tcp_input.c revision 1.18 1 /* $NetBSD: tcp_input.c,v 1.18 1995/06/12 00:47:52 mycroft Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the University of
18 * California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * @(#)tcp_input.c 8.5 (Berkeley) 4/10/94
36 */
37
38 #ifndef TUBA_INCLUDE
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/malloc.h>
42 #include <sys/mbuf.h>
43 #include <sys/protosw.h>
44 #include <sys/socket.h>
45 #include <sys/socketvar.h>
46 #include <sys/errno.h>
47
48 #include <net/if.h>
49 #include <net/route.h>
50
51 #include <netinet/in.h>
52 #include <netinet/in_systm.h>
53 #include <netinet/ip.h>
54 #include <netinet/in_pcb.h>
55 #include <netinet/ip_var.h>
56 #include <netinet/tcp.h>
57 #include <netinet/tcp_fsm.h>
58 #include <netinet/tcp_seq.h>
59 #include <netinet/tcp_timer.h>
60 #include <netinet/tcp_var.h>
61 #include <netinet/tcpip.h>
62 #include <netinet/tcp_debug.h>
63
64 int tcprexmtthresh = 3;
65 struct tcpiphdr tcp_saveti;
66 struct inpcb *tcp_last_inpcb = 0;
67
68 extern u_long sb_max;
69
70 #endif /* TUBA_INCLUDE */
71 #define TCP_PAWS_IDLE (24 * 24 * 60 * 60 * PR_SLOWHZ)
72
73 /* for modulo comparisons of timestamps */
74 #define TSTMP_LT(a,b) ((int)((a)-(b)) < 0)
75 #define TSTMP_GEQ(a,b) ((int)((a)-(b)) >= 0)
76
77
78 /*
79 * Insert segment ti into reassembly queue of tcp with
80 * control block tp. Return TH_FIN if reassembly now includes
81 * a segment with FIN. The macro form does the common case inline
82 * (segment is the next to be received on an established connection,
83 * and the queue is empty), avoiding linkage into and removal
84 * from the queue and repetition of various conversions.
85 * Set DELACK for segments received in order, but ack immediately
86 * when segments are out of order (so fast retransmit can work).
87 */
88 #define TCP_REASS(tp, ti, m, so, flags) { \
89 if ((ti)->ti_seq == (tp)->rcv_nxt && \
90 (tp)->seg_next == (struct tcpiphdr *)(tp) && \
91 (tp)->t_state == TCPS_ESTABLISHED) { \
92 if ((ti)->ti_flags & TH_PUSH) \
93 tp->t_flags |= TF_ACKNOW; \
94 else \
95 tp->t_flags |= TF_DELACK; \
96 (tp)->rcv_nxt += (ti)->ti_len; \
97 flags = (ti)->ti_flags & TH_FIN; \
98 tcpstat.tcps_rcvpack++;\
99 tcpstat.tcps_rcvbyte += (ti)->ti_len;\
100 sbappend(&(so)->so_rcv, (m)); \
101 sorwakeup(so); \
102 } else { \
103 (flags) = tcp_reass((tp), (ti), (m)); \
104 tp->t_flags |= TF_ACKNOW; \
105 } \
106 }
107 #ifndef TUBA_INCLUDE
108
109 int
110 tcp_reass(tp, ti, m)
111 register struct tcpcb *tp;
112 register struct tcpiphdr *ti;
113 struct mbuf *m;
114 {
115 register struct tcpiphdr *q;
116 struct socket *so = tp->t_inpcb->inp_socket;
117 int flags;
118
119 /*
120 * Call with ti==0 after become established to
121 * force pre-ESTABLISHED data up to user socket.
122 */
123 if (ti == 0)
124 goto present;
125
126 /*
127 * Find a segment which begins after this one does.
128 */
129 for (q = tp->seg_next; q != (struct tcpiphdr *)tp;
130 q = (struct tcpiphdr *)q->ti_next)
131 if (SEQ_GT(q->ti_seq, ti->ti_seq))
132 break;
133
134 /*
135 * If there is a preceding segment, it may provide some of
136 * our data already. If so, drop the data from the incoming
137 * segment. If it provides all of our data, drop us.
138 */
139 if ((struct tcpiphdr *)q->ti_prev != (struct tcpiphdr *)tp) {
140 register int i;
141 q = (struct tcpiphdr *)q->ti_prev;
142 /* conversion to int (in i) handles seq wraparound */
143 i = q->ti_seq + q->ti_len - ti->ti_seq;
144 if (i > 0) {
145 if (i >= ti->ti_len) {
146 tcpstat.tcps_rcvduppack++;
147 tcpstat.tcps_rcvdupbyte += ti->ti_len;
148 m_freem(m);
149 return (0);
150 }
151 m_adj(m, i);
152 ti->ti_len -= i;
153 ti->ti_seq += i;
154 }
155 q = (struct tcpiphdr *)(q->ti_next);
156 }
157 tcpstat.tcps_rcvoopack++;
158 tcpstat.tcps_rcvoobyte += ti->ti_len;
159 REASS_MBUF(ti) = m; /* XXX */
160
161 /*
162 * While we overlap succeeding segments trim them or,
163 * if they are completely covered, dequeue them.
164 */
165 while (q != (struct tcpiphdr *)tp) {
166 register int i = (ti->ti_seq + ti->ti_len) - q->ti_seq;
167 if (i <= 0)
168 break;
169 if (i < q->ti_len) {
170 q->ti_seq += i;
171 q->ti_len -= i;
172 m_adj(REASS_MBUF(q), i);
173 break;
174 }
175 q = (struct tcpiphdr *)q->ti_next;
176 m = REASS_MBUF((struct tcpiphdr *)q->ti_prev);
177 remque(q->ti_prev);
178 m_freem(m);
179 }
180
181 /*
182 * Stick new segment in its place.
183 */
184 insque(ti, q->ti_prev);
185
186 present:
187 /*
188 * Present data to user, advancing rcv_nxt through
189 * completed sequence space.
190 */
191 if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
192 return (0);
193 ti = tp->seg_next;
194 if (ti == (struct tcpiphdr *)tp || ti->ti_seq != tp->rcv_nxt)
195 return (0);
196 if (tp->t_state == TCPS_SYN_RECEIVED && ti->ti_len)
197 return (0);
198 do {
199 tp->rcv_nxt += ti->ti_len;
200 flags = ti->ti_flags & TH_FIN;
201 remque(ti);
202 m = REASS_MBUF(ti);
203 ti = (struct tcpiphdr *)ti->ti_next;
204 if (so->so_state & SS_CANTRCVMORE)
205 m_freem(m);
206 else
207 sbappend(&so->so_rcv, m);
208 } while (ti != (struct tcpiphdr *)tp && ti->ti_seq == tp->rcv_nxt);
209 sorwakeup(so);
210 return (flags);
211 }
212
213 /*
214 * TCP input routine, follows pages 65-76 of the
215 * protocol specification dated September, 1981 very closely.
216 */
217 void
218 tcp_input(m, iphlen)
219 register struct mbuf *m;
220 int iphlen;
221 {
222 register struct tcpiphdr *ti;
223 register struct inpcb *inp;
224 caddr_t optp = NULL;
225 int optlen;
226 int len, tlen, off;
227 register struct tcpcb *tp = 0;
228 register int tiflags;
229 struct socket *so;
230 int todrop, acked, ourfinisacked, needoutput = 0;
231 short ostate;
232 struct in_addr laddr;
233 int dropsocket = 0;
234 int iss = 0;
235 u_long tiwin;
236 u_int32_t ts_val, ts_ecr;
237 int ts_present = 0;
238
239 tcpstat.tcps_rcvtotal++;
240 /*
241 * Get IP and TCP header together in first mbuf.
