tcp_input.c revision 1.193 1 /* $NetBSD: tcp_input.c,v 1.193 2004/04/17 23:35:37 matt Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * @(#)COPYRIGHT 1.1 (NRL) 17 January 1995
34 *
35 * NRL grants permission for redistribution and use in source and binary
36 * forms, with or without modification, of the software and documentation
37 * created at NRL provided that the following conditions are met:
38 *
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgements:
46 * This product includes software developed by the University of
47 * California, Berkeley and its contributors.
48 * This product includes software developed at the Information
49 * Technology Division, US Naval Research Laboratory.
50 * 4. Neither the name of the NRL nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
55 * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
57 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NRL OR
58 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
59 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
61 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
62 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
63 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
64 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65 *
66 * The views and conclusions contained in the software and documentation
67 * are those of the authors and should not be interpreted as representing
68 * official policies, either expressed or implied, of the US Naval
69 * Research Laboratory (NRL).
70 */
71
72 /*-
73 * Copyright (c) 1997, 1998, 1999, 2001 The NetBSD Foundation, Inc.
74 * All rights reserved.
75 *
76 * This code is derived from software contributed to The NetBSD Foundation
77 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
78 * Facility, NASA Ames Research Center.
79 *
80 * Redistribution and use in source and binary forms, with or without
81 * modification, are permitted provided that the following conditions
82 * are met:
83 * 1. Redistributions of source code must retain the above copyright
84 * notice, this list of conditions and the following disclaimer.
85 * 2. Redistributions in binary form must reproduce the above copyright
86 * notice, this list of conditions and the following disclaimer in the
87 * documentation and/or other materials provided with the distribution.
88 * 3. All advertising materials mentioning features or use of this software
89 * must display the following acknowledgement:
90 * This product includes software developed by the NetBSD
91 * Foundation, Inc. and its contributors.
92 * 4. Neither the name of The NetBSD Foundation nor the names of its
93 * contributors may be used to endorse or promote products derived
94 * from this software without specific prior written permission.
95 *
96 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
97 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
98 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
99 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
100 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
101 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
102 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
103 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
104 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
105 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
106 * POSSIBILITY OF SUCH DAMAGE.
107 */
108
109 /*
110 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
111 * The Regents of the University of California. All rights reserved.
112 *
113 * Redistribution and use in source and binary forms, with or without
114 * modification, are permitted provided that the following conditions
115 * are met:
116 * 1. Redistributions of source code must retain the above copyright
117 * notice, this list of conditions and the following disclaimer.
118 * 2. Redistributions in binary form must reproduce the above copyright
119 * notice, this list of conditions and the following disclaimer in the
120 * documentation and/or other materials provided with the distribution.
121 * 3. Neither the name of the University nor the names of its contributors
122 * may be used to endorse or promote products derived from this software
123 * without specific prior written permission.
124 *
125 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
126 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
127 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
128 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
129 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
130 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
131 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
132 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
133 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
134 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
135 * SUCH DAMAGE.
136 *
137 * @(#)tcp_input.c 8.12 (Berkeley) 5/24/95
138 */
139
140 /*
141 * TODO list for SYN cache stuff:
142 *
143 * Find room for a "state" field, which is needed to keep a
144 * compressed state for TIME_WAIT TCBs. It's been noted already
145 * that this is fairly important for very high-volume web and
146 * mail servers, which use a large number of short-lived
147 * connections.
148 */
149
150 #include <sys/cdefs.h>
151 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.193 2004/04/17 23:35:37 matt Exp $");
152
153 #include "opt_inet.h"
154 #include "opt_ipsec.h"
155 #include "opt_inet_csum.h"
156 #include "opt_tcp_debug.h"
157
158 #include <sys/param.h>
159 #include <sys/systm.h>
160 #include <sys/malloc.h>
161 #include <sys/mbuf.h>
162 #include <sys/protosw.h>
163 #include <sys/socket.h>
164 #include <sys/socketvar.h>
165 #include <sys/errno.h>
166 #include <sys/syslog.h>
167 #include <sys/pool.h>
168 #include <sys/domain.h>
169 #include <sys/kernel.h>
170
171 #include <net/if.h>
172 #include <net/route.h>
173 #include <net/if_types.h>
174
175 #include <netinet/in.h>
176 #include <netinet/in_systm.h>
177 #include <netinet/ip.h>
178 #include <netinet/in_pcb.h>
179 #include <netinet/in_var.h>
180 #include <netinet/ip_var.h>
181
182 #ifdef INET6
183 #ifndef INET
184 #include <netinet/in.h>
185 #endif
186 #include <netinet/ip6.h>
187 #include <netinet6/ip6_var.h>
188 #include <netinet6/in6_pcb.h>
189 #include <netinet6/ip6_var.h>
190 #include <netinet6/in6_var.h>
191 #include <netinet/icmp6.h>
192 #include <netinet6/nd6.h>
193 #endif
194
195 #ifndef INET6
196 /* always need ip6.h for IP6_EXTHDR_GET */
197 #include <netinet/ip6.h>
198 #endif
199
200 #include <netinet/tcp.h>
201 #include <netinet/tcp_fsm.h>
202 #include <netinet/tcp_seq.h>
203 #include <netinet/tcp_timer.h>
204 #include <netinet/tcp_var.h>
205 #include <netinet/tcpip.h>
206 #include <netinet/tcp_debug.h>
207
208 #include <machine/stdarg.h>
209
210 #ifdef IPSEC
211 #include <netinet6/ipsec.h>
212 #include <netkey/key.h>
213 #endif /*IPSEC*/
214 #ifdef INET6
215 #include "faith.h"
216 #if defined(NFAITH) && NFAITH > 0
217 #include <net/if_faith.h>
218 #endif
219 #endif /* IPSEC */
220
221 #ifdef FAST_IPSEC
222 #include <netipsec/ipsec.h>
223 #include <netipsec/key.h>
224 #ifdef INET6
225 #include <netipsec/ipsec6.h>
226 #endif
227 #endif /* FAST_IPSEC*/
228
229
230 int tcprexmtthresh = 3;
231 int tcp_log_refused;
232
233 static int tcp_rst_ppslim_count = 0;
234 static struct timeval tcp_rst_ppslim_last;
235
236 #define TCP_PAWS_IDLE (24 * 24 * 60 * 60 * PR_SLOWHZ)
237
238 /* for modulo comparisons of timestamps */
239 #define TSTMP_LT(a,b) ((int)((a)-(b)) < 0)
240 #define TSTMP_GEQ(a,b) ((int)((a)-(b)) >= 0)
241
242 /*
243 * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
244 */
245 #ifdef INET6
246 #define ND6_HINT(tp) \
247 do { \
248 if (tp && tp->t_in6pcb && tp->t_family == AF_INET6 && \
249 tp->t_in6pcb->in6p_route.ro_rt) { \
250 nd6_nud_hint(tp->t_in6pcb->in6p_route.ro_rt, NULL, 0); \
251 } \
252 } while (/*CONSTCOND*/ 0)
253 #else
254 #define ND6_HINT(tp)
255 #endif
256
257 /*
258 * Macro to compute ACK transmission behavior. Delay the ACK unless
259 * we have already delayed an ACK (must send an ACK every two segments).
260 * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
261 * option is enabled.
262 */
263 #define TCP_SETUP_ACK(tp, th) \
264 do { \
265 if ((tp)->t_flags & TF_DELACK || \
266 (tcp_ack_on_push && (th)->th_flags & TH_PUSH)) \
267 tp->t_flags |= TF_ACKNOW; \
268 else \
269 TCP_SET_DELACK(tp); \
270 } while (/*CONSTCOND*/ 0)
271
272 /*
273 * Convert TCP protocol fields to host order for easier processing.
274 */
275 #define TCP_FIELDS_TO_HOST(th) \
276 do { \
277 NTOHL((th)->th_seq); \
278 NTOHL((th)->th_ack); \
279 NTOHS((th)->th_win); \
280 NTOHS((th)->th_urp); \
281 } while (/*CONSTCOND*/ 0)
282
283 /*
284 * ... and reverse the above.
285 */
286 #define TCP_FIELDS_TO_NET(th) \
287 do { \
288 HTONL((th)->th_seq); \
289 HTONL((th)->th_ack); \
290 HTONS((th)->th_win); \
291 HTONS((th)->th_urp); \
292 } while (/*CONSTCOND*/ 0)
293
294 #ifdef TCP_CSUM_COUNTERS
295 #include <sys/device.h>
296
297 extern struct evcnt tcp_hwcsum_ok;
298 extern struct evcnt tcp_hwcsum_bad;
299 extern struct evcnt tcp_hwcsum_data;
300 extern struct evcnt tcp_swcsum;
301
302 #define TCP_CSUM_COUNTER_INCR(ev) (ev)->ev_count++
303
304 #else
305
306 #define TCP_CSUM_COUNTER_INCR(ev) /* nothing */
307
308 #endif /* TCP_CSUM_COUNTERS */
309
310 #ifdef TCP_REASS_COUNTERS
311 #include <sys/device.h>
312
313 extern struct evcnt tcp_reass_;
314 extern struct evcnt tcp_reass_empty;
315 extern struct evcnt tcp_reass_iteration[8];
316 extern struct evcnt tcp_reass_prependfirst;
317 extern struct evcnt tcp_reass_prepend;
318 extern struct evcnt tcp_reass_insert;
319 extern struct evcnt tcp_reass_inserttail;
320 extern struct evcnt tcp_reass_append;
321 extern struct evcnt tcp_reass_appendtail;
322 extern struct evcnt tcp_reass_overlaptail;
323 extern struct evcnt tcp_reass_overlapfront;
324 extern struct evcnt tcp_reass_segdup;
325 extern struct evcnt tcp_reass_fragdup;
326
327 #define TCP_REASS_COUNTER_INCR(ev) (ev)->ev_count++
328
329 #else
330
331 #define TCP_REASS_COUNTER_INCR(ev) /* nothing */
332
333 #endif /* TCP_REASS_COUNTERS */
334
335 #ifdef INET
336 static void tcp4_log_refused __P((const struct ip *, const struct tcphdr *));
337 #endif
338 #ifdef INET6
339 static void tcp6_log_refused
340 __P((const struct ip6_hdr *, const struct tcphdr *));
341 #endif
342
343 int
344 tcp_reass(tp, th, m, tlen)
345 struct tcpcb *tp;
346 struct tcphdr *th;
347 struct mbuf *m;
348 int *tlen;
349 {
350 struct ipqent *p, *q, *nq, *tiqe = NULL;
351 struct socket *so = NULL;
352 int pkt_flags;
353 tcp_seq pkt_seq;
354 unsigned pkt_len;
355 u_long rcvpartdupbyte = 0;
356 u_long rcvoobyte;
357 #ifdef TCP_REASS_COUNTERS
358 u_int count = 0;
359 #endif
360
361 if (tp->t_inpcb)
362 so = tp->t_inpcb->inp_socket;
363 #ifdef INET6
364 else if (tp->t_in6pcb)
365 so = tp->t_in6pcb->in6p_socket;
366 #endif
367
368 TCP_REASS_LOCK_CHECK(tp);
369
370 /*
371 * Call with th==0 after become established to
372 * force pre-ESTABLISHED data up to user socket.
373 */
374 if (th == 0)
375 goto present;
376
377 rcvoobyte = *tlen;
378 /*
379 * Copy these to local variables because the tcpiphdr
380 * gets munged while we are collapsing mbufs.
381 */
382 pkt_seq = th->th_seq;
383 pkt_len = *tlen;
384 pkt_flags = th->th_flags;
385
386 TCP_REASS_COUNTER_INCR(&tcp_reass_);
387
388 if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
389 /*
390 * When we miss a packet, the vast majority of time we get
391 * packets that follow it in order. So optimize for that.
392 */
393 if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
394 p->ipqe_len += pkt_len;
395 p->ipqe_flags |= pkt_flags;
396 m_cat(p->ipqe_m, m);
397 m = NULL;
398 tiqe = p;
399 TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
400 TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
401 goto skip_replacement;
402 }
403 /*
404 * While we're here, if the pkt is completely beyond
405 * anything we have, just insert it at the tail.
406 */
407 if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
408 TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
409 goto insert_it;
410 }
411 }
412
413 q = TAILQ_FIRST(&tp->segq);
414
415 if (q != NULL) {
416 /*
417 * If this segment immediately precedes the first out-of-order
418 * block, simply slap the segment in front of it and (mostly)
419 * skip the complicated logic.
420 */
421 if (pkt_seq + pkt_len == q->ipqe_seq) {
422 q->ipqe_seq = pkt_seq;
423 q->ipqe_len += pkt_len;
424 q->ipqe_flags |= pkt_flags;
425 m_cat(m, q->ipqe_m);
426 q->ipqe_m = m;
427 tiqe = q;
428 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
429 TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
430 goto skip_replacement;
431 }
432 } else {
433 TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
434 }
435
436 /*
437 * Find a segment which begins after this one does.
438 */
439 for (p = NULL; q != NULL; q = nq) {
440 nq = TAILQ_NEXT(q, ipqe_q);
441 #ifdef TCP_REASS_COUNTERS
442 count++;
443 #endif
444 /*
445 * If the received segment is just right after this
446 * fragment, merge the two together and then check
447 * for further overlaps.
448 */
449 if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
450 #ifdef TCPREASS_DEBUG
451 printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
452 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
453 q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
454 #endif
455 pkt_len += q->ipqe_len;
456 pkt_flags |= q->ipqe_flags;
457 pkt_seq = q->ipqe_seq;
458 m_cat(q->ipqe_m, m);
459 m = q->ipqe_m;
460 TCP_REASS_COUNTER_INCR(&tcp_reass_append);
461 goto free_ipqe;
462 }
463 /*
464 * If the received segment is completely past this
465 * fragment, we need to go the next fragment.
466 */
467 if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
468 p = q;
469 continue;
470 }
471 /*
472 * If the fragment is past the received segment,
473 * it (or any following) can't be concatenated.
474 */
475 if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
476 TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
477 break;
478 }
479
480 /*
481 * We've received all the data in this segment before.
482 * mark it as a duplicate and return.
483 */
484 if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
485 SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
486 tcpstat.tcps_rcvduppack++;
487 tcpstat.tcps_rcvdupbyte += pkt_len;
488 m_freem(m);
489 if (tiqe != NULL)
490 pool_put(&ipqent_pool, tiqe);
491 TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
492 return (0);
493 }
494 /*
495 * Received segment completely overlaps this fragment
496 * so we drop the fragment (this keeps the temporal
497 * ordering of segments correct).
498 */
499 if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
500 SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
501 rcvpartdupbyte += q->ipqe_len;
502 m_freem(q->ipqe_m);
503 TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
504 goto free_ipqe;
505 }
506 /*
507 * RX'ed segment extends past the end of the
508 * fragment. Drop the overlapping bytes. Then
509 * merge the fragment and segment then treat as
510 * a longer received packet.
511 */
512 if (SEQ_LT(q->ipqe_seq, pkt_seq) &&
513 SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
514 int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
515 #ifdef TCPREASS_DEBUG
516 printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
517 tp, overlap,
518 pkt_seq, pkt_seq + pkt_len, pkt_len);
519 #endif
520 m_adj(m, overlap);
521 rcvpartdupbyte += overlap;
522 m_cat(q->ipqe_m, m);
523 m = q->ipqe_m;
524 pkt_seq = q->ipqe_seq;
525 pkt_len += q->ipqe_len - overlap;
526 rcvoobyte -= overlap;
527 TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
528 goto free_ipqe;
529 }
530 /*
531 * RX'ed segment extends past the front of the
532 * fragment. Drop the overlapping bytes on the
533 * received packet. The packet will then be
534 * contatentated with this fragment a bit later.
