tcp_input.c revision 1.190 1 /* $NetBSD: tcp_input.c,v 1.190 2004/03/10 18:50:45 drochner Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * @(#)COPYRIGHT 1.1 (NRL) 17 January 1995
34 *
35 * NRL grants permission for redistribution and use in source and binary
36 * forms, with or without modification, of the software and documentation
37 * created at NRL provided that the following conditions are met:
38 *
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgements:
46 * This product includes software developed by the University of
47 * California, Berkeley and its contributors.
48 * This product includes software developed at the Information
49 * Technology Division, US Naval Research Laboratory.
50 * 4. Neither the name of the NRL nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
55 * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
57 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NRL OR
58 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
59 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
61 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
62 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
63 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
64 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65 *
66 * The views and conclusions contained in the software and documentation
67 * are those of the authors and should not be interpreted as representing
68 * official policies, either expressed or implied, of the US Naval
69 * Research Laboratory (NRL).
70 */
71
72 /*-
73 * Copyright (c) 1997, 1998, 1999, 2001 The NetBSD Foundation, Inc.
74 * All rights reserved.
75 *
76 * This code is derived from software contributed to The NetBSD Foundation
77 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
78 * Facility, NASA Ames Research Center.
79 *
80 * Redistribution and use in source and binary forms, with or without
81 * modification, are permitted provided that the following conditions
82 * are met:
83 * 1. Redistributions of source code must retain the above copyright
84 * notice, this list of conditions and the following disclaimer.
85 * 2. Redistributions in binary form must reproduce the above copyright
86 * notice, this list of conditions and the following disclaimer in the
87 * documentation and/or other materials provided with the distribution.
88 * 3. All advertising materials mentioning features or use of this software
89 * must display the following acknowledgement:
90 * This product includes software developed by the NetBSD
91 * Foundation, Inc. and its contributors.
92 * 4. Neither the name of The NetBSD Foundation nor the names of its
93 * contributors may be used to endorse or promote products derived
94 * from this software without specific prior written permission.
95 *
96 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
97 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
98 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
99 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
100 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
101 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
102 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
103 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
104 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
105 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
106 * POSSIBILITY OF SUCH DAMAGE.
107 */
108
109 /*
110 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
111 * The Regents of the University of California. All rights reserved.
112 *
113 * Redistribution and use in source and binary forms, with or without
114 * modification, are permitted provided that the following conditions
115 * are met:
116 * 1. Redistributions of source code must retain the above copyright
117 * notice, this list of conditions and the following disclaimer.
118 * 2. Redistributions in binary form must reproduce the above copyright
119 * notice, this list of conditions and the following disclaimer in the
120 * documentation and/or other materials provided with the distribution.
121 * 3. Neither the name of the University nor the names of its contributors
122 * may be used to endorse or promote products derived from this software
123 * without specific prior written permission.
124 *
125 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
126 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
127 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
128 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
129 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
130 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
131 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
132 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
133 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
134 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
135 * SUCH DAMAGE.
136 *
137 * @(#)tcp_input.c 8.12 (Berkeley) 5/24/95
138 */
139
140 /*
141 * TODO list for SYN cache stuff:
142 *
143 * Find room for a "state" field, which is needed to keep a
144 * compressed state for TIME_WAIT TCBs. It's been noted already
145 * that this is fairly important for very high-volume web and
146 * mail servers, which use a large number of short-lived
147 * connections.
148 */
149
150 #include <sys/cdefs.h>
151 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.190 2004/03/10 18:50:45 drochner Exp $");
152
153 #include "opt_inet.h"
154 #include "opt_ipsec.h"
155 #include "opt_inet_csum.h"
156 #include "opt_tcp_debug.h"
157
158 #include <sys/param.h>
159 #include <sys/systm.h>
160 #include <sys/malloc.h>
161 #include <sys/mbuf.h>
162 #include <sys/protosw.h>
163 #include <sys/socket.h>
164 #include <sys/socketvar.h>
165 #include <sys/errno.h>
166 #include <sys/syslog.h>
167 #include <sys/pool.h>
168 #include <sys/domain.h>
169 #include <sys/kernel.h>
170
171 #include <net/if.h>
172 #include <net/route.h>
173 #include <net/if_types.h>
174
175 #include <netinet/in.h>
176 #include <netinet/in_systm.h>
177 #include <netinet/ip.h>
178 #include <netinet/in_pcb.h>
179 #include <netinet/in_var.h>
180 #include <netinet/ip_var.h>
181
182 #ifdef INET6
183 #ifndef INET
184 #include <netinet/in.h>
185 #endif
186 #include <netinet/ip6.h>
187 #include <netinet6/ip6_var.h>
188 #include <netinet6/in6_pcb.h>
189 #include <netinet6/ip6_var.h>
190 #include <netinet6/in6_var.h>
191 #include <netinet/icmp6.h>
192 #include <netinet6/nd6.h>
193 #endif
194
195 #ifndef INET6
196 /* always need ip6.h for IP6_EXTHDR_GET */
197 #include <netinet/ip6.h>
198 #endif
199
200 #include <netinet/tcp.h>
201 #include <netinet/tcp_fsm.h>
202 #include <netinet/tcp_seq.h>
203 #include <netinet/tcp_timer.h>
204 #include <netinet/tcp_var.h>
205 #include <netinet/tcpip.h>
206 #include <netinet/tcp_debug.h>
207
208 #include <machine/stdarg.h>
209
210 #ifdef IPSEC
211 #include <netinet6/ipsec.h>
212 #include <netkey/key.h>
213 #endif /*IPSEC*/
214 #ifdef INET6
215 #include "faith.h"
216 #if defined(NFAITH) && NFAITH > 0
217 #include <net/if_faith.h>
218 #endif
219 #endif /* IPSEC */
220
221 #ifdef FAST_IPSEC
222 #include <netipsec/ipsec.h>
223 #include <netipsec/key.h>
224 #ifdef INET6
225 #include <netipsec/ipsec6.h>
226 #endif
227 #endif /* FAST_IPSEC*/
228
229
230 int tcprexmtthresh = 3;
231 int tcp_log_refused;
232
233 static int tcp_rst_ppslim_count = 0;
234 static struct timeval tcp_rst_ppslim_last;
235
236 #define TCP_PAWS_IDLE (24 * 24 * 60 * 60 * PR_SLOWHZ)
237
238 /* for modulo comparisons of timestamps */
239 #define TSTMP_LT(a,b) ((int)((a)-(b)) < 0)
240 #define TSTMP_GEQ(a,b) ((int)((a)-(b)) >= 0)
241
242 /*
243 * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
244 */
245 #ifdef INET6
246 #define ND6_HINT(tp) \
247 do { \
248 if (tp && tp->t_in6pcb && tp->t_family == AF_INET6 && \
249 tp->t_in6pcb->in6p_route.ro_rt) { \
250 nd6_nud_hint(tp->t_in6pcb->in6p_route.ro_rt, NULL, 0); \
251 } \
252 } while (/*CONSTCOND*/ 0)
253 #else
254 #define ND6_HINT(tp)
255 #endif
256
257 /*
258 * Macro to compute ACK transmission behavior. Delay the ACK unless
259 * we have already delayed an ACK (must send an ACK every two segments).
260 * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
261 * option is enabled.
262 */
263 #define TCP_SETUP_ACK(tp, th) \
264 do { \
265 if ((tp)->t_flags & TF_DELACK || \
266 (tcp_ack_on_push && (th)->th_flags & TH_PUSH)) \
267 tp->t_flags |= TF_ACKNOW; \
268 else \
269 TCP_SET_DELACK(tp); \
270 } while (/*CONSTCOND*/ 0)
271
272 /*
273 * Convert TCP protocol fields to host order for easier processing.
274 */
275 #define TCP_FIELDS_TO_HOST(th) \
276 do { \
277 NTOHL((th)->th_seq); \
278 NTOHL((th)->th_ack); \
279 NTOHS((th)->th_win); \
280 NTOHS((th)->th_urp); \
281 } while (/*CONSTCOND*/ 0)
282
283 /*
284 * ... and reverse the above.
285 */
286 #define TCP_FIELDS_TO_NET(th) \
287 do { \
288 HTONL((th)->th_seq); \
289 HTONL((th)->th_ack); \
290 HTONS((th)->th_win); \
291 HTONS((th)->th_urp); \
292 } while (/*CONSTCOND*/ 0)
293
294 #ifdef TCP_CSUM_COUNTERS
295 #include <sys/device.h>
296
297 extern struct evcnt tcp_hwcsum_ok;
298 extern struct evcnt tcp_hwcsum_bad;
299 extern struct evcnt tcp_hwcsum_data;
300 extern struct evcnt tcp_swcsum;
301
302 #define TCP_CSUM_COUNTER_INCR(ev) (ev)->ev_count++
303
304 #else
305
306 #define TCP_CSUM_COUNTER_INCR(ev) /* nothing */
307
308 #endif /* TCP_CSUM_COUNTERS */
309
310 #ifdef TCP_REASS_COUNTERS
311 #include <sys/device.h>
312
313 extern struct evcnt tcp_reass_;
314 extern struct evcnt tcp_reass_empty;
315 extern struct evcnt tcp_reass_iteration[8];
316 extern struct evcnt tcp_reass_prependfirst;
317 extern struct evcnt tcp_reass_prepend;
318 extern struct evcnt tcp_reass_insert;
319 extern struct evcnt tcp_reass_inserttail;
320 extern struct evcnt tcp_reass_append;
321 extern struct evcnt tcp_reass_appendtail;
322 extern struct evcnt tcp_reass_overlaptail;
323 extern struct evcnt tcp_reass_overlapfront;
324 extern struct evcnt tcp_reass_segdup;
325 extern struct evcnt tcp_reass_fragdup;
326
327 #define TCP_REASS_COUNTER_INCR(ev) (ev)->ev_count++
328
329 #else
330
331 #define TCP_REASS_COUNTER_INCR(ev) /* nothing */
332
333 #endif /* TCP_REASS_COUNTERS */
334
335 #ifdef INET
336 static void tcp4_log_refused __P((const struct ip *, const struct tcphdr *));
337 #endif
338 #ifdef INET6
339 static void tcp6_log_refused
340 __P((const struct ip6_hdr *, const struct tcphdr *));
341 #endif
342
343 int
344 tcp_reass(tp, th, m, tlen)
345 struct tcpcb *tp;
346 struct tcphdr *th;
347 struct mbuf *m;
348 int *tlen;
349 {
350 struct ipqent *p, *q, *nq, *tiqe = NULL;
351 struct socket *so = NULL;
352 int pkt_flags;
353 tcp_seq pkt_seq;
354 unsigned pkt_len;
355 u_long rcvpartdupbyte = 0;
356 u_long rcvoobyte;
357 #ifdef TCP_REASS_COUNTERS
358 u_int count = 0;
359 #endif
360
361 if (tp->t_inpcb)
362 so = tp->t_inpcb->inp_socket;
363 #ifdef INET6
364 else if (tp->t_in6pcb)
365 so = tp->t_in6pcb->in6p_socket;
366 #endif
367
368 TCP_REASS_LOCK_CHECK(tp);
369
370 /*
371 * Call with th==0 after become established to
372 * force pre-ESTABLISHED data up to user socket.
373 */
374 if (th == 0)
375 goto present;
376
377 rcvoobyte = *tlen;
378 /*
379 * Copy these to local variables because the tcpiphdr
380 * gets munged while we are collapsing mbufs.
381 */
382 pkt_seq = th->th_seq;
383 pkt_len = *tlen;
384 pkt_flags = th->th_flags;
385
386 TCP_REASS_COUNTER_INCR(&tcp_reass_);
387
388 if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
389 /*
390 * When we miss a packet, the vast majority of time we get
391 * packets that follow it in order. So optimize for that.
392 */
393 if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
394 p->ipqe_len += pkt_len;
395 p->ipqe_flags |= pkt_flags;
396 m_cat(p->ipqe_m, m);
397 m = NULL;
398 tiqe = p;
399 TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
400 TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
401 goto skip_replacement;
402 }
403 /*
404 * While we're here, if the pkt is completely beyond
405 * anything we have, just insert it at the tail.
406 */
407 if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
408 TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
409 goto insert_it;
410 }
411 }
412
413 q = TAILQ_FIRST(&tp->segq);
414
415 if (q != NULL) {
416 /*
417 * If this segment immediately precedes the first out-of-order
418 * block, simply slap the segment in front of it and (mostly)
419 * skip the complicated logic.
420 */
421 if (pkt_seq + pkt_len == q->ipqe_seq) {
422 q->ipqe_seq = pkt_seq;
423 q->ipqe_len += pkt_len;
424 q->ipqe_flags |= pkt_flags;
425 m_cat(m, q->ipqe_m);
426 q->ipqe_m = m;
427 tiqe = q;
428 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
429 TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
430 goto skip_replacement;
431 }
432 } else {
433 TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
434 }
435
436 /*
437 * Find a segment which begins after this one does.
438 */
439 for (p = NULL; q != NULL; q = nq) {
440 nq = TAILQ_NEXT(q, ipqe_q);
441 #ifdef TCP_REASS_COUNTERS
442 count++;
443 #endif
444 /*
445 * If the received segment is just right after this
446 * fragment, merge the two together and then check
447 * for further overlaps.
448 */
449 if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
450 #ifdef TCPREASS_DEBUG
451 printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
452 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
453 q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
454 #endif
455 pkt_len += q->ipqe_len;
456 pkt_flags |= q->ipqe_flags;
457 pkt_seq = q->ipqe_seq;
458 m_cat(q->ipqe_m, m);
459 m = q->ipqe_m;
460 TCP_REASS_COUNTER_INCR(&tcp_reass_append);
461 goto free_ipqe;
462 }
463 /*
464 * If the received segment is completely past this
465 * fragment, we need to go the next fragment.
466 */
467 if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
468 p = q;
469 continue;
470 }
471 /*
472 * If the fragment is past the received segment,
473 * it (or any following) can't be concatenated.
474 */
475 if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
476 TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
477 break;
478 }
479
480 /*
481 * We've received all the data in this segment before.
482 * mark it as a duplicate and return.
483 */
484 if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
485 SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
486 tcpstat.tcps_rcvduppack++;
487 tcpstat.tcps_rcvdupbyte += pkt_len;
488 m_freem(m);
489 if (tiqe != NULL)
490 pool_put(&ipqent_pool, tiqe);
491 TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
492 return (0);
493 }
494 /*
495 * Received segment completely overlaps this fragment
496 * so we drop the fragment (this keeps the temporal
497 * ordering of segments correct).
498 */
499 if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
500 SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
501 rcvpartdupbyte += q->ipqe_len;
502 m_freem(q->ipqe_m);
503 TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
504 goto free_ipqe;
505 }
506 /*
507 * RX'ed segment extends past the end of the
508 * fragment. Drop the overlapping bytes. Then
509 * merge the fragment and segment then treat as
510 * a longer received packet.
511 */
512 if (SEQ_LT(q->ipqe_seq, pkt_seq) &&
513 SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
514 int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
515 #ifdef TCPREASS_DEBUG
516 printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
517 tp, overlap,
518 pkt_seq, pkt_seq + pkt_len, pkt_len);
519 #endif
520 m_adj(m, overlap);
521 rcvpartdupbyte += overlap;
522 m_cat(q->ipqe_m, m);
523 m = q->ipqe_m;
524 pkt_seq = q->ipqe_seq;
525 pkt_len += q->ipqe_len - overlap;
526 rcvoobyte -= overlap;
527 TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
528 goto free_ipqe;
529 }
530 /*
531 * RX'ed segment extends past the front of the
532 * fragment. Drop the overlapping bytes on the
533 * received packet. The packet will then be
534 * contatentated with this fragment a bit later.
