tcp_input.c revision 1.199 1 /* $NetBSD: tcp_input.c,v 1.199 2004/04/25 03:29:11 itojun Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * @(#)COPYRIGHT 1.1 (NRL) 17 January 1995
34 *
35 * NRL grants permission for redistribution and use in source and binary
36 * forms, with or without modification, of the software and documentation
37 * created at NRL provided that the following conditions are met:
38 *
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgements:
46 * This product includes software developed by the University of
47 * California, Berkeley and its contributors.
48 * This product includes software developed at the Information
49 * Technology Division, US Naval Research Laboratory.
50 * 4. Neither the name of the NRL nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
55 * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
57 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NRL OR
58 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
59 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
61 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
62 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
63 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
64 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65 *
66 * The views and conclusions contained in the software and documentation
67 * are those of the authors and should not be interpreted as representing
68 * official policies, either expressed or implied, of the US Naval
69 * Research Laboratory (NRL).
70 */
71
72 /*-
73 * Copyright (c) 1997, 1998, 1999, 2001 The NetBSD Foundation, Inc.
74 * All rights reserved.
75 *
76 * This code is derived from software contributed to The NetBSD Foundation
77 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
78 * Facility, NASA Ames Research Center.
79 *
80 * Redistribution and use in source and binary forms, with or without
81 * modification, are permitted provided that the following conditions
82 * are met:
83 * 1. Redistributions of source code must retain the above copyright
84 * notice, this list of conditions and the following disclaimer.
85 * 2. Redistributions in binary form must reproduce the above copyright
86 * notice, this list of conditions and the following disclaimer in the
87 * documentation and/or other materials provided with the distribution.
88 * 3. All advertising materials mentioning features or use of this software
89 * must display the following acknowledgement:
90 * This product includes software developed by the NetBSD
91 * Foundation, Inc. and its contributors.
92 * 4. Neither the name of The NetBSD Foundation nor the names of its
93 * contributors may be used to endorse or promote products derived
94 * from this software without specific prior written permission.
95 *
96 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
97 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
98 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
99 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
100 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
101 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
102 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
103 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
104 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
105 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
106 * POSSIBILITY OF SUCH DAMAGE.
107 */
108
109 /*
110 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
111 * The Regents of the University of California. All rights reserved.
112 *
113 * Redistribution and use in source and binary forms, with or without
114 * modification, are permitted provided that the following conditions
115 * are met:
116 * 1. Redistributions of source code must retain the above copyright
117 * notice, this list of conditions and the following disclaimer.
118 * 2. Redistributions in binary form must reproduce the above copyright
119 * notice, this list of conditions and the following disclaimer in the
120 * documentation and/or other materials provided with the distribution.
121 * 3. Neither the name of the University nor the names of its contributors
122 * may be used to endorse or promote products derived from this software
123 * without specific prior written permission.
124 *
125 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
126 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
127 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
128 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
129 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
130 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
131 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
132 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
133 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
134 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
135 * SUCH DAMAGE.
136 *
137 * @(#)tcp_input.c 8.12 (Berkeley) 5/24/95
138 */
139
140 /*
141 * TODO list for SYN cache stuff:
142 *
143 * Find room for a "state" field, which is needed to keep a
144 * compressed state for TIME_WAIT TCBs. It's been noted already
145 * that this is fairly important for very high-volume web and
146 * mail servers, which use a large number of short-lived
147 * connections.
