tcp_input.c revision 1.195 1 /* $NetBSD: tcp_input.c,v 1.195 2004/04/20 19:49:15 itojun Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * @(#)COPYRIGHT 1.1 (NRL) 17 January 1995
34 *
35 * NRL grants permission for redistribution and use in source and binary
36 * forms, with or without modification, of the software and documentation
37 * created at NRL provided that the following conditions are met:
38 *
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgements:
46 * This product includes software developed by the University of
47 * California, Berkeley and its contributors.
48 * This product includes software developed at the Information
49 * Technology Division, US Naval Research Laboratory.
50 * 4. Neither the name of the NRL nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
55 * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
57 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NRL OR
58 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
59 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
61 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
62 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
63 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
64 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65 *
66 * The views and conclusions contained in the software and documentation
67 * are those of the authors and should not be interpreted as representing
68 * official policies, either expressed or implied, of the US Naval
69 * Research Laboratory (NRL).
70 */
71
72 /*-
73 * Copyright (c) 1997, 1998, 1999, 2001 The NetBSD Foundation, Inc.
74 * All rights reserved.
75 *
76 * This code is derived from software contributed to The NetBSD Foundation
77 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
78 * Facility, NASA Ames Research Center.
79 *
80 * Redistribution and use in source and binary forms, with or without
81 * modification, are permitted provided that the following conditions
82 * are met:
83 * 1. Redistributions of source code must retain the above copyright
84 * notice, this list of conditions and the following disclaimer.
85 * 2. Redistributions in binary form must reproduce the above copyright
86 * notice, this list of conditions and the following disclaimer in the
87 * documentation and/or other materials provided with the distribution.
88 * 3. All advertising materials mentioning features or use of this software
89 * must display the following acknowledgement:
90 * This product includes software developed by the NetBSD
91 * Foundation, Inc. and its contributors.
92 * 4. Neither the name of The NetBSD Foundation nor the names of its
93 * contributors may be used to endorse or promote products derived
94 * from this software without specific prior written permission.
95 *
96 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
97 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
98 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
99 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
100 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
101 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
102 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
103 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
104 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
105 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
106 * POSSIBILITY OF SUCH DAMAGE.
107 */
108
109 /*
110 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
111 * The Regents of the University of California. All rights reserved.
112 *
113 * Redistribution and use in source and binary forms, with or without
114 * modification, are permitted provided that the following conditions
115 * are met:
116 * 1. Redistributions of source code must retain the above copyright
117 * notice, this list of conditions and the following disclaimer.
118 * 2. Redistributions in binary form must reproduce the above copyright
119 * notice, this list of conditions and the following disclaimer in the
120 * documentation and/or other materials provided with the distribution.
121 * 3. Neither the name of the University nor the names of its contributors
122 * may be used to endorse or promote products derived from this software
123 * without specific prior written permission.
124 *
125 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
126 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
127 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
128 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
129 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
130 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
131 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
132 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
133 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
134 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
135 * SUCH DAMAGE.
136 *
137 * @(#)tcp_input.c 8.12 (Berkeley) 5/24/95
138 */
139
140 /*
141 * TODO list for SYN cache stuff:
142 *
143 * Find room for a "state" field, which is needed to keep a
144 * compressed state for TIME_WAIT TCBs. It's been noted already
145 * that this is fairly important for very high-volume web and
146 * mail servers, which use a large number of short-lived
147 * connections.
148 */
149
150 #include <sys/cdefs.h>
151 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.195 2004/04/20 19:49:15 itojun Exp $");
152
153 #include "opt_inet.h"
154 #include "opt_ipsec.h"
155 #include "opt_inet_csum.h"
156 #include "opt_tcp_debug.h"
157
158 #include <sys/param.h>
159 #include <sys/systm.h>
160 #include <sys/malloc.h>
161 #include <sys/mbuf.h>
162 #include <sys/protosw.h>
163 #include <sys/socket.h>
164 #include <sys/socketvar.h>
165 #include <sys/errno.h>
166 #include <sys/syslog.h>
167 #include <sys/pool.h>
168 #include <sys/domain.h>
169 #include <sys/kernel.h>
170
171 #include <net/if.h>
172 #include <net/route.h>
173 #include <net/if_types.h>
174
175 #include <netinet/in.h>
176 #include <netinet/in_systm.h>
177 #include <netinet/ip.h>
178 #include <netinet/in_pcb.h>
179 #include <netinet/in_var.h>
180 #include <netinet/ip_var.h>
181
182 #ifdef INET6
183 #ifndef INET
184 #include <netinet/in.h>
185 #endif
186 #include <netinet/ip6.h>
187 #include <netinet6/ip6_var.h>
188 #include <netinet6/in6_pcb.h>
189 #include <netinet6/ip6_var.h>
190 #include <netinet6/in6_var.h>
191 #include <netinet/icmp6.h>
192 #include <netinet6/nd6.h>
193 #endif
194
195 #ifndef INET6
196 /* always need ip6.h for IP6_EXTHDR_GET */
197 #include <netinet/ip6.h>
198 #endif
199
200 #include <netinet/tcp.h>
201 #include <netinet/tcp_fsm.h>
202 #include <netinet/tcp_seq.h>
203 #include <netinet/tcp_timer.h>
204 #include <netinet/tcp_var.h>
205 #include <netinet/tcpip.h>
206 #include <netinet/tcp_debug.h>
207
208 #include <machine/stdarg.h>
209
210 #ifdef IPSEC
211 #include <netinet6/ipsec.h>
212 #include <netkey/key.h>
213 #endif /*IPSEC*/
214 #ifdef INET6
215 #include "faith.h"
216 #if defined(NFAITH) && NFAITH > 0
217 #include <net/if_faith.h>
218 #endif
219 #endif /* IPSEC */
220
221 #ifdef FAST_IPSEC
222 #include <netipsec/ipsec.h>
223 #include <netipsec/key.h>
224 #ifdef INET6
225 #include <netipsec/ipsec6.h>
226 #endif
227 #endif /* FAST_IPSEC*/
228
229
230 int tcprexmtthresh = 3;
231 int tcp_log_refused;
232
233 static int tcp_rst_ppslim_count = 0;
234 static struct timeval tcp_rst_ppslim_last;
235 static int tcp_ackdrop_ppslim_count = 0;
236 static struct timeval tcp_ackdrop_ppslim_last;
237
238 #define TCP_PAWS_IDLE (24 * 24 * 60 * 60 * PR_SLOWHZ)
239
240 /* for modulo comparisons of timestamps */
241 #define TSTMP_LT(a,b) ((int)((a)-(b)) < 0)
242 #define TSTMP_GEQ(a,b) ((int)((a)-(b)) >= 0)
243
244 /*
245 * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
246 */
247 #ifdef INET6
248 #define ND6_HINT(tp) \
249 do { \
250 if (tp && tp->t_in6pcb && tp->t_family == AF_INET6 && \
251 tp->t_in6pcb->in6p_route.ro_rt) { \
252 nd6_nud_hint(tp->t_in6pcb->in6p_route.ro_rt, NULL, 0); \
253 } \
254 } while (/*CONSTCOND*/ 0)
255 #else
256 #define ND6_HINT(tp)
257 #endif
258
259 /*
260 * Macro to compute ACK transmission behavior. Delay the ACK unless
261 * we have already delayed an ACK (must send an ACK every two segments).
262 * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
263 * option is enabled.
264 */
265 #define TCP_SETUP_ACK(tp, th) \
266 do { \
267 if ((tp)->t_flags & TF_DELACK || \
268 (tcp_ack_on_push && (th)->th_flags & TH_PUSH)) \
269 tp->t_flags |= TF_ACKNOW; \
270 else \
271 TCP_SET_DELACK(tp); \
272 } while (/*CONSTCOND*/ 0)
273
274 /*
275 * Convert TCP protocol fields to host order for easier processing.
276 */
277 #define TCP_FIELDS_TO_HOST(th) \
278 do { \
279 NTOHL((th)->th_seq); \
280 NTOHL((th)->th_ack); \
281 NTOHS((th)->th_win); \
282 NTOHS((th)->th_urp); \
283 } while (/*CONSTCOND*/ 0)
284
285 /*
286 * ... and reverse the above.
287 */
288 #define TCP_FIELDS_TO_NET(th) \
289 do { \
290 HTONL((th)->th_seq); \
291 HTONL((th)->th_ack); \
292 HTONS((th)->th_win); \
293 HTONS((th)->th_urp); \
294 } while (/*CONSTCOND*/ 0)
295
296 #ifdef TCP_CSUM_COUNTERS
297 #include <sys/device.h>
298
299 extern struct evcnt tcp_hwcsum_ok;
300 extern struct evcnt tcp_hwcsum_bad;
301 extern struct evcnt tcp_hwcsum_data;
302 extern struct evcnt tcp_swcsum;
303
304 #define TCP_CSUM_COUNTER_INCR(ev) (ev)->ev_count++
305
306 #else
307
308 #define TCP_CSUM_COUNTER_INCR(ev) /* nothing */
309
310 #endif /* TCP_CSUM_COUNTERS */
311
312 #ifdef TCP_REASS_COUNTERS
313 #include <sys/device.h>
314
315 extern struct evcnt tcp_reass_;
316 extern struct evcnt tcp_reass_empty;
317 extern struct evcnt tcp_reass_iteration[8];
318 extern struct evcnt tcp_reass_prependfirst;
319 extern struct evcnt tcp_reass_prepend;
320 extern struct evcnt tcp_reass_insert;
321 extern struct evcnt tcp_reass_inserttail;
322 extern struct evcnt tcp_reass_append;
323 extern struct evcnt tcp_reass_appendtail;
324 extern struct evcnt tcp_reass_overlaptail;
325 extern struct evcnt tcp_reass_overlapfront;
326 extern struct evcnt tcp_reass_segdup;
327 extern struct evcnt tcp_reass_fragdup;
328
329 #define TCP_REASS_COUNTER_INCR(ev) (ev)->ev_count++
330
331 #else
332
333 #define TCP_REASS_COUNTER_INCR(ev) /* nothing */
334
335 #endif /* TCP_REASS_COUNTERS */
336
337 #ifdef INET
338 static void tcp4_log_refused __P((const struct ip *, const struct tcphdr *));
339 #endif
340 #ifdef INET6
341 static void tcp6_log_refused
342 __P((const struct ip6_hdr *, const struct tcphdr *));
343 #endif
344
345 int
346 tcp_reass(tp, th, m, tlen)
347 struct tcpcb *tp;
348 struct tcphdr *th;
349 struct mbuf *m;
350 int *tlen;
351 {
352 struct ipqent *p, *q, *nq, *tiqe = NULL;
353 struct socket *so = NULL;
354 int pkt_flags;
355 tcp_seq pkt_seq;
356 unsigned pkt_len;
357 u_long rcvpartdupbyte = 0;
358 u_long rcvoobyte;
359 #ifdef TCP_REASS_COUNTERS
360 u_int count = 0;
361 #endif
362
363 if (tp->t_inpcb)
364 so = tp->t_inpcb->inp_socket;
365 #ifdef INET6
366 else if (tp->t_in6pcb)
367 so = tp->t_in6pcb->in6p_socket;
368 #endif
369
370 TCP_REASS_LOCK_CHECK(tp);
371
372 /*
373 * Call with th==0 after become established to
374 * force pre-ESTABLISHED data up to user socket.
375 */
376 if (th == 0)
377 goto present;
378
379 rcvoobyte = *tlen;
380 /*
381 * Copy these to local variables because the tcpiphdr
382 * gets munged while we are collapsing mbufs.
383 */
384 pkt_seq = th->th_seq;
385 pkt_len = *tlen;
386 pkt_flags = th->th_flags;
387
388 TCP_REASS_COUNTER_INCR(&tcp_reass_);
389
390 if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
391 /*
392 * When we miss a packet, the vast majority of time we get
393 * packets that follow it in order. So optimize for that.
394 */
395 if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
396 p->ipqe_len += pkt_len;
397 p->ipqe_flags |= pkt_flags;
398 m_cat(p->ipqe_m, m);
399 m = NULL;
400 tiqe = p;
401 TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
402 TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
403 goto skip_replacement;
404 }
405 /*
406 * While we're here, if the pkt is completely beyond
407 * anything we have, just insert it at the tail.
408 */
409 if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
410 TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
411 goto insert_it;
412 }
413 }
414
415 q = TAILQ_FIRST(&tp->segq);
416
417 if (q != NULL) {
418 /*
419 * If this segment immediately precedes the first out-of-order
420 * block, simply slap the segment in front of it and (mostly)
421 * skip the complicated logic.
422 */
423 if (pkt_seq + pkt_len == q->ipqe_seq) {
424 q->ipqe_seq = pkt_seq;
425 q->ipqe_len += pkt_len;
426 q->ipqe_flags |= pkt_flags;
427 m_cat(m, q->ipqe_m);
428 q->ipqe_m = m;
429 tiqe = q;
430 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
431 TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
432 goto skip_replacement;
433 }
434 } else {
435 TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
436 }
437
438 /*
439 * Find a segment which begins after this one does.
440 */
441 for (p = NULL; q != NULL; q = nq) {
442 nq = TAILQ_NEXT(q, ipqe_q);
443 #ifdef TCP_REASS_COUNTERS
444 count++;
445 #endif
446 /*
447 * If the received segment is just right after this
448 * fragment, merge the two together and then check
449 * for further overlaps.
450 */
451 if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
452 #ifdef TCPREASS_DEBUG
453 printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
454 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
455 q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
456 #endif
457 pkt_len += q->ipqe_len;
458 pkt_flags |= q->ipqe_flags;
459 pkt_seq = q->ipqe_seq;
460 m_cat(q->ipqe_m, m);
461 m = q->ipqe_m;
462 TCP_REASS_COUNTER_INCR(&tcp_reass_append);
463 goto free_ipqe;
464 }
465 /*
466 * If the received segment is completely past this
467 * fragment, we need to go the next fragment.
468 */
469 if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
470 p = q;
471 continue;
472 }
473 /*
474 * If the fragment is past the received segment,
475 * it (or any following) can't be concatenated.
476 */
477 if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
478 TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
479 break;
480 }
481
482 /*
483 * We've received all the data in this segment before.
484 * mark it as a duplicate and return.
485 */
486 if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
487 SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
488 tcpstat.tcps_rcvduppack++;
489 tcpstat.tcps_rcvdupbyte += pkt_len;
490 m_freem(m);
491 if (tiqe != NULL)
492 pool_put(&ipqent_pool, tiqe);
493 TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
494 return (0);
495 }
496 /*
497 * Received segment completely overlaps this fragment
498 * so we drop the fragment (this keeps the temporal
499 * ordering of segments correct).
500 */
501 if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
502 SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
503 rcvpartdupbyte += q->ipqe_len;
504 m_freem(q->ipqe_m);
505 TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
506 goto free_ipqe;
507 }
508 /*
509 * RX'ed segment extends past the end of the
510 * fragment. Drop the overlapping bytes. Then
511 * merge the fragment and segment then treat as
512 * a longer received packet.
513 */
514 if (SEQ_LT(q->ipqe_seq, pkt_seq) &&
515 SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
516 int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
517 #ifdef TCPREASS_DEBUG
518 printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
519 tp, overlap,
520 pkt_seq, pkt_seq + pkt_len, pkt_len);
521 #endif
522 m_adj(m, overlap);
523 rcvpartdupbyte += overlap;
524 m_cat(q->ipqe_m, m);
525 m = q->ipqe_m;
526 pkt_seq = q->ipqe_seq;
527 pkt_len += q->ipqe_len - overlap;
528 rcvoobyte -= overlap;
529 TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
530 goto free_ipqe;
531 }
532 /*
533 * RX'ed segment extends past the front of the
534 * fragment. Drop the overlapping bytes on the
535 * received packet. The packet will then be
536 * contatentated with this fragment a bit later.