242 * Note: IP leaves IP header in first mbuf.
243 */
244 ti = mtod(m, struct tcpiphdr *);
245 if (iphlen > sizeof (struct ip))
246 ip_stripoptions(m, (struct mbuf *)0);
247 if (m->m_len < sizeof (struct tcpiphdr)) {
248 if ((m = m_pullup(m, sizeof (struct tcpiphdr))) == 0) {
249 tcpstat.tcps_rcvshort++;
250 return;
251 }
252 ti = mtod(m, struct tcpiphdr *);
253 }
254
255 /*
256 * Checksum extended TCP header and data.
257 */
258 tlen = ((struct ip *)ti)->ip_len;
259 len = sizeof (struct ip) + tlen;
260 ti->ti_next = ti->ti_prev = 0;
261 ti->ti_x1 = 0;
262 ti->ti_len = (u_int16_t)tlen;
263 HTONS(ti->ti_len);
264 if (ti->ti_sum = in_cksum(m, len)) {
265 tcpstat.tcps_rcvbadsum++;
266 goto drop;
267 }
268 #endif /* TUBA_INCLUDE */
269
270 /*
271 * Check that TCP offset makes sense,
272 * pull out TCP options and adjust length. XXX
273 */
274 off = ti->ti_off << 2;
275 if (off < sizeof (struct tcphdr) || off > tlen) {
276 tcpstat.tcps_rcvbadoff++;
277 goto drop;
278 }
279 tlen -= off;
280 ti->ti_len = tlen;
281 if (off > sizeof (struct tcphdr)) {
282 if (m->m_len < sizeof(struct ip) + off) {
283 if ((m = m_pullup(m, sizeof (struct ip) + off)) == 0) {
284 tcpstat.tcps_rcvshort++;
285 return;
286 }
287 ti = mtod(m, struct tcpiphdr *);
288 }
289 optlen = off - sizeof (struct tcphdr);
290 optp = mtod(m, caddr_t) + sizeof (struct tcpiphdr);
291 /*
292 * Do quick retrieval of timestamp options ("options
293 * prediction?"). If timestamp is the only option and it's
294 * formatted as recommended in RFC 1323 appendix A, we
295 * quickly get the values now and not bother calling
296 * tcp_dooptions(), etc.
297 */
298 if ((optlen == TCPOLEN_TSTAMP_APPA ||
299 (optlen > TCPOLEN_TSTAMP_APPA &&
300 optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
301 *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
302 (ti->ti_flags & TH_SYN) == 0) {
303 ts_present = 1;
304 ts_val = ntohl(*(u_int32_t *)(optp + 4));
305 ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
306 optp = NULL; /* we've parsed the options */
307 }
308 }
309 tiflags = ti->ti_flags;
310
311 /*
312 * Convert TCP protocol specific fields to host format.
313 */
314 NTOHL(ti->ti_seq);
315 NTOHL(ti->ti_ack);
316 NTOHS(ti->ti_win);
317 NTOHS(ti->ti_urp);
318
319 /*
320 * Locate pcb for segment.
321 */
322 findpcb:
323 inp = tcp_last_inpcb;
324 if (inp == 0 ||
325 inp->inp_lport != ti->ti_dport ||
326 inp->inp_fport != ti->ti_sport ||
327 inp->inp_faddr.s_addr != ti->ti_src.s_addr ||
328 inp->inp_laddr.s_addr != ti->ti_dst.s_addr) {
329 ++tcpstat.tcps_pcbcachemiss;
330 inp = in_pcblookup(&tcbtable, ti->ti_src, ti->ti_sport,
331 ti->ti_dst, ti->ti_dport, INPLOOKUP_WILDCARD);
332 /*
333 * If the state is CLOSED (i.e., TCB does not exist) then
334 * all data in the incoming segment is discarded.
335 * If the TCB exists but is in CLOSED state, it is embryonic,
336 * but should either do a listen or a connect soon.
337 */
338 if (inp == 0)
339 goto dropwithreset;
340 tcp_last_inpcb = inp;
341 }
342
343 tp = intotcpcb(inp);
344 if (tp == 0)
345 goto dropwithreset;
346 if (tp->t_state == TCPS_CLOSED)
347 goto drop;
348
349 /* Unscale the window into a 32-bit value. */
350 if ((tiflags & TH_SYN) == 0)
351 tiwin = ti->ti_win << tp->snd_scale;
352 else
353 tiwin = ti->ti_win;
354
355 so = inp->inp_socket;
356 if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
357 if (so->so_options & SO_DEBUG) {
358 ostate = tp->t_state;
359 tcp_saveti = *ti;
360 }
361 if (so->so_options & SO_ACCEPTCONN) {
362 so = sonewconn(so, 0);
363 if (so == 0)
364 goto drop;
365 /*
366 * This is ugly, but ....
367 *
368 * Mark socket as temporary until we're
369 * committed to keeping it. The code at
370 * ``drop'' and ``dropwithreset'' check the
371 * flag dropsocket to see if the temporary
372 * socket created here should be discarded.
373 * We mark the socket as discardable until
374 * we're committed to it below in TCPS_LISTEN.
375 */
376 dropsocket++;
377 inp = (struct inpcb *)so->so_pcb;
378 inp->inp_laddr = ti->ti_dst;
379 inp->inp_lport = ti->ti_dport;
380 #if BSD>=43
381 inp->inp_options = ip_srcroute();
382 #endif
383 tp = intotcpcb(inp);
384 tp->t_state = TCPS_LISTEN;
385
386 /* Compute proper scaling value from buffer space
387 */
388 while (tp->request_r_scale < TCP_MAX_WINSHIFT &&
389 TCP_MAXWIN << tp->request_r_scale < so->so_rcv.sb_hiwat)
390 tp->request_r_scale++;
391 }
392 }
393
394 /*
395 * Segment received on connection.
396 * Reset idle time and keep-alive timer.
397 */
398 tp->t_idle = 0;
399 tp->t_timer[TCPT_KEEP] = tcp_keepidle;
400
401 /*
402 * Process options if not in LISTEN state,
403 * else do it below (after getting remote address).
404 */
405 if (optp && tp->t_state != TCPS_LISTEN)
406 tcp_dooptions(tp, optp, optlen, ti,
407 &ts_present, &ts_val, &ts_ecr);
408
409 /*
410 * Header prediction: check for the two common cases
411 * of a uni-directional data xfer. If the packet has
412 * no control flags, is in-sequence, the window didn't
413 * change and we're not retransmitting, it's a
414 * candidate. If the length is zero and the ack moved
415 * forward, we're the sender side of the xfer. Just
416 * free the data acked & wake any higher level process
417 * that was blocked waiting for space. If the length
418 * is non-zero and the ack didn't move, we're the
419 * receiver side. If we're getting packets in-order
420 * (the reassembly queue is empty), add the data to
421 * the socket buffer and note that we need a delayed ack.
422 */
423 if (tp->t_state == TCPS_ESTABLISHED &&
424 (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
425 (!ts_present || TSTMP_GEQ(ts_val, tp->ts_recent)) &&
426 ti->ti_seq == tp->rcv_nxt &&
427 tiwin && tiwin == tp->snd_wnd &&
428 tp->snd_nxt == tp->snd_max) {
429
430 /*
431 * If last ACK falls within this segment's sequence numbers,
432 * record the timestamp.