535 */
536 if (SEQ_GT(q->ipqe_seq, pkt_seq) &&
537 SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len)) {
538 int overlap = pkt_seq + pkt_len - q->ipqe_seq;
539 #ifdef TCPREASS_DEBUG
540 printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
541 tp, overlap,
542 pkt_seq, pkt_seq + pkt_len, pkt_len);
543 #endif
544 m_adj(m, -overlap);
545 pkt_len -= overlap;
546 rcvpartdupbyte += overlap;
547 TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
548 rcvoobyte -= overlap;
549 }
550 /*
551 * If the received segment immediates precedes this
552 * fragment then tack the fragment onto this segment
553 * and reinsert the data.
554 */
555 if (q->ipqe_seq == pkt_seq + pkt_len) {
556 #ifdef TCPREASS_DEBUG
557 printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
558 tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
559 pkt_seq, pkt_seq + pkt_len, pkt_len);
560 #endif
561 pkt_len += q->ipqe_len;
562 pkt_flags |= q->ipqe_flags;
563 m_cat(m, q->ipqe_m);
564 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
565 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
566 if (tiqe == NULL)
567 tiqe = q;
568 else
569 pool_put(&ipqent_pool, q);
570 TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
571 break;
572 }
573 /*
574 * If the fragment is before the segment, remember it.
575 * When this loop is terminated, p will contain the
576 * pointer to fragment that is right before the received
577 * segment.
578 */
579 if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
580 p = q;
581
582 continue;
583
584 /*
585 * This is a common operation. It also will allow
586 * to save doing a malloc/free in most instances.
587 */
588 free_ipqe:
589 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
590 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
591 if (tiqe == NULL)
592 tiqe = q;
593 else
594 pool_put(&ipqent_pool, q);
595 }
596
597 #ifdef TCP_REASS_COUNTERS
598 if (count > 7)
599 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
600 else if (count > 0)
601 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
602 #endif
603
604 insert_it:
605
606 /*
607 * Allocate a new queue entry since the received segment did not
608 * collapse onto any other out-of-order block; thus we are allocating
609 * a new block. If it had collapsed, tiqe would not be NULL and
610 * we would be reusing it.
611 * XXX If we can't, just drop the packet. XXX
612 */
613 if (tiqe == NULL) {
614 tiqe = pool_get(&ipqent_pool, PR_NOWAIT);
615 if (tiqe == NULL) {
616 tcpstat.tcps_rcvmemdrop++;
617 m_freem(m);
618 return (0);
619 }
620 }
621
622 /*
623 * Update the counters.
624 */
625 tcpstat.tcps_rcvoopack++;
626 tcpstat.tcps_rcvoobyte += rcvoobyte;
627 if (rcvpartdupbyte) {
628 tcpstat.tcps_rcvpartduppack++;
629 tcpstat.tcps_rcvpartdupbyte += rcvpartdupbyte;
630 }
631
632 /*
633 * Insert the new fragment queue entry into both queues.
634 */
635 tiqe->ipqe_m = m;
636 tiqe->ipqe_seq = pkt_seq;
637 tiqe->ipqe_len = pkt_len;
638 tiqe->ipqe_flags = pkt_flags;
639 if (p == NULL) {
640 TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
641 #ifdef TCPREASS_DEBUG
642 if (tiqe->ipqe_seq != tp->rcv_nxt)
643 printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
644 tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
645 #endif
646 } else {
647 TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
648 #ifdef TCPREASS_DEBUG
649 printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
650 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
651 p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
652 #endif
653 }
654
655 skip_replacement:
656
657 TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
658
659 present:
660 /*
661 * Present data to user, advancing rcv_nxt through
662 * completed sequence space.
663 */
664 if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
665 return (0);
666 q = TAILQ_FIRST(&tp->segq);
667 if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
668 return (0);
669 if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
670 return (0);
671
672 tp->rcv_nxt += q->ipqe_len;
673 pkt_flags = q->ipqe_flags & TH_FIN;
674 ND6_HINT(tp);
675
676 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
677 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
678 if (so->so_state & SS_CANTRCVMORE)
679 m_freem(q->ipqe_m);
680 else
681 sbappendstream(&so->so_rcv, q->ipqe_m);
682 pool_put(&ipqent_pool, q);
683 sorwakeup(so);
684 return (pkt_flags);
685 }
686
687 #ifdef INET6
688 int
689 tcp6_input(mp, offp, proto)
690 struct mbuf **mp;
691 int *offp, proto;
692 {
693 struct mbuf *m = *mp;
694
695 /*
696 * draft-itojun-ipv6-tcp-to-anycast
697 * better place to put this in?
698 */
699 if (m->m_flags & M_ANYCAST6) {
700 struct ip6_hdr *ip6;
701 if (m->m_len < sizeof(struct ip6_hdr)) {
702 if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
703 tcpstat.tcps_rcvshort++;
704 return IPPROTO_DONE;
705 }
706 }
707 ip6 = mtod(m, struct ip6_hdr *);
708 icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
709 (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
710 return IPPROTO_DONE;
711 }
712
713 tcp_input(m, *offp, proto);
714 return IPPROTO_DONE;
715 }
716 #endif
717
718 #ifdef INET
719 static void
720 tcp4_log_refused(ip, th)
721 const struct ip *ip;
722 const struct tcphdr *th;
723 {
724 char src[4*sizeof "123"];
725 char dst[4*sizeof "123"];
726
727 if (ip) {
728 strlcpy(src, inet_ntoa(ip->ip_src), sizeof(src));
729 strlcpy(dst, inet_ntoa(ip->ip_dst), sizeof(dst));
730 }
731 else {
732 strlcpy(src, "(unknown)", sizeof(src));
733 strlcpy(dst, "(unknown)", sizeof(dst));
734 }
735 log(LOG_INFO,
736 "Connection attempt to TCP %s:%d from %s:%d\n",
737 dst, ntohs(th->th_dport),
738 src, ntohs(th->th_sport));
739 }
740 #endif
741
742 #ifdef INET6
743 static void
744 tcp6_log_refused(ip6, th)
745 const struct ip6_hdr *ip6;
746 const struct tcphdr *th;
747 {
748 char src[INET6_ADDRSTRLEN];
749 char dst[INET6_ADDRSTRLEN];
750
751 if (ip6) {
752 strlcpy(src, ip6_sprintf(&ip6->ip6_src), sizeof(src));
753 strlcpy(dst, ip6_sprintf(&ip6->ip6_dst), sizeof(dst));
754 }
755 else {
756 strlcpy(src, "(unknown v6)", sizeof(src));
757 strlcpy(dst, "(unknown v6)", sizeof(dst));
758 }
759 log(LOG_INFO,
760 "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
761 dst, ntohs(th->th_dport),
762 src, ntohs(th->th_sport));
763 }
764 #endif
765
766 /*
767 * TCP input routine, follows pages 65-76 of the
768 * protocol specification dated September, 1981 very closely.
769 */
770 void
771 #if __STDC__
772 tcp_input(struct mbuf *m, ...)
773 #else
774 tcp_input(m, va_alist)
775 struct mbuf *m;
776 #endif
777 {
778 struct tcphdr *th;
779 struct ip *ip;
780 struct inpcb *inp;
781 #ifdef INET6
782 struct ip6_hdr *ip6;
783 struct in6pcb *in6p;
784 #endif
785 u_int8_t *optp = NULL;
786 int optlen = 0;
787 int len, tlen, toff, hdroptlen = 0;
788 struct tcpcb *tp = 0;
789 int tiflags;
790 struct socket *so = NULL;
791 int todrop, acked, ourfinisacked, needoutput = 0;
792 #ifdef TCP_DEBUG
793 short ostate = 0;
794 #endif
795 int iss = 0;
796 u_long tiwin;
797 struct tcp_opt_info opti;
798 int off, iphlen;
799 va_list ap;
800 int af; /* af on the wire */
801 struct mbuf *tcp_saveti = NULL;
802
803 MCLAIM(m, &tcp_rx_mowner);
804 va_start(ap, m);
805 toff = va_arg(ap, int);
806 (void)va_arg(ap, int); /* ignore value, advance ap */
807 va_end(ap);
808
809 tcpstat.tcps_rcvtotal++;
810
811 bzero(&opti, sizeof(opti));
812 opti.ts_present = 0;
813 opti.maxseg = 0;
814
815 /*
816 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
817 *
818 * TCP is, by definition, unicast, so we reject all
819 * multicast outright.
820 *
821 * Note, there are additional src/dst address checks in
822 * the AF-specific code below.
823 */
824 if (m->m_flags & (M_BCAST|M_MCAST)) {
825 /* XXX stat */
826 goto drop;
827 }
828 #ifdef INET6
829 if (m->m_flags & M_ANYCAST6) {
830 /* XXX stat */
831 goto drop;
832 }
833 #endif
834
835 /*
836 * Get IP and TCP header together in first mbuf.
837 * Note: IP leaves IP header in first mbuf.
838 */
839 ip = mtod(m, struct ip *);
840 #ifdef INET6
841 ip6 = NULL;
842 #endif
843 switch (ip->ip_v) {
844 #ifdef INET
845 case 4:
846 af = AF_INET;
847 iphlen = sizeof(struct ip);
848 ip = mtod(m, struct ip *);
849 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
850 sizeof(struct tcphdr));
851 if (th == NULL) {
852 tcpstat.tcps_rcvshort++;
853 return;
854 }
855 /* We do the checksum after PCB lookup... */
856 len = ntohs(ip->ip_len);
857 tlen = len - toff;
858 break;
859 #endif
860 #ifdef INET6
861 case 6:
862 ip = NULL;
863 iphlen = sizeof(struct ip6_hdr);
864 af = AF_INET6;
865 ip6 = mtod(m, struct ip6_hdr *);
866 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
867 sizeof(struct tcphdr));
868 if (th == NULL) {
869 tcpstat.tcps_rcvshort++;
870 return;
871 }
872
873 /* Be proactive about malicious use of IPv4 mapped address */
874 if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
875 IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
876 /* XXX stat */
877 goto drop;
878 }
879
880 /*
881 * Be proactive about unspecified IPv6 address in source.
882 * As we use all-zero to indicate unbounded/unconnected pcb,
883 * unspecified IPv6 address can be used to confuse us.
884 *
885 * Note that packets with unspecified IPv6 destination is
886 * already dropped in ip6_input.
887 */
888 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
889 /* XXX stat */
890 goto drop;
891 }
892
893 /*
894 * Make sure destination address is not multicast.
895 * Source address checked in ip6_input().
896 */
897 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
898 /* XXX stat */
899 goto drop;
900 }
901
902 /* We do the checksum after PCB lookup... */
903 len = m->m_pkthdr.len;
904 tlen = len - toff;
905 break;
906 #endif
907 default:
908 m_freem(m);
909 return;
910 }
911
912 KASSERT(TCP_HDR_ALIGNED_P(th));
913
914 /*
915 * Check that TCP offset makes sense,
916 * pull out TCP options and adjust length. XXX
917 */
918 off = th->th_off << 2;
919 if (off < sizeof (struct tcphdr) || off > tlen) {
920 tcpstat.tcps_rcvbadoff++;
921 goto drop;
922 }
923 tlen -= off;
924
925 /*
926 * tcp_input() has been modified to use tlen to mean the TCP data
927 * length throughout the function. Other functions can use
928 * m->m_pkthdr.len as the basis for calculating the TCP data length.
929 * rja
930 */
931
932 if (off > sizeof (struct tcphdr)) {
933 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
934 if (th == NULL) {
935 tcpstat.tcps_rcvshort++;
936 return;
937 }
938 /*
939 * NOTE: ip/ip6 will not be affected by m_pulldown()
940 * (as they're before toff) and we don't need to update those.
941 */
942 KASSERT(TCP_HDR_ALIGNED_P(th));
943 optlen = off - sizeof (struct tcphdr);
944 optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
945 /*
946 * Do quick retrieval of timestamp options ("options
947 * prediction?"). If timestamp is the only option and it's
948 * formatted as recommended in RFC 1323 appendix A, we
949 * quickly get the values now and not bother calling
950 * tcp_dooptions(), etc.
951 */
952 if ((optlen == TCPOLEN_TSTAMP_APPA ||
953 (optlen > TCPOLEN_TSTAMP_APPA &&
954 optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
955 *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
956 (th->th_flags & TH_SYN) == 0) {
957 opti.ts_present = 1;
958 opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
959 opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
960 optp = NULL; /* we've parsed the options */
961 }
962 }
963 tiflags = th->th_flags;
964
965 /*
966 * Locate pcb for segment.
967 */
968 findpcb:
969 inp = NULL;
970 #ifdef INET6
971 in6p = NULL;
972 #endif
973 switch (af) {
974 #ifdef INET
975 case AF_INET:
976 inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
977 ip->ip_dst, th->th_dport);
978 if (inp == 0) {
979 ++tcpstat.tcps_pcbhashmiss;
980 inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
981 }
982 #ifdef INET6
983 if (inp == 0) {
984 struct in6_addr s, d;
985
986 /* mapped addr case */
987 bzero(&s, sizeof(s));
988 s.s6_addr16[5] = htons(0xffff);
989 bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
990 bzero(&d, sizeof(d));
991 d.s6_addr16[5] = htons(0xffff);
992 bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
993 in6p = in6_pcblookup_connect(&tcbtable, &s,
994 th->th_sport, &d, th->th_dport, 0);
995 if (in6p == 0) {
996 ++tcpstat.tcps_pcbhashmiss;
997 in6p = in6_pcblookup_bind(&tcbtable, &d,
998 th->th_dport, 0);
999 }
1000 }
1001 #endif
1002 #ifndef INET6
1003 if (inp == 0)
1004 #else
1005 if (inp == 0 && in6p == 0)
1006 #endif
1007 {
1008 ++tcpstat.tcps_noport;
1009 if (tcp_log_refused &&
1010 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1011 tcp4_log_refused(ip, th);
1012 }
1013 TCP_FIELDS_TO_HOST(th);
1014 goto dropwithreset_ratelim;
1015 }
1016 #if defined(IPSEC) || defined(FAST_IPSEC)
1017 if (inp && (inp->inp_socket->so_options & SO_ACCEPTCONN) == 0 &&
1018 ipsec4_in_reject(m, inp)) {
1019 ipsecstat.in_polvio++;
1020 goto drop;
1021 }
1022 #ifdef INET6
1023 else if (in6p &&
1024 (in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 &&
1025 ipsec4_in_reject_so(m, in6p->in6p_socket)) {
1026 ipsecstat.in_polvio++;
1027 goto drop;
1028 }
1029 #endif
1030 #endif /*IPSEC*/
1031 break;
1032 #endif /*INET*/
1033 #ifdef INET6
1034 case AF_INET6:
1035 {
1036 int faith;
1037
1038 #if defined(NFAITH) && NFAITH > 0
1039 faith = faithprefix(&ip6->ip6_dst);
1040 #else
1041 faith = 0;
1042 #endif
1043 in6p = in6_pcblookup_connect(&tcbtable, &ip6->ip6_src,
1044 th->th_sport, &ip6->ip6_dst, th->th_dport, faith);
1045 if (in6p == NULL) {
1046 ++tcpstat.tcps_pcbhashmiss;
1047 in6p = in6_pcblookup_bind(&tcbtable, &ip6->ip6_dst,
1048 th->th_dport, faith);
1049 }
1050 if (in6p == NULL) {
1051 ++tcpstat.tcps_noport;
1052 if (tcp_log_refused &&
1053 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1054 tcp6_log_refused(ip6, th);
1055 }
1056 TCP_FIELDS_TO_HOST(th);
1057 goto dropwithreset_ratelim;
1058 }
1059 #if defined(IPSEC) || defined(FAST_IPSEC)
1060 if ((in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 &&
1061 ipsec6_in_reject(m, in6p)) {
1062 ipsec6stat.in_polvio++;
1063 goto drop;
1064 }
1065 #endif /*IPSEC*/
1066 break;
1067 }
1068 #endif
1069 }
1070
1071 /*
1072 * If the state is CLOSED (i.e., TCB does not exist) then
1073 * all data in the incoming segment is discarded.
1074 * If the TCB exists but is in CLOSED state, it is embryonic,
1075 * but should either do a listen or a connect soon.