535 */
536 if (SEQ_GT(q->ipqe_seq, pkt_seq) &&
537 SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len)) {
538 int overlap = pkt_seq + pkt_len - q->ipqe_seq;
539 #ifdef TCPREASS_DEBUG
540 printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
541 tp, overlap,
542 pkt_seq, pkt_seq + pkt_len, pkt_len);
543 #endif
544 m_adj(m, -overlap);
545 pkt_len -= overlap;
546 rcvpartdupbyte += overlap;
547 TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
548 rcvoobyte -= overlap;
549 }
550 /*
551 * If the received segment immediates precedes this
552 * fragment then tack the fragment onto this segment
553 * and reinsert the data.
554 */
555 if (q->ipqe_seq == pkt_seq + pkt_len) {
556 #ifdef TCPREASS_DEBUG
557 printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
558 tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
559 pkt_seq, pkt_seq + pkt_len, pkt_len);
560 #endif
561 pkt_len += q->ipqe_len;
562 pkt_flags |= q->ipqe_flags;
563 m_cat(m, q->ipqe_m);
564 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
565 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
566 if (tiqe == NULL)
567 tiqe = q;
568 else
569 pool_put(&ipqent_pool, q);
570 TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
571 break;
572 }
573 /*
574 * If the fragment is before the segment, remember it.
575 * When this loop is terminated, p will contain the
576 * pointer to fragment that is right before the received
577 * segment.
578 */
579 if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
580 p = q;
581
582 continue;
583
584 /*
585 * This is a common operation. It also will allow
586 * to save doing a malloc/free in most instances.
587 */
588 free_ipqe:
589 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
590 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
591 if (tiqe == NULL)
592 tiqe = q;
593 else
594 pool_put(&ipqent_pool, q);
595 }
596
597 #ifdef TCP_REASS_COUNTERS
598 if (count > 7)
599 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
600 else if (count > 0)
601 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
602 #endif
603
604 insert_it:
605
606 /*
607 * Allocate a new queue entry since the received segment did not
608 * collapse onto any other out-of-order block; thus we are allocating
609 * a new block. If it had collapsed, tiqe would not be NULL and
610 * we would be reusing it.
611 * XXX If we can't, just drop the packet. XXX
612 */
613 if (tiqe == NULL) {
614 tiqe = pool_get(&ipqent_pool, PR_NOWAIT);
615 if (tiqe == NULL) {
616 tcpstat.tcps_rcvmemdrop++;
617 m_freem(m);
618 return (0);
619 }
620 }
621
622 /*
623 * Update the counters.
624 */
625 tcpstat.tcps_rcvoopack++;
626 tcpstat.tcps_rcvoobyte += rcvoobyte;
627 if (rcvpartdupbyte) {
628 tcpstat.tcps_rcvpartduppack++;
629 tcpstat.tcps_rcvpartdupbyte += rcvpartdupbyte;
630 }
631
632 /*
633 * Insert the new fragment queue entry into both queues.
634 */
635 tiqe->ipqe_m = m;
636 tiqe->ipqe_seq = pkt_seq;
637 tiqe->ipqe_len = pkt_len;
638 tiqe->ipqe_flags = pkt_flags;
639 if (p == NULL) {
640 TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
641 #ifdef TCPREASS_DEBUG
642 if (tiqe->ipqe_seq != tp->rcv_nxt)
643 printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
644 tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
645 #endif
646 } else {
647 TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
648 #ifdef TCPREASS_DEBUG
649 printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
650 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
651 p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
652 #endif
653 }
654
655 skip_replacement:
656
657 TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
658
659 present:
660 /*
661 * Present data to user, advancing rcv_nxt through
662 * completed sequence space.
663 */
664 if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
665 return (0);
666 q = TAILQ_FIRST(&tp->segq);
667 if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
668 return (0);
669 if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
670 return (0);
671
672 tp->rcv_nxt += q->ipqe_len;
673 pkt_flags = q->ipqe_flags & TH_FIN;
674 ND6_HINT(tp);
675
676 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
677 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
678 if (so->so_state & SS_CANTRCVMORE)
679 m_freem(q->ipqe_m);
680 else
681 sbappendstream(&so->so_rcv, q->ipqe_m);
682 pool_put(&ipqent_pool, q);
683 sorwakeup(so);
684 return (pkt_flags);
685 }
686
687 #ifdef INET6
688 int
689 tcp6_input(mp, offp, proto)
690 struct mbuf **mp;
691 int *offp, proto;
692 {
693 struct mbuf *m = *mp;
694
695 /*
696 * draft-itojun-ipv6-tcp-to-anycast
697 * better place to put this in?
698 */
699 if (m->m_flags & M_ANYCAST6) {
700 struct ip6_hdr *ip6;
701 if (m->m_len < sizeof(struct ip6_hdr)) {
702 if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
703 tcpstat.tcps_rcvshort++;
704 return IPPROTO_DONE;
705 }
706 }
707 ip6 = mtod(m, struct ip6_hdr *);
708 icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
709 (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
710 return IPPROTO_DONE;
711 }
712
713 tcp_input(m, *offp, proto);
714 return IPPROTO_DONE;
715 }
716 #endif
717
718 #ifdef INET
719 static void
720 tcp4_log_refused(ip, th)
721 const struct ip *ip;
722 const struct tcphdr *th;
723 {
724 char src[4*sizeof "123"];
725 char dst[4*sizeof "123"];
726
727 if (ip) {
728 strlcpy(src, inet_ntoa(ip->ip_src), sizeof(src));
729 strlcpy(dst, inet_ntoa(ip->ip_dst), sizeof(dst));
730 }
731 else {
732 strlcpy(src, "(unknown)", sizeof(src));
733 strlcpy(dst, "(unknown)", sizeof(dst));
734 }
735 log(LOG_INFO,
736 "Connection attempt to TCP %s:%d from %s:%d\n",
737 dst, ntohs(th->th_dport),
738 src, ntohs(th->th_sport));
739 }
740 #endif
741
742 #ifdef INET6
743 static void
744 tcp6_log_refused(ip6, th)
745 const struct ip6_hdr *ip6;
746 const struct tcphdr *th;
747 {
748 char src[INET6_ADDRSTRLEN];
749 char dst[INET6_ADDRSTRLEN];
750
751 if (ip6) {
752 strlcpy(src, ip6_sprintf(&ip6->ip6_src), sizeof(src));
753 strlcpy(dst, ip6_sprintf(&ip6->ip6_dst), sizeof(dst));
754 }
755 else {
756 strlcpy(src, "(unknown v6)", sizeof(src));
757 strlcpy(dst, "(unknown v6)", sizeof(dst));
758 }
759 log(LOG_INFO,
760 "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
761 dst, ntohs(th->th_dport),
762 src, ntohs(th->th_sport));
763 }
764 #endif
765
766 /*
767 * TCP input routine, follows pages 65-76 of the
768 * protocol specification dated September, 1981 very closely.
769 */
770 void
771 #if __STDC__
772 tcp_input(struct mbuf *m, ...)
773 #else
774 tcp_input(m, va_alist)
775 struct mbuf *m;
776 #endif
777 {
778 struct tcphdr *th;
779 struct ip *ip;
780 struct inpcb *inp;
781 #ifdef INET6
782 struct ip6_hdr *ip6;
783 struct in6pcb *in6p;
784 #endif
785 u_int8_t *optp = NULL;
786 int optlen = 0;
787 int len, tlen, toff, hdroptlen = 0;
788 struct tcpcb *tp = 0;
789 int tiflags;
790 struct socket *so = NULL;
791 int todrop, acked, ourfinisacked, needoutput = 0;
792 #ifdef TCP_DEBUG
793 short ostate = 0;
794 #endif
795 int iss = 0;
796 u_long tiwin;
797 struct tcp_opt_info opti;
798 int off, iphlen;
799 va_list ap;
800 int af; /* af on the wire */
801 struct mbuf *tcp_saveti = NULL;
802
803 MCLAIM(m, &tcp_rx_mowner);
804 va_start(ap, m);
805 toff = va_arg(ap, int);
806 (void)va_arg(ap, int); /* ignore value, advance ap */
807 va_end(ap);
808
809 tcpstat.tcps_rcvtotal++;
810
811 bzero(&opti, sizeof(opti));
812 opti.ts_present = 0;
813 opti.maxseg = 0;
814
815 /*
816 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
817 *
818 * TCP is, by definition, unicast, so we reject all
819 * multicast outright.
820 *
821 * Note, there are additional src/dst address checks in
822 * the AF-specific code below.
823 */
824 if (m->m_flags & (M_BCAST|M_MCAST)) {
825 /* XXX stat */
826 goto drop;
827 }
828 #ifdef INET6
829 if (m->m_flags & M_ANYCAST6) {
830 /* XXX stat */
831 goto drop;
832 }
833 #endif
834
835 /*
836 * Get IP and TCP header together in first mbuf.
837 * Note: IP leaves IP header in first mbuf.
838 */
839 ip = mtod(m, struct ip *);
840 #ifdef INET6
841 ip6 = NULL;
842 #endif
843 switch (ip->ip_v) {
844 #ifdef INET
845 case 4:
846 af = AF_INET;
847 iphlen = sizeof(struct ip);
848 ip = mtod(m, struct ip *);
849 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
850 sizeof(struct tcphdr));
851 if (th == NULL) {
852 tcpstat.tcps_rcvshort++;
853 return;
854 }
855 /* We do the checksum after PCB lookup... */
856 len = ntohs(ip->ip_len);
857 tlen = len - toff;
858 break;
859 #endif
860 #ifdef INET6
861 case 6:
862 ip = NULL;
863 iphlen = sizeof(struct ip6_hdr);
864 af = AF_INET6;
865 ip6 = mtod(m, struct ip6_hdr *);
866 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
867 sizeof(struct tcphdr));
868 if (th == NULL) {
869 tcpstat.tcps_rcvshort++;
870 return;
871 }
872
873 /* Be proactive about malicious use of IPv4 mapped address */
874 if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
875 IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
876 /* XXX stat */
877 goto drop;
878 }
879
880 /*
881 * Be proactive about unspecified IPv6 address in source.
882 * As we use all-zero to indicate unbounded/unconnected pcb,
883 * unspecified IPv6 address can be used to confuse us.
884 *
885 * Note that packets with unspecified IPv6 destination is
886 * already dropped in ip6_input.
887 */
888 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
889 /* XXX stat */
890 goto drop;
891 }
892
893 /*
894 * Make sure destination address is not multicast.
895 * Source address checked in ip6_input().
896 */
897 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
898 /* XXX stat */
899 goto drop;
900 }
901
902 /* We do the checksum after PCB lookup... */
903 len = m->m_pkthdr.len;
904 tlen = len - toff;
905 break;
906 #endif
907 default:
908 m_freem(m);
909 return;
910 }
911
912 KASSERT(TCP_HDR_ALIGNED_P(th));
913
914 /*
915 * Check that TCP offset makes sense,
916 * pull out TCP options and adjust length. XXX
917 */
918 off = th->th_off << 2;
919 if (off < sizeof (struct tcphdr) || off > tlen) {
920 tcpstat.tcps_rcvbadoff++;
921 goto drop;
922 }
923 tlen -= off;
924
925 /*
926 * tcp_input() has been modified to use tlen to mean the TCP data
927 * length throughout the function. Other functions can use
928 * m->m_pkthdr.len as the basis for calculating the TCP data length.
929 * rja
930 */
931
932 if (off > sizeof (struct tcphdr)) {
933 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
934 if (th == NULL) {
935 tcpstat.tcps_rcvshort++;
936 return;
937 }
938 /*
939 * NOTE: ip/ip6 will not be affected by m_pulldown()
940 * (as they're before toff) and we don't need to update those.
941 */
942 KASSERT(TCP_HDR_ALIGNED_P(th));
943 optlen = off - sizeof (struct tcphdr);
944 optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
945 /*
946 * Do quick retrieval of timestamp options ("options
947 * prediction?"). If timestamp is the only option and it's
948 * formatted as recommended in RFC 1323 appendix A, we
949 * quickly get the values now and not bother calling
950 * tcp_dooptions(), etc.
951 */
952 if ((optlen == TCPOLEN_TSTAMP_APPA ||
953 (optlen > TCPOLEN_TSTAMP_APPA &&
954 optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
955 *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
956 (th->th_flags & TH_SYN) == 0) {
957 opti.ts_present = 1;
958 opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
959 opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
960 optp = NULL; /* we've parsed the options */
961 }
962 }
963 tiflags = th->th_flags;
964
965 /*
966 * Locate pcb for segment.
967 */
968 findpcb:
969 inp = NULL;
970 #ifdef INET6
971 in6p = NULL;
972 #endif
973 switch (af) {
974 #ifdef INET
975 case AF_INET:
976 inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
977 ip->ip_dst, th->th_dport);
978 if (inp == 0) {
979 ++tcpstat.tcps_pcbhashmiss;
980 inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
981 }
982 #ifdef INET6
983 if (inp == 0) {
984 struct in6_addr s, d;
985
986 /* mapped addr case */
987 bzero(&s, sizeof(s));
988 s.s6_addr16[5] = htons(0xffff);
989 bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
990 bzero(&d, sizeof(d));
991 d.s6_addr16[5] = htons(0xffff);
992 bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
993 in6p = in6_pcblookup_connect(&tcbtable, &s,
994 th->th_sport, &d, th->th_dport, 0);
995 if (in6p == 0) {
996 ++tcpstat.tcps_pcbhashmiss;
997 in6p = in6_pcblookup_bind(&tcbtable, &d,
998 th->th_dport, 0);
999 }
1000 }
1001 #endif
1002 #ifndef INET6
1003 if (inp == 0)
1004 #else
1005 if (inp == 0 && in6p == 0)
1006 #endif
1007 {
1008 ++tcpstat.tcps_noport;
1009 if (tcp_log_refused &&
1010 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1011 tcp4_log_refused(ip, th);
1012 }
1013 TCP_FIELDS_TO_HOST(th);
1014 goto dropwithreset_ratelim;
1015 }
1016 #if defined(IPSEC) || defined(FAST_IPSEC)
1017 if (inp && (inp->inp_socket->so_options & SO_ACCEPTCONN) == 0 &&
1018 ipsec4_in_reject(m, inp)) {
1019 ipsecstat.in_polvio++;
1020 goto drop;
1021 }
1022 #ifdef INET6
1023 else if (in6p &&
1024 (in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 &&
1025 ipsec4_in_reject_so(m, in6p->in6p_socket)) {
1026 ipsecstat.in_polvio++;
1027 goto drop;
1028 }
1029 #endif
1030 #endif /*IPSEC*/
1031 break;
1032 #endif /*INET*/
1033 #ifdef INET6
1034 case AF_INET6:
1035 {
1036 int faith;
1037
1038 #if defined(NFAITH) && NFAITH > 0
1039 faith = faithprefix(&ip6->ip6_dst);
1040 #else
1041 faith = 0;
1042 #endif
1043 in6p = in6_pcblookup_connect(&tcbtable, &ip6->ip6_src,
1044 th->th_sport, &ip6->ip6_dst, th->th_dport, faith);
1045 if (in6p == NULL) {
1046 ++tcpstat.tcps_pcbhashmiss;
1047 in6p = in6_pcblookup_bind(&tcbtable, &ip6->ip6_dst,
1048 th->th_dport, faith);
1049 }
1050 if (in6p == NULL) {
1051 ++tcpstat.tcps_noport;
1052 if (tcp_log_refused &&
1053 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1054 tcp6_log_refused(ip6, th);
1055 }
1056 TCP_FIELDS_TO_HOST(th);
1057 goto dropwithreset_ratelim;
1058 }
1059 #if defined(IPSEC) || defined(FAST_IPSEC)
1060 if ((in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 &&
1061 ipsec6_in_reject(m, in6p)) {
1062 ipsec6stat.in_polvio++;
1063 goto drop;
1064 }
1065 #endif /*IPSEC*/
1066 break;
1067 }
1068 #endif
1069 }
1070
1071 /*
1072 * If the state is CLOSED (i.e., TCB does not exist) then
1073 * all data in the incoming segment is discarded.