148 */
149
150 #include <sys/cdefs.h>
151 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.199 2004/04/25 03:29:11 itojun Exp $");
152
153 #include "opt_inet.h"
154 #include "opt_ipsec.h"
155 #include "opt_inet_csum.h"
156 #include "opt_tcp_debug.h"
157
158 #include <sys/param.h>
159 #include <sys/systm.h>
160 #include <sys/malloc.h>
161 #include <sys/mbuf.h>
162 #include <sys/protosw.h>
163 #include <sys/socket.h>
164 #include <sys/socketvar.h>
165 #include <sys/errno.h>
166 #include <sys/syslog.h>
167 #include <sys/pool.h>
168 #include <sys/domain.h>
169 #include <sys/kernel.h>
170
171 #include <net/if.h>
172 #include <net/route.h>
173 #include <net/if_types.h>
174
175 #include <netinet/in.h>
176 #include <netinet/in_systm.h>
177 #include <netinet/ip.h>
178 #include <netinet/in_pcb.h>
179 #include <netinet/in_var.h>
180 #include <netinet/ip_var.h>
181
182 #ifdef INET6
183 #ifndef INET
184 #include <netinet/in.h>
185 #endif
186 #include <netinet/ip6.h>
187 #include <netinet6/ip6_var.h>
188 #include <netinet6/in6_pcb.h>
189 #include <netinet6/ip6_var.h>
190 #include <netinet6/in6_var.h>
191 #include <netinet/icmp6.h>
192 #include <netinet6/nd6.h>
193 #endif
194
195 #ifndef INET6
196 /* always need ip6.h for IP6_EXTHDR_GET */
197 #include <netinet/ip6.h>
198 #endif
199
200 #include <netinet/tcp.h>
201 #include <netinet/tcp_fsm.h>
202 #include <netinet/tcp_seq.h>
203 #include <netinet/tcp_timer.h>
204 #include <netinet/tcp_var.h>
205 #include <netinet/tcpip.h>
206 #include <netinet/tcp_debug.h>
207
208 #include <machine/stdarg.h>
209
210 #ifdef IPSEC
211 #include <netinet6/ipsec.h>
212 #include <netkey/key.h>
213 #endif /*IPSEC*/
214 #ifdef INET6
215 #include "faith.h"
216 #if defined(NFAITH) && NFAITH > 0
217 #include <net/if_faith.h>
218 #endif
219 #endif /* IPSEC */
220
221 #ifdef FAST_IPSEC
222 #include <netipsec/ipsec.h>
223 #include <netipsec/key.h>
224 #ifdef INET6
225 #include <netipsec/ipsec6.h>
226 #endif
227 #endif /* FAST_IPSEC*/
228
229
230 int tcprexmtthresh = 3;
231 int tcp_log_refused;
232
233 static int tcp_rst_ppslim_count = 0;
234 static struct timeval tcp_rst_ppslim_last;
235 static int tcp_ackdrop_ppslim_count = 0;
236 static struct timeval tcp_ackdrop_ppslim_last;
237
238 #define TCP_PAWS_IDLE (24 * 24 * 60 * 60 * PR_SLOWHZ)
239
240 /* for modulo comparisons of timestamps */
241 #define TSTMP_LT(a,b) ((int)((a)-(b)) < 0)
242 #define TSTMP_GEQ(a,b) ((int)((a)-(b)) >= 0)
243
244 /*
245 * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
246 */
247 #ifdef INET6
248 #define ND6_HINT(tp) \
249 do { \
250 if (tp && tp->t_in6pcb && tp->t_family == AF_INET6 && \
251 tp->t_in6pcb->in6p_route.ro_rt) { \
252 nd6_nud_hint(tp->t_in6pcb->in6p_route.ro_rt, NULL, 0); \
253 } \
254 } while (/*CONSTCOND*/ 0)
255 #else
256 #define ND6_HINT(tp)
257 #endif
258
259 /*
260 * Macro to compute ACK transmission behavior. Delay the ACK unless
261 * we have already delayed an ACK (must send an ACK every two segments).
262 * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
263 * option is enabled.
264 */
265 #define TCP_SETUP_ACK(tp, th) \
266 do { \
267 if ((tp)->t_flags & TF_DELACK || \
268 (tcp_ack_on_push && (th)->th_flags & TH_PUSH)) \
269 tp->t_flags |= TF_ACKNOW; \
270 else \
271 TCP_SET_DELACK(tp); \
272 } while (/*CONSTCOND*/ 0)
273
274 /*
275 * Convert TCP protocol fields to host order for easier processing.
