Home | History | Annotate | Line # | Download | only in netinet
tcp_input.c revision 1.178
      1 /*	$NetBSD: tcp_input.c,v 1.178 2003/08/22 21:53:05 itojun Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  *      @(#)COPYRIGHT   1.1 (NRL) 17 January 1995
     34  *
     35  * NRL grants permission for redistribution and use in source and binary
     36  * forms, with or without modification, of the software and documentation
     37  * created at NRL provided that the following conditions are met:
     38  *
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. All advertising materials mentioning features or use of this software
     45  *    must display the following acknowledgements:
     46  *      This product includes software developed by the University of
     47  *      California, Berkeley and its contributors.
     48  *      This product includes software developed at the Information
     49  *      Technology Division, US Naval Research Laboratory.
     50  * 4. Neither the name of the NRL nor the names of its contributors
     51  *    may be used to endorse or promote products derived from this software
     52  *    without specific prior written permission.
     53  *
     54  * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
     55  * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     56  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
     57  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL NRL OR
     58  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
     59  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     60  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
     61  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
     62  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
     63  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
     64  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     65  *
     66  * The views and conclusions contained in the software and documentation
     67  * are those of the authors and should not be interpreted as representing
     68  * official policies, either expressed or implied, of the US Naval
     69  * Research Laboratory (NRL).
     70  */
     71 
     72 /*-
     73  * Copyright (c) 1997, 1998, 1999, 2001 The NetBSD Foundation, Inc.
     74  * All rights reserved.
     75  *
     76  * This code is derived from software contributed to The NetBSD Foundation
     77  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
     78  * Facility, NASA Ames Research Center.
     79  *
     80  * Redistribution and use in source and binary forms, with or without
     81  * modification, are permitted provided that the following conditions
     82  * are met:
     83  * 1. Redistributions of source code must retain the above copyright
     84  *    notice, this list of conditions and the following disclaimer.
     85  * 2. Redistributions in binary form must reproduce the above copyright
     86  *    notice, this list of conditions and the following disclaimer in the
     87  *    documentation and/or other materials provided with the distribution.
     88  * 3. All advertising materials mentioning features or use of this software
     89  *    must display the following acknowledgement:
     90  *	This product includes software developed by the NetBSD
     91  *	Foundation, Inc. and its contributors.
     92  * 4. Neither the name of The NetBSD Foundation nor the names of its
     93  *    contributors may be used to endorse or promote products derived
     94  *    from this software without specific prior written permission.
     95  *
     96  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     97  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     98  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     99  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
    100  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
    101  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
    102  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
    103  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
    104  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
    105  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
    106  * POSSIBILITY OF SUCH DAMAGE.
    107  */
    108 
    109 /*
    110  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
    111  *	The Regents of the University of California.  All rights reserved.
    112  *
    113  * Redistribution and use in source and binary forms, with or without
    114  * modification, are permitted provided that the following conditions
    115  * are met:
    116  * 1. Redistributions of source code must retain the above copyright
    117  *    notice, this list of conditions and the following disclaimer.
    118  * 2. Redistributions in binary form must reproduce the above copyright
    119  *    notice, this list of conditions and the following disclaimer in the
    120  *    documentation and/or other materials provided with the distribution.
    121  * 3. Neither the name of the University nor the names of its contributors
    122  *    may be used to endorse or promote products derived from this software
    123  *    without specific prior written permission.
    124  *
    125  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
    126  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
    127  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
    128  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
    129  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
    130  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
    131  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    132  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    133  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    134  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    135  * SUCH DAMAGE.
    136  *
    137  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
    138  */
    139 
    140 /*
    141  *	TODO list for SYN cache stuff:
    142  *
    143  *	Find room for a "state" field, which is needed to keep a
    144  *	compressed state for TIME_WAIT TCBs.  It's been noted already
    145  *	that this is fairly important for very high-volume web and
    146  *	mail servers, which use a large number of short-lived
    147  *	connections.
    148  */
    149 
    150 #include <sys/cdefs.h>
    151 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.178 2003/08/22 21:53:05 itojun Exp $");
    152 
    153 #include "opt_inet.h"
    154 #include "opt_ipsec.h"
    155 #include "opt_inet_csum.h"
    156 #include "opt_tcp_debug.h"
    157 
    158 #include <sys/param.h>
    159 #include <sys/systm.h>
    160 #include <sys/malloc.h>
    161 #include <sys/mbuf.h>
    162 #include <sys/protosw.h>
    163 #include <sys/socket.h>
    164 #include <sys/socketvar.h>
    165 #include <sys/errno.h>
    166 #include <sys/syslog.h>
    167 #include <sys/pool.h>
    168 #include <sys/domain.h>
    169 #include <sys/kernel.h>
    170 
    171 #include <net/if.h>
    172 #include <net/route.h>
    173 #include <net/if_types.h>
    174 
    175 #include <netinet/in.h>
    176 #include <netinet/in_systm.h>
    177 #include <netinet/ip.h>
    178 #include <netinet/in_pcb.h>
    179 #include <netinet/in_var.h>
    180 #include <netinet/ip_var.h>
    181 
    182 #ifdef INET6
    183 #ifndef INET
    184 #include <netinet/in.h>
    185 #endif
    186 #include <netinet/ip6.h>
    187 #include <netinet6/ip6_var.h>
    188 #include <netinet6/in6_pcb.h>
    189 #include <netinet6/ip6_var.h>
    190 #include <netinet6/in6_var.h>
    191 #include <netinet/icmp6.h>
    192 #include <netinet6/nd6.h>
    193 #endif
    194 
    195 #ifndef INET6
    196 /* always need ip6.h for IP6_EXTHDR_GET */
    197 #include <netinet/ip6.h>
    198 #endif
    199 
    200 #include <netinet/tcp.h>
    201 #include <netinet/tcp_fsm.h>
    202 #include <netinet/tcp_seq.h>
    203 #include <netinet/tcp_timer.h>
    204 #include <netinet/tcp_var.h>
    205 #include <netinet/tcpip.h>
    206 #include <netinet/tcp_debug.h>
    207 
    208 #include <machine/stdarg.h>
    209 
    210 #ifdef IPSEC
    211 #include <netinet6/ipsec.h>
    212 #include <netkey/key.h>
    213 #endif /*IPSEC*/
    214 #ifdef INET6
    215 #include "faith.h"
    216 #if defined(NFAITH) && NFAITH > 0
    217 #include <net/if_faith.h>
    218 #endif
    219 #endif	/* IPSEC */
    220 
    221 #ifdef FAST_IPSEC
    222 #include <netipsec/ipsec.h>
    223 #include <netipsec/key.h>
    224 #endif	/* FAST_IPSEC*/
    225 
    226 
    227 int	tcprexmtthresh = 3;
    228 int	tcp_log_refused;
    229 
    230 static int tcp_rst_ppslim_count = 0;
    231 static struct timeval tcp_rst_ppslim_last;
    232 
    233 #define TCP_PAWS_IDLE	(24 * 24 * 60 * 60 * PR_SLOWHZ)
    234 
    235 /* for modulo comparisons of timestamps */
    236 #define TSTMP_LT(a,b)	((int)((a)-(b)) < 0)
    237 #define TSTMP_GEQ(a,b)	((int)((a)-(b)) >= 0)
    238 
    239 /*
    240  * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
    241  */
    242 #ifdef INET6
    243 #define ND6_HINT(tp) \
    244 do { \
    245 	if (tp && tp->t_in6pcb && tp->t_family == AF_INET6 \
    246 	 && tp->t_in6pcb->in6p_route.ro_rt) { \
    247 		nd6_nud_hint(tp->t_in6pcb->in6p_route.ro_rt, NULL, 0); \
    248 	} \
    249 } while (/*CONSTCOND*/ 0)
    250 #else
    251 #define ND6_HINT(tp)
    252 #endif
    253 
    254 /*
    255  * Macro to compute ACK transmission behavior.  Delay the ACK unless
    256  * we have already delayed an ACK (must send an ACK every two segments).
    257  * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
    258  * option is enabled.
    259  */
    260 #define	TCP_SETUP_ACK(tp, th) \
    261 do { \
    262 	if ((tp)->t_flags & TF_DELACK || \
    263 	    (tcp_ack_on_push && (th)->th_flags & TH_PUSH)) \
    264 		tp->t_flags |= TF_ACKNOW; \
    265 	else \
    266 		TCP_SET_DELACK(tp); \
    267 } while (/*CONSTCOND*/ 0)
    268 
    269 /*
    270  * Convert TCP protocol fields to host order for easier processing.
    271  */
    272 #define	TCP_FIELDS_TO_HOST(th)						\
    273 do {									\
    274 	NTOHL((th)->th_seq);						\
    275 	NTOHL((th)->th_ack);						\
    276 	NTOHS((th)->th_win);						\
    277 	NTOHS((th)->th_urp);						\
    278 } while (/*CONSTCOND*/ 0)
    279 
    280 /*
    281  * ... and reverse the above.
    282  */
    283 #define	TCP_FIELDS_TO_NET(th)						\
    284 do {									\
    285 	HTONL((th)->th_seq);						\
    286 	HTONL((th)->th_ack);						\
    287 	HTONS((th)->th_win);						\
    288 	HTONS((th)->th_urp);						\
    289 } while (/*CONSTCOND*/ 0)
    290 
    291 #ifdef TCP_CSUM_COUNTERS
    292 #include <sys/device.h>
    293 
    294 extern struct evcnt tcp_hwcsum_ok;
    295 extern struct evcnt tcp_hwcsum_bad;
    296 extern struct evcnt tcp_hwcsum_data;
    297 extern struct evcnt tcp_swcsum;
    298 
    299 #define	TCP_CSUM_COUNTER_INCR(ev)	(ev)->ev_count++
    300 
    301 #else
    302 
    303 #define	TCP_CSUM_COUNTER_INCR(ev)	/* nothing */
    304 
    305 #endif /* TCP_CSUM_COUNTERS */
    306 
    307 #ifdef TCP_REASS_COUNTERS
    308 #include <sys/device.h>
    309 
    310 extern struct evcnt tcp_reass_;
    311 extern struct evcnt tcp_reass_empty;
    312 extern struct evcnt tcp_reass_iteration[8];
    313 extern struct evcnt tcp_reass_prependfirst;
    314 extern struct evcnt tcp_reass_prepend;
    315 extern struct evcnt tcp_reass_insert;
    316 extern struct evcnt tcp_reass_inserttail;
    317 extern struct evcnt tcp_reass_append;
    318 extern struct evcnt tcp_reass_appendtail;
    319 extern struct evcnt tcp_reass_overlaptail;
    320 extern struct evcnt tcp_reass_overlapfront;
    321 extern struct evcnt tcp_reass_segdup;
    322 extern struct evcnt tcp_reass_fragdup;
    323 
    324 #define	TCP_REASS_COUNTER_INCR(ev)	(ev)->ev_count++
    325 
    326 #else
    327 
    328 #define	TCP_REASS_COUNTER_INCR(ev)	/* nothing */
    329 
    330 #endif /* TCP_REASS_COUNTERS */
    331 
    332 #ifdef INET
    333 static void tcp4_log_refused __P((const struct ip *, const struct tcphdr *));
    334 #endif
    335 #ifdef INET6
    336 static void tcp6_log_refused
    337     __P((const struct ip6_hdr *, const struct tcphdr *));
    338 #endif
    339 
    340 int
    341 tcp_reass(tp, th, m, tlen)
    342 	struct tcpcb *tp;
    343 	struct tcphdr *th;
    344 	struct mbuf *m;
    345 	int *tlen;
    346 {
    347 	struct ipqent *p, *q, *nq, *tiqe = NULL;
    348 	struct socket *so = NULL;
    349 	int pkt_flags;
    350 	tcp_seq pkt_seq;
    351 	unsigned pkt_len;
    352 	u_long rcvpartdupbyte = 0;
    353 	u_long rcvoobyte;
    354 #ifdef TCP_REASS_COUNTERS
    355 	u_int count = 0;
    356 #endif
    357 
    358 	if (tp->t_inpcb)
    359 		so = tp->t_inpcb->inp_socket;
    360 #ifdef INET6
    361 	else if (tp->t_in6pcb)
    362 		so = tp->t_in6pcb->in6p_socket;
    363 #endif
    364 
    365 	TCP_REASS_LOCK_CHECK(tp);
    366 
    367 	/*
    368 	 * Call with th==0 after become established to
    369 	 * force pre-ESTABLISHED data up to user socket.
    370 	 */
    371 	if (th == 0)
    372 		goto present;
    373 
    374 	rcvoobyte = *tlen;
    375 	/*
    376 	 * Copy these to local variables because the tcpiphdr
    377 	 * gets munged while we are collapsing mbufs.
    378 	 */
    379 	pkt_seq = th->th_seq;
    380 	pkt_len = *tlen;
    381 	pkt_flags = th->th_flags;
    382 
    383 	TCP_REASS_COUNTER_INCR(&tcp_reass_);
    384 
    385 	if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
    386 		/*
    387 		 * When we miss a packet, the vast majority of time we get
    388 		 * packets that follow it in order.  So optimize for that.
    389 		 */
    390 		if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
    391 			p->ipqe_len += pkt_len;
    392 			p->ipqe_flags |= pkt_flags;
    393 			m_cat(p->ipqe_m, m);
    394 			tiqe = p;
    395 			TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
    396 			TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
    397 			goto skip_replacement;
    398 		}
    399 		/*
    400 		 * While we're here, if the pkt is completely beyond
    401 		 * anything we have, just insert it at the tail.
    402 		 */
    403 		if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
    404 			TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
    405 			goto insert_it;
    406 		}
    407 	}
    408 
    409 	q = TAILQ_FIRST(&tp->segq);
    410 
    411 	if (q != NULL) {
    412 		/*
    413 		 * If this segment immediately precedes the first out-of-order
    414 		 * block, simply slap the segment in front of it and (mostly)
    415 		 * skip the complicated logic.
    416 		 */
    417 		if (pkt_seq + pkt_len == q->ipqe_seq) {
    418 			q->ipqe_seq = pkt_seq;
    419 			q->ipqe_len += pkt_len;
    420 			q->ipqe_flags |= pkt_flags;
    421 			m_cat(m, q->ipqe_m);
    422 			q->ipqe_m = m;
    423 			tiqe = q;
    424 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    425 			TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
    426 			goto skip_replacement;
    427 		}
    428 	} else {
    429 		TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
    430 	}
    431 
    432 	/*
    433 	 * Find a segment which begins after this one does.
    434 	 */
    435 	for (p = NULL; q != NULL; q = nq) {
    436 		nq = TAILQ_NEXT(q, ipqe_q);
    437 #ifdef TCP_REASS_COUNTERS
    438 		count++;
    439 #endif
    440 		/*
    441 		 * If the received segment is just right after this
    442 		 * fragment, merge the two together and then check
    443 		 * for further overlaps.
    444 		 */
    445 		if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
    446 #ifdef TCPREASS_DEBUG
    447 			printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
    448 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
    449 			       q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
    450 #endif
    451 			pkt_len += q->ipqe_len;
    452 			pkt_flags |= q->ipqe_flags;
    453 			pkt_seq = q->ipqe_seq;
    454 			m_cat(q->ipqe_m, m);
    455 			m = q->ipqe_m;
    456 			TCP_REASS_COUNTER_INCR(&tcp_reass_append);
    457 			goto free_ipqe;
    458 		}
    459 		/*
    460 		 * If the received segment is completely past this
    461 		 * fragment, we need to go the next fragment.
    462 		 */
    463 		if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
    464 			p = q;
    465 			continue;
    466 		}
    467 		/*
    468 		 * If the fragment is past the received segment,
    469 		 * it (or any following) can't be concatenated.
    470 		 */
    471 		if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
    472 			TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
    473 			break;
    474 		}
    475 
    476 		/*
    477 		 * We've received all the data in this segment before.
    478 		 * mark it as a duplicate and return.
    479 		 */
    480 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
    481 		    SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
    482 			tcpstat.tcps_rcvduppack++;
    483 			tcpstat.tcps_rcvdupbyte += pkt_len;
    484 			m_freem(m);
    485 			if (tiqe != NULL)
    486 				pool_put(&ipqent_pool, tiqe);
    487 			TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
    488 			return (0);
    489 		}
    490 		/*
    491 		 * Received segment completely overlaps this fragment
    492 		 * so we drop the fragment (this keeps the temporal
    493 		 * ordering of segments correct).
    494 		 */
    495 		if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
    496 		    SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
    497 			rcvpartdupbyte += q->ipqe_len;
    498 			m_freem(q->ipqe_m);
    499 			TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
    500 			goto free_ipqe;
    501 		}
    502 		/*
    503 		 * RX'ed segment extends past the end of the
    504 		 * fragment.  Drop the overlapping bytes.  Then
    505 		 * merge the fragment and segment then treat as
    506 		 * a longer received packet.
    507 		 */
    508 		if (SEQ_LT(q->ipqe_seq, pkt_seq)
    509 		    && SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq))  {
    510 			int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
    511 #ifdef TCPREASS_DEBUG
    512 			printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
    513 			       tp, overlap,
    514 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
    515 #endif
    516 			m_adj(m, overlap);
    517 			rcvpartdupbyte += overlap;
    518 			m_cat(q->ipqe_m, m);
    519 			m = q->ipqe_m;
    520 			pkt_seq = q->ipqe_seq;
    521 			pkt_len += q->ipqe_len - overlap;
    522 			rcvoobyte -= overlap;
    523 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
    524 			goto free_ipqe;
    525 		}
    526 		/*
    527 		 * RX'ed segment extends past the front of the
    528 		 * fragment.  Drop the overlapping bytes on the
    529 		 * received packet.  The packet will then be
    530 		 * contatentated with this fragment a bit later.
    531 		 */
    532 		if (SEQ_GT(q->ipqe_seq, pkt_seq)
    533 		    && SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len))  {
    534 			int overlap = pkt_seq + pkt_len - q->ipqe_seq;
    535 #ifdef TCPREASS_DEBUG
    536 			printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
    537 			       tp, overlap,
    538 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
    539 #endif
    540 			m_adj(m, -overlap);
    541 			pkt_len -= overlap;
    542 			rcvpartdupbyte += overlap;
    543 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
    544 			rcvoobyte -= overlap;
    545 		}
    546 		/*
    547 		 * If the received segment immediates precedes this
    548 		 * fragment then tack the fragment onto this segment
    549 		 * and reinsert the data.