433 */
434 if (ts_present && SEQ_LEQ(ti->ti_seq, tp->last_ack_sent) &&
435 SEQ_LT(tp->last_ack_sent, ti->ti_seq + ti->ti_len)) {
436 tp->ts_recent_age = tcp_now;
437 tp->ts_recent = ts_val;
438 }
439
440 if (ti->ti_len == 0) {
441 if (SEQ_GT(ti->ti_ack, tp->snd_una) &&
442 SEQ_LEQ(ti->ti_ack, tp->snd_max) &&
443 tp->snd_cwnd >= tp->snd_wnd &&
444 tp->t_dupacks < tcprexmtthresh) {
445 /*
446 * this is a pure ack for outstanding data.
447 */
448 ++tcpstat.tcps_predack;
449 if (ts_present)
450 tcp_xmit_timer(tp, tcp_now-ts_ecr+1);
451 else if (tp->t_rtt &&
452 SEQ_GT(ti->ti_ack, tp->t_rtseq))
453 tcp_xmit_timer(tp, tp->t_rtt);
454 acked = ti->ti_ack - tp->snd_una;
455 tcpstat.tcps_rcvackpack++;
456 tcpstat.tcps_rcvackbyte += acked;
457 sbdrop(&so->so_snd, acked);
458 tp->snd_una = ti->ti_ack;
459 m_freem(m);
460
461 /*
462 * If all outstanding data are acked, stop
463 * retransmit timer, otherwise restart timer
464 * using current (possibly backed-off) value.
465 * If process is waiting for space,
466 * wakeup/selwakeup/signal. If data
467 * are ready to send, let tcp_output
468 * decide between more output or persist.
469 */
470 if (tp->snd_una == tp->snd_max)
471 tp->t_timer[TCPT_REXMT] = 0;
472 else if (tp->t_timer[TCPT_PERSIST] == 0)
473 tp->t_timer[TCPT_REXMT] = tp->t_rxtcur;
474
475 if (so->so_snd.sb_flags & SB_NOTIFY)
476 sowwakeup(so);
477 if (so->so_snd.sb_cc)
478 (void) tcp_output(tp);
479 return;
480 }
481 } else if (ti->ti_ack == tp->snd_una &&
482 tp->seg_next == (struct tcpiphdr *)tp &&
483 ti->ti_len <= sbspace(&so->so_rcv)) {
484 /*
485 * this is a pure, in-sequence data packet
486 * with nothing on the reassembly queue and
487 * we have enough buffer space to take it.
488 */
489 ++tcpstat.tcps_preddat;
490 tp->rcv_nxt += ti->ti_len;
491 tcpstat.tcps_rcvpack++;
492 tcpstat.tcps_rcvbyte += ti->ti_len;
493 /*
494 * Drop TCP, IP headers and TCP options then add data
495 * to socket buffer.
496 */
497 m->m_data += sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);
498 m->m_len -= sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);
499 sbappend(&so->so_rcv, m);
500 sorwakeup(so);
501 if (ti->ti_flags & TH_PUSH)
502 tp->t_flags |= TF_ACKNOW;
503 else
504 tp->t_flags |= TF_DELACK;
505 return;
506 }
507 }
508
509 /*
510 * Drop TCP, IP headers and TCP options.
511 */
512 m->m_data += sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);
513 m->m_len -= sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);
514
515 /*
516 * Calculate amount of space in receive window,
517 * and then do TCP input processing.
518 * Receive window is amount of space in rcv queue,
519 * but not less than advertised window.
520 */
521 { int win;
522
523 win = sbspace(&so->so_rcv);
524 if (win < 0)
525 win = 0;
526 tp->rcv_wnd = max(win, (int)(tp->rcv_adv - tp->rcv_nxt));
527 }
528
529 switch (tp->t_state) {
530
531 /*
532 * If the state is LISTEN then ignore segment if it contains an RST.
533 * If the segment contains an ACK then it is bad and send a RST.
534 * If it does not contain a SYN then it is not interesting; drop it.
535 * Don't bother responding if the destination was a broadcast.
536 * Otherwise initialize tp->rcv_nxt, and tp->irs, select an initial
537 * tp->iss, and send a segment:
538 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
539 * Also initialize tp->snd_nxt to tp->iss+1 and tp->snd_una to tp->iss.
540 * Fill in remote peer address fields if not previously specified.
541 * Enter SYN_RECEIVED state, and process any other fields of this
542 * segment in this state.
543 */
544 case TCPS_LISTEN: {
545 struct mbuf *am;
546 register struct sockaddr_in *sin;
547
548 if (tiflags & TH_RST)
549 goto drop;
550 if (tiflags & TH_ACK)
551 goto dropwithreset;
552 if ((tiflags & TH_SYN) == 0)
553 goto drop;
554 /*
555 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
556 * in_broadcast() should never return true on a received
557 * packet with M_BCAST not set.
558 */
559 if (m->m_flags & (M_BCAST|M_MCAST) ||
560 IN_MULTICAST(ti->ti_dst.s_addr))
561 goto drop;
562 am = m_get(M_DONTWAIT, MT_SONAME); /* XXX */
563 if (am == NULL)
564 goto drop;
565 am->m_len = sizeof (struct sockaddr_in);
566 sin = mtod(am, struct sockaddr_in *);
567 sin->sin_family = AF_INET;
568 sin->sin_len = sizeof(*sin);
569 sin->sin_addr = ti->ti_src;
570 sin->sin_port = ti->ti_sport;
571 bzero((caddr_t)sin->sin_zero, sizeof(sin->sin_zero));
572 laddr = inp->inp_laddr;
573 if (inp->inp_laddr.s_addr == INADDR_ANY)
574 inp->inp_laddr = ti->ti_dst;
575 if (in_pcbconnect(inp, am)) {
576 inp->inp_laddr = laddr;
577 (void) m_free(am);
578 goto drop;
579 }
580 (void) m_free(am);
581 tp->t_template = tcp_template(tp);
582 if (tp->t_template == 0) {
583 tp = tcp_drop(tp, ENOBUFS);
584 dropsocket = 0; /* socket is already gone */
585 goto drop;
586 }
587 if (optp)
588 tcp_dooptions(tp, optp, optlen, ti,
589 &ts_present, &ts_val, &ts_ecr);
590 if (iss)
591 tp->iss = iss;
592 else
593 tp->iss = tcp_iss;
594 tcp_iss += TCP_ISSINCR/2;
595 tp->irs = ti->ti_seq;
596 tcp_sendseqinit(tp);
597 tcp_rcvseqinit(tp);
598 tp->t_flags |= TF_ACKNOW;
599 tp->t_state = TCPS_SYN_RECEIVED;
600 tp->t_timer[TCPT_KEEP] = TCPTV_KEEP_INIT;
601 dropsocket = 0; /* committed to socket */
602 tcpstat.tcps_accepts++;
603 goto trimthenstep6;
604 }
605
606 /*
607 * If the state is SYN_SENT:
608 * if seg contains an ACK, but not for our SYN, drop the input.
609 * if seg contains a RST, then drop the connection.
610 * if seg does not contain SYN, then drop it.