276 */
277 #define TCP_FIELDS_TO_HOST(th) \
278 do { \
279 NTOHL((th)->th_seq); \
280 NTOHL((th)->th_ack); \
281 NTOHS((th)->th_win); \
282 NTOHS((th)->th_urp); \
283 } while (/*CONSTCOND*/ 0)
284
285 /*
286 * ... and reverse the above.
287 */
288 #define TCP_FIELDS_TO_NET(th) \
289 do { \
290 HTONL((th)->th_seq); \
291 HTONL((th)->th_ack); \
292 HTONS((th)->th_win); \
293 HTONS((th)->th_urp); \
294 } while (/*CONSTCOND*/ 0)
295
296 #ifdef TCP_CSUM_COUNTERS
297 #include <sys/device.h>
298
299 extern struct evcnt tcp_hwcsum_ok;
300 extern struct evcnt tcp_hwcsum_bad;
301 extern struct evcnt tcp_hwcsum_data;
302 extern struct evcnt tcp_swcsum;
303
304 #define TCP_CSUM_COUNTER_INCR(ev) (ev)->ev_count++
305
306 #else
307
308 #define TCP_CSUM_COUNTER_INCR(ev) /* nothing */
309
310 #endif /* TCP_CSUM_COUNTERS */
311
312 #ifdef TCP_REASS_COUNTERS
313 #include <sys/device.h>
314
315 extern struct evcnt tcp_reass_;
316 extern struct evcnt tcp_reass_empty;
317 extern struct evcnt tcp_reass_iteration[8];
318 extern struct evcnt tcp_reass_prependfirst;
319 extern struct evcnt tcp_reass_prepend;
320 extern struct evcnt tcp_reass_insert;
321 extern struct evcnt tcp_reass_inserttail;
322 extern struct evcnt tcp_reass_append;
323 extern struct evcnt tcp_reass_appendtail;
324 extern struct evcnt tcp_reass_overlaptail;
325 extern struct evcnt tcp_reass_overlapfront;
326 extern struct evcnt tcp_reass_segdup;
327 extern struct evcnt tcp_reass_fragdup;
328
329 #define TCP_REASS_COUNTER_INCR(ev) (ev)->ev_count++
330
331 #else
332
333 #define TCP_REASS_COUNTER_INCR(ev) /* nothing */
334
335 #endif /* TCP_REASS_COUNTERS */
336
337 #ifdef INET
338 static void tcp4_log_refused __P((const struct ip *, const struct tcphdr *));
339 #endif
340 #ifdef INET6
341 static void tcp6_log_refused
342 __P((const struct ip6_hdr *, const struct tcphdr *));
343 #endif
344
345 #define TRAVERSE(x) while ((x)->m_next) (x) = (x)->m_next
346
347 int
348 tcp_reass(tp, th, m, tlen)
349 struct tcpcb *tp;
350 struct tcphdr *th;
351 struct mbuf *m;
352 int *tlen;
353 {
354 struct ipqent *p, *q, *nq, *tiqe = NULL;
355 struct socket *so = NULL;
356 int pkt_flags;
357 tcp_seq pkt_seq;
358 unsigned pkt_len;
359 u_long rcvpartdupbyte = 0;
360 u_long rcvoobyte;
361 #ifdef TCP_REASS_COUNTERS
362 u_int count = 0;
363 #endif
364
365 if (tp->t_inpcb)
366 so = tp->t_inpcb->inp_socket;
367 #ifdef INET6
368 else if (tp->t_in6pcb)
369 so = tp->t_in6pcb->in6p_socket;
370 #endif
371
372 TCP_REASS_LOCK_CHECK(tp);
373
374 /*
375 * Call with th==0 after become established to
376 * force pre-ESTABLISHED data up to user socket.