    550 		 */
    551 		if (q->ipqe_seq == pkt_seq + pkt_len) {
    552 #ifdef TCPREASS_DEBUG
    553 			printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
    554 			       tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
    555 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
    556 #endif
    557 			pkt_len += q->ipqe_len;
    558 			pkt_flags |= q->ipqe_flags;
    559 			m_cat(m, q->ipqe_m);
    560 			TAILQ_REMOVE(&tp->segq, q, ipqe_q);
    561 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    562 			if (tiqe == NULL) {
    563 			    tiqe = q;
    564 			} else {
    565 			    pool_put(&ipqent_pool, q);
    566 			}
    567 			TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
    568 			break;
    569 		}
    570 		/*
    571 		 * If the fragment is before the segment, remember it.
    572 		 * When this loop is terminated, p will contain the
    573 		 * pointer to fragment that is right before the received
    574 		 * segment.
    575 		 */
    576 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
    577 			p = q;
    578 
    579 		continue;
    580 
    581 		/*
    582 		 * This is a common operation.  It also will allow
    583 		 * to save doing a malloc/free in most instances.
    584 		 */
    585 	  free_ipqe:
    586 		TAILQ_REMOVE(&tp->segq, q, ipqe_q);
    587 		TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    588 		if (tiqe == NULL) {
    589 		    tiqe = q;
    590 		} else {
    591 		    pool_put(&ipqent_pool, q);
    592 		}
    593 	}
    594 
    595 #ifdef TCP_REASS_COUNTERS
    596 	if (count > 7)
    597 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
    598 	else if (count > 0)
    599 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
    600 #endif
    601 
    602     insert_it:
    603 
    604 	/*
    605 	 * Allocate a new queue entry since the received segment did not
    606 	 * collapse onto any other out-of-order block; thus we are allocating
    607 	 * a new block.  If it had collapsed, tiqe would not be NULL and
    608 	 * we would be reusing it.
    609 	 * XXX If we can't, just drop the packet.  XXX
    610 	 */
    611 	if (tiqe == NULL) {
    612 		tiqe = pool_get(&ipqent_pool, PR_NOWAIT);
    613 		if (tiqe == NULL) {
    614 			tcpstat.tcps_rcvmemdrop++;
    615 			m_freem(m);
    616 			return (0);
    617 		}
    618 	}
    619 
    620 	/*
    621 	 * Update the counters.
    622 	 */
    623 	tcpstat.tcps_rcvoopack++;
    624 	tcpstat.tcps_rcvoobyte += rcvoobyte;
    625 	if (rcvpartdupbyte) {
    626 	    tcpstat.tcps_rcvpartduppack++;
    627 	    tcpstat.tcps_rcvpartdupbyte += rcvpartdupbyte;
    628 	}
    629 
    630 	/*
    631 	 * Insert the new fragment queue entry into both queues.
    632 	 */
    633 	tiqe->ipqe_m = m;
    634 	tiqe->ipqe_seq = pkt_seq;
    635 	tiqe->ipqe_len = pkt_len;
    636 	tiqe->ipqe_flags = pkt_flags;
    637 	if (p == NULL) {
    638 		TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
    639 #ifdef TCPREASS_DEBUG
    640 		if (tiqe->ipqe_seq != tp->rcv_nxt)
    641 			printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
    642 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
    643 #endif
    644 	} else {
    645 		TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
    646 #ifdef TCPREASS_DEBUG
    647 		printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
    648 		       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
    649 		       p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
    650 #endif
    651 	}
    652 
    653 skip_replacement:
    654 
    655 	TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
    656 
    657 present:
    658 	/*
    659 	 * Present data to user, advancing rcv_nxt through
    660 	 * completed sequence space.
    661 	 */
    662 	if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
    663 		return (0);
    664 	q = TAILQ_FIRST(&tp->segq);
    665 	if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
    666 		return (0);
    667 	if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
    668 		return (0);
    669 
    670 	tp->rcv_nxt += q->ipqe_len;
    671 	pkt_flags = q->ipqe_flags & TH_FIN;
    672 	ND6_HINT(tp);
    673 
    674 	TAILQ_REMOVE(&tp->segq, q, ipqe_q);
    675 	TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    676 	if (so->so_state & SS_CANTRCVMORE)
    677 		m_freem(q->ipqe_m);
    678 	else
    679 		sbappendstream(&so->so_rcv, q->ipqe_m);
    680 	pool_put(&ipqent_pool, q);
    681 	sorwakeup(so);
    682 	return (pkt_flags);
    683 }
    684 
    685 #ifdef INET6
    686 int
    687 tcp6_input(mp, offp, proto)
    688 	struct mbuf **mp;
    689 	int *offp, proto;
    690 {
    691 	struct mbuf *m = *mp;
    692 
    693 	/*
    694 	 * draft-itojun-ipv6-tcp-to-anycast
    695 	 * better place to put this in?
    696 	 */
    697 	if (m->m_flags & M_ANYCAST6) {
    698 		struct ip6_hdr *ip6;
    699 		if (m->m_len < sizeof(struct ip6_hdr)) {
    700 			if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
    701 				tcpstat.tcps_rcvshort++;
    702 				return IPPROTO_DONE;
    703 			}
    704 		}
    705 		ip6 = mtod(m, struct ip6_hdr *);
    706 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
    707 		    (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
    708 		return IPPROTO_DONE;
    709 	}
    710 
    711 	tcp_input(m, *offp, proto);
    712 	return IPPROTO_DONE;
    713 }
    714 #endif
    715 
    716 #ifdef INET
    717 static void
    718 tcp4_log_refused(ip, th)
    719 	const struct ip *ip;
    720 	const struct tcphdr *th;
    721 {
    722 	char src[4*sizeof "123"];
    723 	char dst[4*sizeof "123"];
    724 
    725 	if (ip) {
    726 		strlcpy(src, inet_ntoa(ip->ip_src), sizeof(src));
    727 		strlcpy(dst, inet_ntoa(ip->ip_dst), sizeof(dst));
    728 	}
    729 	else {
    730 		strlcpy(src, "(unknown)", sizeof(src));
    731 		strlcpy(dst, "(unknown)", sizeof(dst));
    732 	}
    733 	log(LOG_INFO,
    734 	    "Connection attempt to TCP %s:%d from %s:%d\n",
    735 	    dst, ntohs(th->th_dport),
    736 	    src, ntohs(th->th_sport));
    737 }
    738 #endif
    739 
    740 #ifdef INET6
    741 static void
    742 tcp6_log_refused(ip6, th)
    743 	const struct ip6_hdr *ip6;
    744 	const struct tcphdr *th;
    745 {
    746 	char src[INET6_ADDRSTRLEN];
    747 	char dst[INET6_ADDRSTRLEN];
    748 
    749 	if (ip6) {
    750 		strlcpy(src, ip6_sprintf(&ip6->ip6_src), sizeof(src));
    751 		strlcpy(dst, ip6_sprintf(&ip6->ip6_dst), sizeof(dst));
    752 	}
    753 	else {
    754 		strlcpy(src, "(unknown v6)", sizeof(src));
    755 		strlcpy(dst, "(unknown v6)", sizeof(dst));
    756 	}
    757 	log(LOG_INFO,
    758 	    "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
    759 	    dst, ntohs(th->th_dport),
    760 	    src, ntohs(th->th_sport));
    761 }
    762 #endif
    763 
    764 /*
    765  * TCP input routine, follows pages 65-76 of the
    766  * protocol specification dated September, 1981 very closely.
    767  */
    768 void
    769 #if __STDC__
    770 tcp_input(struct mbuf *m, ...)
    771 #else
    772 tcp_input(m, va_alist)
    773 	struct mbuf *m;
    774 #endif
    775 {
    776 	struct tcphdr *th;
    777 	struct ip *ip;
    778 	struct inpcb *inp;
    779 #ifdef INET6
    780 	struct ip6_hdr *ip6;
    781 	struct in6pcb *in6p;
    782 #endif
    783 	u_int8_t *optp = NULL;
    784 	int optlen = 0;
    785 	int len, tlen, toff, hdroptlen = 0;
    786 	struct tcpcb *tp = 0;
    787 	int tiflags;
    788 	struct socket *so = NULL;
    789 	int todrop, acked, ourfinisacked, needoutput = 0;
    790 #ifdef TCP_DEBUG
    791 	short ostate = 0;
    792 #endif
    793 	int iss = 0;
    794 	u_long tiwin;
    795 	struct tcp_opt_info opti;
    796 	int off, iphlen;
    797 	va_list ap;
    798 	int af;		/* af on the wire */
    799 	struct mbuf *tcp_saveti = NULL;
    800 
    801 	MCLAIM(m, &tcp_rx_mowner);
    802 	va_start(ap, m);
    803 	toff = va_arg(ap, int);
    804 	(void)va_arg(ap, int);		/* ignore value, advance ap */
    805 	va_end(ap);
    806 
    807 	tcpstat.tcps_rcvtotal++;
    808 
    809 	bzero(&opti, sizeof(opti));
    810 	opti.ts_present = 0;
    811 	opti.maxseg = 0;
    812 
    813 	/*
    814 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
    815 	 *
    816 	 * TCP is, by definition, unicast, so we reject all
    817 	 * multicast outright.
    818 	 *
    819 	 * Note, there are additional src/dst address checks in
    820 	 * the AF-specific code below.
    821 	 */
    822 	if (m->m_flags & (M_BCAST|M_MCAST)) {
    823 		/* XXX stat */
    824 		goto drop;
    825 	}
    826 #ifdef INET6
    827 	if (m->m_flags & M_ANYCAST6) {
    828 		/* XXX stat */
    829 		goto drop;
    830 	}
    831 #endif
    832 
    833 	/*
    834 	 * Get IP and TCP header together in first mbuf.
    835 	 * Note: IP leaves IP header in first mbuf.
    836 	 */
    837 	ip = mtod(m, struct ip *);
    838 #ifdef INET6
    839 	ip6 = NULL;
    840 #endif
    841 	switch (ip->ip_v) {
    842 #ifdef INET
    843 	case 4:
    844 		af = AF_INET;
    845 		iphlen = sizeof(struct ip);
    846 		ip = mtod(m, struct ip *);
    847 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
    848 			sizeof(struct tcphdr));
    849 		if (th == NULL) {
    850 			tcpstat.tcps_rcvshort++;
    851 			return;
    852 		}
    853 		/* We do the checksum after PCB lookup... */
    854 		len = ntohs(ip->ip_len);
    855 		tlen = len - toff;
    856 		break;
    857 #endif
    858 #ifdef INET6
    859 	case 6:
    860 		ip = NULL;
    861 		iphlen = sizeof(struct ip6_hdr);
    862 		af = AF_INET6;
    863 		ip6 = mtod(m, struct ip6_hdr *);
    864 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
    865 			sizeof(struct tcphdr));
    866 		if (th == NULL) {
    867 			tcpstat.tcps_rcvshort++;
    868 			return;
    869 		}
    870 
    871 		/* Be proactive about malicious use of IPv4 mapped address */
    872 		if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
    873 		    IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
    874 			/* XXX stat */
    875 			goto drop;
    876 		}
    877 
    878 		/*
    879 		 * Be proactive about unspecified IPv6 address in source.
    880 		 * As we use all-zero to indicate unbounded/unconnected pcb,
    881 		 * unspecified IPv6 address can be used to confuse us.
    882 		 *
    883 		 * Note that packets with unspecified IPv6 destination is
    884 		 * already dropped in ip6_input.
    885 		 */
    886 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
    887 			/* XXX stat */
    888 			goto drop;
    889 		}
    890 
    891 		/*
    892 		 * Make sure destination address is not multicast.
    893 		 * Source address checked in ip6_input().
    894 		 */
    895 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
    896 			/* XXX stat */
    897 			goto drop;
    898 		}
    899 
    900 		/* We do the checksum after PCB lookup... */
    901 		len = m->m_pkthdr.len;
    902 		tlen = len - toff;
    903 		break;
    904 #endif
    905 	default:
    906 		m_freem(m);
    907 		return;
    908 	}
    909 
    910 	KASSERT(TCP_HDR_ALIGNED_P(th));
    911 
    912 	/*
    913 	 * Check that TCP offset makes sense,
    914 	 * pull out TCP options and adjust length.		XXX
    915 	 */
    916 	off = th->th_off << 2;
    917 	if (off < sizeof (struct tcphdr) || off > tlen) {
    918 		tcpstat.tcps_rcvbadoff++;
    919 		goto drop;
    920 	}
    921 	tlen -= off;
    922 
    923 	/*
    924 	 * tcp_input() has been modified to use tlen to mean the TCP data
    925 	 * length throughout the function.  Other functions can use
    926 	 * m->m_pkthdr.len as the basis for calculating the TCP data length.
    927 	 * rja
    928 	 */
    929 
    930 	if (off > sizeof (struct tcphdr)) {
    931 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
    932 		if (th == NULL) {
    933 			tcpstat.tcps_rcvshort++;
    934 			return;
    935 		}
    936 		/*
    937 		 * NOTE: ip/ip6 will not be affected by m_pulldown()
    938 		 * (as they're before toff) and we don't need to update those.
    939 		 */
    940 		KASSERT(TCP_HDR_ALIGNED_P(th));
    941 		optlen = off - sizeof (struct tcphdr);
    942 		optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
    943 		/*
    944 		 * Do quick retrieval of timestamp options ("options
    945 		 * prediction?").  If timestamp is the only option and it's
    946 		 * formatted as recommended in RFC 1323 appendix A, we
    947 		 * quickly get the values now and not bother calling
    948 		 * tcp_dooptions(), etc.
    949 		 */
    950 		if ((optlen == TCPOLEN_TSTAMP_APPA ||
    951 		     (optlen > TCPOLEN_TSTAMP_APPA &&
    952 			optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
    953 		     *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
    954 		     (th->th_flags & TH_SYN) == 0) {
    955 			opti.ts_present = 1;
    956 			opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
    957 			opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
    958 			optp = NULL;	/* we've parsed the options */
    959 		}
    960 	}
    961 	tiflags = th->th_flags;
    962 
    963 	/*
    964 	 * Locate pcb for segment.
    965 	 */
    966 findpcb:
    967 	inp = NULL;
    968 #ifdef INET6
    969 	in6p = NULL;
    970 #endif
    971 	switch (af) {
    972 #ifdef INET
    973 	case AF_INET:
    974 		inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
    975 		    ip->ip_dst, th->th_dport);
    976 		if (inp == 0) {
    977 			++tcpstat.tcps_pcbhashmiss;
    978 			inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
    979 		}
    980 #ifdef INET6
    981 		if (inp == 0) {
    982 			struct in6_addr s, d;
    983 
    984 			/* mapped addr case */
    985 			bzero(&s, sizeof(s));
    986 			s.s6_addr16[5] = htons(0xffff);
    987 			bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
    988 			bzero(&d, sizeof(d));
    989 			d.s6_addr16[5] = htons(0xffff);
    990 			bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
    991 			in6p = in6_pcblookup_connect(&tcb6, &s, th->th_sport,
    992 				&d, th->th_dport, 0);
    993 			if (in6p == 0) {
    994 				++tcpstat.tcps_pcbhashmiss;
    995 				in6p = in6_pcblookup_bind(&tcb6, &d,
    996 					th->th_dport, 0);
    997 			}
    998 		}
    999 #endif
   1000 #ifndef INET6
   1001 		if (inp == 0)
   1002 #else
   1003 		if (inp == 0 && in6p == 0)
   1004 #endif
   1005 		{
   1006 			++tcpstat.tcps_noport;
   1007 			if (tcp_log_refused &&
   1008 			    (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
   1009 				tcp4_log_refused(ip, th);
   1010 			}
   1011 			TCP_FIELDS_TO_HOST(th);
   1012 			goto dropwithreset_ratelim;
   1013 		}
   1014 #if defined(IPSEC) || defined(FAST_IPSEC)
   1015 		if (inp && ipsec4_in_reject(m, inp)) {
   1016 			ipsecstat.in_polvio++;
   1017 			goto drop;
   1018 		}
   1019 #ifdef INET6
   1020 		else if (in6p && ipsec4_in_reject_so(m, in6p->in6p_socket)) {
   1021 			ipsecstat.in_polvio++;
   1022 			goto drop;
   1023 		}
   1024 #endif
   1025 #endif /*IPSEC*/
   1026 		break;
   1027 #endif /*INET*/
   1028 #ifdef INET6
   1029 	case AF_INET6:
   1030 	    {
   1031 		int faith;
   1032 
   1033 #if defined(NFAITH) && NFAITH > 0
   1034 		faith = faithprefix(&ip6->ip6_dst);
   1035 #else
   1036 		faith = 0;
   1037 #endif
   1038 		in6p = in6_pcblookup_connect(&tcb6, &ip6->ip6_src, th->th_sport,
   1039 			&ip6->ip6_dst, th->th_dport, faith);
   1040 		if (in6p == NULL) {
   1041 			++tcpstat.tcps_pcbhashmiss;
   1042 			in6p = in6_pcblookup_bind(&tcb6, &ip6->ip6_dst,
   1043 				th->th_dport, faith);
   1044 		}
   1045 		if (in6p == NULL) {
   1046 			++tcpstat.tcps_noport;
   1047 			if (tcp_log_refused &&
   1048 			    (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
   1049 				tcp6_log_refused(ip6, th);
   1050 			}
   1051 			TCP_FIELDS_TO_HOST(th);
   1052 			goto dropwithreset_ratelim;
   1053 		}
   1054 #if defined(IPSEC) || defined(FAST_IPSEC)
   1055 		if (ipsec6_in_reject(m, in6p)) {
   1056 			ipsec6stat.in_polvio++;
   1057 			goto drop;
   1058 		}
   1059 #endif /*IPSEC*/
   1060 		break;
   1061 	    }
   1062 #endif
   1063 	}
   1064 
   1065 	/*
   1066 	 * If the state is CLOSED (i.e., TCB does not exist) then
   1067 	 * all data in the incoming segment is discarded.
   1068 	 * If the TCB exists but is in CLOSED state, it is embryonic,
   1069 	 * but should either do a listen or a connect soon.