1074 * If the TCB exists but is in CLOSED state, it is embryonic,
1075 * but should either do a listen or a connect soon.
1076 */
1077 tp = NULL;
1078 so = NULL;
1079 if (inp) {
1080 tp = intotcpcb(inp);
1081 so = inp->inp_socket;
1082 }
1083 #ifdef INET6
1084 else if (in6p) {
1085 tp = in6totcpcb(in6p);
1086 so = in6p->in6p_socket;
1087 }
1088 #endif
1089 if (tp == 0) {
1090 TCP_FIELDS_TO_HOST(th);
1091 goto dropwithreset_ratelim;
1092 }
1093 if (tp->t_state == TCPS_CLOSED)
1094 goto drop;
1095
1096 /*
1097 * Checksum extended TCP header and data.
1098 */
1099 switch (af) {
1100 #ifdef INET
1101 case AF_INET:
1102 switch (m->m_pkthdr.csum_flags &
1103 ((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
1104 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
1105 case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
1106 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
1107 goto badcsum;
1108
1109 case M_CSUM_TCPv4|M_CSUM_DATA: {
1110 u_int32_t hw_csum = m->m_pkthdr.csum_data;
1111 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
1112 if (m->m_pkthdr.csum_flags & M_CSUM_NO_PSEUDOHDR) {
1113 hw_csum = in_cksum_phdr(ip->ip_src.s_addr,
1114 ip->ip_dst.s_addr,
1115 htons(hw_csum + tlen + off + IPPROTO_TCP));
1116 }
1117 if ((hw_csum ^ 0xffff) != 0)
1118 goto badcsum;
1119 break;
1120 }
1121
1122 case M_CSUM_TCPv4:
1123 /* Checksum was okay. */
1124 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
1125 break;
1126
1127 default:
1128 /* Must compute it ourselves. */
1129 TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
1130 if (in4_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0)
1131 goto badcsum;
1132 break;
1133 }
1134 break;
1135 #endif /* INET4 */
1136
1137 #ifdef INET6
1138 case AF_INET6:
1139 if (in6_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0)
1140 goto badcsum;
1141 break;
1142 #endif /* INET6 */
1143 }
1144
1145 TCP_FIELDS_TO_HOST(th);
1146
1147 /* Unscale the window into a 32-bit value. */
1148 if ((tiflags & TH_SYN) == 0)
1149 tiwin = th->th_win << tp->snd_scale;
1150 else
1151 tiwin = th->th_win;
1152
1153 #ifdef INET6
1154 /* save packet options if user wanted */
1155 if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
1156 if (in6p->in6p_options) {
1157 m_freem(in6p->in6p_options);
1158 in6p->in6p_options = 0;
1159 }
1160 ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
1161 }
1162 #endif
1163
1164 if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
1165 union syn_cache_sa src;
1166 union syn_cache_sa dst;
1167
1168 bzero(&src, sizeof(src));
1169 bzero(&dst, sizeof(dst));
1170 switch (af) {
1171 #ifdef INET
1172 case AF_INET:
1173 src.sin.sin_len = sizeof(struct sockaddr_in);
1174 src.sin.sin_family = AF_INET;
1175 src.sin.sin_addr = ip->ip_src;
1176 src.sin.sin_port = th->th_sport;
1177
1178 dst.sin.sin_len = sizeof(struct sockaddr_in);
1179 dst.sin.sin_family = AF_INET;
1180 dst.sin.sin_addr = ip->ip_dst;
1181 dst.sin.sin_port = th->th_dport;
1182 break;
1183 #endif
1184 #ifdef INET6
1185 case AF_INET6:
1186 src.sin6.sin6_len = sizeof(struct sockaddr_in6);
1187 src.sin6.sin6_family = AF_INET6;
1188 src.sin6.sin6_addr = ip6->ip6_src;
1189 src.sin6.sin6_port = th->th_sport;
1190
1191 dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
1192 dst.sin6.sin6_family = AF_INET6;
1193 dst.sin6.sin6_addr = ip6->ip6_dst;
1194 dst.sin6.sin6_port = th->th_dport;
1195 break;
1196 #endif /* INET6 */
1197 default:
1198 goto badsyn; /*sanity*/
1199 }
1200
1201 if (so->so_options & SO_DEBUG) {
1202 #ifdef TCP_DEBUG
1203 ostate = tp->t_state;
1204 #endif
1205
1206 tcp_saveti = NULL;
1207 if (iphlen + sizeof(struct tcphdr) > MHLEN)
1208 goto nosave;
1209
1210 if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
1211 tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
1212 if (!tcp_saveti)
1213 goto nosave;
1214 } else {
1215 MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
1216 if (!tcp_saveti)
1217 goto nosave;
1218 MCLAIM(m, &tcp_mowner);
1219 tcp_saveti->m_len = iphlen;
1220 m_copydata(m, 0, iphlen,
1221 mtod(tcp_saveti, caddr_t));
1222 }
1223
1224 if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
1225 m_freem(tcp_saveti);
1226 tcp_saveti = NULL;
1227 } else {
1228 tcp_saveti->m_len += sizeof(struct tcphdr);
1229 bcopy(th, mtod(tcp_saveti, caddr_t) + iphlen,
1230 sizeof(struct tcphdr));
1231 }
1232 nosave:;
1233 }
1234 if (so->so_options & SO_ACCEPTCONN) {
1235 if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1236 if (tiflags & TH_RST) {
1237 syn_cache_reset(&src.sa, &dst.sa, th);
1238 } else if ((tiflags & (TH_ACK|TH_SYN)) ==
1239 (TH_ACK|TH_SYN)) {
1240 /*
1241 * Received a SYN,ACK. This should
1242 * never happen while we are in
1243 * LISTEN. Send an RST.
1244 */
1245 goto badsyn;
1246 } else if (tiflags & TH_ACK) {
1247 so = syn_cache_get(&src.sa, &dst.sa,
1248 th, toff, tlen, so, m);
1249 if (so == NULL) {
1250 /*
1251 * We don't have a SYN for
1252 * this ACK; send an RST.
1253 */
1254 goto badsyn;
1255 } else if (so ==
1256 (struct socket *)(-1)) {
1257 /*
1258 * We were unable to create
1259 * the connection. If the
1260 * 3-way handshake was
1261 * completed, and RST has
1262 * been sent to the peer.
1263 * Since the mbuf might be
1264 * in use for the reply,
1265 * do not free it.
1266 */
1267 m = NULL;
1268 } else {
1269 /*
1270 * We have created a
1271 * full-blown connection.
1272 */
1273 tp = NULL;
1274 inp = NULL;
1275 #ifdef INET6
1276 in6p = NULL;
1277 #endif
1278 switch (so->so_proto->pr_domain->dom_family) {
1279 #ifdef INET
1280 case AF_INET:
1281 inp = sotoinpcb(so);
1282 tp = intotcpcb(inp);
1283 break;
1284 #endif
1285 #ifdef INET6
1286 case AF_INET6:
1287 in6p = sotoin6pcb(so);
1288 tp = in6totcpcb(in6p);
1289 break;
1290 #endif
1291 }
1292 if (tp == NULL)
1293 goto badsyn; /*XXX*/
1294 tiwin <<= tp->snd_scale;
1295 goto after_listen;
1296 }
1297 } else {
1298 /*
1299 * None of RST, SYN or ACK was set.
1300 * This is an invalid packet for a
1301 * TCB in LISTEN state. Send a RST.
1302 */
1303 goto badsyn;
1304 }
1305 } else {
1306 /*
1307 * Received a SYN.
1308 */
1309
1310 #ifdef INET6
1311 /*
1312 * If deprecated address is forbidden, we do
1313 * not accept SYN to deprecated interface
1314 * address to prevent any new inbound
1315 * connection from getting established.
1316 * When we do not accept SYN, we send a TCP
1317 * RST, with deprecated source address (instead
1318 * of dropping it). We compromise it as it is
1319 * much better for peer to send a RST, and
1320 * RST will be the final packet for the
1321 * exchange.
1322 *
1323 * If we do not forbid deprecated addresses, we
1324 * accept the SYN packet. RFC2462 does not
1325 * suggest dropping SYN in this case.
1326 * If we decipher RFC2462 5.5.4, it says like
1327 * this:
1328 * 1. use of deprecated addr with existing
1329 * communication is okay - "SHOULD continue
1330 * to be used"
1331 * 2. use of it with new communication:
1332 * (2a) "SHOULD NOT be used if alternate
1333 * address with sufficient scope is
1334 * available"
1335 * (2b) nothing mentioned otherwise.
1336 * Here we fall into (2b) case as we have no
1337 * choice in our source address selection - we
1338 * must obey the peer.
1339 *
1340 * The wording in RFC2462 is confusing, and
1341 * there are multiple description text for
1342 * deprecated address handling - worse, they
1343 * are not exactly the same. I believe 5.5.4
1344 * is the best one, so we follow 5.5.4.
1345 */
1346 if (af == AF_INET6 && !ip6_use_deprecated) {
1347 struct in6_ifaddr *ia6;
1348 if ((ia6 = in6ifa_ifpwithaddr(m->m_pkthdr.rcvif,
1349 &ip6->ip6_dst)) &&
1350 (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1351 tp = NULL;
1352 goto dropwithreset;
1353 }
1354 }
1355 #endif
1356
1357 #ifdef IPSEC
1358 switch (af) {
1359 case AF_INET:
1360 if (ipsec4_in_reject_so(m, so)) {
1361 ipsecstat.in_polvio++;
1362 tp = NULL;
1363 goto dropwithreset;
1364 }
1365 break;
1366 #ifdef INET6
1367 case AF_INET6:
1368 if (ipsec6_in_reject_so(m, so)) {
1369 ipsec6stat.in_polvio++;
1370 tp = NULL;
1371 goto dropwithreset;
1372 }
1373 break;
1374 #endif
1375 }
1376 #endif
1377
1378 /*
1379 * LISTEN socket received a SYN
1380 * from itself? This can't possibly
1381 * be valid; drop the packet.
1382 */
1383 if (th->th_sport == th->th_dport) {
1384 int i;
1385
1386 switch (af) {
1387 #ifdef INET
1388 case AF_INET:
1389 i = in_hosteq(ip->ip_src, ip->ip_dst);
1390 break;
1391 #endif
1392 #ifdef INET6
1393 case AF_INET6:
1394 i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
1395 break;
1396 #endif
1397 default:
1398 i = 1;
1399 }
1400 if (i) {
1401 tcpstat.tcps_badsyn++;
1402 goto drop;
1403 }
1404 }
1405
1406 /*
1407 * SYN looks ok; create compressed TCP
1408 * state for it.
1409 */
1410 if (so->so_qlen <= so->so_qlimit &&
1411 syn_cache_add(&src.sa, &dst.sa, th, tlen,
1412 so, m, optp, optlen, &opti))
1413 m = NULL;
1414 }
1415 goto drop;
1416 }
1417 }
1418
1419 after_listen:
1420 #ifdef DIAGNOSTIC
1421 /*
1422 * Should not happen now that all embryonic connections
1423 * are handled with compressed state.
1424 */
1425 if (tp->t_state == TCPS_LISTEN)
1426 panic("tcp_input: TCPS_LISTEN");
1427 #endif
1428
1429 /*
1430 * Segment received on connection.
1431 * Reset idle time and keep-alive timer.
1432 */
1433 tp->t_rcvtime = tcp_now;
1434 if (TCPS_HAVEESTABLISHED(tp->t_state))
1435 TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1436
1437 /*
1438 * Process options.
1439 */
1440 if (optp)
1441 tcp_dooptions(tp, optp, optlen, th, &opti);
1442
1443 /*
1444 * Header prediction: check for the two common cases
1445 * of a uni-directional data xfer. If the packet has
1446 * no control flags, is in-sequence, the window didn't
1447 * change and we're not retransmitting, it's a
1448 * candidate. If the length is zero and the ack moved
1449 * forward, we're the sender side of the xfer. Just
1450 * free the data acked & wake any higher level process
1451 * that was blocked waiting for space. If the length
1452 * is non-zero and the ack didn't move, we're the
1453 * receiver side. If we're getting packets in-order
1454 * (the reassembly queue is empty), add the data to
1455 * the socket buffer and note that we need a delayed ack.
1456 */
1457 if (tp->t_state == TCPS_ESTABLISHED &&
1458 (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1459 (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
1460 th->th_seq == tp->rcv_nxt &&
1461 tiwin && tiwin == tp->snd_wnd &&
1462 tp->snd_nxt == tp->snd_max) {
1463
1464 /*
1465 * If last ACK falls within this segment's sequence numbers,
1466 * record the timestamp.
1467 */
1468 if (opti.ts_present &&
1469 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1470 SEQ_LT(tp->last_ack_sent, th->th_seq + tlen)) {
1471 tp->ts_recent_age = TCP_TIMESTAMP(tp);
1472 tp->ts_recent = opti.ts_val;
1473 }
1474
1475 if (tlen == 0) {
1476 if (SEQ_GT(th->th_ack, tp->snd_una) &&
1477 SEQ_LEQ(th->th_ack, tp->snd_max) &&
1478 tp->snd_cwnd >= tp->snd_wnd &&
1479 tp->t_dupacks < tcprexmtthresh) {
1480 /*
1481 * this is a pure ack for outstanding data.
1482 */
1483 ++tcpstat.tcps_predack;
1484 if (opti.ts_present && opti.ts_ecr)
1485 tcp_xmit_timer(tp,
1486 TCP_TIMESTAMP(tp) - opti.ts_ecr + 1);
1487 else if (tp->t_rtttime &&
1488 SEQ_GT(th->th_ack, tp->t_rtseq))
1489 tcp_xmit_timer(tp,
1490 tcp_now - tp->t_rtttime);
1491 acked = th->th_ack - tp->snd_una;
1492 tcpstat.tcps_rcvackpack++;
1493 tcpstat.tcps_rcvackbyte += acked;
1494 ND6_HINT(tp);
1495
1496 if (acked > (tp->t_lastoff - tp->t_inoff))
1497 tp->t_lastm = NULL;
1498 sbdrop(&so->so_snd, acked);
1499 tp->t_lastoff -= acked;
1500
1501 /*
1502 * We want snd_recover to track snd_una to
1503 * avoid sequence wraparound problems for
1504 * very large transfers.
1505 */
1506 tp->snd_una = tp->snd_recover = th->th_ack;
1507 m_freem(m);
1508
1509 /*
1510 * If all outstanding data are acked, stop
1511 * retransmit timer, otherwise restart timer
1512 * using current (possibly backed-off) value.
1513 * If process is waiting for space,
1514 * wakeup/selwakeup/signal. If data
1515 * are ready to send, let tcp_output
1516 * decide between more output or persist.
1517 */
1518 if (tp->snd_una == tp->snd_max)
1519 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1520 else if (TCP_TIMER_ISARMED(tp,
1521 TCPT_PERSIST) == 0)
1522 TCP_TIMER_ARM(tp, TCPT_REXMT,
1523 tp->t_rxtcur);
1524
1525 sowwakeup(so);
1526 if (so->so_snd.sb_cc)
1527 (void) tcp_output(tp);
1528 if (tcp_saveti)
1529 m_freem(tcp_saveti);
1530 return;
1531 }
1532 } else if (th->th_ack == tp->snd_una &&
1533 TAILQ_FIRST(&tp->segq) == NULL &&
1534 tlen <= sbspace(&so->so_rcv)) {
1535 /*
1536 * this is a pure, in-sequence data packet
1537 * with nothing on the reassembly queue and
1538 * we have enough buffer space to take it.
1539 */
1540 ++tcpstat.tcps_preddat;
1541 tp->rcv_nxt += tlen;
1542 tcpstat.tcps_rcvpack++;
1543 tcpstat.tcps_rcvbyte += tlen;
1544 ND6_HINT(tp);
1545 /*
1546 * Drop TCP, IP headers and TCP options then add data
1547 * to socket buffer.