537 */
538 if (SEQ_GT(q->ipqe_seq, pkt_seq) &&
539 SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len)) {
540 int overlap = pkt_seq + pkt_len - q->ipqe_seq;
541 #ifdef TCPREASS_DEBUG
542 printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
543 tp, overlap,
544 pkt_seq, pkt_seq + pkt_len, pkt_len);
545 #endif
546 m_adj(m, -overlap);
547 pkt_len -= overlap;
548 rcvpartdupbyte += overlap;
549 TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
550 rcvoobyte -= overlap;
551 }
552 /*
553 * If the received segment immediates precedes this
554 * fragment then tack the fragment onto this segment
555 * and reinsert the data.
556 */
557 if (q->ipqe_seq == pkt_seq + pkt_len) {
558 #ifdef TCPREASS_DEBUG
559 printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
560 tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
561 pkt_seq, pkt_seq + pkt_len, pkt_len);
562 #endif
563 pkt_len += q->ipqe_len;
564 pkt_flags |= q->ipqe_flags;
565 m_cat(m, q->ipqe_m);
566 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
567 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
568 if (tiqe == NULL)
569 tiqe = q;
570 else
571 pool_put(&ipqent_pool, q);
572 TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
573 break;
574 }
575 /*
576 * If the fragment is before the segment, remember it.
577 * When this loop is terminated, p will contain the
578 * pointer to fragment that is right before the received
579 * segment.
580 */
581 if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
582 p = q;
583
584 continue;
585
586 /*
587 * This is a common operation. It also will allow
588 * to save doing a malloc/free in most instances.
589 */
590 free_ipqe:
591 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
592 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
593 if (tiqe == NULL)
594 tiqe = q;
595 else
596 pool_put(&ipqent_pool, q);
597 }
598
599 #ifdef TCP_REASS_COUNTERS
600 if (count > 7)
601 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
602 else if (count > 0)
603 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
604 #endif
605
606 insert_it:
607
608 /*
609 * Allocate a new queue entry since the received segment did not
610 * collapse onto any other out-of-order block; thus we are allocating
611 * a new block. If it had collapsed, tiqe would not be NULL and
612 * we would be reusing it.
613 * XXX If we can't, just drop the packet. XXX
614 */
615 if (tiqe == NULL) {
616 tiqe = pool_get(&ipqent_pool, PR_NOWAIT);
617 if (tiqe == NULL) {
618 tcpstat.tcps_rcvmemdrop++;
619 m_freem(m);
620 return (0);
621 }
622 }
623
624 /*
625 * Update the counters.
626 */
627 tcpstat.tcps_rcvoopack++;
628 tcpstat.tcps_rcvoobyte += rcvoobyte;
629 if (rcvpartdupbyte) {
630 tcpstat.tcps_rcvpartduppack++;
631 tcpstat.tcps_rcvpartdupbyte += rcvpartdupbyte;
632 }
633
634 /*
635 * Insert the new fragment queue entry into both queues.
636 */
637 tiqe->ipqe_m = m;
638 tiqe->ipqe_seq = pkt_seq;
639 tiqe->ipqe_len = pkt_len;
640 tiqe->ipqe_flags = pkt_flags;
641 if (p == NULL) {
642 TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
643 #ifdef TCPREASS_DEBUG
644 if (tiqe->ipqe_seq != tp->rcv_nxt)
645 printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
646 tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
647 #endif
648 } else {
649 TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
650 #ifdef TCPREASS_DEBUG
651 printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
652 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
653 p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
654 #endif
655 }
656
657 skip_replacement:
658
659 TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
660
661 present:
662 /*
663 * Present data to user, advancing rcv_nxt through
664 * completed sequence space.
665 */
666 if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
667 return (0);
668 q = TAILQ_FIRST(&tp->segq);
669 if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
670 return (0);
671 if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
672 return (0);
673
674 tp->rcv_nxt += q->ipqe_len;
675 pkt_flags = q->ipqe_flags & TH_FIN;
676 ND6_HINT(tp);
677
678 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
679 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
680 if (so->so_state & SS_CANTRCVMORE)
681 m_freem(q->ipqe_m);
682 else
683 sbappendstream(&so->so_rcv, q->ipqe_m);
684 pool_put(&ipqent_pool, q);
685 sorwakeup(so);
686 return (pkt_flags);
687 }
688
689 #ifdef INET6
690 int
691 tcp6_input(mp, offp, proto)
692 struct mbuf **mp;
693 int *offp, proto;
694 {
695 struct mbuf *m = *mp;
696
697 /*
698 * draft-itojun-ipv6-tcp-to-anycast
699 * better place to put this in?
700 */
701 if (m->m_flags & M_ANYCAST6) {
702 struct ip6_hdr *ip6;
703 if (m->m_len < sizeof(struct ip6_hdr)) {
704 if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
705 tcpstat.tcps_rcvshort++;
706 return IPPROTO_DONE;
707 }
708 }
709 ip6 = mtod(m, struct ip6_hdr *);
710 icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
711 (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
712 return IPPROTO_DONE;
713 }
714
715 tcp_input(m, *offp, proto);
716 return IPPROTO_DONE;
717 }
718 #endif
719
720 #ifdef INET
721 static void
722 tcp4_log_refused(ip, th)
723 const struct ip *ip;
724 const struct tcphdr *th;
725 {
726 char src[4*sizeof "123"];
727 char dst[4*sizeof "123"];
728
729 if (ip) {
730 strlcpy(src, inet_ntoa(ip->ip_src), sizeof(src));
731 strlcpy(dst, inet_ntoa(ip->ip_dst), sizeof(dst));
732 }
733 else {
734 strlcpy(src, "(unknown)", sizeof(src));
735 strlcpy(dst, "(unknown)", sizeof(dst));
736 }
737 log(LOG_INFO,
738 "Connection attempt to TCP %s:%d from %s:%d\n",
739 dst, ntohs(th->th_dport),
740 src, ntohs(th->th_sport));
741 }
742 #endif
743
744 #ifdef INET6
745 static void
746 tcp6_log_refused(ip6, th)
747 const struct ip6_hdr *ip6;
748 const struct tcphdr *th;
749 {
750 char src[INET6_ADDRSTRLEN];
751 char dst[INET6_ADDRSTRLEN];
752
753 if (ip6) {
754 strlcpy(src, ip6_sprintf(&ip6->ip6_src), sizeof(src));
755 strlcpy(dst, ip6_sprintf(&ip6->ip6_dst), sizeof(dst));
756 }
757 else {
758 strlcpy(src, "(unknown v6)", sizeof(src));
759 strlcpy(dst, "(unknown v6)", sizeof(dst));
760 }
761 log(LOG_INFO,
762 "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
763 dst, ntohs(th->th_dport),
764 src, ntohs(th->th_sport));
765 }
766 #endif
767
768 /*
769 * TCP input routine, follows pages 65-76 of the
770 * protocol specification dated September, 1981 very closely.
771 */
772 void
773 #if __STDC__
774 tcp_input(struct mbuf *m, ...)
775 #else
776 tcp_input(m, va_alist)
777 struct mbuf *m;
778 #endif
779 {
780 struct tcphdr *th;
781 struct ip *ip;
782 struct inpcb *inp;
783 #ifdef INET6
784 struct ip6_hdr *ip6;
785 struct in6pcb *in6p;
786 #endif
787 u_int8_t *optp = NULL;
788 int optlen = 0;
789 int len, tlen, toff, hdroptlen = 0;
790 struct tcpcb *tp = 0;
791 int tiflags;
792 struct socket *so = NULL;
793 int todrop, acked, ourfinisacked, needoutput = 0;
794 #ifdef TCP_DEBUG
795 short ostate = 0;
796 #endif
797 int iss = 0;
798 u_long tiwin;
799 struct tcp_opt_info opti;
800 int off, iphlen;
801 va_list ap;
802 int af; /* af on the wire */
803 struct mbuf *tcp_saveti = NULL;
804
805 MCLAIM(m, &tcp_rx_mowner);
806 va_start(ap, m);
807 toff = va_arg(ap, int);
808 (void)va_arg(ap, int); /* ignore value, advance ap */
809 va_end(ap);
810
811 tcpstat.tcps_rcvtotal++;
812
813 bzero(&opti, sizeof(opti));
814 opti.ts_present = 0;
815 opti.maxseg = 0;
816
817 /*
818 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
819 *
820 * TCP is, by definition, unicast, so we reject all
821 * multicast outright.
822 *
823 * Note, there are additional src/dst address checks in
824 * the AF-specific code below.
825 */
826 if (m->m_flags & (M_BCAST|M_MCAST)) {
827 /* XXX stat */
828 goto drop;
829 }
830 #ifdef INET6
831 if (m->m_flags & M_ANYCAST6) {
832 /* XXX stat */
833 goto drop;
834 }
835 #endif
836
837 /*
838 * Get IP and TCP header together in first mbuf.
839 * Note: IP leaves IP header in first mbuf.
840 */
841 ip = mtod(m, struct ip *);
842 #ifdef INET6
843 ip6 = NULL;
844 #endif
845 switch (ip->ip_v) {
846 #ifdef INET
847 case 4:
848 af = AF_INET;
849 iphlen = sizeof(struct ip);
850 ip = mtod(m, struct ip *);
851 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
852 sizeof(struct tcphdr));
853 if (th == NULL) {
854 tcpstat.tcps_rcvshort++;
855 return;
856 }
857 /* We do the checksum after PCB lookup... */
858 len = ntohs(ip->ip_len);
859 tlen = len - toff;
860 break;
861 #endif
862 #ifdef INET6
863 case 6:
864 ip = NULL;
865 iphlen = sizeof(struct ip6_hdr);
866 af = AF_INET6;
867 ip6 = mtod(m, struct ip6_hdr *);
868 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
869 sizeof(struct tcphdr));
870 if (th == NULL) {
871 tcpstat.tcps_rcvshort++;
872 return;
873 }
874
875 /* Be proactive about malicious use of IPv4 mapped address */
876 if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
877 IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
878 /* XXX stat */
879 goto drop;
880 }
881
882 /*
883 * Be proactive about unspecified IPv6 address in source.
884 * As we use all-zero to indicate unbounded/unconnected pcb,
885 * unspecified IPv6 address can be used to confuse us.
886 *
887 * Note that packets with unspecified IPv6 destination is
888 * already dropped in ip6_input.
889 */
890 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
891 /* XXX stat */
892 goto drop;
893 }
894
895 /*
896 * Make sure destination address is not multicast.
897 * Source address checked in ip6_input().
898 */
899 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
900 /* XXX stat */
901 goto drop;
902 }
903
904 /* We do the checksum after PCB lookup... */
905 len = m->m_pkthdr.len;
906 tlen = len - toff;
907 break;
908 #endif
909 default:
910 m_freem(m);
911 return;
912 }
913
914 KASSERT(TCP_HDR_ALIGNED_P(th));
915
916 /*
917 * Check that TCP offset makes sense,
918 * pull out TCP options and adjust length. XXX
919 */
920 off = th->th_off << 2;
921 if (off < sizeof (struct tcphdr) || off > tlen) {
922 tcpstat.tcps_rcvbadoff++;
923 goto drop;
924 }
925 tlen -= off;
926
927 /*
928 * tcp_input() has been modified to use tlen to mean the TCP data
929 * length throughout the function. Other functions can use
930 * m->m_pkthdr.len as the basis for calculating the TCP data length.
931 * rja
932 */
933
934 if (off > sizeof (struct tcphdr)) {
935 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
936 if (th == NULL) {
937 tcpstat.tcps_rcvshort++;
938 return;
939 }
940 /*
941 * NOTE: ip/ip6 will not be affected by m_pulldown()
942 * (as they're before toff) and we don't need to update those.
943 */
944 KASSERT(TCP_HDR_ALIGNED_P(th));
945 optlen = off - sizeof (struct tcphdr);
946 optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
947 /*
948 * Do quick retrieval of timestamp options ("options
949 * prediction?"). If timestamp is the only option and it's
950 * formatted as recommended in RFC 1323 appendix A, we
951 * quickly get the values now and not bother calling
952 * tcp_dooptions(), etc.
953 */
954 if ((optlen == TCPOLEN_TSTAMP_APPA ||
955 (optlen > TCPOLEN_TSTAMP_APPA &&
956 optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
957 *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
958 (th->th_flags & TH_SYN) == 0) {
959 opti.ts_present = 1;
960 opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
961 opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
962 optp = NULL; /* we've parsed the options */
963 }
964 }
965 tiflags = th->th_flags;
966
967 /*
968 * Locate pcb for segment.
969 */
970 findpcb:
971 inp = NULL;
972 #ifdef INET6
973 in6p = NULL;
974 #endif
975 switch (af) {
976 #ifdef INET
977 case AF_INET:
978 inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
979 ip->ip_dst, th->th_dport);
980 if (inp == 0) {
981 ++tcpstat.tcps_pcbhashmiss;
982 inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
983 }
984 #ifdef INET6
985 if (inp == 0) {
986 struct in6_addr s, d;
987
988 /* mapped addr case */
989 bzero(&s, sizeof(s));
990 s.s6_addr16[5] = htons(0xffff);
991 bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
992 bzero(&d, sizeof(d));
993 d.s6_addr16[5] = htons(0xffff);
994 bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
995 in6p = in6_pcblookup_connect(&tcbtable, &s,
996 th->th_sport, &d, th->th_dport, 0);
997 if (in6p == 0) {
998 ++tcpstat.tcps_pcbhashmiss;
999 in6p = in6_pcblookup_bind(&tcbtable, &d,
1000 th->th_dport, 0);
1001 }
1002 }
1003 #endif
1004 #ifndef INET6
1005 if (inp == 0)
1006 #else
1007 if (inp == 0 && in6p == 0)
1008 #endif
1009 {
1010 ++tcpstat.tcps_noport;
1011 if (tcp_log_refused &&
1012 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1013 tcp4_log_refused(ip, th);
1014 }
1015 TCP_FIELDS_TO_HOST(th);
1016 goto dropwithreset_ratelim;
1017 }
1018 #if defined(IPSEC) || defined(FAST_IPSEC)
1019 if (inp && (inp->inp_socket->so_options & SO_ACCEPTCONN) == 0 &&
1020 ipsec4_in_reject(m, inp)) {
1021 ipsecstat.in_polvio++;
1022 goto drop;
1023 }
1024 #ifdef INET6
1025 else if (in6p &&
1026 (in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 &&
1027 ipsec4_in_reject_so(m, in6p->in6p_socket)) {
1028 ipsecstat.in_polvio++;
1029 goto drop;
1030 }
1031 #endif
1032 #endif /*IPSEC*/
1033 break;
1034 #endif /*INET*/
1035 #ifdef INET6
1036 case AF_INET6:
1037 {
1038 int faith;
1039
1040 #if defined(NFAITH) && NFAITH > 0
1041 faith = faithprefix(&ip6->ip6_dst);
1042 #else
1043 faith = 0;
1044 #endif
1045 in6p = in6_pcblookup_connect(&tcbtable, &ip6->ip6_src,
1046 th->th_sport, &ip6->ip6_dst, th->th_dport, faith);
1047 if (in6p == NULL) {
1048 ++tcpstat.tcps_pcbhashmiss;
1049 in6p = in6_pcblookup_bind(&tcbtable, &ip6->ip6_dst,
1050 th->th_dport, faith);
1051 }
1052 if (in6p == NULL) {
1053 ++tcpstat.tcps_noport;
1054 if (tcp_log_refused &&
1055 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1056 tcp6_log_refused(ip6, th);
1057 }
1058 TCP_FIELDS_TO_HOST(th);
1059 goto dropwithreset_ratelim;
1060 }
1061 #if defined(IPSEC) || defined(FAST_IPSEC)
1062 if ((in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 &&
1063 ipsec6_in_reject(m, in6p)) {
1064 ipsec6stat.in_polvio++;
1065 goto drop;
1066 }
1067 #endif /*IPSEC*/
1068 break;
1069 }
1070 #endif
1071 }
1072
1073 /*
1074 * If the state is CLOSED (i.e., TCB does not exist) then
1075 * all data in the incoming segment is discarded.
1076 * If the TCB exists but is in CLOSED state, it is embryonic,
1077 * but should either do a listen or a connect soon.
