tcp_input.c revision 1.186 1 /* $NetBSD: tcp_input.c,v 1.186 2003/10/24 10:25:40 ragge Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * @(#)COPYRIGHT 1.1 (NRL) 17 January 1995
34 *
35 * NRL grants permission for redistribution and use in source and binary
36 * forms, with or without modification, of the software and documentation
37 * created at NRL provided that the following conditions are met:
38 *
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgements:
46 * This product includes software developed by the University of
47 * California, Berkeley and its contributors.
48 * This product includes software developed at the Information
49 * Technology Division, US Naval Research Laboratory.
50 * 4. Neither the name of the NRL nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
55 * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
57 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NRL OR
58 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
59 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
61 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
62 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
63 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
64 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65 *
66 * The views and conclusions contained in the software and documentation
67 * are those of the authors and should not be interpreted as representing
68 * official policies, either expressed or implied, of the US Naval
69 * Research Laboratory (NRL).
70 */
71
72 /*-
73 * Copyright (c) 1997, 1998, 1999, 2001 The NetBSD Foundation, Inc.
74 * All rights reserved.
75 *
76 * This code is derived from software contributed to The NetBSD Foundation
77 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
78 * Facility, NASA Ames Research Center.
79 *
80 * Redistribution and use in source and binary forms, with or without
81 * modification, are permitted provided that the following conditions
82 * are met:
83 * 1. Redistributions of source code must retain the above copyright
84 * notice, this list of conditions and the following disclaimer.
85 * 2. Redistributions in binary form must reproduce the above copyright
86 * notice, this list of conditions and the following disclaimer in the
87 * documentation and/or other materials provided with the distribution.
88 * 3. All advertising materials mentioning features or use of this software
89 * must display the following acknowledgement:
90 * This product includes software developed by the NetBSD
91 * Foundation, Inc. and its contributors.
92 * 4. Neither the name of The NetBSD Foundation nor the names of its
93 * contributors may be used to endorse or promote products derived
94 * from this software without specific prior written permission.
95 *
96 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
97 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
98 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
99 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
100 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
101 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
102 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
103 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
104 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
105 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
106 * POSSIBILITY OF SUCH DAMAGE.
107 */
108
109 /*
110 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
111 * The Regents of the University of California. All rights reserved.
112 *
113 * Redistribution and use in source and binary forms, with or without
114 * modification, are permitted provided that the following conditions
115 * are met:
116 * 1. Redistributions of source code must retain the above copyright
117 * notice, this list of conditions and the following disclaimer.
118 * 2. Redistributions in binary form must reproduce the above copyright
119 * notice, this list of conditions and the following disclaimer in the
120 * documentation and/or other materials provided with the distribution.
121 * 3. Neither the name of the University nor the names of its contributors
122 * may be used to endorse or promote products derived from this software
123 * without specific prior written permission.
124 *
125 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
126 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
127 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
128 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
129 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
130 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
131 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
132 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
133 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
134 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
135 * SUCH DAMAGE.
136 *
137 * @(#)tcp_input.c 8.12 (Berkeley) 5/24/95
138 */
139
140 /*
141 * TODO list for SYN cache stuff:
142 *
143 * Find room for a "state" field, which is needed to keep a
144 * compressed state for TIME_WAIT TCBs. It's been noted already
145 * that this is fairly important for very high-volume web and
146 * mail servers, which use a large number of short-lived
147 * connections.
148 */
149
150 #include <sys/cdefs.h>
151 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.186 2003/10/24 10:25:40 ragge Exp $");
152
153 #include "opt_inet.h"
154 #include "opt_ipsec.h"
155 #include "opt_inet_csum.h"
156 #include "opt_tcp_debug.h"
157
158 #include <sys/param.h>
159 #include <sys/systm.h>
160 #include <sys/malloc.h>
161 #include <sys/mbuf.h>
162 #include <sys/protosw.h>
163 #include <sys/socket.h>
164 #include <sys/socketvar.h>
165 #include <sys/errno.h>
166 #include <sys/syslog.h>
167 #include <sys/pool.h>
168 #include <sys/domain.h>
169 #include <sys/kernel.h>
170
171 #include <net/if.h>
172 #include <net/route.h>
173 #include <net/if_types.h>
174
175 #include <netinet/in.h>
176 #include <netinet/in_systm.h>
177 #include <netinet/ip.h>
178 #include <netinet/in_pcb.h>
179 #include <netinet/in_var.h>
180 #include <netinet/ip_var.h>
181
182 #ifdef INET6
183 #ifndef INET
184 #include <netinet/in.h>
185 #endif
186 #include <netinet/ip6.h>
187 #include <netinet6/ip6_var.h>
188 #include <netinet6/in6_pcb.h>
189 #include <netinet6/ip6_var.h>
190 #include <netinet6/in6_var.h>
191 #include <netinet/icmp6.h>
192 #include <netinet6/nd6.h>
193 #endif
194
195 #ifndef INET6
196 /* always need ip6.h for IP6_EXTHDR_GET */
197 #include <netinet/ip6.h>
198 #endif
199
200 #include <netinet/tcp.h>
201 #include <netinet/tcp_fsm.h>
202 #include <netinet/tcp_seq.h>
203 #include <netinet/tcp_timer.h>
204 #include <netinet/tcp_var.h>
205 #include <netinet/tcpip.h>
206 #include <netinet/tcp_debug.h>
207
208 #include <machine/stdarg.h>
209
210 #ifdef IPSEC
211 #include <netinet6/ipsec.h>
212 #include <netkey/key.h>
213 #endif /*IPSEC*/
214 #ifdef INET6
215 #include "faith.h"
216 #if defined(NFAITH) && NFAITH > 0
217 #include <net/if_faith.h>
218 #endif
219 #endif /* IPSEC */
220
221 #ifdef FAST_IPSEC
222 #include <netipsec/ipsec.h>
223 #include <netipsec/key.h>
224 #endif /* FAST_IPSEC*/
225
226
227 int tcprexmtthresh = 3;
228 int tcp_log_refused;
229
230 static int tcp_rst_ppslim_count = 0;
231 static struct timeval tcp_rst_ppslim_last;
232
233 #define TCP_PAWS_IDLE (24 * 24 * 60 * 60 * PR_SLOWHZ)
234
235 /* for modulo comparisons of timestamps */
236 #define TSTMP_LT(a,b) ((int)((a)-(b)) < 0)
237 #define TSTMP_GEQ(a,b) ((int)((a)-(b)) >= 0)
238
239 /*
240 * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
241 */
242 #ifdef INET6
243 #define ND6_HINT(tp) \
244 do { \
245 if (tp && tp->t_in6pcb && tp->t_family == AF_INET6 \
246 && tp->t_in6pcb->in6p_route.ro_rt) { \
247 nd6_nud_hint(tp->t_in6pcb->in6p_route.ro_rt, NULL, 0); \
248 } \
249 } while (/*CONSTCOND*/ 0)
250 #else
251 #define ND6_HINT(tp)
252 #endif
253
254 /*
255 * Macro to compute ACK transmission behavior. Delay the ACK unless
256 * we have already delayed an ACK (must send an ACK every two segments).
257 * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
258 * option is enabled.
259 */
260 #define TCP_SETUP_ACK(tp, th) \
261 do { \
262 if ((tp)->t_flags & TF_DELACK || \
263 (tcp_ack_on_push && (th)->th_flags & TH_PUSH)) \
264 tp->t_flags |= TF_ACKNOW; \
265 else \
266 TCP_SET_DELACK(tp); \
267 } while (/*CONSTCOND*/ 0)
268
269 /*
270 * Convert TCP protocol fields to host order for easier processing.
271 */
272 #define TCP_FIELDS_TO_HOST(th) \
273 do { \
274 NTOHL((th)->th_seq); \
275 NTOHL((th)->th_ack); \
276 NTOHS((th)->th_win); \
277 NTOHS((th)->th_urp); \
278 } while (/*CONSTCOND*/ 0)
279
280 /*
281 * ... and reverse the above.
282 */
283 #define TCP_FIELDS_TO_NET(th) \
284 do { \
285 HTONL((th)->th_seq); \
286 HTONL((th)->th_ack); \
287 HTONS((th)->th_win); \
288 HTONS((th)->th_urp); \
289 } while (/*CONSTCOND*/ 0)
290
291 #ifdef TCP_CSUM_COUNTERS
292 #include <sys/device.h>
293
294 extern struct evcnt tcp_hwcsum_ok;
295 extern struct evcnt tcp_hwcsum_bad;
296 extern struct evcnt tcp_hwcsum_data;
297 extern struct evcnt tcp_swcsum;
298
299 #define TCP_CSUM_COUNTER_INCR(ev) (ev)->ev_count++
300
301 #else
302
303 #define TCP_CSUM_COUNTER_INCR(ev) /* nothing */
304
305 #endif /* TCP_CSUM_COUNTERS */
306
307 #ifdef TCP_REASS_COUNTERS
308 #include <sys/device.h>
309
310 extern struct evcnt tcp_reass_;
311 extern struct evcnt tcp_reass_empty;
312 extern struct evcnt tcp_reass_iteration[8];
313 extern struct evcnt tcp_reass_prependfirst;
314 extern struct evcnt tcp_reass_prepend;
315 extern struct evcnt tcp_reass_insert;
316 extern struct evcnt tcp_reass_inserttail;
317 extern struct evcnt tcp_reass_append;
318 extern struct evcnt tcp_reass_appendtail;
319 extern struct evcnt tcp_reass_overlaptail;
320 extern struct evcnt tcp_reass_overlapfront;
321 extern struct evcnt tcp_reass_segdup;
322 extern struct evcnt tcp_reass_fragdup;
323
324 #define TCP_REASS_COUNTER_INCR(ev) (ev)->ev_count++
325
326 #else
327
328 #define TCP_REASS_COUNTER_INCR(ev) /* nothing */
329
330 #endif /* TCP_REASS_COUNTERS */
331
332 #ifdef INET
333 static void tcp4_log_refused __P((const struct ip *, const struct tcphdr *));
334 #endif
335 #ifdef INET6
336 static void tcp6_log_refused
337 __P((const struct ip6_hdr *, const struct tcphdr *));
338 #endif
339
340 int
341 tcp_reass(tp, th, m, tlen)
342 struct tcpcb *tp;
343 struct tcphdr *th;
344 struct mbuf *m;
345 int *tlen;
346 {
347 struct ipqent *p, *q, *nq, *tiqe = NULL;
348 struct socket *so = NULL;
349 int pkt_flags;
350 tcp_seq pkt_seq;
351 unsigned pkt_len;
352 u_long rcvpartdupbyte = 0;
353 u_long rcvoobyte;
354 #ifdef TCP_REASS_COUNTERS
355 u_int count = 0;
356 #endif
357
358 if (tp->t_inpcb)
359 so = tp->t_inpcb->inp_socket;
360 #ifdef INET6
361 else if (tp->t_in6pcb)
362 so = tp->t_in6pcb->in6p_socket;
363 #endif
364
365 TCP_REASS_LOCK_CHECK(tp);
366
367 /*
368 * Call with th==0 after become established to
369 * force pre-ESTABLISHED data up to user socket.
370 */
371 if (th == 0)
372 goto present;
373
374 rcvoobyte = *tlen;
375 /*
376 * Copy these to local variables because the tcpiphdr
377 * gets munged while we are collapsing mbufs.
378 */
379 pkt_seq = th->th_seq;
380 pkt_len = *tlen;
381 pkt_flags = th->th_flags;
382
383 TCP_REASS_COUNTER_INCR(&tcp_reass_);
384
385 if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
386 /*
387 * When we miss a packet, the vast majority of time we get
388 * packets that follow it in order. So optimize for that.
389 */
390 if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
391 p->ipqe_len += pkt_len;
392 p->ipqe_flags |= pkt_flags;
393 m_cat(p->ipqe_m, m);
394 tiqe = p;
395 TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
396 TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
397 goto skip_replacement;
398 }
399 /*
400 * While we're here, if the pkt is completely beyond
401 * anything we have, just insert it at the tail.
402 */
403 if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
404 TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
405 goto insert_it;
406 }
407 }
408
409 q = TAILQ_FIRST(&tp->segq);
410
411 if (q != NULL) {
412 /*
413 * If this segment immediately precedes the first out-of-order
414 * block, simply slap the segment in front of it and (mostly)
415 * skip the complicated logic.
416 */
417 if (pkt_seq + pkt_len == q->ipqe_seq) {
418 q->ipqe_seq = pkt_seq;
419 q->ipqe_len += pkt_len;
420 q->ipqe_flags |= pkt_flags;
421 m_cat(m, q->ipqe_m);
422 q->ipqe_m = m;
423 tiqe = q;
424 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
425 TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
426 goto skip_replacement;
427 }
428 } else {
429 TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
430 }
431
432 /*
433 * Find a segment which begins after this one does.
434 */
435 for (p = NULL; q != NULL; q = nq) {
436 nq = TAILQ_NEXT(q, ipqe_q);
437 #ifdef TCP_REASS_COUNTERS
438 count++;
439 #endif
440 /*
441 * If the received segment is just right after this
442 * fragment, merge the two together and then check
443 * for further overlaps.
444 */
445 if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
446 #ifdef TCPREASS_DEBUG
447 printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
448 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
449 q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
450 #endif
451 pkt_len += q->ipqe_len;
452 pkt_flags |= q->ipqe_flags;
453 pkt_seq = q->ipqe_seq;
454 m_cat(q->ipqe_m, m);
455 m = q->ipqe_m;
456 TCP_REASS_COUNTER_INCR(&tcp_reass_append);
457 goto free_ipqe;
458 }
459 /*
460 * If the received segment is completely past this
461 * fragment, we need to go the next fragment.
462 */
463 if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
464 p = q;
465 continue;
466 }
467 /*
468 * If the fragment is past the received segment,
469 * it (or any following) can't be concatenated.
470 */
471 if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
472 TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
473 break;
474 }
475
476 /*
477 * We've received all the data in this segment before.
478 * mark it as a duplicate and return.
479 */
480 if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
481 SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
482 tcpstat.tcps_rcvduppack++;
483 tcpstat.tcps_rcvdupbyte += pkt_len;
484 m_freem(m);
485 if (tiqe != NULL)
486 pool_put(&ipqent_pool, tiqe);
487 TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
488 return (0);
489 }
490 /*
491 * Received segment completely overlaps this fragment
492 * so we drop the fragment (this keeps the temporal
493 * ordering of segments correct).
494 */
495 if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
496 SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
497 rcvpartdupbyte += q->ipqe_len;
498 m_freem(q->ipqe_m);
499 TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
500 goto free_ipqe;
501 }
502 /*
503 * RX'ed segment extends past the end of the
504 * fragment. Drop the overlapping bytes. Then
505 * merge the fragment and segment then treat as
506 * a longer received packet.
507 */
508 if (SEQ_LT(q->ipqe_seq, pkt_seq)
509 && SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
510 int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
511 #ifdef TCPREASS_DEBUG
512 printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
513 tp, overlap,
514 pkt_seq, pkt_seq + pkt_len, pkt_len);
515 #endif
516 m_adj(m, overlap);
517 rcvpartdupbyte += overlap;
518 m_cat(q->ipqe_m, m);
519 m = q->ipqe_m;
520 pkt_seq = q->ipqe_seq;
521 pkt_len += q->ipqe_len - overlap;
522 rcvoobyte -= overlap;
523 TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
524 goto free_ipqe;
525 }
526 /*
527 * RX'ed segment extends past the front of the
528 * fragment. Drop the overlapping bytes on the
529 * received packet. The packet will then be
530 * contatentated with this fragment a bit later.