   1070 	 */
   1071 	tp = NULL;
   1072 	so = NULL;
   1073 	if (inp) {
   1074 		tp = intotcpcb(inp);
   1075 		so = inp->inp_socket;
   1076 	}
   1077 #ifdef INET6
   1078 	else if (in6p) {
   1079 		tp = in6totcpcb(in6p);
   1080 		so = in6p->in6p_socket;
   1081 	}
   1082 #endif
   1083 	if (tp == 0) {
   1084 		TCP_FIELDS_TO_HOST(th);
   1085 		goto dropwithreset_ratelim;
   1086 	}
   1087 	if (tp->t_state == TCPS_CLOSED)
   1088 		goto drop;
   1089 
   1090 	/*
   1091 	 * Checksum extended TCP header and data.
   1092 	 */
   1093 	switch (af) {
   1094 #ifdef INET
   1095 	case AF_INET:
   1096 		switch (m->m_pkthdr.csum_flags &
   1097 			((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
   1098 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
   1099 		case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
   1100 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
   1101 			goto badcsum;
   1102 
   1103 		case M_CSUM_TCPv4|M_CSUM_DATA: {
   1104 			u_int32_t hw_csum = m->m_pkthdr.csum_data;
   1105 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
   1106 			if (m->m_pkthdr.csum_flags & M_CSUM_NO_PSEUDOHDR) {
   1107 				hw_csum = in_cksum_phdr(ip->ip_src.s_addr,
   1108 				    ip->ip_dst.s_addr,
   1109 				    htonl(hw_csum + ntohs(ip->ip_len) +
   1110 					  IPPROTO_UDP));
   1111 			}
   1112 			if ((hw_csum ^ 0xffff) != 0)
   1113 				goto badcsum;
   1114 			break;
   1115 		}
   1116 
   1117 		case M_CSUM_TCPv4:
   1118 			/* Checksum was okay. */
   1119 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
   1120 			break;
   1121 
   1122 		default:
   1123 			/* Must compute it ourselves. */
   1124 			TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
   1125 			if (in4_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0)
   1126 				goto badcsum;
   1127 			break;
   1128 		}
   1129 		break;
   1130 #endif /* INET4 */
   1131 
   1132 #ifdef INET6
   1133 	case AF_INET6:
   1134 		if (in6_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0)
   1135 			goto badcsum;
   1136 		break;
   1137 #endif /* INET6 */
   1138 	}
   1139 
   1140 	TCP_FIELDS_TO_HOST(th);
   1141 
   1142 	/* Unscale the window into a 32-bit value. */
   1143 	if ((tiflags & TH_SYN) == 0)
   1144 		tiwin = th->th_win << tp->snd_scale;
   1145 	else
   1146 		tiwin = th->th_win;
   1147 
   1148 #ifdef INET6
   1149 	/* save packet options if user wanted */
   1150 	if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
   1151 		if (in6p->in6p_options) {
   1152 			m_freem(in6p->in6p_options);
   1153 			in6p->in6p_options = 0;
   1154 		}
   1155 		ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
   1156 	}
   1157 #endif
   1158 
   1159 	if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
   1160 		union syn_cache_sa src;
   1161 		union syn_cache_sa dst;
   1162 
   1163 		bzero(&src, sizeof(src));
   1164 		bzero(&dst, sizeof(dst));
   1165 		switch (af) {
   1166 #ifdef INET
   1167 		case AF_INET:
   1168 			src.sin.sin_len = sizeof(struct sockaddr_in);
   1169 			src.sin.sin_family = AF_INET;
   1170 			src.sin.sin_addr = ip->ip_src;
   1171 			src.sin.sin_port = th->th_sport;
   1172 
   1173 			dst.sin.sin_len = sizeof(struct sockaddr_in);
   1174 			dst.sin.sin_family = AF_INET;
   1175 			dst.sin.sin_addr = ip->ip_dst;
   1176 			dst.sin.sin_port = th->th_dport;
   1177 			break;
   1178 #endif
   1179 #ifdef INET6
   1180 		case AF_INET6:
   1181 			src.sin6.sin6_len = sizeof(struct sockaddr_in6);
   1182 			src.sin6.sin6_family = AF_INET6;
   1183 			src.sin6.sin6_addr = ip6->ip6_src;
   1184 			src.sin6.sin6_port = th->th_sport;
   1185 
   1186 			dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
   1187 			dst.sin6.sin6_family = AF_INET6;
   1188 			dst.sin6.sin6_addr = ip6->ip6_dst;
   1189 			dst.sin6.sin6_port = th->th_dport;
   1190 			break;
   1191 #endif /* INET6 */
   1192 		default:
   1193 			goto badsyn;	/*sanity*/
   1194 		}
   1195 
   1196 		if (so->so_options & SO_DEBUG) {
   1197 #ifdef TCP_DEBUG
   1198 			ostate = tp->t_state;
   1199 #endif
   1200 
   1201 			tcp_saveti = NULL;
   1202 			if (iphlen + sizeof(struct tcphdr) > MHLEN)
   1203 				goto nosave;
   1204 
   1205 			if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
   1206 				tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
   1207 				if (!tcp_saveti)
   1208 					goto nosave;
   1209 			} else {
   1210 				MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
   1211 				if (!tcp_saveti)
   1212 					goto nosave;
   1213 				MCLAIM(m, &tcp_mowner);
   1214 				tcp_saveti->m_len = iphlen;
   1215 				m_copydata(m, 0, iphlen,
   1216 				    mtod(tcp_saveti, caddr_t));
   1217 			}
   1218 
   1219 			if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
   1220 				m_freem(tcp_saveti);
   1221 				tcp_saveti = NULL;
   1222 			} else {
   1223 				tcp_saveti->m_len += sizeof(struct tcphdr);
   1224 				bcopy(th, mtod(tcp_saveti, caddr_t) + iphlen,
   1225 				    sizeof(struct tcphdr));
   1226 			}
   1227 	nosave:;
   1228 		}
   1229 		if (so->so_options & SO_ACCEPTCONN) {
   1230 			if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
   1231 				if (tiflags & TH_RST) {
   1232 					syn_cache_reset(&src.sa, &dst.sa, th);
   1233 				} else if ((tiflags & (TH_ACK|TH_SYN)) ==
   1234 				    (TH_ACK|TH_SYN)) {
   1235 					/*
   1236 					 * Received a SYN,ACK.  This should
   1237 					 * never happen while we are in
   1238 					 * LISTEN.  Send an RST.
   1239 					 */
   1240 					goto badsyn;
   1241 				} else if (tiflags & TH_ACK) {
   1242 					so = syn_cache_get(&src.sa, &dst.sa,
   1243 						th, toff, tlen, so, m);
   1244 					if (so == NULL) {
   1245 						/*
   1246 						 * We don't have a SYN for
   1247 						 * this ACK; send an RST.
   1248 						 */
   1249 						goto badsyn;
   1250 					} else if (so ==
   1251 					    (struct socket *)(-1)) {
   1252 						/*
   1253 						 * We were unable to create
   1254 						 * the connection.  If the
   1255 						 * 3-way handshake was
   1256 						 * completed, and RST has
   1257 						 * been sent to the peer.
   1258 						 * Since the mbuf might be
   1259 						 * in use for the reply,
   1260 						 * do not free it.
   1261 						 */
   1262 						m = NULL;
   1263 					} else {
   1264 						/*
   1265 						 * We have created a
   1266 						 * full-blown connection.
   1267 						 */
   1268 						tp = NULL;
   1269 						inp = NULL;
   1270 #ifdef INET6
   1271 						in6p = NULL;
   1272 #endif
   1273 						switch (so->so_proto->pr_domain->dom_family) {
   1274 #ifdef INET
   1275 						case AF_INET:
   1276 							inp = sotoinpcb(so);
   1277 							tp = intotcpcb(inp);
   1278 							break;
   1279 #endif
   1280 #ifdef INET6
   1281 						case AF_INET6:
   1282 							in6p = sotoin6pcb(so);
   1283 							tp = in6totcpcb(in6p);
   1284 							break;
   1285 #endif
   1286 						}
   1287 						if (tp == NULL)
   1288 							goto badsyn;	/*XXX*/
   1289 						tiwin <<= tp->snd_scale;
   1290 						goto after_listen;
   1291 					}
   1292 				} else {
   1293 					/*
   1294 					 * None of RST, SYN or ACK was set.
   1295 					 * This is an invalid packet for a
   1296 					 * TCB in LISTEN state.  Send a RST.
   1297 					 */
   1298 					goto badsyn;
   1299 				}
   1300 			} else {
   1301 				/*
   1302 				 * Received a SYN.
   1303 				 */
   1304 
   1305 #ifdef INET6
   1306 				/*
   1307 				 * If deprecated address is forbidden, we do
   1308 				 * not accept SYN to deprecated interface
   1309 				 * address to prevent any new inbound
   1310 				 * connection from getting established.
   1311 				 * When we do not accept SYN, we send a TCP
   1312 				 * RST, with deprecated source address (instead
   1313 				 * of dropping it).  We compromise it as it is
   1314 				 * much better for peer to send a RST, and
   1315 				 * RST will be the final packet for the
   1316 				 * exchange.
   1317 				 *
   1318 				 * If we do not forbid deprecated addresses, we
   1319 				 * accept the SYN packet.  RFC2462 does not
   1320 				 * suggest dropping SYN in this case.
   1321 				 * If we decipher RFC2462 5.5.4, it says like
   1322 				 * this:
   1323 				 * 1. use of deprecated addr with existing
   1324 				 *    communication is okay - "SHOULD continue
   1325 				 *    to be used"
   1326 				 * 2. use of it with new communication:
   1327 				 *   (2a) "SHOULD NOT be used if alternate
   1328 				 *        address with sufficient scope is
   1329 				 *        available"
   1330 				 *   (2b) nothing mentioned otherwise.
   1331 				 * Here we fall into (2b) case as we have no
   1332 				 * choice in our source address selection - we
   1333 				 * must obey the peer.
   1334 				 *
   1335 				 * The wording in RFC2462 is confusing, and
   1336 				 * there are multiple description text for
   1337 				 * deprecated address handling - worse, they
   1338 				 * are not exactly the same.  I believe 5.5.4
   1339 				 * is the best one, so we follow 5.5.4.
   1340 				 */
   1341 				if (af == AF_INET6 && !ip6_use_deprecated) {
   1342 					struct in6_ifaddr *ia6;
   1343 					if ((ia6 = in6ifa_ifpwithaddr(m->m_pkthdr.rcvif,
   1344 					    &ip6->ip6_dst)) &&
   1345 					    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
   1346 						tp = NULL;
   1347 						goto dropwithreset;
   1348 					}
   1349 				}
   1350 #endif
   1351 
   1352 				/*
   1353 				 * LISTEN socket received a SYN
   1354 				 * from itself?  This can't possibly
   1355 				 * be valid; drop the packet.
   1356 				 */
   1357 				if (th->th_sport == th->th_dport) {
   1358 					int i;
   1359 
   1360 					switch (af) {
   1361 #ifdef INET
   1362 					case AF_INET:
   1363 						i = in_hosteq(ip->ip_src, ip->ip_dst);
   1364 						break;
   1365 #endif
   1366 #ifdef INET6
   1367 					case AF_INET6:
   1368 						i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
   1369 						break;
   1370 #endif
   1371 					default:
   1372 						i = 1;
   1373 					}
   1374 					if (i) {
   1375 						tcpstat.tcps_badsyn++;
   1376 						goto drop;
   1377 					}
   1378 				}
   1379 
   1380 				/*
   1381 				 * SYN looks ok; create compressed TCP
   1382 				 * state for it.
   1383 				 */
   1384 				if (so->so_qlen <= so->so_qlimit &&
   1385 				    syn_cache_add(&src.sa, &dst.sa, th, tlen,
   1386 						so, m, optp, optlen, &opti))
   1387 					m = NULL;
   1388 			}
   1389 			goto drop;
   1390 		}
   1391 	}
   1392 
   1393 after_listen:
   1394 #ifdef DIAGNOSTIC
   1395 	/*
   1396 	 * Should not happen now that all embryonic connections
   1397 	 * are handled with compressed state.
   1398 	 */
   1399 	if (tp->t_state == TCPS_LISTEN)
   1400 		panic("tcp_input: TCPS_LISTEN");
   1401 #endif
   1402 
   1403 	/*
   1404 	 * Segment received on connection.
   1405 	 * Reset idle time and keep-alive timer.
   1406 	 */
   1407 	tp->t_rcvtime = tcp_now;
   1408 	if (TCPS_HAVEESTABLISHED(tp->t_state))
   1409 		TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
   1410 
   1411 	/*
   1412 	 * Process options.
   1413 	 */
   1414 	if (optp)
   1415 		tcp_dooptions(tp, optp, optlen, th, &opti);
   1416 
   1417 	/*
   1418 	 * Header prediction: check for the two common cases
   1419 	 * of a uni-directional data xfer.  If the packet has
   1420 	 * no control flags, is in-sequence, the window didn't
   1421 	 * change and we're not retransmitting, it's a
   1422 	 * candidate.  If the length is zero and the ack moved
   1423 	 * forward, we're the sender side of the xfer.  Just
   1424 	 * free the data acked & wake any higher level process
   1425 	 * that was blocked waiting for space.  If the length
   1426 	 * is non-zero and the ack didn't move, we're the
   1427 	 * receiver side.  If we're getting packets in-order
   1428 	 * (the reassembly queue is empty), add the data to
   1429 	 * the socket buffer and note that we need a delayed ack.
   1430 	 */
   1431 	if (tp->t_state == TCPS_ESTABLISHED &&
   1432 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
   1433 	    (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
   1434 	    th->th_seq == tp->rcv_nxt &&
   1435 	    tiwin && tiwin == tp->snd_wnd &&
   1436 	    tp->snd_nxt == tp->snd_max) {
   1437 
   1438 		/*
   1439 		 * If last ACK falls within this segment's sequence numbers,
   1440 		 *  record the timestamp.
   1441 		 */
   1442 		if (opti.ts_present &&
   1443 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
   1444 		    SEQ_LT(tp->last_ack_sent, th->th_seq + tlen)) {
   1445 			tp->ts_recent_age = TCP_TIMESTAMP(tp);
   1446 			tp->ts_recent = opti.ts_val;
   1447 		}
   1448 
   1449 		if (tlen == 0) {
   1450 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
   1451 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
   1452 			    tp->snd_cwnd >= tp->snd_wnd &&
   1453 			    tp->t_dupacks < tcprexmtthresh) {
   1454 				int slen;
   1455 
   1456 				/*
   1457 				 * this is a pure ack for outstanding data.
   1458 				 */
   1459 				++tcpstat.tcps_predack;
   1460 				if (opti.ts_present && opti.ts_ecr)
   1461 					tcp_xmit_timer(tp,
   1462 					  TCP_TIMESTAMP(tp) - opti.ts_ecr + 1);
   1463 				else if (tp->t_rtttime &&
   1464 				    SEQ_GT(th->th_ack, tp->t_rtseq))
   1465 					tcp_xmit_timer(tp,
   1466 					tcp_now - tp->t_rtttime);
   1467 				acked = th->th_ack - tp->snd_una;
   1468 				tcpstat.tcps_rcvackpack++;
   1469 				tcpstat.tcps_rcvackbyte += acked;
   1470 				ND6_HINT(tp);
   1471 
   1472 				slen = tp->t_lastm->m_len;
   1473 				sbdrop(&so->so_snd, acked);
   1474 				if (so->so_snd.sb_cc != 0) {
   1475 					tp->t_lastoff -= acked;
   1476 					if (tp->t_lastm->m_len < slen)
   1477 						tp->t_inoff -=
   1478 						    (slen - tp->t_lastm->m_len);
   1479 				}
   1480 
   1481 				/*
   1482 				 * We want snd_recover to track snd_una to
   1483 				 * avoid sequence wraparound problems for
   1484 				 * very large transfers.
   1485 				 */
   1486 				tp->snd_una = tp->snd_recover = th->th_ack;
   1487 				m_freem(m);
   1488 
   1489 				/*
   1490 				 * If all outstanding data are acked, stop
   1491 				 * retransmit timer, otherwise restart timer
   1492 				 * using current (possibly backed-off) value.
   1493 				 * If process is waiting for space,
   1494 				 * wakeup/selwakeup/signal.  If data
   1495 				 * are ready to send, let tcp_output
   1496 				 * decide between more output or persist.
   1497 				 */
   1498 				if (tp->snd_una == tp->snd_max)
   1499 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
   1500 				else if (TCP_TIMER_ISARMED(tp,
   1501 				    TCPT_PERSIST) == 0)
   1502 					TCP_TIMER_ARM(tp, TCPT_REXMT,
   1503 					    tp->t_rxtcur);
   1504 
   1505 				sowwakeup(so);
   1506 				if (so->so_snd.sb_cc)
   1507 					(void) tcp_output(tp);
   1508 				if (tcp_saveti)
   1509 					m_freem(tcp_saveti);
   1510 				return;
   1511 			}
   1512 		} else if (th->th_ack == tp->snd_una &&
   1513 		    TAILQ_FIRST(&tp->segq) == NULL &&
   1514 		    tlen <= sbspace(&so->so_rcv)) {
   1515 			/*
   1516 			 * this is a pure, in-sequence data packet
   1517 			 * with nothing on the reassembly queue and
   1518 			 * we have enough buffer space to take it.
   1519 			 */
   1520 			++tcpstat.tcps_preddat;
   1521 			tp->rcv_nxt += tlen;
   1522 			tcpstat.tcps_rcvpack++;
   1523 			tcpstat.tcps_rcvbyte += tlen;
   1524 			ND6_HINT(tp);
   1525 			/*
   1526 			 * Drop TCP, IP headers and TCP options then add data
   1527 			 * to socket buffer.
   1528 			 */
   1529 			if (so->so_state & SS_CANTRCVMORE)
   1530 				m_freem(m);
   1531 			else {
   1532 				m_adj(m, toff + off);
   1533 				sbappendstream(&so->so_rcv, m);
   1534 			}
   1535 			sorwakeup(so);
   1536 			TCP_SETUP_ACK(tp, th);
   1537 			if (tp->t_flags & TF_ACKNOW)
   1538 				(void) tcp_output(tp);
   1539 			if (tcp_saveti)
   1540 				m_freem(tcp_saveti);
   1541 			return;
   1542 		}
   1543 	}
   1544 
   1545 	/*
   1546 	 * Compute mbuf offset to TCP data segment.