1076 */
1077 tp = NULL;
1078 so = NULL;
1079 if (inp) {
1080 tp = intotcpcb(inp);
1081 so = inp->inp_socket;
1082 }
1083 #ifdef INET6
1084 else if (in6p) {
1085 tp = in6totcpcb(in6p);
1086 so = in6p->in6p_socket;
1087 }
1088 #endif
1089 if (tp == 0) {
1090 TCP_FIELDS_TO_HOST(th);
1091 goto dropwithreset_ratelim;
1092 }
1093 if (tp->t_state == TCPS_CLOSED)
1094 goto drop;
1095
1096 /*
1097 * Checksum extended TCP header and data.
1098 */
1099 switch (af) {
1100 #ifdef INET
1101 case AF_INET:
1102 switch (m->m_pkthdr.csum_flags &
1103 ((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
1104 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
1105 case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
1106 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
1107 goto badcsum;
1108
1109 case M_CSUM_TCPv4|M_CSUM_DATA: {
1110 u_int32_t hw_csum = m->m_pkthdr.csum_data;
1111 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
1112 if (m->m_pkthdr.csum_flags & M_CSUM_NO_PSEUDOHDR) {
1113 hw_csum = in_cksum_phdr(ip->ip_src.s_addr,
1114 ip->ip_dst.s_addr,
1115 htons(hw_csum + tlen + off + IPPROTO_TCP));
1116 }
1117 if ((hw_csum ^ 0xffff) != 0)
1118 goto badcsum;
1119 break;
1120 }
1121
1122 case M_CSUM_TCPv4:
1123 /* Checksum was okay. */
1124 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
1125 break;
1126
1127 default:
1128 /* Must compute it ourselves. */
1129 TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
1130 if (in4_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0)
1131 goto badcsum;
1132 break;
1133 }
1134 break;
1135 #endif /* INET4 */
1136
1137 #ifdef INET6
1138 case AF_INET6:
1139 if (in6_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0)
1140 goto badcsum;
1141 break;
1142 #endif /* INET6 */
1143 }
1144
1145 TCP_FIELDS_TO_HOST(th);
1146
1147 /* Unscale the window into a 32-bit value. */
1148 if ((tiflags & TH_SYN) == 0)
1149 tiwin = th->th_win << tp->snd_scale;
1150 else
1151 tiwin = th->th_win;
1152
1153 #ifdef INET6
1154 /* save packet options if user wanted */
1155 if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
1156 if (in6p->in6p_options) {
1157 m_freem(in6p->in6p_options);
1158 in6p->in6p_options = 0;
1159 }
1160 ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
1161 }
1162 #endif
1163
1164 if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
1165 union syn_cache_sa src;
1166 union syn_cache_sa dst;
1167
1168 bzero(&src, sizeof(src));
1169 bzero(&dst, sizeof(dst));
1170 switch (af) {
1171 #ifdef INET
1172 case AF_INET:
1173 src.sin.sin_len = sizeof(struct sockaddr_in);
1174 src.sin.sin_family = AF_INET;
1175 src.sin.sin_addr = ip->ip_src;
1176 src.sin.sin_port = th->th_sport;
1177
1178 dst.sin.sin_len = sizeof(struct sockaddr_in);
1179 dst.sin.sin_family = AF_INET;
1180 dst.sin.sin_addr = ip->ip_dst;
1181 dst.sin.sin_port = th->th_dport;
1182 break;
1183 #endif
1184 #ifdef INET6
1185 case AF_INET6:
1186 src.sin6.sin6_len = sizeof(struct sockaddr_in6);
1187 src.sin6.sin6_family = AF_INET6;
1188 src.sin6.sin6_addr = ip6->ip6_src;
1189 src.sin6.sin6_port = th->th_sport;
1190
1191 dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
1192 dst.sin6.sin6_family = AF_INET6;
1193 dst.sin6.sin6_addr = ip6->ip6_dst;
1194 dst.sin6.sin6_port = th->th_dport;
1195 break;
1196 #endif /* INET6 */
1197 default:
1198 goto badsyn; /*sanity*/
1199 }
1200
1201 if (so->so_options & SO_DEBUG) {
1202 #ifdef TCP_DEBUG
1203 ostate = tp->t_state;
1204 #endif
1205
1206 tcp_saveti = NULL;
1207 if (iphlen + sizeof(struct tcphdr) > MHLEN)
1208 goto nosave;
1209
1210 if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
1211 tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
1212 if (!tcp_saveti)
1213 goto nosave;
1214 } else {
1215 MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
1216 if (!tcp_saveti)
1217 goto nosave;
1218 MCLAIM(m, &tcp_mowner);
1219 tcp_saveti->m_len = iphlen;
1220 m_copydata(m, 0, iphlen,
1221 mtod(tcp_saveti, caddr_t));
1222 }
1223
1224 if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
1225 m_freem(tcp_saveti);
1226 tcp_saveti = NULL;
1227 } else {
1228 tcp_saveti->m_len += sizeof(struct tcphdr);
1229 bcopy(th, mtod(tcp_saveti, caddr_t) + iphlen,
1230 sizeof(struct tcphdr));
1231 }
1232 nosave:;
1233 }
1234 if (so->so_options & SO_ACCEPTCONN) {
1235 if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1236 if (tiflags & TH_RST) {
1237 syn_cache_reset(&src.sa, &dst.sa, th);
1238 } else if ((tiflags & (TH_ACK|TH_SYN)) ==
1239 (TH_ACK|TH_SYN)) {
1240 /*
1241 * Received a SYN,ACK. This should
1242 * never happen while we are in
1243 * LISTEN. Send an RST.
1244 */
1245 goto badsyn;
1246 } else if (tiflags & TH_ACK) {
1247 so = syn_cache_get(&src.sa, &dst.sa,
1248 th, toff, tlen, so, m);
1249 if (so == NULL) {
1250 /*
1251 * We don't have a SYN for
1252 * this ACK; send an RST.
1253 */
1254 goto badsyn;
1255 } else if (so ==
1256 (struct socket *)(-1)) {
1257 /*
1258 * We were unable to create
1259 * the connection. If the
1260 * 3-way handshake was
1261 * completed, and RST has
1262 * been sent to the peer.
1263 * Since the mbuf might be
1264 * in use for the reply,
1265 * do not free it.
1266 */
1267 m = NULL;
1268 } else {
1269 /*
1270 * We have created a
1271 * full-blown connection.
1272 */
1273 tp = NULL;
1274 inp = NULL;
1275 #ifdef INET6
1276 in6p = NULL;
1277 #endif
1278 switch (so->so_proto->pr_domain->dom_family) {
1279 #ifdef INET
1280 case AF_INET:
1281 inp = sotoinpcb(so);
1282 tp = intotcpcb(inp);
1283 break;
1284 #endif
1285 #ifdef INET6
1286 case AF_INET6:
1287 in6p = sotoin6pcb(so);
1288 tp = in6totcpcb(in6p);
1289 break;
1290 #endif
1291 }
1292 if (tp == NULL)
1293 goto badsyn; /*XXX*/
1294 tiwin <<= tp->snd_scale;
1295 goto after_listen;
1296 }
1297 } else {
1298 /*
1299 * None of RST, SYN or ACK was set.
1300 * This is an invalid packet for a
1301 * TCB in LISTEN state. Send a RST.
1302 */
1303 goto badsyn;
1304 }
1305 } else {
1306 /*
1307 * Received a SYN.
1308 */
1309
1310 #ifdef INET6
1311 /*
1312 * If deprecated address is forbidden, we do
1313 * not accept SYN to deprecated interface
1314 * address to prevent any new inbound
1315 * connection from getting established.
1316 * When we do not accept SYN, we send a TCP
1317 * RST, with deprecated source address (instead
1318 * of dropping it). We compromise it as it is
1319 * much better for peer to send a RST, and
1320 * RST will be the final packet for the
1321 * exchange.
1322 *
1323 * If we do not forbid deprecated addresses, we
1324 * accept the SYN packet. RFC2462 does not
1325 * suggest dropping SYN in this case.
1326 * If we decipher RFC2462 5.5.4, it says like
1327 * this:
1328 * 1. use of deprecated addr with existing
1329 * communication is okay - "SHOULD continue
1330 * to be used"
1331 * 2. use of it with new communication:
1332 * (2a) "SHOULD NOT be used if alternate
1333 * address with sufficient scope is
1334 * available"
1335 * (2b) nothing mentioned otherwise.
1336 * Here we fall into (2b) case as we have no
1337 * choice in our source address selection - we
1338 * must obey the peer.
1339 *
1340 * The wording in RFC2462 is confusing, and
1341 * there are multiple description text for
1342 * deprecated address handling - worse, they
1343 * are not exactly the same. I believe 5.5.4
1344 * is the best one, so we follow 5.5.4.
1345 */
1346 if (af == AF_INET6 && !ip6_use_deprecated) {
1347 struct in6_ifaddr *ia6;
1348 if ((ia6 = in6ifa_ifpwithaddr(m->m_pkthdr.rcvif,
1349 &ip6->ip6_dst)) &&
1350 (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1351 tp = NULL;
1352 goto dropwithreset;
1353 }
1354 }
1355 #endif
1356
1357 #ifdef IPSEC
1358 switch (af) {
1359 #ifdef INET
1360 case AF_INET:
1361 if (ipsec4_in_reject_so(m, so)) {
1362 ipsecstat.in_polvio++;
1363 tp = NULL;
1364 goto dropwithreset;
1365 }
1366 break;
1367 #endif
1368 #ifdef INET6
1369 case AF_INET6:
1370 if (ipsec6_in_reject_so(m, so)) {
1371 ipsec6stat.in_polvio++;
1372 tp = NULL;
1373 goto dropwithreset;
1374 }
1375 break;
1376 #endif
1377 }
1378 #endif
1379
1380 /*
1381 * LISTEN socket received a SYN
1382 * from itself? This can't possibly
1383 * be valid; drop the packet.
1384 */
1385 if (th->th_sport == th->th_dport) {
1386 int i;
1387
1388 switch (af) {
1389 #ifdef INET
1390 case AF_INET:
1391 i = in_hosteq(ip->ip_src, ip->ip_dst);
1392 break;
1393 #endif
1394 #ifdef INET6
1395 case AF_INET6:
1396 i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
1397 break;
1398 #endif
1399 default:
1400 i = 1;
1401 }
1402 if (i) {
1403 tcpstat.tcps_badsyn++;
1404 goto drop;
1405 }
1406 }
1407
1408 /*
1409 * SYN looks ok; create compressed TCP
1410 * state for it.
1411 */
1412 if (so->so_qlen <= so->so_qlimit &&
1413 syn_cache_add(&src.sa, &dst.sa, th, tlen,
1414 so, m, optp, optlen, &opti))
1415 m = NULL;
1416 }
1417 goto drop;
1418 }
1419 }
1420
1421 after_listen:
1422 #ifdef DIAGNOSTIC
1423 /*
1424 * Should not happen now that all embryonic connections
1425 * are handled with compressed state.
1426 */
1427 if (tp->t_state == TCPS_LISTEN)
1428 panic("tcp_input: TCPS_LISTEN");
1429 #endif
1430
1431 /*
1432 * Segment received on connection.
1433 * Reset idle time and keep-alive timer.
1434 */
1435 tp->t_rcvtime = tcp_now;
1436 if (TCPS_HAVEESTABLISHED(tp->t_state))
1437 TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1438
1439 /*
1440 * Process options.
1441 */
1442 if (optp)
1443 tcp_dooptions(tp, optp, optlen, th, &opti);
1444
1445 /*
1446 * Header prediction: check for the two common cases
1447 * of a uni-directional data xfer. If the packet has
1448 * no control flags, is in-sequence, the window didn't
1449 * change and we're not retransmitting, it's a
1450 * candidate. If the length is zero and the ack moved
1451 * forward, we're the sender side of the xfer. Just
1452 * free the data acked & wake any higher level process
1453 * that was blocked waiting for space. If the length
1454 * is non-zero and the ack didn't move, we're the
1455 * receiver side. If we're getting packets in-order
1456 * (the reassembly queue is empty), add the data to
1457 * the socket buffer and note that we need a delayed ack.
1458 */
1459 if (tp->t_state == TCPS_ESTABLISHED &&
1460 (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1461 (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
1462 th->th_seq == tp->rcv_nxt &&
1463 tiwin && tiwin == tp->snd_wnd &&
1464 tp->snd_nxt == tp->snd_max) {
1465
1466 /*
1467 * If last ACK falls within this segment's sequence numbers,
1468 * record the timestamp.
1469 */
1470 if (opti.ts_present &&
1471 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1472 SEQ_LT(tp->last_ack_sent, th->th_seq + tlen)) {
1473 tp->ts_recent_age = TCP_TIMESTAMP(tp);
1474 tp->ts_recent = opti.ts_val;
1475 }
1476
1477 if (tlen == 0) {
1478 if (SEQ_GT(th->th_ack, tp->snd_una) &&
1479 SEQ_LEQ(th->th_ack, tp->snd_max) &&
1480 tp->snd_cwnd >= tp->snd_wnd &&
1481 tp->t_dupacks < tcprexmtthresh) {
1482 /*
1483 * this is a pure ack for outstanding data.
1484 */
1485 ++tcpstat.tcps_predack;
1486 if (opti.ts_present && opti.ts_ecr)
1487 tcp_xmit_timer(tp,
1488 TCP_TIMESTAMP(tp) - opti.ts_ecr + 1);
1489 else if (tp->t_rtttime &&
1490 SEQ_GT(th->th_ack, tp->t_rtseq))
1491 tcp_xmit_timer(tp,
1492 tcp_now - tp->t_rtttime);
1493 acked = th->th_ack - tp->snd_una;
1494 tcpstat.tcps_rcvackpack++;
1495 tcpstat.tcps_rcvackbyte += acked;
1496 ND6_HINT(tp);
1497
1498 if (acked > (tp->t_lastoff - tp->t_inoff))
1499 tp->t_lastm = NULL;
1500 sbdrop(&so->so_snd, acked);
1501 tp->t_lastoff -= acked;
1502
1503 /*
1504 * We want snd_recover to track snd_una to
1505 * avoid sequence wraparound problems for
1506 * very large transfers.
1507 */
1508 tp->snd_una = tp->snd_recover = th->th_ack;
1509 m_freem(m);
1510
1511 /*
1512 * If all outstanding data are acked, stop
1513 * retransmit timer, otherwise restart timer
1514 * using current (possibly backed-off) value.
1515 * If process is waiting for space,
1516 * wakeup/selwakeup/signal. If data
1517 * are ready to send, let tcp_output
1518 * decide between more output or persist.
1519 */
1520 if (tp->snd_una == tp->snd_max)
1521 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1522 else if (TCP_TIMER_ISARMED(tp,
1523 TCPT_PERSIST) == 0)
1524 TCP_TIMER_ARM(tp, TCPT_REXMT,
1525 tp->t_rxtcur);
1526
1527 sowwakeup(so);
1528 if (so->so_snd.sb_cc)
1529 (void) tcp_output(tp);
1530 if (tcp_saveti)
1531 m_freem(tcp_saveti);
1532 return;
1533 }
1534 } else if (th->th_ack == tp->snd_una &&
1535 TAILQ_FIRST(&tp->segq) == NULL &&
1536 tlen <= sbspace(&so->so_rcv)) {
1537 /*
1538 * this is a pure, in-sequence data packet
1539 * with nothing on the reassembly queue and
1540 * we have enough buffer space to take it.
1541 */
1542 ++tcpstat.tcps_preddat;
1543 tp->rcv_nxt += tlen;
1544 tcpstat.tcps_rcvpack++;
1545 tcpstat.tcps_rcvbyte += tlen;
1546 ND6_HINT(tp);
1547 /*
1548 * Drop TCP, IP headers and TCP options then add data
1549 * to socket buffer.