531 */
532 if (SEQ_GT(q->ipqe_seq, pkt_seq)
533 && SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len)) {
534 int overlap = pkt_seq + pkt_len - q->ipqe_seq;
535 #ifdef TCPREASS_DEBUG
536 printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
537 tp, overlap,
538 pkt_seq, pkt_seq + pkt_len, pkt_len);
539 #endif
540 m_adj(m, -overlap);
541 pkt_len -= overlap;
542 rcvpartdupbyte += overlap;
543 TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
544 rcvoobyte -= overlap;
545 }
546 /*
547 * If the received segment immediates precedes this
548 * fragment then tack the fragment onto this segment
549 * and reinsert the data.
550 */
551 if (q->ipqe_seq == pkt_seq + pkt_len) {
552 #ifdef TCPREASS_DEBUG
553 printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
554 tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
555 pkt_seq, pkt_seq + pkt_len, pkt_len);
556 #endif
557 pkt_len += q->ipqe_len;
558 pkt_flags |= q->ipqe_flags;
559 m_cat(m, q->ipqe_m);
560 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
561 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
562 if (tiqe == NULL) {
563 tiqe = q;
564 } else {
565 pool_put(&ipqent_pool, q);
566 }
567 TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
568 break;
569 }
570 /*
571 * If the fragment is before the segment, remember it.
572 * When this loop is terminated, p will contain the
573 * pointer to fragment that is right before the received
574 * segment.
575 */
576 if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
577 p = q;
578
579 continue;
580
581 /*
582 * This is a common operation. It also will allow
583 * to save doing a malloc/free in most instances.
584 */
585 free_ipqe:
586 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
587 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
588 if (tiqe == NULL) {
589 tiqe = q;
590 } else {
591 pool_put(&ipqent_pool, q);
592 }
593 }
594
595 #ifdef TCP_REASS_COUNTERS
596 if (count > 7)
597 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
598 else if (count > 0)
599 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
600 #endif
601
602 insert_it:
603
604 /*
605 * Allocate a new queue entry since the received segment did not
606 * collapse onto any other out-of-order block; thus we are allocating
607 * a new block. If it had collapsed, tiqe would not be NULL and
608 * we would be reusing it.
609 * XXX If we can't, just drop the packet. XXX
610 */
611 if (tiqe == NULL) {
612 tiqe = pool_get(&ipqent_pool, PR_NOWAIT);
613 if (tiqe == NULL) {
614 tcpstat.tcps_rcvmemdrop++;
615 m_freem(m);
616 return (0);
617 }
618 }
619
620 /*
621 * Update the counters.
622 */
623 tcpstat.tcps_rcvoopack++;
624 tcpstat.tcps_rcvoobyte += rcvoobyte;
625 if (rcvpartdupbyte) {
626 tcpstat.tcps_rcvpartduppack++;
627 tcpstat.tcps_rcvpartdupbyte += rcvpartdupbyte;
628 }
629
630 /*
631 * Insert the new fragment queue entry into both queues.
632 */
633 tiqe->ipqe_m = m;
634 tiqe->ipqe_seq = pkt_seq;
635 tiqe->ipqe_len = pkt_len;
636 tiqe->ipqe_flags = pkt_flags;
637 if (p == NULL) {
638 TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
639 #ifdef TCPREASS_DEBUG
640 if (tiqe->ipqe_seq != tp->rcv_nxt)
641 printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
642 tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
643 #endif
644 } else {
645 TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
646 #ifdef TCPREASS_DEBUG
647 printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
648 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
649 p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
650 #endif
651 }
652
653 skip_replacement:
654
655 TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
656
657 present:
658 /*
659 * Present data to user, advancing rcv_nxt through
660 * completed sequence space.
661 */
662 if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
663 return (0);
664 q = TAILQ_FIRST(&tp->segq);
665 if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
666 return (0);
667 if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
668 return (0);
669
670 tp->rcv_nxt += q->ipqe_len;
671 pkt_flags = q->ipqe_flags & TH_FIN;
672 ND6_HINT(tp);
673
674 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
675 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
676 if (so->so_state & SS_CANTRCVMORE)
677 m_freem(q->ipqe_m);
678 else
679 sbappendstream(&so->so_rcv, q->ipqe_m);
680 pool_put(&ipqent_pool, q);
681 sorwakeup(so);
682 return (pkt_flags);
683 }
684
685 #ifdef INET6
686 int
687 tcp6_input(mp, offp, proto)
688 struct mbuf **mp;
689 int *offp, proto;
690 {
691 struct mbuf *m = *mp;
692
693 /*
694 * draft-itojun-ipv6-tcp-to-anycast
695 * better place to put this in?
696 */
697 if (m->m_flags & M_ANYCAST6) {
698 struct ip6_hdr *ip6;
699 if (m->m_len < sizeof(struct ip6_hdr)) {
700 if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
701 tcpstat.tcps_rcvshort++;
702 return IPPROTO_DONE;
703 }
704 }
705 ip6 = mtod(m, struct ip6_hdr *);
706 icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
707 (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
708 return IPPROTO_DONE;
709 }
710
711 tcp_input(m, *offp, proto);
712 return IPPROTO_DONE;
713 }
714 #endif
715
716 #ifdef INET
717 static void
718 tcp4_log_refused(ip, th)
719 const struct ip *ip;
720 const struct tcphdr *th;
721 {
722 char src[4*sizeof "123"];
723 char dst[4*sizeof "123"];
724
725 if (ip) {
726 strlcpy(src, inet_ntoa(ip->ip_src), sizeof(src));
727 strlcpy(dst, inet_ntoa(ip->ip_dst), sizeof(dst));
728 }
729 else {
730 strlcpy(src, "(unknown)", sizeof(src));
731 strlcpy(dst, "(unknown)", sizeof(dst));
732 }
733 log(LOG_INFO,
734 "Connection attempt to TCP %s:%d from %s:%d\n",
735 dst, ntohs(th->th_dport),
736 src, ntohs(th->th_sport));
737 }
738 #endif
739
740 #ifdef INET6
741 static void
742 tcp6_log_refused(ip6, th)
743 const struct ip6_hdr *ip6;
744 const struct tcphdr *th;
745 {
746 char src[INET6_ADDRSTRLEN];
747 char dst[INET6_ADDRSTRLEN];
748
749 if (ip6) {
750 strlcpy(src, ip6_sprintf(&ip6->ip6_src), sizeof(src));
751 strlcpy(dst, ip6_sprintf(&ip6->ip6_dst), sizeof(dst));
752 }
753 else {
754 strlcpy(src, "(unknown v6)", sizeof(src));
755 strlcpy(dst, "(unknown v6)", sizeof(dst));
756 }
757 log(LOG_INFO,
758 "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
759 dst, ntohs(th->th_dport),
760 src, ntohs(th->th_sport));
761 }
762 #endif
763
764 /*
765 * TCP input routine, follows pages 65-76 of the
766 * protocol specification dated September, 1981 very closely.
767 */
768 void
769 #if __STDC__
770 tcp_input(struct mbuf *m, ...)
771 #else
772 tcp_input(m, va_alist)
773 struct mbuf *m;
774 #endif
775 {
776 struct tcphdr *th;
777 struct ip *ip;
778 struct inpcb *inp;
779 #ifdef INET6
780 struct ip6_hdr *ip6;
781 struct in6pcb *in6p;
782 #endif
783 u_int8_t *optp = NULL;
784 int optlen = 0;
785 int len, tlen, toff, hdroptlen = 0;
786 struct tcpcb *tp = 0;
787 int tiflags;
788 struct socket *so = NULL;
789 int todrop, acked, ourfinisacked, needoutput = 0;
790 #ifdef TCP_DEBUG
791 short ostate = 0;
792 #endif
793 int iss = 0;
794 u_long tiwin;
795 struct tcp_opt_info opti;
796 int off, iphlen;
797 va_list ap;
798 int af; /* af on the wire */
799 struct mbuf *tcp_saveti = NULL;
800
801 MCLAIM(m, &tcp_rx_mowner);
802 va_start(ap, m);
803 toff = va_arg(ap, int);
804 (void)va_arg(ap, int); /* ignore value, advance ap */
805 va_end(ap);
806
807 tcpstat.tcps_rcvtotal++;
808
809 bzero(&opti, sizeof(opti));
810 opti.ts_present = 0;
811 opti.maxseg = 0;
812
813 /*
814 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
815 *
816 * TCP is, by definition, unicast, so we reject all
817 * multicast outright.
818 *
819 * Note, there are additional src/dst address checks in
820 * the AF-specific code below.
821 */
822 if (m->m_flags & (M_BCAST|M_MCAST)) {
823 /* XXX stat */
824 goto drop;
825 }
826 #ifdef INET6
827 if (m->m_flags & M_ANYCAST6) {
828 /* XXX stat */
829 goto drop;
830 }
831 #endif
832
833 /*
834 * Get IP and TCP header together in first mbuf.
835 * Note: IP leaves IP header in first mbuf.
836 */
837 ip = mtod(m, struct ip *);
838 #ifdef INET6
839 ip6 = NULL;
840 #endif
841 switch (ip->ip_v) {
842 #ifdef INET
843 case 4:
844 af = AF_INET;
845 iphlen = sizeof(struct ip);
846 ip = mtod(m, struct ip *);
847 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
848 sizeof(struct tcphdr));
849 if (th == NULL) {
850 tcpstat.tcps_rcvshort++;
851 return;
852 }
853 /* We do the checksum after PCB lookup... */
854 len = ntohs(ip->ip_len);
855 tlen = len - toff;
856 break;
857 #endif
858 #ifdef INET6
859 case 6:
860 ip = NULL;
861 iphlen = sizeof(struct ip6_hdr);
862 af = AF_INET6;
863 ip6 = mtod(m, struct ip6_hdr *);
864 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
865 sizeof(struct tcphdr));
866 if (th == NULL) {
867 tcpstat.tcps_rcvshort++;
868 return;
869 }
870
871 /* Be proactive about malicious use of IPv4 mapped address */
872 if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
873 IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
874 /* XXX stat */
875 goto drop;
876 }
877
878 /*
879 * Be proactive about unspecified IPv6 address in source.
880 * As we use all-zero to indicate unbounded/unconnected pcb,
881 * unspecified IPv6 address can be used to confuse us.
882 *
883 * Note that packets with unspecified IPv6 destination is
884 * already dropped in ip6_input.
885 */
886 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
887 /* XXX stat */
888 goto drop;
889 }
890
891 /*
892 * Make sure destination address is not multicast.
893 * Source address checked in ip6_input().
894 */
895 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
896 /* XXX stat */
897 goto drop;
898 }
899
900 /* We do the checksum after PCB lookup... */
901 len = m->m_pkthdr.len;
902 tlen = len - toff;
903 break;
904 #endif
905 default:
906 m_freem(m);
907 return;
908 }
909
910 KASSERT(TCP_HDR_ALIGNED_P(th));
911
912 /*
913 * Check that TCP offset makes sense,
914 * pull out TCP options and adjust length. XXX
915 */
916 off = th->th_off << 2;
917 if (off < sizeof (struct tcphdr) || off > tlen) {
918 tcpstat.tcps_rcvbadoff++;
919 goto drop;
920 }
921 tlen -= off;
922
923 /*
924 * tcp_input() has been modified to use tlen to mean the TCP data
925 * length throughout the function. Other functions can use
926 * m->m_pkthdr.len as the basis for calculating the TCP data length.
927 * rja
928 */
929
930 if (off > sizeof (struct tcphdr)) {
931 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
932 if (th == NULL) {
933 tcpstat.tcps_rcvshort++;
934 return;
935 }
936 /*
937 * NOTE: ip/ip6 will not be affected by m_pulldown()
938 * (as they're before toff) and we don't need to update those.
939 */
940 KASSERT(TCP_HDR_ALIGNED_P(th));
941 optlen = off - sizeof (struct tcphdr);
942 optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
943 /*
944 * Do quick retrieval of timestamp options ("options
945 * prediction?"). If timestamp is the only option and it's
946 * formatted as recommended in RFC 1323 appendix A, we
947 * quickly get the values now and not bother calling
948 * tcp_dooptions(), etc.
949 */
950 if ((optlen == TCPOLEN_TSTAMP_APPA ||
951 (optlen > TCPOLEN_TSTAMP_APPA &&
952 optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
953 *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
954 (th->th_flags & TH_SYN) == 0) {
955 opti.ts_present = 1;
956 opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
957 opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
958 optp = NULL; /* we've parsed the options */
959 }
960 }
961 tiflags = th->th_flags;
962
963 /*
964 * Locate pcb for segment.
965 */
966 findpcb:
967 inp = NULL;
968 #ifdef INET6
969 in6p = NULL;
970 #endif
971 switch (af) {
972 #ifdef INET
973 case AF_INET:
974 inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
975 ip->ip_dst, th->th_dport);
976 if (inp == 0) {
977 ++tcpstat.tcps_pcbhashmiss;
978 inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
979 }
980 #ifdef INET6
981 if (inp == 0) {
982 struct in6_addr s, d;
983
984 /* mapped addr case */
985 bzero(&s, sizeof(s));
986 s.s6_addr16[5] = htons(0xffff);
987 bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
988 bzero(&d, sizeof(d));
989 d.s6_addr16[5] = htons(0xffff);
990 bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
991 in6p = in6_pcblookup_connect(&tcbtable, &s,
992 th->th_sport, &d, th->th_dport, 0);
993 if (in6p == 0) {
994 ++tcpstat.tcps_pcbhashmiss;
995 in6p = in6_pcblookup_bind(&tcbtable, &d,
996 th->th_dport, 0);
997 }
998 }
999 #endif
1000 #ifndef INET6
1001 if (inp == 0)
1002 #else
1003 if (inp == 0 && in6p == 0)
1004 #endif
1005 {
1006 ++tcpstat.tcps_noport;
1007 if (tcp_log_refused &&
1008 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1009 tcp4_log_refused(ip, th);
1010 }
1011 TCP_FIELDS_TO_HOST(th);
1012 goto dropwithreset_ratelim;
1013 }
1014 #if defined(IPSEC) || defined(FAST_IPSEC)
1015 if (inp && (inp->inp_socket->so_options & SO_ACCEPTCONN) == 0 &&
1016 ipsec4_in_reject(m, inp)) {
1017 ipsecstat.in_polvio++;
1018 goto drop;
1019 }
1020 #ifdef INET6
1021 else if (in6p &&
1022 (in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 &&
1023 ipsec4_in_reject_so(m, in6p->in6p_socket)) {
1024 ipsecstat.in_polvio++;
1025 goto drop;
1026 }
1027 #endif
1028 #endif /*IPSEC*/
1029 break;
1030 #endif /*INET*/
1031 #ifdef INET6
1032 case AF_INET6:
1033 {
1034 int faith;
1035
1036 #if defined(NFAITH) && NFAITH > 0
1037 faith = faithprefix(&ip6->ip6_dst);
1038 #else
1039 faith = 0;
1040 #endif
1041 in6p = in6_pcblookup_connect(&tcbtable, &ip6->ip6_src,
1042 th->th_sport, &ip6->ip6_dst, th->th_dport, faith);
1043 if (in6p == NULL) {
1044 ++tcpstat.tcps_pcbhashmiss;
1045 in6p = in6_pcblookup_bind(&tcbtable, &ip6->ip6_dst,
1046 th->th_dport, faith);
1047 }
1048 if (in6p == NULL) {
1049 ++tcpstat.tcps_noport;
1050 if (tcp_log_refused &&
1051 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1052 tcp6_log_refused(ip6, th);
1053 }
1054 TCP_FIELDS_TO_HOST(th);
1055 goto dropwithreset_ratelim;
1056 }
1057 #if defined(IPSEC) || defined(FAST_IPSEC)
1058 if ((in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 &&
1059 ipsec6_in_reject(m, in6p)) {
1060 ipsec6stat.in_polvio++;
1061 goto drop;
1062 }
1063 #endif /*IPSEC*/
1064 break;
1065 }
1066 #endif
1067 }
1068
1069 /*
1070 * If the state is CLOSED (i.e., TCB does not exist) then
1071 * all data in the incoming segment is discarded.
1072 * If the TCB exists but is in CLOSED state, it is embryonic,
1073 * but should either do a listen or a connect soon.