   1547 	 */
   1548 	hdroptlen = toff + off;
   1549 
   1550 	/*
   1551 	 * Calculate amount of space in receive window,
   1552 	 * and then do TCP input processing.
   1553 	 * Receive window is amount of space in rcv queue,
   1554 	 * but not less than advertised window.
   1555 	 */
   1556 	{ int win;
   1557 
   1558 	win = sbspace(&so->so_rcv);
   1559 	if (win < 0)
   1560 		win = 0;
   1561 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
   1562 	}
   1563 
   1564 	switch (tp->t_state) {
   1565 	case TCPS_LISTEN:
   1566 		/*
   1567 		 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
   1568 		 */
   1569 		if (m->m_flags & (M_BCAST|M_MCAST))
   1570 			goto drop;
   1571 		switch (af) {
   1572 #ifdef INET6
   1573 		case AF_INET6:
   1574 			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
   1575 				goto drop;
   1576 			break;
   1577 #endif /* INET6 */
   1578 		case AF_INET:
   1579 			if (IN_MULTICAST(ip->ip_dst.s_addr) ||
   1580 			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
   1581 				goto drop;
   1582 			break;
   1583 		}
   1584 		break;
   1585 
   1586 	/*
   1587 	 * If the state is SYN_SENT:
   1588 	 *	if seg contains an ACK, but not for our SYN, drop the input.
   1589 	 *	if seg contains a RST, then drop the connection.
   1590 	 *	if seg does not contain SYN, then drop it.
   1591 	 * Otherwise this is an acceptable SYN segment
   1592 	 *	initialize tp->rcv_nxt and tp->irs
   1593 	 *	if seg contains ack then advance tp->snd_una
   1594 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
   1595 	 *	arrange for segment to be acked (eventually)
   1596 	 *	continue processing rest of data/controls, beginning with URG
   1597 	 */
   1598 	case TCPS_SYN_SENT:
   1599 		if ((tiflags & TH_ACK) &&
   1600 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
   1601 		     SEQ_GT(th->th_ack, tp->snd_max)))
   1602 			goto dropwithreset;
   1603 		if (tiflags & TH_RST) {
   1604 			if (tiflags & TH_ACK)
   1605 				tp = tcp_drop(tp, ECONNREFUSED);
   1606 			goto drop;
   1607 		}
   1608 		if ((tiflags & TH_SYN) == 0)
   1609 			goto drop;
   1610 		if (tiflags & TH_ACK) {
   1611 			tp->snd_una = tp->snd_recover = th->th_ack;
   1612 			if (SEQ_LT(tp->snd_nxt, tp->snd_una))
   1613 				tp->snd_nxt = tp->snd_una;
   1614 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
   1615 		}
   1616 		tp->irs = th->th_seq;
   1617 		tcp_rcvseqinit(tp);
   1618 		tp->t_flags |= TF_ACKNOW;
   1619 		tcp_mss_from_peer(tp, opti.maxseg);
   1620 
   1621 		/*
   1622 		 * Initialize the initial congestion window.  If we
   1623 		 * had to retransmit the SYN, we must initialize cwnd
   1624 		 * to 1 segment (i.e. the Loss Window).
   1625 		 */
   1626 		if (tp->t_flags & TF_SYN_REXMT)
   1627 			tp->snd_cwnd = tp->t_peermss;
   1628 		else {
   1629 			int ss = tcp_init_win;
   1630 #ifdef INET
   1631 			if (inp != NULL && in_localaddr(inp->inp_faddr))
   1632 				ss = tcp_init_win_local;
   1633 #endif
   1634 #ifdef INET6
   1635 			if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
   1636 				ss = tcp_init_win_local;
   1637 #endif
   1638 			tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
   1639 		}
   1640 
   1641 		tcp_rmx_rtt(tp);
   1642 		if (tiflags & TH_ACK) {
   1643 			tcpstat.tcps_connects++;
   1644 			soisconnected(so);
   1645 			tcp_established(tp);
   1646 			/* Do window scaling on this connection? */
   1647 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   1648 			    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
   1649 				tp->snd_scale = tp->requested_s_scale;
   1650 				tp->rcv_scale = tp->request_r_scale;
   1651 			}
   1652 			TCP_REASS_LOCK(tp);
   1653 			(void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
   1654 			TCP_REASS_UNLOCK(tp);
   1655 			/*
   1656 			 * if we didn't have to retransmit the SYN,
   1657 			 * use its rtt as our initial srtt & rtt var.
   1658 			 */
   1659 			if (tp->t_rtttime)
   1660 				tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
   1661 		} else
   1662 			tp->t_state = TCPS_SYN_RECEIVED;
   1663 
   1664 		/*
   1665 		 * Advance th->th_seq to correspond to first data byte.
   1666 		 * If data, trim to stay within window,
   1667 		 * dropping FIN if necessary.
   1668 		 */
   1669 		th->th_seq++;
   1670 		if (tlen > tp->rcv_wnd) {
   1671 			todrop = tlen - tp->rcv_wnd;
   1672 			m_adj(m, -todrop);
   1673 			tlen = tp->rcv_wnd;
   1674 			tiflags &= ~TH_FIN;
   1675 			tcpstat.tcps_rcvpackafterwin++;
   1676 			tcpstat.tcps_rcvbyteafterwin += todrop;
   1677 		}
   1678 		tp->snd_wl1 = th->th_seq - 1;
   1679 		tp->rcv_up = th->th_seq;
   1680 		goto step6;
   1681 
   1682 	/*
   1683 	 * If the state is SYN_RECEIVED:
   1684 	 *	If seg contains an ACK, but not for our SYN, drop the input
   1685 	 *	and generate an RST.  See page 36, rfc793
   1686 	 */
   1687 	case TCPS_SYN_RECEIVED:
   1688 		if ((tiflags & TH_ACK) &&
   1689 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
   1690 		     SEQ_GT(th->th_ack, tp->snd_max)))
   1691 			goto dropwithreset;
   1692 		break;
   1693 	}
   1694 
   1695 	/*
   1696 	 * States other than LISTEN or SYN_SENT.
   1697 	 * First check timestamp, if present.
   1698 	 * Then check that at least some bytes of segment are within
   1699 	 * receive window.  If segment begins before rcv_nxt,
   1700 	 * drop leading data (and SYN); if nothing left, just ack.
   1701 	 *
   1702 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
   1703 	 * and it's less than ts_recent, drop it.
   1704 	 */
   1705 	if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
   1706 	    TSTMP_LT(opti.ts_val, tp->ts_recent)) {
   1707 
   1708 		/* Check to see if ts_recent is over 24 days old.  */
   1709 		if ((int)(TCP_TIMESTAMP(tp) - tp->ts_recent_age) >
   1710 		    TCP_PAWS_IDLE) {
   1711 			/*
   1712 			 * Invalidate ts_recent.  If this segment updates
   1713 			 * ts_recent, the age will be reset later and ts_recent
   1714 			 * will get a valid value.  If it does not, setting
   1715 			 * ts_recent to zero will at least satisfy the
   1716 			 * requirement that zero be placed in the timestamp
   1717 			 * echo reply when ts_recent isn't valid.  The
   1718 			 * age isn't reset until we get a valid ts_recent
   1719 			 * because we don't want out-of-order segments to be
   1720 			 * dropped when ts_recent is old.
   1721 			 */
   1722 			tp->ts_recent = 0;
   1723 		} else {
   1724 			tcpstat.tcps_rcvduppack++;
   1725 			tcpstat.tcps_rcvdupbyte += tlen;
   1726 			tcpstat.tcps_pawsdrop++;
   1727 			goto dropafterack;
   1728 		}
   1729 	}
   1730 
   1731 	todrop = tp->rcv_nxt - th->th_seq;
   1732 	if (todrop > 0) {
   1733 		if (tiflags & TH_SYN) {
   1734 			tiflags &= ~TH_SYN;
   1735 			th->th_seq++;
   1736 			if (th->th_urp > 1)
   1737 				th->th_urp--;
   1738 			else {
   1739 				tiflags &= ~TH_URG;
   1740 				th->th_urp = 0;
   1741 			}
   1742 			todrop--;
   1743 		}
   1744 		if (todrop > tlen ||
   1745 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
   1746 			/*
   1747 			 * Any valid FIN must be to the left of the window.
   1748 			 * At this point the FIN must be a duplicate or
   1749 			 * out of sequence; drop it.
   1750 			 */
   1751 			tiflags &= ~TH_FIN;
   1752 			/*
   1753 			 * Send an ACK to resynchronize and drop any data.
   1754 			 * But keep on processing for RST or ACK.
   1755 			 */
   1756 			tp->t_flags |= TF_ACKNOW;
   1757 			todrop = tlen;
   1758 			tcpstat.tcps_rcvdupbyte += todrop;
   1759 			tcpstat.tcps_rcvduppack++;
   1760 		} else {
   1761 			tcpstat.tcps_rcvpartduppack++;
   1762 			tcpstat.tcps_rcvpartdupbyte += todrop;
   1763 		}
   1764 		hdroptlen += todrop;	/*drop from head afterwards*/
   1765 		th->th_seq += todrop;
   1766 		tlen -= todrop;
   1767 		if (th->th_urp > todrop)
   1768 			th->th_urp -= todrop;
   1769 		else {
   1770 			tiflags &= ~TH_URG;
   1771 			th->th_urp = 0;
   1772 		}
   1773 	}
   1774 
   1775 	/*
   1776 	 * If new data are received on a connection after the
   1777 	 * user processes are gone, then RST the other end.
   1778 	 */
   1779 	if ((so->so_state & SS_NOFDREF) &&
   1780 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
   1781 		tp = tcp_close(tp);
   1782 		tcpstat.tcps_rcvafterclose++;
   1783 		goto dropwithreset;
   1784 	}
   1785 
   1786 	/*
   1787 	 * If segment ends after window, drop trailing data
   1788 	 * (and PUSH and FIN); if nothing left, just ACK.
   1789 	 */
   1790 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
   1791 	if (todrop > 0) {
   1792 		tcpstat.tcps_rcvpackafterwin++;
   1793 		if (todrop >= tlen) {
   1794 			tcpstat.tcps_rcvbyteafterwin += tlen;
   1795 			/*
   1796 			 * If a new connection request is received
   1797 			 * while in TIME_WAIT, drop the old connection
   1798 			 * and start over if the sequence numbers
   1799 			 * are above the previous ones.
   1800 			 *
   1801 			 * NOTE: We will checksum the packet again, and
   1802 			 * so we need to put the header fields back into
   1803 			 * network order!
   1804 			 * XXX This kind of sucks, but we don't expect
   1805 			 * XXX this to happen very often, so maybe it
   1806 			 * XXX doesn't matter so much.
   1807 			 */
   1808 			if (tiflags & TH_SYN &&
   1809 			    tp->t_state == TCPS_TIME_WAIT &&
   1810 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
   1811 				iss = tcp_new_iss(tp, tp->snd_nxt);
   1812 				tp = tcp_close(tp);
   1813 				TCP_FIELDS_TO_NET(th);
   1814 				goto findpcb;
   1815 			}
   1816 			/*
   1817 			 * If window is closed can only take segments at
   1818 			 * window edge, and have to drop data and PUSH from
   1819 			 * incoming segments.  Continue processing, but
   1820 			 * remember to ack.  Otherwise, drop segment
   1821 			 * and ack.
   1822 			 */
   1823 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
   1824 				tp->t_flags |= TF_ACKNOW;
   1825 				tcpstat.tcps_rcvwinprobe++;
   1826 			} else
   1827 				goto dropafterack;
   1828 		} else
   1829 			tcpstat.tcps_rcvbyteafterwin += todrop;
   1830 		m_adj(m, -todrop);
   1831 		tlen -= todrop;
   1832 		tiflags &= ~(TH_PUSH|TH_FIN);
   1833 	}
   1834 
   1835 	/*
   1836 	 * If last ACK falls within this segment's sequence numbers,
   1837 	 * and the timestamp is newer, record it.
   1838 	 */
   1839 	if (opti.ts_present && TSTMP_GEQ(opti.ts_val, tp->ts_recent) &&
   1840 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
   1841 	    SEQ_LT(tp->last_ack_sent, th->th_seq + tlen +
   1842 		   ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
   1843 		tp->ts_recent_age = TCP_TIMESTAMP(tp);
   1844 		tp->ts_recent = opti.ts_val;
   1845 	}
   1846 
   1847 	/*
   1848 	 * If the RST bit is set examine the state:
   1849 	 *    SYN_RECEIVED STATE:
   1850 	 *	If passive open, return to LISTEN state.
   1851 	 *	If active open, inform user that connection was refused.
   1852 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
   1853 	 *	Inform user that connection was reset, and close tcb.
   1854 	 *    CLOSING, LAST_ACK, TIME_WAIT STATES
   1855 	 *	Close the tcb.
   1856 	 */
   1857 	if (tiflags&TH_RST) switch (tp->t_state) {
   1858 
   1859 	case TCPS_SYN_RECEIVED:
   1860 		so->so_error = ECONNREFUSED;
   1861 		goto close;
   1862 
   1863 	case TCPS_ESTABLISHED:
   1864 	case TCPS_FIN_WAIT_1:
   1865 	case TCPS_FIN_WAIT_2:
   1866 	case TCPS_CLOSE_WAIT:
   1867 		so->so_error = ECONNRESET;
   1868 	close:
   1869 		tp->t_state = TCPS_CLOSED;
   1870 		tcpstat.tcps_drops++;
   1871 		tp = tcp_close(tp);
   1872 		goto drop;
   1873 
   1874 	case TCPS_CLOSING:
   1875 	case TCPS_LAST_ACK:
   1876 	case TCPS_TIME_WAIT:
   1877 		tp = tcp_close(tp);
   1878 		goto drop;
   1879 	}
   1880 
   1881 	/*
   1882 	 * If a SYN is in the window, then this is an
   1883 	 * error and we send an RST and drop the connection.
   1884 	 */
   1885 	if (tiflags & TH_SYN) {
   1886 		tp = tcp_drop(tp, ECONNRESET);
   1887 		goto dropwithreset;
   1888 	}
   1889 
   1890 	/*
   1891 	 * If the ACK bit is off we drop the segment and return.
   1892 	 */
   1893 	if ((tiflags & TH_ACK) == 0) {
   1894 		if (tp->t_flags & TF_ACKNOW)
   1895 			goto dropafterack;
   1896 		else
   1897 			goto drop;
   1898 	}
   1899 
   1900 	/*
   1901 	 * Ack processing.
   1902 	 */
   1903 	switch (tp->t_state) {
   1904 
   1905 	/*
   1906 	 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
   1907 	 * ESTABLISHED state and continue processing, otherwise
   1908 	 * send an RST.
   1909 	 */
   1910 	case TCPS_SYN_RECEIVED:
   1911 		if (SEQ_GT(tp->snd_una, th->th_ack) ||
   1912 		    SEQ_GT(th->th_ack, tp->snd_max))
   1913 			goto dropwithreset;
   1914 		tcpstat.tcps_connects++;
   1915 		soisconnected(so);
   1916 		tcp_established(tp);
   1917 		/* Do window scaling? */
   1918 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   1919 		    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
   1920 			tp->snd_scale = tp->requested_s_scale;
   1921 			tp->rcv_scale = tp->request_r_scale;
   1922 		}
   1923 		TCP_REASS_LOCK(tp);
   1924 		(void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
   1925 		TCP_REASS_UNLOCK(tp);
   1926 		tp->snd_wl1 = th->th_seq - 1;
   1927 		/* fall into ... */
   1928 
   1929 	/*
   1930 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
   1931 	 * ACKs.  If the ack is in the range
   1932 	 *	tp->snd_una < th->th_ack <= tp->snd_max
   1933 	 * then advance tp->snd_una to th->th_ack and drop
   1934 	 * data from the retransmission queue.  If this ACK reflects
   1935 	 * more up to date window information we update our window information.
   1936 	 */
   1937 	case TCPS_ESTABLISHED:
   1938 	case TCPS_FIN_WAIT_1:
   1939 	case TCPS_FIN_WAIT_2:
   1940 	case TCPS_CLOSE_WAIT:
   1941 	case TCPS_CLOSING:
   1942 	case TCPS_LAST_ACK:
   1943 	case TCPS_TIME_WAIT:
   1944 
   1945 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
   1946 			if (tlen == 0 && tiwin == tp->snd_wnd) {
   1947 				tcpstat.tcps_rcvdupack++;
   1948 				/*
   1949 				 * If we have outstanding data (other than
   1950 				 * a window probe), this is a completely
   1951 				 * duplicate ack (ie, window info didn't
   1952 				 * change), the ack is the biggest we've
   1953 				 * seen and we've seen exactly our rexmt
   1954 				 * threshhold of them, assume a packet
   1955 				 * has been dropped and retransmit it.
   1956 				 * Kludge snd_nxt & the congestion
   1957 				 * window so we send only this one
   1958 				 * packet.
   1959 				 *
   1960 				 * We know we're losing at the current
   1961 				 * window size so do congestion avoidance
   1962 				 * (set ssthresh to half the current window
   1963 				 * and pull our congestion window back to
   1964 				 * the new ssthresh).
   1965 				 *
   1966 				 * Dup acks mean that packets have left the
   1967 				 * network (they're now cached at the receiver)
   1968 				 * so bump cwnd by the amount in the receiver
   1969 				 * to keep a constant cwnd packets in the
   1970 				 * network.
   1971 				 */
   1972 				if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
   1973 				    th->th_ack != tp->snd_una)
   1974 					tp->t_dupacks = 0;
   1975 				else if (++tp->t_dupacks == tcprexmtthresh) {
   1976 					tcp_seq onxt = tp->snd_nxt;
   1977 					u_int win =
   1978 					    min(tp->snd_wnd, tp->snd_cwnd) /
   1979 					    2 /	tp->t_segsz;
   1980 					if (tcp_do_newreno && SEQ_LT(th->th_ack,
   1981 					    tp->snd_recover)) {
   1982 						/*
   1983 						 * False fast retransmit after
   1984 						 * timeout.  Do not cut window.