1548 */
1549 if (so->so_state & SS_CANTRCVMORE)
1550 m_freem(m);
1551 else {
1552 m_adj(m, toff + off);
1553 sbappendstream(&so->so_rcv, m);
1554 }
1555 sorwakeup(so);
1556 TCP_SETUP_ACK(tp, th);
1557 if (tp->t_flags & TF_ACKNOW)
1558 (void) tcp_output(tp);
1559 if (tcp_saveti)
1560 m_freem(tcp_saveti);
1561 return;
1562 }
1563 }
1564
1565 /*
1566 * Compute mbuf offset to TCP data segment.
1567 */
1568 hdroptlen = toff + off;
1569
1570 /*
1571 * Calculate amount of space in receive window,
1572 * and then do TCP input processing.
1573 * Receive window is amount of space in rcv queue,
1574 * but not less than advertised window.
1575 */
1576 { int win;
1577
1578 win = sbspace(&so->so_rcv);
1579 if (win < 0)
1580 win = 0;
1581 tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1582 }
1583
1584 switch (tp->t_state) {
1585 case TCPS_LISTEN:
1586 /*
1587 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
1588 */
1589 if (m->m_flags & (M_BCAST|M_MCAST))
1590 goto drop;
1591 switch (af) {
1592 #ifdef INET6
1593 case AF_INET6:
1594 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
1595 goto drop;
1596 break;
1597 #endif /* INET6 */
1598 case AF_INET:
1599 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
1600 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
1601 goto drop;
1602 break;
1603 }
1604 break;
1605
1606 /*
1607 * If the state is SYN_SENT:
1608 * if seg contains an ACK, but not for our SYN, drop the input.
1609 * if seg contains a RST, then drop the connection.
1610 * if seg does not contain SYN, then drop it.
1611 * Otherwise this is an acceptable SYN segment
1612 * initialize tp->rcv_nxt and tp->irs
1613 * if seg contains ack then advance tp->snd_una
1614 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1615 * arrange for segment to be acked (eventually)
1616 * continue processing rest of data/controls, beginning with URG
1617 */
1618 case TCPS_SYN_SENT:
1619 if ((tiflags & TH_ACK) &&
1620 (SEQ_LEQ(th->th_ack, tp->iss) ||
1621 SEQ_GT(th->th_ack, tp->snd_max)))
1622 goto dropwithreset;
1623 if (tiflags & TH_RST) {
1624 if (tiflags & TH_ACK)
1625 tp = tcp_drop(tp, ECONNREFUSED);
1626 goto drop;
1627 }
1628 if ((tiflags & TH_SYN) == 0)
1629 goto drop;
1630 if (tiflags & TH_ACK) {
1631 tp->snd_una = tp->snd_recover = th->th_ack;
1632 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1633 tp->snd_nxt = tp->snd_una;
1634 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1635 }
1636 tp->irs = th->th_seq;
1637 tcp_rcvseqinit(tp);
1638 tp->t_flags |= TF_ACKNOW;
1639 tcp_mss_from_peer(tp, opti.maxseg);
1640
1641 /*
1642 * Initialize the initial congestion window. If we
1643 * had to retransmit the SYN, we must initialize cwnd
1644 * to 1 segment (i.e. the Loss Window).
1645 */
1646 if (tp->t_flags & TF_SYN_REXMT)
1647 tp->snd_cwnd = tp->t_peermss;
1648 else {
1649 int ss = tcp_init_win;
1650 #ifdef INET
1651 if (inp != NULL && in_localaddr(inp->inp_faddr))
1652 ss = tcp_init_win_local;
1653 #endif
1654 #ifdef INET6
1655 if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
1656 ss = tcp_init_win_local;
1657 #endif
1658 tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
1659 }
1660
1661 tcp_rmx_rtt(tp);
1662 if (tiflags & TH_ACK) {
1663 tcpstat.tcps_connects++;
1664 soisconnected(so);
1665 tcp_established(tp);
1666 /* Do window scaling on this connection? */
1667 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1668 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1669 tp->snd_scale = tp->requested_s_scale;
1670 tp->rcv_scale = tp->request_r_scale;
1671 }
1672 TCP_REASS_LOCK(tp);
1673 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1674 TCP_REASS_UNLOCK(tp);
1675 /*
1676 * if we didn't have to retransmit the SYN,
1677 * use its rtt as our initial srtt & rtt var.
1678 */
1679 if (tp->t_rtttime)
1680 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
1681 } else
1682 tp->t_state = TCPS_SYN_RECEIVED;
1683
1684 /*
1685 * Advance th->th_seq to correspond to first data byte.
1686 * If data, trim to stay within window,
1687 * dropping FIN if necessary.
1688 */
1689 th->th_seq++;
1690 if (tlen > tp->rcv_wnd) {
1691 todrop = tlen - tp->rcv_wnd;
1692 m_adj(m, -todrop);
1693 tlen = tp->rcv_wnd;
1694 tiflags &= ~TH_FIN;
1695 tcpstat.tcps_rcvpackafterwin++;
1696 tcpstat.tcps_rcvbyteafterwin += todrop;
1697 }
1698 tp->snd_wl1 = th->th_seq - 1;
1699 tp->rcv_up = th->th_seq;
1700 goto step6;
1701
1702 /*
1703 * If the state is SYN_RECEIVED:
1704 * If seg contains an ACK, but not for our SYN, drop the input
1705 * and generate an RST. See page 36, rfc793
1706 */
1707 case TCPS_SYN_RECEIVED:
1708 if ((tiflags & TH_ACK) &&
1709 (SEQ_LEQ(th->th_ack, tp->iss) ||
1710 SEQ_GT(th->th_ack, tp->snd_max)))
1711 goto dropwithreset;
1712 break;
1713 }
1714
1715 /*
1716 * States other than LISTEN or SYN_SENT.
1717 * First check timestamp, if present.
1718 * Then check that at least some bytes of segment are within
1719 * receive window. If segment begins before rcv_nxt,
1720 * drop leading data (and SYN); if nothing left, just ack.
1721 *
1722 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1723 * and it's less than ts_recent, drop it.
1724 */
1725 if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
1726 TSTMP_LT(opti.ts_val, tp->ts_recent)) {
1727
1728 /* Check to see if ts_recent is over 24 days old. */
1729 if ((int)(TCP_TIMESTAMP(tp) - tp->ts_recent_age) >
1730 TCP_PAWS_IDLE) {
1731 /*
1732 * Invalidate ts_recent. If this segment updates
1733 * ts_recent, the age will be reset later and ts_recent
1734 * will get a valid value. If it does not, setting
1735 * ts_recent to zero will at least satisfy the
1736 * requirement that zero be placed in the timestamp
1737 * echo reply when ts_recent isn't valid. The
1738 * age isn't reset until we get a valid ts_recent
1739 * because we don't want out-of-order segments to be
1740 * dropped when ts_recent is old.
1741 */
1742 tp->ts_recent = 0;
1743 } else {
1744 tcpstat.tcps_rcvduppack++;
1745 tcpstat.tcps_rcvdupbyte += tlen;
1746 tcpstat.tcps_pawsdrop++;
1747 goto dropafterack;
1748 }
1749 }
1750
1751 todrop = tp->rcv_nxt - th->th_seq;
1752 if (todrop > 0) {
1753 if (tiflags & TH_SYN) {
1754 tiflags &= ~TH_SYN;
1755 th->th_seq++;
1756 if (th->th_urp > 1)
1757 th->th_urp--;
1758 else {
1759 tiflags &= ~TH_URG;
1760 th->th_urp = 0;
1761 }
1762 todrop--;
1763 }
1764 if (todrop > tlen ||
1765 (todrop == tlen && (tiflags & TH_FIN) == 0)) {
1766 /*
1767 * Any valid FIN must be to the left of the window.
1768 * At this point the FIN must be a duplicate or
1769 * out of sequence; drop it.
1770 */
1771 tiflags &= ~TH_FIN;
1772 /*
1773 * Send an ACK to resynchronize and drop any data.
1774 * But keep on processing for RST or ACK.
1775 */
1776 tp->t_flags |= TF_ACKNOW;
1777 todrop = tlen;
1778 tcpstat.tcps_rcvdupbyte += todrop;
1779 tcpstat.tcps_rcvduppack++;
1780 } else {
1781 tcpstat.tcps_rcvpartduppack++;
1782 tcpstat.tcps_rcvpartdupbyte += todrop;
1783 }
1784 hdroptlen += todrop; /*drop from head afterwards*/
1785 th->th_seq += todrop;
1786 tlen -= todrop;
1787 if (th->th_urp > todrop)
1788 th->th_urp -= todrop;
1789 else {
1790 tiflags &= ~TH_URG;
1791 th->th_urp = 0;
1792 }
1793 }
1794
1795 /*
1796 * If new data are received on a connection after the
1797 * user processes are gone, then RST the other end.
1798 */
1799 if ((so->so_state & SS_NOFDREF) &&
1800 tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1801 tp = tcp_close(tp);
1802 tcpstat.tcps_rcvafterclose++;
1803 goto dropwithreset;
1804 }
1805
1806 /*
1807 * If segment ends after window, drop trailing data
1808 * (and PUSH and FIN); if nothing left, just ACK.
1809 */
1810 todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
1811 if (todrop > 0) {
1812 tcpstat.tcps_rcvpackafterwin++;
1813 if (todrop >= tlen) {
1814 tcpstat.tcps_rcvbyteafterwin += tlen;
1815 /*
1816 * If a new connection request is received
1817 * while in TIME_WAIT, drop the old connection
1818 * and start over if the sequence numbers
1819 * are above the previous ones.
1820 *
1821 * NOTE: We will checksum the packet again, and
1822 * so we need to put the header fields back into
1823 * network order!
1824 * XXX This kind of sucks, but we don't expect
1825 * XXX this to happen very often, so maybe it
1826 * XXX doesn't matter so much.
1827 */
1828 if (tiflags & TH_SYN &&
1829 tp->t_state == TCPS_TIME_WAIT &&
1830 SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1831 iss = tcp_new_iss(tp, tp->snd_nxt);
1832 tp = tcp_close(tp);
1833 TCP_FIELDS_TO_NET(th);
1834 goto findpcb;
1835 }
1836 /*
1837 * If window is closed can only take segments at
1838 * window edge, and have to drop data and PUSH from
1839 * incoming segments. Continue processing, but
1840 * remember to ack. Otherwise, drop segment
1841 * and ack.
1842 */
1843 if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1844 tp->t_flags |= TF_ACKNOW;
1845 tcpstat.tcps_rcvwinprobe++;
1846 } else
1847 goto dropafterack;
1848 } else
1849 tcpstat.tcps_rcvbyteafterwin += todrop;
1850 m_adj(m, -todrop);
1851 tlen -= todrop;
1852 tiflags &= ~(TH_PUSH|TH_FIN);
1853 }
1854
1855 /*
1856 * If last ACK falls within this segment's sequence numbers,
1857 * and the timestamp is newer, record it.
1858 */
1859 if (opti.ts_present && TSTMP_GEQ(opti.ts_val, tp->ts_recent) &&
1860 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1861 SEQ_LT(tp->last_ack_sent, th->th_seq + tlen +
1862 ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
1863 tp->ts_recent_age = TCP_TIMESTAMP(tp);
1864 tp->ts_recent = opti.ts_val;
1865 }
1866
1867 /*
1868 * If the RST bit is set examine the state:
1869 * SYN_RECEIVED STATE:
1870 * If passive open, return to LISTEN state.
1871 * If active open, inform user that connection was refused.
1872 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
1873 * Inform user that connection was reset, and close tcb.
1874 * CLOSING, LAST_ACK, TIME_WAIT STATES
1875 * Close the tcb.
1876 */
1877 if (tiflags&TH_RST) switch (tp->t_state) {
1878
1879 case TCPS_SYN_RECEIVED:
1880 so->so_error = ECONNREFUSED;
1881 goto close;
1882
1883 case TCPS_ESTABLISHED:
1884 case TCPS_FIN_WAIT_1:
1885 case TCPS_FIN_WAIT_2:
1886 case TCPS_CLOSE_WAIT:
1887 so->so_error = ECONNRESET;
1888 close:
1889 tp->t_state = TCPS_CLOSED;
1890 tcpstat.tcps_drops++;
1891 tp = tcp_close(tp);
1892 goto drop;
1893
1894 case TCPS_CLOSING:
1895 case TCPS_LAST_ACK:
1896 case TCPS_TIME_WAIT:
1897 tp = tcp_close(tp);
1898 goto drop;
1899 }
1900
1901 /*
1902 * If a SYN is in the window, then this is an
1903 * error and we send an RST and drop the connection.
1904 */
1905 if (tiflags & TH_SYN) {
1906 tp = tcp_drop(tp, ECONNRESET);
1907 goto dropwithreset;
1908 }
1909
1910 /*
1911 * If the ACK bit is off we drop the segment and return.
1912 */
1913 if ((tiflags & TH_ACK) == 0) {
1914 if (tp->t_flags & TF_ACKNOW)
1915 goto dropafterack;
1916 else
1917 goto drop;
1918 }
1919
1920 /*
1921 * Ack processing.
1922 */
1923 switch (tp->t_state) {
1924
1925 /*
1926 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
1927 * ESTABLISHED state and continue processing, otherwise
1928 * send an RST.
1929 */
1930 case TCPS_SYN_RECEIVED:
1931 if (SEQ_GT(tp->snd_una, th->th_ack) ||
1932 SEQ_GT(th->th_ack, tp->snd_max))
1933 goto dropwithreset;
1934 tcpstat.tcps_connects++;
1935 soisconnected(so);
1936 tcp_established(tp);
1937 /* Do window scaling? */
1938 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1939 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1940 tp->snd_scale = tp->requested_s_scale;
1941 tp->rcv_scale = tp->request_r_scale;
1942 }
1943 TCP_REASS_LOCK(tp);
1944 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1945 TCP_REASS_UNLOCK(tp);
1946 tp->snd_wl1 = th->th_seq - 1;
1947 /* fall into ... */
1948
1949 /*
1950 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1951 * ACKs. If the ack is in the range
1952 * tp->snd_una < th->th_ack <= tp->snd_max
1953 * then advance tp->snd_una to th->th_ack and drop
1954 * data from the retransmission queue. If this ACK reflects
1955 * more up to date window information we update our window information.
1956 */
1957 case TCPS_ESTABLISHED:
1958 case TCPS_FIN_WAIT_1:
1959 case TCPS_FIN_WAIT_2:
1960 case TCPS_CLOSE_WAIT:
1961 case TCPS_CLOSING:
1962 case TCPS_LAST_ACK:
1963 case TCPS_TIME_WAIT:
1964
1965 if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
1966 if (tlen == 0 && tiwin == tp->snd_wnd) {
1967 tcpstat.tcps_rcvdupack++;
1968 /*
1969 * If we have outstanding data (other than
1970 * a window probe), this is a completely
1971 * duplicate ack (ie, window info didn't
1972 * change), the ack is the biggest we've
1973 * seen and we've seen exactly our rexmt
1974 * threshhold of them, assume a packet
1975 * has been dropped and retransmit it.
1976 * Kludge snd_nxt & the congestion
1977 * window so we send only this one
1978 * packet.
1979 *
1980 * We know we're losing at the current
1981 * window size so do congestion avoidance
1982 * (set ssthresh to half the current window
1983 * and pull our congestion window back to
1984 * the new ssthresh).
1985 *
1986 * Dup acks mean that packets have left the
1987 * network (they're now cached at the receiver)
1988 * so bump cwnd by the amount in the receiver
1989 * to keep a constant cwnd packets in the
1990 * network.
1991 */
1992 if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
1993 th->th_ack != tp->snd_una)
1994 tp->t_dupacks = 0;
1995 else if (++tp->t_dupacks == tcprexmtthresh) {
1996 tcp_seq onxt = tp->snd_nxt;
1997 u_int win =
1998 min(tp->snd_wnd, tp->snd_cwnd) /
1999 2 / tp->t_segsz;
2000 if (tcp_do_newreno && SEQ_LT(th->th_ack,
2001 tp->snd_recover)) {
2002 /*
2003 * False fast retransmit after
2004 * timeout. Do not cut window.