1074 */
1075 tp = NULL;
1076 so = NULL;
1077 if (inp) {
1078 tp = intotcpcb(inp);
1079 so = inp->inp_socket;
1080 }
1081 #ifdef INET6
1082 else if (in6p) {
1083 tp = in6totcpcb(in6p);
1084 so = in6p->in6p_socket;
1085 }
1086 #endif
1087 if (tp == 0) {
1088 TCP_FIELDS_TO_HOST(th);
1089 goto dropwithreset_ratelim;
1090 }
1091 if (tp->t_state == TCPS_CLOSED)
1092 goto drop;
1093
1094 /*
1095 * Checksum extended TCP header and data.
1096 */
1097 switch (af) {
1098 #ifdef INET
1099 case AF_INET:
1100 switch (m->m_pkthdr.csum_flags &
1101 ((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
1102 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
1103 case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
1104 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
1105 goto badcsum;
1106
1107 case M_CSUM_TCPv4|M_CSUM_DATA: {
1108 u_int32_t hw_csum = m->m_pkthdr.csum_data;
1109 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
1110 if (m->m_pkthdr.csum_flags & M_CSUM_NO_PSEUDOHDR) {
1111 hw_csum = in_cksum_phdr(ip->ip_src.s_addr,
1112 ip->ip_dst.s_addr,
1113 htonl(hw_csum + ntohs(ip->ip_len) +
1114 IPPROTO_UDP));
1115 }
1116 if ((hw_csum ^ 0xffff) != 0)
1117 goto badcsum;
1118 break;
1119 }
1120
1121 case M_CSUM_TCPv4:
1122 /* Checksum was okay. */
1123 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
1124 break;
1125
1126 default:
1127 /* Must compute it ourselves. */
1128 TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
1129 if (in4_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0)
1130 goto badcsum;
1131 break;
1132 }
1133 break;
1134 #endif /* INET4 */
1135
1136 #ifdef INET6
1137 case AF_INET6:
1138 if (in6_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0)
1139 goto badcsum;
1140 break;
1141 #endif /* INET6 */
1142 }
1143
1144 TCP_FIELDS_TO_HOST(th);
1145
1146 /* Unscale the window into a 32-bit value. */
1147 if ((tiflags & TH_SYN) == 0)
1148 tiwin = th->th_win << tp->snd_scale;
1149 else
1150 tiwin = th->th_win;
1151
1152 #ifdef INET6
1153 /* save packet options if user wanted */
1154 if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
1155 if (in6p->in6p_options) {
1156 m_freem(in6p->in6p_options);
1157 in6p->in6p_options = 0;
1158 }
1159 ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
1160 }
1161 #endif
1162
1163 if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
1164 union syn_cache_sa src;
1165 union syn_cache_sa dst;
1166
1167 bzero(&src, sizeof(src));
1168 bzero(&dst, sizeof(dst));
1169 switch (af) {
1170 #ifdef INET
1171 case AF_INET:
1172 src.sin.sin_len = sizeof(struct sockaddr_in);
1173 src.sin.sin_family = AF_INET;
1174 src.sin.sin_addr = ip->ip_src;
1175 src.sin.sin_port = th->th_sport;
1176
1177 dst.sin.sin_len = sizeof(struct sockaddr_in);
1178 dst.sin.sin_family = AF_INET;
1179 dst.sin.sin_addr = ip->ip_dst;
1180 dst.sin.sin_port = th->th_dport;
1181 break;
1182 #endif
1183 #ifdef INET6
1184 case AF_INET6:
1185 src.sin6.sin6_len = sizeof(struct sockaddr_in6);
1186 src.sin6.sin6_family = AF_INET6;
1187 src.sin6.sin6_addr = ip6->ip6_src;
1188 src.sin6.sin6_port = th->th_sport;
1189
1190 dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
1191 dst.sin6.sin6_family = AF_INET6;
1192 dst.sin6.sin6_addr = ip6->ip6_dst;
1193 dst.sin6.sin6_port = th->th_dport;
1194 break;
1195 #endif /* INET6 */
1196 default:
1197 goto badsyn; /*sanity*/
1198 }
1199
1200 if (so->so_options & SO_DEBUG) {
1201 #ifdef TCP_DEBUG
1202 ostate = tp->t_state;
1203 #endif
1204
1205 tcp_saveti = NULL;
1206 if (iphlen + sizeof(struct tcphdr) > MHLEN)
1207 goto nosave;
1208
1209 if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
1210 tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
1211 if (!tcp_saveti)
1212 goto nosave;
1213 } else {
1214 MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
1215 if (!tcp_saveti)
1216 goto nosave;
1217 MCLAIM(m, &tcp_mowner);
1218 tcp_saveti->m_len = iphlen;
1219 m_copydata(m, 0, iphlen,
1220 mtod(tcp_saveti, caddr_t));
1221 }
1222
1223 if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
1224 m_freem(tcp_saveti);
1225 tcp_saveti = NULL;
1226 } else {
1227 tcp_saveti->m_len += sizeof(struct tcphdr);
1228 bcopy(th, mtod(tcp_saveti, caddr_t) + iphlen,
1229 sizeof(struct tcphdr));
1230 }
1231 nosave:;
1232 }
1233 if (so->so_options & SO_ACCEPTCONN) {
1234 if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1235 if (tiflags & TH_RST) {
1236 syn_cache_reset(&src.sa, &dst.sa, th);
1237 } else if ((tiflags & (TH_ACK|TH_SYN)) ==
1238 (TH_ACK|TH_SYN)) {
1239 /*
1240 * Received a SYN,ACK. This should
1241 * never happen while we are in
1242 * LISTEN. Send an RST.
1243 */
1244 goto badsyn;
1245 } else if (tiflags & TH_ACK) {
1246 so = syn_cache_get(&src.sa, &dst.sa,
1247 th, toff, tlen, so, m);
1248 if (so == NULL) {
1249 /*
1250 * We don't have a SYN for
1251 * this ACK; send an RST.
1252 */
1253 goto badsyn;
1254 } else if (so ==
1255 (struct socket *)(-1)) {
1256 /*
1257 * We were unable to create
1258 * the connection. If the
1259 * 3-way handshake was
1260 * completed, and RST has
1261 * been sent to the peer.
1262 * Since the mbuf might be
1263 * in use for the reply,
1264 * do not free it.
1265 */
1266 m = NULL;
1267 } else {
1268 /*
1269 * We have created a
1270 * full-blown connection.
1271 */
1272 tp = NULL;
1273 inp = NULL;
1274 #ifdef INET6
1275 in6p = NULL;
1276 #endif
1277 switch (so->so_proto->pr_domain->dom_family) {
1278 #ifdef INET
1279 case AF_INET:
1280 inp = sotoinpcb(so);
1281 tp = intotcpcb(inp);
1282 break;
1283 #endif
1284 #ifdef INET6
1285 case AF_INET6:
1286 in6p = sotoin6pcb(so);
1287 tp = in6totcpcb(in6p);
1288 break;
1289 #endif
1290 }
1291 if (tp == NULL)
1292 goto badsyn; /*XXX*/
1293 tiwin <<= tp->snd_scale;
1294 goto after_listen;
1295 }
1296 } else {
1297 /*
1298 * None of RST, SYN or ACK was set.
1299 * This is an invalid packet for a
1300 * TCB in LISTEN state. Send a RST.
1301 */
1302 goto badsyn;
1303 }
1304 } else {
1305 /*
1306 * Received a SYN.
1307 */
1308
1309 #ifdef INET6
1310 /*
1311 * If deprecated address is forbidden, we do
1312 * not accept SYN to deprecated interface
1313 * address to prevent any new inbound
1314 * connection from getting established.
1315 * When we do not accept SYN, we send a TCP
1316 * RST, with deprecated source address (instead
1317 * of dropping it). We compromise it as it is
1318 * much better for peer to send a RST, and
1319 * RST will be the final packet for the
1320 * exchange.
1321 *
1322 * If we do not forbid deprecated addresses, we
1323 * accept the SYN packet. RFC2462 does not
1324 * suggest dropping SYN in this case.
1325 * If we decipher RFC2462 5.5.4, it says like
1326 * this:
1327 * 1. use of deprecated addr with existing
1328 * communication is okay - "SHOULD continue
1329 * to be used"
1330 * 2. use of it with new communication:
1331 * (2a) "SHOULD NOT be used if alternate
1332 * address with sufficient scope is
1333 * available"
1334 * (2b) nothing mentioned otherwise.
1335 * Here we fall into (2b) case as we have no
1336 * choice in our source address selection - we
1337 * must obey the peer.
1338 *
1339 * The wording in RFC2462 is confusing, and
1340 * there are multiple description text for
1341 * deprecated address handling - worse, they
1342 * are not exactly the same. I believe 5.5.4
1343 * is the best one, so we follow 5.5.4.
1344 */
1345 if (af == AF_INET6 && !ip6_use_deprecated) {
1346 struct in6_ifaddr *ia6;
1347 if ((ia6 = in6ifa_ifpwithaddr(m->m_pkthdr.rcvif,
1348 &ip6->ip6_dst)) &&
1349 (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1350 tp = NULL;
1351 goto dropwithreset;
1352 }
1353 }
1354 #endif
1355
1356 #ifdef IPSEC
1357 switch (af) {
1358 case AF_INET:
1359 if (ipsec4_in_reject_so(m, so)) {
1360 ipsecstat.in_polvio++;
1361 tp = NULL;
1362 goto dropwithreset;
1363 }
1364 break;
1365 #ifdef INET6
1366 case AF_INET6:
1367 if (ipsec6_in_reject_so(m, so)) {
1368 ipsec6stat.in_polvio++;
1369 tp = NULL;
1370 goto dropwithreset;
1371 }
1372 break;
1373 #endif
1374 }
1375 #endif
1376
1377 /*
1378 * LISTEN socket received a SYN
1379 * from itself? This can't possibly
1380 * be valid; drop the packet.
1381 */
1382 if (th->th_sport == th->th_dport) {
1383 int i;
1384
1385 switch (af) {
1386 #ifdef INET
1387 case AF_INET:
1388 i = in_hosteq(ip->ip_src, ip->ip_dst);
1389 break;
1390 #endif
1391 #ifdef INET6
1392 case AF_INET6:
1393 i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
1394 break;
1395 #endif
1396 default:
1397 i = 1;
1398 }
1399 if (i) {
1400 tcpstat.tcps_badsyn++;
1401 goto drop;
1402 }
1403 }
1404
1405 /*
1406 * SYN looks ok; create compressed TCP
1407 * state for it.
1408 */
1409 if (so->so_qlen <= so->so_qlimit &&
1410 syn_cache_add(&src.sa, &dst.sa, th, tlen,
1411 so, m, optp, optlen, &opti))
1412 m = NULL;
1413 }
1414 goto drop;
1415 }
1416 }
1417
1418 after_listen:
1419 #ifdef DIAGNOSTIC
1420 /*
1421 * Should not happen now that all embryonic connections
1422 * are handled with compressed state.
1423 */
1424 if (tp->t_state == TCPS_LISTEN)
1425 panic("tcp_input: TCPS_LISTEN");
1426 #endif
1427
1428 /*
1429 * Segment received on connection.
1430 * Reset idle time and keep-alive timer.
1431 */
1432 tp->t_rcvtime = tcp_now;
1433 if (TCPS_HAVEESTABLISHED(tp->t_state))
1434 TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1435
1436 /*
1437 * Process options.
1438 */
1439 if (optp)
1440 tcp_dooptions(tp, optp, optlen, th, &opti);
1441
1442 /*
1443 * Header prediction: check for the two common cases
1444 * of a uni-directional data xfer. If the packet has
1445 * no control flags, is in-sequence, the window didn't
1446 * change and we're not retransmitting, it's a
1447 * candidate. If the length is zero and the ack moved
1448 * forward, we're the sender side of the xfer. Just
1449 * free the data acked & wake any higher level process
1450 * that was blocked waiting for space. If the length
1451 * is non-zero and the ack didn't move, we're the
1452 * receiver side. If we're getting packets in-order
1453 * (the reassembly queue is empty), add the data to
1454 * the socket buffer and note that we need a delayed ack.
1455 */
1456 if (tp->t_state == TCPS_ESTABLISHED &&
1457 (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1458 (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
1459 th->th_seq == tp->rcv_nxt &&
1460 tiwin && tiwin == tp->snd_wnd &&
1461 tp->snd_nxt == tp->snd_max) {
1462
1463 /*
1464 * If last ACK falls within this segment's sequence numbers,
1465 * record the timestamp.
1466 */
1467 if (opti.ts_present &&
1468 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1469 SEQ_LT(tp->last_ack_sent, th->th_seq + tlen)) {
1470 tp->ts_recent_age = TCP_TIMESTAMP(tp);
1471 tp->ts_recent = opti.ts_val;
1472 }
1473
1474 if (tlen == 0) {
1475 if (SEQ_GT(th->th_ack, tp->snd_una) &&
1476 SEQ_LEQ(th->th_ack, tp->snd_max) &&
1477 tp->snd_cwnd >= tp->snd_wnd &&
1478 tp->t_dupacks < tcprexmtthresh) {
1479 /*
1480 * this is a pure ack for outstanding data.
1481 */
1482 ++tcpstat.tcps_predack;
1483 if (opti.ts_present && opti.ts_ecr)
1484 tcp_xmit_timer(tp,
1485 TCP_TIMESTAMP(tp) - opti.ts_ecr + 1);
1486 else if (tp->t_rtttime &&
1487 SEQ_GT(th->th_ack, tp->t_rtseq))
1488 tcp_xmit_timer(tp,
1489 tcp_now - tp->t_rtttime);
1490 acked = th->th_ack - tp->snd_una;
1491 tcpstat.tcps_rcvackpack++;
1492 tcpstat.tcps_rcvackbyte += acked;
1493 ND6_HINT(tp);
1494
1495 if (acked > (tp->t_lastoff - tp->t_inoff))
1496 tp->t_lastm = NULL;
1497 sbdrop(&so->so_snd, acked);
1498 tp->t_lastoff -= acked;
1499
1500 /*
1501 * We want snd_recover to track snd_una to
1502 * avoid sequence wraparound problems for
1503 * very large transfers.
1504 */
1505 tp->snd_una = tp->snd_recover = th->th_ack;
1506 m_freem(m);
1507
1508 /*
1509 * If all outstanding data are acked, stop
1510 * retransmit timer, otherwise restart timer
1511 * using current (possibly backed-off) value.
1512 * If process is waiting for space,
1513 * wakeup/selwakeup/signal. If data
1514 * are ready to send, let tcp_output
1515 * decide between more output or persist.
1516 */
1517 if (tp->snd_una == tp->snd_max)
1518 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1519 else if (TCP_TIMER_ISARMED(tp,
1520 TCPT_PERSIST) == 0)
1521 TCP_TIMER_ARM(tp, TCPT_REXMT,
1522 tp->t_rxtcur);
1523
1524 sowwakeup(so);
1525 if (so->so_snd.sb_cc)
1526 (void) tcp_output(tp);
1527 if (tcp_saveti)
1528 m_freem(tcp_saveti);
1529 return;
1530 }
1531 } else if (th->th_ack == tp->snd_una &&
1532 TAILQ_FIRST(&tp->segq) == NULL &&
1533 tlen <= sbspace(&so->so_rcv)) {
1534 /*
1535 * this is a pure, in-sequence data packet
1536 * with nothing on the reassembly queue and
1537 * we have enough buffer space to take it.
1538 */
1539 ++tcpstat.tcps_preddat;
1540 tp->rcv_nxt += tlen;
1541 tcpstat.tcps_rcvpack++;
1542 tcpstat.tcps_rcvbyte += tlen;
1543 ND6_HINT(tp);
1544 /*
1545 * Drop TCP, IP headers and TCP options then add data
1546 * to socket buffer.