   1985 						 */
   1986 						tp->snd_cwnd += tp->t_segsz;
   1987 						tp->t_dupacks = 0;
   1988 						(void) tcp_output(tp);
   1989 						goto drop;
   1990 					}
   1991 
   1992 					if (win < 2)
   1993 						win = 2;
   1994 					tp->snd_ssthresh = win * tp->t_segsz;
   1995 					tp->snd_recover = tp->snd_max;
   1996 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
   1997 					tp->t_rtttime = 0;
   1998 					tp->snd_nxt = th->th_ack;
   1999 					tp->snd_cwnd = tp->t_segsz;
   2000 					(void) tcp_output(tp);
   2001 					tp->snd_cwnd = tp->snd_ssthresh +
   2002 					       tp->t_segsz * tp->t_dupacks;
   2003 					if (SEQ_GT(onxt, tp->snd_nxt))
   2004 						tp->snd_nxt = onxt;
   2005 					goto drop;
   2006 				} else if (tp->t_dupacks > tcprexmtthresh) {
   2007 					tp->snd_cwnd += tp->t_segsz;
   2008 					(void) tcp_output(tp);
   2009 					goto drop;
   2010 				}
   2011 			} else
   2012 				tp->t_dupacks = 0;
   2013 			break;
   2014 		}
   2015 		/*
   2016 		 * If the congestion window was inflated to account
   2017 		 * for the other side's cached packets, retract it.
   2018 		 */
   2019 		if (tcp_do_newreno == 0) {
   2020 			if (tp->t_dupacks >= tcprexmtthresh &&
   2021 			    tp->snd_cwnd > tp->snd_ssthresh)
   2022 				tp->snd_cwnd = tp->snd_ssthresh;
   2023 			tp->t_dupacks = 0;
   2024 		} else if (tp->t_dupacks >= tcprexmtthresh &&
   2025 			   tcp_newreno(tp, th) == 0) {
   2026 			tp->snd_cwnd = tp->snd_ssthresh;
   2027 			/*
   2028 			 * Window inflation should have left us with approx.
   2029 			 * snd_ssthresh outstanding data.  But in case we
   2030 			 * would be inclined to send a burst, better to do
   2031 			 * it via the slow start mechanism.
   2032 			 */
   2033 			if (SEQ_SUB(tp->snd_max, th->th_ack) < tp->snd_ssthresh)
   2034 				tp->snd_cwnd = SEQ_SUB(tp->snd_max, th->th_ack)
   2035 				    + tp->t_segsz;
   2036 			tp->t_dupacks = 0;
   2037 		}
   2038 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
   2039 			tcpstat.tcps_rcvacktoomuch++;
   2040 			goto dropafterack;
   2041 		}
   2042 		acked = th->th_ack - tp->snd_una;
   2043 		tcpstat.tcps_rcvackpack++;
   2044 		tcpstat.tcps_rcvackbyte += acked;
   2045 
   2046 		/*
   2047 		 * If we have a timestamp reply, update smoothed
   2048 		 * round trip time.  If no timestamp is present but
   2049 		 * transmit timer is running and timed sequence
   2050 		 * number was acked, update smoothed round trip time.
   2051 		 * Since we now have an rtt measurement, cancel the
   2052 		 * timer backoff (cf., Phil Karn's retransmit alg.).
   2053 		 * Recompute the initial retransmit timer.
   2054 		 */
   2055 		if (opti.ts_present && opti.ts_ecr)
   2056 			tcp_xmit_timer(tp, TCP_TIMESTAMP(tp) - opti.ts_ecr + 1);
   2057 		else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
   2058 			tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
   2059 
   2060 		/*
   2061 		 * If all outstanding data is acked, stop retransmit
   2062 		 * timer and remember to restart (more output or persist).
   2063 		 * If there is more data to be acked, restart retransmit
   2064 		 * timer, using current (possibly backed-off) value.
   2065 		 */
   2066 		if (th->th_ack == tp->snd_max) {
   2067 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
   2068 			needoutput = 1;
   2069 		} else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
   2070 			TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
   2071 		/*
   2072 		 * When new data is acked, open the congestion window.
   2073 		 * If the window gives us less than ssthresh packets
   2074 		 * in flight, open exponentially (segsz per packet).
   2075 		 * Otherwise open linearly: segsz per window
   2076 		 * (segsz^2 / cwnd per packet), plus a constant
   2077 		 * fraction of a packet (segsz/8) to help larger windows
   2078 		 * open quickly enough.
   2079 		 */
   2080 		{
   2081 		u_int cw = tp->snd_cwnd;
   2082 		u_int incr = tp->t_segsz;
   2083 
   2084 		if (cw > tp->snd_ssthresh)
   2085 			incr = incr * incr / cw;
   2086 		if (tcp_do_newreno == 0 || SEQ_GEQ(th->th_ack, tp->snd_recover))
   2087 			tp->snd_cwnd = min(cw + incr,
   2088 			    TCP_MAXWIN << tp->snd_scale);
   2089 		}
   2090 		ND6_HINT(tp);
   2091 		if (acked > so->so_snd.sb_cc) {
   2092 			tp->snd_wnd -= so->so_snd.sb_cc;
   2093 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
   2094 			ourfinisacked = 1;
   2095 		} else {
   2096 			int slen;
   2097 
   2098 			slen = tp->t_lastm->m_len;
   2099 			sbdrop(&so->so_snd, acked);
   2100 			tp->snd_wnd -= acked;
   2101 			if (so->so_snd.sb_cc != 0) {
   2102 				tp->t_lastoff -= acked;
   2103 				if (tp->t_lastm->m_len != slen)
   2104 					tp->t_inoff -=
   2105 					    (slen - tp->t_lastm->m_len);
   2106 			}
   2107 			ourfinisacked = 0;
   2108 		}
   2109 		sowwakeup(so);
   2110 		/*
   2111 		 * We want snd_recover to track snd_una to
   2112 		 * avoid sequence wraparound problems for
   2113 		 * very large transfers.
   2114 		 */
   2115 		tp->snd_una = tp->snd_recover = th->th_ack;
   2116 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
   2117 			tp->snd_nxt = tp->snd_una;
   2118 
   2119 		switch (tp->t_state) {
   2120 
   2121 		/*
   2122 		 * In FIN_WAIT_1 STATE in addition to the processing
   2123 		 * for the ESTABLISHED state if our FIN is now acknowledged
   2124 		 * then enter FIN_WAIT_2.
   2125 		 */
   2126 		case TCPS_FIN_WAIT_1:
   2127 			if (ourfinisacked) {
   2128 				/*
   2129 				 * If we can't receive any more
   2130 				 * data, then closing user can proceed.
   2131 				 * Starting the timer is contrary to the
   2132 				 * specification, but if we don't get a FIN
   2133 				 * we'll hang forever.
   2134 				 */
   2135 				if (so->so_state & SS_CANTRCVMORE) {
   2136 					soisdisconnected(so);
   2137 					if (tcp_maxidle > 0)
   2138 						TCP_TIMER_ARM(tp, TCPT_2MSL,
   2139 						    tcp_maxidle);
   2140 				}
   2141 				tp->t_state = TCPS_FIN_WAIT_2;
   2142 			}
   2143 			break;
   2144 
   2145 	 	/*
   2146 		 * In CLOSING STATE in addition to the processing for
   2147 		 * the ESTABLISHED state if the ACK acknowledges our FIN
   2148 		 * then enter the TIME-WAIT state, otherwise ignore
   2149 		 * the segment.
   2150 		 */
   2151 		case TCPS_CLOSING:
   2152 			if (ourfinisacked) {
   2153 				tp->t_state = TCPS_TIME_WAIT;
   2154 				tcp_canceltimers(tp);
   2155 				TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
   2156 				soisdisconnected(so);
   2157 			}
   2158 			break;
   2159 
   2160 		/*
   2161 		 * In LAST_ACK, we may still be waiting for data to drain
   2162 		 * and/or to be acked, as well as for the ack of our FIN.
   2163 		 * If our FIN is now acknowledged, delete the TCB,
   2164 		 * enter the closed state and return.
   2165 		 */
   2166 		case TCPS_LAST_ACK:
   2167 			if (ourfinisacked) {
   2168 				tp = tcp_close(tp);
   2169 				goto drop;
   2170 			}
   2171 			break;
   2172 
   2173 		/*
   2174 		 * In TIME_WAIT state the only thing that should arrive
   2175 		 * is a retransmission of the remote FIN.  Acknowledge
   2176 		 * it and restart the finack timer.
   2177 		 */
   2178 		case TCPS_TIME_WAIT:
   2179 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
   2180 			goto dropafterack;
   2181 		}
   2182 	}
   2183 
   2184 step6:
   2185 	/*
   2186 	 * Update window information.
   2187 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
   2188 	 */
   2189 	if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
   2190 	    (tp->snd_wl1 == th->th_seq && SEQ_LT(tp->snd_wl2, th->th_ack)) ||
   2191 	    (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))) {
   2192 		/* keep track of pure window updates */
   2193 		if (tlen == 0 &&
   2194 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
   2195 			tcpstat.tcps_rcvwinupd++;
   2196 		tp->snd_wnd = tiwin;
   2197 		tp->snd_wl1 = th->th_seq;
   2198 		tp->snd_wl2 = th->th_ack;
   2199 		if (tp->snd_wnd > tp->max_sndwnd)
   2200 			tp->max_sndwnd = tp->snd_wnd;
   2201 		needoutput = 1;
   2202 	}
   2203 
   2204 	/*
   2205 	 * Process segments with URG.
   2206 	 */
   2207 	if ((tiflags & TH_URG) && th->th_urp &&
   2208 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   2209 		/*
   2210 		 * This is a kludge, but if we receive and accept
   2211 		 * random urgent pointers, we'll crash in
   2212 		 * soreceive.  It's hard to imagine someone
   2213 		 * actually wanting to send this much urgent data.
   2214 		 */
   2215 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
   2216 			th->th_urp = 0;			/* XXX */
   2217 			tiflags &= ~TH_URG;		/* XXX */
   2218 			goto dodata;			/* XXX */
   2219 		}
   2220 		/*
   2221 		 * If this segment advances the known urgent pointer,
   2222 		 * then mark the data stream.  This should not happen
   2223 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
   2224 		 * a FIN has been received from the remote side.
   2225 		 * In these states we ignore the URG.
   2226 		 *
   2227 		 * According to RFC961 (Assigned Protocols),
   2228 		 * the urgent pointer points to the last octet
   2229 		 * of urgent data.  We continue, however,
   2230 		 * to consider it to indicate the first octet
   2231 		 * of data past the urgent section as the original
   2232 		 * spec states (in one of two places).
   2233 		 */
   2234 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
   2235 			tp->rcv_up = th->th_seq + th->th_urp;
   2236 			so->so_oobmark = so->so_rcv.sb_cc +
   2237 			    (tp->rcv_up - tp->rcv_nxt) - 1;
   2238 			if (so->so_oobmark == 0)
   2239 				so->so_state |= SS_RCVATMARK;
   2240 			sohasoutofband(so);
   2241 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
   2242 		}
   2243 		/*
   2244 		 * Remove out of band data so doesn't get presented to user.
   2245 		 * This can happen independent of advancing the URG pointer,
   2246 		 * but if two URG's are pending at once, some out-of-band
   2247 		 * data may creep in... ick.
   2248 		 */
   2249 		if (th->th_urp <= (u_int16_t) tlen
   2250 #ifdef SO_OOBINLINE
   2251 		     && (so->so_options & SO_OOBINLINE) == 0
   2252 #endif
   2253 		     )
   2254 			tcp_pulloutofband(so, th, m, hdroptlen);
   2255 	} else
   2256 		/*
   2257 		 * If no out of band data is expected,
   2258 		 * pull receive urgent pointer along
   2259 		 * with the receive window.
   2260 		 */
   2261 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
   2262 			tp->rcv_up = tp->rcv_nxt;
   2263 dodata:							/* XXX */
   2264 
   2265 	/*
   2266 	 * Process the segment text, merging it into the TCP sequencing queue,
   2267 	 * and arranging for acknowledgement of receipt if necessary.
   2268 	 * This process logically involves adjusting tp->rcv_wnd as data
   2269 	 * is presented to the user (this happens in tcp_usrreq.c,
   2270 	 * case PRU_RCVD).  If a FIN has already been received on this
   2271 	 * connection then we just ignore the text.
   2272 	 */
   2273 	if ((tlen || (tiflags & TH_FIN)) &&
   2274 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   2275 		/*
   2276 		 * Insert segment ti into reassembly queue of tcp with
   2277 		 * control block tp.  Return TH_FIN if reassembly now includes
   2278 		 * a segment with FIN.  The macro form does the common case
   2279 		 * inline (segment is the next to be received on an
   2280 		 * established connection, and the queue is empty),
   2281 		 * avoiding linkage into and removal from the queue and
   2282 		 * repetition of various conversions.
   2283 		 * Set DELACK for segments received in order, but ack
   2284 		 * immediately when segments are out of order
   2285 		 * (so fast retransmit can work).
   2286 		 */
   2287 		/* NOTE: this was TCP_REASS() macro, but used only once */
   2288 		TCP_REASS_LOCK(tp);
   2289 		if (th->th_seq == tp->rcv_nxt &&
   2290 		    TAILQ_FIRST(&tp->segq) == NULL &&
   2291 		    tp->t_state == TCPS_ESTABLISHED) {
   2292 			TCP_SETUP_ACK(tp, th);
   2293 			tp->rcv_nxt += tlen;
   2294 			tiflags = th->th_flags & TH_FIN;
   2295 			tcpstat.tcps_rcvpack++;
   2296 			tcpstat.tcps_rcvbyte += tlen;
   2297 			ND6_HINT(tp);
   2298 			if (so->so_state & SS_CANTRCVMORE)
   2299 				m_freem(m);
   2300 			else {
   2301 				m_adj(m, hdroptlen);
   2302 				sbappendstream(&(so)->so_rcv, m);
   2303 			}
   2304 			sorwakeup(so);
   2305 		} else {
   2306 			m_adj(m, hdroptlen);
   2307 			tiflags = tcp_reass(tp, th, m, &tlen);
   2308 			tp->t_flags |= TF_ACKNOW;
   2309 		}
   2310 		TCP_REASS_UNLOCK(tp);
   2311 
   2312 		/*
   2313 		 * Note the amount of data that peer has sent into
   2314 		 * our window, in order to estimate the sender's
   2315 		 * buffer size.
   2316 		 */
   2317 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
   2318 	} else {
   2319 		m_freem(m);
   2320 		m = NULL;
   2321 		tiflags &= ~TH_FIN;
   2322 	}
   2323 
   2324 	/*
   2325 	 * If FIN is received ACK the FIN and let the user know
   2326 	 * that the connection is closing.  Ignore a FIN received before
   2327 	 * the connection is fully established.
   2328 	 */
   2329 	if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
   2330 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   2331 			socantrcvmore(so);
   2332 			tp->t_flags |= TF_ACKNOW;
   2333 			tp->rcv_nxt++;
   2334 		}
   2335 		switch (tp->t_state) {
   2336 
   2337 	 	/*
   2338 		 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
   2339 		 */
   2340 		case TCPS_ESTABLISHED:
   2341 			tp->t_state = TCPS_CLOSE_WAIT;
   2342 			break;
   2343 
   2344 	 	/*
   2345 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
   2346 		 * enter the CLOSING state.
   2347 		 */
   2348 		case TCPS_FIN_WAIT_1:
   2349 			tp->t_state = TCPS_CLOSING;
   2350 			break;
   2351 
   2352 	 	/*
   2353 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
   2354 		 * starting the time-wait timer, turning off the other
   2355 		 * standard timers.
   2356 		 */
   2357 		case TCPS_FIN_WAIT_2:
   2358 			tp->t_state = TCPS_TIME_WAIT;
   2359 			tcp_canceltimers(tp);
   2360 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
   2361 			soisdisconnected(so);
   2362 			break;
   2363 
   2364 		/*
   2365 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
   2366 		 */
   2367 		case TCPS_TIME_WAIT:
   2368 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
   2369 			break;
   2370 		}
   2371 	}
   2372 #ifdef TCP_DEBUG
   2373 	if (so->so_options & SO_DEBUG)
   2374 		tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
   2375 #endif
   2376 
   2377 	/*
   2378 	 * Return any desired output.
   2379 	 */
   2380 	if (needoutput || (tp->t_flags & TF_ACKNOW))
   2381 		(void) tcp_output(tp);
   2382 	if (tcp_saveti)
   2383 		m_freem(tcp_saveti);
   2384 	return;
   2385 
   2386 badsyn:
   2387 	/*
   2388 	 * Received a bad SYN.  Increment counters and dropwithreset.
   2389 	 */
   2390 	tcpstat.tcps_badsyn++;
   2391 	tp = NULL;
   2392 	goto dropwithreset;
   2393 
   2394 dropafterack:
   2395 	/*
   2396 	 * Generate an ACK dropping incoming segment if it occupies
   2397 	 * sequence space, where the ACK reflects our state.
   2398 	 */
   2399 	if (tiflags & TH_RST)
   2400 		goto drop;
   2401 	m_freem(m);
   2402 	tp->t_flags |= TF_ACKNOW;
   2403 	(void) tcp_output(tp);
   2404 	if (tcp_saveti)
   2405 		m_freem(tcp_saveti);
   2406 	return;
   2407 
   2408 dropwithreset_ratelim:
   2409 	/*
   2410 	 * We may want to rate-limit RSTs in certain situations,
   2411 	 * particularly if we are sending an RST in response to
   2412 	 * an attempt to connect to or otherwise communicate with
   2413 	 * a port for which we have no socket.
   2414 	 */
   2415 	if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
   2416 	    tcp_rst_ppslim) == 0) {
   2417 		/* XXX stat */
   2418 		goto drop;
   2419 	}
   2420 	/* ...fall into dropwithreset... */
   2421 
   2422 dropwithreset:
   2423 	/*
   2424 	 * Generate a RST, dropping incoming segment.
   2425 	 * Make ACK acceptable to originator of segment.
   2426 	 */
   2427 	if (tiflags & TH_RST)
   2428 		goto drop;
   2429 
   2430 	switch (af) {
   2431 #ifdef INET6
   2432 	case AF_INET6:
   2433 		/* For following calls to tcp_respond */
   2434 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
   2435 			goto drop;
   2436 		break;
   2437 #endif /* INET6 */
   2438 	case AF_INET:
   2439 		if (IN_MULTICAST(ip->ip_dst.s_addr) ||
   2440 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
   2441 			goto drop;
   2442 	}
   2443 
   2444 	if (tiflags & TH_ACK)
   2445 		(void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
   2446 	else {
   2447 		if (tiflags & TH_SYN)
   2448 			tlen++;
   2449 		(void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
   2450 		    TH_RST|TH_ACK);
   2451 	}
   2452 	if (tcp_saveti)
   2453 		m_freem(tcp_saveti);
   2454 	return;
   2455 
   2456 badcsum:
   2457 	tcpstat.tcps_rcvbadsum++;
   2458 drop:
   2459 	/*
   2460 	 * Drop space held by incoming segment and return.