2005 */
2006 tp->snd_cwnd += tp->t_segsz;
2007 tp->t_dupacks = 0;
2008 (void) tcp_output(tp);
2009 goto drop;
2010 }
2011
2012 if (win < 2)
2013 win = 2;
2014 tp->snd_ssthresh = win * tp->t_segsz;
2015 tp->snd_recover = tp->snd_max;
2016 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2017 tp->t_rtttime = 0;
2018 tp->snd_nxt = th->th_ack;
2019 tp->snd_cwnd = tp->t_segsz;
2020 (void) tcp_output(tp);
2021 tp->snd_cwnd = tp->snd_ssthresh +
2022 tp->t_segsz * tp->t_dupacks;
2023 if (SEQ_GT(onxt, tp->snd_nxt))
2024 tp->snd_nxt = onxt;
2025 goto drop;
2026 } else if (tp->t_dupacks > tcprexmtthresh) {
2027 tp->snd_cwnd += tp->t_segsz;
2028 (void) tcp_output(tp);
2029 goto drop;
2030 }
2031 } else
2032 tp->t_dupacks = 0;
2033 break;
2034 }
2035 /*
2036 * If the congestion window was inflated to account
2037 * for the other side's cached packets, retract it.
2038 */
2039 if (tcp_do_newreno == 0) {
2040 if (tp->t_dupacks >= tcprexmtthresh &&
2041 tp->snd_cwnd > tp->snd_ssthresh)
2042 tp->snd_cwnd = tp->snd_ssthresh;
2043 tp->t_dupacks = 0;
2044 } else if (tp->t_dupacks >= tcprexmtthresh &&
2045 tcp_newreno(tp, th) == 0) {
2046 tp->snd_cwnd = tp->snd_ssthresh;
2047 /*
2048 * Window inflation should have left us with approx.
2049 * snd_ssthresh outstanding data. But in case we
2050 * would be inclined to send a burst, better to do
2051 * it via the slow start mechanism.
2052 */
2053 if (SEQ_SUB(tp->snd_max, th->th_ack) < tp->snd_ssthresh)
2054 tp->snd_cwnd = SEQ_SUB(tp->snd_max, th->th_ack)
2055 + tp->t_segsz;
2056 tp->t_dupacks = 0;
2057 }
2058 if (SEQ_GT(th->th_ack, tp->snd_max)) {
2059 tcpstat.tcps_rcvacktoomuch++;
2060 goto dropafterack;
2061 }
2062 acked = th->th_ack - tp->snd_una;
2063 tcpstat.tcps_rcvackpack++;
2064 tcpstat.tcps_rcvackbyte += acked;
2065
2066 /*
2067 * If we have a timestamp reply, update smoothed
2068 * round trip time. If no timestamp is present but
2069 * transmit timer is running and timed sequence
2070 * number was acked, update smoothed round trip time.
2071 * Since we now have an rtt measurement, cancel the
2072 * timer backoff (cf., Phil Karn's retransmit alg.).
2073 * Recompute the initial retransmit timer.
2074 */
2075 if (opti.ts_present && opti.ts_ecr)
2076 tcp_xmit_timer(tp, TCP_TIMESTAMP(tp) - opti.ts_ecr + 1);
2077 else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2078 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2079
2080 /*
2081 * If all outstanding data is acked, stop retransmit
2082 * timer and remember to restart (more output or persist).
2083 * If there is more data to be acked, restart retransmit
2084 * timer, using current (possibly backed-off) value.
2085 */
2086 if (th->th_ack == tp->snd_max) {
2087 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2088 needoutput = 1;
2089 } else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
2090 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
2091 /*
2092 * When new data is acked, open the congestion window.
2093 * If the window gives us less than ssthresh packets
2094 * in flight, open exponentially (segsz per packet).
2095 * Otherwise open linearly: segsz per window
2096 * (segsz^2 / cwnd per packet), plus a constant
2097 * fraction of a packet (segsz/8) to help larger windows
2098 * open quickly enough.
2099 */
2100 {
2101 u_int cw = tp->snd_cwnd;
2102 u_int incr = tp->t_segsz;
2103
2104 if (cw > tp->snd_ssthresh)
2105 incr = incr * incr / cw;
2106 if (tcp_do_newreno == 0 || SEQ_GEQ(th->th_ack, tp->snd_recover))
2107 tp->snd_cwnd = min(cw + incr,
2108 TCP_MAXWIN << tp->snd_scale);
2109 }
2110 ND6_HINT(tp);
2111 if (acked > so->so_snd.sb_cc) {
2112 tp->snd_wnd -= so->so_snd.sb_cc;
2113 sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
2114 ourfinisacked = 1;
2115 } else {
2116 if (acked > (tp->t_lastoff - tp->t_inoff))
2117 tp->t_lastm = NULL;
2118 sbdrop(&so->so_snd, acked);
2119 tp->t_lastoff -= acked;
2120 ourfinisacked = 0;
2121 }
2122 sowwakeup(so);
2123 /*
2124 * We want snd_recover to track snd_una to
2125 * avoid sequence wraparound problems for
2126 * very large transfers.
2127 */
2128 tp->snd_una = tp->snd_recover = th->th_ack;
2129 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2130 tp->snd_nxt = tp->snd_una;
2131
2132 switch (tp->t_state) {
2133
2134 /*
2135 * In FIN_WAIT_1 STATE in addition to the processing
2136 * for the ESTABLISHED state if our FIN is now acknowledged
2137 * then enter FIN_WAIT_2.
2138 */
2139 case TCPS_FIN_WAIT_1:
2140 if (ourfinisacked) {
2141 /*
2142 * If we can't receive any more
2143 * data, then closing user can proceed.
2144 * Starting the timer is contrary to the
2145 * specification, but if we don't get a FIN
2146 * we'll hang forever.
2147 */
2148 if (so->so_state & SS_CANTRCVMORE) {
2149 soisdisconnected(so);
2150 if (tcp_maxidle > 0)
2151 TCP_TIMER_ARM(tp, TCPT_2MSL,
2152 tcp_maxidle);
2153 }
2154 tp->t_state = TCPS_FIN_WAIT_2;
2155 }
2156 break;
2157
2158 /*
2159 * In CLOSING STATE in addition to the processing for
2160 * the ESTABLISHED state if the ACK acknowledges our FIN
2161 * then enter the TIME-WAIT state, otherwise ignore
2162 * the segment.
2163 */
2164 case TCPS_CLOSING:
2165 if (ourfinisacked) {
2166 tp->t_state = TCPS_TIME_WAIT;
2167 tcp_canceltimers(tp);
2168 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2169 soisdisconnected(so);
2170 }
2171 break;
2172
2173 /*
2174 * In LAST_ACK, we may still be waiting for data to drain
2175 * and/or to be acked, as well as for the ack of our FIN.
2176 * If our FIN is now acknowledged, delete the TCB,
2177 * enter the closed state and return.
2178 */
2179 case TCPS_LAST_ACK:
2180 if (ourfinisacked) {
2181 tp = tcp_close(tp);
2182 goto drop;
2183 }
2184 break;
2185
2186 /*
2187 * In TIME_WAIT state the only thing that should arrive
2188 * is a retransmission of the remote FIN. Acknowledge
2189 * it and restart the finack timer.
2190 */
2191 case TCPS_TIME_WAIT:
2192 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2193 goto dropafterack;
2194 }
2195 }
2196
2197 step6:
2198 /*
2199 * Update window information.
2200 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2201 */
2202 if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2203 (tp->snd_wl1 == th->th_seq && SEQ_LT(tp->snd_wl2, th->th_ack)) ||
2204 (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))) {
2205 /* keep track of pure window updates */
2206 if (tlen == 0 &&
2207 tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2208 tcpstat.tcps_rcvwinupd++;
2209 tp->snd_wnd = tiwin;
2210 tp->snd_wl1 = th->th_seq;
2211 tp->snd_wl2 = th->th_ack;
2212 if (tp->snd_wnd > tp->max_sndwnd)
2213 tp->max_sndwnd = tp->snd_wnd;
2214 needoutput = 1;
2215 }
2216
2217 /*
2218 * Process segments with URG.
2219 */
2220 if ((tiflags & TH_URG) && th->th_urp &&
2221 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2222 /*
2223 * This is a kludge, but if we receive and accept
2224 * random urgent pointers, we'll crash in
2225 * soreceive. It's hard to imagine someone
2226 * actually wanting to send this much urgent data.
2227 */
2228 if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2229 th->th_urp = 0; /* XXX */
2230 tiflags &= ~TH_URG; /* XXX */
2231 goto dodata; /* XXX */
2232 }
2233 /*
2234 * If this segment advances the known urgent pointer,
2235 * then mark the data stream. This should not happen
2236 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2237 * a FIN has been received from the remote side.
2238 * In these states we ignore the URG.
2239 *
2240 * According to RFC961 (Assigned Protocols),
2241 * the urgent pointer points to the last octet
2242 * of urgent data. We continue, however,
2243 * to consider it to indicate the first octet
2244 * of data past the urgent section as the original
2245 * spec states (in one of two places).
2246 */
2247 if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2248 tp->rcv_up = th->th_seq + th->th_urp;
2249 so->so_oobmark = so->so_rcv.sb_cc +
2250 (tp->rcv_up - tp->rcv_nxt) - 1;
2251 if (so->so_oobmark == 0)
2252 so->so_state |= SS_RCVATMARK;
2253 sohasoutofband(so);
2254 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2255 }
2256 /*
2257 * Remove out of band data so doesn't get presented to user.
2258 * This can happen independent of advancing the URG pointer,
2259 * but if two URG's are pending at once, some out-of-band
2260 * data may creep in... ick.
2261 */
2262 if (th->th_urp <= (u_int16_t) tlen
2263 #ifdef SO_OOBINLINE
2264 && (so->so_options & SO_OOBINLINE) == 0
2265 #endif
2266 )
2267 tcp_pulloutofband(so, th, m, hdroptlen);
2268 } else
2269 /*
2270 * If no out of band data is expected,
2271 * pull receive urgent pointer along
2272 * with the receive window.
2273 */
2274 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2275 tp->rcv_up = tp->rcv_nxt;
2276 dodata: /* XXX */
2277
2278 /*
2279 * Process the segment text, merging it into the TCP sequencing queue,
2280 * and arranging for acknowledgement of receipt if necessary.
2281 * This process logically involves adjusting tp->rcv_wnd as data
2282 * is presented to the user (this happens in tcp_usrreq.c,
2283 * case PRU_RCVD). If a FIN has already been received on this
2284 * connection then we just ignore the text.
2285 */
2286 if ((tlen || (tiflags & TH_FIN)) &&
2287 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2288 /*
2289 * Insert segment ti into reassembly queue of tcp with
2290 * control block tp. Return TH_FIN if reassembly now includes
2291 * a segment with FIN. The macro form does the common case
2292 * inline (segment is the next to be received on an
2293 * established connection, and the queue is empty),
2294 * avoiding linkage into and removal from the queue and
2295 * repetition of various conversions.
2296 * Set DELACK for segments received in order, but ack
2297 * immediately when segments are out of order
2298 * (so fast retransmit can work).
2299 */
2300 /* NOTE: this was TCP_REASS() macro, but used only once */
2301 TCP_REASS_LOCK(tp);
2302 if (th->th_seq == tp->rcv_nxt &&
2303 TAILQ_FIRST(&tp->segq) == NULL &&
2304 tp->t_state == TCPS_ESTABLISHED) {
2305 TCP_SETUP_ACK(tp, th);
2306 tp->rcv_nxt += tlen;
2307 tiflags = th->th_flags & TH_FIN;
2308 tcpstat.tcps_rcvpack++;
2309 tcpstat.tcps_rcvbyte += tlen;
2310 ND6_HINT(tp);
2311 if (so->so_state & SS_CANTRCVMORE)
2312 m_freem(m);
2313 else {
2314 m_adj(m, hdroptlen);
2315 sbappendstream(&(so)->so_rcv, m);
2316 }
2317 sorwakeup(so);
2318 } else {
2319 m_adj(m, hdroptlen);
2320 tiflags = tcp_reass(tp, th, m, &tlen);
2321 tp->t_flags |= TF_ACKNOW;
2322 }
2323 TCP_REASS_UNLOCK(tp);
2324
2325 /*
2326 * Note the amount of data that peer has sent into
2327 * our window, in order to estimate the sender's
2328 * buffer size.
2329 */
2330 len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2331 } else {
2332 m_freem(m);
2333 m = NULL;
2334 tiflags &= ~TH_FIN;
2335 }
2336
2337 /*
2338 * If FIN is received ACK the FIN and let the user know
2339 * that the connection is closing. Ignore a FIN received before
2340 * the connection is fully established.
2341 */
2342 if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2343 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2344 socantrcvmore(so);
2345 tp->t_flags |= TF_ACKNOW;
2346 tp->rcv_nxt++;
2347 }
2348 switch (tp->t_state) {
2349
2350 /*
2351 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2352 */
2353 case TCPS_ESTABLISHED:
2354 tp->t_state = TCPS_CLOSE_WAIT;
2355 break;
2356
2357 /*
2358 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2359 * enter the CLOSING state.
2360 */
2361 case TCPS_FIN_WAIT_1:
2362 tp->t_state = TCPS_CLOSING;
2363 break;
2364
2365 /*
2366 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2367 * starting the time-wait timer, turning off the other
2368 * standard timers.
2369 */
2370 case TCPS_FIN_WAIT_2:
2371 tp->t_state = TCPS_TIME_WAIT;
2372 tcp_canceltimers(tp);
2373 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2374 soisdisconnected(so);
2375 break;
2376
2377 /*
2378 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2379 */
2380 case TCPS_TIME_WAIT:
2381 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2382 break;
2383 }
2384 }
2385 #ifdef TCP_DEBUG
2386 if (so->so_options & SO_DEBUG)
2387 tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
2388 #endif
2389
2390 /*
2391 * Return any desired output.
2392 */
2393 if (needoutput || (tp->t_flags & TF_ACKNOW))
2394 (void) tcp_output(tp);
2395 if (tcp_saveti)
2396 m_freem(tcp_saveti);
2397 return;
2398
2399 badsyn:
2400 /*
2401 * Received a bad SYN. Increment counters and dropwithreset.
2402 */
2403 tcpstat.tcps_badsyn++;
2404 tp = NULL;
2405 goto dropwithreset;
2406
2407 dropafterack:
2408 /*
2409 * Generate an ACK dropping incoming segment if it occupies
2410 * sequence space, where the ACK reflects our state.
2411 */
2412 if (tiflags & TH_RST)
2413 goto drop;
2414 m_freem(m);
2415 tp->t_flags |= TF_ACKNOW;
2416 (void) tcp_output(tp);
2417 if (tcp_saveti)
2418 m_freem(tcp_saveti);
2419 return;
2420
2421 dropwithreset_ratelim:
2422 /*
2423 * We may want to rate-limit RSTs in certain situations,
2424 * particularly if we are sending an RST in response to
2425 * an attempt to connect to or otherwise communicate with
2426 * a port for which we have no socket.
2427 */
2428 if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
2429 tcp_rst_ppslim) == 0) {
2430 /* XXX stat */
2431 goto drop;
2432 }
2433 /* ...fall into dropwithreset... */
2434
2435 dropwithreset:
2436 /*
2437 * Generate a RST, dropping incoming segment.
2438 * Make ACK acceptable to originator of segment.