377 */
378 if (th == 0)
379 goto present;
380
381 rcvoobyte = *tlen;
382 /*
383 * Copy these to local variables because the tcpiphdr
384 * gets munged while we are collapsing mbufs.
385 */
386 pkt_seq = th->th_seq;
387 pkt_len = *tlen;
388 pkt_flags = th->th_flags;
389
390 TCP_REASS_COUNTER_INCR(&tcp_reass_);
391
392 if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
393 /*
394 * When we miss a packet, the vast majority of time we get
395 * packets that follow it in order. So optimize for that.
396 */
397 if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
398 p->ipqe_len += pkt_len;
399 p->ipqe_flags |= pkt_flags;
400 m_cat(p->ipre_mlast, m);
401 TRAVERSE(p->ipre_mlast);
402 m = NULL;
403 tiqe = p;
404 TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
405 TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
406 goto skip_replacement;
407 }
408 /*
409 * While we're here, if the pkt is completely beyond
410 * anything we have, just insert it at the tail.
411 */
412 if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
413 TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
414 goto insert_it;
415 }
416 }
417
418 q = TAILQ_FIRST(&tp->segq);
419
420 if (q != NULL) {
421 /*
422 * If this segment immediately precedes the first out-of-order
423 * block, simply slap the segment in front of it and (mostly)
424 * skip the complicated logic.
425 */
426 if (pkt_seq + pkt_len == q->ipqe_seq) {
427 q->ipqe_seq = pkt_seq;
428 q->ipqe_len += pkt_len;
429 q->ipqe_flags |= pkt_flags;
430 m_cat(m, q->ipqe_m);
431 q->ipqe_m = m;
432 q->ipre_mlast = m; /* last mbuf may have changed */
433 TRAVERSE(q->ipre_mlast);
434 tiqe = q;
435 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
436 TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
437 goto skip_replacement;
438 }
439 } else {
440 TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
441 }
442
443 /*
444 * Find a segment which begins after this one does.
445 */
446 for (p = NULL; q != NULL; q = nq) {
447 nq = TAILQ_NEXT(q, ipqe_q);
448 #ifdef TCP_REASS_COUNTERS
449 count++;
450 #endif
451 /*
452 * If the received segment is just right after this
453 * fragment, merge the two together and then check
454 * for further overlaps.
455 */
456 if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
457 #ifdef TCPREASS_DEBUG
458 printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
459 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
460 q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
461 #endif
462 pkt_len += q->ipqe_len;
463 pkt_flags |= q->ipqe_flags;
464 pkt_seq = q->ipqe_seq;
465 m_cat(q->ipre_mlast, m);
466 TRAVERSE(q->ipre_mlast);
467 m = q->ipqe_m;
468 TCP_REASS_COUNTER_INCR(&tcp_reass_append);
469 goto free_ipqe;
470 }
471 /*
472 * If the received segment is completely past this
473 * fragment, we need to go the next fragment.
474 */
475 if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
476 p = q;
477 continue;
478 }
479 /*
480 * If the fragment is past the received segment,
481 * it (or any following) can't be concatenated.
482 */
483 if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
484 TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
485 break;
486 }
487
488 /*
489 * We've received all the data in this segment before.
490 * mark it as a duplicate and return.
491 */
492 if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
493 SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
494 tcpstat.tcps_rcvduppack++;
495 tcpstat.tcps_rcvdupbyte += pkt_len;
496 m_freem(m);
497 if (tiqe != NULL)
498 pool_put(&ipqent_pool, tiqe);
499 TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
500 return (0);
501 }
502 /*
503 * Received segment completely overlaps this fragment
504 * so we drop the fragment (this keeps the temporal
505 * ordering of segments correct).
506 */
507 if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
508 SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
509 rcvpartdupbyte += q->ipqe_len;
510 m_freem(q->ipqe_m);
511 TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
512 goto free_ipqe;
513 }
514 /*
515 * RX'ed segment extends past the end of the
516 * fragment. Drop the overlapping bytes. Then
517 * merge the fragment and segment then treat as
518 * a longer received packet.