1550 */
1551 if (so->so_state & SS_CANTRCVMORE)
1552 m_freem(m);
1553 else {
1554 m_adj(m, toff + off);
1555 sbappendstream(&so->so_rcv, m);
1556 }
1557 sorwakeup(so);
1558 TCP_SETUP_ACK(tp, th);
1559 if (tp->t_flags & TF_ACKNOW)
1560 (void) tcp_output(tp);
1561 if (tcp_saveti)
1562 m_freem(tcp_saveti);
1563 return;
1564 }
1565 }
1566
1567 /*
1568 * Compute mbuf offset to TCP data segment.
1569 */
1570 hdroptlen = toff + off;
1571
1572 /*
1573 * Calculate amount of space in receive window,
1574 * and then do TCP input processing.
1575 * Receive window is amount of space in rcv queue,
1576 * but not less than advertised window.
1577 */
1578 { int win;
1579
1580 win = sbspace(&so->so_rcv);
1581 if (win < 0)
1582 win = 0;
1583 tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1584 }
1585
1586 switch (tp->t_state) {
1587 case TCPS_LISTEN:
1588 /*
1589 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
1590 */
1591 if (m->m_flags & (M_BCAST|M_MCAST))
1592 goto drop;
1593 switch (af) {
1594 #ifdef INET6
1595 case AF_INET6:
1596 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
1597 goto drop;
1598 break;
1599 #endif /* INET6 */
1600 case AF_INET:
1601 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
1602 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
1603 goto drop;
1604 break;
1605 }
1606 break;
1607
1608 /*
1609 * If the state is SYN_SENT:
1610 * if seg contains an ACK, but not for our SYN, drop the input.
1611 * if seg contains a RST, then drop the connection.
1612 * if seg does not contain SYN, then drop it.
1613 * Otherwise this is an acceptable SYN segment
1614 * initialize tp->rcv_nxt and tp->irs
1615 * if seg contains ack then advance tp->snd_una
1616 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1617 * arrange for segment to be acked (eventually)
1618 * continue processing rest of data/controls, beginning with URG
1619 */
1620 case TCPS_SYN_SENT:
1621 if ((tiflags & TH_ACK) &&
1622 (SEQ_LEQ(th->th_ack, tp->iss) ||
1623 SEQ_GT(th->th_ack, tp->snd_max)))
1624 goto dropwithreset;
1625 if (tiflags & TH_RST) {
1626 if (tiflags & TH_ACK)
1627 tp = tcp_drop(tp, ECONNREFUSED);
1628 goto drop;
1629 }
1630 if ((tiflags & TH_SYN) == 0)
1631 goto drop;
1632 if (tiflags & TH_ACK) {
1633 tp->snd_una = tp->snd_recover = th->th_ack;
1634 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1635 tp->snd_nxt = tp->snd_una;
1636 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1637 }
1638 tp->irs = th->th_seq;
1639 tcp_rcvseqinit(tp);
1640 tp->t_flags |= TF_ACKNOW;
1641 tcp_mss_from_peer(tp, opti.maxseg);
1642
1643 /*
1644 * Initialize the initial congestion window. If we
1645 * had to retransmit the SYN, we must initialize cwnd
1646 * to 1 segment (i.e. the Loss Window).
1647 */
1648 if (tp->t_flags & TF_SYN_REXMT)
1649 tp->snd_cwnd = tp->t_peermss;
1650 else {
1651 int ss = tcp_init_win;
1652 #ifdef INET
1653 if (inp != NULL && in_localaddr(inp->inp_faddr))
1654 ss = tcp_init_win_local;
1655 #endif
1656 #ifdef INET6
1657 if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
1658 ss = tcp_init_win_local;
1659 #endif
1660 tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
1661 }
1662
1663 tcp_rmx_rtt(tp);
1664 if (tiflags & TH_ACK) {
1665 tcpstat.tcps_connects++;
1666 soisconnected(so);
1667 tcp_established(tp);
1668 /* Do window scaling on this connection? */
1669 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1670 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1671 tp->snd_scale = tp->requested_s_scale;
1672 tp->rcv_scale = tp->request_r_scale;
1673 }
1674 TCP_REASS_LOCK(tp);
1675 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1676 TCP_REASS_UNLOCK(tp);
1677 /*
1678 * if we didn't have to retransmit the SYN,
1679 * use its rtt as our initial srtt & rtt var.
1680 */
1681 if (tp->t_rtttime)
1682 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
1683 } else
1684 tp->t_state = TCPS_SYN_RECEIVED;
1685
1686 /*
1687 * Advance th->th_seq to correspond to first data byte.
1688 * If data, trim to stay within window,
1689 * dropping FIN if necessary.
1690 */
1691 th->th_seq++;
1692 if (tlen > tp->rcv_wnd) {
1693 todrop = tlen - tp->rcv_wnd;
1694 m_adj(m, -todrop);
1695 tlen = tp->rcv_wnd;
1696 tiflags &= ~TH_FIN;
1697 tcpstat.tcps_rcvpackafterwin++;
1698 tcpstat.tcps_rcvbyteafterwin += todrop;
1699 }
1700 tp->snd_wl1 = th->th_seq - 1;
1701 tp->rcv_up = th->th_seq;
1702 goto step6;
1703
1704 /*
1705 * If the state is SYN_RECEIVED:
1706 * If seg contains an ACK, but not for our SYN, drop the input
1707 * and generate an RST. See page 36, rfc793
1708 */
1709 case TCPS_SYN_RECEIVED:
1710 if ((tiflags & TH_ACK) &&
1711 (SEQ_LEQ(th->th_ack, tp->iss) ||
1712 SEQ_GT(th->th_ack, tp->snd_max)))
1713 goto dropwithreset;
1714 break;
1715 }
1716
1717 /*
1718 * States other than LISTEN or SYN_SENT.
1719 * First check timestamp, if present.
1720 * Then check that at least some bytes of segment are within
1721 * receive window. If segment begins before rcv_nxt,
1722 * drop leading data (and SYN); if nothing left, just ack.
1723 *
1724 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1725 * and it's less than ts_recent, drop it.
1726 */
1727 if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
1728 TSTMP_LT(opti.ts_val, tp->ts_recent)) {
1729
1730 /* Check to see if ts_recent is over 24 days old. */
1731 if ((int)(TCP_TIMESTAMP(tp) - tp->ts_recent_age) >
1732 TCP_PAWS_IDLE) {
1733 /*
1734 * Invalidate ts_recent. If this segment updates
1735 * ts_recent, the age will be reset later and ts_recent
1736 * will get a valid value. If it does not, setting
1737 * ts_recent to zero will at least satisfy the
1738 * requirement that zero be placed in the timestamp
1739 * echo reply when ts_recent isn't valid. The
1740 * age isn't reset until we get a valid ts_recent
1741 * because we don't want out-of-order segments to be
1742 * dropped when ts_recent is old.
1743 */
1744 tp->ts_recent = 0;
1745 } else {
1746 tcpstat.tcps_rcvduppack++;
1747 tcpstat.tcps_rcvdupbyte += tlen;
1748 tcpstat.tcps_pawsdrop++;
1749 goto dropafterack;
1750 }
1751 }
1752
1753 todrop = tp->rcv_nxt - th->th_seq;
1754 if (todrop > 0) {
1755 if (tiflags & TH_SYN) {
1756 tiflags &= ~TH_SYN;
1757 th->th_seq++;
1758 if (th->th_urp > 1)
1759 th->th_urp--;
1760 else {
1761 tiflags &= ~TH_URG;
1762 th->th_urp = 0;
1763 }
1764 todrop--;
1765 }
1766 if (todrop > tlen ||
1767 (todrop == tlen && (tiflags & TH_FIN) == 0)) {
1768 /*
1769 * Any valid FIN or RST must be to the left of the
1770 * window. At this point the FIN or RST must be a
1771 * duplicate or out of sequence; drop it.
1772 */
1773 if (tiflags & TH_RST)
1774 goto drop;
1775 tiflags &= ~(TH_FIN|TH_RST);
1776 /*
1777 * Send an ACK to resynchronize and drop any data.
1778 * But keep on processing for RST or ACK.
1779 */
1780 tp->t_flags |= TF_ACKNOW;
1781 todrop = tlen;
1782 tcpstat.tcps_rcvdupbyte += todrop;
1783 tcpstat.tcps_rcvduppack++;
1784 } else {
1785 tcpstat.tcps_rcvpartduppack++;
1786 tcpstat.tcps_rcvpartdupbyte += todrop;
1787 }
1788 hdroptlen += todrop; /*drop from head afterwards*/
1789 th->th_seq += todrop;
1790 tlen -= todrop;
1791 if (th->th_urp > todrop)
1792 th->th_urp -= todrop;
1793 else {
1794 tiflags &= ~TH_URG;
1795 th->th_urp = 0;
1796 }
1797 }
1798
1799 /*
1800 * If new data are received on a connection after the
1801 * user processes are gone, then RST the other end.
1802 */
1803 if ((so->so_state & SS_NOFDREF) &&
1804 tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1805 tp = tcp_close(tp);
1806 tcpstat.tcps_rcvafterclose++;
1807 goto dropwithreset;
1808 }
1809
1810 /*
1811 * If segment ends after window, drop trailing data
1812 * (and PUSH and FIN); if nothing left, just ACK.
1813 */
1814 todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
1815 if (todrop > 0) {
1816 tcpstat.tcps_rcvpackafterwin++;
1817 if (todrop >= tlen) {
1818 /*
1819 * The segment actually starts after the window.
1820 * th->th_seq + tlen - tp->rcv_nxt - tp->rcv_wnd >= tlen
1821 * th->th_seq - tp->rcv_nxt - tp->rcv_wnd >= 0
1822 * th->th_seq >= tp->rcv_nxt + tp->rcv_wnd
1823 */
1824 tcpstat.tcps_rcvbyteafterwin += tlen;
1825 /*
1826 * If a new connection request is received
1827 * while in TIME_WAIT, drop the old connection
1828 * and start over if the sequence numbers
1829 * are above the previous ones.
1830 *
1831 * NOTE: We will checksum the packet again, and
1832 * so we need to put the header fields back into
1833 * network order!
1834 * XXX This kind of sucks, but we don't expect
1835 * XXX this to happen very often, so maybe it
1836 * XXX doesn't matter so much.
1837 */
1838 if (tiflags & TH_SYN &&
1839 tp->t_state == TCPS_TIME_WAIT &&
1840 SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1841 iss = tcp_new_iss(tp, tp->snd_nxt);
1842 tp = tcp_close(tp);
1843 TCP_FIELDS_TO_NET(th);
1844 goto findpcb;
1845 }
1846 /*
1847 * If window is closed can only take segments at
1848 * window edge, and have to drop data and PUSH from
1849 * incoming segments. Continue processing, but
1850 * remember to ack. Otherwise, drop segment
1851 * and (if not RST) ack.
1852 */
1853 if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1854 tp->t_flags |= TF_ACKNOW;
1855 tcpstat.tcps_rcvwinprobe++;
1856 } else
1857 goto dropafterack;
1858 } else
1859 tcpstat.tcps_rcvbyteafterwin += todrop;
1860 m_adj(m, -todrop);
1861 tlen -= todrop;
1862 tiflags &= ~(TH_PUSH|TH_FIN);
1863 }
1864
1865 /*
1866 * If last ACK falls within this segment's sequence numbers,
1867 * and the timestamp is newer, record it.
1868 */
1869 if (opti.ts_present && TSTMP_GEQ(opti.ts_val, tp->ts_recent) &&
1870 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1871 SEQ_LT(tp->last_ack_sent, th->th_seq + tlen +
1872 ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
1873 tp->ts_recent_age = TCP_TIMESTAMP(tp);
1874 tp->ts_recent = opti.ts_val;
1875 }
1876
1877 /*
1878 * If the RST bit is set examine the state:
1879 * SYN_RECEIVED STATE:
1880 * If passive open, return to LISTEN state.
1881 * If active open, inform user that connection was refused.
1882 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
1883 * Inform user that connection was reset, and close tcb.
1884 * CLOSING, LAST_ACK, TIME_WAIT STATES
1885 * Close the tcb.
1886 */
1887 if (tiflags&TH_RST) switch (tp->t_state) {
1888
1889 case TCPS_SYN_RECEIVED:
1890 so->so_error = ECONNREFUSED;
1891 goto close;
1892
1893 case TCPS_ESTABLISHED:
1894 case TCPS_FIN_WAIT_1:
1895 case TCPS_FIN_WAIT_2:
1896 case TCPS_CLOSE_WAIT:
1897 so->so_error = ECONNRESET;
1898 close:
1899 tp->t_state = TCPS_CLOSED;
1900 tcpstat.tcps_drops++;
1901 tp = tcp_close(tp);
1902 goto drop;
1903
1904 case TCPS_CLOSING:
1905 case TCPS_LAST_ACK:
1906 case TCPS_TIME_WAIT:
1907 tp = tcp_close(tp);
1908 goto drop;
1909 }
1910
1911 /*
1912 * Since we've covered the SYN-SENT and SYN-RECEIVED states above
1913 * we must be in a synchronized state. RFC791 states (under RST
1914 * generation) that any unacceptable segment (an out-of-order SYN
1915 * qualifies) received in a synchronized state must elicit only an
1916 * empty acknowledgment segment ... and the connection remains in
1917 * the same state.
1918 */
1919 if (tiflags & TH_SYN)
1920 goto dropafterack;
1921
1922 /*
1923 * If the ACK bit is off we drop the segment and return.
1924 */
1925 if ((tiflags & TH_ACK) == 0) {
1926 if (tp->t_flags & TF_ACKNOW)
1927 goto dropafterack;
1928 else
1929 goto drop;
1930 }
1931
1932 /*
1933 * Ack processing.
1934 */
1935 switch (tp->t_state) {
1936
1937 /*
1938 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
1939 * ESTABLISHED state and continue processing, otherwise
1940 * send an RST.
1941 */
1942 case TCPS_SYN_RECEIVED:
1943 if (SEQ_GT(tp->snd_una, th->th_ack) ||
1944 SEQ_GT(th->th_ack, tp->snd_max))
1945 goto dropwithreset;
1946 tcpstat.tcps_connects++;
1947 soisconnected(so);
1948 tcp_established(tp);
1949 /* Do window scaling? */
1950 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1951 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1952 tp->snd_scale = tp->requested_s_scale;
1953 tp->rcv_scale = tp->request_r_scale;
1954 }
1955 TCP_REASS_LOCK(tp);
1956 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1957 TCP_REASS_UNLOCK(tp);
1958 tp->snd_wl1 = th->th_seq - 1;
1959 /* fall into ... */
1960
1961 /*
1962 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1963 * ACKs. If the ack is in the range
1964 * tp->snd_una < th->th_ack <= tp->snd_max
1965 * then advance tp->snd_una to th->th_ack and drop
1966 * data from the retransmission queue. If this ACK reflects
1967 * more up to date window information we update our window information.
1968 */
1969 case TCPS_ESTABLISHED:
1970 case TCPS_FIN_WAIT_1:
1971 case TCPS_FIN_WAIT_2:
1972 case TCPS_CLOSE_WAIT:
1973 case TCPS_CLOSING:
1974 case TCPS_LAST_ACK:
1975 case TCPS_TIME_WAIT:
1976
1977 if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
1978 if (tlen == 0 && tiwin == tp->snd_wnd) {
1979 tcpstat.tcps_rcvdupack++;
1980 /*
1981 * If we have outstanding data (other than
1982 * a window probe), this is a completely
1983 * duplicate ack (ie, window info didn't
1984 * change), the ack is the biggest we've
1985 * seen and we've seen exactly our rexmt
1986 * threshhold of them, assume a packet
1987 * has been dropped and retransmit it.
1988 * Kludge snd_nxt & the congestion
1989 * window so we send only this one
1990 * packet.
1991 *
1992 * We know we're losing at the current
1993 * window size so do congestion avoidance
1994 * (set ssthresh to half the current window
1995 * and pull our congestion window back to
1996 * the new ssthresh).
1997 *
1998 * Dup acks mean that packets have left the
1999 * network (they're now cached at the receiver)
2000 * so bump cwnd by the amount in the receiver
2001 * to keep a constant cwnd packets in the
2002 * network.