2439 */
2440 if (tiflags & TH_RST)
2441 goto drop;
2442
2443 switch (af) {
2444 #ifdef INET6
2445 case AF_INET6:
2446 /* For following calls to tcp_respond */
2447 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
2448 goto drop;
2449 break;
2450 #endif /* INET6 */
2451 case AF_INET:
2452 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
2453 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2454 goto drop;
2455 }
2456
2457 if (tiflags & TH_ACK)
2458 (void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
2459 else {
2460 if (tiflags & TH_SYN)
2461 tlen++;
2462 (void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
2463 TH_RST|TH_ACK);
2464 }
2465 if (tcp_saveti)
2466 m_freem(tcp_saveti);
2467 return;
2468
2469 badcsum:
2470 tcpstat.tcps_rcvbadsum++;
2471 drop:
2472 /*
2473 * Drop space held by incoming segment and return.
2474 */
2475 if (tp) {
2476 if (tp->t_inpcb)
2477 so = tp->t_inpcb->inp_socket;
2478 #ifdef INET6
2479 else if (tp->t_in6pcb)
2480 so = tp->t_in6pcb->in6p_socket;
2481 #endif
2482 else
2483 so = NULL;
2484 #ifdef TCP_DEBUG
2485 if (so && (so->so_options & SO_DEBUG) != 0)
2486 tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
2487 #endif
2488 }
2489 if (tcp_saveti)
2490 m_freem(tcp_saveti);
2491 m_freem(m);
2492 return;
2493 }
2494
2495 void
2496 tcp_dooptions(tp, cp, cnt, th, oi)
2497 struct tcpcb *tp;
2498 u_char *cp;
2499 int cnt;
2500 struct tcphdr *th;
2501 struct tcp_opt_info *oi;
2502 {
2503 u_int16_t mss;
2504 int opt, optlen;
2505
2506 for (; cnt > 0; cnt -= optlen, cp += optlen) {
2507 opt = cp[0];
2508 if (opt == TCPOPT_EOL)
2509 break;
2510 if (opt == TCPOPT_NOP)
2511 optlen = 1;
2512 else {
2513 if (cnt < 2)
2514 break;
2515 optlen = cp[1];
2516 if (optlen < 2 || optlen > cnt)
2517 break;
2518 }
2519 switch (opt) {
2520
2521 default:
2522 continue;
2523
2524 case TCPOPT_MAXSEG:
2525 if (optlen != TCPOLEN_MAXSEG)
2526 continue;
2527 if (!(th->th_flags & TH_SYN))
2528 continue;
2529 bcopy(cp + 2, &mss, sizeof(mss));
2530 oi->maxseg = ntohs(mss);
2531 break;
2532
2533 case TCPOPT_WINDOW:
2534 if (optlen != TCPOLEN_WINDOW)
2535 continue;
2536 if (!(th->th_flags & TH_SYN))
2537 continue;
2538 tp->t_flags |= TF_RCVD_SCALE;
2539 tp->requested_s_scale = cp[2];
2540 if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
2541 #if 0 /*XXX*/
2542 char *p;
2543
2544 if (ip)
2545 p = ntohl(ip->ip_src);
2546 #ifdef INET6
2547 else if (ip6)
2548 p = ip6_sprintf(&ip6->ip6_src);
2549 #endif
2550 else
2551 p = "(unknown)";
2552 log(LOG_ERR, "TCP: invalid wscale %d from %s, "
2553 "assuming %d\n",
2554 tp->requested_s_scale, p,
2555 TCP_MAX_WINSHIFT);
2556 #else
2557 log(LOG_ERR, "TCP: invalid wscale %d, "
2558 "assuming %d\n",
2559 tp->requested_s_scale,
2560 TCP_MAX_WINSHIFT);
2561 #endif
2562 tp->requested_s_scale = TCP_MAX_WINSHIFT;
2563 }
2564 break;
2565
2566 case TCPOPT_TIMESTAMP:
2567 if (optlen != TCPOLEN_TIMESTAMP)
2568 continue;
2569 oi->ts_present = 1;
2570 bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
2571 NTOHL(oi->ts_val);
2572 bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
2573 NTOHL(oi->ts_ecr);
2574
2575 /*
2576 * A timestamp received in a SYN makes
2577 * it ok to send timestamp requests and replies.
2578 */
2579 if (th->th_flags & TH_SYN) {
2580 tp->t_flags |= TF_RCVD_TSTMP;
2581 tp->ts_recent = oi->ts_val;
2582 tp->ts_recent_age = TCP_TIMESTAMP(tp);
2583 }
2584 break;
2585 case TCPOPT_SACK_PERMITTED:
2586 if (optlen != TCPOLEN_SACK_PERMITTED)
2587 continue;
2588 if (!(th->th_flags & TH_SYN))
2589 continue;
2590 tp->t_flags &= ~TF_CANT_TXSACK;
2591 break;
2592
2593 case TCPOPT_SACK:
2594 if (tp->t_flags & TF_IGNR_RXSACK)
2595 continue;
2596 if (optlen % 8 != 2 || optlen < 10)
2597 continue;
2598 cp += 2;
2599 optlen -= 2;
2600 for (; optlen > 0; cp -= 8, optlen -= 8) {
2601 tcp_seq lwe, rwe;
2602 bcopy((char *)cp, (char *) &lwe, sizeof(lwe));
2603 NTOHL(lwe);
2604 bcopy((char *)cp, (char *) &rwe, sizeof(rwe));
2605 NTOHL(rwe);
2606 /* tcp_mark_sacked(tp, lwe, rwe); */
2607 }
2608 break;
2609 }
2610 }
2611 }
2612
2613 /*
2614 * Pull out of band byte out of a segment so
2615 * it doesn't appear in the user's data queue.
2616 * It is still reflected in the segment length for
2617 * sequencing purposes.
2618 */
2619 void
2620 tcp_pulloutofband(so, th, m, off)
2621 struct socket *so;
2622 struct tcphdr *th;
2623 struct mbuf *m;
2624 int off;
2625 {
2626 int cnt = off + th->th_urp - 1;
2627
2628 while (cnt >= 0) {
2629 if (m->m_len > cnt) {
2630 char *cp = mtod(m, caddr_t) + cnt;
2631 struct tcpcb *tp = sototcpcb(so);
2632
2633 tp->t_iobc = *cp;
2634 tp->t_oobflags |= TCPOOB_HAVEDATA;
2635 bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
2636 m->m_len--;
2637 return;
2638 }
2639 cnt -= m->m_len;
2640 m = m->m_next;
2641 if (m == 0)
2642 break;
2643 }
2644 panic("tcp_pulloutofband");
2645 }
2646
2647 /*
2648 * Collect new round-trip time estimate
2649 * and update averages and current timeout.
2650 */
2651 void
2652 tcp_xmit_timer(tp, rtt)
2653 struct tcpcb *tp;
2654 uint32_t rtt;
2655 {
2656 int32_t delta;
2657
2658 tcpstat.tcps_rttupdated++;
2659 if (tp->t_srtt != 0) {
2660 /*
2661 * srtt is stored as fixed point with 3 bits after the
2662 * binary point (i.e., scaled by 8). The following magic
2663 * is equivalent to the smoothing algorithm in rfc793 with
2664 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2665 * point). Adjust rtt to origin 0.
2666 */
2667 delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
2668 if ((tp->t_srtt += delta) <= 0)
2669 tp->t_srtt = 1 << 2;
2670 /*
2671 * We accumulate a smoothed rtt variance (actually, a
2672 * smoothed mean difference), then set the retransmit
2673 * timer to smoothed rtt + 4 times the smoothed variance.
2674 * rttvar is stored as fixed point with 2 bits after the
2675 * binary point (scaled by 4). The following is
2676 * equivalent to rfc793 smoothing with an alpha of .75
2677 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces
2678 * rfc793's wired-in beta.
2679 */
2680 if (delta < 0)
2681 delta = -delta;
2682 delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
2683 if ((tp->t_rttvar += delta) <= 0)
2684 tp->t_rttvar = 1 << 2;
2685 } else {
2686 /*
2687 * No rtt measurement yet - use the unsmoothed rtt.
2688 * Set the variance to half the rtt (so our first
2689 * retransmit happens at 3*rtt).
2690 */
2691 tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
2692 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
2693 }
2694 tp->t_rtttime = 0;
2695 tp->t_rxtshift = 0;
2696
2697 /*
2698 * the retransmit should happen at rtt + 4 * rttvar.
2699 * Because of the way we do the smoothing, srtt and rttvar
2700 * will each average +1/2 tick of bias. When we compute
2701 * the retransmit timer, we want 1/2 tick of rounding and
2702 * 1 extra tick because of +-1/2 tick uncertainty in the
2703 * firing of the timer. The bias will give us exactly the
2704 * 1.5 tick we need. But, because the bias is
2705 * statistical, we have to test that we don't drop below
2706 * the minimum feasible timer (which is 2 ticks).
2707 */
2708 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
2709 max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
2710
2711 /*
2712 * We received an ack for a packet that wasn't retransmitted;
2713 * it is probably safe to discard any error indications we've
2714 * received recently. This isn't quite right, but close enough
2715 * for now (a route might have failed after we sent a segment,
2716 * and the return path might not be symmetrical).
2717 */
2718 tp->t_softerror = 0;
2719 }
2720
2721 /*
2722 * Checks for partial ack. If partial ack arrives, force the retransmission
2723 * of the next unacknowledged segment, do not clear tp->t_dupacks, and return
2724 * 1. By setting snd_nxt to th_ack, this forces retransmission timer to
2725 * be started again. If the ack advances at least to tp->snd_recover, return 0.
2726 */
2727 int
2728 tcp_newreno(tp, th)
2729 struct tcpcb *tp;
2730 struct tcphdr *th;
2731 {
2732 tcp_seq onxt = tp->snd_nxt;
2733 u_long ocwnd = tp->snd_cwnd;
2734
2735 if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2736 /*
2737 * snd_una has not yet been updated and the socket's send
2738 * buffer has not yet drained off the ACK'd data, so we
2739 * have to leave snd_una as it was to get the correct data
2740 * offset in tcp_output().
2741 */
2742 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2743 tp->t_rtttime = 0;
2744 tp->snd_nxt = th->th_ack;
2745 /*
2746 * Set snd_cwnd to one segment beyond ACK'd offset. snd_una
2747 * is not yet updated when we're called.
2748 */
2749 tp->snd_cwnd = tp->t_segsz + (th->th_ack - tp->snd_una);
2750 (void) tcp_output(tp);
2751 tp->snd_cwnd = ocwnd;
2752 if (SEQ_GT(onxt, tp->snd_nxt))
2753 tp->snd_nxt = onxt;
2754 /*
2755 * Partial window deflation. Relies on fact that tp->snd_una
2756 * not updated yet.
2757 */
2758 tp->snd_cwnd -= (th->th_ack - tp->snd_una - tp->t_segsz);
2759 return 1;
2760 }
2761 return 0;
2762 }
2763
2764
2765 /*
2766 * TCP compressed state engine. Currently used to hold compressed
2767 * state for SYN_RECEIVED.
2768 */
2769
2770 u_long syn_cache_count;
2771 u_int32_t syn_hash1, syn_hash2;
2772
2773 #define SYN_HASH(sa, sp, dp) \
2774 ((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
2775 ((u_int32_t)(sp)))^syn_hash2)))
2776 #ifndef INET6
2777 #define SYN_HASHALL(hash, src, dst) \
2778 do { \
2779 hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
2780 ((struct sockaddr_in *)(src))->sin_port, \
2781 ((struct sockaddr_in *)(dst))->sin_port); \
2782 } while (/*CONSTCOND*/ 0)
2783 #else
2784 #define SYN_HASH6(sa, sp, dp) \
2785 ((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
2786 (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
2787 & 0x7fffffff)
2788
2789 #define SYN_HASHALL(hash, src, dst) \
2790 do { \
2791 switch ((src)->sa_family) { \
2792 case AF_INET: \
2793 hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
2794 ((struct sockaddr_in *)(src))->sin_port, \
2795 ((struct sockaddr_in *)(dst))->sin_port); \
2796 break; \
2797 case AF_INET6: \
2798 hash = SYN_HASH6(&((struct sockaddr_in6 *)(src))->sin6_addr, \
2799 ((struct sockaddr_in6 *)(src))->sin6_port, \
2800 ((struct sockaddr_in6 *)(dst))->sin6_port); \
2801 break; \
2802 default: \
2803 hash = 0; \
2804 } \
2805 } while (/*CONSTCOND*/0)
2806 #endif /* INET6 */
2807
2808 #define SYN_CACHE_RM(sc) \
2809 do { \
2810 TAILQ_REMOVE(&tcp_syn_cache[(sc)->sc_bucketidx].sch_bucket, \
2811 (sc), sc_bucketq); \
2812 (sc)->sc_tp = NULL; \
2813 LIST_REMOVE((sc), sc_tpq); \
2814 tcp_syn_cache[(sc)->sc_bucketidx].sch_length--; \
2815 callout_stop(&(sc)->sc_timer); \
2816 syn_cache_count--; \
2817 } while (/*CONSTCOND*/0)
2818
2819 #define SYN_CACHE_PUT(sc) \
2820 do { \
2821 if ((sc)->sc_ipopts) \
2822 (void) m_free((sc)->sc_ipopts); \
2823 if ((sc)->sc_route4.ro_rt != NULL) \
2824 RTFREE((sc)->sc_route4.ro_rt); \
2825 if (callout_invoking(&(sc)->sc_timer)) \
2826 (sc)->sc_flags |= SCF_DEAD; \
2827 else \
2828 pool_put(&syn_cache_pool, (sc)); \
2829 } while (/*CONSTCOND*/0)
2830
2831 struct pool syn_cache_pool;
2832
2833 /*
2834 * We don't estimate RTT with SYNs, so each packet starts with the default
2835 * RTT and each timer step has a fixed timeout value.
2836 */
2837 #define SYN_CACHE_TIMER_ARM(sc) \
2838 do { \
2839 TCPT_RANGESET((sc)->sc_rxtcur, \
2840 TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN, \
2841 TCPTV_REXMTMAX); \
2842 callout_reset(&(sc)->sc_timer, \
2843 (sc)->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, (sc)); \
2844 } while (/*CONSTCOND*/0)
2845
2846 #define SYN_CACHE_TIMESTAMP(sc) (tcp_now - (sc)->sc_timebase)
2847
2848 void
2849 syn_cache_init()
2850 {
2851 int i;
2852
2853 /* Initialize the hash buckets. */
2854 for (i = 0; i < tcp_syn_cache_size; i++)
2855 TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
2856
2857 /* Initialize the syn cache pool. */
2858 pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
2859 "synpl", NULL);
2860 }
2861
2862 void
2863 syn_cache_insert(sc, tp)
2864 struct syn_cache *sc;
2865 struct tcpcb *tp;
2866 {
2867 struct syn_cache_head *scp;
2868 struct syn_cache *sc2;
2869 int s;
2870
2871 /*
2872 * If there are no entries in the hash table, reinitialize
2873 * the hash secrets.
2874 */
2875 if (syn_cache_count == 0) {
2876 syn_hash1 = arc4random();
2877 syn_hash2 = arc4random();
2878 }
2879
2880 SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
2881 sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
2882 scp = &tcp_syn_cache[sc->sc_bucketidx];
2883
2884 /*
2885 * Make sure that we don't overflow the per-bucket
2886 * limit or the total cache size limit.
2887 */
2888 s = splsoftnet();
2889 if (scp->sch_length >= tcp_syn_bucket_limit) {
2890 tcpstat.tcps_sc_bucketoverflow++;
2891 /*
2892 * The bucket is full. Toss the oldest element in the
2893 * bucket. This will be the first entry in the bucket.
2894 */
2895 sc2 = TAILQ_FIRST(&scp->sch_bucket);
2896 #ifdef DIAGNOSTIC
2897 /*
2898 * This should never happen; we should always find an
2899 * entry in our bucket.