519 */
520 if (SEQ_LT(q->ipqe_seq, pkt_seq) &&
521 SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
522 int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
523 #ifdef TCPREASS_DEBUG
524 printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
525 tp, overlap,
526 pkt_seq, pkt_seq + pkt_len, pkt_len);
527 #endif
528 m_adj(m, overlap);
529 rcvpartdupbyte += overlap;
530 m_cat(q->ipre_mlast, m);
531 TRAVERSE(q->ipre_mlast);
532 m = q->ipqe_m;
533 pkt_seq = q->ipqe_seq;
534 pkt_len += q->ipqe_len - overlap;
535 rcvoobyte -= overlap;
536 TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
537 goto free_ipqe;
538 }
539 /*
540 * RX'ed segment extends past the front of the
541 * fragment. Drop the overlapping bytes on the
542 * received packet. The packet will then be
543 * contatentated with this fragment a bit later.
544 */
545 if (SEQ_GT(q->ipqe_seq, pkt_seq) &&
546 SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len)) {
547 int overlap = pkt_seq + pkt_len - q->ipqe_seq;
548 #ifdef TCPREASS_DEBUG
549 printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
550 tp, overlap,
551 pkt_seq, pkt_seq + pkt_len, pkt_len);
552 #endif
553 m_adj(m, -overlap);
554 pkt_len -= overlap;
555 rcvpartdupbyte += overlap;
556 TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
557 rcvoobyte -= overlap;
558 }
559 /*
560 * If the received segment immediates precedes this
561 * fragment then tack the fragment onto this segment
562 * and reinsert the data.
563 */
564 if (q->ipqe_seq == pkt_seq + pkt_len) {
565 #ifdef TCPREASS_DEBUG
566 printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
567 tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
568 pkt_seq, pkt_seq + pkt_len, pkt_len);
569 #endif
570 pkt_len += q->ipqe_len;
571 pkt_flags |= q->ipqe_flags;
572 m_cat(m, q->ipqe_m);
573 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
574 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
575 if (tiqe == NULL)
576 tiqe = q;
577 else
578 pool_put(&ipqent_pool, q);
579 TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
580 break;
581 }
582 /*
583 * If the fragment is before the segment, remember it.
584 * When this loop is terminated, p will contain the
585 * pointer to fragment that is right before the received
586 * segment.
587 */
588 if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
589 p = q;
590
591 continue;
592
593 /*
594 * This is a common operation. It also will allow
595 * to save doing a malloc/free in most instances.
596 */
597 free_ipqe:
598 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
599 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
600 if (tiqe == NULL)
601 tiqe = q;
602 else
603 pool_put(&ipqent_pool, q);
604 }
605
606 #ifdef TCP_REASS_COUNTERS
607 if (count > 7)
608 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
609 else if (count > 0)
610 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
611 #endif
612
613 insert_it:
614
615 /*
616 * Allocate a new queue entry since the received segment did not
617 * collapse onto any other out-of-order block; thus we are allocating
618 * a new block. If it had collapsed, tiqe would not be NULL and
619 * we would be reusing it.
620 * XXX If we can't, just drop the packet. XXX
621 */
622 if (tiqe == NULL) {
623 tiqe = pool_get(&ipqent_pool, PR_NOWAIT);
624 if (tiqe == NULL) {
625 tcpstat.tcps_rcvmemdrop++;
626 m_freem(m);
627 return (0);
628 }
629 }
630
631 /*
632 * Update the counters.
633 */
634 tcpstat.tcps_rcvoopack++;
635 tcpstat.tcps_rcvoobyte += rcvoobyte;
636 if (rcvpartdupbyte) {
637 tcpstat.tcps_rcvpartduppack++;
638 tcpstat.tcps_rcvpartdupbyte += rcvpartdupbyte;
639 }
640
641 /*
642 * Insert the new fragment queue entry into both queues.