   2461 	 */
   2462 	if (tp) {
   2463 		if (tp->t_inpcb)
   2464 			so = tp->t_inpcb->inp_socket;
   2465 #ifdef INET6
   2466 		else if (tp->t_in6pcb)
   2467 			so = tp->t_in6pcb->in6p_socket;
   2468 #endif
   2469 		else
   2470 			so = NULL;
   2471 #ifdef TCP_DEBUG
   2472 		if (so && (so->so_options & SO_DEBUG) != 0)
   2473 			tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
   2474 #endif
   2475 	}
   2476 	if (tcp_saveti)
   2477 		m_freem(tcp_saveti);
   2478 	m_freem(m);
   2479 	return;
   2480 }
   2481 
   2482 void
   2483 tcp_dooptions(tp, cp, cnt, th, oi)
   2484 	struct tcpcb *tp;
   2485 	u_char *cp;
   2486 	int cnt;
   2487 	struct tcphdr *th;
   2488 	struct tcp_opt_info *oi;
   2489 {
   2490 	u_int16_t mss;
   2491 	int opt, optlen;
   2492 
   2493 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
   2494 		opt = cp[0];
   2495 		if (opt == TCPOPT_EOL)
   2496 			break;
   2497 		if (opt == TCPOPT_NOP)
   2498 			optlen = 1;
   2499 		else {
   2500 			if (cnt < 2)
   2501 				break;
   2502 			optlen = cp[1];
   2503 			if (optlen < 2 || optlen > cnt)
   2504 				break;
   2505 		}
   2506 		switch (opt) {
   2507 
   2508 		default:
   2509 			continue;
   2510 
   2511 		case TCPOPT_MAXSEG:
   2512 			if (optlen != TCPOLEN_MAXSEG)
   2513 				continue;
   2514 			if (!(th->th_flags & TH_SYN))
   2515 				continue;
   2516 			bcopy(cp + 2, &mss, sizeof(mss));
   2517 			oi->maxseg = ntohs(mss);
   2518 			break;
   2519 
   2520 		case TCPOPT_WINDOW:
   2521 			if (optlen != TCPOLEN_WINDOW)
   2522 				continue;
   2523 			if (!(th->th_flags & TH_SYN))
   2524 				continue;
   2525 			tp->t_flags |= TF_RCVD_SCALE;
   2526 			tp->requested_s_scale = cp[2];
   2527 			if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
   2528 #if 0	/*XXX*/
   2529 				char *p;
   2530 
   2531 				if (ip)
   2532 					p = ntohl(ip->ip_src);
   2533 #ifdef INET6
   2534 				else if (ip6)
   2535 					p = ip6_sprintf(&ip6->ip6_src);
   2536 #endif
   2537 				else
   2538 					p = "(unknown)";
   2539 				log(LOG_ERR, "TCP: invalid wscale %d from %s, "
   2540 				    "assuming %d\n",
   2541 				    tp->requested_s_scale, p,
   2542 				    TCP_MAX_WINSHIFT);
   2543 #else
   2544 				log(LOG_ERR, "TCP: invalid wscale %d, "
   2545 				    "assuming %d\n",
   2546 				    tp->requested_s_scale,
   2547 				    TCP_MAX_WINSHIFT);
   2548 #endif
   2549 				tp->requested_s_scale = TCP_MAX_WINSHIFT;
   2550 			}
   2551 			break;
   2552 
   2553 		case TCPOPT_TIMESTAMP:
   2554 			if (optlen != TCPOLEN_TIMESTAMP)
   2555 				continue;
   2556 			oi->ts_present = 1;
   2557 			bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
   2558 			NTOHL(oi->ts_val);
   2559 			bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
   2560 			NTOHL(oi->ts_ecr);
   2561 
   2562 			/*
   2563 			 * A timestamp received in a SYN makes
   2564 			 * it ok to send timestamp requests and replies.
   2565 			 */
   2566 			if (th->th_flags & TH_SYN) {
   2567 				tp->t_flags |= TF_RCVD_TSTMP;
   2568 				tp->ts_recent = oi->ts_val;
   2569 				tp->ts_recent_age = TCP_TIMESTAMP(tp);
   2570 			}
   2571 			break;
   2572 		case TCPOPT_SACK_PERMITTED:
   2573 			if (optlen != TCPOLEN_SACK_PERMITTED)
   2574 				continue;
   2575 			if (!(th->th_flags & TH_SYN))
   2576 				continue;
   2577 			tp->t_flags &= ~TF_CANT_TXSACK;
   2578 			break;
   2579 
   2580 		case TCPOPT_SACK:
   2581 			if (tp->t_flags & TF_IGNR_RXSACK)
   2582 				continue;
   2583 			if (optlen % 8 != 2 || optlen < 10)
   2584 				continue;
   2585 			cp += 2;
   2586 			optlen -= 2;
   2587 			for (; optlen > 0; cp -= 8, optlen -= 8) {
   2588 				tcp_seq lwe, rwe;
   2589 				bcopy((char *)cp, (char *) &lwe, sizeof(lwe));
   2590 				NTOHL(lwe);
   2591 				bcopy((char *)cp, (char *) &rwe, sizeof(rwe));
   2592 				NTOHL(rwe);
   2593 				/* tcp_mark_sacked(tp, lwe, rwe); */
   2594 			}
   2595 			break;
   2596 		}
   2597 	}
   2598 }
   2599 
   2600 /*
   2601  * Pull out of band byte out of a segment so
   2602  * it doesn't appear in the user's data queue.
   2603  * It is still reflected in the segment length for
   2604  * sequencing purposes.
   2605  */
   2606 void
   2607 tcp_pulloutofband(so, th, m, off)
   2608 	struct socket *so;
   2609 	struct tcphdr *th;
   2610 	struct mbuf *m;
   2611 	int off;
   2612 {
   2613 	int cnt = off + th->th_urp - 1;
   2614 
   2615 	while (cnt >= 0) {
   2616 		if (m->m_len > cnt) {
   2617 			char *cp = mtod(m, caddr_t) + cnt;
   2618 			struct tcpcb *tp = sototcpcb(so);
   2619 
   2620 			tp->t_iobc = *cp;
   2621 			tp->t_oobflags |= TCPOOB_HAVEDATA;
   2622 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
   2623 			m->m_len--;
   2624 			return;
   2625 		}
   2626 		cnt -= m->m_len;
   2627 		m = m->m_next;
   2628 		if (m == 0)
   2629 			break;
   2630 	}
   2631 	panic("tcp_pulloutofband");
   2632 }
   2633 
   2634 /*
   2635  * Collect new round-trip time estimate
   2636  * and update averages and current timeout.
   2637  */
   2638 void
   2639 tcp_xmit_timer(tp, rtt)
   2640 	struct tcpcb *tp;
   2641 	uint32_t rtt;
   2642 {
   2643 	int32_t delta;
   2644 
   2645 	tcpstat.tcps_rttupdated++;
   2646 	if (tp->t_srtt != 0) {
   2647 		/*
   2648 		 * srtt is stored as fixed point with 3 bits after the
   2649 		 * binary point (i.e., scaled by 8).  The following magic
   2650 		 * is equivalent to the smoothing algorithm in rfc793 with
   2651 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
   2652 		 * point).  Adjust rtt to origin 0.
   2653 		 */
   2654 		delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
   2655 		if ((tp->t_srtt += delta) <= 0)
   2656 			tp->t_srtt = 1 << 2;
   2657 		/*
   2658 		 * We accumulate a smoothed rtt variance (actually, a
   2659 		 * smoothed mean difference), then set the retransmit
   2660 		 * timer to smoothed rtt + 4 times the smoothed variance.
   2661 		 * rttvar is stored as fixed point with 2 bits after the
   2662 		 * binary point (scaled by 4).  The following is
   2663 		 * equivalent to rfc793 smoothing with an alpha of .75
   2664 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
   2665 		 * rfc793's wired-in beta.
   2666 		 */
   2667 		if (delta < 0)
   2668 			delta = -delta;
   2669 		delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
   2670 		if ((tp->t_rttvar += delta) <= 0)
   2671 			tp->t_rttvar = 1 << 2;
   2672 	} else {
   2673 		/*
   2674 		 * No rtt measurement yet - use the unsmoothed rtt.
   2675 		 * Set the variance to half the rtt (so our first
   2676 		 * retransmit happens at 3*rtt).
   2677 		 */
   2678 		tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
   2679 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
   2680 	}
   2681 	tp->t_rtttime = 0;
   2682 	tp->t_rxtshift = 0;
   2683 
   2684 	/*
   2685 	 * the retransmit should happen at rtt + 4 * rttvar.
   2686 	 * Because of the way we do the smoothing, srtt and rttvar
   2687 	 * will each average +1/2 tick of bias.  When we compute
   2688 	 * the retransmit timer, we want 1/2 tick of rounding and
   2689 	 * 1 extra tick because of +-1/2 tick uncertainty in the
   2690 	 * firing of the timer.  The bias will give us exactly the
   2691 	 * 1.5 tick we need.  But, because the bias is
   2692 	 * statistical, we have to test that we don't drop below
   2693 	 * the minimum feasible timer (which is 2 ticks).
   2694 	 */
   2695 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
   2696 	    max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
   2697 
   2698 	/*
   2699 	 * We received an ack for a packet that wasn't retransmitted;
   2700 	 * it is probably safe to discard any error indications we've
   2701 	 * received recently.  This isn't quite right, but close enough
   2702 	 * for now (a route might have failed after we sent a segment,
   2703 	 * and the return path might not be symmetrical).
   2704 	 */
   2705 	tp->t_softerror = 0;
   2706 }
   2707 
   2708 /*
   2709  * Checks for partial ack.  If partial ack arrives, force the retransmission
   2710  * of the next unacknowledged segment, do not clear tp->t_dupacks, and return
   2711  * 1.  By setting snd_nxt to th_ack, this forces retransmission timer to
   2712  * be started again.  If the ack advances at least to tp->snd_recover, return 0.
   2713  */
   2714 int
   2715 tcp_newreno(tp, th)
   2716 	struct tcpcb *tp;
   2717 	struct tcphdr *th;
   2718 {
   2719 	tcp_seq onxt = tp->snd_nxt;
   2720 	u_long ocwnd = tp->snd_cwnd;
   2721 
   2722 	if (SEQ_LT(th->th_ack, tp->snd_recover)) {
   2723 		/*
   2724 		 * snd_una has not yet been updated and the socket's send
   2725 		 * buffer has not yet drained off the ACK'd data, so we
   2726 		 * have to leave snd_una as it was to get the correct data
   2727 		 * offset in tcp_output().
   2728 		 */
   2729 		TCP_TIMER_DISARM(tp, TCPT_REXMT);
   2730 		tp->t_rtttime = 0;
   2731 		tp->snd_nxt = th->th_ack;
   2732 		/*
   2733 		 * Set snd_cwnd to one segment beyond ACK'd offset.  snd_una
   2734 		 * is not yet updated when we're called.
   2735 		 */
   2736 		tp->snd_cwnd = tp->t_segsz + (th->th_ack - tp->snd_una);
   2737 		(void) tcp_output(tp);
   2738 		tp->snd_cwnd = ocwnd;
   2739 		if (SEQ_GT(onxt, tp->snd_nxt))
   2740 			tp->snd_nxt = onxt;
   2741 		/*
   2742 		 * Partial window deflation.  Relies on fact that tp->snd_una
   2743 		 * not updated yet.
   2744 		 */
   2745 		tp->snd_cwnd -= (th->th_ack - tp->snd_una - tp->t_segsz);
   2746 		return 1;
   2747 	}
   2748 	return 0;
   2749 }
   2750 
   2751 
   2752 /*
   2753  * TCP compressed state engine.  Currently used to hold compressed
   2754  * state for SYN_RECEIVED.
   2755  */
   2756 
   2757 u_long	syn_cache_count;
   2758 u_int32_t syn_hash1, syn_hash2;
   2759 
   2760 #define SYN_HASH(sa, sp, dp) \
   2761 	((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
   2762 				     ((u_int32_t)(sp)))^syn_hash2)))
   2763 #ifndef INET6
   2764 #define	SYN_HASHALL(hash, src, dst) \
   2765 do {									\
   2766 	hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr,	\
   2767 		((struct sockaddr_in *)(src))->sin_port,		\
   2768 		((struct sockaddr_in *)(dst))->sin_port);		\
   2769 } while (/*CONSTCOND*/ 0)
   2770 #else
   2771 #define SYN_HASH6(sa, sp, dp) \
   2772 	((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
   2773 	  (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
   2774 	 & 0x7fffffff)
   2775 
   2776 #define SYN_HASHALL(hash, src, dst) \
   2777 do {									\
   2778 	switch ((src)->sa_family) {					\
   2779 	case AF_INET:							\
   2780 		hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
   2781 			((struct sockaddr_in *)(src))->sin_port,	\
   2782 			((struct sockaddr_in *)(dst))->sin_port);	\
   2783 		break;							\
   2784 	case AF_INET6:							\
   2785 		hash = SYN_HASH6(&((struct sockaddr_in6 *)(src))->sin6_addr, \
   2786 			((struct sockaddr_in6 *)(src))->sin6_port,	\
   2787 			((struct sockaddr_in6 *)(dst))->sin6_port);	\
   2788 		break;							\
   2789 	default:							\
   2790 		hash = 0;						\
   2791 	}								\
   2792 } while (/*CONSTCOND*/0)
   2793 #endif /* INET6 */
   2794 
   2795 #define	SYN_CACHE_RM(sc)						\
   2796 do {									\
   2797 	TAILQ_REMOVE(&tcp_syn_cache[(sc)->sc_bucketidx].sch_bucket,	\
   2798 	    (sc), sc_bucketq);						\
   2799 	(sc)->sc_tp = NULL;						\
   2800 	LIST_REMOVE((sc), sc_tpq);					\
   2801 	tcp_syn_cache[(sc)->sc_bucketidx].sch_length--;			\
   2802 	callout_stop(&(sc)->sc_timer);					\
   2803 	syn_cache_count--;						\
   2804 } while (/*CONSTCOND*/0)
   2805 
   2806 #define	SYN_CACHE_PUT(sc)						\
   2807 do {									\
   2808 	if ((sc)->sc_ipopts)						\
   2809 		(void) m_free((sc)->sc_ipopts);				\
   2810 	if ((sc)->sc_route4.ro_rt != NULL)				\
   2811 		RTFREE((sc)->sc_route4.ro_rt);				\
   2812 	if (callout_invoking(&(sc)->sc_timer))				\
   2813 		(sc)->sc_flags |= SCF_DEAD;				\
   2814 	else								\
   2815 		pool_put(&syn_cache_pool, (sc));			\
   2816 } while (/*CONSTCOND*/0)
   2817 
   2818 struct pool syn_cache_pool;
   2819 
   2820 /*
   2821  * We don't estimate RTT with SYNs, so each packet starts with the default
   2822  * RTT and each timer step has a fixed timeout value.
   2823  */
   2824 #define	SYN_CACHE_TIMER_ARM(sc)						\
   2825 do {									\
   2826 	TCPT_RANGESET((sc)->sc_rxtcur,					\
   2827 	    TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN,	\
   2828 	    TCPTV_REXMTMAX);						\
   2829 	callout_reset(&(sc)->sc_timer,					\
   2830 	    (sc)->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, (sc));	\
   2831 } while (/*CONSTCOND*/0)
   2832 
   2833 #define	SYN_CACHE_TIMESTAMP(sc)	(tcp_now - (sc)->sc_timebase)
   2834 
   2835 void
   2836 syn_cache_init()
   2837 {
   2838 	int i;
   2839 
   2840 	/* Initialize the hash buckets. */
   2841 	for (i = 0; i < tcp_syn_cache_size; i++)
   2842 		TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
   2843 
   2844 	/* Initialize the syn cache pool. */
   2845 	pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
   2846 	    "synpl", NULL);
   2847 }
   2848 
   2849 void
   2850 syn_cache_insert(sc, tp)
   2851 	struct syn_cache *sc;
   2852 	struct tcpcb *tp;
   2853 {
   2854 	struct syn_cache_head *scp;
   2855 	struct syn_cache *sc2;
   2856 	int s;
   2857 
   2858 	/*
   2859 	 * If there are no entries in the hash table, reinitialize
   2860 	 * the hash secrets.
   2861 	 */
   2862 	if (syn_cache_count == 0) {
   2863 		struct timeval tv;
   2864 		microtime(&tv);
   2865 		syn_hash1 = arc4random() ^ (u_long)&sc;
   2866 		syn_hash2 = arc4random() ^ tv.tv_usec;
   2867 	}
   2868 
   2869 	SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
   2870 	sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
   2871 	scp = &tcp_syn_cache[sc->sc_bucketidx];
   2872 
   2873 	/*
   2874 	 * Make sure that we don't overflow the per-bucket
   2875 	 * limit or the total cache size limit.
   2876 	 */
   2877 	s = splsoftnet();
   2878 	if (scp->sch_length >= tcp_syn_bucket_limit) {
   2879 		tcpstat.tcps_sc_bucketoverflow++;
   2880 		/*
   2881 		 * The bucket is full.  Toss the oldest element in the
   2882 		 * bucket.  This will be the first entry in the bucket.
   2883 		 */
   2884 		sc2 = TAILQ_FIRST(&scp->sch_bucket);
   2885 #ifdef DIAGNOSTIC
   2886 		/*
   2887 		 * This should never happen; we should always find an
   2888 		 * entry in our bucket.
   2889 		 */
   2890 		if (sc2 == NULL)
   2891 			panic("syn_cache_insert: bucketoverflow: impossible");
   2892 #endif
   2893 		SYN_CACHE_RM(sc2);
   2894 		SYN_CACHE_PUT(sc2);
   2895 	} else if (syn_cache_count >= tcp_syn_cache_limit) {
   2896 		struct syn_cache_head *scp2, *sce;
   2897 
   2898 		tcpstat.tcps_sc_overflowed++;
   2899 		/*
   2900 		 * The cache is full.  Toss the oldest entry in the
   2901 		 * first non-empty bucket we can find.