1078 */
1079 tp = NULL;
1080 so = NULL;
1081 if (inp) {
1082 tp = intotcpcb(inp);
1083 so = inp->inp_socket;
1084 }
1085 #ifdef INET6
1086 else if (in6p) {
1087 tp = in6totcpcb(in6p);
1088 so = in6p->in6p_socket;
1089 }
1090 #endif
1091 if (tp == 0) {
1092 TCP_FIELDS_TO_HOST(th);
1093 goto dropwithreset_ratelim;
1094 }
1095 if (tp->t_state == TCPS_CLOSED)
1096 goto drop;
1097
1098 /*
1099 * Checksum extended TCP header and data.
1100 */
1101 switch (af) {
1102 #ifdef INET
1103 case AF_INET:
1104 switch (m->m_pkthdr.csum_flags &
1105 ((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
1106 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
1107 case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
1108 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
1109 goto badcsum;
1110
1111 case M_CSUM_TCPv4|M_CSUM_DATA: {
1112 u_int32_t hw_csum = m->m_pkthdr.csum_data;
1113 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
1114 if (m->m_pkthdr.csum_flags & M_CSUM_NO_PSEUDOHDR) {
1115 hw_csum = in_cksum_phdr(ip->ip_src.s_addr,
1116 ip->ip_dst.s_addr,
1117 htons(hw_csum + tlen + off + IPPROTO_TCP));
1118 }
1119 if ((hw_csum ^ 0xffff) != 0)
1120 goto badcsum;
1121 break;
1122 }
1123
1124 case M_CSUM_TCPv4:
1125 /* Checksum was okay. */
1126 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
1127 break;
1128
1129 default:
1130 /* Must compute it ourselves. */
1131 TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
1132 if (in4_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0)
1133 goto badcsum;
1134 break;
1135 }
1136 break;
1137 #endif /* INET4 */
1138
1139 #ifdef INET6
1140 case AF_INET6:
1141 if (in6_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0)
1142 goto badcsum;
1143 break;
1144 #endif /* INET6 */
1145 }
1146
1147 TCP_FIELDS_TO_HOST(th);
1148
1149 /* Unscale the window into a 32-bit value. */
1150 if ((tiflags & TH_SYN) == 0)
1151 tiwin = th->th_win << tp->snd_scale;
1152 else
1153 tiwin = th->th_win;
1154
1155 #ifdef INET6
1156 /* save packet options if user wanted */
1157 if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
1158 if (in6p->in6p_options) {
1159 m_freem(in6p->in6p_options);
1160 in6p->in6p_options = 0;
1161 }
1162 ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
1163 }
1164 #endif
1165
1166 if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
1167 union syn_cache_sa src;
1168 union syn_cache_sa dst;
1169
1170 bzero(&src, sizeof(src));
1171 bzero(&dst, sizeof(dst));
1172 switch (af) {
1173 #ifdef INET
1174 case AF_INET:
1175 src.sin.sin_len = sizeof(struct sockaddr_in);
1176 src.sin.sin_family = AF_INET;
1177 src.sin.sin_addr = ip->ip_src;
1178 src.sin.sin_port = th->th_sport;
1179
1180 dst.sin.sin_len = sizeof(struct sockaddr_in);
1181 dst.sin.sin_family = AF_INET;
1182 dst.sin.sin_addr = ip->ip_dst;
1183 dst.sin.sin_port = th->th_dport;
1184 break;
1185 #endif
1186 #ifdef INET6
1187 case AF_INET6:
1188 src.sin6.sin6_len = sizeof(struct sockaddr_in6);
1189 src.sin6.sin6_family = AF_INET6;
1190 src.sin6.sin6_addr = ip6->ip6_src;
1191 src.sin6.sin6_port = th->th_sport;
1192
1193 dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
1194 dst.sin6.sin6_family = AF_INET6;
1195 dst.sin6.sin6_addr = ip6->ip6_dst;
1196 dst.sin6.sin6_port = th->th_dport;
1197 break;
1198 #endif /* INET6 */
1199 default:
1200 goto badsyn; /*sanity*/
1201 }
1202
1203 if (so->so_options & SO_DEBUG) {
1204 #ifdef TCP_DEBUG
1205 ostate = tp->t_state;
1206 #endif
1207
1208 tcp_saveti = NULL;
1209 if (iphlen + sizeof(struct tcphdr) > MHLEN)
1210 goto nosave;
1211
1212 if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
1213 tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
1214 if (!tcp_saveti)
1215 goto nosave;
1216 } else {
1217 MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
1218 if (!tcp_saveti)
1219 goto nosave;
1220 MCLAIM(m, &tcp_mowner);
1221 tcp_saveti->m_len = iphlen;
1222 m_copydata(m, 0, iphlen,
1223 mtod(tcp_saveti, caddr_t));
1224 }
1225
1226 if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
1227 m_freem(tcp_saveti);
1228 tcp_saveti = NULL;
1229 } else {
1230 tcp_saveti->m_len += sizeof(struct tcphdr);
1231 bcopy(th, mtod(tcp_saveti, caddr_t) + iphlen,
1232 sizeof(struct tcphdr));
1233 }
1234 nosave:;
1235 }
1236 if (so->so_options & SO_ACCEPTCONN) {
1237 if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1238 if (tiflags & TH_RST) {
1239 syn_cache_reset(&src.sa, &dst.sa, th);
1240 } else if ((tiflags & (TH_ACK|TH_SYN)) ==
1241 (TH_ACK|TH_SYN)) {
1242 /*
1243 * Received a SYN,ACK. This should
1244 * never happen while we are in
1245 * LISTEN. Send an RST.
1246 */
1247 goto badsyn;
1248 } else if (tiflags & TH_ACK) {
1249 so = syn_cache_get(&src.sa, &dst.sa,
1250 th, toff, tlen, so, m);
1251 if (so == NULL) {
1252 /*
1253 * We don't have a SYN for
1254 * this ACK; send an RST.
1255 */
1256 goto badsyn;
1257 } else if (so ==
1258 (struct socket *)(-1)) {
1259 /*
1260 * We were unable to create
1261 * the connection. If the
1262 * 3-way handshake was
1263 * completed, and RST has
1264 * been sent to the peer.
1265 * Since the mbuf might be
1266 * in use for the reply,
1267 * do not free it.
1268 */
1269 m = NULL;
1270 } else {
1271 /*
1272 * We have created a
1273 * full-blown connection.
1274 */
1275 tp = NULL;
1276 inp = NULL;
1277 #ifdef INET6
1278 in6p = NULL;
1279 #endif
1280 switch (so->so_proto->pr_domain->dom_family) {
1281 #ifdef INET
1282 case AF_INET:
1283 inp = sotoinpcb(so);
1284 tp = intotcpcb(inp);
1285 break;
1286 #endif
1287 #ifdef INET6
1288 case AF_INET6:
1289 in6p = sotoin6pcb(so);
1290 tp = in6totcpcb(in6p);
1291 break;
1292 #endif
1293 }
1294 if (tp == NULL)
1295 goto badsyn; /*XXX*/
1296 tiwin <<= tp->snd_scale;
1297 goto after_listen;
1298 }
1299 } else {
1300 /*
1301 * None of RST, SYN or ACK was set.
1302 * This is an invalid packet for a
1303 * TCB in LISTEN state. Send a RST.
1304 */
1305 goto badsyn;
1306 }
1307 } else {
1308 /*
1309 * Received a SYN.
1310 */
1311
1312 #ifdef INET6
1313 /*
1314 * If deprecated address is forbidden, we do
1315 * not accept SYN to deprecated interface
1316 * address to prevent any new inbound
1317 * connection from getting established.
1318 * When we do not accept SYN, we send a TCP
1319 * RST, with deprecated source address (instead
1320 * of dropping it). We compromise it as it is
1321 * much better for peer to send a RST, and
1322 * RST will be the final packet for the
1323 * exchange.
1324 *
1325 * If we do not forbid deprecated addresses, we
1326 * accept the SYN packet. RFC2462 does not
1327 * suggest dropping SYN in this case.
1328 * If we decipher RFC2462 5.5.4, it says like
1329 * this:
1330 * 1. use of deprecated addr with existing
1331 * communication is okay - "SHOULD continue
1332 * to be used"
1333 * 2. use of it with new communication:
1334 * (2a) "SHOULD NOT be used if alternate
1335 * address with sufficient scope is
1336 * available"
1337 * (2b) nothing mentioned otherwise.
1338 * Here we fall into (2b) case as we have no
1339 * choice in our source address selection - we
1340 * must obey the peer.
1341 *
1342 * The wording in RFC2462 is confusing, and
1343 * there are multiple description text for
1344 * deprecated address handling - worse, they
1345 * are not exactly the same. I believe 5.5.4
1346 * is the best one, so we follow 5.5.4.
1347 */
1348 if (af == AF_INET6 && !ip6_use_deprecated) {
1349 struct in6_ifaddr *ia6;
1350 if ((ia6 = in6ifa_ifpwithaddr(m->m_pkthdr.rcvif,
1351 &ip6->ip6_dst)) &&
1352 (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1353 tp = NULL;
1354 goto dropwithreset;
1355 }
1356 }
1357 #endif
1358
1359 #ifdef IPSEC
1360 switch (af) {
1361 #ifdef INET
1362 case AF_INET:
1363 if (ipsec4_in_reject_so(m, so)) {
1364 ipsecstat.in_polvio++;
1365 tp = NULL;
1366 goto dropwithreset;
1367 }
1368 break;
1369 #endif
1370 #ifdef INET6
1371 case AF_INET6:
1372 if (ipsec6_in_reject_so(m, so)) {
1373 ipsec6stat.in_polvio++;
1374 tp = NULL;
1375 goto dropwithreset;
1376 }
1377 break;
1378 #endif
1379 }
1380 #endif
1381
1382 /*
1383 * LISTEN socket received a SYN
1384 * from itself? This can't possibly
1385 * be valid; drop the packet.
1386 */
1387 if (th->th_sport == th->th_dport) {
1388 int i;
1389
1390 switch (af) {
1391 #ifdef INET
1392 case AF_INET:
1393 i = in_hosteq(ip->ip_src, ip->ip_dst);
1394 break;
1395 #endif
1396 #ifdef INET6
1397 case AF_INET6:
1398 i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
1399 break;
1400 #endif
1401 default:
1402 i = 1;
1403 }
1404 if (i) {
1405 tcpstat.tcps_badsyn++;
1406 goto drop;
1407 }
1408 }
1409
1410 /*
1411 * SYN looks ok; create compressed TCP
1412 * state for it.
1413 */
1414 if (so->so_qlen <= so->so_qlimit &&
1415 syn_cache_add(&src.sa, &dst.sa, th, tlen,
1416 so, m, optp, optlen, &opti))
1417 m = NULL;
1418 }
1419 goto drop;
1420 }
1421 }
1422
1423 after_listen:
1424 #ifdef DIAGNOSTIC
1425 /*
1426 * Should not happen now that all embryonic connections
1427 * are handled with compressed state.
1428 */
1429 if (tp->t_state == TCPS_LISTEN)
1430 panic("tcp_input: TCPS_LISTEN");
1431 #endif
1432
1433 /*
1434 * Segment received on connection.
1435 * Reset idle time and keep-alive timer.
1436 */
1437 tp->t_rcvtime = tcp_now;
1438 if (TCPS_HAVEESTABLISHED(tp->t_state))
1439 TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1440
1441 /*
1442 * Process options.
1443 */
1444 if (optp)
1445 tcp_dooptions(tp, optp, optlen, th, &opti);
1446
1447 /*
1448 * Header prediction: check for the two common cases
1449 * of a uni-directional data xfer. If the packet has
1450 * no control flags, is in-sequence, the window didn't
1451 * change and we're not retransmitting, it's a
1452 * candidate. If the length is zero and the ack moved
1453 * forward, we're the sender side of the xfer. Just
1454 * free the data acked & wake any higher level process
1455 * that was blocked waiting for space. If the length
1456 * is non-zero and the ack didn't move, we're the
1457 * receiver side. If we're getting packets in-order
1458 * (the reassembly queue is empty), add the data to
1459 * the socket buffer and note that we need a delayed ack.
1460 */
1461 if (tp->t_state == TCPS_ESTABLISHED &&
1462 (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1463 (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
1464 th->th_seq == tp->rcv_nxt &&
1465 tiwin && tiwin == tp->snd_wnd &&
1466 tp->snd_nxt == tp->snd_max) {
1467
1468 /*
1469 * If last ACK falls within this segment's sequence numbers,
1470 * record the timestamp.
1471 */
1472 if (opti.ts_present &&
1473 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1474 SEQ_LT(tp->last_ack_sent, th->th_seq + tlen)) {
1475 tp->ts_recent_age = TCP_TIMESTAMP(tp);
1476 tp->ts_recent = opti.ts_val;
1477 }
1478
1479 if (tlen == 0) {
1480 if (SEQ_GT(th->th_ack, tp->snd_una) &&
1481 SEQ_LEQ(th->th_ack, tp->snd_max) &&
1482 tp->snd_cwnd >= tp->snd_wnd &&
1483 tp->t_dupacks < tcprexmtthresh) {
1484 /*
1485 * this is a pure ack for outstanding data.
1486 */
1487 ++tcpstat.tcps_predack;
1488 if (opti.ts_present && opti.ts_ecr)
1489 tcp_xmit_timer(tp,
1490 TCP_TIMESTAMP(tp) - opti.ts_ecr + 1);
1491 else if (tp->t_rtttime &&
1492 SEQ_GT(th->th_ack, tp->t_rtseq))
1493 tcp_xmit_timer(tp,
1494 tcp_now - tp->t_rtttime);
1495 acked = th->th_ack - tp->snd_una;
1496 tcpstat.tcps_rcvackpack++;
1497 tcpstat.tcps_rcvackbyte += acked;
1498 ND6_HINT(tp);
1499
1500 if (acked > (tp->t_lastoff - tp->t_inoff))
1501 tp->t_lastm = NULL;
1502 sbdrop(&so->so_snd, acked);
1503 tp->t_lastoff -= acked;
1504
1505 /*
1506 * We want snd_recover to track snd_una to
1507 * avoid sequence wraparound problems for
1508 * very large transfers.
1509 */
1510 tp->snd_una = tp->snd_recover = th->th_ack;
1511 m_freem(m);
1512
1513 /*
1514 * If all outstanding data are acked, stop
1515 * retransmit timer, otherwise restart timer
1516 * using current (possibly backed-off) value.
1517 * If process is waiting for space,
1518 * wakeup/selwakeup/signal. If data
1519 * are ready to send, let tcp_output
1520 * decide between more output or persist.
1521 */
1522 if (tp->snd_una == tp->snd_max)
1523 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1524 else if (TCP_TIMER_ISARMED(tp,
1525 TCPT_PERSIST) == 0)
1526 TCP_TIMER_ARM(tp, TCPT_REXMT,
1527 tp->t_rxtcur);
1528
1529 sowwakeup(so);
1530 if (so->so_snd.sb_cc)
1531 (void) tcp_output(tp);
1532 if (tcp_saveti)
1533 m_freem(tcp_saveti);
1534 return;
1535 }
1536 } else if (th->th_ack == tp->snd_una &&
1537 TAILQ_FIRST(&tp->segq) == NULL &&
1538 tlen <= sbspace(&so->so_rcv)) {
1539 /*
1540 * this is a pure, in-sequence data packet
1541 * with nothing on the reassembly queue and
1542 * we have enough buffer space to take it.
1543 */
1544 ++tcpstat.tcps_preddat;
1545 tp->rcv_nxt += tlen;
1546 tcpstat.tcps_rcvpack++;
1547 tcpstat.tcps_rcvbyte += tlen;
1548 ND6_HINT(tp);
1549 /*
1550 * Drop TCP, IP headers and TCP options then add data
1551 * to socket buffer.
1552 */
1553 if (so->so_state & SS_CANTRCVMORE)
1554 m_freem(m);
1555 else {
1556 m_adj(m, toff + off);
1557 sbappendstream(&so->so_rcv, m);
1558 }
1559 sorwakeup(so);
1560 TCP_SETUP_ACK(tp, th);
1561 if (tp->t_flags & TF_ACKNOW)
1562 (void) tcp_output(tp);
1563 if (tcp_saveti)
1564 m_freem(tcp_saveti);
1565 return;
1566 }
1567 }
1568
1569 /*
1570 * Compute mbuf offset to TCP data segment.