611 * Otherwise this is an acceptable SYN segment
612 * initialize tp->rcv_nxt and tp->irs
613 * if seg contains ack then advance tp->snd_una
614 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
615 * arrange for segment to be acked (eventually)
616 * continue processing rest of data/controls, beginning with URG
617 */
618 case TCPS_SYN_SENT:
619 if ((tiflags & TH_ACK) &&
620 (SEQ_LEQ(ti->ti_ack, tp->iss) ||
621 SEQ_GT(ti->ti_ack, tp->snd_max)))
622 goto dropwithreset;
623 if (tiflags & TH_RST) {
624 if (tiflags & TH_ACK)
625 tp = tcp_drop(tp, ECONNREFUSED);
626 goto drop;
627 }
628 if ((tiflags & TH_SYN) == 0)
629 goto drop;
630 if (tiflags & TH_ACK) {
631 tp->snd_una = ti->ti_ack;
632 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
633 tp->snd_nxt = tp->snd_una;
634 }
635 tp->t_timer[TCPT_REXMT] = 0;
636 tp->irs = ti->ti_seq;
637 tcp_rcvseqinit(tp);
638 tp->t_flags |= TF_ACKNOW;
639 if (tiflags & TH_ACK && SEQ_GT(tp->snd_una, tp->iss)) {
640 tcpstat.tcps_connects++;
641 soisconnected(so);
642 tp->t_state = TCPS_ESTABLISHED;
643 /* Do window scaling on this connection? */
644 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
645 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
646 tp->snd_scale = tp->requested_s_scale;
647 tp->rcv_scale = tp->request_r_scale;
648 }
649 (void) tcp_reass(tp, (struct tcpiphdr *)0,
650 (struct mbuf *)0);
651 /*
652 * if we didn't have to retransmit the SYN,
653 * use its rtt as our initial srtt & rtt var.
654 */
655 if (tp->t_rtt)
656 tcp_xmit_timer(tp, tp->t_rtt);
657 } else
658 tp->t_state = TCPS_SYN_RECEIVED;
659
660 trimthenstep6:
661 /*
662 * Advance ti->ti_seq to correspond to first data byte.
663 * If data, trim to stay within window,
664 * dropping FIN if necessary.
665 */
666 ti->ti_seq++;
667 if (ti->ti_len > tp->rcv_wnd) {
668 todrop = ti->ti_len - tp->rcv_wnd;
669 m_adj(m, -todrop);
670 ti->ti_len = tp->rcv_wnd;
671 tiflags &= ~TH_FIN;
672 tcpstat.tcps_rcvpackafterwin++;
673 tcpstat.tcps_rcvbyteafterwin += todrop;
674 }
675 tp->snd_wl1 = ti->ti_seq - 1;
676 tp->rcv_up = ti->ti_seq;
677 goto step6;
678 }
679
680 /*
681 * States other than LISTEN or SYN_SENT.
682 * First check timestamp, if present.
683 * Then check that at least some bytes of segment are within
684 * receive window. If segment begins before rcv_nxt,
685 * drop leading data (and SYN); if nothing left, just ack.
686 *
687 * RFC 1323 PAWS: If we have a timestamp reply on this segment
688 * and it's less than ts_recent, drop it.
689 */
690 if (ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
691 TSTMP_LT(ts_val, tp->ts_recent)) {
692
693 /* Check to see if ts_recent is over 24 days old. */
694 if ((int)(tcp_now - tp->ts_recent_age) > TCP_PAWS_IDLE) {
695 /*
696 * Invalidate ts_recent. If this segment updates
697 * ts_recent, the age will be reset later and ts_recent
698 * will get a valid value. If it does not, setting
699 * ts_recent to zero will at least satisfy the
700 * requirement that zero be placed in the timestamp
701 * echo reply when ts_recent isn't valid. The
702 * age isn't reset until we get a valid ts_recent
703 * because we don't want out-of-order segments to be
704 * dropped when ts_recent is old.
705 */
706 tp->ts_recent = 0;
707 } else {
708 tcpstat.tcps_rcvduppack++;
709 tcpstat.tcps_rcvdupbyte += ti->ti_len;
710 tcpstat.tcps_pawsdrop++;
711 goto dropafterack;
712 }
713 }
714
715 todrop = tp->rcv_nxt - ti->ti_seq;
716 if (todrop > 0) {
717 if (tiflags & TH_SYN) {
718 tiflags &= ~TH_SYN;
719 ti->ti_seq++;
720 if (ti->ti_urp > 1)
721 ti->ti_urp--;
722 else
723 tiflags &= ~TH_URG;
724 todrop--;
725 }
726 if (todrop >= ti->ti_len) {
727 /*
728 * Any valid FIN must be to the left of the
729 * window. At this point, FIN must be a
730 * duplicate or out-of-sequence, so drop it.
731 */
732 tiflags &= ~TH_FIN;
733 /*
734 * Send ACK to resynchronize, and drop any data,
735 * but keep on processing for RST or ACK.
736 */
737 tp->t_flags |= TF_ACKNOW;
738 tcpstat.tcps_rcvdupbyte += todrop = ti->ti_len;
739 tcpstat.tcps_rcvduppack++;
740 } else {
741 tcpstat.tcps_rcvpartduppack++;
742 tcpstat.tcps_rcvpartdupbyte += todrop;
743 }
744 m_adj(m, todrop);
745 ti->ti_seq += todrop;
746 ti->ti_len -= todrop;
747 if (ti->ti_urp > todrop)
748 ti->ti_urp -= todrop;
749 else {
750 tiflags &= ~TH_URG;
751 ti->ti_urp = 0;
752 }
753 }
754
755 /*
756 * If new data are received on a connection after the
757 * user processes are gone, then RST the other end.
758 */
759 if ((so->so_state & SS_NOFDREF) &&
760 tp->t_state > TCPS_CLOSE_WAIT && ti->ti_len) {
761 tp = tcp_close(tp);
762 tcpstat.tcps_rcvafterclose++;
763 goto dropwithreset;
764 }
765
766 /*
767 * If segment ends after window, drop trailing data
768 * (and PUSH and FIN); if nothing left, just ACK.
769 */
770 todrop = (ti->ti_seq+ti->ti_len) - (tp->rcv_nxt+tp->rcv_wnd);
771 if (todrop > 0) {
772 tcpstat.tcps_rcvpackafterwin++;
773 if (todrop >= ti->ti_len) {
774 tcpstat.tcps_rcvbyteafterwin += ti->ti_len;
775 /*
776 * If a new connection request is received
777 * while in TIME_WAIT, drop the old connection
778 * and start over if the sequence numbers
779 * are above the previous ones.
780 */
781 if (tiflags & TH_SYN &&
782 tp->t_state == TCPS_TIME_WAIT &&
783 SEQ_GT(ti->ti_seq, tp->rcv_nxt)) {
784 iss = tp->rcv_nxt + TCP_ISSINCR;
785 tp = tcp_close(tp);
786 goto findpcb;
787 }
788 /*
789 * If window is closed can only take segments at
790 * window edge, and have to drop data and PUSH from
791 * incoming segments. Continue processing, but
792 * remember to ack. Otherwise, drop segment
793 * and ack.
794 */
795 if (tp->rcv_wnd == 0 && ti->ti_seq == tp->rcv_nxt) {
796 tp->t_flags |= TF_ACKNOW;
797 tcpstat.tcps_rcvwinprobe++;
798 } else
799 goto dropafterack;
800 } else
801 tcpstat.tcps_rcvbyteafterwin += todrop;
802 m_adj(m, -todrop);
803 ti->ti_len -= todrop;
804 tiflags &= ~(TH_PUSH|TH_FIN);
805 }
806
807 /*
808 * If last ACK falls within this segment's sequence numbers,
809 * record its timestamp.
810 */
811 if (ts_present && SEQ_LEQ(ti->ti_seq, tp->last_ack_sent) &&
812 SEQ_LT(tp->last_ack_sent, ti->ti_seq + ti->ti_len +
813 ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
814 tp->ts_recent_age = tcp_now;
815 tp->ts_recent = ts_val;
816 }
817
818 /*
819 * If the RST bit is set examine the state:
820 * SYN_RECEIVED STATE:
821 * If passive open, return to LISTEN state.
822 * If active open, inform user that connection was refused.
823 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
824 * Inform user that connection was reset, and close tcb.
825 * CLOSING, LAST_ACK, TIME_WAIT STATES
826 * Close the tcb.