1547 */
1548 if (so->so_state & SS_CANTRCVMORE)
1549 m_freem(m);
1550 else {
1551 m_adj(m, toff + off);
1552 sbappendstream(&so->so_rcv, m);
1553 }
1554 sorwakeup(so);
1555 TCP_SETUP_ACK(tp, th);
1556 if (tp->t_flags & TF_ACKNOW)
1557 (void) tcp_output(tp);
1558 if (tcp_saveti)
1559 m_freem(tcp_saveti);
1560 return;
1561 }
1562 }
1563
1564 /*
1565 * Compute mbuf offset to TCP data segment.
1566 */
1567 hdroptlen = toff + off;
1568
1569 /*
1570 * Calculate amount of space in receive window,
1571 * and then do TCP input processing.
1572 * Receive window is amount of space in rcv queue,
1573 * but not less than advertised window.
1574 */
1575 { int win;
1576
1577 win = sbspace(&so->so_rcv);
1578 if (win < 0)
1579 win = 0;
1580 tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1581 }
1582
1583 switch (tp->t_state) {
1584 case TCPS_LISTEN:
1585 /*
1586 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
1587 */
1588 if (m->m_flags & (M_BCAST|M_MCAST))
1589 goto drop;
1590 switch (af) {
1591 #ifdef INET6
1592 case AF_INET6:
1593 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
1594 goto drop;
1595 break;
1596 #endif /* INET6 */
1597 case AF_INET:
1598 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
1599 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
1600 goto drop;
1601 break;
1602 }
1603 break;
1604
1605 /*
1606 * If the state is SYN_SENT:
1607 * if seg contains an ACK, but not for our SYN, drop the input.
1608 * if seg contains a RST, then drop the connection.
1609 * if seg does not contain SYN, then drop it.
1610 * Otherwise this is an acceptable SYN segment
1611 * initialize tp->rcv_nxt and tp->irs
1612 * if seg contains ack then advance tp->snd_una
1613 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1614 * arrange for segment to be acked (eventually)
1615 * continue processing rest of data/controls, beginning with URG
1616 */
1617 case TCPS_SYN_SENT:
1618 if ((tiflags & TH_ACK) &&
1619 (SEQ_LEQ(th->th_ack, tp->iss) ||
1620 SEQ_GT(th->th_ack, tp->snd_max)))
1621 goto dropwithreset;
1622 if (tiflags & TH_RST) {
1623 if (tiflags & TH_ACK)
1624 tp = tcp_drop(tp, ECONNREFUSED);
1625 goto drop;
1626 }
1627 if ((tiflags & TH_SYN) == 0)
1628 goto drop;
1629 if (tiflags & TH_ACK) {
1630 tp->snd_una = tp->snd_recover = th->th_ack;
1631 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1632 tp->snd_nxt = tp->snd_una;
1633 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1634 }
1635 tp->irs = th->th_seq;
1636 tcp_rcvseqinit(tp);
1637 tp->t_flags |= TF_ACKNOW;
1638 tcp_mss_from_peer(tp, opti.maxseg);
1639
1640 /*
1641 * Initialize the initial congestion window. If we
1642 * had to retransmit the SYN, we must initialize cwnd
1643 * to 1 segment (i.e. the Loss Window).
1644 */
1645 if (tp->t_flags & TF_SYN_REXMT)
1646 tp->snd_cwnd = tp->t_peermss;
1647 else {
1648 int ss = tcp_init_win;
1649 #ifdef INET
1650 if (inp != NULL && in_localaddr(inp->inp_faddr))
1651 ss = tcp_init_win_local;
1652 #endif
1653 #ifdef INET6
1654 if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
1655 ss = tcp_init_win_local;
1656 #endif
1657 tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
1658 }
1659
1660 tcp_rmx_rtt(tp);
1661 if (tiflags & TH_ACK) {
1662 tcpstat.tcps_connects++;
1663 soisconnected(so);
1664 tcp_established(tp);
1665 /* Do window scaling on this connection? */
1666 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1667 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1668 tp->snd_scale = tp->requested_s_scale;
1669 tp->rcv_scale = tp->request_r_scale;
1670 }
1671 TCP_REASS_LOCK(tp);
1672 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1673 TCP_REASS_UNLOCK(tp);
1674 /*
1675 * if we didn't have to retransmit the SYN,
1676 * use its rtt as our initial srtt & rtt var.
1677 */
1678 if (tp->t_rtttime)
1679 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
1680 } else
1681 tp->t_state = TCPS_SYN_RECEIVED;
1682
1683 /*
1684 * Advance th->th_seq to correspond to first data byte.
1685 * If data, trim to stay within window,
1686 * dropping FIN if necessary.
1687 */
1688 th->th_seq++;
1689 if (tlen > tp->rcv_wnd) {
1690 todrop = tlen - tp->rcv_wnd;
1691 m_adj(m, -todrop);
1692 tlen = tp->rcv_wnd;
1693 tiflags &= ~TH_FIN;
1694 tcpstat.tcps_rcvpackafterwin++;
1695 tcpstat.tcps_rcvbyteafterwin += todrop;
1696 }
1697 tp->snd_wl1 = th->th_seq - 1;
1698 tp->rcv_up = th->th_seq;
1699 goto step6;
1700
1701 /*
1702 * If the state is SYN_RECEIVED:
1703 * If seg contains an ACK, but not for our SYN, drop the input
1704 * and generate an RST. See page 36, rfc793
1705 */
1706 case TCPS_SYN_RECEIVED:
1707 if ((tiflags & TH_ACK) &&
1708 (SEQ_LEQ(th->th_ack, tp->iss) ||
1709 SEQ_GT(th->th_ack, tp->snd_max)))
1710 goto dropwithreset;
1711 break;
1712 }
1713
1714 /*
1715 * States other than LISTEN or SYN_SENT.
1716 * First check timestamp, if present.
1717 * Then check that at least some bytes of segment are within
1718 * receive window. If segment begins before rcv_nxt,
1719 * drop leading data (and SYN); if nothing left, just ack.
1720 *
1721 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1722 * and it's less than ts_recent, drop it.
1723 */
1724 if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
1725 TSTMP_LT(opti.ts_val, tp->ts_recent)) {
1726
1727 /* Check to see if ts_recent is over 24 days old. */
1728 if ((int)(TCP_TIMESTAMP(tp) - tp->ts_recent_age) >
1729 TCP_PAWS_IDLE) {
1730 /*
1731 * Invalidate ts_recent. If this segment updates
1732 * ts_recent, the age will be reset later and ts_recent
1733 * will get a valid value. If it does not, setting
1734 * ts_recent to zero will at least satisfy the
1735 * requirement that zero be placed in the timestamp
1736 * echo reply when ts_recent isn't valid. The
1737 * age isn't reset until we get a valid ts_recent
1738 * because we don't want out-of-order segments to be
1739 * dropped when ts_recent is old.
1740 */
1741 tp->ts_recent = 0;
1742 } else {
1743 tcpstat.tcps_rcvduppack++;
1744 tcpstat.tcps_rcvdupbyte += tlen;
1745 tcpstat.tcps_pawsdrop++;
1746 goto dropafterack;
1747 }
1748 }
1749
1750 todrop = tp->rcv_nxt - th->th_seq;
1751 if (todrop > 0) {
1752 if (tiflags & TH_SYN) {
1753 tiflags &= ~TH_SYN;
1754 th->th_seq++;
1755 if (th->th_urp > 1)
1756 th->th_urp--;
1757 else {
1758 tiflags &= ~TH_URG;
1759 th->th_urp = 0;
1760 }
1761 todrop--;
1762 }
1763 if (todrop > tlen ||
1764 (todrop == tlen && (tiflags & TH_FIN) == 0)) {
1765 /*
1766 * Any valid FIN must be to the left of the window.
1767 * At this point the FIN must be a duplicate or
1768 * out of sequence; drop it.
1769 */
1770 tiflags &= ~TH_FIN;
1771 /*
1772 * Send an ACK to resynchronize and drop any data.
1773 * But keep on processing for RST or ACK.
1774 */
1775 tp->t_flags |= TF_ACKNOW;
1776 todrop = tlen;
1777 tcpstat.tcps_rcvdupbyte += todrop;
1778 tcpstat.tcps_rcvduppack++;
1779 } else {
1780 tcpstat.tcps_rcvpartduppack++;
1781 tcpstat.tcps_rcvpartdupbyte += todrop;
1782 }
1783 hdroptlen += todrop; /*drop from head afterwards*/
1784 th->th_seq += todrop;
1785 tlen -= todrop;
1786 if (th->th_urp > todrop)
1787 th->th_urp -= todrop;
1788 else {
1789 tiflags &= ~TH_URG;
1790 th->th_urp = 0;
1791 }
1792 }
1793
1794 /*
1795 * If new data are received on a connection after the
1796 * user processes are gone, then RST the other end.
1797 */
1798 if ((so->so_state & SS_NOFDREF) &&
1799 tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1800 tp = tcp_close(tp);
1801 tcpstat.tcps_rcvafterclose++;
1802 goto dropwithreset;
1803 }
1804
1805 /*
1806 * If segment ends after window, drop trailing data
1807 * (and PUSH and FIN); if nothing left, just ACK.
1808 */
1809 todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
1810 if (todrop > 0) {
1811 tcpstat.tcps_rcvpackafterwin++;
1812 if (todrop >= tlen) {
1813 tcpstat.tcps_rcvbyteafterwin += tlen;
1814 /*
1815 * If a new connection request is received
1816 * while in TIME_WAIT, drop the old connection
1817 * and start over if the sequence numbers
1818 * are above the previous ones.
1819 *
1820 * NOTE: We will checksum the packet again, and
1821 * so we need to put the header fields back into
1822 * network order!
1823 * XXX This kind of sucks, but we don't expect
1824 * XXX this to happen very often, so maybe it
1825 * XXX doesn't matter so much.
1826 */
1827 if (tiflags & TH_SYN &&
1828 tp->t_state == TCPS_TIME_WAIT &&
1829 SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1830 iss = tcp_new_iss(tp, tp->snd_nxt);
1831 tp = tcp_close(tp);
1832 TCP_FIELDS_TO_NET(th);
1833 goto findpcb;
1834 }
1835 /*
1836 * If window is closed can only take segments at
1837 * window edge, and have to drop data and PUSH from
1838 * incoming segments. Continue processing, but
1839 * remember to ack. Otherwise, drop segment
1840 * and ack.
1841 */
1842 if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1843 tp->t_flags |= TF_ACKNOW;
1844 tcpstat.tcps_rcvwinprobe++;
1845 } else
1846 goto dropafterack;
1847 } else
1848 tcpstat.tcps_rcvbyteafterwin += todrop;
1849 m_adj(m, -todrop);
1850 tlen -= todrop;
1851 tiflags &= ~(TH_PUSH|TH_FIN);
1852 }
1853
1854 /*
1855 * If last ACK falls within this segment's sequence numbers,
1856 * and the timestamp is newer, record it.
1857 */
1858 if (opti.ts_present && TSTMP_GEQ(opti.ts_val, tp->ts_recent) &&
1859 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1860 SEQ_LT(tp->last_ack_sent, th->th_seq + tlen +
1861 ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
1862 tp->ts_recent_age = TCP_TIMESTAMP(tp);
1863 tp->ts_recent = opti.ts_val;
1864 }
1865
1866 /*
1867 * If the RST bit is set examine the state:
1868 * SYN_RECEIVED STATE:
1869 * If passive open, return to LISTEN state.
1870 * If active open, inform user that connection was refused.
1871 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
1872 * Inform user that connection was reset, and close tcb.
1873 * CLOSING, LAST_ACK, TIME_WAIT STATES
1874 * Close the tcb.
1875 */
1876 if (tiflags&TH_RST) switch (tp->t_state) {
1877
1878 case TCPS_SYN_RECEIVED:
1879 so->so_error = ECONNREFUSED;
1880 goto close;
1881
1882 case TCPS_ESTABLISHED:
1883 case TCPS_FIN_WAIT_1:
1884 case TCPS_FIN_WAIT_2:
1885 case TCPS_CLOSE_WAIT:
1886 so->so_error = ECONNRESET;
1887 close:
1888 tp->t_state = TCPS_CLOSED;
1889 tcpstat.tcps_drops++;
1890 tp = tcp_close(tp);
1891 goto drop;
1892
1893 case TCPS_CLOSING:
1894 case TCPS_LAST_ACK:
1895 case TCPS_TIME_WAIT:
1896 tp = tcp_close(tp);
1897 goto drop;
1898 }
1899
1900 /*
1901 * If a SYN is in the window, then this is an
1902 * error and we send an RST and drop the connection.
1903 */
1904 if (tiflags & TH_SYN) {
1905 tp = tcp_drop(tp, ECONNRESET);
1906 goto dropwithreset;
1907 }
1908
1909 /*
1910 * If the ACK bit is off we drop the segment and return.
1911 */
1912 if ((tiflags & TH_ACK) == 0) {
1913 if (tp->t_flags & TF_ACKNOW)
1914 goto dropafterack;
1915 else
1916 goto drop;
1917 }
1918
1919 /*
1920 * Ack processing.
1921 */
1922 switch (tp->t_state) {
1923
1924 /*
1925 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
1926 * ESTABLISHED state and continue processing, otherwise
1927 * send an RST.
1928 */
1929 case TCPS_SYN_RECEIVED:
1930 if (SEQ_GT(tp->snd_una, th->th_ack) ||
1931 SEQ_GT(th->th_ack, tp->snd_max))
1932 goto dropwithreset;
1933 tcpstat.tcps_connects++;
1934 soisconnected(so);
1935 tcp_established(tp);
1936 /* Do window scaling? */
1937 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1938 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1939 tp->snd_scale = tp->requested_s_scale;
1940 tp->rcv_scale = tp->request_r_scale;
1941 }
1942 TCP_REASS_LOCK(tp);
1943 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1944 TCP_REASS_UNLOCK(tp);
1945 tp->snd_wl1 = th->th_seq - 1;
1946 /* fall into ... */
1947
1948 /*
1949 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1950 * ACKs. If the ack is in the range
1951 * tp->snd_una < th->th_ack <= tp->snd_max
1952 * then advance tp->snd_una to th->th_ack and drop
1953 * data from the retransmission queue. If this ACK reflects
1954 * more up to date window information we update our window information.
1955 */
1956 case TCPS_ESTABLISHED:
1957 case TCPS_FIN_WAIT_1:
1958 case TCPS_FIN_WAIT_2:
1959 case TCPS_CLOSE_WAIT:
1960 case TCPS_CLOSING:
1961 case TCPS_LAST_ACK:
1962 case TCPS_TIME_WAIT:
1963
1964 if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
1965 if (tlen == 0 && tiwin == tp->snd_wnd) {
1966 tcpstat.tcps_rcvdupack++;
1967 /*
1968 * If we have outstanding data (other than
1969 * a window probe), this is a completely
1970 * duplicate ack (ie, window info didn't
1971 * change), the ack is the biggest we've
1972 * seen and we've seen exactly our rexmt
1973 * threshhold of them, assume a packet
1974 * has been dropped and retransmit it.
1975 * Kludge snd_nxt & the congestion
1976 * window so we send only this one
1977 * packet.
1978 *
1979 * We know we're losing at the current
1980 * window size so do congestion avoidance
1981 * (set ssthresh to half the current window
1982 * and pull our congestion window back to
1983 * the new ssthresh).
1984 *
1985 * Dup acks mean that packets have left the
1986 * network (they're now cached at the receiver)
1987 * so bump cwnd by the amount in the receiver
1988 * to keep a constant cwnd packets in the
1989 * network.
1990 */
1991 if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
1992 th->th_ack != tp->snd_una)
1993 tp->t_dupacks = 0;
1994 else if (++tp->t_dupacks == tcprexmtthresh) {
1995 tcp_seq onxt = tp->snd_nxt;
1996 u_int win =
1997 min(tp->snd_wnd, tp->snd_cwnd) /
1998 2 / tp->t_segsz;
1999 if (tcp_do_newreno && SEQ_LT(th->th_ack,
2000 tp->snd_recover)) {
2001 /*
2002 * False fast retransmit after
2003 * timeout. Do not cut window.