1571 */
1572 hdroptlen = toff + off;
1573
1574 /*
1575 * Calculate amount of space in receive window,
1576 * and then do TCP input processing.
1577 * Receive window is amount of space in rcv queue,
1578 * but not less than advertised window.
1579 */
1580 { int win;
1581
1582 win = sbspace(&so->so_rcv);
1583 if (win < 0)
1584 win = 0;
1585 tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1586 }
1587
1588 switch (tp->t_state) {
1589 case TCPS_LISTEN:
1590 /*
1591 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
1592 */
1593 if (m->m_flags & (M_BCAST|M_MCAST))
1594 goto drop;
1595 switch (af) {
1596 #ifdef INET6
1597 case AF_INET6:
1598 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
1599 goto drop;
1600 break;
1601 #endif /* INET6 */
1602 case AF_INET:
1603 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
1604 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
1605 goto drop;
1606 break;
1607 }
1608 break;
1609
1610 /*
1611 * If the state is SYN_SENT:
1612 * if seg contains an ACK, but not for our SYN, drop the input.
1613 * if seg contains a RST, then drop the connection.
1614 * if seg does not contain SYN, then drop it.
1615 * Otherwise this is an acceptable SYN segment
1616 * initialize tp->rcv_nxt and tp->irs
1617 * if seg contains ack then advance tp->snd_una
1618 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1619 * arrange for segment to be acked (eventually)
1620 * continue processing rest of data/controls, beginning with URG
1621 */
1622 case TCPS_SYN_SENT:
1623 if ((tiflags & TH_ACK) &&
1624 (SEQ_LEQ(th->th_ack, tp->iss) ||
1625 SEQ_GT(th->th_ack, tp->snd_max)))
1626 goto dropwithreset;
1627 if (tiflags & TH_RST) {
1628 if (tiflags & TH_ACK)
1629 tp = tcp_drop(tp, ECONNREFUSED);
1630 goto drop;
1631 }
1632 if ((tiflags & TH_SYN) == 0)
1633 goto drop;
1634 if (tiflags & TH_ACK) {
1635 tp->snd_una = tp->snd_recover = th->th_ack;
1636 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1637 tp->snd_nxt = tp->snd_una;
1638 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1639 }
1640 tp->irs = th->th_seq;
1641 tcp_rcvseqinit(tp);
1642 tp->t_flags |= TF_ACKNOW;
1643 tcp_mss_from_peer(tp, opti.maxseg);
1644
1645 /*
1646 * Initialize the initial congestion window. If we
1647 * had to retransmit the SYN, we must initialize cwnd
1648 * to 1 segment (i.e. the Loss Window).
1649 */
1650 if (tp->t_flags & TF_SYN_REXMT)
1651 tp->snd_cwnd = tp->t_peermss;
1652 else {
1653 int ss = tcp_init_win;
1654 #ifdef INET
1655 if (inp != NULL && in_localaddr(inp->inp_faddr))
1656 ss = tcp_init_win_local;
1657 #endif
1658 #ifdef INET6
1659 if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
1660 ss = tcp_init_win_local;
1661 #endif
1662 tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
1663 }
1664
1665 tcp_rmx_rtt(tp);
1666 if (tiflags & TH_ACK) {
1667 tcpstat.tcps_connects++;
1668 soisconnected(so);
1669 tcp_established(tp);
1670 /* Do window scaling on this connection? */
1671 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1672 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1673 tp->snd_scale = tp->requested_s_scale;
1674 tp->rcv_scale = tp->request_r_scale;
1675 }
1676 TCP_REASS_LOCK(tp);
1677 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1678 TCP_REASS_UNLOCK(tp);
1679 /*
1680 * if we didn't have to retransmit the SYN,
1681 * use its rtt as our initial srtt & rtt var.
1682 */
1683 if (tp->t_rtttime)
1684 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
1685 } else
1686 tp->t_state = TCPS_SYN_RECEIVED;
1687
1688 /*
1689 * Advance th->th_seq to correspond to first data byte.
1690 * If data, trim to stay within window,
1691 * dropping FIN if necessary.
1692 */
1693 th->th_seq++;
1694 if (tlen > tp->rcv_wnd) {
1695 todrop = tlen - tp->rcv_wnd;
1696 m_adj(m, -todrop);
1697 tlen = tp->rcv_wnd;
1698 tiflags &= ~TH_FIN;
1699 tcpstat.tcps_rcvpackafterwin++;
1700 tcpstat.tcps_rcvbyteafterwin += todrop;
1701 }
1702 tp->snd_wl1 = th->th_seq - 1;
1703 tp->rcv_up = th->th_seq;
1704 goto step6;
1705
1706 /*
1707 * If the state is SYN_RECEIVED:
1708 * If seg contains an ACK, but not for our SYN, drop the input
1709 * and generate an RST. See page 36, rfc793
1710 */
1711 case TCPS_SYN_RECEIVED:
1712 if ((tiflags & TH_ACK) &&
1713 (SEQ_LEQ(th->th_ack, tp->iss) ||
1714 SEQ_GT(th->th_ack, tp->snd_max)))
1715 goto dropwithreset;
1716 break;
1717 }
1718
1719 /*
1720 * States other than LISTEN or SYN_SENT.
1721 * First check timestamp, if present.
1722 * Then check that at least some bytes of segment are within
1723 * receive window. If segment begins before rcv_nxt,
1724 * drop leading data (and SYN); if nothing left, just ack.
1725 *
1726 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1727 * and it's less than ts_recent, drop it.
1728 */
1729 if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
1730 TSTMP_LT(opti.ts_val, tp->ts_recent)) {
1731
1732 /* Check to see if ts_recent is over 24 days old. */
1733 if ((int)(TCP_TIMESTAMP(tp) - tp->ts_recent_age) >
1734 TCP_PAWS_IDLE) {
1735 /*
1736 * Invalidate ts_recent. If this segment updates
1737 * ts_recent, the age will be reset later and ts_recent
1738 * will get a valid value. If it does not, setting
1739 * ts_recent to zero will at least satisfy the
1740 * requirement that zero be placed in the timestamp
1741 * echo reply when ts_recent isn't valid. The
1742 * age isn't reset until we get a valid ts_recent
1743 * because we don't want out-of-order segments to be
1744 * dropped when ts_recent is old.
1745 */
1746 tp->ts_recent = 0;
1747 } else {
1748 tcpstat.tcps_rcvduppack++;
1749 tcpstat.tcps_rcvdupbyte += tlen;
1750 tcpstat.tcps_pawsdrop++;
1751 goto dropafterack;
1752 }
1753 }
1754
1755 todrop = tp->rcv_nxt - th->th_seq;
1756 if (todrop > 0) {
1757 if (tiflags & TH_SYN) {
1758 tiflags &= ~TH_SYN;
1759 th->th_seq++;
1760 if (th->th_urp > 1)
1761 th->th_urp--;
1762 else {
1763 tiflags &= ~TH_URG;
1764 th->th_urp = 0;
1765 }
1766 todrop--;
1767 }
1768 if (todrop > tlen ||
1769 (todrop == tlen && (tiflags & TH_FIN) == 0)) {
1770 /*
1771 * Any valid FIN or RST must be to the left of the
1772 * window. At this point the FIN or RST must be a
1773 * duplicate or out of sequence; drop it.
1774 */
1775 if (tiflags & TH_RST)
1776 goto drop;
1777 tiflags &= ~(TH_FIN|TH_RST);
1778 /*
1779 * Send an ACK to resynchronize and drop any data.
1780 * But keep on processing for RST or ACK.
1781 */
1782 tp->t_flags |= TF_ACKNOW;
1783 todrop = tlen;
1784 tcpstat.tcps_rcvdupbyte += todrop;
1785 tcpstat.tcps_rcvduppack++;
1786 } else {
1787 tcpstat.tcps_rcvpartduppack++;
1788 tcpstat.tcps_rcvpartdupbyte += todrop;
1789 }
1790 hdroptlen += todrop; /*drop from head afterwards*/
1791 th->th_seq += todrop;
1792 tlen -= todrop;
1793 if (th->th_urp > todrop)
1794 th->th_urp -= todrop;
1795 else {
1796 tiflags &= ~TH_URG;
1797 th->th_urp = 0;
1798 }
1799 }
1800
1801 /*
1802 * If new data are received on a connection after the
1803 * user processes are gone, then RST the other end.
1804 */
1805 if ((so->so_state & SS_NOFDREF) &&
1806 tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1807 tp = tcp_close(tp);
1808 tcpstat.tcps_rcvafterclose++;
1809 goto dropwithreset;
1810 }
1811
1812 /*
1813 * If segment ends after window, drop trailing data
1814 * (and PUSH and FIN); if nothing left, just ACK.
1815 */
1816 todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
1817 if (todrop > 0) {
1818 tcpstat.tcps_rcvpackafterwin++;
1819 if (todrop >= tlen) {
1820 /*
1821 * The segment actually starts after the window.
1822 * th->th_seq + tlen - tp->rcv_nxt - tp->rcv_wnd >= tlen
1823 * th->th_seq - tp->rcv_nxt - tp->rcv_wnd >= 0
1824 * th->th_seq >= tp->rcv_nxt + tp->rcv_wnd
1825 */
1826 tcpstat.tcps_rcvbyteafterwin += tlen;
1827 /*
1828 * If a new connection request is received
1829 * while in TIME_WAIT, drop the old connection
1830 * and start over if the sequence numbers
1831 * are above the previous ones.
1832 *
1833 * NOTE: We will checksum the packet again, and
1834 * so we need to put the header fields back into
1835 * network order!
1836 * XXX This kind of sucks, but we don't expect
1837 * XXX this to happen very often, so maybe it
1838 * XXX doesn't matter so much.
1839 */
1840 if (tiflags & TH_SYN &&
1841 tp->t_state == TCPS_TIME_WAIT &&
1842 SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1843 iss = tcp_new_iss(tp, tp->snd_nxt);
1844 tp = tcp_close(tp);
1845 TCP_FIELDS_TO_NET(th);
1846 goto findpcb;
1847 }
1848 /*
1849 * If window is closed can only take segments at
1850 * window edge, and have to drop data and PUSH from
1851 * incoming segments. Continue processing, but
1852 * remember to ack. Otherwise, drop segment
1853 * and (if not RST) ack.
1854 */
1855 if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1856 tp->t_flags |= TF_ACKNOW;
1857 tcpstat.tcps_rcvwinprobe++;
1858 } else
1859 goto dropafterack;
1860 } else
1861 tcpstat.tcps_rcvbyteafterwin += todrop;
1862 m_adj(m, -todrop);
1863 tlen -= todrop;
1864 tiflags &= ~(TH_PUSH|TH_FIN);
1865 }
1866
1867 /*
1868 * If last ACK falls within this segment's sequence numbers,
1869 * and the timestamp is newer, record it.
1870 */
1871 if (opti.ts_present && TSTMP_GEQ(opti.ts_val, tp->ts_recent) &&
1872 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1873 SEQ_LT(tp->last_ack_sent, th->th_seq + tlen +
1874 ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
1875 tp->ts_recent_age = TCP_TIMESTAMP(tp);
1876 tp->ts_recent = opti.ts_val;
1877 }
1878
1879 /*
1880 * If the RST bit is set examine the state:
1881 * SYN_RECEIVED STATE:
1882 * If passive open, return to LISTEN state.
1883 * If active open, inform user that connection was refused.
1884 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
1885 * Inform user that connection was reset, and close tcb.
1886 * CLOSING, LAST_ACK, TIME_WAIT STATES
1887 * Close the tcb.
1888 */
1889 if (tiflags & TH_RST) {
1890 if (th->th_seq != tp->last_ack_sent)
1891 goto dropafterack_ratelim;
1892
1893 switch (tp->t_state) {
1894 case TCPS_SYN_RECEIVED:
1895 so->so_error = ECONNREFUSED;
1896 goto close;
1897
1898 case TCPS_ESTABLISHED:
1899 case TCPS_FIN_WAIT_1:
1900 case TCPS_FIN_WAIT_2:
1901 case TCPS_CLOSE_WAIT:
1902 so->so_error = ECONNRESET;
1903 close:
1904 tp->t_state = TCPS_CLOSED;
1905 tcpstat.tcps_drops++;
1906 tp = tcp_close(tp);
1907 goto drop;
1908
1909 case TCPS_CLOSING:
1910 case TCPS_LAST_ACK:
1911 case TCPS_TIME_WAIT:
1912 tp = tcp_close(tp);
1913 goto drop;
1914 }
1915 }
1916
1917 /*
1918 * Since we've covered the SYN-SENT and SYN-RECEIVED states above
1919 * we must be in a synchronized state. RFC791 states (under RST
1920 * generation) that any unacceptable segment (an out-of-order SYN
1921 * qualifies) received in a synchronized state must elicit only an
1922 * empty acknowledgment segment ... and the connection remains in
1923 * the same state.
1924 */
1925 if (tiflags & TH_SYN) {
1926 if (tp->rcv_nxt == th->th_seq) {
1927 tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack - 1,
1928 TH_ACK);
1929 if (tcp_saveti)
1930 m_freem(tcp_saveti);
1931 return;
1932 }
1933
1934 goto dropafterack_ratelim;
1935 }
1936
1937 /*
1938 * If the ACK bit is off we drop the segment and return.
1939 */
1940 if ((tiflags & TH_ACK) == 0) {
1941 if (tp->t_flags & TF_ACKNOW)
1942 goto dropafterack;
1943 else
1944 goto drop;
1945 }
1946
1947 /*
1948 * Ack processing.
1949 */
1950 switch (tp->t_state) {
1951
1952 /*
1953 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
1954 * ESTABLISHED state and continue processing, otherwise
1955 * send an RST.
1956 */
1957 case TCPS_SYN_RECEIVED:
1958 if (SEQ_GT(tp->snd_una, th->th_ack) ||
1959 SEQ_GT(th->th_ack, tp->snd_max))
1960 goto dropwithreset;
1961 tcpstat.tcps_connects++;
1962 soisconnected(so);
1963 tcp_established(tp);
1964 /* Do window scaling? */
1965 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1966 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1967 tp->snd_scale = tp->requested_s_scale;
1968 tp->rcv_scale = tp->request_r_scale;
1969 }
1970 TCP_REASS_LOCK(tp);
1971 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1972 TCP_REASS_UNLOCK(tp);
1973 tp->snd_wl1 = th->th_seq - 1;
1974 /* fall into ... */
1975
1976 /*
1977 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1978 * ACKs. If the ack is in the range
1979 * tp->snd_una < th->th_ack <= tp->snd_max
1980 * then advance tp->snd_una to th->th_ack and drop
1981 * data from the retransmission queue. If this ACK reflects
1982 * more up to date window information we update our window information.
1983 */
1984 case TCPS_ESTABLISHED:
1985 case TCPS_FIN_WAIT_1:
1986 case TCPS_FIN_WAIT_2:
1987 case TCPS_CLOSE_WAIT:
1988 case TCPS_CLOSING:
1989 case TCPS_LAST_ACK:
1990 case TCPS_TIME_WAIT:
1991
1992 if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
1993 if (tlen == 0 && tiwin == tp->snd_wnd) {
1994 tcpstat.tcps_rcvdupack++;
1995 /*
1996 * If we have outstanding data (other than
1997 * a window probe), this is a completely
1998 * duplicate ack (ie, window info didn't
1999 * change), the ack is the biggest we've
2000 * seen and we've seen exactly our rexmt
2001 * threshhold of them, assume a packet
2002 * has been dropped and retransmit it.
2003 * Kludge snd_nxt & the congestion
2004 * window so we send only this one
2005 * packet.
2006 *
2007 * We know we're losing at the current
2008 * window size so do congestion avoidance
2009 * (set ssthresh to half the current window
2010 * and pull our congestion window back to
2011 * the new ssthresh).
2012 *
2013 * Dup acks mean that packets have left the
2014 * network (they're now cached at the receiver)
2015 * so bump cwnd by the amount in the receiver
2016 * to keep a constant cwnd packets in the
2017 * network.