643 */
644 tiqe->ipqe_m = m;
645 tiqe->ipre_mlast = m;
646 tiqe->ipqe_seq = pkt_seq;
647 tiqe->ipqe_len = pkt_len;
648 tiqe->ipqe_flags = pkt_flags;
649 if (p == NULL) {
650 TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
651 #ifdef TCPREASS_DEBUG
652 if (tiqe->ipqe_seq != tp->rcv_nxt)
653 printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
654 tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
655 #endif
656 } else {
657 TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
658 #ifdef TCPREASS_DEBUG
659 printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
660 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
661 p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
662 #endif
663 }
664
665 skip_replacement:
666
667 TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
668
669 present:
670 /*
671 * Present data to user, advancing rcv_nxt through
672 * completed sequence space.
673 */
674 if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
675 return (0);
676 q = TAILQ_FIRST(&tp->segq);
677 if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
678 return (0);
679 if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
680 return (0);
681
682 tp->rcv_nxt += q->ipqe_len;
683 pkt_flags = q->ipqe_flags & TH_FIN;
684 ND6_HINT(tp);
685
686 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
687 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
688 if (so->so_state & SS_CANTRCVMORE)
689 m_freem(q->ipqe_m);
690 else
691 sbappendstream(&so->so_rcv, q->ipqe_m);
692 pool_put(&ipqent_pool, q);
693 sorwakeup(so);
694 return (pkt_flags);
695 }
696
697 #ifdef INET6
698 int
699 tcp6_input(mp, offp, proto)
700 struct mbuf **mp;
701 int *offp, proto;
702 {
703 struct mbuf *m = *mp;
704
705 /*
706 * draft-itojun-ipv6-tcp-to-anycast
707 * better place to put this in?
708 */
709 if (m->m_flags & M_ANYCAST6) {
710 struct ip6_hdr *ip6;
711 if (m->m_len < sizeof(struct ip6_hdr)) {
712 if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
713 tcpstat.tcps_rcvshort++;
714 return IPPROTO_DONE;
715 }
716 }
717 ip6 = mtod(m, struct ip6_hdr *);
718 icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
719 (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
720 return IPPROTO_DONE;
721 }
722
723 tcp_input(m, *offp, proto);
724 return IPPROTO_DONE;
725 }
726 #endif
727
728 #ifdef INET
729 static void
730 tcp4_log_refused(ip, th)
731 const struct ip *ip;
732 const struct tcphdr *th;
733 {
734 char src[4*sizeof "123"];
735 char dst[4*sizeof "123"];
736
737 if (ip) {
738 strlcpy(src, inet_ntoa(ip->ip_src), sizeof(src));
739 strlcpy(dst, inet_ntoa(ip->ip_dst), sizeof(dst));
740 }
741 else {
742 strlcpy(src, "(unknown)", sizeof(src));
743 strlcpy(dst, "(unknown)", sizeof(dst));
744 }
745 log(LOG_INFO,
746 "Connection attempt to TCP %s:%d from %s:%d\n",
747 dst, ntohs(th->th_dport),
748 src, ntohs(th->th_sport));
749 }
750 #endif
751
752 #ifdef INET6
753 static void
754 tcp6_log_refused(ip6, th)
755 const struct ip6_hdr *ip6;
756 const struct tcphdr *th;
757 {
758 char src[INET6_ADDRSTRLEN];
759 char dst[INET6_ADDRSTRLEN];
760
761 if (ip6) {
762 strlcpy(src, ip6_sprintf(&ip6->ip6_src), sizeof(src));
763 strlcpy(dst, ip6_sprintf(&ip6->ip6_dst), sizeof(dst));
764 }
765 else {
766 strlcpy(src, "(unknown v6)", sizeof(src));
767 strlcpy(dst, "(unknown v6)", sizeof(dst));
768 }
769 log(LOG_INFO,
770 "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
771 dst, ntohs(th->th_dport),
772 src, ntohs(th->th_sport));
773 }
774 #endif
775
776 /*
777 * TCP input routine, follows pages 65-76 of the
778 * protocol specification dated September, 1981 very closely.