2004 */
2005 tp->snd_cwnd += tp->t_segsz;
2006 tp->t_dupacks = 0;
2007 (void) tcp_output(tp);
2008 goto drop;
2009 }
2010
2011 if (win < 2)
2012 win = 2;
2013 tp->snd_ssthresh = win * tp->t_segsz;
2014 tp->snd_recover = tp->snd_max;
2015 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2016 tp->t_rtttime = 0;
2017 tp->snd_nxt = th->th_ack;
2018 tp->snd_cwnd = tp->t_segsz;
2019 (void) tcp_output(tp);
2020 tp->snd_cwnd = tp->snd_ssthresh +
2021 tp->t_segsz * tp->t_dupacks;
2022 if (SEQ_GT(onxt, tp->snd_nxt))
2023 tp->snd_nxt = onxt;
2024 goto drop;
2025 } else if (tp->t_dupacks > tcprexmtthresh) {
2026 tp->snd_cwnd += tp->t_segsz;
2027 (void) tcp_output(tp);
2028 goto drop;
2029 }
2030 } else
2031 tp->t_dupacks = 0;
2032 break;
2033 }
2034 /*
2035 * If the congestion window was inflated to account
2036 * for the other side's cached packets, retract it.
2037 */
2038 if (tcp_do_newreno == 0) {
2039 if (tp->t_dupacks >= tcprexmtthresh &&
2040 tp->snd_cwnd > tp->snd_ssthresh)
2041 tp->snd_cwnd = tp->snd_ssthresh;
2042 tp->t_dupacks = 0;
2043 } else if (tp->t_dupacks >= tcprexmtthresh &&
2044 tcp_newreno(tp, th) == 0) {
2045 tp->snd_cwnd = tp->snd_ssthresh;
2046 /*
2047 * Window inflation should have left us with approx.
2048 * snd_ssthresh outstanding data. But in case we
2049 * would be inclined to send a burst, better to do
2050 * it via the slow start mechanism.
2051 */
2052 if (SEQ_SUB(tp->snd_max, th->th_ack) < tp->snd_ssthresh)
2053 tp->snd_cwnd = SEQ_SUB(tp->snd_max, th->th_ack)
2054 + tp->t_segsz;
2055 tp->t_dupacks = 0;
2056 }
2057 if (SEQ_GT(th->th_ack, tp->snd_max)) {
2058 tcpstat.tcps_rcvacktoomuch++;
2059 goto dropafterack;
2060 }
2061 acked = th->th_ack - tp->snd_una;
2062 tcpstat.tcps_rcvackpack++;
2063 tcpstat.tcps_rcvackbyte += acked;
2064
2065 /*
2066 * If we have a timestamp reply, update smoothed
2067 * round trip time. If no timestamp is present but
2068 * transmit timer is running and timed sequence
2069 * number was acked, update smoothed round trip time.
2070 * Since we now have an rtt measurement, cancel the
2071 * timer backoff (cf., Phil Karn's retransmit alg.).
2072 * Recompute the initial retransmit timer.
2073 */
2074 if (opti.ts_present && opti.ts_ecr)
2075 tcp_xmit_timer(tp, TCP_TIMESTAMP(tp) - opti.ts_ecr + 1);
2076 else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2077 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2078
2079 /*
2080 * If all outstanding data is acked, stop retransmit
2081 * timer and remember to restart (more output or persist).
2082 * If there is more data to be acked, restart retransmit
2083 * timer, using current (possibly backed-off) value.
2084 */
2085 if (th->th_ack == tp->snd_max) {
2086 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2087 needoutput = 1;
2088 } else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
2089 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
2090 /*
2091 * When new data is acked, open the congestion window.
2092 * If the window gives us less than ssthresh packets
2093 * in flight, open exponentially (segsz per packet).
2094 * Otherwise open linearly: segsz per window
2095 * (segsz^2 / cwnd per packet), plus a constant
2096 * fraction of a packet (segsz/8) to help larger windows
2097 * open quickly enough.
2098 */
2099 {
2100 u_int cw = tp->snd_cwnd;
2101 u_int incr = tp->t_segsz;
2102
2103 if (cw > tp->snd_ssthresh)
2104 incr = incr * incr / cw;
2105 if (tcp_do_newreno == 0 || SEQ_GEQ(th->th_ack, tp->snd_recover))
2106 tp->snd_cwnd = min(cw + incr,
2107 TCP_MAXWIN << tp->snd_scale);
2108 }
2109 ND6_HINT(tp);
2110 if (acked > so->so_snd.sb_cc) {
2111 tp->snd_wnd -= so->so_snd.sb_cc;
2112 sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
2113 ourfinisacked = 1;
2114 } else {
2115 if (acked > (tp->t_lastoff - tp->t_inoff))
2116 tp->t_lastm = NULL;
2117 sbdrop(&so->so_snd, acked);
2118 tp->t_lastoff -= acked;
2119 ourfinisacked = 0;
2120 }
2121 sowwakeup(so);
2122 /*
2123 * We want snd_recover to track snd_una to
2124 * avoid sequence wraparound problems for
2125 * very large transfers.
2126 */
2127 tp->snd_una = tp->snd_recover = th->th_ack;
2128 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2129 tp->snd_nxt = tp->snd_una;
2130
2131 switch (tp->t_state) {
2132
2133 /*
2134 * In FIN_WAIT_1 STATE in addition to the processing
2135 * for the ESTABLISHED state if our FIN is now acknowledged
2136 * then enter FIN_WAIT_2.
2137 */
2138 case TCPS_FIN_WAIT_1:
2139 if (ourfinisacked) {
2140 /*
2141 * If we can't receive any more
2142 * data, then closing user can proceed.
2143 * Starting the timer is contrary to the
2144 * specification, but if we don't get a FIN
2145 * we'll hang forever.
2146 */
2147 if (so->so_state & SS_CANTRCVMORE) {
2148 soisdisconnected(so);
2149 if (tcp_maxidle > 0)
2150 TCP_TIMER_ARM(tp, TCPT_2MSL,
2151 tcp_maxidle);
2152 }
2153 tp->t_state = TCPS_FIN_WAIT_2;
2154 }
2155 break;
2156
2157 /*
2158 * In CLOSING STATE in addition to the processing for
2159 * the ESTABLISHED state if the ACK acknowledges our FIN
2160 * then enter the TIME-WAIT state, otherwise ignore
2161 * the segment.
2162 */
2163 case TCPS_CLOSING:
2164 if (ourfinisacked) {
2165 tp->t_state = TCPS_TIME_WAIT;
2166 tcp_canceltimers(tp);
2167 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2168 soisdisconnected(so);
2169 }
2170 break;
2171
2172 /*
2173 * In LAST_ACK, we may still be waiting for data to drain
2174 * and/or to be acked, as well as for the ack of our FIN.
2175 * If our FIN is now acknowledged, delete the TCB,
2176 * enter the closed state and return.
2177 */
2178 case TCPS_LAST_ACK:
2179 if (ourfinisacked) {
2180 tp = tcp_close(tp);
2181 goto drop;
2182 }
2183 break;
2184
2185 /*
2186 * In TIME_WAIT state the only thing that should arrive
2187 * is a retransmission of the remote FIN. Acknowledge
2188 * it and restart the finack timer.
2189 */
2190 case TCPS_TIME_WAIT:
2191 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2192 goto dropafterack;
2193 }
2194 }
2195
2196 step6:
2197 /*
2198 * Update window information.
2199 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2200 */
2201 if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2202 (tp->snd_wl1 == th->th_seq && SEQ_LT(tp->snd_wl2, th->th_ack)) ||
2203 (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))) {
2204 /* keep track of pure window updates */
2205 if (tlen == 0 &&
2206 tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2207 tcpstat.tcps_rcvwinupd++;
2208 tp->snd_wnd = tiwin;
2209 tp->snd_wl1 = th->th_seq;
2210 tp->snd_wl2 = th->th_ack;
2211 if (tp->snd_wnd > tp->max_sndwnd)
2212 tp->max_sndwnd = tp->snd_wnd;
2213 needoutput = 1;
2214 }
2215
2216 /*
2217 * Process segments with URG.
2218 */
2219 if ((tiflags & TH_URG) && th->th_urp &&
2220 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2221 /*
2222 * This is a kludge, but if we receive and accept
2223 * random urgent pointers, we'll crash in
2224 * soreceive. It's hard to imagine someone
2225 * actually wanting to send this much urgent data.
2226 */
2227 if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2228 th->th_urp = 0; /* XXX */
2229 tiflags &= ~TH_URG; /* XXX */
2230 goto dodata; /* XXX */
2231 }
2232 /*
2233 * If this segment advances the known urgent pointer,
2234 * then mark the data stream. This should not happen
2235 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2236 * a FIN has been received from the remote side.
2237 * In these states we ignore the URG.
2238 *
2239 * According to RFC961 (Assigned Protocols),
2240 * the urgent pointer points to the last octet
2241 * of urgent data. We continue, however,
2242 * to consider it to indicate the first octet
2243 * of data past the urgent section as the original
2244 * spec states (in one of two places).
2245 */
2246 if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2247 tp->rcv_up = th->th_seq + th->th_urp;
2248 so->so_oobmark = so->so_rcv.sb_cc +
2249 (tp->rcv_up - tp->rcv_nxt) - 1;
2250 if (so->so_oobmark == 0)
2251 so->so_state |= SS_RCVATMARK;
2252 sohasoutofband(so);
2253 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2254 }
2255 /*
2256 * Remove out of band data so doesn't get presented to user.
2257 * This can happen independent of advancing the URG pointer,
2258 * but if two URG's are pending at once, some out-of-band
2259 * data may creep in... ick.
2260 */
2261 if (th->th_urp <= (u_int16_t) tlen
2262 #ifdef SO_OOBINLINE
2263 && (so->so_options & SO_OOBINLINE) == 0
2264 #endif
2265 )
2266 tcp_pulloutofband(so, th, m, hdroptlen);
2267 } else
2268 /*
2269 * If no out of band data is expected,
2270 * pull receive urgent pointer along
2271 * with the receive window.
2272 */
2273 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2274 tp->rcv_up = tp->rcv_nxt;
2275 dodata: /* XXX */
2276
2277 /*
2278 * Process the segment text, merging it into the TCP sequencing queue,
2279 * and arranging for acknowledgement of receipt if necessary.
2280 * This process logically involves adjusting tp->rcv_wnd as data
2281 * is presented to the user (this happens in tcp_usrreq.c,
2282 * case PRU_RCVD). If a FIN has already been received on this
2283 * connection then we just ignore the text.
2284 */
2285 if ((tlen || (tiflags & TH_FIN)) &&
2286 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2287 /*
2288 * Insert segment ti into reassembly queue of tcp with
2289 * control block tp. Return TH_FIN if reassembly now includes
2290 * a segment with FIN. The macro form does the common case
2291 * inline (segment is the next to be received on an
2292 * established connection, and the queue is empty),
2293 * avoiding linkage into and removal from the queue and
2294 * repetition of various conversions.
2295 * Set DELACK for segments received in order, but ack
2296 * immediately when segments are out of order
2297 * (so fast retransmit can work).
2298 */
2299 /* NOTE: this was TCP_REASS() macro, but used only once */
2300 TCP_REASS_LOCK(tp);
2301 if (th->th_seq == tp->rcv_nxt &&
2302 TAILQ_FIRST(&tp->segq) == NULL &&
2303 tp->t_state == TCPS_ESTABLISHED) {
2304 TCP_SETUP_ACK(tp, th);
2305 tp->rcv_nxt += tlen;
2306 tiflags = th->th_flags & TH_FIN;
2307 tcpstat.tcps_rcvpack++;
2308 tcpstat.tcps_rcvbyte += tlen;
2309 ND6_HINT(tp);
2310 if (so->so_state & SS_CANTRCVMORE)
2311 m_freem(m);
2312 else {
2313 m_adj(m, hdroptlen);
2314 sbappendstream(&(so)->so_rcv, m);
2315 }
2316 sorwakeup(so);
2317 } else {
2318 m_adj(m, hdroptlen);
2319 tiflags = tcp_reass(tp, th, m, &tlen);
2320 tp->t_flags |= TF_ACKNOW;
2321 }
2322 TCP_REASS_UNLOCK(tp);
2323
2324 /*
2325 * Note the amount of data that peer has sent into
2326 * our window, in order to estimate the sender's
2327 * buffer size.
2328 */
2329 len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2330 } else {
2331 m_freem(m);
2332 m = NULL;
2333 tiflags &= ~TH_FIN;
2334 }
2335
2336 /*
2337 * If FIN is received ACK the FIN and let the user know
2338 * that the connection is closing. Ignore a FIN received before
2339 * the connection is fully established.
2340 */
2341 if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2342 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2343 socantrcvmore(so);
2344 tp->t_flags |= TF_ACKNOW;
2345 tp->rcv_nxt++;
2346 }
2347 switch (tp->t_state) {
2348
2349 /*
2350 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2351 */
2352 case TCPS_ESTABLISHED:
2353 tp->t_state = TCPS_CLOSE_WAIT;
2354 break;
2355
2356 /*
2357 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2358 * enter the CLOSING state.
2359 */
2360 case TCPS_FIN_WAIT_1:
2361 tp->t_state = TCPS_CLOSING;
2362 break;
2363
2364 /*
2365 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2366 * starting the time-wait timer, turning off the other
2367 * standard timers.
2368 */
2369 case TCPS_FIN_WAIT_2:
2370 tp->t_state = TCPS_TIME_WAIT;
2371 tcp_canceltimers(tp);
2372 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2373 soisdisconnected(so);
2374 break;
2375
2376 /*
2377 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2378 */
2379 case TCPS_TIME_WAIT:
2380 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2381 break;
2382 }
2383 }
2384 #ifdef TCP_DEBUG
2385 if (so->so_options & SO_DEBUG)
2386 tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
2387 #endif
2388
2389 /*
2390 * Return any desired output.
2391 */
2392 if (needoutput || (tp->t_flags & TF_ACKNOW))
2393 (void) tcp_output(tp);
2394 if (tcp_saveti)
2395 m_freem(tcp_saveti);
2396 return;
2397
2398 badsyn:
2399 /*
2400 * Received a bad SYN. Increment counters and dropwithreset.
2401 */
2402 tcpstat.tcps_badsyn++;
2403 tp = NULL;
2404 goto dropwithreset;
2405
2406 dropafterack:
2407 /*
2408 * Generate an ACK dropping incoming segment if it occupies
2409 * sequence space, where the ACK reflects our state.
2410 */
2411 if (tiflags & TH_RST)
2412 goto drop;
2413 m_freem(m);
2414 tp->t_flags |= TF_ACKNOW;
2415 (void) tcp_output(tp);
2416 if (tcp_saveti)
2417 m_freem(tcp_saveti);
2418 return;
2419
2420 dropwithreset_ratelim:
2421 /*
2422 * We may want to rate-limit RSTs in certain situations,
2423 * particularly if we are sending an RST in response to
2424 * an attempt to connect to or otherwise communicate with
2425 * a port for which we have no socket.
2426 */
2427 if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
2428 tcp_rst_ppslim) == 0) {
2429 /* XXX stat */
2430 goto drop;
2431 }
2432 /* ...fall into dropwithreset... */
2433
2434 dropwithreset:
2435 /*
2436 * Generate a RST, dropping incoming segment.
2437 * Make ACK acceptable to originator of segment.
