. */
3767 *lp++ = htonl(TCPOPT_TSTAMP_HDR);
3768 *lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
3769 *lp = htonl(sc->sc_timestamp);
3770 optp += TCPOLEN_TSTAMP_APPA;
3771 }
3772
3773 /* Compute the packet's checksum. */
3774 switch (sc->sc_src.sa.sa_family) {
3775 case AF_INET:
3776 ip->ip_len = htons(tlen - hlen);
3777 th->th_sum = 0;
3778 th->th_sum = in_cksum(m, tlen);
3779 break;
3780 #ifdef INET6
3781 case AF_INET6:
3782 ip6->ip6_plen = htons(tlen - hlen);
3783 th->th_sum = 0;
3784 th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
3785 break;
3786 #endif
3787 }
3788
3789 /*
3790 * Fill in some straggling IP bits. Note the stack expects
3791 * ip_len to be in host order, for convenience.
3792 */
3793 switch (sc->sc_src.sa.sa_family) {
3794 #ifdef INET
3795 case AF_INET:
3796 ip->ip_len = htons(tlen);
3797 ip->ip_ttl = ip_defttl;
3798 /* XXX tos? */
3799 break;
3800 #endif
3801 #ifdef INET6
3802 case AF_INET6:
3803 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
3804 ip6->ip6_vfc |= IPV6_VERSION;
3805 ip6->ip6_plen = htons(tlen - hlen);
3806 /* ip6_hlim will be initialized afterwards */
3807 /* XXX flowlabel? */
3808 break;
3809 #endif
3810 }
3811
3812 /* XXX use IPsec policy on listening socket, on SYN ACK */
3813 tp = sc->sc_tp;
3814
3815 switch (sc->sc_src.sa.sa_family) {
3816 #ifdef INET
3817 case AF_INET:
3818 error = ip_output(m, sc->sc_ipopts, ro,
3819 (ip_mtudisc ? IP_MTUDISC : 0),
3820 (struct ip_moptions *)NULL, so);
3821 break;
3822 #endif
3823 #ifdef INET6
3824 case AF_INET6:
3825 ip6->ip6_hlim = in6_selecthlim(NULL,
3826 ro->ro_rt ? ro->ro_rt->rt_ifp : NULL);
3827
3828 error = ip6_output(m, NULL /*XXX*/, (struct route_in6 *)ro, 0,
3829 (struct ip6_moptions *)0, so, NULL);
3830 break;
3831 #endif
3832 default:
3833 error = EAFNOSUPPORT;
3834 break;
3835 }
3836 return (error);
3837 }
3838