827 */
828 if (tiflags&TH_RST) switch (tp->t_state) {
829
830 case TCPS_SYN_RECEIVED:
831 so->so_error = ECONNREFUSED;
832 goto close;
833
834 case TCPS_ESTABLISHED:
835 case TCPS_FIN_WAIT_1:
836 case TCPS_FIN_WAIT_2:
837 case TCPS_CLOSE_WAIT:
838 so->so_error = ECONNRESET;
839 close:
840 tp->t_state = TCPS_CLOSED;
841 tcpstat.tcps_drops++;
842 tp = tcp_close(tp);
843 goto drop;
844
845 case TCPS_CLOSING:
846 case TCPS_LAST_ACK:
847 case TCPS_TIME_WAIT:
848 tp = tcp_close(tp);
849 goto drop;
850 }
851
852 /*
853 * If a SYN is in the window, then this is an
854 * error and we send an RST and drop the connection.
855 */
856 if (tiflags & TH_SYN) {
857 tp = tcp_drop(tp, ECONNRESET);
858 goto dropwithreset;
859 }
860
861 /*
862 * If the ACK bit is off we drop the segment and return.
863 */
864 if ((tiflags & TH_ACK) == 0)
865 goto drop;
866
867 /*
868 * Ack processing.
869 */
870 switch (tp->t_state) {
871
872 /*
873 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
874 * ESTABLISHED state and continue processing, otherwise
875 * send an RST.
876 */
877 case TCPS_SYN_RECEIVED:
878 if (SEQ_GT(tp->snd_una, ti->ti_ack) ||
879 SEQ_GT(ti->ti_ack, tp->snd_max))
880 goto dropwithreset;
881 tcpstat.tcps_connects++;
882 soisconnected(so);
883 tp->t_state = TCPS_ESTABLISHED;
884 /* Do window scaling? */
885 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
886 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
887 tp->snd_scale = tp->requested_s_scale;
888 tp->rcv_scale = tp->request_r_scale;
889 }
890 (void) tcp_reass(tp, (struct tcpiphdr *)0, (struct mbuf *)0);
891 tp->snd_wl1 = ti->ti_seq - 1;
892 /* fall into ... */
893
894 /*
895 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
896 * ACKs. If the ack is in the range
897 * tp->snd_una < ti->ti_ack <= tp->snd_max
898 * then advance tp->snd_una to ti->ti_ack and drop
899 * data from the retransmission queue. If this ACK reflects
900 * more up to date window information we update our window information.
901 */
902 case TCPS_ESTABLISHED:
903 case TCPS_FIN_WAIT_1:
904 case TCPS_FIN_WAIT_2:
905 case TCPS_CLOSE_WAIT:
906 case TCPS_CLOSING:
907 case TCPS_LAST_ACK:
908 case TCPS_TIME_WAIT:
909
910 if (SEQ_LEQ(ti->ti_ack, tp->snd_una)) {
911 if (ti->ti_len == 0 && tiwin == tp->snd_wnd) {
912 tcpstat.tcps_rcvdupack++;
913 /*
914 * If we have outstanding data (other than
915 * a window probe), this is a completely
916 * duplicate ack (ie, window info didn't
917 * change), the ack is the biggest we've
918 * seen and we've seen exactly our rexmt
919 * threshhold of them, assume a packet
920 * has been dropped and retransmit it.
921 * Kludge snd_nxt & the congestion
922 * window so we send only this one
923 * packet.
924 *
925 * We know we're losing at the current
926 * window size so do congestion avoidance
927 * (set ssthresh to half the current window
928 * and pull our congestion window back to
929 * the new ssthresh).
930 *
931 * Dup acks mean that packets have left the
932 * network (they're now cached at the receiver)
933 * so bump cwnd by the amount in the receiver
934 * to keep a constant cwnd packets in the
935 * network.
936 */
937 if (tp->t_timer[TCPT_REXMT] == 0 ||
938 ti->ti_ack != tp->snd_una)
939 tp->t_dupacks = 0;
940 else if (++tp->t_dupacks == tcprexmtthresh) {
941 tcp_seq onxt = tp->snd_nxt;
942 u_int win =
943 min(tp->snd_wnd, tp->snd_cwnd) / 2 /
944 tp->t_maxseg;
945
946 if (win < 2)
947 win = 2;
948 tp->snd_ssthresh = win * tp->t_maxseg;
949 tp->t_timer[TCPT_REXMT] = 0;
950 tp->t_rtt = 0;
951 tp->snd_nxt = ti->ti_ack;
952 tp->snd_cwnd = tp->t_maxseg;
953 (void) tcp_output(tp);
954 tp->snd_cwnd = tp->snd_ssthresh +
955 tp->t_maxseg * tp->t_dupacks;
956 if (SEQ_GT(onxt, tp->snd_nxt))
957 tp->snd_nxt = onxt;
958 goto drop;
959 } else if (tp->t_dupacks > tcprexmtthresh) {
960 tp->snd_cwnd += tp->t_maxseg;
961 (void) tcp_output(tp);
962 goto drop;
963 }
964 } else
965 tp->t_dupacks = 0;
966 break;
967 }
968 /*
969 * If the congestion window was inflated to account
970 * for the other side's cached packets, retract it.
971 */
972 if (tp->t_dupacks >= tcprexmtthresh &&
973 tp->snd_cwnd > tp->snd_ssthresh)
974 tp->snd_cwnd = tp->snd_ssthresh;
975 tp->t_dupacks = 0;
976 if (SEQ_GT(ti->ti_ack, tp->snd_max)) {
977 tcpstat.tcps_rcvacktoomuch++;
978 goto dropafterack;
979 }
980 acked = ti->ti_ack - tp->snd_una;
981 tcpstat.tcps_rcvackpack++;
982 tcpstat.tcps_rcvackbyte += acked;
983
984 /*
985 * If we have a timestamp reply, update smoothed
986 * round trip time. If no timestamp is present but
987 * transmit timer is running and timed sequence
988 * number was acked, update smoothed round trip time.
989 * Since we now have an rtt measurement, cancel the
990 * timer backoff (cf., Phil Karn's retransmit alg.).
991 * Recompute the initial retransmit timer.
992 */
993 if (ts_present)
994 tcp_xmit_timer(tp, tcp_now-ts_ecr+1);
995 else if (tp->t_rtt && SEQ_GT(ti->ti_ack, tp->t_rtseq))
996 tcp_xmit_timer(tp,tp->t_rtt);
997
998 /*
999 * If all outstanding data is acked, stop retransmit
1000 * timer and remember to restart (more output or persist).
1001 * If there is more data to be acked, restart retransmit
1002 * timer, using current (possibly backed-off) value.
1003 */
1004 if (ti->ti_ack == tp->snd_max) {
1005 tp->t_timer[TCPT_REXMT] = 0;
1006 needoutput = 1;
1007 } else if (tp->t_timer[TCPT_PERSIST] == 0)
1008 tp->t_timer[TCPT_REXMT] = tp->t_rxtcur;
1009 /*
1010 * When new data is acked, open the congestion window.
1011 * If the window gives us less than ssthresh packets
1012 * in flight, open exponentially (maxseg per packet).
1013 * Otherwise open linearly: maxseg per window
1014 * (maxseg^2 / cwnd per packet), plus a constant
1015 * fraction of a packet (maxseg/8) to help larger windows
1016 * open quickly enough.