2438 */
2439 if (tiflags & TH_RST)
2440 goto drop;
2441
2442 switch (af) {
2443 #ifdef INET6
2444 case AF_INET6:
2445 /* For following calls to tcp_respond */
2446 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
2447 goto drop;
2448 break;
2449 #endif /* INET6 */
2450 case AF_INET:
2451 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
2452 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2453 goto drop;
2454 }
2455
2456 if (tiflags & TH_ACK)
2457 (void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
2458 else {
2459 if (tiflags & TH_SYN)
2460 tlen++;
2461 (void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
2462 TH_RST|TH_ACK);
2463 }
2464 if (tcp_saveti)
2465 m_freem(tcp_saveti);
2466 return;
2467
2468 badcsum:
2469 tcpstat.tcps_rcvbadsum++;
2470 drop:
2471 /*
2472 * Drop space held by incoming segment and return.
2473 */
2474 if (tp) {
2475 if (tp->t_inpcb)
2476 so = tp->t_inpcb->inp_socket;
2477 #ifdef INET6
2478 else if (tp->t_in6pcb)
2479 so = tp->t_in6pcb->in6p_socket;
2480 #endif
2481 else
2482 so = NULL;
2483 #ifdef TCP_DEBUG
2484 if (so && (so->so_options & SO_DEBUG) != 0)
2485 tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
2486 #endif
2487 }
2488 if (tcp_saveti)
2489 m_freem(tcp_saveti);
2490 m_freem(m);
2491 return;
2492 }
2493
2494 void
2495 tcp_dooptions(tp, cp, cnt, th, oi)
2496 struct tcpcb *tp;
2497 u_char *cp;
2498 int cnt;
2499 struct tcphdr *th;
2500 struct tcp_opt_info *oi;
2501 {
2502 u_int16_t mss;
2503 int opt, optlen;
2504
2505 for (; cnt > 0; cnt -= optlen, cp += optlen) {
2506 opt = cp[0];
2507 if (opt == TCPOPT_EOL)
2508 break;
2509 if (opt == TCPOPT_NOP)
2510 optlen = 1;
2511 else {
2512 if (cnt < 2)
2513 break;
2514 optlen = cp[1];
2515 if (optlen < 2 || optlen > cnt)
2516 break;
2517 }
2518 switch (opt) {
2519
2520 default:
2521 continue;
2522
2523 case TCPOPT_MAXSEG:
2524 if (optlen != TCPOLEN_MAXSEG)
2525 continue;
2526 if (!(th->th_flags & TH_SYN))
2527 continue;
2528 bcopy(cp + 2, &mss, sizeof(mss));
2529 oi->maxseg = ntohs(mss);
2530 break;
2531
2532 case TCPOPT_WINDOW:
2533 if (optlen != TCPOLEN_WINDOW)
2534 continue;
2535 if (!(th->th_flags & TH_SYN))
2536 continue;
2537 tp->t_flags |= TF_RCVD_SCALE;
2538 tp->requested_s_scale = cp[2];
2539 if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
2540 #if 0 /*XXX*/
2541 char *p;
2542
2543 if (ip)
2544 p = ntohl(ip->ip_src);
2545 #ifdef INET6
2546 else if (ip6)
2547 p = ip6_sprintf(&ip6->ip6_src);
2548 #endif
2549 else
2550 p = "(unknown)";
2551 log(LOG_ERR, "TCP: invalid wscale %d from %s, "
2552 "assuming %d\n",
2553 tp->requested_s_scale, p,
2554 TCP_MAX_WINSHIFT);
2555 #else
2556 log(LOG_ERR, "TCP: invalid wscale %d, "
2557 "assuming %d\n",
2558 tp->requested_s_scale,
2559 TCP_MAX_WINSHIFT);
2560 #endif
2561 tp->requested_s_scale = TCP_MAX_WINSHIFT;
2562 }
2563 break;
2564
2565 case TCPOPT_TIMESTAMP:
2566 if (optlen != TCPOLEN_TIMESTAMP)
2567 continue;
2568 oi->ts_present = 1;
2569 bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
2570 NTOHL(oi->ts_val);
2571 bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
2572 NTOHL(oi->ts_ecr);
2573
2574 /*
2575 * A timestamp received in a SYN makes
2576 * it ok to send timestamp requests and replies.
2577 */
2578 if (th->th_flags & TH_SYN) {
2579 tp->t_flags |= TF_RCVD_TSTMP;
2580 tp->ts_recent = oi->ts_val;
2581 tp->ts_recent_age = TCP_TIMESTAMP(tp);
2582 }
2583 break;
2584 case TCPOPT_SACK_PERMITTED:
2585 if (optlen != TCPOLEN_SACK_PERMITTED)
2586 continue;
2587 if (!(th->th_flags & TH_SYN))
2588 continue;
2589 tp->t_flags &= ~TF_CANT_TXSACK;
2590 break;
2591
2592 case TCPOPT_SACK:
2593 if (tp->t_flags & TF_IGNR_RXSACK)
2594 continue;
2595 if (optlen % 8 != 2 || optlen < 10)
2596 continue;
2597 cp += 2;
2598 optlen -= 2;
2599 for (; optlen > 0; cp -= 8, optlen -= 8) {
2600 tcp_seq lwe, rwe;
2601 bcopy((char *)cp, (char *) &lwe, sizeof(lwe));
2602 NTOHL(lwe);
2603 bcopy((char *)cp, (char *) &rwe, sizeof(rwe));
2604 NTOHL(rwe);
2605 /* tcp_mark_sacked(tp, lwe, rwe); */
2606 }
2607 break;
2608 }
2609 }
2610 }
2611
2612 /*
2613 * Pull out of band byte out of a segment so
2614 * it doesn't appear in the user's data queue.
2615 * It is still reflected in the segment length for
2616 * sequencing purposes.
2617 */
2618 void
2619 tcp_pulloutofband(so, th, m, off)
2620 struct socket *so;
2621 struct tcphdr *th;
2622 struct mbuf *m;
2623 int off;
2624 {
2625 int cnt = off + th->th_urp - 1;
2626
2627 while (cnt >= 0) {
2628 if (m->m_len > cnt) {
2629 char *cp = mtod(m, caddr_t) + cnt;
2630 struct tcpcb *tp = sototcpcb(so);
2631
2632 tp->t_iobc = *cp;
2633 tp->t_oobflags |= TCPOOB_HAVEDATA;
2634 bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
2635 m->m_len--;
2636 return;
2637 }
2638 cnt -= m->m_len;
2639 m = m->m_next;
2640 if (m == 0)
2641 break;
2642 }
2643 panic("tcp_pulloutofband");
2644 }
2645
2646 /*
2647 * Collect new round-trip time estimate
2648 * and update averages and current timeout.
2649 */
2650 void
2651 tcp_xmit_timer(tp, rtt)
2652 struct tcpcb *tp;
2653 uint32_t rtt;
2654 {
2655 int32_t delta;
2656
2657 tcpstat.tcps_rttupdated++;
2658 if (tp->t_srtt != 0) {
2659 /*
2660 * srtt is stored as fixed point with 3 bits after the
2661 * binary point (i.e., scaled by 8). The following magic
2662 * is equivalent to the smoothing algorithm in rfc793 with
2663 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2664 * point). Adjust rtt to origin 0.
2665 */
2666 delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
2667 if ((tp->t_srtt += delta) <= 0)
2668 tp->t_srtt = 1 << 2;
2669 /*
2670 * We accumulate a smoothed rtt variance (actually, a
2671 * smoothed mean difference), then set the retransmit
2672 * timer to smoothed rtt + 4 times the smoothed variance.
2673 * rttvar is stored as fixed point with 2 bits after the
2674 * binary point (scaled by 4). The following is
2675 * equivalent to rfc793 smoothing with an alpha of .75
2676 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces
2677 * rfc793's wired-in beta.
2678 */
2679 if (delta < 0)
2680 delta = -delta;
2681 delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
2682 if ((tp->t_rttvar += delta) <= 0)
2683 tp->t_rttvar = 1 << 2;
2684 } else {
2685 /*
2686 * No rtt measurement yet - use the unsmoothed rtt.
2687 * Set the variance to half the rtt (so our first
2688 * retransmit happens at 3*rtt).
2689 */
2690 tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
2691 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
2692 }
2693 tp->t_rtttime = 0;
2694 tp->t_rxtshift = 0;
2695
2696 /*
2697 * the retransmit should happen at rtt + 4 * rttvar.
2698 * Because of the way we do the smoothing, srtt and rttvar
2699 * will each average +1/2 tick of bias. When we compute
2700 * the retransmit timer, we want 1/2 tick of rounding and
2701 * 1 extra tick because of +-1/2 tick uncertainty in the
2702 * firing of the timer. The bias will give us exactly the
2703 * 1.5 tick we need. But, because the bias is
2704 * statistical, we have to test that we don't drop below
2705 * the minimum feasible timer (which is 2 ticks).
2706 */
2707 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
2708 max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
2709
2710 /*
2711 * We received an ack for a packet that wasn't retransmitted;
2712 * it is probably safe to discard any error indications we've
2713 * received recently. This isn't quite right, but close enough
2714 * for now (a route might have failed after we sent a segment,
2715 * and the return path might not be symmetrical).
2716 */
2717 tp->t_softerror = 0;
2718 }
2719
2720 /*
2721 * Checks for partial ack. If partial ack arrives, force the retransmission
2722 * of the next unacknowledged segment, do not clear tp->t_dupacks, and return
2723 * 1. By setting snd_nxt to th_ack, this forces retransmission timer to
2724 * be started again. If the ack advances at least to tp->snd_recover, return 0.
2725 */
2726 int
2727 tcp_newreno(tp, th)
2728 struct tcpcb *tp;
2729 struct tcphdr *th;
2730 {
2731 tcp_seq onxt = tp->snd_nxt;
2732 u_long ocwnd = tp->snd_cwnd;
2733
2734 if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2735 /*
2736 * snd_una has not yet been updated and the socket's send
2737 * buffer has not yet drained off the ACK'd data, so we
2738 * have to leave snd_una as it was to get the correct data
2739 * offset in tcp_output().
2740 */
2741 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2742 tp->t_rtttime = 0;
2743 tp->snd_nxt = th->th_ack;
2744 /*
2745 * Set snd_cwnd to one segment beyond ACK'd offset. snd_una
2746 * is not yet updated when we're called.
2747 */
2748 tp->snd_cwnd = tp->t_segsz + (th->th_ack - tp->snd_una);
2749 (void) tcp_output(tp);
2750 tp->snd_cwnd = ocwnd;
2751 if (SEQ_GT(onxt, tp->snd_nxt))
2752 tp->snd_nxt = onxt;
2753 /*
2754 * Partial window deflation. Relies on fact that tp->snd_una
2755 * not updated yet.
2756 */
2757 tp->snd_cwnd -= (th->th_ack - tp->snd_una - tp->t_segsz);
2758 return 1;
2759 }
2760 return 0;
2761 }
2762
2763
2764 /*
2765 * TCP compressed state engine. Currently used to hold compressed
2766 * state for SYN_RECEIVED.
2767 */
2768
2769 u_long syn_cache_count;
2770 u_int32_t syn_hash1, syn_hash2;
2771
2772 #define SYN_HASH(sa, sp, dp) \
2773 ((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
2774 ((u_int32_t)(sp)))^syn_hash2)))
2775 #ifndef INET6
2776 #define SYN_HASHALL(hash, src, dst) \
2777 do { \
2778 hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
2779 ((struct sockaddr_in *)(src))->sin_port, \
2780 ((struct sockaddr_in *)(dst))->sin_port); \
2781 } while (/*CONSTCOND*/ 0)
2782 #else
2783 #define SYN_HASH6(sa, sp, dp) \
2784 ((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
2785 (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
2786 & 0x7fffffff)
2787
2788 #define SYN_HASHALL(hash, src, dst) \
2789 do { \
2790 switch ((src)->sa_family) { \
2791 case AF_INET: \
2792 hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
2793 ((struct sockaddr_in *)(src))->sin_port, \
2794 ((struct sockaddr_in *)(dst))->sin_port); \
2795 break; \
2796 case AF_INET6: \
2797 hash = SYN_HASH6(&((struct sockaddr_in6 *)(src))->sin6_addr, \
2798 ((struct sockaddr_in6 *)(src))->sin6_port, \
2799 ((struct sockaddr_in6 *)(dst))->sin6_port); \
2800 break; \
2801 default: \
2802 hash = 0; \
2803 } \
2804 } while (/*CONSTCOND*/0)
2805 #endif /* INET6 */
2806
2807 #define SYN_CACHE_RM(sc) \
2808 do { \
2809 TAILQ_REMOVE(&tcp_syn_cache[(sc)->sc_bucketidx].sch_bucket, \
2810 (sc), sc_bucketq); \
2811 (sc)->sc_tp = NULL; \
2812 LIST_REMOVE((sc), sc_tpq); \
2813 tcp_syn_cache[(sc)->sc_bucketidx].sch_length--; \
2814 callout_stop(&(sc)->sc_timer); \
2815 syn_cache_count--; \
2816 } while (/*CONSTCOND*/0)
2817
2818 #define SYN_CACHE_PUT(sc) \
2819 do { \
2820 if ((sc)->sc_ipopts) \
2821 (void) m_free((sc)->sc_ipopts); \
2822 if ((sc)->sc_route4.ro_rt != NULL) \
2823 RTFREE((sc)->sc_route4.ro_rt); \
2824 if (callout_invoking(&(sc)->sc_timer)) \
2825 (sc)->sc_flags |= SCF_DEAD; \
2826 else \
2827 pool_put(&syn_cache_pool, (sc)); \
2828 } while (/*CONSTCOND*/0)
2829
2830 struct pool syn_cache_pool;
2831
2832 /*
2833 * We don't estimate RTT with SYNs, so each packet starts with the default
2834 * RTT and each timer step has a fixed timeout value.
2835 */
2836 #define SYN_CACHE_TIMER_ARM(sc) \
2837 do { \
2838 TCPT_RANGESET((sc)->sc_rxtcur, \
2839 TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN, \
2840 TCPTV_REXMTMAX); \
2841 callout_reset(&(sc)->sc_timer, \
2842 (sc)->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, (sc)); \
2843 } while (/*CONSTCOND*/0)
2844
2845 #define SYN_CACHE_TIMESTAMP(sc) (tcp_now - (sc)->sc_timebase)
2846
2847 void
2848 syn_cache_init()
2849 {
2850 int i;
2851
2852 /* Initialize the hash buckets. */
2853 for (i = 0; i < tcp_syn_cache_size; i++)
2854 TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
2855
2856 /* Initialize the syn cache pool. */
2857 pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
2858 "synpl", NULL);
2859 }
2860
2861 void
2862 syn_cache_insert(sc, tp)
2863 struct syn_cache *sc;
2864 struct tcpcb *tp;
2865 {
2866 struct syn_cache_head *scp;
2867 struct syn_cache *sc2;
2868 int s;
2869
2870 /*
2871 * If there are no entries in the hash table, reinitialize
2872 * the hash secrets.
2873 */
2874 if (syn_cache_count == 0) {
2875 struct timeval tv;
2876 microtime(&tv);
2877 syn_hash1 = arc4random() ^ (u_long)≻
2878 syn_hash2 = arc4random() ^ tv.tv_usec;
2879 }
2880
2881 SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
2882 sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
2883 scp = &tcp_syn_cache[sc->sc_bucketidx];
2884
2885 /*
2886 * Make sure that we don't overflow the per-bucket
2887 * limit or the total cache size limit.
2888 */
2889 s = splsoftnet();
2890 if (scp->sch_length >= tcp_syn_bucket_limit) {
2891 tcpstat.tcps_sc_bucketoverflow++;
2892 /*
2893 * The bucket is full. Toss the oldest element in the
2894 * bucket. This will be the first entry in the bucket.
2895 */
2896 sc2 = TAILQ_FIRST(&scp->sch_bucket);
2897 #ifdef DIAGNOSTIC
2898 /*
2899 * This should never happen; we should always find an
2900 * entry in our bucket.