2018 */
2019 if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
2020 th->th_ack != tp->snd_una)
2021 tp->t_dupacks = 0;
2022 else if (++tp->t_dupacks == tcprexmtthresh) {
2023 tcp_seq onxt = tp->snd_nxt;
2024 u_int win =
2025 min(tp->snd_wnd, tp->snd_cwnd) /
2026 2 / tp->t_segsz;
2027 if (tcp_do_newreno && SEQ_LT(th->th_ack,
2028 tp->snd_recover)) {
2029 /*
2030 * False fast retransmit after
2031 * timeout. Do not cut window.
2032 */
2033 tp->snd_cwnd += tp->t_segsz;
2034 tp->t_dupacks = 0;
2035 (void) tcp_output(tp);
2036 goto drop;
2037 }
2038
2039 if (win < 2)
2040 win = 2;
2041 tp->snd_ssthresh = win * tp->t_segsz;
2042 tp->snd_recover = tp->snd_max;
2043 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2044 tp->t_rtttime = 0;
2045 tp->snd_nxt = th->th_ack;
2046 tp->snd_cwnd = tp->t_segsz;
2047 (void) tcp_output(tp);
2048 tp->snd_cwnd = tp->snd_ssthresh +
2049 tp->t_segsz * tp->t_dupacks;
2050 if (SEQ_GT(onxt, tp->snd_nxt))
2051 tp->snd_nxt = onxt;
2052 goto drop;
2053 } else if (tp->t_dupacks > tcprexmtthresh) {
2054 tp->snd_cwnd += tp->t_segsz;
2055 (void) tcp_output(tp);
2056 goto drop;
2057 }
2058 } else if (tlen) {
2059 tp->t_dupacks = 0; /*XXX*/
2060 /* drop very old ACKs unless th_seq matches */
2061 if (th->th_seq != tp->rcv_nxt &&
2062 SEQ_LT(th->th_ack,
2063 tp->snd_una - tp->max_sndwnd)) {
2064 goto drop;
2065 }
2066 break;
2067 } else
2068 tp->t_dupacks = 0;
2069 break;
2070 }
2071 /*
2072 * If the congestion window was inflated to account
2073 * for the other side's cached packets, retract it.
2074 */
2075 if (tcp_do_newreno == 0) {
2076 if (tp->t_dupacks >= tcprexmtthresh &&
2077 tp->snd_cwnd > tp->snd_ssthresh)
2078 tp->snd_cwnd = tp->snd_ssthresh;
2079 tp->t_dupacks = 0;
2080 } else if (tp->t_dupacks >= tcprexmtthresh &&
2081 tcp_newreno(tp, th) == 0) {
2082 tp->snd_cwnd = tp->snd_ssthresh;
2083 /*
2084 * Window inflation should have left us with approx.
2085 * snd_ssthresh outstanding data. But in case we
2086 * would be inclined to send a burst, better to do
2087 * it via the slow start mechanism.
2088 */
2089 if (SEQ_SUB(tp->snd_max, th->th_ack) < tp->snd_ssthresh)
2090 tp->snd_cwnd = SEQ_SUB(tp->snd_max, th->th_ack)
2091 + tp->t_segsz;
2092 tp->t_dupacks = 0;
2093 }
2094 if (SEQ_GT(th->th_ack, tp->snd_max)) {
2095 tcpstat.tcps_rcvacktoomuch++;
2096 goto dropafterack;
2097 }
2098 acked = th->th_ack - tp->snd_una;
2099 tcpstat.tcps_rcvackpack++;
2100 tcpstat.tcps_rcvackbyte += acked;
2101
2102 /*
2103 * If we have a timestamp reply, update smoothed
2104 * round trip time. If no timestamp is present but
2105 * transmit timer is running and timed sequence
2106 * number was acked, update smoothed round trip time.
2107 * Since we now have an rtt measurement, cancel the
2108 * timer backoff (cf., Phil Karn's retransmit alg.).
2109 * Recompute the initial retransmit timer.
2110 */
2111 if (opti.ts_present && opti.ts_ecr)
2112 tcp_xmit_timer(tp, TCP_TIMESTAMP(tp) - opti.ts_ecr + 1);
2113 else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2114 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2115
2116 /*
2117 * If all outstanding data is acked, stop retransmit
2118 * timer and remember to restart (more output or persist).
2119 * If there is more data to be acked, restart retransmit
2120 * timer, using current (possibly backed-off) value.
2121 */
2122 if (th->th_ack == tp->snd_max) {
2123 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2124 needoutput = 1;
2125 } else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
2126 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
2127 /*
2128 * When new data is acked, open the congestion window.
2129 * If the window gives us less than ssthresh packets
2130 * in flight, open exponentially (segsz per packet).
2131 * Otherwise open linearly: segsz per window
2132 * (segsz^2 / cwnd per packet), plus a constant
2133 * fraction of a packet (segsz/8) to help larger windows
2134 * open quickly enough.
2135 */
2136 {
2137 u_int cw = tp->snd_cwnd;
2138 u_int incr = tp->t_segsz;
2139
2140 if (cw > tp->snd_ssthresh)
2141 incr = incr * incr / cw;
2142 if (tcp_do_newreno == 0 || SEQ_GEQ(th->th_ack, tp->snd_recover))
2143 tp->snd_cwnd = min(cw + incr,
2144 TCP_MAXWIN << tp->snd_scale);
2145 }
2146 ND6_HINT(tp);
2147 if (acked > so->so_snd.sb_cc) {
2148 tp->snd_wnd -= so->so_snd.sb_cc;
2149 sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
2150 ourfinisacked = 1;
2151 } else {
2152 if (acked > (tp->t_lastoff - tp->t_inoff))
2153 tp->t_lastm = NULL;
2154 sbdrop(&so->so_snd, acked);
2155 tp->t_lastoff -= acked;
2156 tp->snd_wnd -= acked;
2157 ourfinisacked = 0;
2158 }
2159 sowwakeup(so);
2160 /*
2161 * We want snd_recover to track snd_una to
2162 * avoid sequence wraparound problems for
2163 * very large transfers.
2164 */
2165 tp->snd_una = tp->snd_recover = th->th_ack;
2166 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2167 tp->snd_nxt = tp->snd_una;
2168
2169 switch (tp->t_state) {
2170
2171 /*
2172 * In FIN_WAIT_1 STATE in addition to the processing
2173 * for the ESTABLISHED state if our FIN is now acknowledged
2174 * then enter FIN_WAIT_2.
2175 */
2176 case TCPS_FIN_WAIT_1:
2177 if (ourfinisacked) {
2178 /*
2179 * If we can't receive any more
2180 * data, then closing user can proceed.
2181 * Starting the timer is contrary to the
2182 * specification, but if we don't get a FIN
2183 * we'll hang forever.
2184 */
2185 if (so->so_state & SS_CANTRCVMORE) {
2186 soisdisconnected(so);
2187 if (tcp_maxidle > 0)
2188 TCP_TIMER_ARM(tp, TCPT_2MSL,
2189 tcp_maxidle);
2190 }
2191 tp->t_state = TCPS_FIN_WAIT_2;
2192 }
2193 break;
2194
2195 /*
2196 * In CLOSING STATE in addition to the processing for
2197 * the ESTABLISHED state if the ACK acknowledges our FIN
2198 * then enter the TIME-WAIT state, otherwise ignore
2199 * the segment.
2200 */
2201 case TCPS_CLOSING:
2202 if (ourfinisacked) {
2203 tp->t_state = TCPS_TIME_WAIT;
2204 tcp_canceltimers(tp);
2205 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2206 soisdisconnected(so);
2207 }
2208 break;
2209
2210 /*
2211 * In LAST_ACK, we may still be waiting for data to drain
2212 * and/or to be acked, as well as for the ack of our FIN.
2213 * If our FIN is now acknowledged, delete the TCB,
2214 * enter the closed state and return.
2215 */
2216 case TCPS_LAST_ACK:
2217 if (ourfinisacked) {
2218 tp = tcp_close(tp);
2219 goto drop;
2220 }
2221 break;
2222
2223 /*
2224 * In TIME_WAIT state the only thing that should arrive
2225 * is a retransmission of the remote FIN. Acknowledge
2226 * it and restart the finack timer.
2227 */
2228 case TCPS_TIME_WAIT:
2229 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2230 goto dropafterack;
2231 }
2232 }
2233
2234 step6:
2235 /*
2236 * Update window information.
2237 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2238 */
2239 if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2240 (tp->snd_wl1 == th->th_seq && SEQ_LT(tp->snd_wl2, th->th_ack)) ||
2241 (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))) {
2242 /* keep track of pure window updates */
2243 if (tlen == 0 &&
2244 tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2245 tcpstat.tcps_rcvwinupd++;
2246 tp->snd_wnd = tiwin;
2247 tp->snd_wl1 = th->th_seq;
2248 tp->snd_wl2 = th->th_ack;
2249 if (tp->snd_wnd > tp->max_sndwnd)
2250 tp->max_sndwnd = tp->snd_wnd;
2251 needoutput = 1;
2252 }
2253
2254 /*
2255 * Process segments with URG.
2256 */
2257 if ((tiflags & TH_URG) && th->th_urp &&
2258 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2259 /*
2260 * This is a kludge, but if we receive and accept
2261 * random urgent pointers, we'll crash in
2262 * soreceive. It's hard to imagine someone
2263 * actually wanting to send this much urgent data.
2264 */
2265 if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2266 th->th_urp = 0; /* XXX */
2267 tiflags &= ~TH_URG; /* XXX */
2268 goto dodata; /* XXX */
2269 }
2270 /*
2271 * If this segment advances the known urgent pointer,
2272 * then mark the data stream. This should not happen
2273 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2274 * a FIN has been received from the remote side.
2275 * In these states we ignore the URG.
2276 *
2277 * According to RFC961 (Assigned Protocols),
2278 * the urgent pointer points to the last octet
2279 * of urgent data. We continue, however,
2280 * to consider it to indicate the first octet
2281 * of data past the urgent section as the original
2282 * spec states (in one of two places).
2283 */
2284 if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2285 tp->rcv_up = th->th_seq + th->th_urp;
2286 so->so_oobmark = so->so_rcv.sb_cc +
2287 (tp->rcv_up - tp->rcv_nxt) - 1;
2288 if (so->so_oobmark == 0)
2289 so->so_state |= SS_RCVATMARK;
2290 sohasoutofband(so);
2291 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2292 }
2293 /*
2294 * Remove out of band data so doesn't get presented to user.
2295 * This can happen independent of advancing the URG pointer,
2296 * but if two URG's are pending at once, some out-of-band
2297 * data may creep in... ick.
2298 */
2299 if (th->th_urp <= (u_int16_t) tlen
2300 #ifdef SO_OOBINLINE
2301 && (so->so_options & SO_OOBINLINE) == 0
2302 #endif
2303 )
2304 tcp_pulloutofband(so, th, m, hdroptlen);
2305 } else
2306 /*
2307 * If no out of band data is expected,
2308 * pull receive urgent pointer along
2309 * with the receive window.
2310 */
2311 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2312 tp->rcv_up = tp->rcv_nxt;
2313 dodata: /* XXX */
2314
2315 /*
2316 * Process the segment text, merging it into the TCP sequencing queue,
2317 * and arranging for acknowledgement of receipt if necessary.
2318 * This process logically involves adjusting tp->rcv_wnd as data
2319 * is presented to the user (this happens in tcp_usrreq.c,
2320 * case PRU_RCVD). If a FIN has already been received on this
2321 * connection then we just ignore the text.
2322 */
2323 if ((tlen || (tiflags & TH_FIN)) &&
2324 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2325 /*
2326 * Insert segment ti into reassembly queue of tcp with
2327 * control block tp. Return TH_FIN if reassembly now includes
2328 * a segment with FIN. The macro form does the common case
2329 * inline (segment is the next to be received on an
2330 * established connection, and the queue is empty),
2331 * avoiding linkage into and removal from the queue and
2332 * repetition of various conversions.
2333 * Set DELACK for segments received in order, but ack
2334 * immediately when segments are out of order
2335 * (so fast retransmit can work).
2336 */
2337 /* NOTE: this was TCP_REASS() macro, but used only once */
2338 TCP_REASS_LOCK(tp);
2339 if (th->th_seq == tp->rcv_nxt &&
2340 TAILQ_FIRST(&tp->segq) == NULL &&
2341 tp->t_state == TCPS_ESTABLISHED) {
2342 TCP_SETUP_ACK(tp, th);
2343 tp->rcv_nxt += tlen;
2344 tiflags = th->th_flags & TH_FIN;
2345 tcpstat.tcps_rcvpack++;
2346 tcpstat.tcps_rcvbyte += tlen;
2347 ND6_HINT(tp);
2348 if (so->so_state & SS_CANTRCVMORE)
2349 m_freem(m);
2350 else {
2351 m_adj(m, hdroptlen);
2352 sbappendstream(&(so)->so_rcv, m);
2353 }
2354 sorwakeup(so);
2355 } else {
2356 m_adj(m, hdroptlen);
2357 tiflags = tcp_reass(tp, th, m, &tlen);
2358 tp->t_flags |= TF_ACKNOW;
2359 }
2360 TCP_REASS_UNLOCK(tp);
2361
2362 /*
2363 * Note the amount of data that peer has sent into
2364 * our window, in order to estimate the sender's
2365 * buffer size.
2366 */
2367 len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2368 } else {
2369 m_freem(m);
2370 m = NULL;
2371 tiflags &= ~TH_FIN;
2372 }
2373
2374 /*
2375 * If FIN is received ACK the FIN and let the user know
2376 * that the connection is closing. Ignore a FIN received before
2377 * the connection is fully established.
2378 */
2379 if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2380 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2381 socantrcvmore(so);
2382 tp->t_flags |= TF_ACKNOW;
2383 tp->rcv_nxt++;
2384 }
2385 switch (tp->t_state) {
2386
2387 /*
2388 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2389 */
2390 case TCPS_ESTABLISHED:
2391 tp->t_state = TCPS_CLOSE_WAIT;
2392 break;
2393
2394 /*
2395 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2396 * enter the CLOSING state.
2397 */
2398 case TCPS_FIN_WAIT_1:
2399 tp->t_state = TCPS_CLOSING;
2400 break;
2401
2402 /*
2403 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2404 * starting the time-wait timer, turning off the other
2405 * standard timers.
2406 */
2407 case TCPS_FIN_WAIT_2:
2408 tp->t_state = TCPS_TIME_WAIT;
2409 tcp_canceltimers(tp);
2410 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2411 soisdisconnected(so);
2412 break;
2413
2414 /*
2415 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2416 */
2417 case TCPS_TIME_WAIT:
2418 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2419 break;
2420 }
2421 }
2422 #ifdef TCP_DEBUG
2423 if (so->so_options & SO_DEBUG)
2424 tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
2425 #endif
2426
2427 /*
2428 * Return any desired output.
2429 */
2430 if (needoutput || (tp->t_flags & TF_ACKNOW))
2431 (void) tcp_output(tp);
2432 if (tcp_saveti)
2433 m_freem(tcp_saveti);
2434 return;
2435
2436 badsyn:
2437 /*
2438 * Received a bad SYN. Increment counters and dropwithreset.
2439 */
2440 tcpstat.tcps_badsyn++;
2441 tp = NULL;
2442 goto dropwithreset;
2443
2444 dropafterack:
2445 /*
2446 * Generate an ACK dropping incoming segment if it occupies
2447 * sequence space, where the ACK reflects our state.
2448 */
2449 if (tiflags & TH_RST)
2450 goto drop;
2451 goto dropafterack2;
2452
2453 dropafterack_ratelim:
2454 /*
2455 * We may want to rate-limit ACKs against SYN/RST attack.
2456 */
2457 if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
2458 tcp_ackdrop_ppslim) == 0) {
2459 /* XXX stat */
2460 goto drop;
2461 }
2462 /* ...fall into dropafterack2... */
2463
2464 dropafterack2:
2465 m_freem(m);
2466 tp->t_flags |= TF_ACKNOW;
2467 (void) tcp_output(tp);
2468 if (tcp_saveti)
2469 m_freem(tcp_saveti);
2470 return;
2471
2472 dropwithreset_ratelim:
2473 /*
2474 * We may want to rate-limit RSTs in certain situations,
2475 * particularly if we are sending an RST in response to
2476 * an attempt to connect to or otherwise communicate with
2477 * a port for which we have no socket.