2003 */
2004 if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
2005 th->th_ack != tp->snd_una)
2006 tp->t_dupacks = 0;
2007 else if (++tp->t_dupacks == tcprexmtthresh) {
2008 tcp_seq onxt = tp->snd_nxt;
2009 u_int win =
2010 min(tp->snd_wnd, tp->snd_cwnd) /
2011 2 / tp->t_segsz;
2012 if (tcp_do_newreno && SEQ_LT(th->th_ack,
2013 tp->snd_recover)) {
2014 /*
2015 * False fast retransmit after
2016 * timeout. Do not cut window.
2017 */
2018 tp->snd_cwnd += tp->t_segsz;
2019 tp->t_dupacks = 0;
2020 (void) tcp_output(tp);
2021 goto drop;
2022 }
2023
2024 if (win < 2)
2025 win = 2;
2026 tp->snd_ssthresh = win * tp->t_segsz;
2027 tp->snd_recover = tp->snd_max;
2028 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2029 tp->t_rtttime = 0;
2030 tp->snd_nxt = th->th_ack;
2031 tp->snd_cwnd = tp->t_segsz;
2032 (void) tcp_output(tp);
2033 tp->snd_cwnd = tp->snd_ssthresh +
2034 tp->t_segsz * tp->t_dupacks;
2035 if (SEQ_GT(onxt, tp->snd_nxt))
2036 tp->snd_nxt = onxt;
2037 goto drop;
2038 } else if (tp->t_dupacks > tcprexmtthresh) {
2039 tp->snd_cwnd += tp->t_segsz;
2040 (void) tcp_output(tp);
2041 goto drop;
2042 }
2043 } else
2044 tp->t_dupacks = 0;
2045 break;
2046 }
2047 /*
2048 * If the congestion window was inflated to account
2049 * for the other side's cached packets, retract it.
2050 */
2051 if (tcp_do_newreno == 0) {
2052 if (tp->t_dupacks >= tcprexmtthresh &&
2053 tp->snd_cwnd > tp->snd_ssthresh)
2054 tp->snd_cwnd = tp->snd_ssthresh;
2055 tp->t_dupacks = 0;
2056 } else if (tp->t_dupacks >= tcprexmtthresh &&
2057 tcp_newreno(tp, th) == 0) {
2058 tp->snd_cwnd = tp->snd_ssthresh;
2059 /*
2060 * Window inflation should have left us with approx.
2061 * snd_ssthresh outstanding data. But in case we
2062 * would be inclined to send a burst, better to do
2063 * it via the slow start mechanism.
2064 */
2065 if (SEQ_SUB(tp->snd_max, th->th_ack) < tp->snd_ssthresh)
2066 tp->snd_cwnd = SEQ_SUB(tp->snd_max, th->th_ack)
2067 + tp->t_segsz;
2068 tp->t_dupacks = 0;
2069 }
2070 if (SEQ_GT(th->th_ack, tp->snd_max)) {
2071 tcpstat.tcps_rcvacktoomuch++;
2072 goto dropafterack;
2073 }
2074 acked = th->th_ack - tp->snd_una;
2075 tcpstat.tcps_rcvackpack++;
2076 tcpstat.tcps_rcvackbyte += acked;
2077
2078 /*
2079 * If we have a timestamp reply, update smoothed
2080 * round trip time. If no timestamp is present but
2081 * transmit timer is running and timed sequence
2082 * number was acked, update smoothed round trip time.
2083 * Since we now have an rtt measurement, cancel the
2084 * timer backoff (cf., Phil Karn's retransmit alg.).
2085 * Recompute the initial retransmit timer.
2086 */
2087 if (opti.ts_present && opti.ts_ecr)
2088 tcp_xmit_timer(tp, TCP_TIMESTAMP(tp) - opti.ts_ecr + 1);
2089 else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2090 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2091
2092 /*
2093 * If all outstanding data is acked, stop retransmit
2094 * timer and remember to restart (more output or persist).
2095 * If there is more data to be acked, restart retransmit
2096 * timer, using current (possibly backed-off) value.
2097 */
2098 if (th->th_ack == tp->snd_max) {
2099 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2100 needoutput = 1;
2101 } else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
2102 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
2103 /*
2104 * When new data is acked, open the congestion window.
2105 * If the window gives us less than ssthresh packets
2106 * in flight, open exponentially (segsz per packet).
2107 * Otherwise open linearly: segsz per window
2108 * (segsz^2 / cwnd per packet), plus a constant
2109 * fraction of a packet (segsz/8) to help larger windows
2110 * open quickly enough.
2111 */
2112 {
2113 u_int cw = tp->snd_cwnd;
2114 u_int incr = tp->t_segsz;
2115
2116 if (cw > tp->snd_ssthresh)
2117 incr = incr * incr / cw;
2118 if (tcp_do_newreno == 0 || SEQ_GEQ(th->th_ack, tp->snd_recover))
2119 tp->snd_cwnd = min(cw + incr,
2120 TCP_MAXWIN << tp->snd_scale);
2121 }
2122 ND6_HINT(tp);
2123 if (acked > so->so_snd.sb_cc) {
2124 tp->snd_wnd -= so->so_snd.sb_cc;
2125 sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
2126 ourfinisacked = 1;
2127 } else {
2128 if (acked > (tp->t_lastoff - tp->t_inoff))
2129 tp->t_lastm = NULL;
2130 sbdrop(&so->so_snd, acked);
2131 tp->t_lastoff -= acked;
2132 tp->snd_wnd -= acked;
2133 ourfinisacked = 0;
2134 }
2135 sowwakeup(so);
2136 /*
2137 * We want snd_recover to track snd_una to
2138 * avoid sequence wraparound problems for
2139 * very large transfers.
2140 */
2141 tp->snd_una = tp->snd_recover = th->th_ack;
2142 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2143 tp->snd_nxt = tp->snd_una;
2144
2145 switch (tp->t_state) {
2146
2147 /*
2148 * In FIN_WAIT_1 STATE in addition to the processing
2149 * for the ESTABLISHED state if our FIN is now acknowledged
2150 * then enter FIN_WAIT_2.
2151 */
2152 case TCPS_FIN_WAIT_1:
2153 if (ourfinisacked) {
2154 /*
2155 * If we can't receive any more
2156 * data, then closing user can proceed.
2157 * Starting the timer is contrary to the
2158 * specification, but if we don't get a FIN
2159 * we'll hang forever.
2160 */
2161 if (so->so_state & SS_CANTRCVMORE) {
2162 soisdisconnected(so);
2163 if (tcp_maxidle > 0)
2164 TCP_TIMER_ARM(tp, TCPT_2MSL,
2165 tcp_maxidle);
2166 }
2167 tp->t_state = TCPS_FIN_WAIT_2;
2168 }
2169 break;
2170
2171 /*
2172 * In CLOSING STATE in addition to the processing for
2173 * the ESTABLISHED state if the ACK acknowledges our FIN
2174 * then enter the TIME-WAIT state, otherwise ignore
2175 * the segment.
2176 */
2177 case TCPS_CLOSING:
2178 if (ourfinisacked) {
2179 tp->t_state = TCPS_TIME_WAIT;
2180 tcp_canceltimers(tp);
2181 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2182 soisdisconnected(so);
2183 }
2184 break;
2185
2186 /*
2187 * In LAST_ACK, we may still be waiting for data to drain
2188 * and/or to be acked, as well as for the ack of our FIN.
2189 * If our FIN is now acknowledged, delete the TCB,
2190 * enter the closed state and return.
2191 */
2192 case TCPS_LAST_ACK:
2193 if (ourfinisacked) {
2194 tp = tcp_close(tp);
2195 goto drop;
2196 }
2197 break;
2198
2199 /*
2200 * In TIME_WAIT state the only thing that should arrive
2201 * is a retransmission of the remote FIN. Acknowledge
2202 * it and restart the finack timer.
2203 */
2204 case TCPS_TIME_WAIT:
2205 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2206 goto dropafterack;
2207 }
2208 }
2209
2210 step6:
2211 /*
2212 * Update window information.
2213 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2214 */
2215 if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2216 (tp->snd_wl1 == th->th_seq && SEQ_LT(tp->snd_wl2, th->th_ack)) ||
2217 (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))) {
2218 /* keep track of pure window updates */
2219 if (tlen == 0 &&
2220 tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2221 tcpstat.tcps_rcvwinupd++;
2222 tp->snd_wnd = tiwin;
2223 tp->snd_wl1 = th->th_seq;
2224 tp->snd_wl2 = th->th_ack;
2225 if (tp->snd_wnd > tp->max_sndwnd)
2226 tp->max_sndwnd = tp->snd_wnd;
2227 needoutput = 1;
2228 }
2229
2230 /*
2231 * Process segments with URG.
2232 */
2233 if ((tiflags & TH_URG) && th->th_urp &&
2234 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2235 /*
2236 * This is a kludge, but if we receive and accept
2237 * random urgent pointers, we'll crash in
2238 * soreceive. It's hard to imagine someone
2239 * actually wanting to send this much urgent data.
2240 */
2241 if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2242 th->th_urp = 0; /* XXX */
2243 tiflags &= ~TH_URG; /* XXX */
2244 goto dodata; /* XXX */
2245 }
2246 /*
2247 * If this segment advances the known urgent pointer,
2248 * then mark the data stream. This should not happen
2249 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2250 * a FIN has been received from the remote side.
2251 * In these states we ignore the URG.
2252 *
2253 * According to RFC961 (Assigned Protocols),
2254 * the urgent pointer points to the last octet
2255 * of urgent data. We continue, however,
2256 * to consider it to indicate the first octet
2257 * of data past the urgent section as the original
2258 * spec states (in one of two places).
2259 */
2260 if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2261 tp->rcv_up = th->th_seq + th->th_urp;
2262 so->so_oobmark = so->so_rcv.sb_cc +
2263 (tp->rcv_up - tp->rcv_nxt) - 1;
2264 if (so->so_oobmark == 0)
2265 so->so_state |= SS_RCVATMARK;
2266 sohasoutofband(so);
2267 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2268 }
2269 /*
2270 * Remove out of band data so doesn't get presented to user.
2271 * This can happen independent of advancing the URG pointer,
2272 * but if two URG's are pending at once, some out-of-band
2273 * data may creep in... ick.
2274 */
2275 if (th->th_urp <= (u_int16_t) tlen
2276 #ifdef SO_OOBINLINE
2277 && (so->so_options & SO_OOBINLINE) == 0
2278 #endif
2279 )
2280 tcp_pulloutofband(so, th, m, hdroptlen);
2281 } else
2282 /*
2283 * If no out of band data is expected,
2284 * pull receive urgent pointer along
2285 * with the receive window.
2286 */
2287 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2288 tp->rcv_up = tp->rcv_nxt;
2289 dodata: /* XXX */
2290
2291 /*
2292 * Process the segment text, merging it into the TCP sequencing queue,
2293 * and arranging for acknowledgement of receipt if necessary.
2294 * This process logically involves adjusting tp->rcv_wnd as data
2295 * is presented to the user (this happens in tcp_usrreq.c,
2296 * case PRU_RCVD). If a FIN has already been received on this
2297 * connection then we just ignore the text.
2298 */
2299 if ((tlen || (tiflags & TH_FIN)) &&
2300 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2301 /*
2302 * Insert segment ti into reassembly queue of tcp with
2303 * control block tp. Return TH_FIN if reassembly now includes
2304 * a segment with FIN. The macro form does the common case
2305 * inline (segment is the next to be received on an
2306 * established connection, and the queue is empty),
2307 * avoiding linkage into and removal from the queue and
2308 * repetition of various conversions.
2309 * Set DELACK for segments received in order, but ack
2310 * immediately when segments are out of order
2311 * (so fast retransmit can work).
2312 */
2313 /* NOTE: this was TCP_REASS() macro, but used only once */
2314 TCP_REASS_LOCK(tp);
2315 if (th->th_seq == tp->rcv_nxt &&
2316 TAILQ_FIRST(&tp->segq) == NULL &&
2317 tp->t_state == TCPS_ESTABLISHED) {
2318 TCP_SETUP_ACK(tp, th);
2319 tp->rcv_nxt += tlen;
2320 tiflags = th->th_flags & TH_FIN;
2321 tcpstat.tcps_rcvpack++;
2322 tcpstat.tcps_rcvbyte += tlen;
2323 ND6_HINT(tp);
2324 if (so->so_state & SS_CANTRCVMORE)
2325 m_freem(m);
2326 else {
2327 m_adj(m, hdroptlen);
2328 sbappendstream(&(so)->so_rcv, m);
2329 }
2330 sorwakeup(so);
2331 } else {
2332 m_adj(m, hdroptlen);
2333 tiflags = tcp_reass(tp, th, m, &tlen);
2334 tp->t_flags |= TF_ACKNOW;
2335 }
2336 TCP_REASS_UNLOCK(tp);
2337
2338 /*
2339 * Note the amount of data that peer has sent into
2340 * our window, in order to estimate the sender's
2341 * buffer size.
2342 */
2343 len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2344 } else {
2345 m_freem(m);
2346 m = NULL;
2347 tiflags &= ~TH_FIN;
2348 }
2349
2350 /*
2351 * If FIN is received ACK the FIN and let the user know
2352 * that the connection is closing. Ignore a FIN received before
2353 * the connection is fully established.
2354 */
2355 if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2356 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2357 socantrcvmore(so);
2358 tp->t_flags |= TF_ACKNOW;
2359 tp->rcv_nxt++;
2360 }
2361 switch (tp->t_state) {
2362
2363 /*
2364 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2365 */
2366 case TCPS_ESTABLISHED:
2367 tp->t_state = TCPS_CLOSE_WAIT;
2368 break;
2369
2370 /*
2371 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2372 * enter the CLOSING state.
2373 */
2374 case TCPS_FIN_WAIT_1:
2375 tp->t_state = TCPS_CLOSING;
2376 break;
2377
2378 /*
2379 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2380 * starting the time-wait timer, turning off the other
2381 * standard timers.
2382 */
2383 case TCPS_FIN_WAIT_2:
2384 tp->t_state = TCPS_TIME_WAIT;
2385 tcp_canceltimers(tp);
2386 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2387 soisdisconnected(so);
2388 break;
2389
2390 /*
2391 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2392 */
2393 case TCPS_TIME_WAIT:
2394 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2395 break;
2396 }
2397 }
2398 #ifdef TCP_DEBUG
2399 if (so->so_options & SO_DEBUG)
2400 tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
2401 #endif
2402
2403 /*
2404 * Return any desired output.
2405 */
2406 if (needoutput || (tp->t_flags & TF_ACKNOW))
2407 (void) tcp_output(tp);
2408 if (tcp_saveti)
2409 m_freem(tcp_saveti);
2410 return;
2411
2412 badsyn:
2413 /*
2414 * Received a bad SYN. Increment counters and dropwithreset.
2415 */
2416 tcpstat.tcps_badsyn++;
2417 tp = NULL;
2418 goto dropwithreset;
2419
2420 dropafterack:
2421 /*
2422 * Generate an ACK dropping incoming segment if it occupies
2423 * sequence space, where the ACK reflects our state.
2424 */
2425 if (tiflags & TH_RST)
2426 goto drop;
2427 m_freem(m);
2428 tp->t_flags |= TF_ACKNOW;
2429 (void) tcp_output(tp);
2430 if (tcp_saveti)
2431 m_freem(tcp_saveti);
2432 return;
2433
2434 dropwithreset_ratelim:
2435 /*
2436 * We may want to rate-limit RSTs in certain situations,
2437 * particularly if we are sending an RST in response to
2438 * an attempt to connect to or otherwise communicate with
2439 * a port for which we have no socket.
2440 */
2441 if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
2442 tcp_rst_ppslim) == 0) {
2443 /* XXX stat */
2444 goto drop;
2445 }
2446 /* ...fall into dropwithreset... */
2447
2448 dropwithreset:
2449 /*
2450 * Generate a RST, dropping incoming segment.
2451 * Make ACK acceptable to originator of segment.