779 */
780 void
781 #if __STDC__
782 tcp_input(struct mbuf *m, ...)
783 #else
784 tcp_input(m, va_alist)
785 struct mbuf *m;
786 #endif
787 {
788 struct tcphdr *th;
789 struct ip *ip;
790 struct inpcb *inp;
791 #ifdef INET6
792 struct ip6_hdr *ip6;
793 struct in6pcb *in6p;
794 #endif
795 u_int8_t *optp = NULL;
796 int optlen = 0;
797 int len, tlen, toff, hdroptlen = 0;
798 struct tcpcb *tp = 0;
799 int tiflags;
800 struct socket *so = NULL;
801 int todrop, acked, ourfinisacked, needoutput = 0;
802 #ifdef TCP_DEBUG
803 short ostate = 0;
804 #endif
805 int iss = 0;
806 u_long tiwin;
807 struct tcp_opt_info opti;
808 int off, iphlen;
809 va_list ap;
810 int af; /* af on the wire */
811 struct mbuf *tcp_saveti = NULL;
812
813 MCLAIM(m, &tcp_rx_mowner);
814 va_start(ap, m);
815 toff = va_arg(ap, int);
816 (void)va_arg(ap, int); /* ignore value, advance ap */
817 va_end(ap);
818
819 tcpstat.tcps_rcvtotal++;
820
821 bzero(&opti, sizeof(opti));
822 opti.ts_present = 0;
823 opti.maxseg = 0;
824
825 /*
826 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
827 *
828 * TCP is, by definition, unicast, so we reject all
829 * multicast outright.
830 *
831 * Note, there are additional src/dst address checks in
832 * the AF-specific code below.
833 */
834 if (m->m_flags & (M_BCAST|M_MCAST)) {
835 /* XXX stat */
836 goto drop;
837 }
838 #ifdef INET6
839 if (m->m_flags & M_ANYCAST6) {
840 /* XXX stat */
841 goto drop;
842 }
843 #endif
844
845 /*
846 * Get IP and TCP header.
847 * Note: IP leaves IP header in first mbuf.
848 */
849 ip = mtod(m, struct ip *);
850 #ifdef INET6
851 ip6 = NULL;
852 #endif
853 switch (ip->ip_v) {
854 #ifdef INET
855 case 4:
856 af = AF_INET;
857 iphlen = sizeof(struct ip);
858 ip = mtod(m, struct ip *);
859 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
860 sizeof(struct tcphdr));
861 if (th == NULL) {
862 tcpstat.tcps_rcvshort++;
863 return;
864 }
865 /* We do the checksum after PCB lookup... */
866 len = ntohs(ip->ip_len);
867 tlen = len - toff;
868 break;
869 #endif
870 #ifdef INET6
871 case 6:
872 ip = NULL;
873 iphlen = sizeof(struct ip6_hdr);
874 af = AF_INET6;
875 ip6 = mtod(m, struct ip6_hdr *);
876 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
877 sizeof(struct tcphdr));
878 if (th == NULL) {
879 tcpstat.tcps_rcvshort++;
880 return;
881 }
882
883 /* Be proactive about malicious use of IPv4 mapped address */
884 if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
885 IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
886 /* XXX stat */
887 goto drop;
888 }
889
890 /*
891 * Be proactive about unspecified IPv6 address in source.
892 * As we use all-zero to indicate unbounded/unconnected pcb,
893 * unspecified IPv6 address can be used to confuse us.
894 *
895 * Note that packets with unspecified IPv6 destination is
896 * already dropped in ip6_input.