   2902 		 *
   2903 		 * XXX We would really like to toss the oldest
   2904 		 * entry in the cache, but we hope that this
   2905 		 * condition doesn't happen very often.
   2906 		 */
   2907 		scp2 = scp;
   2908 		if (TAILQ_EMPTY(&scp2->sch_bucket)) {
   2909 			sce = &tcp_syn_cache[tcp_syn_cache_size];
   2910 			for (++scp2; scp2 != scp; scp2++) {
   2911 				if (scp2 >= sce)
   2912 					scp2 = &tcp_syn_cache[0];
   2913 				if (! TAILQ_EMPTY(&scp2->sch_bucket))
   2914 					break;
   2915 			}
   2916 #ifdef DIAGNOSTIC
   2917 			/*
   2918 			 * This should never happen; we should always find a
   2919 			 * non-empty bucket.
   2920 			 */
   2921 			if (scp2 == scp)
   2922 				panic("syn_cache_insert: cacheoverflow: "
   2923 				    "impossible");
   2924 #endif
   2925 		}
   2926 		sc2 = TAILQ_FIRST(&scp2->sch_bucket);
   2927 		SYN_CACHE_RM(sc2);
   2928 		SYN_CACHE_PUT(sc2);
   2929 	}
   2930 
   2931 	/*
   2932 	 * Initialize the entry's timer.
   2933 	 */
   2934 	sc->sc_rxttot = 0;
   2935 	sc->sc_rxtshift = 0;
   2936 	SYN_CACHE_TIMER_ARM(sc);
   2937 
   2938 	/* Link it from tcpcb entry */
   2939 	LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
   2940 
   2941 	/* Put it into the bucket. */
   2942 	TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
   2943 	scp->sch_length++;
   2944 	syn_cache_count++;
   2945 
   2946 	tcpstat.tcps_sc_added++;
   2947 	splx(s);
   2948 }
   2949 
   2950 /*
   2951  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
   2952  * If we have retransmitted an entry the maximum number of times, expire
   2953  * that entry.
   2954  */
   2955 void
   2956 syn_cache_timer(void *arg)
   2957 {
   2958 	struct syn_cache *sc = arg;
   2959 	int s;
   2960 
   2961 	s = splsoftnet();
   2962 	callout_ack(&sc->sc_timer);
   2963 
   2964 	if (__predict_false(sc->sc_flags & SCF_DEAD)) {
   2965 		tcpstat.tcps_sc_delayed_free++;
   2966 		pool_put(&syn_cache_pool, sc);
   2967 		splx(s);
   2968 		return;
   2969 	}
   2970 
   2971 	if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
   2972 		/* Drop it -- too many retransmissions. */
   2973 		goto dropit;
   2974 	}
   2975 
   2976 	/*
   2977 	 * Compute the total amount of time this entry has
   2978 	 * been on a queue.  If this entry has been on longer
   2979 	 * than the keep alive timer would allow, expire it.
   2980 	 */
   2981 	sc->sc_rxttot += sc->sc_rxtcur;
   2982 	if (sc->sc_rxttot >= TCPTV_KEEP_INIT)
   2983 		goto dropit;
   2984 
   2985 	tcpstat.tcps_sc_retransmitted++;
   2986 	(void) syn_cache_respond(sc, NULL);
   2987 
   2988 	/* Advance the timer back-off. */
   2989 	sc->sc_rxtshift++;
   2990 	SYN_CACHE_TIMER_ARM(sc);
   2991 
   2992 	splx(s);
   2993 	return;
   2994 
   2995  dropit:
   2996 	tcpstat.tcps_sc_timed_out++;
   2997 	SYN_CACHE_RM(sc);
   2998 	SYN_CACHE_PUT(sc);
   2999 	splx(s);
   3000 }
   3001 
   3002 /*
   3003  * Remove syn cache created by the specified tcb entry,
   3004  * because this does not make sense to keep them
   3005  * (if there's no tcb entry, syn cache entry will never be used)
   3006  */
   3007 void
   3008 syn_cache_cleanup(tp)
   3009 	struct tcpcb *tp;
   3010 {
   3011 	struct syn_cache *sc, *nsc;
   3012 	int s;
   3013 
   3014 	s = splsoftnet();
   3015 
   3016 	for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
   3017 		nsc = LIST_NEXT(sc, sc_tpq);
   3018 
   3019 #ifdef DIAGNOSTIC
   3020 		if (sc->sc_tp != tp)
   3021 			panic("invalid sc_tp in syn_cache_cleanup");
   3022 #endif
   3023 		SYN_CACHE_RM(sc);
   3024 		SYN_CACHE_PUT(sc);
   3025 	}
   3026 	/* just for safety */
   3027 	LIST_INIT(&tp->t_sc);
   3028 
   3029 	splx(s);
   3030 }
   3031 
   3032 /*
   3033  * Find an entry in the syn cache.
   3034  */
   3035 struct syn_cache *
   3036 syn_cache_lookup(src, dst, headp)
   3037 	struct sockaddr *src;
   3038 	struct sockaddr *dst;
   3039 	struct syn_cache_head **headp;
   3040 {
   3041 	struct syn_cache *sc;
   3042 	struct syn_cache_head *scp;
   3043 	u_int32_t hash;
   3044 	int s;
   3045 
   3046 	SYN_HASHALL(hash, src, dst);
   3047 
   3048 	scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
   3049 	*headp = scp;
   3050 	s = splsoftnet();
   3051 	for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
   3052 	     sc = TAILQ_NEXT(sc, sc_bucketq)) {
   3053 		if (sc->sc_hash != hash)
   3054 			continue;
   3055 		if (!bcmp(&sc->sc_src, src, src->sa_len) &&
   3056 		    !bcmp(&sc->sc_dst, dst, dst->sa_len)) {
   3057 			splx(s);
   3058 			return (sc);
   3059 		}
   3060 	}
   3061 	splx(s);
   3062 	return (NULL);
   3063 }
   3064 
   3065 /*
   3066  * This function gets called when we receive an ACK for a
   3067  * socket in the LISTEN state.  We look up the connection
   3068  * in the syn cache, and if its there, we pull it out of
   3069  * the cache and turn it into a full-blown connection in
   3070  * the SYN-RECEIVED state.
   3071  *
   3072  * The return values may not be immediately obvious, and their effects
   3073  * can be subtle, so here they are:
   3074  *
   3075  *	NULL	SYN was not found in cache; caller should drop the
   3076  *		packet and send an RST.
   3077  *
   3078  *	-1	We were unable to create the new connection, and are
   3079  *		aborting it.  An ACK,RST is being sent to the peer
   3080  *		(unless we got screwey sequence numbners; see below),
   3081  *		because the 3-way handshake has been completed.  Caller
   3082  *		should not free the mbuf, since we may be using it.  If
   3083  *		we are not, we will free it.
   3084  *
   3085  *	Otherwise, the return value is a pointer to the new socket
   3086  *	associated with the connection.
   3087  */
   3088 struct socket *
   3089 syn_cache_get(src, dst, th, hlen, tlen, so, m)
   3090 	struct sockaddr *src;
   3091 	struct sockaddr *dst;
   3092 	struct tcphdr *th;
   3093 	unsigned int hlen, tlen;
   3094 	struct socket *so;
   3095 	struct mbuf *m;
   3096 {
   3097 	struct syn_cache *sc;
   3098 	struct syn_cache_head *scp;
   3099 	struct inpcb *inp = NULL;
   3100 #ifdef INET6
   3101 	struct in6pcb *in6p = NULL;
   3102 #endif
   3103 	struct tcpcb *tp = 0;
   3104 	struct mbuf *am;
   3105 	int s;
   3106 	struct socket *oso;
   3107 
   3108 	s = splsoftnet();
   3109 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
   3110 		splx(s);
   3111 		return (NULL);
   3112 	}
   3113 
   3114 	/*
   3115 	 * Verify the sequence and ack numbers.  Try getting the correct
   3116 	 * response again.
   3117 	 */
   3118 	if ((th->th_ack != sc->sc_iss + 1) ||
   3119 	    SEQ_LEQ(th->th_seq, sc->sc_irs) ||
   3120 	    SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
   3121 		(void) syn_cache_respond(sc, m);
   3122 		splx(s);
   3123 		return ((struct socket *)(-1));
   3124 	}
   3125 
   3126 	/* Remove this cache entry */
   3127 	SYN_CACHE_RM(sc);
   3128 	splx(s);
   3129 
   3130 	/*
   3131 	 * Ok, create the full blown connection, and set things up
   3132 	 * as they would have been set up if we had created the
   3133 	 * connection when the SYN arrived.  If we can't create
   3134 	 * the connection, abort it.
   3135 	 */
   3136 	/*
   3137 	 * inp still has the OLD in_pcb stuff, set the
   3138 	 * v6-related flags on the new guy, too.   This is
   3139 	 * done particularly for the case where an AF_INET6
   3140 	 * socket is bound only to a port, and a v4 connection
   3141 	 * comes in on that port.
   3142 	 * we also copy the flowinfo from the original pcb
   3143 	 * to the new one.
   3144 	 */
   3145 	oso = so;
   3146 	so = sonewconn(so, SS_ISCONNECTED);
   3147 	if (so == NULL)
   3148 		goto resetandabort;
   3149 
   3150 	switch (so->so_proto->pr_domain->dom_family) {
   3151 #ifdef INET
   3152 	case AF_INET:
   3153 		inp = sotoinpcb(so);
   3154 		break;
   3155 #endif
   3156 #ifdef INET6
   3157 	case AF_INET6:
   3158 		in6p = sotoin6pcb(so);
   3159 		break;
   3160 #endif
   3161 	}
   3162 	switch (src->sa_family) {
   3163 #ifdef INET
   3164 	case AF_INET:
   3165 		if (inp) {
   3166 			struct in_ifaddr *ia;
   3167 			inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
   3168 			inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
   3169 			inp->inp_options = ip_srcroute();
   3170 			INADDR_TO_IA(inp->inp_laddr, ia);
   3171 			KASSERT(ia != NULL);
   3172 			KASSERT(inp->inp_ia == NULL);
   3173 			inp->inp_ia = ia;
   3174 			LIST_INSERT_HEAD(&ia->ia_inpcbs, inp, inp_ialink);
   3175 			IFAREF(&ia->ia_ifa);
   3176 			in_pcbstate(inp, INP_BOUND);
   3177 			if (inp->inp_options == NULL) {
   3178 				inp->inp_options = sc->sc_ipopts;
   3179 				sc->sc_ipopts = NULL;
   3180 			}
   3181 		}
   3182 #ifdef INET6
   3183 		else if (in6p) {
   3184 			/* IPv4 packet to AF_INET6 socket */
   3185 			bzero(&in6p->in6p_laddr, sizeof(in6p->in6p_laddr));
   3186 			in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
   3187 			bcopy(&((struct sockaddr_in *)dst)->sin_addr,
   3188 				&in6p->in6p_laddr.s6_addr32[3],
   3189 				sizeof(((struct sockaddr_in *)dst)->sin_addr));
   3190 			in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
   3191 			in6totcpcb(in6p)->t_family = AF_INET;
   3192 			if (sotoin6pcb(oso)->in6p_flags & IN6P_IPV6_V6ONLY)
   3193 				in6p->in6p_flags |= IN6P_IPV6_V6ONLY;
   3194 			else
   3195 				in6p->in6p_flags &= ~IN6P_IPV6_V6ONLY;
   3196 		}
   3197 #endif
   3198 		break;
   3199 #endif
   3200 #ifdef INET6
   3201 	case AF_INET6:
   3202 		if (in6p) {
   3203 			in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
   3204 			in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
   3205 #if 0
   3206 			in6p->in6p_flowinfo = ip6->ip6_flow & IPV6_FLOWINFO_MASK;
   3207 			/*inp->inp_options = ip6_srcroute();*/ /* soon. */
   3208 #endif
   3209 		}
   3210 		break;
   3211 #endif
   3212 	}
   3213 #ifdef INET6
   3214 	if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
   3215 		struct in6pcb *oin6p = sotoin6pcb(oso);
   3216 		/* inherit socket options from the listening socket */
   3217 		in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
   3218 		if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
   3219 			m_freem(in6p->in6p_options);
   3220 			in6p->in6p_options = 0;
   3221 		}
   3222 		ip6_savecontrol(in6p, &in6p->in6p_options,
   3223 			mtod(m, struct ip6_hdr *), m);
   3224 	}
   3225 #endif
   3226 
   3227 #if defined(IPSEC) || defined(FAST_IPSEC)
   3228 	/*
   3229 	 * we make a copy of policy, instead of sharing the policy,
   3230 	 * for better behavior in terms of SA lookup and dead SA removal.
   3231 	 */
   3232 	if (inp) {
   3233 		/* copy old policy into new socket's */
   3234 		if (ipsec_copy_pcbpolicy(sotoinpcb(oso)->inp_sp, inp->inp_sp))
   3235 			printf("tcp_input: could not copy policy\n");
   3236 	}
   3237 #ifdef INET6
   3238 	else if (in6p) {
   3239 		/* copy old policy into new socket's */
   3240 		if (ipsec_copy_pcbpolicy(sotoin6pcb(oso)->in6p_sp,
   3241 		    in6p->in6p_sp))
   3242 			printf("tcp_input: could not copy policy\n");
   3243 	}
   3244 #endif
   3245 #endif
   3246 
   3247 	/*
   3248 	 * Give the new socket our cached route reference.
   3249 	 */
   3250 	if (inp)
   3251 		inp->inp_route = sc->sc_route4;		/* struct assignment */
   3252 #ifdef INET6
   3253 	else
   3254 		in6p->in6p_route = sc->sc_route6;
   3255 #endif
   3256 	sc->sc_route4.ro_rt = NULL;
   3257 
   3258 	am = m_get(M_DONTWAIT, MT_SONAME);	/* XXX */
   3259 	if (am == NULL)
   3260 		goto resetandabort;
   3261 	MCLAIM(am, &tcp_mowner);
   3262 	am->m_len = src->sa_len;
   3263 	bcopy(src, mtod(am, caddr_t), src->sa_len);
   3264 	if (inp) {
   3265 		if (in_pcbconnect(inp, am)) {
   3266 			(void) m_free(am);
   3267 			goto resetandabort;
   3268 		}
   3269 	}
   3270 #ifdef INET6
   3271 	else if (in6p) {
   3272 		if (src->sa_family == AF_INET) {
   3273 			/* IPv4 packet to AF_INET6 socket */
   3274 			struct sockaddr_in6 *sin6;
   3275 			sin6 = mtod(am, struct sockaddr_in6 *);
   3276 			am->m_len = sizeof(*sin6);
   3277 			bzero(sin6, sizeof(*sin6));
   3278 			sin6->sin6_family = AF_INET6;
   3279 			sin6->sin6_len = sizeof(*sin6);
   3280 			sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port;
   3281 			sin6->sin6_addr.s6_addr16[5] = htons(0xffff);
   3282 			bcopy(&((struct sockaddr_in *)src)->sin_addr,
   3283 				&sin6->sin6_addr.s6_addr32[3],
   3284 				sizeof(sin6->sin6_addr.s6_addr32[3]));
   3285 		}
   3286 		if (in6_pcbconnect(in6p, am)) {
   3287 			(void) m_free(am);
   3288 			goto resetandabort;
   3289 		}
   3290 	}
   3291 #endif
   3292 	else {
   3293 		(void) m_free(am);
   3294 		goto resetandabort;
   3295 	}
   3296 	(void) m_free(am);
   3297 
   3298 	if (inp)
   3299 		tp = intotcpcb(inp);
   3300 #ifdef INET6
   3301 	else if (in6p)
   3302 		tp = in6totcpcb(in6p);
   3303 #endif
   3304 	else
   3305 		tp = NULL;
   3306 	tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
   3307 	if (sc->sc_request_r_scale != 15) {
   3308 		tp->requested_s_scale = sc->sc_requested_s_scale;
   3309 		tp->request_r_scale = sc->sc_request_r_scale;
   3310 		tp->snd_scale = sc->sc_requested_s_scale;
   3311 		tp->rcv_scale = sc->sc_request_r_scale;
   3312 		tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
   3313 	}
   3314 	if (sc->sc_flags & SCF_TIMESTAMP)
   3315 		tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
   3316 	tp->ts_timebase = sc->sc_timebase;
   3317 
   3318 	tp->t_template = tcp_template(tp);
   3319 	if (tp->t_template == 0) {
   3320 		tp = tcp_drop(tp, ENOBUFS);	/* destroys socket */
   3321 		so = NULL;
   3322 		m_freem(m);
   3323 		goto abort;
   3324 	}
   3325 
   3326 	tp->iss = sc->sc_iss;
   3327 	tp->irs = sc->sc_irs;
   3328 	tcp_sendseqinit(tp);
   3329 	tcp_rcvseqinit(tp);
   3330 	tp->t_state = TCPS_SYN_RECEIVED;
   3331 	TCP_TIMER_ARM(tp, TCPT_KEEP, TCPTV_KEEP_INIT);
   3332 	tcpstat.tcps_accepts++;
   3333 
   3334 	/* Initialize tp->t_ourmss before we deal with the peer's! */
   3335 	tp->t_ourmss = sc->sc_ourmaxseg;
   3336 	tcp_mss_from_peer(tp, sc->sc_peermaxseg);
   3337 
   3338 	/*
   3339 	 * Initialize the initial congestion window.  If we
   3340 	 * had to retransmit the SYN,ACK, we must initialize cwnd
   3341 	 * to 1 segment (i.e. the Loss Window).
   3342 	 */
   3343 	if (sc->sc_rxtshift)
   3344 		tp->snd_cwnd = tp->t_peermss;
   3345 	else {
   3346 		int ss = tcp_init_win;
   3347 #ifdef INET
   3348 		if (inp != NULL && in_localaddr(inp->inp_faddr))
   3349 			ss = tcp_init_win_local;
   3350 #endif
   3351 #ifdef INET6
   3352 		if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
   3353 			ss = tcp_init_win_local;
   3354 #endif
   3355 		tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
   3356 	}
   3357 
   3358 	tcp_rmx_rtt(tp);
   3359 	tp->snd_wl1 = sc->sc_irs;
   3360 	tp->rcv_up = sc->sc_irs + 1;
   3361 
   3362 	/*
   3363 	 * This is what whould have happened in tcp_output() when
   3364 	 * the SYN,ACK was sent.