2478 */
2479 if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
2480 tcp_rst_ppslim) == 0) {
2481 /* XXX stat */
2482 goto drop;
2483 }
2484 /* ...fall into dropwithreset... */
2485
2486 dropwithreset:
2487 /*
2488 * Generate a RST, dropping incoming segment.
2489 * Make ACK acceptable to originator of segment.
2490 */
2491 if (tiflags & TH_RST)
2492 goto drop;
2493
2494 switch (af) {
2495 #ifdef INET6
2496 case AF_INET6:
2497 /* For following calls to tcp_respond */
2498 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
2499 goto drop;
2500 break;
2501 #endif /* INET6 */
2502 case AF_INET:
2503 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
2504 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2505 goto drop;
2506 }
2507
2508 if (tiflags & TH_ACK)
2509 (void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
2510 else {
2511 if (tiflags & TH_SYN)
2512 tlen++;
2513 (void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
2514 TH_RST|TH_ACK);
2515 }
2516 if (tcp_saveti)
2517 m_freem(tcp_saveti);
2518 return;
2519
2520 badcsum:
2521 tcpstat.tcps_rcvbadsum++;
2522 drop:
2523 /*
2524 * Drop space held by incoming segment and return.
2525 */
2526 if (tp) {
2527 if (tp->t_inpcb)
2528 so = tp->t_inpcb->inp_socket;
2529 #ifdef INET6
2530 else if (tp->t_in6pcb)
2531 so = tp->t_in6pcb->in6p_socket;
2532 #endif
2533 else
2534 so = NULL;
2535 #ifdef TCP_DEBUG
2536 if (so && (so->so_options & SO_DEBUG) != 0)
2537 tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
2538 #endif
2539 }
2540 if (tcp_saveti)
2541 m_freem(tcp_saveti);
2542 m_freem(m);
2543 return;
2544 }
2545
2546 void
2547 tcp_dooptions(tp, cp, cnt, th, oi)
2548 struct tcpcb *tp;
2549 u_char *cp;
2550 int cnt;
2551 struct tcphdr *th;
2552 struct tcp_opt_info *oi;
2553 {
2554 u_int16_t mss;
2555 int opt, optlen;
2556
2557 for (; cnt > 0; cnt -= optlen, cp += optlen) {
2558 opt = cp[0];
2559 if (opt == TCPOPT_EOL)
2560 break;
2561 if (opt == TCPOPT_NOP)
2562 optlen = 1;
2563 else {
2564 if (cnt < 2)
2565 break;
2566 optlen = cp[1];
2567 if (optlen < 2 || optlen > cnt)
2568 break;
2569 }
2570 switch (opt) {
2571
2572 default:
2573 continue;
2574
2575 case TCPOPT_MAXSEG:
2576 if (optlen != TCPOLEN_MAXSEG)
2577 continue;
2578 if (!(th->th_flags & TH_SYN))
2579 continue;
2580 bcopy(cp + 2, &mss, sizeof(mss));
2581 oi->maxseg = ntohs(mss);
2582 break;
2583
2584 case TCPOPT_WINDOW:
2585 if (optlen != TCPOLEN_WINDOW)
2586 continue;
2587 if (!(th->th_flags & TH_SYN))
2588 continue;
2589 tp->t_flags |= TF_RCVD_SCALE;
2590 tp->requested_s_scale = cp[2];
2591 if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
2592 #if 0 /*XXX*/
2593 char *p;
2594
2595 if (ip)
2596 p = ntohl(ip->ip_src);
2597 #ifdef INET6
2598 else if (ip6)
2599 p = ip6_sprintf(&ip6->ip6_src);
2600 #endif
2601 else
2602 p = "(unknown)";
2603 log(LOG_ERR, "TCP: invalid wscale %d from %s, "
2604 "assuming %d\n",
2605 tp->requested_s_scale, p,
2606 TCP_MAX_WINSHIFT);
2607 #else
2608 log(LOG_ERR, "TCP: invalid wscale %d, "
2609 "assuming %d\n",
2610 tp->requested_s_scale,
2611 TCP_MAX_WINSHIFT);
2612 #endif
2613 tp->requested_s_scale = TCP_MAX_WINSHIFT;
2614 }
2615 break;
2616
2617 case TCPOPT_TIMESTAMP:
2618 if (optlen != TCPOLEN_TIMESTAMP)
2619 continue;
2620 oi->ts_present = 1;
2621 bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
2622 NTOHL(oi->ts_val);
2623 bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
2624 NTOHL(oi->ts_ecr);
2625
2626 /*
2627 * A timestamp received in a SYN makes
2628 * it ok to send timestamp requests and replies.
2629 */
2630 if (th->th_flags & TH_SYN) {
2631 tp->t_flags |= TF_RCVD_TSTMP;
2632 tp->ts_recent = oi->ts_val;
2633 tp->ts_recent_age = TCP_TIMESTAMP(tp);
2634 }
2635 break;
2636 case TCPOPT_SACK_PERMITTED:
2637 if (optlen != TCPOLEN_SACK_PERMITTED)
2638 continue;
2639 if (!(th->th_flags & TH_SYN))
2640 continue;
2641 tp->t_flags &= ~TF_CANT_TXSACK;
2642 break;
2643
2644 case TCPOPT_SACK:
2645 if (tp->t_flags & TF_IGNR_RXSACK)
2646 continue;
2647 if (optlen % 8 != 2 || optlen < 10)
2648 continue;
2649 cp += 2;
2650 optlen -= 2;
2651 for (; optlen > 0; cp -= 8, optlen -= 8) {
2652 tcp_seq lwe, rwe;
2653 bcopy((char *)cp, (char *) &lwe, sizeof(lwe));
2654 NTOHL(lwe);
2655 bcopy((char *)cp, (char *) &rwe, sizeof(rwe));
2656 NTOHL(rwe);
2657 /* tcp_mark_sacked(tp, lwe, rwe); */
2658 }
2659 break;
2660 }
2661 }
2662 }
2663
2664 /*
2665 * Pull out of band byte out of a segment so
2666 * it doesn't appear in the user's data queue.
2667 * It is still reflected in the segment length for
2668 * sequencing purposes.
2669 */
2670 void
2671 tcp_pulloutofband(so, th, m, off)
2672 struct socket *so;
2673 struct tcphdr *th;
2674 struct mbuf *m;
2675 int off;
2676 {
2677 int cnt = off + th->th_urp - 1;
2678
2679 while (cnt >= 0) {
2680 if (m->m_len > cnt) {
2681 char *cp = mtod(m, caddr_t) + cnt;
2682 struct tcpcb *tp = sototcpcb(so);
2683
2684 tp->t_iobc = *cp;
2685 tp->t_oobflags |= TCPOOB_HAVEDATA;
2686 bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
2687 m->m_len--;
2688 return;
2689 }
2690 cnt -= m->m_len;
2691 m = m->m_next;
2692 if (m == 0)
2693 break;
2694 }
2695 panic("tcp_pulloutofband");
2696 }
2697
2698 /*
2699 * Collect new round-trip time estimate
2700 * and update averages and current timeout.
2701 */
2702 void
2703 tcp_xmit_timer(tp, rtt)
2704 struct tcpcb *tp;
2705 uint32_t rtt;
2706 {
2707 int32_t delta;
2708
2709 tcpstat.tcps_rttupdated++;
2710 if (tp->t_srtt != 0) {
2711 /*
2712 * srtt is stored as fixed point with 3 bits after the
2713 * binary point (i.e., scaled by 8). The following magic
2714 * is equivalent to the smoothing algorithm in rfc793 with
2715 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2716 * point). Adjust rtt to origin 0.
2717 */
2718 delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
2719 if ((tp->t_srtt += delta) <= 0)
2720 tp->t_srtt = 1 << 2;
2721 /*
2722 * We accumulate a smoothed rtt variance (actually, a
2723 * smoothed mean difference), then set the retransmit
2724 * timer to smoothed rtt + 4 times the smoothed variance.
2725 * rttvar is stored as fixed point with 2 bits after the
2726 * binary point (scaled by 4). The following is
2727 * equivalent to rfc793 smoothing with an alpha of .75
2728 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces
2729 * rfc793's wired-in beta.
2730 */
2731 if (delta < 0)
2732 delta = -delta;
2733 delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
2734 if ((tp->t_rttvar += delta) <= 0)
2735 tp->t_rttvar = 1 << 2;
2736 } else {
2737 /*
2738 * No rtt measurement yet - use the unsmoothed rtt.
2739 * Set the variance to half the rtt (so our first
2740 * retransmit happens at 3*rtt).
2741 */
2742 tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
2743 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
2744 }
2745 tp->t_rtttime = 0;
2746 tp->t_rxtshift = 0;
2747
2748 /*
2749 * the retransmit should happen at rtt + 4 * rttvar.
2750 * Because of the way we do the smoothing, srtt and rttvar
2751 * will each average +1/2 tick of bias. When we compute
2752 * the retransmit timer, we want 1/2 tick of rounding and
2753 * 1 extra tick because of +-1/2 tick uncertainty in the
2754 * firing of the timer. The bias will give us exactly the
2755 * 1.5 tick we need. But, because the bias is
2756 * statistical, we have to test that we don't drop below
2757 * the minimum feasible timer (which is 2 ticks).
2758 */
2759 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
2760 max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
2761
2762 /*
2763 * We received an ack for a packet that wasn't retransmitted;
2764 * it is probably safe to discard any error indications we've
2765 * received recently. This isn't quite right, but close enough
2766 * for now (a route might have failed after we sent a segment,
2767 * and the return path might not be symmetrical).
2768 */
2769 tp->t_softerror = 0;
2770 }
2771
2772 /*
2773 * Checks for partial ack. If partial ack arrives, force the retransmission
2774 * of the next unacknowledged segment, do not clear tp->t_dupacks, and return
2775 * 1. By setting snd_nxt to th_ack, this forces retransmission timer to
2776 * be started again. If the ack advances at least to tp->snd_recover, return 0.
2777 */
2778 int
2779 tcp_newreno(tp, th)
2780 struct tcpcb *tp;
2781 struct tcphdr *th;
2782 {
2783 tcp_seq onxt = tp->snd_nxt;
2784 u_long ocwnd = tp->snd_cwnd;
2785
2786 if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2787 /*
2788 * snd_una has not yet been updated and the socket's send
2789 * buffer has not yet drained off the ACK'd data, so we
2790 * have to leave snd_una as it was to get the correct data
2791 * offset in tcp_output().
2792 */
2793 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2794 tp->t_rtttime = 0;
2795 tp->snd_nxt = th->th_ack;
2796 /*
2797 * Set snd_cwnd to one segment beyond ACK'd offset. snd_una
2798 * is not yet updated when we're called.
2799 */
2800 tp->snd_cwnd = tp->t_segsz + (th->th_ack - tp->snd_una);
2801 (void) tcp_output(tp);
2802 tp->snd_cwnd = ocwnd;
2803 if (SEQ_GT(onxt, tp->snd_nxt))
2804 tp->snd_nxt = onxt;
2805 /*
2806 * Partial window deflation. Relies on fact that tp->snd_una
2807 * not updated yet.
2808 */
2809 tp->snd_cwnd -= (th->th_ack - tp->snd_una - tp->t_segsz);
2810 return 1;
2811 }
2812 return 0;
2813 }
2814
2815
2816 /*
2817 * TCP compressed state engine. Currently used to hold compressed
2818 * state for SYN_RECEIVED.
2819 */
2820
2821 u_long syn_cache_count;
2822 u_int32_t syn_hash1, syn_hash2;
2823
2824 #define SYN_HASH(sa, sp, dp) \
2825 ((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
2826 ((u_int32_t)(sp)))^syn_hash2)))
2827 #ifndef INET6
2828 #define SYN_HASHALL(hash, src, dst) \
2829 do { \
2830 hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
2831 ((struct sockaddr_in *)(src))->sin_port, \
2832 ((struct sockaddr_in *)(dst))->sin_port); \
2833 } while (/*CONSTCOND*/ 0)
2834 #else
2835 #define SYN_HASH6(sa, sp, dp) \
2836 ((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
2837 (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
2838 & 0x7fffffff)
2839
2840 #define SYN_HASHALL(hash, src, dst) \
2841 do { \
2842 switch ((src)->sa_family) { \
2843 case AF_INET: \
2844 hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
2845 ((struct sockaddr_in *)(src))->sin_port, \
2846 ((struct sockaddr_in *)(dst))->sin_port); \
2847 break; \
2848 case AF_INET6: \
2849 hash = SYN_HASH6(&((struct sockaddr_in6 *)(src))->sin6_addr, \
2850 ((struct sockaddr_in6 *)(src))->sin6_port, \
2851 ((struct sockaddr_in6 *)(dst))->sin6_port); \
2852 break; \
2853 default: \
2854 hash = 0; \
2855 } \
2856 } while (/*CONSTCOND*/0)
2857 #endif /* INET6 */
2858
2859 #define SYN_CACHE_RM(sc) \
2860 do { \
2861 TAILQ_REMOVE(&tcp_syn_cache[(sc)->sc_bucketidx].sch_bucket, \
2862 (sc), sc_bucketq); \
2863 (sc)->sc_tp = NULL; \
2864 LIST_REMOVE((sc), sc_tpq); \
2865 tcp_syn_cache[(sc)->sc_bucketidx].sch_length--; \
2866 callout_stop(&(sc)->sc_timer); \
2867 syn_cache_count--; \
2868 } while (/*CONSTCOND*/0)
2869
2870 #define SYN_CACHE_PUT(sc) \
2871 do { \
2872 if ((sc)->sc_ipopts) \
2873 (void) m_free((sc)->sc_ipopts); \
2874 if ((sc)->sc_route4.ro_rt != NULL) \
2875 RTFREE((sc)->sc_route4.ro_rt); \
2876 if (callout_invoking(&(sc)->sc_timer)) \
2877 (sc)->sc_flags |= SCF_DEAD; \
2878 else \
2879 pool_put(&syn_cache_pool, (sc)); \
2880 } while (/*CONSTCOND*/0)
2881
2882 struct pool syn_cache_pool;
2883
2884 /*
2885 * We don't estimate RTT with SYNs, so each packet starts with the default
2886 * RTT and each timer step has a fixed timeout value.
2887 */
2888 #define SYN_CACHE_TIMER_ARM(sc) \
2889 do { \
2890 TCPT_RANGESET((sc)->sc_rxtcur, \
2891 TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN, \
2892 TCPTV_REXMTMAX); \
2893 callout_reset(&(sc)->sc_timer, \
2894 (sc)->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, (sc)); \
2895 } while (/*CONSTCOND*/0)
2896
2897 #define SYN_CACHE_TIMESTAMP(sc) (tcp_now - (sc)->sc_timebase)
2898
2899 void
2900 syn_cache_init()
2901 {
2902 int i;
2903
2904 /* Initialize the hash buckets. */
2905 for (i = 0; i < tcp_syn_cache_size; i++)
2906 TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
2907
2908 /* Initialize the syn cache pool. */
2909 pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
2910 "synpl", NULL);
2911 }
2912
2913 void
2914 syn_cache_insert(sc, tp)
2915 struct syn_cache *sc;
2916 struct tcpcb *tp;
2917 {
2918 struct syn_cache_head *scp;
2919 struct syn_cache *sc2;
2920 int s;
2921
2922 /*
2923 * If there are no entries in the hash table, reinitialize
2924 * the hash secrets.
2925 */
2926 if (syn_cache_count == 0) {
2927 syn_hash1 = arc4random();
2928 syn_hash2 = arc4random();
2929 }
2930
2931 SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
2932 sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
2933 scp = &tcp_syn_cache[sc->sc_bucketidx];
2934
2935 /*
2936 * Make sure that we don't overflow the per-bucket
2937 * limit or the total cache size limit.
2938 */
2939 s = splsoftnet();
2940 if (scp->sch_length >= tcp_syn_bucket_limit) {
2941 tcpstat.tcps_sc_bucketoverflow++;
2942 /*
2943 * The bucket is full. Toss the oldest element in the
2944 * bucket. This will be the first entry in the bucket.