2452 */
2453 if (tiflags & TH_RST)
2454 goto drop;
2455
2456 switch (af) {
2457 #ifdef INET6
2458 case AF_INET6:
2459 /* For following calls to tcp_respond */
2460 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
2461 goto drop;
2462 break;
2463 #endif /* INET6 */
2464 case AF_INET:
2465 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
2466 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2467 goto drop;
2468 }
2469
2470 if (tiflags & TH_ACK)
2471 (void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
2472 else {
2473 if (tiflags & TH_SYN)
2474 tlen++;
2475 (void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
2476 TH_RST|TH_ACK);
2477 }
2478 if (tcp_saveti)
2479 m_freem(tcp_saveti);
2480 return;
2481
2482 badcsum:
2483 tcpstat.tcps_rcvbadsum++;
2484 drop:
2485 /*
2486 * Drop space held by incoming segment and return.
2487 */
2488 if (tp) {
2489 if (tp->t_inpcb)
2490 so = tp->t_inpcb->inp_socket;
2491 #ifdef INET6
2492 else if (tp->t_in6pcb)
2493 so = tp->t_in6pcb->in6p_socket;
2494 #endif
2495 else
2496 so = NULL;
2497 #ifdef TCP_DEBUG
2498 if (so && (so->so_options & SO_DEBUG) != 0)
2499 tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
2500 #endif
2501 }
2502 if (tcp_saveti)
2503 m_freem(tcp_saveti);
2504 m_freem(m);
2505 return;
2506 }
2507
2508 void
2509 tcp_dooptions(tp, cp, cnt, th, oi)
2510 struct tcpcb *tp;
2511 u_char *cp;
2512 int cnt;
2513 struct tcphdr *th;
2514 struct tcp_opt_info *oi;
2515 {
2516 u_int16_t mss;
2517 int opt, optlen;
2518
2519 for (; cnt > 0; cnt -= optlen, cp += optlen) {
2520 opt = cp[0];
2521 if (opt == TCPOPT_EOL)
2522 break;
2523 if (opt == TCPOPT_NOP)
2524 optlen = 1;
2525 else {
2526 if (cnt < 2)
2527 break;
2528 optlen = cp[1];
2529 if (optlen < 2 || optlen > cnt)
2530 break;
2531 }
2532 switch (opt) {
2533
2534 default:
2535 continue;
2536
2537 case TCPOPT_MAXSEG:
2538 if (optlen != TCPOLEN_MAXSEG)
2539 continue;
2540 if (!(th->th_flags & TH_SYN))
2541 continue;
2542 bcopy(cp + 2, &mss, sizeof(mss));
2543 oi->maxseg = ntohs(mss);
2544 break;
2545
2546 case TCPOPT_WINDOW:
2547 if (optlen != TCPOLEN_WINDOW)
2548 continue;
2549 if (!(th->th_flags & TH_SYN))
2550 continue;
2551 tp->t_flags |= TF_RCVD_SCALE;
2552 tp->requested_s_scale = cp[2];
2553 if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
2554 #if 0 /*XXX*/
2555 char *p;
2556
2557 if (ip)
2558 p = ntohl(ip->ip_src);
2559 #ifdef INET6
2560 else if (ip6)
2561 p = ip6_sprintf(&ip6->ip6_src);
2562 #endif
2563 else
2564 p = "(unknown)";
2565 log(LOG_ERR, "TCP: invalid wscale %d from %s, "
2566 "assuming %d\n",
2567 tp->requested_s_scale, p,
2568 TCP_MAX_WINSHIFT);
2569 #else
2570 log(LOG_ERR, "TCP: invalid wscale %d, "
2571 "assuming %d\n",
2572 tp->requested_s_scale,
2573 TCP_MAX_WINSHIFT);
2574 #endif
2575 tp->requested_s_scale = TCP_MAX_WINSHIFT;
2576 }
2577 break;
2578
2579 case TCPOPT_TIMESTAMP:
2580 if (optlen != TCPOLEN_TIMESTAMP)
2581 continue;
2582 oi->ts_present = 1;
2583 bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
2584 NTOHL(oi->ts_val);
2585 bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
2586 NTOHL(oi->ts_ecr);
2587
2588 /*
2589 * A timestamp received in a SYN makes
2590 * it ok to send timestamp requests and replies.
2591 */
2592 if (th->th_flags & TH_SYN) {
2593 tp->t_flags |= TF_RCVD_TSTMP;
2594 tp->ts_recent = oi->ts_val;
2595 tp->ts_recent_age = TCP_TIMESTAMP(tp);
2596 }
2597 break;
2598 case TCPOPT_SACK_PERMITTED:
2599 if (optlen != TCPOLEN_SACK_PERMITTED)
2600 continue;
2601 if (!(th->th_flags & TH_SYN))
2602 continue;
2603 tp->t_flags &= ~TF_CANT_TXSACK;
2604 break;
2605
2606 case TCPOPT_SACK:
2607 if (tp->t_flags & TF_IGNR_RXSACK)
2608 continue;
2609 if (optlen % 8 != 2 || optlen < 10)
2610 continue;
2611 cp += 2;
2612 optlen -= 2;
2613 for (; optlen > 0; cp -= 8, optlen -= 8) {
2614 tcp_seq lwe, rwe;
2615 bcopy((char *)cp, (char *) &lwe, sizeof(lwe));
2616 NTOHL(lwe);
2617 bcopy((char *)cp, (char *) &rwe, sizeof(rwe));
2618 NTOHL(rwe);
2619 /* tcp_mark_sacked(tp, lwe, rwe); */
2620 }
2621 break;
2622 }
2623 }
2624 }
2625
2626 /*
2627 * Pull out of band byte out of a segment so
2628 * it doesn't appear in the user's data queue.
2629 * It is still reflected in the segment length for
2630 * sequencing purposes.
2631 */
2632 void
2633 tcp_pulloutofband(so, th, m, off)
2634 struct socket *so;
2635 struct tcphdr *th;
2636 struct mbuf *m;
2637 int off;
2638 {
2639 int cnt = off + th->th_urp - 1;
2640
2641 while (cnt >= 0) {
2642 if (m->m_len > cnt) {
2643 char *cp = mtod(m, caddr_t) + cnt;
2644 struct tcpcb *tp = sototcpcb(so);
2645
2646 tp->t_iobc = *cp;
2647 tp->t_oobflags |= TCPOOB_HAVEDATA;
2648 bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
2649 m->m_len--;
2650 return;
2651 }
2652 cnt -= m->m_len;
2653 m = m->m_next;
2654 if (m == 0)
2655 break;
2656 }
2657 panic("tcp_pulloutofband");
2658 }
2659
2660 /*
2661 * Collect new round-trip time estimate
2662 * and update averages and current timeout.
2663 */
2664 void
2665 tcp_xmit_timer(tp, rtt)
2666 struct tcpcb *tp;
2667 uint32_t rtt;
2668 {
2669 int32_t delta;
2670
2671 tcpstat.tcps_rttupdated++;
2672 if (tp->t_srtt != 0) {
2673 /*
2674 * srtt is stored as fixed point with 3 bits after the
2675 * binary point (i.e., scaled by 8). The following magic
2676 * is equivalent to the smoothing algorithm in rfc793 with
2677 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2678 * point). Adjust rtt to origin 0.
2679 */
2680 delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
2681 if ((tp->t_srtt += delta) <= 0)
2682 tp->t_srtt = 1 << 2;
2683 /*
2684 * We accumulate a smoothed rtt variance (actually, a
2685 * smoothed mean difference), then set the retransmit
2686 * timer to smoothed rtt + 4 times the smoothed variance.
2687 * rttvar is stored as fixed point with 2 bits after the
2688 * binary point (scaled by 4). The following is
2689 * equivalent to rfc793 smoothing with an alpha of .75
2690 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces
2691 * rfc793's wired-in beta.
2692 */
2693 if (delta < 0)
2694 delta = -delta;
2695 delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
2696 if ((tp->t_rttvar += delta) <= 0)
2697 tp->t_rttvar = 1 << 2;
2698 } else {
2699 /*
2700 * No rtt measurement yet - use the unsmoothed rtt.
2701 * Set the variance to half the rtt (so our first
2702 * retransmit happens at 3*rtt).
2703 */
2704 tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
2705 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
2706 }
2707 tp->t_rtttime = 0;
2708 tp->t_rxtshift = 0;
2709
2710 /*
2711 * the retransmit should happen at rtt + 4 * rttvar.
2712 * Because of the way we do the smoothing, srtt and rttvar
2713 * will each average +1/2 tick of bias. When we compute
2714 * the retransmit timer, we want 1/2 tick of rounding and
2715 * 1 extra tick because of +-1/2 tick uncertainty in the
2716 * firing of the timer. The bias will give us exactly the
2717 * 1.5 tick we need. But, because the bias is
2718 * statistical, we have to test that we don't drop below
2719 * the minimum feasible timer (which is 2 ticks).
2720 */
2721 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
2722 max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
2723
2724 /*
2725 * We received an ack for a packet that wasn't retransmitted;
2726 * it is probably safe to discard any error indications we've
2727 * received recently. This isn't quite right, but close enough
2728 * for now (a route might have failed after we sent a segment,
2729 * and the return path might not be symmetrical).
2730 */
2731 tp->t_softerror = 0;
2732 }
2733
2734 /*
2735 * Checks for partial ack. If partial ack arrives, force the retransmission
2736 * of the next unacknowledged segment, do not clear tp->t_dupacks, and return
2737 * 1. By setting snd_nxt to th_ack, this forces retransmission timer to
2738 * be started again. If the ack advances at least to tp->snd_recover, return 0.
2739 */
2740 int
2741 tcp_newreno(tp, th)
2742 struct tcpcb *tp;
2743 struct tcphdr *th;
2744 {
2745 tcp_seq onxt = tp->snd_nxt;
2746 u_long ocwnd = tp->snd_cwnd;
2747
2748 if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2749 /*
2750 * snd_una has not yet been updated and the socket's send
2751 * buffer has not yet drained off the ACK'd data, so we
2752 * have to leave snd_una as it was to get the correct data
2753 * offset in tcp_output().
2754 */
2755 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2756 tp->t_rtttime = 0;
2757 tp->snd_nxt = th->th_ack;
2758 /*
2759 * Set snd_cwnd to one segment beyond ACK'd offset. snd_una
2760 * is not yet updated when we're called.
2761 */
2762 tp->snd_cwnd = tp->t_segsz + (th->th_ack - tp->snd_una);
2763 (void) tcp_output(tp);
2764 tp->snd_cwnd = ocwnd;
2765 if (SEQ_GT(onxt, tp->snd_nxt))
2766 tp->snd_nxt = onxt;
2767 /*
2768 * Partial window deflation. Relies on fact that tp->snd_una
2769 * not updated yet.
2770 */
2771 tp->snd_cwnd -= (th->th_ack - tp->snd_una - tp->t_segsz);
2772 return 1;
2773 }
2774 return 0;
2775 }
2776
2777
2778 /*
2779 * TCP compressed state engine. Currently used to hold compressed
2780 * state for SYN_RECEIVED.
2781 */
2782
2783 u_long syn_cache_count;
2784 u_int32_t syn_hash1, syn_hash2;
2785
2786 #define SYN_HASH(sa, sp, dp) \
2787 ((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
2788 ((u_int32_t)(sp)))^syn_hash2)))
2789 #ifndef INET6
2790 #define SYN_HASHALL(hash, src, dst) \
2791 do { \
2792 hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
2793 ((struct sockaddr_in *)(src))->sin_port, \
2794 ((struct sockaddr_in *)(dst))->sin_port); \
2795 } while (/*CONSTCOND*/ 0)
2796 #else
2797 #define SYN_HASH6(sa, sp, dp) \
2798 ((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
2799 (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
2800 & 0x7fffffff)
2801
2802 #define SYN_HASHALL(hash, src, dst) \
2803 do { \
2804 switch ((src)->sa_family) { \
2805 case AF_INET: \
2806 hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
2807 ((struct sockaddr_in *)(src))->sin_port, \
2808 ((struct sockaddr_in *)(dst))->sin_port); \
2809 break; \
2810 case AF_INET6: \
2811 hash = SYN_HASH6(&((struct sockaddr_in6 *)(src))->sin6_addr, \
2812 ((struct sockaddr_in6 *)(src))->sin6_port, \
2813 ((struct sockaddr_in6 *)(dst))->sin6_port); \
2814 break; \
2815 default: \
2816 hash = 0; \
2817 } \
2818 } while (/*CONSTCOND*/0)
2819 #endif /* INET6 */
2820
2821 #define SYN_CACHE_RM(sc) \
2822 do { \
2823 TAILQ_REMOVE(&tcp_syn_cache[(sc)->sc_bucketidx].sch_bucket, \
2824 (sc), sc_bucketq); \
2825 (sc)->sc_tp = NULL; \
2826 LIST_REMOVE((sc), sc_tpq); \
2827 tcp_syn_cache[(sc)->sc_bucketidx].sch_length--; \
2828 callout_stop(&(sc)->sc_timer); \
2829 syn_cache_count--; \
2830 } while (/*CONSTCOND*/0)
2831
2832 #define SYN_CACHE_PUT(sc) \
2833 do { \
2834 if ((sc)->sc_ipopts) \
2835 (void) m_free((sc)->sc_ipopts); \
2836 if ((sc)->sc_route4.ro_rt != NULL) \
2837 RTFREE((sc)->sc_route4.ro_rt); \
2838 if (callout_invoking(&(sc)->sc_timer)) \
2839 (sc)->sc_flags |= SCF_DEAD; \
2840 else \
2841 pool_put(&syn_cache_pool, (sc)); \
2842 } while (/*CONSTCOND*/0)
2843
2844 struct pool syn_cache_pool;
2845
2846 /*
2847 * We don't estimate RTT with SYNs, so each packet starts with the default
2848 * RTT and each timer step has a fixed timeout value.
2849 */
2850 #define SYN_CACHE_TIMER_ARM(sc) \
2851 do { \
2852 TCPT_RANGESET((sc)->sc_rxtcur, \
2853 TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN, \
2854 TCPTV_REXMTMAX); \
2855 callout_reset(&(sc)->sc_timer, \
2856 (sc)->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, (sc)); \
2857 } while (/*CONSTCOND*/0)
2858
2859 #define SYN_CACHE_TIMESTAMP(sc) (tcp_now - (sc)->sc_timebase)
2860
2861 void
2862 syn_cache_init()
2863 {
2864 int i;
2865
2866 /* Initialize the hash buckets. */
2867 for (i = 0; i < tcp_syn_cache_size; i++)
2868 TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
2869
2870 /* Initialize the syn cache pool. */
2871 pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
2872 "synpl", NULL);
2873 }
2874
2875 void
2876 syn_cache_insert(sc, tp)
2877 struct syn_cache *sc;
2878 struct tcpcb *tp;
2879 {
2880 struct syn_cache_head *scp;
2881 struct syn_cache *sc2;
2882 int s;
2883
2884 /*
2885 * If there are no entries in the hash table, reinitialize
2886 * the hash secrets.
2887 */
2888 if (syn_cache_count == 0) {
2889 syn_hash1 = arc4random();
2890 syn_hash2 = arc4random();
2891 }
2892
2893 SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
2894 sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
2895 scp = &tcp_syn_cache[sc->sc_bucketidx];
2896
2897 /*
2898 * Make sure that we don't overflow the per-bucket
2899 * limit or the total cache size limit.
2900 */
2901 s = splsoftnet();
2902 if (scp->sch_length >= tcp_syn_bucket_limit) {
2903 tcpstat.tcps_sc_bucketoverflow++;
2904 /*
2905 * The bucket is full. Toss the oldest element in the
2906 * bucket. This will be the first entry in the bucket.
2907 */
2908 sc2 = TAILQ_FIRST(&scp->sch_bucket);
2909 #ifdef DIAGNOSTIC
2910 /*
2911 * This should never happen; we should always find an
2912 * entry in our bucket.