   3365 	 */
   3366 	tp->snd_up = tp->snd_una;
   3367 	tp->snd_max = tp->snd_nxt = tp->iss+1;
   3368 	TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
   3369 	if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
   3370 		tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
   3371 	tp->last_ack_sent = tp->rcv_nxt;
   3372 
   3373 	tcpstat.tcps_sc_completed++;
   3374 	SYN_CACHE_PUT(sc);
   3375 	return (so);
   3376 
   3377 resetandabort:
   3378 	(void) tcp_respond(NULL, m, m, th,
   3379 			   th->th_seq + tlen, (tcp_seq)0, TH_RST|TH_ACK);
   3380 abort:
   3381 	if (so != NULL)
   3382 		(void) soabort(so);
   3383 	SYN_CACHE_PUT(sc);
   3384 	tcpstat.tcps_sc_aborted++;
   3385 	return ((struct socket *)(-1));
   3386 }
   3387 
   3388 /*
   3389  * This function is called when we get a RST for a
   3390  * non-existent connection, so that we can see if the
   3391  * connection is in the syn cache.  If it is, zap it.
   3392  */
   3393 
   3394 void
   3395 syn_cache_reset(src, dst, th)
   3396 	struct sockaddr *src;
   3397 	struct sockaddr *dst;
   3398 	struct tcphdr *th;
   3399 {
   3400 	struct syn_cache *sc;
   3401 	struct syn_cache_head *scp;
   3402 	int s = splsoftnet();
   3403 
   3404 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
   3405 		splx(s);
   3406 		return;
   3407 	}
   3408 	if (SEQ_LT(th->th_seq, sc->sc_irs) ||
   3409 	    SEQ_GT(th->th_seq, sc->sc_irs+1)) {
   3410 		splx(s);
   3411 		return;
   3412 	}
   3413 	SYN_CACHE_RM(sc);
   3414 	splx(s);
   3415 	tcpstat.tcps_sc_reset++;
   3416 	SYN_CACHE_PUT(sc);
   3417 }
   3418 
   3419 void
   3420 syn_cache_unreach(src, dst, th)
   3421 	struct sockaddr *src;
   3422 	struct sockaddr *dst;
   3423 	struct tcphdr *th;
   3424 {
   3425 	struct syn_cache *sc;
   3426 	struct syn_cache_head *scp;
   3427 	int s;
   3428 
   3429 	s = splsoftnet();
   3430 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
   3431 		splx(s);
   3432 		return;
   3433 	}
   3434 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
   3435 	if (ntohl (th->th_seq) != sc->sc_iss) {
   3436 		splx(s);
   3437 		return;
   3438 	}
   3439 
   3440 	/*
   3441 	 * If we've rertransmitted 3 times and this is our second error,
   3442 	 * we remove the entry.  Otherwise, we allow it to continue on.
   3443 	 * This prevents us from incorrectly nuking an entry during a
   3444 	 * spurious network outage.
   3445 	 *
   3446 	 * See tcp_notify().
   3447 	 */
   3448 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
   3449 		sc->sc_flags |= SCF_UNREACH;
   3450 		splx(s);
   3451 		return;
   3452 	}
   3453 
   3454 	SYN_CACHE_RM(sc);
   3455 	splx(s);
   3456 	tcpstat.tcps_sc_unreach++;
   3457 	SYN_CACHE_PUT(sc);
   3458 }
   3459 
   3460 /*
   3461  * Given a LISTEN socket and an inbound SYN request, add
   3462  * this to the syn cache, and send back a segment:
   3463  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
   3464  * to the source.
   3465  *
   3466  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
   3467  * Doing so would require that we hold onto the data and deliver it
   3468  * to the application.  However, if we are the target of a SYN-flood
   3469  * DoS attack, an attacker could send data which would eventually
   3470  * consume all available buffer space if it were ACKed.  By not ACKing
   3471  * the data, we avoid this DoS scenario.
   3472  */
   3473 
   3474 int
   3475 syn_cache_add(src, dst, th, hlen, so, m, optp, optlen, oi)
   3476 	struct sockaddr *src;
   3477 	struct sockaddr *dst;
   3478 	struct tcphdr *th;
   3479 	unsigned int hlen;
   3480 	struct socket *so;
   3481 	struct mbuf *m;
   3482 	u_char *optp;
   3483 	int optlen;
   3484 	struct tcp_opt_info *oi;
   3485 {
   3486 	struct tcpcb tb, *tp;
   3487 	long win;
   3488 	struct syn_cache *sc;
   3489 	struct syn_cache_head *scp;
   3490 	struct mbuf *ipopts;
   3491 
   3492 	tp = sototcpcb(so);
   3493 
   3494 	/*
   3495 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
   3496 	 *
   3497 	 * Note this check is performed in tcp_input() very early on.
   3498 	 */
   3499 
   3500 	/*
   3501 	 * Initialize some local state.
   3502 	 */
   3503 	win = sbspace(&so->so_rcv);
   3504 	if (win > TCP_MAXWIN)
   3505 		win = TCP_MAXWIN;
   3506 
   3507 	switch (src->sa_family) {
   3508 #ifdef INET
   3509 	case AF_INET:
   3510 		/*
   3511 		 * Remember the IP options, if any.
   3512 		 */
   3513 		ipopts = ip_srcroute();
   3514 		break;
   3515 #endif
   3516 	default:
   3517 		ipopts = NULL;
   3518 	}
   3519 
   3520 	if (optp) {
   3521 		tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
   3522 		tcp_dooptions(&tb, optp, optlen, th, oi);
   3523 	} else
   3524 		tb.t_flags = 0;
   3525 
   3526 	/*
   3527 	 * See if we already have an entry for this connection.
   3528 	 * If we do, resend the SYN,ACK.  We do not count this
   3529 	 * as a retransmission (XXX though maybe we should).
   3530 	 */
   3531 	if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
   3532 		tcpstat.tcps_sc_dupesyn++;
   3533 		if (ipopts) {
   3534 			/*
   3535 			 * If we were remembering a previous source route,
   3536 			 * forget it and use the new one we've been given.
   3537 			 */
   3538 			if (sc->sc_ipopts)
   3539 				(void) m_free(sc->sc_ipopts);
   3540 			sc->sc_ipopts = ipopts;
   3541 		}
   3542 		sc->sc_timestamp = tb.ts_recent;
   3543 		if (syn_cache_respond(sc, m) == 0) {
   3544 			tcpstat.tcps_sndacks++;
   3545 			tcpstat.tcps_sndtotal++;
   3546 		}
   3547 		return (1);
   3548 	}
   3549 
   3550 	sc = pool_get(&syn_cache_pool, PR_NOWAIT);
   3551 	if (sc == NULL) {
   3552 		if (ipopts)
   3553 			(void) m_free(ipopts);
   3554 		return (0);
   3555 	}
   3556 
   3557 	/*
   3558 	 * Fill in the cache, and put the necessary IP and TCP
   3559 	 * options into the reply.
   3560 	 */
   3561 	bzero(sc, sizeof(struct syn_cache));
   3562 	callout_init(&sc->sc_timer);
   3563 	bcopy(src, &sc->sc_src, src->sa_len);
   3564 	bcopy(dst, &sc->sc_dst, dst->sa_len);
   3565 	sc->sc_flags = 0;
   3566 	sc->sc_ipopts = ipopts;
   3567 	sc->sc_irs = th->th_seq;
   3568 	switch (src->sa_family) {
   3569 #ifdef INET
   3570 	case AF_INET:
   3571 	    {
   3572 		struct sockaddr_in *srcin = (void *) src;
   3573 		struct sockaddr_in *dstin = (void *) dst;
   3574 
   3575 		sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
   3576 		    &srcin->sin_addr, dstin->sin_port,
   3577 		    srcin->sin_port, sizeof(dstin->sin_addr), 0);
   3578 		break;
   3579 	    }
   3580 #endif /* INET */
   3581 #ifdef INET6
   3582 	case AF_INET6:
   3583 	    {
   3584 		struct sockaddr_in6 *srcin6 = (void *) src;
   3585 		struct sockaddr_in6 *dstin6 = (void *) dst;
   3586 
   3587 		sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
   3588 		    &srcin6->sin6_addr, dstin6->sin6_port,
   3589 		    srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
   3590 		break;
   3591 	    }
   3592 #endif /* INET6 */
   3593 	}
   3594 	sc->sc_peermaxseg = oi->maxseg;
   3595 	sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
   3596 						m->m_pkthdr.rcvif : NULL,
   3597 						sc->sc_src.sa.sa_family);
   3598 	sc->sc_win = win;
   3599 	sc->sc_timebase = tcp_now;	/* see tcp_newtcpcb() */
   3600 	sc->sc_timestamp = tb.ts_recent;
   3601 	if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
   3602 	    (TF_REQ_TSTMP|TF_RCVD_TSTMP))
   3603 		sc->sc_flags |= SCF_TIMESTAMP;
   3604 	if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   3605 	    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
   3606 		sc->sc_requested_s_scale = tb.requested_s_scale;
   3607 		sc->sc_request_r_scale = 0;
   3608 		while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
   3609 		    TCP_MAXWIN << sc->sc_request_r_scale <
   3610 		    so->so_rcv.sb_hiwat)
   3611 			sc->sc_request_r_scale++;
   3612 	} else {
   3613 		sc->sc_requested_s_scale = 15;
   3614 		sc->sc_request_r_scale = 15;
   3615 	}
   3616 	sc->sc_tp = tp;
   3617 	if (syn_cache_respond(sc, m) == 0) {
   3618 		syn_cache_insert(sc, tp);
   3619 		tcpstat.tcps_sndacks++;
   3620 		tcpstat.tcps_sndtotal++;
   3621 	} else {
   3622 		SYN_CACHE_PUT(sc);
   3623 		tcpstat.tcps_sc_dropped++;
   3624 	}
   3625 	return (1);
   3626 }
   3627 
   3628 int
   3629 syn_cache_respond(sc, m)
   3630 	struct syn_cache *sc;
   3631 	struct mbuf *m;
   3632 {
   3633 	struct route *ro;
   3634 	u_int8_t *optp;
   3635 	int optlen, error;
   3636 	u_int16_t tlen;
   3637 	struct ip *ip = NULL;
   3638 #ifdef INET6
   3639 	struct ip6_hdr *ip6 = NULL;
   3640 #endif
   3641 	struct tcpcb *tp;
   3642 	struct tcphdr *th;
   3643 	u_int hlen;
   3644 	struct socket *so;
   3645 
   3646 	switch (sc->sc_src.sa.sa_family) {
   3647 	case AF_INET:
   3648 		hlen = sizeof(struct ip);
   3649 		ro = &sc->sc_route4;
   3650 		break;
   3651 #ifdef INET6
   3652 	case AF_INET6:
   3653 		hlen = sizeof(struct ip6_hdr);
   3654 		ro = (struct route *)&sc->sc_route6;
   3655 		break;
   3656 #endif
   3657 	default:
   3658 		if (m)
   3659 			m_freem(m);
   3660 		return EAFNOSUPPORT;
   3661 	}
   3662 
   3663 	/* Compute the size of the TCP options. */
   3664 	optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
   3665 	    ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
   3666 
   3667 	tlen = hlen + sizeof(struct tcphdr) + optlen;
   3668 
   3669 	/*
   3670 	 * Create the IP+TCP header from scratch.
   3671 	 */
   3672 	if (m)
   3673 		m_freem(m);
   3674 #ifdef DIAGNOSTIC
   3675 	if (max_linkhdr + tlen > MCLBYTES)
   3676 		return (ENOBUFS);
   3677 #endif
   3678 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   3679 	if (m && tlen > MHLEN) {
   3680 		MCLGET(m, M_DONTWAIT);
   3681 		if ((m->m_flags & M_EXT) == 0) {
   3682 			m_freem(m);
   3683 			m = NULL;
   3684 		}
   3685 	}
   3686 	if (m == NULL)
   3687 		return (ENOBUFS);
   3688 	MCLAIM(m, &tcp_tx_mowner);
   3689 
   3690 	/* Fixup the mbuf. */
   3691 	m->m_data += max_linkhdr;
   3692 	m->m_len = m->m_pkthdr.len = tlen;
   3693 	if (sc->sc_tp) {
   3694 		struct socket *so;
   3695 
   3696 		tp = sc->sc_tp;
   3697 		if (tp->t_inpcb)
   3698 			so = tp->t_inpcb->inp_socket;
   3699 #ifdef INET6
   3700 		else if (tp->t_in6pcb)
   3701 			so = tp->t_in6pcb->in6p_socket;
   3702 #endif
   3703 		else
   3704 			so = NULL;
   3705 #ifdef IPSEC
   3706 		/* use IPsec policy on listening socket, on SYN ACK */
   3707 		if (ipsec_setsocket(m, so) != 0) {
   3708 			m_freem(m);
   3709 			return ENOBUFS;
   3710 		}
   3711 #endif
   3712 	}
   3713 	m->m_pkthdr.rcvif = NULL;
   3714 	memset(mtod(m, u_char *), 0, tlen);
   3715 
   3716 	switch (sc->sc_src.sa.sa_family) {
   3717 	case AF_INET:
   3718 		ip = mtod(m, struct ip *);
   3719 		ip->ip_dst = sc->sc_src.sin.sin_addr;
   3720 		ip->ip_src = sc->sc_dst.sin.sin_addr;
   3721 		ip->ip_p = IPPROTO_TCP;
   3722 		th = (struct tcphdr *)(ip + 1);
   3723 		th->th_dport = sc->sc_src.sin.sin_port;
   3724 		th->th_sport = sc->sc_dst.sin.sin_port;
   3725 		break;
   3726 #ifdef INET6
   3727 	case AF_INET6:
   3728 		ip6 = mtod(m, struct ip6_hdr *);
   3729 		ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
   3730 		ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
   3731 		ip6->ip6_nxt = IPPROTO_TCP;
   3732 		/* ip6_plen will be updated in ip6_output() */
   3733 		th = (struct tcphdr *)(ip6 + 1);
   3734 		th->th_dport = sc->sc_src.sin6.sin6_port;
   3735 		th->th_sport = sc->sc_dst.sin6.sin6_port;
   3736 		break;
   3737 #endif
   3738 	default:
   3739 		th = NULL;
   3740 	}
   3741 
   3742 	th->th_seq = htonl(sc->sc_iss);
   3743 	th->th_ack = htonl(sc->sc_irs + 1);
   3744 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
   3745 	th->th_flags = TH_SYN|TH_ACK;
   3746 	th->th_win = htons(sc->sc_win);
   3747 	/* th_sum already 0 */
   3748 	/* th_urp already 0 */
   3749 
   3750 	/* Tack on the TCP options. */
   3751 	optp = (u_int8_t *)(th + 1);
   3752 	*optp++ = TCPOPT_MAXSEG;
   3753 	*optp++ = 4;
   3754 	*optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
   3755 	*optp++ = sc->sc_ourmaxseg & 0xff;
   3756 
   3757 	if (sc->sc_request_r_scale != 15) {
   3758 		*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
   3759 		    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
   3760 		    sc->sc_request_r_scale);
   3761 		optp += 4;
   3762 	}
   3763 
   3764 	if (sc->sc_flags & SCF_TIMESTAMP) {
   3765 		u_int32_t *lp = (u_int32_t *)(optp);
   3766 		/* Form timestamp option as shown in appendix A of RFC 1323. */
   3767 		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
   3768 		*lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
   3769 		*lp   = htonl(sc->sc_timestamp);
   3770 		optp += TCPOLEN_TSTAMP_APPA;
   3771 	}
   3772 
   3773 	/* Compute the packet's checksum. */
   3774 	switch (sc->sc_src.sa.sa_family) {
   3775 	case AF_INET:
   3776 		ip->ip_len = htons(tlen - hlen);
   3777 		th->th_sum = 0;
   3778 		th->th_sum = in_cksum(m, tlen);
   3779 		break;
   3780 #ifdef INET6
   3781 	case AF_INET6:
   3782 		ip6->ip6_plen = htons(tlen - hlen);
   3783 		th->th_sum = 0;
   3784 		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
   3785 		break;
   3786 #endif
   3787 	}
   3788 
   3789 	/*
   3790 	 * Fill in some straggling IP bits.  Note the stack expects
   3791 	 * ip_len to be in host order, for convenience.
   3792 	 */
   3793 	switch (sc->sc_src.sa.sa_family) {
   3794 #ifdef INET
   3795 	case AF_INET:
   3796 		ip->ip_len = htons(tlen);
   3797 		ip->ip_ttl = ip_defttl;
   3798 		/* XXX tos? */
   3799 		break;
   3800 #endif
   3801 #ifdef INET6
   3802 	case AF_INET6:
   3803 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
   3804 		ip6->ip6_vfc |= IPV6_VERSION;
   3805 		ip6->ip6_plen = htons(tlen - hlen);
   3806 		/* ip6_hlim will be initialized afterwards */
   3807 		/* XXX flowlabel? */
   3808 		break;
   3809 #endif
   3810 	}
   3811 
   3812 	/* XXX use IPsec policy on listening socket, on SYN ACK */
   3813 	tp = sc->sc_tp;
   3814 
   3815 	switch (sc->sc_src.sa.sa_family) {
   3816 #ifdef INET
   3817 	case AF_INET:
   3818 		error = ip_output(m, sc->sc_ipopts, ro,
   3819 		    (ip_mtudisc ? IP_MTUDISC : 0),
   3820 		    (struct ip_moptions *)NULL, so);
   3821 		break;
   3822 #endif
   3823 #ifdef INET6
   3824 	case AF_INET6:
   3825 		ip6->ip6_hlim = in6_selecthlim(NULL,
   3826 				ro->ro_rt ? ro->ro_rt->rt_ifp : NULL);
   3827 
   3828 		error = ip6_output(m, NULL /*XXX*/, (struct route_in6 *)ro, 0,
   3829 			(struct ip6_moptions *)0, so, NULL);
   3830 		break;
   3831 #endif
   3832 	default:
   3833 		error = EAFNOSUPPORT;
   3834 		break;
   3835 	}
   3836 	return (error);
   3837 }
   3838