2901 */
2902 if (sc2 == NULL)
2903 panic("syn_cache_insert: bucketoverflow: impossible");
2904 #endif
2905 SYN_CACHE_RM(sc2);
2906 SYN_CACHE_PUT(sc2);
2907 } else if (syn_cache_count >= tcp_syn_cache_limit) {
2908 struct syn_cache_head *scp2, *sce;
2909
2910 tcpstat.tcps_sc_overflowed++;
2911 /*
2912 * The cache is full. Toss the oldest entry in the
2913 * first non-empty bucket we can find.
2914 *
2915 * XXX We would really like to toss the oldest
2916 * entry in the cache, but we hope that this
2917 * condition doesn't happen very often.
2918 */
2919 scp2 = scp;
2920 if (TAILQ_EMPTY(&scp2->sch_bucket)) {
2921 sce = &tcp_syn_cache[tcp_syn_cache_size];
2922 for (++scp2; scp2 != scp; scp2++) {
2923 if (scp2 >= sce)
2924 scp2 = &tcp_syn_cache[0];
2925 if (! TAILQ_EMPTY(&scp2->sch_bucket))
2926 break;
2927 }
2928 #ifdef DIAGNOSTIC
2929 /*
2930 * This should never happen; we should always find a
2931 * non-empty bucket.
2932 */
2933 if (scp2 == scp)
2934 panic("syn_cache_insert: cacheoverflow: "
2935 "impossible");
2936 #endif
2937 }
2938 sc2 = TAILQ_FIRST(&scp2->sch_bucket);
2939 SYN_CACHE_RM(sc2);
2940 SYN_CACHE_PUT(sc2);
2941 }
2942
2943 /*
2944 * Initialize the entry's timer.
2945 */
2946 sc->sc_rxttot = 0;
2947 sc->sc_rxtshift = 0;
2948 SYN_CACHE_TIMER_ARM(sc);
2949
2950 /* Link it from tcpcb entry */
2951 LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
2952
2953 /* Put it into the bucket. */
2954 TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
2955 scp->sch_length++;
2956 syn_cache_count++;
2957
2958 tcpstat.tcps_sc_added++;
2959 splx(s);
2960 }
2961
2962 /*
2963 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
2964 * If we have retransmitted an entry the maximum number of times, expire
2965 * that entry.
2966 */
2967 void
2968 syn_cache_timer(void *arg)
2969 {
2970 struct syn_cache *sc = arg;
2971 int s;
2972
2973 s = splsoftnet();
2974 callout_ack(&sc->sc_timer);
2975
2976 if (__predict_false(sc->sc_flags & SCF_DEAD)) {
2977 tcpstat.tcps_sc_delayed_free++;
2978 pool_put(&syn_cache_pool, sc);
2979 splx(s);
2980 return;
2981 }
2982
2983 if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
2984 /* Drop it -- too many retransmissions. */
2985 goto dropit;
2986 }
2987
2988 /*
2989 * Compute the total amount of time this entry has
2990 * been on a queue. If this entry has been on longer
2991 * than the keep alive timer would allow, expire it.
2992 */
2993 sc->sc_rxttot += sc->sc_rxtcur;
2994 if (sc->sc_rxttot >= TCPTV_KEEP_INIT)
2995 goto dropit;
2996
2997 tcpstat.tcps_sc_retransmitted++;
2998 (void) syn_cache_respond(sc, NULL);
2999
3000 /* Advance the timer back-off. */
3001 sc->sc_rxtshift++;
3002 SYN_CACHE_TIMER_ARM(sc);
3003
3004 splx(s);
3005 return;
3006
3007 dropit:
3008 tcpstat.tcps_sc_timed_out++;
3009 SYN_CACHE_RM(sc);
3010 SYN_CACHE_PUT(sc);
3011 splx(s);
3012 }
3013
3014 /*
3015 * Remove syn cache created by the specified tcb entry,
3016 * because this does not make sense to keep them
3017 * (if there's no tcb entry, syn cache entry will never be used)
3018 */
3019 void
3020 syn_cache_cleanup(tp)
3021 struct tcpcb *tp;
3022 {
3023 struct syn_cache *sc, *nsc;
3024 int s;
3025
3026 s = splsoftnet();
3027
3028 for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
3029 nsc = LIST_NEXT(sc, sc_tpq);
3030
3031 #ifdef DIAGNOSTIC
3032 if (sc->sc_tp != tp)
3033 panic("invalid sc_tp in syn_cache_cleanup");
3034 #endif
3035 SYN_CACHE_RM(sc);
3036 SYN_CACHE_PUT(sc);
3037 }
3038 /* just for safety */
3039 LIST_INIT(&tp->t_sc);
3040
3041 splx(s);
3042 }
3043
3044 /*
3045 * Find an entry in the syn cache.
3046 */
3047 struct syn_cache *
3048 syn_cache_lookup(src, dst, headp)
3049 struct sockaddr *src;
3050 struct sockaddr *dst;
3051 struct syn_cache_head **headp;
3052 {
3053 struct syn_cache *sc;
3054 struct syn_cache_head *scp;
3055 u_int32_t hash;
3056 int s;
3057
3058 SYN_HASHALL(hash, src, dst);
3059
3060 scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
3061 *headp = scp;
3062 s = splsoftnet();
3063 for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
3064 sc = TAILQ_NEXT(sc, sc_bucketq)) {
3065 if (sc->sc_hash != hash)
3066 continue;
3067 if (!bcmp(&sc->sc_src, src, src->sa_len) &&
3068 !bcmp(&sc->sc_dst, dst, dst->sa_len)) {
3069 splx(s);
3070 return (sc);
3071 }
3072 }
3073 splx(s);
3074 return (NULL);
3075 }
3076
3077 /*
3078 * This function gets called when we receive an ACK for a
3079 * socket in the LISTEN state. We look up the connection
3080 * in the syn cache, and if its there, we pull it out of
3081 * the cache and turn it into a full-blown connection in
3082 * the SYN-RECEIVED state.
3083 *
3084 * The return values may not be immediately obvious, and their effects
3085 * can be subtle, so here they are:
3086 *
3087 * NULL SYN was not found in cache; caller should drop the
3088 * packet and send an RST.
3089 *
3090 * -1 We were unable to create the new connection, and are
3091 * aborting it. An ACK,RST is being sent to the peer
3092 * (unless we got screwey sequence numbners; see below),
3093 * because the 3-way handshake has been completed. Caller
3094 * should not free the mbuf, since we may be using it. If
3095 * we are not, we will free it.
3096 *
3097 * Otherwise, the return value is a pointer to the new socket
3098 * associated with the connection.
3099 */
3100 struct socket *
3101 syn_cache_get(src, dst, th, hlen, tlen, so, m)
3102 struct sockaddr *src;
3103 struct sockaddr *dst;
3104 struct tcphdr *th;
3105 unsigned int hlen, tlen;
3106 struct socket *so;
3107 struct mbuf *m;
3108 {
3109 struct syn_cache *sc;
3110 struct syn_cache_head *scp;
3111 struct inpcb *inp = NULL;
3112 #ifdef INET6
3113 struct in6pcb *in6p = NULL;
3114 #endif
3115 struct tcpcb *tp = 0;
3116 struct mbuf *am;
3117 int s;
3118 struct socket *oso;
3119
3120 s = splsoftnet();
3121 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3122 splx(s);
3123 return (NULL);
3124 }
3125
3126 /*
3127 * Verify the sequence and ack numbers. Try getting the correct
3128 * response again.
3129 */
3130 if ((th->th_ack != sc->sc_iss + 1) ||
3131 SEQ_LEQ(th->th_seq, sc->sc_irs) ||
3132 SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
3133 (void) syn_cache_respond(sc, m);
3134 splx(s);
3135 return ((struct socket *)(-1));
3136 }
3137
3138 /* Remove this cache entry */
3139 SYN_CACHE_RM(sc);
3140 splx(s);
3141
3142 /*
3143 * Ok, create the full blown connection, and set things up
3144 * as they would have been set up if we had created the
3145 * connection when the SYN arrived. If we can't create
3146 * the connection, abort it.
3147 */
3148 /*
3149 * inp still has the OLD in_pcb stuff, set the
3150 * v6-related flags on the new guy, too. This is
3151 * done particularly for the case where an AF_INET6
3152 * socket is bound only to a port, and a v4 connection
3153 * comes in on that port.
3154 * we also copy the flowinfo from the original pcb
3155 * to the new one.
3156 */
3157 oso = so;
3158 so = sonewconn(so, SS_ISCONNECTED);
3159 if (so == NULL)
3160 goto resetandabort;
3161
3162 switch (so->so_proto->pr_domain->dom_family) {
3163 #ifdef INET
3164 case AF_INET:
3165 inp = sotoinpcb(so);
3166 break;
3167 #endif
3168 #ifdef INET6
3169 case AF_INET6:
3170 in6p = sotoin6pcb(so);
3171 break;
3172 #endif
3173 }
3174 switch (src->sa_family) {
3175 #ifdef INET
3176 case AF_INET:
3177 if (inp) {
3178 inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
3179 inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
3180 inp->inp_options = ip_srcroute();
3181 in_pcbstate(inp, INP_BOUND);
3182 if (inp->inp_options == NULL) {
3183 inp->inp_options = sc->sc_ipopts;
3184 sc->sc_ipopts = NULL;
3185 }
3186 }
3187 #ifdef INET6
3188 else if (in6p) {
3189 /* IPv4 packet to AF_INET6 socket */
3190 bzero(&in6p->in6p_laddr, sizeof(in6p->in6p_laddr));
3191 in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
3192 bcopy(&((struct sockaddr_in *)dst)->sin_addr,
3193 &in6p->in6p_laddr.s6_addr32[3],
3194 sizeof(((struct sockaddr_in *)dst)->sin_addr));
3195 in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
3196 in6totcpcb(in6p)->t_family = AF_INET;
3197 if (sotoin6pcb(oso)->in6p_flags & IN6P_IPV6_V6ONLY)
3198 in6p->in6p_flags |= IN6P_IPV6_V6ONLY;
3199 else
3200 in6p->in6p_flags &= ~IN6P_IPV6_V6ONLY;
3201 in6_pcbstate(in6p, IN6P_BOUND);
3202 }
3203 #endif
3204 break;
3205 #endif
3206 #ifdef INET6
3207 case AF_INET6:
3208 if (in6p) {
3209 in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
3210 in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
3211 in6_pcbstate(in6p, IN6P_BOUND);
3212 }
3213 break;
3214 #endif
3215 }
3216 #ifdef INET6
3217 if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
3218 struct in6pcb *oin6p = sotoin6pcb(oso);
3219 /* inherit socket options from the listening socket */
3220 in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
3221 if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
3222 m_freem(in6p->in6p_options);
3223 in6p->in6p_options = 0;
3224 }
3225 ip6_savecontrol(in6p, &in6p->in6p_options,
3226 mtod(m, struct ip6_hdr *), m);
3227 }
3228 #endif
3229
3230 #if defined(IPSEC) || defined(FAST_IPSEC)
3231 /*
3232 * we make a copy of policy, instead of sharing the policy,
3233 * for better behavior in terms of SA lookup and dead SA removal.
3234 */
3235 if (inp) {
3236 /* copy old policy into new socket's */
3237 if (ipsec_copy_pcbpolicy(sotoinpcb(oso)->inp_sp, inp->inp_sp))
3238 printf("tcp_input: could not copy policy\n");
3239 }
3240 #ifdef INET6
3241 else if (in6p) {
3242 /* copy old policy into new socket's */
3243 if (ipsec_copy_pcbpolicy(sotoin6pcb(oso)->in6p_sp,
3244 in6p->in6p_sp))
3245 printf("tcp_input: could not copy policy\n");
3246 }
3247 #endif
3248 #endif
3249
3250 /*
3251 * Give the new socket our cached route reference.
3252 */
3253 if (inp)
3254 inp->inp_route = sc->sc_route4; /* struct assignment */
3255 #ifdef INET6
3256 else
3257 in6p->in6p_route = sc->sc_route6;
3258 #endif
3259 sc->sc_route4.ro_rt = NULL;
3260
3261 am = m_get(M_DONTWAIT, MT_SONAME); /* XXX */
3262 if (am == NULL)
3263 goto resetandabort;
3264 MCLAIM(am, &tcp_mowner);
3265 am->m_len = src->sa_len;
3266 bcopy(src, mtod(am, caddr_t), src->sa_len);
3267 if (inp) {
3268 if (in_pcbconnect(inp, am)) {
3269 (void) m_free(am);
3270 goto resetandabort;
3271 }
3272 }
3273 #ifdef INET6
3274 else if (in6p) {
3275 if (src->sa_family == AF_INET) {
3276 /* IPv4 packet to AF_INET6 socket */
3277 struct sockaddr_in6 *sin6;
3278 sin6 = mtod(am, struct sockaddr_in6 *);
3279 am->m_len = sizeof(*sin6);
3280 bzero(sin6, sizeof(*sin6));
3281 sin6->sin6_family = AF_INET6;
3282 sin6->sin6_len = sizeof(*sin6);
3283 sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port;
3284 sin6->sin6_addr.s6_addr16[5] = htons(0xffff);
3285 bcopy(&((struct sockaddr_in *)src)->sin_addr,
3286 &sin6->sin6_addr.s6_addr32[3],
3287 sizeof(sin6->sin6_addr.s6_addr32[3]));
3288 }
3289 if (in6_pcbconnect(in6p, am)) {
3290 (void) m_free(am);
3291 goto resetandabort;
3292 }
3293 }
3294 #endif
3295 else {
3296 (void) m_free(am);
3297 goto resetandabort;
3298 }
3299 (void) m_free(am);
3300
3301 if (inp)
3302 tp = intotcpcb(inp);
3303 #ifdef INET6
3304 else if (in6p)
3305 tp = in6totcpcb(in6p);
3306 #endif
3307 else
3308 tp = NULL;
3309 tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
3310 if (sc->sc_request_r_scale != 15) {
3311 tp->requested_s_scale = sc->sc_requested_s_scale;
3312 tp->request_r_scale = sc->sc_request_r_scale;
3313 tp->snd_scale = sc->sc_requested_s_scale;
3314 tp->rcv_scale = sc->sc_request_r_scale;
3315 tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
3316 }
3317 if (sc->sc_flags & SCF_TIMESTAMP)
3318 tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
3319 tp->ts_timebase = sc->sc_timebase;
3320
3321 tp->t_template = tcp_template(tp);
3322 if (tp->t_template == 0) {
3323 tp = tcp_drop(tp, ENOBUFS); /* destroys socket */
3324 so = NULL;
3325 m_freem(m);
3326 goto abort;
3327 }
3328
3329 tp->iss = sc->sc_iss;
3330 tp->irs = sc->sc_irs;
3331 tcp_sendseqinit(tp);
3332 tcp_rcvseqinit(tp);
3333 tp->t_state = TCPS_SYN_RECEIVED;
3334 TCP_TIMER_ARM(tp, TCPT_KEEP, TCPTV_KEEP_INIT);
3335 tcpstat.tcps_accepts++;
3336
3337 /* Initialize tp->t_ourmss before we deal with the peer's! */
3338 tp->t_ourmss = sc->sc_ourmaxseg;
3339 tcp_mss_from_peer(tp, sc->sc_peermaxseg);
3340
3341 /*
3342 * Initialize the initial congestion window. If we
3343 * had to retransmit the SYN,ACK, we must initialize cwnd
3344 * to 1 segment (i.e. the Loss Window).
3345 */
3346 if (sc->sc_rxtshift)
3347 tp->snd_cwnd = tp->t_peermss;
3348 else {
3349 int ss = tcp_init_win;
3350 #ifdef INET
3351 if (inp != NULL && in_localaddr(inp->inp_faddr))
3352 ss = tcp_init_win_local;
3353 #endif
3354 #ifdef INET6
3355 if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
3356 ss = tcp_init_win_local;
3357 #endif
3358 tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
3359 }
3360
3361 tcp_rmx_rtt(tp);
3362 tp->snd_wl1 = sc->sc_irs;
3363 tp->rcv_up = sc->sc_irs + 1;
3364
3365 /*
3366 * This is what whould have happened in tcp_output() when
3367 * the SYN,ACK was sent.