2913 */
2914 if (sc2 == NULL)
2915 panic("syn_cache_insert: bucketoverflow: impossible");
2916 #endif
2917 SYN_CACHE_RM(sc2);
2918 SYN_CACHE_PUT(sc2);
2919 } else if (syn_cache_count >= tcp_syn_cache_limit) {
2920 struct syn_cache_head *scp2, *sce;
2921
2922 tcpstat.tcps_sc_overflowed++;
2923 /*
2924 * The cache is full. Toss the oldest entry in the
2925 * first non-empty bucket we can find.
2926 *
2927 * XXX We would really like to toss the oldest
2928 * entry in the cache, but we hope that this
2929 * condition doesn't happen very often.
2930 */
2931 scp2 = scp;
2932 if (TAILQ_EMPTY(&scp2->sch_bucket)) {
2933 sce = &tcp_syn_cache[tcp_syn_cache_size];
2934 for (++scp2; scp2 != scp; scp2++) {
2935 if (scp2 >= sce)
2936 scp2 = &tcp_syn_cache[0];
2937 if (! TAILQ_EMPTY(&scp2->sch_bucket))
2938 break;
2939 }
2940 #ifdef DIAGNOSTIC
2941 /*
2942 * This should never happen; we should always find a
2943 * non-empty bucket.
2944 */
2945 if (scp2 == scp)
2946 panic("syn_cache_insert: cacheoverflow: "
2947 "impossible");
2948 #endif
2949 }
2950 sc2 = TAILQ_FIRST(&scp2->sch_bucket);
2951 SYN_CACHE_RM(sc2);
2952 SYN_CACHE_PUT(sc2);
2953 }
2954
2955 /*
2956 * Initialize the entry's timer.
2957 */
2958 sc->sc_rxttot = 0;
2959 sc->sc_rxtshift = 0;
2960 SYN_CACHE_TIMER_ARM(sc);
2961
2962 /* Link it from tcpcb entry */
2963 LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
2964
2965 /* Put it into the bucket. */
2966 TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
2967 scp->sch_length++;
2968 syn_cache_count++;
2969
2970 tcpstat.tcps_sc_added++;
2971 splx(s);
2972 }
2973
2974 /*
2975 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
2976 * If we have retransmitted an entry the maximum number of times, expire
2977 * that entry.
2978 */
2979 void
2980 syn_cache_timer(void *arg)
2981 {
2982 struct syn_cache *sc = arg;
2983 int s;
2984
2985 s = splsoftnet();
2986 callout_ack(&sc->sc_timer);
2987
2988 if (__predict_false(sc->sc_flags & SCF_DEAD)) {
2989 tcpstat.tcps_sc_delayed_free++;
2990 pool_put(&syn_cache_pool, sc);
2991 splx(s);
2992 return;
2993 }
2994
2995 if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
2996 /* Drop it -- too many retransmissions. */
2997 goto dropit;
2998 }
2999
3000 /*
3001 * Compute the total amount of time this entry has
3002 * been on a queue. If this entry has been on longer
3003 * than the keep alive timer would allow, expire it.
3004 */
3005 sc->sc_rxttot += sc->sc_rxtcur;
3006 if (sc->sc_rxttot >= TCPTV_KEEP_INIT)
3007 goto dropit;
3008
3009 tcpstat.tcps_sc_retransmitted++;
3010 (void) syn_cache_respond(sc, NULL);
3011
3012 /* Advance the timer back-off. */
3013 sc->sc_rxtshift++;
3014 SYN_CACHE_TIMER_ARM(sc);
3015
3016 splx(s);
3017 return;
3018
3019 dropit:
3020 tcpstat.tcps_sc_timed_out++;
3021 SYN_CACHE_RM(sc);
3022 SYN_CACHE_PUT(sc);
3023 splx(s);
3024 }
3025
3026 /*
3027 * Remove syn cache created by the specified tcb entry,
3028 * because this does not make sense to keep them
3029 * (if there's no tcb entry, syn cache entry will never be used)
3030 */
3031 void
3032 syn_cache_cleanup(tp)
3033 struct tcpcb *tp;
3034 {
3035 struct syn_cache *sc, *nsc;
3036 int s;
3037
3038 s = splsoftnet();
3039
3040 for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
3041 nsc = LIST_NEXT(sc, sc_tpq);
3042
3043 #ifdef DIAGNOSTIC
3044 if (sc->sc_tp != tp)
3045 panic("invalid sc_tp in syn_cache_cleanup");
3046 #endif
3047 SYN_CACHE_RM(sc);
3048 SYN_CACHE_PUT(sc);
3049 }
3050 /* just for safety */
3051 LIST_INIT(&tp->t_sc);
3052
3053 splx(s);
3054 }
3055
3056 /*
3057 * Find an entry in the syn cache.
3058 */
3059 struct syn_cache *
3060 syn_cache_lookup(src, dst, headp)
3061 struct sockaddr *src;
3062 struct sockaddr *dst;
3063 struct syn_cache_head **headp;
3064 {
3065 struct syn_cache *sc;
3066 struct syn_cache_head *scp;
3067 u_int32_t hash;
3068 int s;
3069
3070 SYN_HASHALL(hash, src, dst);
3071
3072 scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
3073 *headp = scp;
3074 s = splsoftnet();
3075 for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
3076 sc = TAILQ_NEXT(sc, sc_bucketq)) {
3077 if (sc->sc_hash != hash)
3078 continue;
3079 if (!bcmp(&sc->sc_src, src, src->sa_len) &&
3080 !bcmp(&sc->sc_dst, dst, dst->sa_len)) {
3081 splx(s);
3082 return (sc);
3083 }
3084 }
3085 splx(s);
3086 return (NULL);
3087 }
3088
3089 /*
3090 * This function gets called when we receive an ACK for a
3091 * socket in the LISTEN state. We look up the connection
3092 * in the syn cache, and if its there, we pull it out of
3093 * the cache and turn it into a full-blown connection in
3094 * the SYN-RECEIVED state.
3095 *
3096 * The return values may not be immediately obvious, and their effects
3097 * can be subtle, so here they are:
3098 *
3099 * NULL SYN was not found in cache; caller should drop the
3100 * packet and send an RST.
3101 *
3102 * -1 We were unable to create the new connection, and are
3103 * aborting it. An ACK,RST is being sent to the peer
3104 * (unless we got screwey sequence numbners; see below),
3105 * because the 3-way handshake has been completed. Caller
3106 * should not free the mbuf, since we may be using it. If
3107 * we are not, we will free it.
3108 *
3109 * Otherwise, the return value is a pointer to the new socket
3110 * associated with the connection.
3111 */
3112 struct socket *
3113 syn_cache_get(src, dst, th, hlen, tlen, so, m)
3114 struct sockaddr *src;
3115 struct sockaddr *dst;
3116 struct tcphdr *th;
3117 unsigned int hlen, tlen;
3118 struct socket *so;
3119 struct mbuf *m;
3120 {
3121 struct syn_cache *sc;
3122 struct syn_cache_head *scp;
3123 struct inpcb *inp = NULL;
3124 #ifdef INET6
3125 struct in6pcb *in6p = NULL;
3126 #endif
3127 struct tcpcb *tp = 0;
3128 struct mbuf *am;
3129 int s;
3130 struct socket *oso;
3131
3132 s = splsoftnet();
3133 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3134 splx(s);
3135 return (NULL);
3136 }
3137
3138 /*
3139 * Verify the sequence and ack numbers. Try getting the correct
3140 * response again.
3141 */
3142 if ((th->th_ack != sc->sc_iss + 1) ||
3143 SEQ_LEQ(th->th_seq, sc->sc_irs) ||
3144 SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
3145 (void) syn_cache_respond(sc, m);
3146 splx(s);
3147 return ((struct socket *)(-1));
3148 }
3149
3150 /* Remove this cache entry */
3151 SYN_CACHE_RM(sc);
3152 splx(s);
3153
3154 /*
3155 * Ok, create the full blown connection, and set things up
3156 * as they would have been set up if we had created the
3157 * connection when the SYN arrived. If we can't create
3158 * the connection, abort it.
3159 */
3160 /*
3161 * inp still has the OLD in_pcb stuff, set the
3162 * v6-related flags on the new guy, too. This is
3163 * done particularly for the case where an AF_INET6
3164 * socket is bound only to a port, and a v4 connection
3165 * comes in on that port.
3166 * we also copy the flowinfo from the original pcb
3167 * to the new one.
3168 */
3169 oso = so;
3170 so = sonewconn(so, SS_ISCONNECTED);
3171 if (so == NULL)
3172 goto resetandabort;
3173
3174 switch (so->so_proto->pr_domain->dom_family) {
3175 #ifdef INET
3176 case AF_INET:
3177 inp = sotoinpcb(so);
3178 break;
3179 #endif
3180 #ifdef INET6
3181 case AF_INET6:
3182 in6p = sotoin6pcb(so);
3183 break;
3184 #endif
3185 }
3186 switch (src->sa_family) {
3187 #ifdef INET
3188 case AF_INET:
3189 if (inp) {
3190 inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
3191 inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
3192 inp->inp_options = ip_srcroute();
3193 in_pcbstate(inp, INP_BOUND);
3194 if (inp->inp_options == NULL) {
3195 inp->inp_options = sc->sc_ipopts;
3196 sc->sc_ipopts = NULL;
3197 }
3198 }
3199 #ifdef INET6
3200 else if (in6p) {
3201 /* IPv4 packet to AF_INET6 socket */
3202 bzero(&in6p->in6p_laddr, sizeof(in6p->in6p_laddr));
3203 in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
3204 bcopy(&((struct sockaddr_in *)dst)->sin_addr,
3205 &in6p->in6p_laddr.s6_addr32[3],
3206 sizeof(((struct sockaddr_in *)dst)->sin_addr));
3207 in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
3208 in6totcpcb(in6p)->t_family = AF_INET;
3209 if (sotoin6pcb(oso)->in6p_flags & IN6P_IPV6_V6ONLY)
3210 in6p->in6p_flags |= IN6P_IPV6_V6ONLY;
3211 else
3212 in6p->in6p_flags &= ~IN6P_IPV6_V6ONLY;
3213 in6_pcbstate(in6p, IN6P_BOUND);
3214 }
3215 #endif
3216 break;
3217 #endif
3218 #ifdef INET6
3219 case AF_INET6:
3220 if (in6p) {
3221 in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
3222 in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
3223 in6_pcbstate(in6p, IN6P_BOUND);
3224 }
3225 break;
3226 #endif
3227 }
3228 #ifdef INET6
3229 if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
3230 struct in6pcb *oin6p = sotoin6pcb(oso);
3231 /* inherit socket options from the listening socket */
3232 in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
3233 if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
3234 m_freem(in6p->in6p_options);
3235 in6p->in6p_options = 0;
3236 }
3237 ip6_savecontrol(in6p, &in6p->in6p_options,
3238 mtod(m, struct ip6_hdr *), m);
3239 }
3240 #endif
3241
3242 #if defined(IPSEC) || defined(FAST_IPSEC)
3243 /*
3244 * we make a copy of policy, instead of sharing the policy,
3245 * for better behavior in terms of SA lookup and dead SA removal.
3246 */
3247 if (inp) {
3248 /* copy old policy into new socket's */
3249 if (ipsec_copy_pcbpolicy(sotoinpcb(oso)->inp_sp, inp->inp_sp))
3250 printf("tcp_input: could not copy policy\n");
3251 }
3252 #ifdef INET6
3253 else if (in6p) {
3254 /* copy old policy into new socket's */
3255 if (ipsec_copy_pcbpolicy(sotoin6pcb(oso)->in6p_sp,
3256 in6p->in6p_sp))
3257 printf("tcp_input: could not copy policy\n");
3258 }
3259 #endif
3260 #endif
3261
3262 /*
3263 * Give the new socket our cached route reference.
3264 */
3265 if (inp)
3266 inp->inp_route = sc->sc_route4; /* struct assignment */
3267 #ifdef INET6
3268 else
3269 in6p->in6p_route = sc->sc_route6;
3270 #endif
3271 sc->sc_route4.ro_rt = NULL;
3272
3273 am = m_get(M_DONTWAIT, MT_SONAME); /* XXX */
3274 if (am == NULL)
3275 goto resetandabort;
3276 MCLAIM(am, &tcp_mowner);
3277 am->m_len = src->sa_len;
3278 bcopy(src, mtod(am, caddr_t), src->sa_len);
3279 if (inp) {
3280 if (in_pcbconnect(inp, am)) {
3281 (void) m_free(am);
3282 goto resetandabort;
3283 }
3284 }
3285 #ifdef INET6
3286 else if (in6p) {
3287 if (src->sa_family == AF_INET) {
3288 /* IPv4 packet to AF_INET6 socket */
3289 struct sockaddr_in6 *sin6;
3290 sin6 = mtod(am, struct sockaddr_in6 *);
3291 am->m_len = sizeof(*sin6);
3292 bzero(sin6, sizeof(*sin6));
3293 sin6->sin6_family = AF_INET6;
3294 sin6->sin6_len = sizeof(*sin6);
3295 sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port;
3296 sin6->sin6_addr.s6_addr16[5] = htons(0xffff);
3297 bcopy(&((struct sockaddr_in *)src)->sin_addr,
3298 &sin6->sin6_addr.s6_addr32[3],
3299 sizeof(sin6->sin6_addr.s6_addr32[3]));
3300 }
3301 if (in6_pcbconnect(in6p, am)) {
3302 (void) m_free(am);
3303 goto resetandabort;
3304 }
3305 }
3306 #endif
3307 else {
3308 (void) m_free(am);
3309 goto resetandabort;
3310 }
3311 (void) m_free(am);
3312
3313 if (inp)
3314 tp = intotcpcb(inp);
3315 #ifdef INET6
3316 else if (in6p)
3317 tp = in6totcpcb(in6p);
3318 #endif
3319 else
3320 tp = NULL;
3321 tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
3322 if (sc->sc_request_r_scale != 15) {
3323 tp->requested_s_scale = sc->sc_requested_s_scale;
3324 tp->request_r_scale = sc->sc_request_r_scale;
3325 tp->snd_scale = sc->sc_requested_s_scale;
3326 tp->rcv_scale = sc->sc_request_r_scale;
3327 tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
3328 }
3329 if (sc->sc_flags & SCF_TIMESTAMP)
3330 tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
3331 tp->ts_timebase = sc->sc_timebase;
3332
3333 tp->t_template = tcp_template(tp);
3334 if (tp->t_template == 0) {
3335 tp = tcp_drop(tp, ENOBUFS); /* destroys socket */
3336 so = NULL;
3337 m_freem(m);
3338 goto abort;
3339 }
3340
3341 tp->iss = sc->sc_iss;
3342 tp->irs = sc->sc_irs;
3343 tcp_sendseqinit(tp);
3344 tcp_rcvseqinit(tp);
3345 tp->t_state = TCPS_SYN_RECEIVED;
3346 TCP_TIMER_ARM(tp, TCPT_KEEP, TCPTV_KEEP_INIT);
3347 tcpstat.tcps_accepts++;
3348
3349 /* Initialize tp->t_ourmss before we deal with the peer's! */
3350 tp->t_ourmss = sc->sc_ourmaxseg;
3351 tcp_mss_from_peer(tp, sc->sc_peermaxseg);
3352
3353 /*
3354 * Initialize the initial congestion window. If we
3355 * had to retransmit the SYN,ACK, we must initialize cwnd
3356 * to 1 segment (i.e. the Loss Window).
3357 */
3358 if (sc->sc_rxtshift)
3359 tp->snd_cwnd = tp->t_peermss;
3360 else {
3361 int ss = tcp_init_win;
3362 #ifdef INET
3363 if (inp != NULL && in_localaddr(inp->inp_faddr))
3364 ss = tcp_init_win_local;
3365 #endif
3366 #ifdef INET6
3367 if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
3368 ss = tcp_init_win_local;
3369 #endif
3370 tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
3371 }
3372
3373 tcp_rmx_rtt(tp);
3374 tp->snd_wl1 = sc->sc_irs;
3375 tp->rcv_up = sc->sc_irs + 1;
3376
3377 /*
3378 * This is what whould have happened in tcp_output() when
3379 * the SYN,ACK was sent.