1017 */
1018 {
1019 register u_int cw = tp->snd_cwnd;
1020 register u_int incr = tp->t_maxseg;
1021
1022 if (cw > tp->snd_ssthresh)
1023 incr = incr * incr / cw;
1024 tp->snd_cwnd = min(cw + incr, TCP_MAXWIN<<tp->snd_scale);
1025 }
1026 if (acked > so->so_snd.sb_cc) {
1027 tp->snd_wnd -= so->so_snd.sb_cc;
1028 sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
1029 ourfinisacked = 1;
1030 } else {
1031 sbdrop(&so->so_snd, acked);
1032 tp->snd_wnd -= acked;
1033 ourfinisacked = 0;
1034 }
1035 if (so->so_snd.sb_flags & SB_NOTIFY)
1036 sowwakeup(so);
1037 tp->snd_una = ti->ti_ack;
1038 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1039 tp->snd_nxt = tp->snd_una;
1040
1041 switch (tp->t_state) {
1042
1043 /*
1044 * In FIN_WAIT_1 STATE in addition to the processing
1045 * for the ESTABLISHED state if our FIN is now acknowledged
1046 * then enter FIN_WAIT_2.
1047 */
1048 case TCPS_FIN_WAIT_1:
1049 if (ourfinisacked) {
1050 /*
1051 * If we can't receive any more
1052 * data, then closing user can proceed.
1053 * Starting the timer is contrary to the
1054 * specification, but if we don't get a FIN
1055 * we'll hang forever.
1056 */
1057 if (so->so_state & SS_CANTRCVMORE) {
1058 soisdisconnected(so);
1059 tp->t_timer[TCPT_2MSL] = tcp_maxidle;
1060 }
1061 tp->t_state = TCPS_FIN_WAIT_2;
1062 }
1063 break;
1064
1065 /*
1066 * In CLOSING STATE in addition to the processing for
1067 * the ESTABLISHED state if the ACK acknowledges our FIN
1068 * then enter the TIME-WAIT state, otherwise ignore
1069 * the segment.
1070 */
1071 case TCPS_CLOSING:
1072 if (ourfinisacked) {
1073 tp->t_state = TCPS_TIME_WAIT;
1074 tcp_canceltimers(tp);
1075 tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
1076 soisdisconnected(so);
1077 }
1078 break;
1079
1080 /*
1081 * In LAST_ACK, we may still be waiting for data to drain
1082 * and/or to be acked, as well as for the ack of our FIN.
1083 * If our FIN is now acknowledged, delete the TCB,
1084 * enter the closed state and return.
1085 */
1086 case TCPS_LAST_ACK:
1087 if (ourfinisacked) {
1088 tp = tcp_close(tp);
1089 goto drop;
1090 }
1091 break;
1092
1093 /*
1094 * In TIME_WAIT state the only thing that should arrive
1095 * is a retransmission of the remote FIN. Acknowledge
1096 * it and restart the finack timer.
1097 */
1098 case TCPS_TIME_WAIT:
1099 tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
1100 goto dropafterack;
1101 }
1102 }
1103
1104 step6:
1105 /*
1106 * Update window information.
1107 * Don't look at window if no ACK: TAC's send garbage on first SYN.
1108 */
1109 if ((tiflags & TH_ACK) &&
1110 (SEQ_LT(tp->snd_wl1, ti->ti_seq) || tp->snd_wl1 == ti->ti_seq &&
1111 (SEQ_LT(tp->snd_wl2, ti->ti_ack) ||
1112 tp->snd_wl2 == ti->ti_ack && tiwin > tp->snd_wnd))) {
1113 /* keep track of pure window updates */
1114 if (ti->ti_len == 0 &&
1115 tp->snd_wl2 == ti->ti_ack && tiwin > tp->snd_wnd)
1116 tcpstat.tcps_rcvwinupd++;
1117 tp->snd_wnd = tiwin;
1118 tp->snd_wl1 = ti->ti_seq;
1119 tp->snd_wl2 = ti->ti_ack;
1120 if (tp->snd_wnd > tp->max_sndwnd)
1121 tp->max_sndwnd = tp->snd_wnd;
1122 needoutput = 1;
1123 }
1124
1125 /*
1126 * Process segments with URG.
1127 */
1128 if ((tiflags & TH_URG) && ti->ti_urp &&
1129 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1130 /*
1131 * This is a kludge, but if we receive and accept
1132 * random urgent pointers, we'll crash in
1133 * soreceive. It's hard to imagine someone
1134 * actually wanting to send this much urgent data.
1135 */
1136 if (ti->ti_urp + so->so_rcv.sb_cc > sb_max) {
1137 ti->ti_urp = 0; /* XXX */
1138 tiflags &= ~TH_URG; /* XXX */
1139 goto dodata; /* XXX */
1140 }
1141 /*
1142 * If this segment advances the known urgent pointer,
1143 * then mark the data stream. This should not happen
1144 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
1145 * a FIN has been received from the remote side.
1146 * In these states we ignore the URG.
1147 *
1148 * According to RFC961 (Assigned Protocols),
1149 * the urgent pointer points to the last octet
1150 * of urgent data. We continue, however,
1151 * to consider it to indicate the first octet
1152 * of data past the urgent section as the original
1153 * spec states (in one of two places).
1154 */
1155 if (SEQ_GT(ti->ti_seq+ti->ti_urp, tp->rcv_up)) {
1156 tp->rcv_up = ti->ti_seq + ti->ti_urp;
1157 so->so_oobmark = so->so_rcv.sb_cc +
1158 (tp->rcv_up - tp->rcv_nxt) - 1;
1159 if (so->so_oobmark == 0)
1160 so->so_state |= SS_RCVATMARK;
1161 sohasoutofband(so);
1162 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
1163 }
1164 /*
1165 * Remove out of band data so doesn't get presented to user.
1166 * This can happen independent of advancing the URG pointer,
1167 * but if two URG's are pending at once, some out-of-band
1168 * data may creep in... ick.
1169 */
1170 if (ti->ti_urp <= ti->ti_len
1171 #ifdef SO_OOBINLINE
1172 && (so->so_options & SO_OOBINLINE) == 0
1173 #endif
1174 )
1175 tcp_pulloutofband(so, ti, m);
1176 } else
1177 /*
1178 * If no out of band data is expected,
1179 * pull receive urgent pointer along
1180 * with the receive window.
1181 */
1182 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
1183 tp->rcv_up = tp->rcv_nxt;
1184 dodata: /* XXX */
1185
1186 /*
1187 * Process the segment text, merging it into the TCP sequencing queue,
1188 * and arranging for acknowledgment of receipt if necessary.
1189 * This process logically involves adjusting tp->rcv_wnd as data
1190 * is presented to the user (this happens in tcp_usrreq.c,
1191 * case PRU_RCVD). If a FIN has already been received on this
1192 * connection then we just ignore the text.
1193 */
1194 if ((ti->ti_len || (tiflags&TH_FIN)) &&
1195 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1196 TCP_REASS(tp, ti, m, so, tiflags);
1197 /*
1198 * Note the amount of data that peer has sent into
1199 * our window, in order to estimate the sender's
1200 * buffer size.
1201 */
1202 len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
1203 } else {
1204 m_freem(m);
1205 tiflags &= ~TH_FIN;
1206 }
1207
1208 /*
1209 * If FIN is received ACK the FIN and let the user know
1210 * that the connection is closing.
1211 */
1212 if (tiflags & TH_FIN) {
1213 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1214 socantrcvmore(so);
1215 tp->t_flags |= TF_ACKNOW;
1216 tp->rcv_nxt++;
1217 }
1218 switch (tp->t_state) {
1219
1220 /*
1221 * In SYN_RECEIVED and ESTABLISHED STATES
1222 * enter the CLOSE_WAIT state.
1223 */
1224 case TCPS_SYN_RECEIVED:
1225 case TCPS_ESTABLISHED:
1226 tp->t_state = TCPS_CLOSE_WAIT;
1227 break;
1228
1229 /*
1230 * If still in FIN_WAIT_1 STATE FIN has not been acked so
1231 * enter the CLOSING state.