2945 */
2946 sc2 = TAILQ_FIRST(&scp->sch_bucket);
2947 #ifdef DIAGNOSTIC
2948 /*
2949 * This should never happen; we should always find an
2950 * entry in our bucket.
2951 */
2952 if (sc2 == NULL)
2953 panic("syn_cache_insert: bucketoverflow: impossible");
2954 #endif
2955 SYN_CACHE_RM(sc2);
2956 SYN_CACHE_PUT(sc2);
2957 } else if (syn_cache_count >= tcp_syn_cache_limit) {
2958 struct syn_cache_head *scp2, *sce;
2959
2960 tcpstat.tcps_sc_overflowed++;
2961 /*
2962 * The cache is full. Toss the oldest entry in the
2963 * first non-empty bucket we can find.
2964 *
2965 * XXX We would really like to toss the oldest
2966 * entry in the cache, but we hope that this
2967 * condition doesn't happen very often.
2968 */
2969 scp2 = scp;
2970 if (TAILQ_EMPTY(&scp2->sch_bucket)) {
2971 sce = &tcp_syn_cache[tcp_syn_cache_size];
2972 for (++scp2; scp2 != scp; scp2++) {
2973 if (scp2 >= sce)
2974 scp2 = &tcp_syn_cache[0];
2975 if (! TAILQ_EMPTY(&scp2->sch_bucket))
2976 break;
2977 }
2978 #ifdef DIAGNOSTIC
2979 /*
2980 * This should never happen; we should always find a
2981 * non-empty bucket.
2982 */
2983 if (scp2 == scp)
2984 panic("syn_cache_insert: cacheoverflow: "
2985 "impossible");
2986 #endif
2987 }
2988 sc2 = TAILQ_FIRST(&scp2->sch_bucket);
2989 SYN_CACHE_RM(sc2);
2990 SYN_CACHE_PUT(sc2);
2991 }
2992
2993 /*
2994 * Initialize the entry's timer.
2995 */
2996 sc->sc_rxttot = 0;
2997 sc->sc_rxtshift = 0;
2998 SYN_CACHE_TIMER_ARM(sc);
2999
3000 /* Link it from tcpcb entry */
3001 LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
3002
3003 /* Put it into the bucket. */
3004 TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
3005 scp->sch_length++;
3006 syn_cache_count++;
3007
3008 tcpstat.tcps_sc_added++;
3009 splx(s);
3010 }
3011
3012 /*
3013 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
3014 * If we have retransmitted an entry the maximum number of times, expire
3015 * that entry.
3016 */
3017 void
3018 syn_cache_timer(void *arg)
3019 {
3020 struct syn_cache *sc = arg;
3021 int s;
3022
3023 s = splsoftnet();
3024 callout_ack(&sc->sc_timer);
3025
3026 if (__predict_false(sc->sc_flags & SCF_DEAD)) {
3027 tcpstat.tcps_sc_delayed_free++;
3028 pool_put(&syn_cache_pool, sc);
3029 splx(s);
3030 return;
3031 }
3032
3033 if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
3034 /* Drop it -- too many retransmissions. */
3035 goto dropit;
3036 }
3037
3038 /*
3039 * Compute the total amount of time this entry has
3040 * been on a queue. If this entry has been on longer
3041 * than the keep alive timer would allow, expire it.
3042 */
3043 sc->sc_rxttot += sc->sc_rxtcur;
3044 if (sc->sc_rxttot >= TCPTV_KEEP_INIT)
3045 goto dropit;
3046
3047 tcpstat.tcps_sc_retransmitted++;
3048 (void) syn_cache_respond(sc, NULL);
3049
3050 /* Advance the timer back-off. */
3051 sc->sc_rxtshift++;
3052 SYN_CACHE_TIMER_ARM(sc);
3053
3054 splx(s);
3055 return;
3056
3057 dropit:
3058 tcpstat.tcps_sc_timed_out++;
3059 SYN_CACHE_RM(sc);
3060 SYN_CACHE_PUT(sc);
3061 splx(s);
3062 }
3063
3064 /*
3065 * Remove syn cache created by the specified tcb entry,
3066 * because this does not make sense to keep them
3067 * (if there's no tcb entry, syn cache entry will never be used)
3068 */
3069 void
3070 syn_cache_cleanup(tp)
3071 struct tcpcb *tp;
3072 {
3073 struct syn_cache *sc, *nsc;
3074 int s;
3075
3076 s = splsoftnet();
3077
3078 for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
3079 nsc = LIST_NEXT(sc, sc_tpq);
3080
3081 #ifdef DIAGNOSTIC
3082 if (sc->sc_tp != tp)
3083 panic("invalid sc_tp in syn_cache_cleanup");
3084 #endif
3085 SYN_CACHE_RM(sc);
3086 SYN_CACHE_PUT(sc);
3087 }
3088 /* just for safety */
3089 LIST_INIT(&tp->t_sc);
3090
3091 splx(s);
3092 }
3093
3094 /*
3095 * Find an entry in the syn cache.
3096 */
3097 struct syn_cache *
3098 syn_cache_lookup(src, dst, headp)
3099 struct sockaddr *src;
3100 struct sockaddr *dst;
3101 struct syn_cache_head **headp;
3102 {
3103 struct syn_cache *sc;
3104 struct syn_cache_head *scp;
3105 u_int32_t hash;
3106 int s;
3107
3108 SYN_HASHALL(hash, src, dst);
3109
3110 scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
3111 *headp = scp;
3112 s = splsoftnet();
3113 for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
3114 sc = TAILQ_NEXT(sc, sc_bucketq)) {
3115 if (sc->sc_hash != hash)
3116 continue;
3117 if (!bcmp(&sc->sc_src, src, src->sa_len) &&
3118 !bcmp(&sc->sc_dst, dst, dst->sa_len)) {
3119 splx(s);
3120 return (sc);
3121 }
3122 }
3123 splx(s);
3124 return (NULL);
3125 }
3126
3127 /*
3128 * This function gets called when we receive an ACK for a
3129 * socket in the LISTEN state. We look up the connection
3130 * in the syn cache, and if its there, we pull it out of
3131 * the cache and turn it into a full-blown connection in
3132 * the SYN-RECEIVED state.
3133 *
3134 * The return values may not be immediately obvious, and their effects
3135 * can be subtle, so here they are:
3136 *
3137 * NULL SYN was not found in cache; caller should drop the
3138 * packet and send an RST.
3139 *
3140 * -1 We were unable to create the new connection, and are
3141 * aborting it. An ACK,RST is being sent to the peer
3142 * (unless we got screwey sequence numbners; see below),
3143 * because the 3-way handshake has been completed. Caller
3144 * should not free the mbuf, since we may be using it. If
3145 * we are not, we will free it.
3146 *
3147 * Otherwise, the return value is a pointer to the new socket
3148 * associated with the connection.
3149 */
3150 struct socket *
3151 syn_cache_get(src, dst, th, hlen, tlen, so, m)
3152 struct sockaddr *src;
3153 struct sockaddr *dst;
3154 struct tcphdr *th;
3155 unsigned int hlen, tlen;
3156 struct socket *so;
3157 struct mbuf *m;
3158 {
3159 struct syn_cache *sc;
3160 struct syn_cache_head *scp;
3161 struct inpcb *inp = NULL;
3162 #ifdef INET6
3163 struct in6pcb *in6p = NULL;
3164 #endif
3165 struct tcpcb *tp = 0;
3166 struct mbuf *am;
3167 int s;
3168 struct socket *oso;
3169
3170 s = splsoftnet();
3171 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3172 splx(s);
3173 return (NULL);
3174 }
3175
3176 /*
3177 * Verify the sequence and ack numbers. Try getting the correct
3178 * response again.
3179 */
3180 if ((th->th_ack != sc->sc_iss + 1) ||
3181 SEQ_LEQ(th->th_seq, sc->sc_irs) ||
3182 SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
3183 (void) syn_cache_respond(sc, m);
3184 splx(s);
3185 return ((struct socket *)(-1));
3186 }
3187
3188 /* Remove this cache entry */
3189 SYN_CACHE_RM(sc);
3190 splx(s);
3191
3192 /*
3193 * Ok, create the full blown connection, and set things up
3194 * as they would have been set up if we had created the
3195 * connection when the SYN arrived. If we can't create
3196 * the connection, abort it.
3197 */
3198 /*
3199 * inp still has the OLD in_pcb stuff, set the
3200 * v6-related flags on the new guy, too. This is
3201 * done particularly for the case where an AF_INET6
3202 * socket is bound only to a port, and a v4 connection
3203 * comes in on that port.
3204 * we also copy the flowinfo from the original pcb
3205 * to the new one.
3206 */
3207 oso = so;
3208 so = sonewconn(so, SS_ISCONNECTED);
3209 if (so == NULL)
3210 goto resetandabort;
3211
3212 switch (so->so_proto->pr_domain->dom_family) {
3213 #ifdef INET
3214 case AF_INET:
3215 inp = sotoinpcb(so);
3216 break;
3217 #endif
3218 #ifdef INET6
3219 case AF_INET6:
3220 in6p = sotoin6pcb(so);
3221 break;
3222 #endif
3223 }
3224 switch (src->sa_family) {
3225 #ifdef INET
3226 case AF_INET:
3227 if (inp) {
3228 inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
3229 inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
3230 inp->inp_options = ip_srcroute();
3231 in_pcbstate(inp, INP_BOUND);
3232 if (inp->inp_options == NULL) {
3233 inp->inp_options = sc->sc_ipopts;
3234 sc->sc_ipopts = NULL;
3235 }
3236 }
3237 #ifdef INET6
3238 else if (in6p) {
3239 /* IPv4 packet to AF_INET6 socket */
3240 bzero(&in6p->in6p_laddr, sizeof(in6p->in6p_laddr));
3241 in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
3242 bcopy(&((struct sockaddr_in *)dst)->sin_addr,
3243 &in6p->in6p_laddr.s6_addr32[3],
3244 sizeof(((struct sockaddr_in *)dst)->sin_addr));
3245 in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
3246 in6totcpcb(in6p)->t_family = AF_INET;
3247 if (sotoin6pcb(oso)->in6p_flags & IN6P_IPV6_V6ONLY)
3248 in6p->in6p_flags |= IN6P_IPV6_V6ONLY;
3249 else
3250 in6p->in6p_flags &= ~IN6P_IPV6_V6ONLY;
3251 in6_pcbstate(in6p, IN6P_BOUND);
3252 }
3253 #endif
3254 break;
3255 #endif
3256 #ifdef INET6
3257 case AF_INET6:
3258 if (in6p) {
3259 in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
3260 in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
3261 in6_pcbstate(in6p, IN6P_BOUND);
3262 }
3263 break;
3264 #endif
3265 }
3266 #ifdef INET6
3267 if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
3268 struct in6pcb *oin6p = sotoin6pcb(oso);
3269 /* inherit socket options from the listening socket */
3270 in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
3271 if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
3272 m_freem(in6p->in6p_options);
3273 in6p->in6p_options = 0;
3274 }
3275 ip6_savecontrol(in6p, &in6p->in6p_options,
3276 mtod(m, struct ip6_hdr *), m);
3277 }
3278 #endif
3279
3280 #if defined(IPSEC) || defined(FAST_IPSEC)
3281 /*
3282 * we make a copy of policy, instead of sharing the policy,
3283 * for better behavior in terms of SA lookup and dead SA removal.
3284 */
3285 if (inp) {
3286 /* copy old policy into new socket's */
3287 if (ipsec_copy_pcbpolicy(sotoinpcb(oso)->inp_sp, inp->inp_sp))
3288 printf("tcp_input: could not copy policy\n");
3289 }
3290 #ifdef INET6
3291 else if (in6p) {
3292 /* copy old policy into new socket's */
3293 if (ipsec_copy_pcbpolicy(sotoin6pcb(oso)->in6p_sp,
3294 in6p->in6p_sp))
3295 printf("tcp_input: could not copy policy\n");
3296 }
3297 #endif
3298 #endif
3299
3300 /*
3301 * Give the new socket our cached route reference.
3302 */
3303 if (inp)
3304 inp->inp_route = sc->sc_route4; /* struct assignment */
3305 #ifdef INET6
3306 else
3307 in6p->in6p_route = sc->sc_route6;
3308 #endif
3309 sc->sc_route4.ro_rt = NULL;
3310
3311 am = m_get(M_DONTWAIT, MT_SONAME); /* XXX */
3312 if (am == NULL)
3313 goto resetandabort;
3314 MCLAIM(am, &tcp_mowner);
3315 am->m_len = src->sa_len;
3316 bcopy(src, mtod(am, caddr_t), src->sa_len);
3317 if (inp) {
3318 if (in_pcbconnect(inp, am)) {
3319 (void) m_free(am);
3320 goto resetandabort;
3321 }
3322 }
3323 #ifdef INET6
3324 else if (in6p) {
3325 if (src->sa_family == AF_INET) {
3326 /* IPv4 packet to AF_INET6 socket */
3327 struct sockaddr_in6 *sin6;
3328 sin6 = mtod(am, struct sockaddr_in6 *);
3329 am->m_len = sizeof(*sin6);
3330 bzero(sin6, sizeof(*sin6));
3331 sin6->sin6_family = AF_INET6;
3332 sin6->sin6_len = sizeof(*sin6);
3333 sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port;
3334 sin6->sin6_addr.s6_addr16[5] = htons(0xffff);
3335 bcopy(&((struct sockaddr_in *)src)->sin_addr,
3336 &sin6->sin6_addr.s6_addr32[3],
3337 sizeof(sin6->sin6_addr.s6_addr32[3]));
3338 }
3339 if (in6_pcbconnect(in6p, am)) {
3340 (void) m_free(am);
3341 goto resetandabort;
3342 }
3343 }
3344 #endif
3345 else {
3346 (void) m_free(am);
3347 goto resetandabort;
3348 }
3349 (void) m_free(am);
3350
3351 if (inp)
3352 tp = intotcpcb(inp);
3353 #ifdef INET6
3354 else if (in6p)
3355 tp = in6totcpcb(in6p);
3356 #endif
3357 else
3358 tp = NULL;
3359 tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
3360 if (sc->sc_request_r_scale != 15) {
3361 tp->requested_s_scale = sc->sc_requested_s_scale;
3362 tp->request_r_scale = sc->sc_request_r_scale;
3363 tp->snd_scale = sc->sc_requested_s_scale;
3364 tp->rcv_scale = sc->sc_request_r_scale;
3365 tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
3366 }
3367 if (sc->sc_flags & SCF_TIMESTAMP)
3368 tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
3369 tp->ts_timebase = sc->sc_timebase;
3370
3371 tp->t_template = tcp_template(tp);
3372 if (tp->t_template == 0) {
3373 tp = tcp_drop(tp, ENOBUFS); /* destroys socket */
3374 so = NULL;
3375 m_freem(m);
3376 goto abort;
3377 }
3378
3379 tp->iss = sc->sc_iss;
3380 tp->irs = sc->sc_irs;
3381 tcp_sendseqinit(tp);
3382 tcp_rcvseqinit(tp);
3383 tp->t_state = TCPS_SYN_RECEIVED;
3384 TCP_TIMER_ARM(tp, TCPT_KEEP, TCPTV_KEEP_INIT);
3385 tcpstat.tcps_accepts++;
3386
3387 /* Initialize tp->t_ourmss before we deal with the peer's! */
3388 tp->t_ourmss = sc->sc_ourmaxseg;
3389 tcp_mss_from_peer(tp, sc->sc_peermaxseg);
3390
3391 /*
3392 * Initialize the initial congestion window. If we
3393 * had to retransmit the SYN,ACK, we must initialize cwnd
3394 * to 1 segment (i.e. the Loss Window).
3395 */
3396 if (sc->sc_rxtshift)
3397 tp->snd_cwnd = tp->t_peermss;
3398 else {
3399 int ss = tcp_init_win;
3400 #ifdef INET
3401 if (inp != NULL && in_localaddr(inp->inp_faddr))
3402 ss = tcp_init_win_local;
3403 #endif
3404 #ifdef INET6
3405 if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
3406 ss = tcp_init_win_local;
3407 #endif
3408 tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
3409 }
3410
3411 tcp_rmx_rtt(tp);
3412 tp->snd_wl1 = sc->sc_irs;
3413 tp->rcv_up = sc->sc_irs + 1;
3414
3415 /*
3416 * This is what whould have happened in tcp_output() when
3417 * the SYN,ACK was sent.