3380 */
3381 tp->snd_up = tp->snd_una;
3382 tp->snd_max = tp->snd_nxt = tp->iss+1;
3383 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
3384 if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
3385 tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
3386 tp->last_ack_sent = tp->rcv_nxt;
3387
3388 tcpstat.tcps_sc_completed++;
3389 SYN_CACHE_PUT(sc);
3390 return (so);
3391
3392 resetandabort:
3393 (void) tcp_respond(NULL, m, m, th,
3394 th->th_seq + tlen, (tcp_seq)0, TH_RST|TH_ACK);
3395 abort:
3396 if (so != NULL)
3397 (void) soabort(so);
3398 SYN_CACHE_PUT(sc);
3399 tcpstat.tcps_sc_aborted++;
3400 return ((struct socket *)(-1));
3401 }
3402
3403 /*
3404 * This function is called when we get a RST for a
3405 * non-existent connection, so that we can see if the
3406 * connection is in the syn cache. If it is, zap it.
3407 */
3408
3409 void
3410 syn_cache_reset(src, dst, th)
3411 struct sockaddr *src;
3412 struct sockaddr *dst;
3413 struct tcphdr *th;
3414 {
3415 struct syn_cache *sc;
3416 struct syn_cache_head *scp;
3417 int s = splsoftnet();
3418
3419 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3420 splx(s);
3421 return;
3422 }
3423 if (SEQ_LT(th->th_seq, sc->sc_irs) ||
3424 SEQ_GT(th->th_seq, sc->sc_irs+1)) {
3425 splx(s);
3426 return;
3427 }
3428 SYN_CACHE_RM(sc);
3429 splx(s);
3430 tcpstat.tcps_sc_reset++;
3431 SYN_CACHE_PUT(sc);
3432 }
3433
3434 void
3435 syn_cache_unreach(src, dst, th)
3436 struct sockaddr *src;
3437 struct sockaddr *dst;
3438 struct tcphdr *th;
3439 {
3440 struct syn_cache *sc;
3441 struct syn_cache_head *scp;
3442 int s;
3443
3444 s = splsoftnet();
3445 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3446 splx(s);
3447 return;
3448 }
3449 /* If the sequence number != sc_iss, then it's a bogus ICMP msg */
3450 if (ntohl (th->th_seq) != sc->sc_iss) {
3451 splx(s);
3452 return;
3453 }
3454
3455 /*
3456 * If we've retransmitted 3 times and this is our second error,
3457 * we remove the entry. Otherwise, we allow it to continue on.
3458 * This prevents us from incorrectly nuking an entry during a
3459 * spurious network outage.
3460 *
3461 * See tcp_notify().
3462 */
3463 if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
3464 sc->sc_flags |= SCF_UNREACH;
3465 splx(s);
3466 return;
3467 }
3468
3469 SYN_CACHE_RM(sc);
3470 splx(s);
3471 tcpstat.tcps_sc_unreach++;
3472 SYN_CACHE_PUT(sc);
3473 }
3474
3475 /*
3476 * Given a LISTEN socket and an inbound SYN request, add
3477 * this to the syn cache, and send back a segment:
3478 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
3479 * to the source.
3480 *
3481 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
3482 * Doing so would require that we hold onto the data and deliver it
3483 * to the application. However, if we are the target of a SYN-flood
3484 * DoS attack, an attacker could send data which would eventually
3485 * consume all available buffer space if it were ACKed. By not ACKing
3486 * the data, we avoid this DoS scenario.
3487 */
3488
3489 int
3490 syn_cache_add(src, dst, th, hlen, so, m, optp, optlen, oi)
3491 struct sockaddr *src;
3492 struct sockaddr *dst;
3493 struct tcphdr *th;
3494 unsigned int hlen;
3495 struct socket *so;
3496 struct mbuf *m;
3497 u_char *optp;
3498 int optlen;
3499 struct tcp_opt_info *oi;
3500 {
3501 struct tcpcb tb, *tp;
3502 long win;
3503 struct syn_cache *sc;
3504 struct syn_cache_head *scp;
3505 struct mbuf *ipopts;
3506
3507 tp = sototcpcb(so);
3508
3509 /*
3510 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
3511 *
3512 * Note this check is performed in tcp_input() very early on.
3513 */
3514
3515 /*
3516 * Initialize some local state.
3517 */
3518 win = sbspace(&so->so_rcv);
3519 if (win > TCP_MAXWIN)
3520 win = TCP_MAXWIN;
3521
3522 switch (src->sa_family) {
3523 #ifdef INET
3524 case AF_INET:
3525 /*
3526 * Remember the IP options, if any.
3527 */
3528 ipopts = ip_srcroute();
3529 break;
3530 #endif
3531 default:
3532 ipopts = NULL;
3533 }
3534
3535 if (optp) {
3536 tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
3537 tcp_dooptions(&tb, optp, optlen, th, oi);
3538 } else
3539 tb.t_flags = 0;
3540
3541 /*
3542 * See if we already have an entry for this connection.
3543 * If we do, resend the SYN,ACK. We do not count this
3544 * as a retransmission (XXX though maybe we should).
3545 */
3546 if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
3547 tcpstat.tcps_sc_dupesyn++;
3548 if (ipopts) {
3549 /*
3550 * If we were remembering a previous source route,
3551 * forget it and use the new one we've been given.
3552 */
3553 if (sc->sc_ipopts)
3554 (void) m_free(sc->sc_ipopts);
3555 sc->sc_ipopts = ipopts;
3556 }
3557 sc->sc_timestamp = tb.ts_recent;
3558 if (syn_cache_respond(sc, m) == 0) {
3559 tcpstat.tcps_sndacks++;
3560 tcpstat.tcps_sndtotal++;
3561 }
3562 return (1);
3563 }
3564
3565 sc = pool_get(&syn_cache_pool, PR_NOWAIT);
3566 if (sc == NULL) {
3567 if (ipopts)
3568 (void) m_free(ipopts);
3569 return (0);
3570 }
3571
3572 /*
3573 * Fill in the cache, and put the necessary IP and TCP
3574 * options into the reply.
3575 */
3576 bzero(sc, sizeof(struct syn_cache));
3577 callout_init(&sc->sc_timer);
3578 bcopy(src, &sc->sc_src, src->sa_len);
3579 bcopy(dst, &sc->sc_dst, dst->sa_len);
3580 sc->sc_flags = 0;
3581 sc->sc_ipopts = ipopts;
3582 sc->sc_irs = th->th_seq;
3583 switch (src->sa_family) {
3584 #ifdef INET
3585 case AF_INET:
3586 {
3587 struct sockaddr_in *srcin = (void *) src;
3588 struct sockaddr_in *dstin = (void *) dst;
3589
3590 sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
3591 &srcin->sin_addr, dstin->sin_port,
3592 srcin->sin_port, sizeof(dstin->sin_addr), 0);
3593 break;
3594 }
3595 #endif /* INET */
3596 #ifdef INET6
3597 case AF_INET6:
3598 {
3599 struct sockaddr_in6 *srcin6 = (void *) src;
3600 struct sockaddr_in6 *dstin6 = (void *) dst;
3601
3602 sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
3603 &srcin6->sin6_addr, dstin6->sin6_port,
3604 srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
3605 break;
3606 }
3607 #endif /* INET6 */
3608 }
3609 sc->sc_peermaxseg = oi->maxseg;
3610 sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
3611 m->m_pkthdr.rcvif : NULL,
3612 sc->sc_src.sa.sa_family);
3613 sc->sc_win = win;
3614 sc->sc_timebase = tcp_now; /* see tcp_newtcpcb() */
3615 sc->sc_timestamp = tb.ts_recent;
3616 if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
3617 (TF_REQ_TSTMP|TF_RCVD_TSTMP))
3618 sc->sc_flags |= SCF_TIMESTAMP;
3619 if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
3620 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
3621 sc->sc_requested_s_scale = tb.requested_s_scale;
3622 sc->sc_request_r_scale = 0;
3623 while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
3624 TCP_MAXWIN << sc->sc_request_r_scale <
3625 so->so_rcv.sb_hiwat)
3626 sc->sc_request_r_scale++;
3627 } else {
3628 sc->sc_requested_s_scale = 15;
3629 sc->sc_request_r_scale = 15;
3630 }
3631 sc->sc_tp = tp;
3632 if (syn_cache_respond(sc, m) == 0) {
3633 syn_cache_insert(sc, tp);
3634 tcpstat.tcps_sndacks++;
3635 tcpstat.tcps_sndtotal++;
3636 } else {
3637 SYN_CACHE_PUT(sc);
3638 tcpstat.tcps_sc_dropped++;
3639 }
3640 return (1);
3641 }
3642
3643 int
3644 syn_cache_respond(sc, m)
3645 struct syn_cache *sc;
3646 struct mbuf *m;
3647 {
3648 struct route *ro;
3649 u_int8_t *optp;
3650 int optlen, error;
3651 u_int16_t tlen;
3652 struct ip *ip = NULL;
3653 #ifdef INET6
3654 struct ip6_hdr *ip6 = NULL;
3655 #endif
3656 struct tcpcb *tp;
3657 struct tcphdr *th;
3658 u_int hlen;
3659 struct socket *so;
3660
3661 switch (sc->sc_src.sa.sa_family) {
3662 case AF_INET:
3663 hlen = sizeof(struct ip);
3664 ro = &sc->sc_route4;
3665 break;
3666 #ifdef INET6
3667 case AF_INET6:
3668 hlen = sizeof(struct ip6_hdr);
3669 ro = (struct route *)&sc->sc_route6;
3670 break;
3671 #endif
3672 default:
3673 if (m)
3674 m_freem(m);
3675 return (EAFNOSUPPORT);
3676 }
3677
3678 /* Compute the size of the TCP options. */
3679 optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
3680 ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
3681
3682 tlen = hlen + sizeof(struct tcphdr) + optlen;
3683
3684 /*
3685 * Create the IP+TCP header from scratch.
3686 */
3687 if (m)
3688 m_freem(m);
3689 #ifdef DIAGNOSTIC
3690 if (max_linkhdr + tlen > MCLBYTES)
3691 return (ENOBUFS);
3692 #endif
3693 MGETHDR(m, M_DONTWAIT, MT_DATA);
3694 if (m && tlen > MHLEN) {
3695 MCLGET(m, M_DONTWAIT);
3696 if ((m->m_flags & M_EXT) == 0) {
3697 m_freem(m);
3698 m = NULL;
3699 }
3700 }
3701 if (m == NULL)
3702 return (ENOBUFS);
3703 MCLAIM(m, &tcp_tx_mowner);
3704
3705 /* Fixup the mbuf. */
3706 m->m_data += max_linkhdr;
3707 m->m_len = m->m_pkthdr.len = tlen;
3708 if (sc->sc_tp) {
3709 tp = sc->sc_tp;
3710 if (tp->t_inpcb)
3711 so = tp->t_inpcb->inp_socket;
3712 #ifdef INET6
3713 else if (tp->t_in6pcb)
3714 so = tp->t_in6pcb->in6p_socket;
3715 #endif
3716 else
3717 so = NULL;
3718 } else
3719 so = NULL;
3720 m->m_pkthdr.rcvif = NULL;
3721 memset(mtod(m, u_char *), 0, tlen);
3722
3723 switch (sc->sc_src.sa.sa_family) {
3724 case AF_INET:
3725 ip = mtod(m, struct ip *);
3726 ip->ip_dst = sc->sc_src.sin.sin_addr;
3727 ip->ip_src = sc->sc_dst.sin.sin_addr;
3728 ip->ip_p = IPPROTO_TCP;
3729 th = (struct tcphdr *)(ip + 1);
3730 th->th_dport = sc->sc_src.sin.sin_port;
3731 th->th_sport = sc->sc_dst.sin.sin_port;
3732 break;
3733 #ifdef INET6
3734 case AF_INET6:
3735 ip6 = mtod(m, struct ip6_hdr *);
3736 ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
3737 ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
3738 ip6->ip6_nxt = IPPROTO_TCP;
3739 /* ip6_plen will be updated in ip6_output() */
3740 th = (struct tcphdr *)(ip6 + 1);
3741 th->th_dport = sc->sc_src.sin6.sin6_port;
3742 th->th_sport = sc->sc_dst.sin6.sin6_port;
3743 break;
3744 #endif
3745 default:
3746 th = NULL;
3747 }
3748
3749 th->th_seq = htonl(sc->sc_iss);
3750 th->th_ack = htonl(sc->sc_irs + 1);
3751 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
3752 th->th_flags = TH_SYN|TH_ACK;
3753 th->th_win = htons(sc->sc_win);
3754 /* th_sum already 0 */
3755 /* th_urp already 0 */
3756
3757 /* Tack on the TCP options. */
3758 optp = (u_int8_t *)(th + 1);
3759 *optp++ = TCPOPT_MAXSEG;
3760 *optp++ = 4;
3761 *optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
3762 *optp++ = sc->sc_ourmaxseg & 0xff;
3763
3764 if (sc->sc_request_r_scale != 15) {
3765 *((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
3766 TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
3767 sc->sc_request_r_scale);
3768 optp += 4;
3769 }
3770
3771 if (sc->sc_flags & SCF_TIMESTAMP) {
3772 u_int32_t *lp = (u_int32_t *)(optp);
3773 /* Form timestamp option as shown in appendix A of RFC 1323. */
3774 *lp++ = htonl(TCPOPT_TSTAMP_HDR);
3775 *lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
3776 *lp = htonl(sc->sc_timestamp);
3777 optp += TCPOLEN_TSTAMP_APPA;
3778 }
3779
3780 /* Compute the packet's checksum. */
3781 switch (sc->sc_src.sa.sa_family) {
3782 case AF_INET:
3783 ip->ip_len = htons(tlen - hlen);
3784 th->th_sum = 0;
3785 th->th_sum = in_cksum(m, tlen);
3786 break;
3787 #ifdef INET6
3788 case AF_INET6:
3789 ip6->ip6_plen = htons(tlen - hlen);
3790 th->th_sum = 0;
3791 th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
3792 break;
3793 #endif
3794 }
3795
3796 /*
3797 * Fill in some straggling IP bits. Note the stack expects
3798 * ip_len to be in host order, for convenience.
3799 */
3800 switch (sc->sc_src.sa.sa_family) {
3801 #ifdef INET
3802 case AF_INET:
3803 ip->ip_len = htons(tlen);
3804 ip->ip_ttl = ip_defttl;
3805 /* XXX tos? */
3806 break;
3807 #endif
3808 #ifdef INET6
3809 case AF_INET6:
3810 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
3811 ip6->ip6_vfc |= IPV6_VERSION;
3812 ip6->ip6_plen = htons(tlen - hlen);
3813 /* ip6_hlim will be initialized afterwards */
3814 /* XXX flowlabel? */
3815 break;
3816 #endif
3817 }
3818
3819 /* XXX use IPsec policy on listening socket, on SYN ACK */
3820 tp = sc->sc_tp;
3821
3822 switch (sc->sc_src.sa.sa_family) {
3823 #ifdef INET
3824 case AF_INET:
3825 error = ip_output(m, sc->sc_ipopts, ro,
3826 (ip_mtudisc ? IP_MTUDISC : 0),
3827 (struct ip_moptions *)NULL, so);
3828 break;
3829 #endif
3830 #ifdef INET6
3831 case AF_INET6:
3832 ip6->ip6_hlim = in6_selecthlim(NULL,
3833 ro->ro_rt ? ro->ro_rt->rt_ifp : NULL);
3834
3835 error = ip6_output(m, NULL /*XXX*/, (struct route_in6 *)ro, 0,
3836 (struct ip6_moptions *)0, so, NULL);
3837 break;
3838 #endif
3839 default:
3840 error = EAFNOSUPPORT;
3841 break;
3842 }
3843 return (error);
3844 }
3845