1232 */
1233 case TCPS_FIN_WAIT_1:
1234 tp->t_state = TCPS_CLOSING;
1235 break;
1236
1237 /*
1238 * In FIN_WAIT_2 state enter the TIME_WAIT state,
1239 * starting the time-wait timer, turning off the other
1240 * standard timers.
1241 */
1242 case TCPS_FIN_WAIT_2:
1243 tp->t_state = TCPS_TIME_WAIT;
1244 tcp_canceltimers(tp);
1245 tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
1246 soisdisconnected(so);
1247 break;
1248
1249 /*
1250 * In TIME_WAIT state restart the 2 MSL time_wait timer.
1251 */
1252 case TCPS_TIME_WAIT:
1253 tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
1254 break;
1255 }
1256 }
1257 if (so->so_options & SO_DEBUG)
1258 tcp_trace(TA_INPUT, ostate, tp, &tcp_saveti, 0);
1259
1260 /*
1261 * Return any desired output.
1262 */
1263 if (needoutput || (tp->t_flags & TF_ACKNOW))
1264 (void) tcp_output(tp);
1265 return;
1266
1267 dropafterack:
1268 /*
1269 * Generate an ACK dropping incoming segment if it occupies
1270 * sequence space, where the ACK reflects our state.
1271 */
1272 if (tiflags & TH_RST)
1273 goto drop;
1274 m_freem(m);
1275 tp->t_flags |= TF_ACKNOW;
1276 (void) tcp_output(tp);
1277 return;
1278
1279 dropwithreset:
1280 /*
1281 * Generate a RST, dropping incoming segment.
1282 * Make ACK acceptable to originator of segment.
1283 * Don't bother to respond if destination was broadcast/multicast.
1284 */
1285 if ((tiflags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST) ||
1286 IN_MULTICAST(ti->ti_dst.s_addr))
1287 goto drop;
1288 if (tiflags & TH_ACK)
1289 tcp_respond(tp, ti, m, (tcp_seq)0, ti->ti_ack, TH_RST);
1290 else {
1291 if (tiflags & TH_SYN)
1292 ti->ti_len++;
1293 tcp_respond(tp, ti, m, ti->ti_seq+ti->ti_len, (tcp_seq)0,
1294 TH_RST|TH_ACK);
1295 }
1296 /* destroy temporarily created socket */
1297 if (dropsocket)
1298 (void) soabort(so);
1299 return;
1300
1301 drop:
1302 /*
1303 * Drop space held by incoming segment and return.
1304 */
1305 if (tp && (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
1306 tcp_trace(TA_DROP, ostate, tp, &tcp_saveti, 0);
1307 m_freem(m);
1308 /* destroy temporarily created socket */
1309 if (dropsocket)
1310 (void) soabort(so);
1311 return;
1312 #ifndef TUBA_INCLUDE
1313 }
1314
1315 void
1316 tcp_dooptions(tp, cp, cnt, ti, ts_present, ts_val, ts_ecr)
1317 struct tcpcb *tp;
1318 u_char *cp;
1319 int cnt;
1320 struct tcpiphdr *ti;
1321 int *ts_present;
1322 u_int32_t *ts_val, *ts_ecr;
1323 {
1324 u_int16_t mss;
1325 int opt, optlen;
1326
1327 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1328 opt = cp[0];
1329 if (opt == TCPOPT_EOL)
1330 break;
1331 if (opt == TCPOPT_NOP)
1332 optlen = 1;
1333 else {
1334 optlen = cp[1];
1335 if (optlen <= 0)
1336 break;
1337 }
1338 switch (opt) {
1339
1340 default:
1341 continue;
1342
1343 case TCPOPT_MAXSEG:
1344 if (optlen != TCPOLEN_MAXSEG)
1345 continue;
1346 if (!(ti->ti_flags & TH_SYN))
1347 continue;
1348 bcopy((char *) cp + 2, (char *) &mss, sizeof(mss));
1349 NTOHS(mss);
1350 (void) tcp_mss(tp, mss); /* sets t_maxseg */
1351 break;
1352
1353 case TCPOPT_WINDOW:
1354 if (optlen != TCPOLEN_WINDOW)
1355 continue;
1356 if (!(ti->ti_flags & TH_SYN))
1357 continue;
1358 tp->t_flags |= TF_RCVD_SCALE;
1359 tp->requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT);
1360 break;
1361
1362 case TCPOPT_TIMESTAMP:
1363 if (optlen != TCPOLEN_TIMESTAMP)
1364 continue;
1365 *ts_present = 1;
1366 bcopy((char *)cp + 2, (char *) ts_val, sizeof(*ts_val));
1367 NTOHL(*ts_val);
1368 bcopy((char *)cp + 6, (char *) ts_ecr, sizeof(*ts_ecr));
1369 NTOHL(*ts_ecr);
1370
1371 /*
1372 * A timestamp received in a SYN makes
1373 * it ok to send timestamp requests and replies.
1374 */
1375 if (ti->ti_flags & TH_SYN) {
1376 tp->t_flags |= TF_RCVD_TSTMP;
1377 tp->ts_recent = *ts_val;
1378 tp->ts_recent_age = tcp_now;
1379 }
1380 break;
1381 }
1382 }
1383 }
1384
1385 /*
1386 * Pull out of band byte out of a segment so
1387 * it doesn't appear in the user's data queue.
1388 * It is still reflected in the segment length for
1389 * sequencing purposes.
1390 */
1391 void
1392 tcp_pulloutofband(so, ti, m)
1393 struct socket *so;
1394 struct tcpiphdr *ti;
1395 register struct mbuf *m;
1396 {
1397 int cnt = ti->ti_urp - 1;
1398
1399 while (cnt >= 0) {
1400 if (m->m_len > cnt) {
1401 char *cp = mtod(m, caddr_t) + cnt;
1402 struct tcpcb *tp = sototcpcb(so);
1403
1404 tp->t_iobc = *cp;
1405 tp->t_oobflags |= TCPOOB_HAVEDATA;
1406 bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
1407 m->m_len--;
1408 return;
1409 }
1410 cnt -= m->m_len;
1411 m = m->m_next;
1412 if (m == 0)
1413 break;
1414 }
1415 panic("tcp_pulloutofband");
1416 }
1417
1418 /*
1419 * Collect new round-trip time estimate
1420 * and update averages and current timeout.
1421 */
1422 void
1423 tcp_xmit_timer(tp, rtt)
1424 register struct tcpcb *tp;
1425 short rtt;
1426 {
1427 register short delta;
1428
1429 tcpstat.tcps_rttupdated++;
1430 --rtt;
1431 if (tp->t_srtt != 0) {
1432 /*
1433 * srtt is stored as fixed point with 3 bits after the
1434 * binary point (i.e., scaled by 8). The following magic
1435 * is equivalent to the smoothing algorithm in rfc793 with
1436 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
1437 * point). Adjust rtt to origin 0.
1438 */
1439 delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
1440 if ((tp->t_srtt += delta) <= 0)
1441 tp->t_srtt = 1;
1442 /*
1443 * We accumulate a smoothed rtt variance (actually, a
1444 * smoothed mean difference), then set the retransmit
1445 * timer to smoothed rtt + 4 times the smoothed variance.
1446 * rttvar is stored as fixed point with 2 bits after the
1447 * binary point (scaled by 4). The following is
1448 * equivalent to rfc793 smoothing with an alpha of .75
1449 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces
1450 * rfc793's wired-in beta.