2900 */
2901 if (sc2 == NULL)
2902 panic("syn_cache_insert: bucketoverflow: impossible");
2903 #endif
2904 SYN_CACHE_RM(sc2);
2905 SYN_CACHE_PUT(sc2);
2906 } else if (syn_cache_count >= tcp_syn_cache_limit) {
2907 struct syn_cache_head *scp2, *sce;
2908
2909 tcpstat.tcps_sc_overflowed++;
2910 /*
2911 * The cache is full. Toss the oldest entry in the
2912 * first non-empty bucket we can find.
2913 *
2914 * XXX We would really like to toss the oldest
2915 * entry in the cache, but we hope that this
2916 * condition doesn't happen very often.
2917 */
2918 scp2 = scp;
2919 if (TAILQ_EMPTY(&scp2->sch_bucket)) {
2920 sce = &tcp_syn_cache[tcp_syn_cache_size];
2921 for (++scp2; scp2 != scp; scp2++) {
2922 if (scp2 >= sce)
2923 scp2 = &tcp_syn_cache[0];
2924 if (! TAILQ_EMPTY(&scp2->sch_bucket))
2925 break;
2926 }
2927 #ifdef DIAGNOSTIC
2928 /*
2929 * This should never happen; we should always find a
2930 * non-empty bucket.
2931 */
2932 if (scp2 == scp)
2933 panic("syn_cache_insert: cacheoverflow: "
2934 "impossible");
2935 #endif
2936 }
2937 sc2 = TAILQ_FIRST(&scp2->sch_bucket);
2938 SYN_CACHE_RM(sc2);
2939 SYN_CACHE_PUT(sc2);
2940 }
2941
2942 /*
2943 * Initialize the entry's timer.
2944 */
2945 sc->sc_rxttot = 0;
2946 sc->sc_rxtshift = 0;
2947 SYN_CACHE_TIMER_ARM(sc);
2948
2949 /* Link it from tcpcb entry */
2950 LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
2951
2952 /* Put it into the bucket. */
2953 TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
2954 scp->sch_length++;
2955 syn_cache_count++;
2956
2957 tcpstat.tcps_sc_added++;
2958 splx(s);
2959 }
2960
2961 /*
2962 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
2963 * If we have retransmitted an entry the maximum number of times, expire
2964 * that entry.
2965 */
2966 void
2967 syn_cache_timer(void *arg)
2968 {
2969 struct syn_cache *sc = arg;
2970 int s;
2971
2972 s = splsoftnet();
2973 callout_ack(&sc->sc_timer);
2974
2975 if (__predict_false(sc->sc_flags & SCF_DEAD)) {
2976 tcpstat.tcps_sc_delayed_free++;
2977 pool_put(&syn_cache_pool, sc);
2978 splx(s);
2979 return;
2980 }
2981
2982 if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
2983 /* Drop it -- too many retransmissions. */
2984 goto dropit;
2985 }
2986
2987 /*
2988 * Compute the total amount of time this entry has
2989 * been on a queue. If this entry has been on longer
2990 * than the keep alive timer would allow, expire it.
2991 */
2992 sc->sc_rxttot += sc->sc_rxtcur;
2993 if (sc->sc_rxttot >= TCPTV_KEEP_INIT)
2994 goto dropit;
2995
2996 tcpstat.tcps_sc_retransmitted++;
2997 (void) syn_cache_respond(sc, NULL);
2998
2999 /* Advance the timer back-off. */
3000 sc->sc_rxtshift++;
3001 SYN_CACHE_TIMER_ARM(sc);
3002
3003 splx(s);
3004 return;
3005
3006 dropit:
3007 tcpstat.tcps_sc_timed_out++;
3008 SYN_CACHE_RM(sc);
3009 SYN_CACHE_PUT(sc);
3010 splx(s);
3011 }
3012
3013 /*
3014 * Remove syn cache created by the specified tcb entry,
3015 * because this does not make sense to keep them
3016 * (if there's no tcb entry, syn cache entry will never be used)
3017 */
3018 void
3019 syn_cache_cleanup(tp)
3020 struct tcpcb *tp;
3021 {
3022 struct syn_cache *sc, *nsc;
3023 int s;
3024
3025 s = splsoftnet();
3026
3027 for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
3028 nsc = LIST_NEXT(sc, sc_tpq);
3029
3030 #ifdef DIAGNOSTIC
3031 if (sc->sc_tp != tp)
3032 panic("invalid sc_tp in syn_cache_cleanup");
3033 #endif
3034 SYN_CACHE_RM(sc);
3035 SYN_CACHE_PUT(sc);
3036 }
3037 /* just for safety */
3038 LIST_INIT(&tp->t_sc);
3039
3040 splx(s);
3041 }
3042
3043 /*
3044 * Find an entry in the syn cache.
3045 */
3046 struct syn_cache *
3047 syn_cache_lookup(src, dst, headp)
3048 struct sockaddr *src;
3049 struct sockaddr *dst;
3050 struct syn_cache_head **headp;
3051 {
3052 struct syn_cache *sc;
3053 struct syn_cache_head *scp;
3054 u_int32_t hash;
3055 int s;
3056
3057 SYN_HASHALL(hash, src, dst);
3058
3059 scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
3060 *headp = scp;
3061 s = splsoftnet();
3062 for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
3063 sc = TAILQ_NEXT(sc, sc_bucketq)) {
3064 if (sc->sc_hash != hash)
3065 continue;
3066 if (!bcmp(&sc->sc_src, src, src->sa_len) &&
3067 !bcmp(&sc->sc_dst, dst, dst->sa_len)) {
3068 splx(s);
3069 return (sc);
3070 }
3071 }
3072 splx(s);
3073 return (NULL);
3074 }
3075
3076 /*
3077 * This function gets called when we receive an ACK for a
3078 * socket in the LISTEN state. We look up the connection
3079 * in the syn cache, and if its there, we pull it out of
3080 * the cache and turn it into a full-blown connection in
3081 * the SYN-RECEIVED state.
3082 *
3083 * The return values may not be immediately obvious, and their effects
3084 * can be subtle, so here they are:
3085 *
3086 * NULL SYN was not found in cache; caller should drop the
3087 * packet and send an RST.
3088 *
3089 * -1 We were unable to create the new connection, and are
3090 * aborting it. An ACK,RST is being sent to the peer
3091 * (unless we got screwey sequence numbners; see below),
3092 * because the 3-way handshake has been completed. Caller
3093 * should not free the mbuf, since we may be using it. If
3094 * we are not, we will free it.
3095 *
3096 * Otherwise, the return value is a pointer to the new socket
3097 * associated with the connection.
3098 */
3099 struct socket *
3100 syn_cache_get(src, dst, th, hlen, tlen, so, m)
3101 struct sockaddr *src;
3102 struct sockaddr *dst;
3103 struct tcphdr *th;
3104 unsigned int hlen, tlen;
3105 struct socket *so;
3106 struct mbuf *m;
3107 {
3108 struct syn_cache *sc;
3109 struct syn_cache_head *scp;
3110 struct inpcb *inp = NULL;
3111 #ifdef INET6
3112 struct in6pcb *in6p = NULL;
3113 #endif
3114 struct tcpcb *tp = 0;
3115 struct mbuf *am;
3116 int s;
3117 struct socket *oso;
3118
3119 s = splsoftnet();
3120 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3121 splx(s);
3122 return (NULL);
3123 }
3124
3125 /*
3126 * Verify the sequence and ack numbers. Try getting the correct
3127 * response again.
3128 */
3129 if ((th->th_ack != sc->sc_iss + 1) ||
3130 SEQ_LEQ(th->th_seq, sc->sc_irs) ||
3131 SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
3132 (void) syn_cache_respond(sc, m);
3133 splx(s);
3134 return ((struct socket *)(-1));
3135 }
3136
3137 /* Remove this cache entry */
3138 SYN_CACHE_RM(sc);
3139 splx(s);
3140
3141 /*
3142 * Ok, create the full blown connection, and set things up
3143 * as they would have been set up if we had created the
3144 * connection when the SYN arrived. If we can't create
3145 * the connection, abort it.
3146 */
3147 /*
3148 * inp still has the OLD in_pcb stuff, set the
3149 * v6-related flags on the new guy, too. This is
3150 * done particularly for the case where an AF_INET6
3151 * socket is bound only to a port, and a v4 connection
3152 * comes in on that port.
3153 * we also copy the flowinfo from the original pcb
3154 * to the new one.
3155 */
3156 oso = so;
3157 so = sonewconn(so, SS_ISCONNECTED);
3158 if (so == NULL)
3159 goto resetandabort;
3160
3161 switch (so->so_proto->pr_domain->dom_family) {
3162 #ifdef INET
3163 case AF_INET:
3164 inp = sotoinpcb(so);
3165 break;
3166 #endif
3167 #ifdef INET6
3168 case AF_INET6:
3169 in6p = sotoin6pcb(so);
3170 break;
3171 #endif
3172 }
3173 switch (src->sa_family) {
3174 #ifdef INET
3175 case AF_INET:
3176 if (inp) {
3177 inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
3178 inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
3179 inp->inp_options = ip_srcroute();
3180 in_pcbstate(inp, INP_BOUND);
3181 if (inp->inp_options == NULL) {
3182 inp->inp_options = sc->sc_ipopts;
3183 sc->sc_ipopts = NULL;
3184 }
3185 }
3186 #ifdef INET6
3187 else if (in6p) {
3188 /* IPv4 packet to AF_INET6 socket */
3189 bzero(&in6p->in6p_laddr, sizeof(in6p->in6p_laddr));
3190 in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
3191 bcopy(&((struct sockaddr_in *)dst)->sin_addr,
3192 &in6p->in6p_laddr.s6_addr32[3],
3193 sizeof(((struct sockaddr_in *)dst)->sin_addr));
3194 in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
3195 in6totcpcb(in6p)->t_family = AF_INET;
3196 if (sotoin6pcb(oso)->in6p_flags & IN6P_IPV6_V6ONLY)
3197 in6p->in6p_flags |= IN6P_IPV6_V6ONLY;
3198 else
3199 in6p->in6p_flags &= ~IN6P_IPV6_V6ONLY;
3200 in6_pcbstate(in6p, IN6P_BOUND);
3201 }
3202 #endif
3203 break;
3204 #endif
3205 #ifdef INET6
3206 case AF_INET6:
3207 if (in6p) {
3208 in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
3209 in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
3210 in6_pcbstate(in6p, IN6P_BOUND);
3211 }
3212 break;
3213 #endif
3214 }
3215 #ifdef INET6
3216 if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
3217 struct in6pcb *oin6p = sotoin6pcb(oso);
3218 /* inherit socket options from the listening socket */
3219 in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
3220 if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
3221 m_freem(in6p->in6p_options);
3222 in6p->in6p_options = 0;
3223 }
3224 ip6_savecontrol(in6p, &in6p->in6p_options,
3225 mtod(m, struct ip6_hdr *), m);
3226 }
3227 #endif
3228
3229 #if defined(IPSEC) || defined(FAST_IPSEC)
3230 /*
3231 * we make a copy of policy, instead of sharing the policy,
3232 * for better behavior in terms of SA lookup and dead SA removal.
3233 */
3234 if (inp) {
3235 /* copy old policy into new socket's */
3236 if (ipsec_copy_pcbpolicy(sotoinpcb(oso)->inp_sp, inp->inp_sp))
3237 printf("tcp_input: could not copy policy\n");
3238 }
3239 #ifdef INET6
3240 else if (in6p) {
3241 /* copy old policy into new socket's */
3242 if (ipsec_copy_pcbpolicy(sotoin6pcb(oso)->in6p_sp,
3243 in6p->in6p_sp))
3244 printf("tcp_input: could not copy policy\n");
3245 }
3246 #endif
3247 #endif
3248
3249 /*
3250 * Give the new socket our cached route reference.
3251 */
3252 if (inp)
3253 inp->inp_route = sc->sc_route4; /* struct assignment */
3254 #ifdef INET6
3255 else
3256 in6p->in6p_route = sc->sc_route6;
3257 #endif
3258 sc->sc_route4.ro_rt = NULL;
3259
3260 am = m_get(M_DONTWAIT, MT_SONAME); /* XXX */
3261 if (am == NULL)
3262 goto resetandabort;
3263 MCLAIM(am, &tcp_mowner);
3264 am->m_len = src->sa_len;
3265 bcopy(src, mtod(am, caddr_t), src->sa_len);
3266 if (inp) {
3267 if (in_pcbconnect(inp, am)) {
3268 (void) m_free(am);
3269 goto resetandabort;
3270 }
3271 }
3272 #ifdef INET6
3273 else if (in6p) {
3274 if (src->sa_family == AF_INET) {
3275 /* IPv4 packet to AF_INET6 socket */
3276 struct sockaddr_in6 *sin6;
3277 sin6 = mtod(am, struct sockaddr_in6 *);
3278 am->m_len = sizeof(*sin6);
3279 bzero(sin6, sizeof(*sin6));
3280 sin6->sin6_family = AF_INET6;
3281 sin6->sin6_len = sizeof(*sin6);
3282 sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port;
3283 sin6->sin6_addr.s6_addr16[5] = htons(0xffff);
3284 bcopy(&((struct sockaddr_in *)src)->sin_addr,
3285 &sin6->sin6_addr.s6_addr32[3],
3286 sizeof(sin6->sin6_addr.s6_addr32[3]));
3287 }
3288 if (in6_pcbconnect(in6p, am)) {
3289 (void) m_free(am);
3290 goto resetandabort;
3291 }
3292 }
3293 #endif
3294 else {
3295 (void) m_free(am);
3296 goto resetandabort;
3297 }
3298 (void) m_free(am);
3299
3300 if (inp)
3301 tp = intotcpcb(inp);
3302 #ifdef INET6
3303 else if (in6p)
3304 tp = in6totcpcb(in6p);
3305 #endif
3306 else
3307 tp = NULL;
3308 tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
3309 if (sc->sc_request_r_scale != 15) {
3310 tp->requested_s_scale = sc->sc_requested_s_scale;
3311 tp->request_r_scale = sc->sc_request_r_scale;
3312 tp->snd_scale = sc->sc_requested_s_scale;
3313 tp->rcv_scale = sc->sc_request_r_scale;
3314 tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
3315 }
3316 if (sc->sc_flags & SCF_TIMESTAMP)
3317 tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
3318 tp->ts_timebase = sc->sc_timebase;
3319
3320 tp->t_template = tcp_template(tp);
3321 if (tp->t_template == 0) {
3322 tp = tcp_drop(tp, ENOBUFS); /* destroys socket */
3323 so = NULL;
3324 m_freem(m);
3325 goto abort;
3326 }
3327
3328 tp->iss = sc->sc_iss;
3329 tp->irs = sc->sc_irs;
3330 tcp_sendseqinit(tp);
3331 tcp_rcvseqinit(tp);
3332 tp->t_state = TCPS_SYN_RECEIVED;
3333 TCP_TIMER_ARM(tp, TCPT_KEEP, TCPTV_KEEP_INIT);
3334 tcpstat.tcps_accepts++;
3335
3336 /* Initialize tp->t_ourmss before we deal with the peer's! */
3337 tp->t_ourmss = sc->sc_ourmaxseg;
3338 tcp_mss_from_peer(tp, sc->sc_peermaxseg);
3339
3340 /*
3341 * Initialize the initial congestion window. If we
3342 * had to retransmit the SYN,ACK, we must initialize cwnd
3343 * to 1 segment (i.e. the Loss Window).
3344 */
3345 if (sc->sc_rxtshift)
3346 tp->snd_cwnd = tp->t_peermss;
3347 else {
3348 int ss = tcp_init_win;
3349 #ifdef INET
3350 if (inp != NULL && in_localaddr(inp->inp_faddr))
3351 ss = tcp_init_win_local;
3352 #endif
3353 #ifdef INET6
3354 if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
3355 ss = tcp_init_win_local;
3356 #endif
3357 tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
3358 }
3359
3360 tcp_rmx_rtt(tp);
3361 tp->snd_wl1 = sc->sc_irs;
3362 tp->rcv_up = sc->sc_irs + 1;
3363
3364 /*
3365 * This is what whould have happened in tcp_output() when
3366 * the SYN,ACK was sent.