3368 */
3369 tp->snd_up = tp->snd_una;
3370 tp->snd_max = tp->snd_nxt = tp->iss+1;
3371 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
3372 if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
3373 tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
3374 tp->last_ack_sent = tp->rcv_nxt;
3375
3376 tcpstat.tcps_sc_completed++;
3377 SYN_CACHE_PUT(sc);
3378 return (so);
3379
3380 resetandabort:
3381 (void) tcp_respond(NULL, m, m, th,
3382 th->th_seq + tlen, (tcp_seq)0, TH_RST|TH_ACK);
3383 abort:
3384 if (so != NULL)
3385 (void) soabort(so);
3386 SYN_CACHE_PUT(sc);
3387 tcpstat.tcps_sc_aborted++;
3388 return ((struct socket *)(-1));
3389 }
3390
3391 /*
3392 * This function is called when we get a RST for a
3393 * non-existent connection, so that we can see if the
3394 * connection is in the syn cache. If it is, zap it.
3395 */
3396
3397 void
3398 syn_cache_reset(src, dst, th)
3399 struct sockaddr *src;
3400 struct sockaddr *dst;
3401 struct tcphdr *th;
3402 {
3403 struct syn_cache *sc;
3404 struct syn_cache_head *scp;
3405 int s = splsoftnet();
3406
3407 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3408 splx(s);
3409 return;
3410 }
3411 if (SEQ_LT(th->th_seq, sc->sc_irs) ||
3412 SEQ_GT(th->th_seq, sc->sc_irs+1)) {
3413 splx(s);
3414 return;
3415 }
3416 SYN_CACHE_RM(sc);
3417 splx(s);
3418 tcpstat.tcps_sc_reset++;
3419 SYN_CACHE_PUT(sc);
3420 }
3421
3422 void
3423 syn_cache_unreach(src, dst, th)
3424 struct sockaddr *src;
3425 struct sockaddr *dst;
3426 struct tcphdr *th;
3427 {
3428 struct syn_cache *sc;
3429 struct syn_cache_head *scp;
3430 int s;
3431
3432 s = splsoftnet();
3433 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3434 splx(s);
3435 return;
3436 }
3437 /* If the sequence number != sc_iss, then it's a bogus ICMP msg */
3438 if (ntohl (th->th_seq) != sc->sc_iss) {
3439 splx(s);
3440 return;
3441 }
3442
3443 /*
3444 * If we've rertransmitted 3 times and this is our second error,
3445 * we remove the entry. Otherwise, we allow it to continue on.
3446 * This prevents us from incorrectly nuking an entry during a
3447 * spurious network outage.
3448 *
3449 * See tcp_notify().
3450 */
3451 if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
3452 sc->sc_flags |= SCF_UNREACH;
3453 splx(s);
3454 return;
3455 }
3456
3457 SYN_CACHE_RM(sc);
3458 splx(s);
3459 tcpstat.tcps_sc_unreach++;
3460 SYN_CACHE_PUT(sc);
3461 }
3462
3463 /*
3464 * Given a LISTEN socket and an inbound SYN request, add
3465 * this to the syn cache, and send back a segment:
3466 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
3467 * to the source.
3468 *
3469 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
3470 * Doing so would require that we hold onto the data and deliver it
3471 * to the application. However, if we are the target of a SYN-flood
3472 * DoS attack, an attacker could send data which would eventually
3473 * consume all available buffer space if it were ACKed. By not ACKing
3474 * the data, we avoid this DoS scenario.
3475 */
3476
3477 int
3478 syn_cache_add(src, dst, th, hlen, so, m, optp, optlen, oi)
3479 struct sockaddr *src;
3480 struct sockaddr *dst;
3481 struct tcphdr *th;
3482 unsigned int hlen;
3483 struct socket *so;
3484 struct mbuf *m;
3485 u_char *optp;
3486 int optlen;
3487 struct tcp_opt_info *oi;
3488 {
3489 struct tcpcb tb, *tp;
3490 long win;
3491 struct syn_cache *sc;
3492 struct syn_cache_head *scp;
3493 struct mbuf *ipopts;
3494
3495 tp = sototcpcb(so);
3496
3497 /*
3498 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
3499 *
3500 * Note this check is performed in tcp_input() very early on.
3501 */
3502
3503 /*
3504 * Initialize some local state.
3505 */
3506 win = sbspace(&so->so_rcv);
3507 if (win > TCP_MAXWIN)
3508 win = TCP_MAXWIN;
3509
3510 switch (src->sa_family) {
3511 #ifdef INET
3512 case AF_INET:
3513 /*
3514 * Remember the IP options, if any.
3515 */
3516 ipopts = ip_srcroute();
3517 break;
3518 #endif
3519 default:
3520 ipopts = NULL;
3521 }
3522
3523 if (optp) {
3524 tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
3525 tcp_dooptions(&tb, optp, optlen, th, oi);
3526 } else
3527 tb.t_flags = 0;
3528
3529 /*
3530 * See if we already have an entry for this connection.
3531 * If we do, resend the SYN,ACK. We do not count this
3532 * as a retransmission (XXX though maybe we should).
3533 */
3534 if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
3535 tcpstat.tcps_sc_dupesyn++;
3536 if (ipopts) {
3537 /*
3538 * If we were remembering a previous source route,
3539 * forget it and use the new one we've been given.
3540 */
3541 if (sc->sc_ipopts)
3542 (void) m_free(sc->sc_ipopts);
3543 sc->sc_ipopts = ipopts;
3544 }
3545 sc->sc_timestamp = tb.ts_recent;
3546 if (syn_cache_respond(sc, m) == 0) {
3547 tcpstat.tcps_sndacks++;
3548 tcpstat.tcps_sndtotal++;
3549 }
3550 return (1);
3551 }
3552
3553 sc = pool_get(&syn_cache_pool, PR_NOWAIT);
3554 if (sc == NULL) {
3555 if (ipopts)
3556 (void) m_free(ipopts);
3557 return (0);
3558 }
3559
3560 /*
3561 * Fill in the cache, and put the necessary IP and TCP
3562 * options into the reply.
3563 */
3564 bzero(sc, sizeof(struct syn_cache));
3565 callout_init(&sc->sc_timer);
3566 bcopy(src, &sc->sc_src, src->sa_len);
3567 bcopy(dst, &sc->sc_dst, dst->sa_len);
3568 sc->sc_flags = 0;
3569 sc->sc_ipopts = ipopts;
3570 sc->sc_irs = th->th_seq;
3571 switch (src->sa_family) {
3572 #ifdef INET
3573 case AF_INET:
3574 {
3575 struct sockaddr_in *srcin = (void *) src;
3576 struct sockaddr_in *dstin = (void *) dst;
3577
3578 sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
3579 &srcin->sin_addr, dstin->sin_port,
3580 srcin->sin_port, sizeof(dstin->sin_addr), 0);
3581 break;
3582 }
3583 #endif /* INET */
3584 #ifdef INET6
3585 case AF_INET6:
3586 {
3587 struct sockaddr_in6 *srcin6 = (void *) src;
3588 struct sockaddr_in6 *dstin6 = (void *) dst;
3589
3590 sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
3591 &srcin6->sin6_addr, dstin6->sin6_port,
3592 srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
3593 break;
3594 }
3595 #endif /* INET6 */
3596 }
3597 sc->sc_peermaxseg = oi->maxseg;
3598 sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
3599 m->m_pkthdr.rcvif : NULL,
3600 sc->sc_src.sa.sa_family);
3601 sc->sc_win = win;
3602 sc->sc_timebase = tcp_now; /* see tcp_newtcpcb() */
3603 sc->sc_timestamp = tb.ts_recent;
3604 if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
3605 (TF_REQ_TSTMP|TF_RCVD_TSTMP))
3606 sc->sc_flags |= SCF_TIMESTAMP;
3607 if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
3608 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
3609 sc->sc_requested_s_scale = tb.requested_s_scale;
3610 sc->sc_request_r_scale = 0;
3611 while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
3612 TCP_MAXWIN << sc->sc_request_r_scale <
3613 so->so_rcv.sb_hiwat)
3614 sc->sc_request_r_scale++;
3615 } else {
3616 sc->sc_requested_s_scale = 15;
3617 sc->sc_request_r_scale = 15;
3618 }
3619 sc->sc_tp = tp;
3620 if (syn_cache_respond(sc, m) == 0) {
3621 syn_cache_insert(sc, tp);
3622 tcpstat.tcps_sndacks++;
3623 tcpstat.tcps_sndtotal++;
3624 } else {
3625 SYN_CACHE_PUT(sc);
3626 tcpstat.tcps_sc_dropped++;
3627 }
3628 return (1);
3629 }
3630
3631 int
3632 syn_cache_respond(sc, m)
3633 struct syn_cache *sc;
3634 struct mbuf *m;
3635 {
3636 struct route *ro;
3637 u_int8_t *optp;
3638 int optlen, error;
3639 u_int16_t tlen;
3640 struct ip *ip = NULL;
3641 #ifdef INET6
3642 struct ip6_hdr *ip6 = NULL;
3643 #endif
3644 struct tcpcb *tp;
3645 struct tcphdr *th;
3646 u_int hlen;
3647 struct socket *so;
3648
3649 switch (sc->sc_src.sa.sa_family) {
3650 case AF_INET:
3651 hlen = sizeof(struct ip);
3652 ro = &sc->sc_route4;
3653 break;
3654 #ifdef INET6
3655 case AF_INET6:
3656 hlen = sizeof(struct ip6_hdr);
3657 ro = (struct route *)&sc->sc_route6;
3658 break;
3659 #endif
3660 default:
3661 if (m)
3662 m_freem(m);
3663 return EAFNOSUPPORT;
3664 }
3665
3666 /* Compute the size of the TCP options. */
3667 optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
3668 ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
3669
3670 tlen = hlen + sizeof(struct tcphdr) + optlen;
3671
3672 /*
3673 * Create the IP+TCP header from scratch.
3674 */
3675 if (m)
3676 m_freem(m);
3677 #ifdef DIAGNOSTIC
3678 if (max_linkhdr + tlen > MCLBYTES)
3679 return (ENOBUFS);
3680 #endif
3681 MGETHDR(m, M_DONTWAIT, MT_DATA);
3682 if (m && tlen > MHLEN) {
3683 MCLGET(m, M_DONTWAIT);
3684 if ((m->m_flags & M_EXT) == 0) {
3685 m_freem(m);
3686 m = NULL;
3687 }
3688 }
3689 if (m == NULL)
3690 return (ENOBUFS);
3691 MCLAIM(m, &tcp_tx_mowner);
3692
3693 /* Fixup the mbuf. */
3694 m->m_data += max_linkhdr;
3695 m->m_len = m->m_pkthdr.len = tlen;
3696 if (sc->sc_tp) {
3697 tp = sc->sc_tp;
3698 if (tp->t_inpcb)
3699 so = tp->t_inpcb->inp_socket;
3700 #ifdef INET6
3701 else if (tp->t_in6pcb)
3702 so = tp->t_in6pcb->in6p_socket;
3703 #endif
3704 else
3705 so = NULL;
3706 } else
3707 so = NULL;
3708 m->m_pkthdr.rcvif = NULL;
3709 memset(mtod(m, u_char *), 0, tlen);
3710
3711 switch (sc->sc_src.sa.sa_family) {
3712 case AF_INET:
3713 ip = mtod(m, struct ip *);
3714 ip->ip_dst = sc->sc_src.sin.sin_addr;
3715 ip->ip_src = sc->sc_dst.sin.sin_addr;
3716 ip->ip_p = IPPROTO_TCP;
3717 th = (struct tcphdr *)(ip + 1);
3718 th->th_dport = sc->sc_src.sin.sin_port;
3719 th->th_sport = sc->sc_dst.sin.sin_port;
3720 break;
3721 #ifdef INET6
3722 case AF_INET6:
3723 ip6 = mtod(m, struct ip6_hdr *);
3724 ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
3725 ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
3726 ip6->ip6_nxt = IPPROTO_TCP;
3727 /* ip6_plen will be updated in ip6_output() */
3728 th = (struct tcphdr *)(ip6 + 1);
3729 th->th_dport = sc->sc_src.sin6.sin6_port;
3730 th->th_sport = sc->sc_dst.sin6.sin6_port;
3731 break;
3732 #endif
3733 default:
3734 th = NULL;
3735 }
3736
3737 th->th_seq = htonl(sc->sc_iss);
3738 th->th_ack = htonl(sc->sc_irs + 1);
3739 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
3740 th->th_flags = TH_SYN|TH_ACK;
3741 th->th_win = htons(sc->sc_win);
3742 /* th_sum already 0 */
3743 /* th_urp already 0 */
3744
3745 /* Tack on the TCP options. */
3746 optp = (u_int8_t *)(th + 1);
3747 *optp++ = TCPOPT_MAXSEG;
3748 *optp++ = 4;
3749 *optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
3750 *optp++ = sc->sc_ourmaxseg & 0xff;
3751
3752 if (sc->sc_request_r_scale != 15) {
3753 *((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
3754 TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
3755 sc->sc_request_r_scale);
3756 optp += 4;
3757 }
3758
3759 if (sc->sc_flags & SCF_TIMESTAMP) {
3760 u_int32_t *lp = (u_int32_t *)(optp);
3761 /* Form timestamp option as shown in appendix A of RFC 1323. */
3762 *lp++ = htonl(TCPOPT_TSTAMP_HDR);
3763 *lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
3764 *lp = htonl(sc->sc_timestamp);
3765 optp += TCPOLEN_TSTAMP_APPA;
3766 }
3767
3768 /* Compute the packet's checksum. */
3769 switch (sc->sc_src.sa.sa_family) {
3770 case AF_INET:
3771 ip->ip_len = htons(tlen - hlen);
3772 th->th_sum = 0;
3773 th->th_sum = in_cksum(m, tlen);
3774 break;
3775 #ifdef INET6
3776 case AF_INET6:
3777 ip6->ip6_plen = htons(tlen - hlen);
3778 th->th_sum = 0;
3779 th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
3780 break;
3781 #endif
3782 }
3783
3784 /*
3785 * Fill in some straggling IP bits. Note the stack expects
3786 * ip_len to be in host order, for convenience.
3787 */
3788 switch (sc->sc_src.sa.sa_family) {
3789 #ifdef INET
3790 case AF_INET:
3791 ip->ip_len = htons(tlen);
3792 ip->ip_ttl = ip_defttl;
3793 /* XXX tos? */
3794 break;
3795 #endif
3796 #ifdef INET6
3797 case AF_INET6:
3798 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
3799 ip6->ip6_vfc |= IPV6_VERSION;
3800 ip6->ip6_plen = htons(tlen - hlen);
3801 /* ip6_hlim will be initialized afterwards */
3802 /* XXX flowlabel? */
3803 break;
3804 #endif
3805 }
3806
3807 /* XXX use IPsec policy on listening socket, on SYN ACK */
3808 tp = sc->sc_tp;
3809
3810 switch (sc->sc_src.sa.sa_family) {
3811 #ifdef INET
3812 case AF_INET:
3813 error = ip_output(m, sc->sc_ipopts, ro,
3814 (ip_mtudisc ? IP_MTUDISC : 0),
3815 (struct ip_moptions *)NULL, so);
3816 break;
3817 #endif
3818 #ifdef INET6
3819 case AF_INET6:
3820 ip6->ip6_hlim = in6_selecthlim(NULL,
3821 ro->ro_rt ? ro->ro_rt->rt_ifp : NULL);
3822
3823 error = ip6_output(m, NULL /*XXX*/, (struct route_in6 *)ro, 0,
3824 (struct ip6_moptions *)0, so, NULL);
3825 break;
3826 #endif
3827 default:
3828 error = EAFNOSUPPORT;
3829 break;
3830 }
3831 return (error);
3832 }
3833