1451 */
1452 if (delta < 0)
1453 delta = -delta;
1454 delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
1455 if ((tp->t_rttvar += delta) <= 0)
1456 tp->t_rttvar = 1;
1457 } else {
1458 /*
1459 * No rtt measurement yet - use the unsmoothed rtt.
1460 * Set the variance to half the rtt (so our first
1461 * retransmit happens at 3*rtt).
1462 */
1463 tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
1464 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
1465 }
1466 tp->t_rtt = 0;
1467 tp->t_rxtshift = 0;
1468
1469 /*
1470 * the retransmit should happen at rtt + 4 * rttvar.
1471 * Because of the way we do the smoothing, srtt and rttvar
1472 * will each average +1/2 tick of bias. When we compute
1473 * the retransmit timer, we want 1/2 tick of rounding and
1474 * 1 extra tick because of +-1/2 tick uncertainty in the
1475 * firing of the timer. The bias will give us exactly the
1476 * 1.5 tick we need. But, because the bias is
1477 * statistical, we have to test that we don't drop below
1478 * the minimum feasible timer (which is 2 ticks).
1479 */
1480 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
1481 rtt + 2, TCPTV_REXMTMAX);
1482
1483 /*
1484 * We received an ack for a packet that wasn't retransmitted;
1485 * it is probably safe to discard any error indications we've
1486 * received recently. This isn't quite right, but close enough
1487 * for now (a route might have failed after we sent a segment,
1488 * and the return path might not be symmetrical).
1489 */
1490 tp->t_softerror = 0;
1491 }
1492
1493 /*
1494 * Determine a reasonable value for maxseg size.
1495 * If the route is known, check route for mtu.
1496 * If none, use an mss that can be handled on the outgoing
1497 * interface without forcing IP to fragment; if bigger than
1498 * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
1499 * to utilize large mbufs. If no route is found, route has no mtu,
1500 * or the destination isn't local, use a default, hopefully conservative
1501 * size (usually 512 or the default IP max size, but no more than the mtu
1502 * of the interface), as we can't discover anything about intervening
1503 * gateways or networks. We also initialize the congestion/slow start
1504 * window to be a single segment if the destination isn't local.
1505 * While looking at the routing entry, we also initialize other path-dependent
1506 * parameters from pre-set or cached values in the routing entry.
1507 */
1508 int
1509 tcp_mss(tp, offer)
1510 register struct tcpcb *tp;
1511 u_int offer;
1512 {
1513 struct route *ro;
1514 register struct rtentry *rt;
1515 struct ifnet *ifp;
1516 register int rtt, mss;
1517 u_long bufsize;
1518 struct inpcb *inp;
1519 struct socket *so;
1520 extern int tcp_mssdflt;
1521
1522 inp = tp->t_inpcb;
1523 ro = &inp->inp_route;
1524
1525 if ((rt = ro->ro_rt) == (struct rtentry *)0) {
1526 /* No route yet, so try to acquire one */
1527 if (inp->inp_faddr.s_addr != INADDR_ANY) {
1528 ro->ro_dst.sa_family = AF_INET;
1529 ro->ro_dst.sa_len = sizeof(ro->ro_dst);
1530 satosin(&ro->ro_dst)->sin_addr = inp->inp_faddr;
1531 rtalloc(ro);
1532 }
1533 if ((rt = ro->ro_rt) == (struct rtentry *)0)
1534 return (tcp_mssdflt);
1535 }
1536 ifp = rt->rt_ifp;
1537 so = inp->inp_socket;
1538
1539 #ifdef RTV_MTU /* if route characteristics exist ... */
1540 /*
1541 * While we're here, check if there's an initial rtt
1542 * or rttvar. Convert from the route-table units
1543 * to scaled multiples of the slow timeout timer.
1544 */
1545 if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
1546 /*
1547 * XXX the lock bit for MTU indicates that the value
1548 * is also a minimum value; this is subject to time.
1549 */
1550 if (rt->rt_rmx.rmx_locks & RTV_RTT)
1551 tp->t_rttmin = rtt / (RTM_RTTUNIT / PR_SLOWHZ);
1552 tp->t_srtt = rtt / (RTM_RTTUNIT / (PR_SLOWHZ * TCP_RTT_SCALE));
1553 if (rt->rt_rmx.rmx_rttvar)
1554 tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
1555 (RTM_RTTUNIT / (PR_SLOWHZ * TCP_RTTVAR_SCALE));
1556 else
1557 /* default variation is +- 1 rtt */
1558 tp->t_rttvar =
1559 tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
1560 TCPT_RANGESET(tp->t_rxtcur,
1561 ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
1562 tp->t_rttmin, TCPTV_REXMTMAX);
1563 }
1564 /*
1565 * if there's an mtu associated with the route, use it
1566 */
1567 if (rt->rt_rmx.rmx_mtu)
1568 mss = rt->rt_rmx.rmx_mtu - sizeof(struct tcpiphdr);
1569 else
1570 #endif /* RTV_MTU */
1571 {
1572 mss = ifp->if_mtu - sizeof(struct tcpiphdr);
1573 #if (MCLBYTES & (MCLBYTES - 1)) == 0
1574 if (mss > MCLBYTES)
1575 mss &= ~(MCLBYTES-1);
1576 #else
1577 if (mss > MCLBYTES)
1578 mss = mss / MCLBYTES * MCLBYTES;
1579 #endif
1580 if (!in_localaddr(inp->inp_faddr))
1581 mss = min(mss, tcp_mssdflt);
1582 }
1583 /*
1584 * The current mss, t_maxseg, is initialized to the default value.
1585 * If we compute a smaller value, reduce the current mss.
1586 * If we compute a larger value, return it for use in sending
1587 * a max seg size option, but don't store it for use
1588 * unless we received an offer at least that large from peer.
1589 * However, do not accept offers under 32 bytes.
1590 */
1591 if (offer)
1592 mss = min(mss, offer);
1593 mss = max(mss, 32); /* sanity */
1594 if (mss < tp->t_maxseg || offer != 0) {
1595 /*
1596 * If there's a pipesize, change the socket buffer
1597 * to that size. Make the socket buffers an integral
1598 * number of mss units; if the mss is larger than
1599 * the socket buffer, decrease the mss.
1600 */
1601 #ifdef RTV_SPIPE
1602 if ((bufsize = rt->rt_rmx.rmx_sendpipe) == 0)
1603 #endif
1604 bufsize = so->so_snd.sb_hiwat;
1605 if (bufsize < mss)
1606 mss = bufsize;
1607 else {
1608 bufsize = roundup(bufsize, mss);
1609 if (bufsize > sb_max)
1610 bufsize = sb_max;
1611 (void)sbreserve(&so->so_snd, bufsize);
1612 }
1613 tp->t_maxseg = mss;
1614
1615 #ifdef RTV_RPIPE
1616 if ((bufsize = rt->rt_rmx.rmx_recvpipe) == 0)
1617 #endif
1618 bufsize = so->so_rcv.sb_hiwat;
1619 if (bufsize > mss) {
1620 bufsize = roundup(bufsize, mss);
1621 if (bufsize > sb_max)
1622 bufsize = sb_max;
1623 (void)sbreserve(&so->so_rcv, bufsize);
1624 }
1625 }
1626 tp->snd_cwnd = mss;
1627
1628 #ifdef RTV_SSTHRESH
1629 if (rt->rt_rmx.rmx_ssthresh) {
1630 /*
1631 * There's some sort of gateway or interface
1632 * buffer limit on the path. Use this to set
1633 * the slow start threshhold, but set the
1634 * threshold to no less than 2*mss.
1635 */
1636 tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
1637 }
1638 #endif /* RTV_MTU */
1639 return (mss);
1640 }
1641 #endif /* TUBA_INCLUDE */
1642