3367 */
3368 tp->snd_up = tp->snd_una;
3369 tp->snd_max = tp->snd_nxt = tp->iss+1;
3370 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
3371 if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
3372 tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
3373 tp->last_ack_sent = tp->rcv_nxt;
3374
3375 tcpstat.tcps_sc_completed++;
3376 SYN_CACHE_PUT(sc);
3377 return (so);
3378
3379 resetandabort:
3380 (void) tcp_respond(NULL, m, m, th,
3381 th->th_seq + tlen, (tcp_seq)0, TH_RST|TH_ACK);
3382 abort:
3383 if (so != NULL)
3384 (void) soabort(so);
3385 SYN_CACHE_PUT(sc);
3386 tcpstat.tcps_sc_aborted++;
3387 return ((struct socket *)(-1));
3388 }
3389
3390 /*
3391 * This function is called when we get a RST for a
3392 * non-existent connection, so that we can see if the
3393 * connection is in the syn cache. If it is, zap it.
3394 */
3395
3396 void
3397 syn_cache_reset(src, dst, th)
3398 struct sockaddr *src;
3399 struct sockaddr *dst;
3400 struct tcphdr *th;
3401 {
3402 struct syn_cache *sc;
3403 struct syn_cache_head *scp;
3404 int s = splsoftnet();
3405
3406 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3407 splx(s);
3408 return;
3409 }
3410 if (SEQ_LT(th->th_seq, sc->sc_irs) ||
3411 SEQ_GT(th->th_seq, sc->sc_irs+1)) {
3412 splx(s);
3413 return;
3414 }
3415 SYN_CACHE_RM(sc);
3416 splx(s);
3417 tcpstat.tcps_sc_reset++;
3418 SYN_CACHE_PUT(sc);
3419 }
3420
3421 void
3422 syn_cache_unreach(src, dst, th)
3423 struct sockaddr *src;
3424 struct sockaddr *dst;
3425 struct tcphdr *th;
3426 {
3427 struct syn_cache *sc;
3428 struct syn_cache_head *scp;
3429 int s;
3430
3431 s = splsoftnet();
3432 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3433 splx(s);
3434 return;
3435 }
3436 /* If the sequence number != sc_iss, then it's a bogus ICMP msg */
3437 if (ntohl (th->th_seq) != sc->sc_iss) {
3438 splx(s);
3439 return;
3440 }
3441
3442 /*
3443 * If we've retransmitted 3 times and this is our second error,
3444 * we remove the entry. Otherwise, we allow it to continue on.
3445 * This prevents us from incorrectly nuking an entry during a
3446 * spurious network outage.
3447 *
3448 * See tcp_notify().
3449 */
3450 if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
3451 sc->sc_flags |= SCF_UNREACH;
3452 splx(s);
3453 return;
3454 }
3455
3456 SYN_CACHE_RM(sc);
3457 splx(s);
3458 tcpstat.tcps_sc_unreach++;
3459 SYN_CACHE_PUT(sc);
3460 }
3461
3462 /*
3463 * Given a LISTEN socket and an inbound SYN request, add
3464 * this to the syn cache, and send back a segment:
3465 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
3466 * to the source.
3467 *
3468 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
3469 * Doing so would require that we hold onto the data and deliver it
3470 * to the application. However, if we are the target of a SYN-flood
3471 * DoS attack, an attacker could send data which would eventually
3472 * consume all available buffer space if it were ACKed. By not ACKing
3473 * the data, we avoid this DoS scenario.
3474 */
3475
3476 int
3477 syn_cache_add(src, dst, th, hlen, so, m, optp, optlen, oi)
3478 struct sockaddr *src;
3479 struct sockaddr *dst;
3480 struct tcphdr *th;
3481 unsigned int hlen;
3482 struct socket *so;
3483 struct mbuf *m;
3484 u_char *optp;
3485 int optlen;
3486 struct tcp_opt_info *oi;
3487 {
3488 struct tcpcb tb, *tp;
3489 long win;
3490 struct syn_cache *sc;
3491 struct syn_cache_head *scp;
3492 struct mbuf *ipopts;
3493
3494 tp = sototcpcb(so);
3495
3496 /*
3497 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
3498 *
3499 * Note this check is performed in tcp_input() very early on.
3500 */
3501
3502 /*
3503 * Initialize some local state.
3504 */
3505 win = sbspace(&so->so_rcv);
3506 if (win > TCP_MAXWIN)
3507 win = TCP_MAXWIN;
3508
3509 switch (src->sa_family) {
3510 #ifdef INET
3511 case AF_INET:
3512 /*
3513 * Remember the IP options, if any.
3514 */
3515 ipopts = ip_srcroute();
3516 break;
3517 #endif
3518 default:
3519 ipopts = NULL;
3520 }
3521
3522 if (optp) {
3523 tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
3524 tcp_dooptions(&tb, optp, optlen, th, oi);
3525 } else
3526 tb.t_flags = 0;
3527
3528 /*
3529 * See if we already have an entry for this connection.
3530 * If we do, resend the SYN,ACK. We do not count this
3531 * as a retransmission (XXX though maybe we should).
3532 */
3533 if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
3534 tcpstat.tcps_sc_dupesyn++;
3535 if (ipopts) {
3536 /*
3537 * If we were remembering a previous source route,
3538 * forget it and use the new one we've been given.
3539 */
3540 if (sc->sc_ipopts)
3541 (void) m_free(sc->sc_ipopts);
3542 sc->sc_ipopts = ipopts;
3543 }
3544 sc->sc_timestamp = tb.ts_recent;
3545 if (syn_cache_respond(sc, m) == 0) {
3546 tcpstat.tcps_sndacks++;
3547 tcpstat.tcps_sndtotal++;
3548 }
3549 return (1);
3550 }
3551
3552 sc = pool_get(&syn_cache_pool, PR_NOWAIT);
3553 if (sc == NULL) {
3554 if (ipopts)
3555 (void) m_free(ipopts);
3556 return (0);
3557 }
3558
3559 /*
3560 * Fill in the cache, and put the necessary IP and TCP
3561 * options into the reply.
3562 */
3563 bzero(sc, sizeof(struct syn_cache));
3564 callout_init(&sc->sc_timer);
3565 bcopy(src, &sc->sc_src, src->sa_len);
3566 bcopy(dst, &sc->sc_dst, dst->sa_len);
3567 sc->sc_flags = 0;
3568 sc->sc_ipopts = ipopts;
3569 sc->sc_irs = th->th_seq;
3570 switch (src->sa_family) {
3571 #ifdef INET
3572 case AF_INET:
3573 {
3574 struct sockaddr_in *srcin = (void *) src;
3575 struct sockaddr_in *dstin = (void *) dst;
3576
3577 sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
3578 &srcin->sin_addr, dstin->sin_port,
3579 srcin->sin_port, sizeof(dstin->sin_addr), 0);
3580 break;
3581 }
3582 #endif /* INET */
3583 #ifdef INET6
3584 case AF_INET6:
3585 {
3586 struct sockaddr_in6 *srcin6 = (void *) src;
3587 struct sockaddr_in6 *dstin6 = (void *) dst;
3588
3589 sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
3590 &srcin6->sin6_addr, dstin6->sin6_port,
3591 srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
3592 break;
3593 }
3594 #endif /* INET6 */
3595 }
3596 sc->sc_peermaxseg = oi->maxseg;
3597 sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
3598 m->m_pkthdr.rcvif : NULL,
3599 sc->sc_src.sa.sa_family);
3600 sc->sc_win = win;
3601 sc->sc_timebase = tcp_now; /* see tcp_newtcpcb() */
3602 sc->sc_timestamp = tb.ts_recent;
3603 if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
3604 (TF_REQ_TSTMP|TF_RCVD_TSTMP))
3605 sc->sc_flags |= SCF_TIMESTAMP;
3606 if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
3607 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
3608 sc->sc_requested_s_scale = tb.requested_s_scale;
3609 sc->sc_request_r_scale = 0;
3610 while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
3611 TCP_MAXWIN << sc->sc_request_r_scale <
3612 so->so_rcv.sb_hiwat)
3613 sc->sc_request_r_scale++;
3614 } else {
3615 sc->sc_requested_s_scale = 15;
3616 sc->sc_request_r_scale = 15;
3617 }
3618 sc->sc_tp = tp;
3619 if (syn_cache_respond(sc, m) == 0) {
3620 syn_cache_insert(sc, tp);
3621 tcpstat.tcps_sndacks++;
3622 tcpstat.tcps_sndtotal++;
3623 } else {
3624 SYN_CACHE_PUT(sc);
3625 tcpstat.tcps_sc_dropped++;
3626 }
3627 return (1);
3628 }
3629
3630 int
3631 syn_cache_respond(sc, m)
3632 struct syn_cache *sc;
3633 struct mbuf *m;
3634 {
3635 struct route *ro;
3636 u_int8_t *optp;
3637 int optlen, error;
3638 u_int16_t tlen;
3639 struct ip *ip = NULL;
3640 #ifdef INET6
3641 struct ip6_hdr *ip6 = NULL;
3642 #endif
3643 struct tcpcb *tp;
3644 struct tcphdr *th;
3645 u_int hlen;
3646 struct socket *so;
3647
3648 switch (sc->sc_src.sa.sa_family) {
3649 case AF_INET:
3650 hlen = sizeof(struct ip);
3651 ro = &sc->sc_route4;
3652 break;
3653 #ifdef INET6
3654 case AF_INET6:
3655 hlen = sizeof(struct ip6_hdr);
3656 ro = (struct route *)&sc->sc_route6;
3657 break;
3658 #endif
3659 default:
3660 if (m)
3661 m_freem(m);
3662 return (EAFNOSUPPORT);
3663 }
3664
3665 /* Compute the size of the TCP options. */
3666 optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
3667 ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
3668
3669 tlen = hlen + sizeof(struct tcphdr) + optlen;
3670
3671 /*
3672 * Create the IP+TCP header from scratch.
3673 */
3674 if (m)
3675 m_freem(m);
3676 #ifdef DIAGNOSTIC
3677 if (max_linkhdr + tlen > MCLBYTES)
3678 return (ENOBUFS);
3679 #endif
3680 MGETHDR(m, M_DONTWAIT, MT_DATA);
3681 if (m && tlen > MHLEN) {
3682 MCLGET(m, M_DONTWAIT);
3683 if ((m->m_flags & M_EXT) == 0) {
3684 m_freem(m);
3685 m = NULL;
3686 }
3687 }
3688 if (m == NULL)
3689 return (ENOBUFS);
3690 MCLAIM(m, &tcp_tx_mowner);
3691
3692 /* Fixup the mbuf. */
3693 m->m_data += max_linkhdr;
3694 m->m_len = m->m_pkthdr.len = tlen;
3695 if (sc->sc_tp) {
3696 tp = sc->sc_tp;
3697 if (tp->t_inpcb)
3698 so = tp->t_inpcb->inp_socket;
3699 #ifdef INET6
3700 else if (tp->t_in6pcb)
3701 so = tp->t_in6pcb->in6p_socket;
3702 #endif
3703 else
3704 so = NULL;
3705 } else
3706 so = NULL;
3707 m->m_pkthdr.rcvif = NULL;
3708 memset(mtod(m, u_char *), 0, tlen);
3709
3710 switch (sc->sc_src.sa.sa_family) {
3711 case AF_INET:
3712 ip = mtod(m, struct ip *);
3713 ip->ip_dst = sc->sc_src.sin.sin_addr;
3714 ip->ip_src = sc->sc_dst.sin.sin_addr;
3715 ip->ip_p = IPPROTO_TCP;
3716 th = (struct tcphdr *)(ip + 1);
3717 th->th_dport = sc->sc_src.sin.sin_port;
3718 th->th_sport = sc->sc_dst.sin.sin_port;
3719 break;
3720 #ifdef INET6
3721 case AF_INET6:
3722 ip6 = mtod(m, struct ip6_hdr *);
3723 ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
3724 ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
3725 ip6->ip6_nxt = IPPROTO_TCP;
3726 /* ip6_plen will be updated in ip6_output() */
3727 th = (struct tcphdr *)(ip6 + 1);
3728 th->th_dport = sc->sc_src.sin6.sin6_port;
3729 th->th_sport = sc->sc_dst.sin6.sin6_port;
3730 break;
3731 #endif
3732 default:
3733 th = NULL;
3734 }
3735
3736 th->th_seq = htonl(sc->sc_iss);
3737 th->th_ack = htonl(sc->sc_irs + 1);
3738 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
3739 th->th_flags = TH_SYN|TH_ACK;
3740 th->th_win = htons(sc->sc_win);
3741 /* th_sum already 0 */
3742 /* th_urp already 0 */
3743
3744 /* Tack on the TCP options. */
3745 optp = (u_int8_t *)(th + 1);
3746 *optp++ = TCPOPT_MAXSEG;
3747 *optp++ = 4;
3748 *optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
3749 *optp++ = sc->sc_ourmaxseg & 0xff;
3750
3751 if (sc->sc_request_r_scale != 15) {
3752 *((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
3753 TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
3754 sc->sc_request_r_scale);
3755 optp += 4;
3756 }
3757
3758 if (sc->sc_flags & SCF_TIMESTAMP) {
3759 u_int32_t *lp = (u_int32_t *)(optp);
3760 /* Form timestamp option as shown in appendix A of RFC 1323. */
3761 *lp++ = htonl(TCPOPT_TSTAMP_HDR);
3762 *lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
3763 *lp = htonl(sc->sc_timestamp);
3764 optp += TCPOLEN_TSTAMP_APPA;
3765 }
3766
3767 /* Compute the packet's checksum. */
3768 switch (sc->sc_src.sa.sa_family) {
3769 case AF_INET:
3770 ip->ip_len = htons(tlen - hlen);
3771 th->th_sum = 0;
3772 th->th_sum = in_cksum(m, tlen);
3773 break;
3774 #ifdef INET6
3775 case AF_INET6:
3776 ip6->ip6_plen = htons(tlen - hlen);
3777 th->th_sum = 0;
3778 th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
3779 break;
3780 #endif
3781 }
3782
3783 /*
3784 * Fill in some straggling IP bits. Note the stack expects
3785 * ip_len to be in host order, for convenience.
3786 */
3787 switch (sc->sc_src.sa.sa_family) {
3788 #ifdef INET
3789 case AF_INET:
3790 ip->ip_len = htons(tlen);
3791 ip->ip_ttl = ip_defttl;
3792 /* XXX tos? */
3793 break;
3794 #endif
3795 #ifdef INET6
3796 case AF_INET6:
3797 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
3798 ip6->ip6_vfc |= IPV6_VERSION;
3799 ip6->ip6_plen = htons(tlen - hlen);
3800 /* ip6_hlim will be initialized afterwards */
3801 /* XXX flowlabel? */
3802 break;
3803 #endif
3804 }
3805
3806 /* XXX use IPsec policy on listening socket, on SYN ACK */
3807 tp = sc->sc_tp;
3808
3809 switch (sc->sc_src.sa.sa_family) {
3810 #ifdef INET
3811 case AF_INET:
3812 error = ip_output(m, sc->sc_ipopts, ro,
3813 (ip_mtudisc ? IP_MTUDISC : 0),
3814 (struct ip_moptions *)NULL, so);
3815 break;
3816 #endif
3817 #ifdef INET6
3818 case AF_INET6:
3819 ip6->ip6_hlim = in6_selecthlim(NULL,
3820 ro->ro_rt ? ro->ro_rt->rt_ifp : NULL);
3821
3822 error = ip6_output(m, NULL /*XXX*/, (struct route_in6 *)ro, 0,
3823 (struct ip6_moptions *)0, so, NULL);
3824 break;
3825 #endif
3826 default:
3827 error = EAFNOSUPPORT;
3828 break;
3829 }
3830 return (error);
3831 }
3832