3418 */
3419 tp->snd_up = tp->snd_una;
3420 tp->snd_max = tp->snd_nxt = tp->iss+1;
3421 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
3422 if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
3423 tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
3424 tp->last_ack_sent = tp->rcv_nxt;
3425
3426 tcpstat.tcps_sc_completed++;
3427 SYN_CACHE_PUT(sc);
3428 return (so);
3429
3430 resetandabort:
3431 (void) tcp_respond(NULL, m, m, th,
3432 th->th_seq + tlen, (tcp_seq)0, TH_RST|TH_ACK);
3433 abort:
3434 if (so != NULL)
3435 (void) soabort(so);
3436 SYN_CACHE_PUT(sc);
3437 tcpstat.tcps_sc_aborted++;
3438 return ((struct socket *)(-1));
3439 }
3440
3441 /*
3442 * This function is called when we get a RST for a
3443 * non-existent connection, so that we can see if the
3444 * connection is in the syn cache. If it is, zap it.
3445 */
3446
3447 void
3448 syn_cache_reset(src, dst, th)
3449 struct sockaddr *src;
3450 struct sockaddr *dst;
3451 struct tcphdr *th;
3452 {
3453 struct syn_cache *sc;
3454 struct syn_cache_head *scp;
3455 int s = splsoftnet();
3456
3457 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3458 splx(s);
3459 return;
3460 }
3461 if (SEQ_LT(th->th_seq, sc->sc_irs) ||
3462 SEQ_GT(th->th_seq, sc->sc_irs+1)) {
3463 splx(s);
3464 return;
3465 }
3466 SYN_CACHE_RM(sc);
3467 splx(s);
3468 tcpstat.tcps_sc_reset++;
3469 SYN_CACHE_PUT(sc);
3470 }
3471
3472 void
3473 syn_cache_unreach(src, dst, th)
3474 struct sockaddr *src;
3475 struct sockaddr *dst;
3476 struct tcphdr *th;
3477 {
3478 struct syn_cache *sc;
3479 struct syn_cache_head *scp;
3480 int s;
3481
3482 s = splsoftnet();
3483 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3484 splx(s);
3485 return;
3486 }
3487 /* If the sequence number != sc_iss, then it's a bogus ICMP msg */
3488 if (ntohl (th->th_seq) != sc->sc_iss) {
3489 splx(s);
3490 return;
3491 }
3492
3493 /*
3494 * If we've retransmitted 3 times and this is our second error,
3495 * we remove the entry. Otherwise, we allow it to continue on.
3496 * This prevents us from incorrectly nuking an entry during a
3497 * spurious network outage.
3498 *
3499 * See tcp_notify().
3500 */
3501 if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
3502 sc->sc_flags |= SCF_UNREACH;
3503 splx(s);
3504 return;
3505 }
3506
3507 SYN_CACHE_RM(sc);
3508 splx(s);
3509 tcpstat.tcps_sc_unreach++;
3510 SYN_CACHE_PUT(sc);
3511 }
3512
3513 /*
3514 * Given a LISTEN socket and an inbound SYN request, add
3515 * this to the syn cache, and send back a segment:
3516 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
3517 * to the source.
3518 *
3519 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
3520 * Doing so would require that we hold onto the data and deliver it
3521 * to the application. However, if we are the target of a SYN-flood
3522 * DoS attack, an attacker could send data which would eventually
3523 * consume all available buffer space if it were ACKed. By not ACKing
3524 * the data, we avoid this DoS scenario.
3525 */
3526
3527 int
3528 syn_cache_add(src, dst, th, hlen, so, m, optp, optlen, oi)
3529 struct sockaddr *src;
3530 struct sockaddr *dst;
3531 struct tcphdr *th;
3532 unsigned int hlen;
3533 struct socket *so;
3534 struct mbuf *m;
3535 u_char *optp;
3536 int optlen;
3537 struct tcp_opt_info *oi;
3538 {
3539 struct tcpcb tb, *tp;
3540 long win;
3541 struct syn_cache *sc;
3542 struct syn_cache_head *scp;
3543 struct mbuf *ipopts;
3544
3545 tp = sototcpcb(so);
3546
3547 /*
3548 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
3549 *
3550 * Note this check is performed in tcp_input() very early on.
3551 */
3552
3553 /*
3554 * Initialize some local state.
3555 */
3556 win = sbspace(&so->so_rcv);
3557 if (win > TCP_MAXWIN)
3558 win = TCP_MAXWIN;
3559
3560 switch (src->sa_family) {
3561 #ifdef INET
3562 case AF_INET:
3563 /*
3564 * Remember the IP options, if any.
3565 */
3566 ipopts = ip_srcroute();
3567 break;
3568 #endif
3569 default:
3570 ipopts = NULL;
3571 }
3572
3573 if (optp) {
3574 tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
3575 tcp_dooptions(&tb, optp, optlen, th, oi);
3576 } else
3577 tb.t_flags = 0;
3578
3579 /*
3580 * See if we already have an entry for this connection.
3581 * If we do, resend the SYN,ACK. We do not count this
3582 * as a retransmission (XXX though maybe we should).
3583 */
3584 if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
3585 tcpstat.tcps_sc_dupesyn++;
3586 if (ipopts) {
3587 /*
3588 * If we were remembering a previous source route,
3589 * forget it and use the new one we've been given.
3590 */
3591 if (sc->sc_ipopts)
3592 (void) m_free(sc->sc_ipopts);
3593 sc->sc_ipopts = ipopts;
3594 }
3595 sc->sc_timestamp = tb.ts_recent;
3596 if (syn_cache_respond(sc, m) == 0) {
3597 tcpstat.tcps_sndacks++;
3598 tcpstat.tcps_sndtotal++;
3599 }
3600 return (1);
3601 }
3602
3603 sc = pool_get(&syn_cache_pool, PR_NOWAIT);
3604 if (sc == NULL) {
3605 if (ipopts)
3606 (void) m_free(ipopts);
3607 return (0);
3608 }
3609
3610 /*
3611 * Fill in the cache, and put the necessary IP and TCP
3612 * options into the reply.
3613 */
3614 bzero(sc, sizeof(struct syn_cache));
3615 callout_init(&sc->sc_timer);
3616 bcopy(src, &sc->sc_src, src->sa_len);
3617 bcopy(dst, &sc->sc_dst, dst->sa_len);
3618 sc->sc_flags = 0;
3619 sc->sc_ipopts = ipopts;
3620 sc->sc_irs = th->th_seq;
3621 switch (src->sa_family) {
3622 #ifdef INET
3623 case AF_INET:
3624 {
3625 struct sockaddr_in *srcin = (void *) src;
3626 struct sockaddr_in *dstin = (void *) dst;
3627
3628 sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
3629 &srcin->sin_addr, dstin->sin_port,
3630 srcin->sin_port, sizeof(dstin->sin_addr), 0);
3631 break;
3632 }
3633 #endif /* INET */
3634 #ifdef INET6
3635 case AF_INET6:
3636 {
3637 struct sockaddr_in6 *srcin6 = (void *) src;
3638 struct sockaddr_in6 *dstin6 = (void *) dst;
3639
3640 sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
3641 &srcin6->sin6_addr, dstin6->sin6_port,
3642 srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
3643 break;
3644 }
3645 #endif /* INET6 */
3646 }
3647 sc->sc_peermaxseg = oi->maxseg;
3648 sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
3649 m->m_pkthdr.rcvif : NULL,
3650 sc->sc_src.sa.sa_family);
3651 sc->sc_win = win;
3652 sc->sc_timebase = tcp_now; /* see tcp_newtcpcb() */
3653 sc->sc_timestamp = tb.ts_recent;
3654 if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
3655 (TF_REQ_TSTMP|TF_RCVD_TSTMP))
3656 sc->sc_flags |= SCF_TIMESTAMP;
3657 if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
3658 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
3659 sc->sc_requested_s_scale = tb.requested_s_scale;
3660 sc->sc_request_r_scale = 0;
3661 while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
3662 TCP_MAXWIN << sc->sc_request_r_scale <
3663 so->so_rcv.sb_hiwat)
3664 sc->sc_request_r_scale++;
3665 } else {
3666 sc->sc_requested_s_scale = 15;
3667 sc->sc_request_r_scale = 15;
3668 }
3669 sc->sc_tp = tp;
3670 if (syn_cache_respond(sc, m) == 0) {
3671 syn_cache_insert(sc, tp);
3672 tcpstat.tcps_sndacks++;
3673 tcpstat.tcps_sndtotal++;
3674 } else {
3675 SYN_CACHE_PUT(sc);
3676 tcpstat.tcps_sc_dropped++;
3677 }
3678 return (1);
3679 }
3680
3681 int
3682 syn_cache_respond(sc, m)
3683 struct syn_cache *sc;
3684 struct mbuf *m;
3685 {
3686 struct route *ro;
3687 u_int8_t *optp;
3688 int optlen, error;
3689 u_int16_t tlen;
3690 struct ip *ip = NULL;
3691 #ifdef INET6
3692 struct ip6_hdr *ip6 = NULL;
3693 #endif
3694 struct tcpcb *tp;
3695 struct tcphdr *th;
3696 u_int hlen;
3697 struct socket *so;
3698
3699 switch (sc->sc_src.sa.sa_family) {
3700 case AF_INET:
3701 hlen = sizeof(struct ip);
3702 ro = &sc->sc_route4;
3703 break;
3704 #ifdef INET6
3705 case AF_INET6:
3706 hlen = sizeof(struct ip6_hdr);
3707 ro = (struct route *)&sc->sc_route6;
3708 break;
3709 #endif
3710 default:
3711 if (m)
3712 m_freem(m);
3713 return (EAFNOSUPPORT);
3714 }
3715
3716 /* Compute the size of the TCP options. */
3717 optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
3718 ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
3719
3720 tlen = hlen + sizeof(struct tcphdr) + optlen;
3721
3722 /*
3723 * Create the IP+TCP header from scratch.
3724 */
3725 if (m)
3726 m_freem(m);
3727 #ifdef DIAGNOSTIC
3728 if (max_linkhdr + tlen > MCLBYTES)
3729 return (ENOBUFS);
3730 #endif
3731 MGETHDR(m, M_DONTWAIT, MT_DATA);
3732 if (m && tlen > MHLEN) {
3733 MCLGET(m, M_DONTWAIT);
3734 if ((m->m_flags & M_EXT) == 0) {
3735 m_freem(m);
3736 m = NULL;
3737 }
3738 }
3739 if (m == NULL)
3740 return (ENOBUFS);
3741 MCLAIM(m, &tcp_tx_mowner);
3742
3743 /* Fixup the mbuf. */
3744 m->m_data += max_linkhdr;
3745 m->m_len = m->m_pkthdr.len = tlen;
3746 if (sc->sc_tp) {
3747 tp = sc->sc_tp;
3748 if (tp->t_inpcb)
3749 so = tp->t_inpcb->inp_socket;
3750 #ifdef INET6
3751 else if (tp->t_in6pcb)
3752 so = tp->t_in6pcb->in6p_socket;
3753 #endif
3754 else
3755 so = NULL;
3756 } else
3757 so = NULL;
3758 m->m_pkthdr.rcvif = NULL;
3759 memset(mtod(m, u_char *), 0, tlen);
3760
3761 switch (sc->sc_src.sa.sa_family) {
3762 case AF_INET:
3763 ip = mtod(m, struct ip *);
3764 ip->ip_dst = sc->sc_src.sin.sin_addr;
3765 ip->ip_src = sc->sc_dst.sin.sin_addr;
3766 ip->ip_p = IPPROTO_TCP;
3767 th = (struct tcphdr *)(ip + 1);
3768 th->th_dport = sc->sc_src.sin.sin_port;
3769 th->th_sport = sc->sc_dst.sin.sin_port;
3770 break;
3771 #ifdef INET6
3772 case AF_INET6:
3773 ip6 = mtod(m, struct ip6_hdr *);
3774 ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
3775 ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
3776 ip6->ip6_nxt = IPPROTO_TCP;
3777 /* ip6_plen will be updated in ip6_output() */
3778 th = (struct tcphdr *)(ip6 + 1);
3779 th->th_dport = sc->sc_src.sin6.sin6_port;
3780 th->th_sport = sc->sc_dst.sin6.sin6_port;
3781 break;
3782 #endif
3783 default:
3784 th = NULL;
3785 }
3786
3787 th->th_seq = htonl(sc->sc_iss);
3788 th->th_ack = htonl(sc->sc_irs + 1);
3789 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
3790 th->th_flags = TH_SYN|TH_ACK;
3791 th->th_win = htons(sc->sc_win);
3792 /* th_sum already 0 */
3793 /* th_urp already 0 */
3794
3795 /* Tack on the TCP options. */
3796 optp = (u_int8_t *)(th + 1);
3797 *optp++ = TCPOPT_MAXSEG;
3798 *optp++ = 4;
3799 *optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
3800 *optp++ = sc->sc_ourmaxseg & 0xff;
3801
3802 if (sc->sc_request_r_scale != 15) {
3803 *((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
3804 TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
3805 sc->sc_request_r_scale);
3806 optp += 4;
3807 }
3808
3809 if (sc->sc_flags & SCF_TIMESTAMP) {
3810 u_int32_t *lp = (u_int32_t *)(optp);
3811 /* Form timestamp option as shown in appendix A of RFC 1323. */
3812 *lp++ = htonl(TCPOPT_TSTAMP_HDR);
3813 *lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
3814 *lp = htonl(sc->sc_timestamp);
3815 optp += TCPOLEN_TSTAMP_APPA;
3816 }
3817
3818 /* Compute the packet's checksum. */
3819 switch (sc->sc_src.sa.sa_family) {
3820 case AF_INET:
3821 ip->ip_len = htons(tlen - hlen);
3822 th->th_sum = 0;
3823 th->th_sum = in_cksum(m, tlen);
3824 break;
3825 #ifdef INET6
3826 case AF_INET6:
3827 ip6->ip6_plen = htons(tlen - hlen);
3828 th->th_sum = 0;
3829 th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
3830 break;
3831 #endif
3832 }
3833
3834 /*
3835 * Fill in some straggling IP bits. Note the stack expects
3836 * ip_len to be in host order, for convenience.
3837 */
3838 switch (sc->sc_src.sa.sa_family) {
3839 #ifdef INET
3840 case AF_INET:
3841 ip->ip_len = htons(tlen);
3842 ip->ip_ttl = ip_defttl;
3843 /* XXX tos? */
3844 break;
3845 #endif
3846 #ifdef INET6
3847 case AF_INET6:
3848 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
3849 ip6->ip6_vfc |= IPV6_VERSION;
3850 ip6->ip6_plen = htons(tlen - hlen);
3851 /* ip6_hlim will be initialized afterwards */
3852 /* XXX flowlabel? */
3853 break;
3854 #endif
3855 }
3856
3857 /* XXX use IPsec policy on listening socket, on SYN ACK */
3858 tp = sc->sc_tp;
3859
3860 switch (sc->sc_src.sa.sa_family) {
3861 #ifdef INET
3862 case AF_INET:
3863 error = ip_output(m, sc->sc_ipopts, ro,
3864 (ip_mtudisc ? IP_MTUDISC : 0),
3865 (struct ip_moptions *)NULL, so);
3866 break;
3867 #endif
3868 #ifdef INET6
3869 case AF_INET6:
3870 ip6->ip6_hlim = in6_selecthlim(NULL,
3871 ro->ro_rt ? ro->ro_rt->rt_ifp : NULL);
3872
3873 error = ip6_output(m, NULL /*XXX*/, (struct route_in6 *)ro, 0,
3874 (struct ip6_moptions *)0, so, NULL);
3875 break;
3876 #endif
3877 default:
3878 error = EAFNOSUPPORT;
3879 break;
3880 }
3881 return (error);
3882 }
3883