897 */
898 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
899 /* XXX stat */
900 goto drop;
901 }
902
903 /*
904 * Make sure destination address is not multicast.
905 * Source address checked in ip6_input().
906 */
907 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
908 /* XXX stat */
909 goto drop;
910 }
911
912 /* We do the checksum after PCB lookup... */
913 len = m->m_pkthdr.len;
914 tlen = len - toff;
915 break;
916 #endif
917 default:
918 m_freem(m);
919 return;
920 }
921
922 KASSERT(TCP_HDR_ALIGNED_P(th));
923
924 /*
925 * Check that TCP offset makes sense,
926 * pull out TCP options and adjust length. XXX
927 */
928 off = th->th_off << 2;
929 if (off < sizeof (struct tcphdr) || off > tlen) {
930 tcpstat.tcps_rcvbadoff++;
931 goto drop;
932 }
933 tlen -= off;
934
935 /*
936 * tcp_input() has been modified to use tlen to mean the TCP data
937 * length throughout the function. Other functions can use
938 * m->m_pkthdr.len as the basis for calculating the TCP data length.
939 * rja
940 */
941
942 if (off > sizeof (struct tcphdr)) {
943 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
944 if (th == NULL) {
945 tcpstat.tcps_rcvshort++;
946 return;
947 }
948 /*
949 * NOTE: ip/ip6 will not be affected by m_pulldown()
950 * (as they're before toff) and we don't need to update those.
951 */
952 KASSERT(TCP_HDR_ALIGNED_P(th));
953 optlen = off - sizeof (struct tcphdr);
954 optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
955 /*
956 * Do quick retrieval of timestamp options ("options
957 * prediction?"). If timestamp is the only option and it's
958 * formatted as recommended in RFC 1323 appendix A, we
959 * quickly get the values now and not bother calling
960 * tcp_dooptions(), etc.
961 */
962 if ((optlen == TCPOLEN_TSTAMP_APPA ||
963 (optlen > TCPOLEN_TSTAMP_APPA &&
964 optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
965 *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
966 (th->th_flags & TH_SYN) == 0) {
967 opti.ts_present = 1;
968 opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
969 opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
970 optp = NULL; /* we've parsed the options */
971 }
972 }
973 tiflags = th->th_flags;
974
975 /*
976 * Locate pcb for segment.
977 */
978 findpcb:
979 inp = NULL;
980 #ifdef INET6
981 in6p = NULL;
982 #endif
983 switch (af) {
984 #ifdef INET
985 case AF_INET:
986 inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
987 ip->ip_dst, th->th_dport);
988 if (inp == 0) {
989 ++tcpstat.tcps_pcbhashmiss;
990 inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
991 }
992 #ifdef INET6
993 if (inp == 0) {
994 struct in6_addr s, d;
995
996 /* mapped addr case */
997 bzero(&s, sizeof(s));
998 s.s6_addr16[5] = htons(0xffff);
999 bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
1000 bzero(&d, sizeof(d));
1001 d.s6_addr16[5] = htons(0xffff);
1002 bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
1003 in6p = in6_pcblookup_connect(&tcbtable, &s,
1004 th->th_sport, &d, th->th_dport, 0);
1005 if (in6p == 0) {
1006 ++tcpstat.tcps_pcbhashmiss;
1007 in6p = in6_pcblookup_bind(&tcbtable, &d,
1008 th->th_dport, 0);
1009 }
1010 }
1011 #endif
1012 #ifndef INET6
1013 if (inp == 0)
1014 #else
1015 if (inp == 0 && in6p == 0)
1016 #endif
1017 {
1018 ++tcpstat.tcps_noport;
1019 if (tcp_log_refused &&
1020 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1021 tcp4_log_refused(ip, th);
1022 }
1023 TCP_FIELDS_TO_HOST(th);
1024 goto dropwithreset_ratelim;
1025 }
1026 #if defined(IPSEC) || defined(FAST_IPSEC)
1027 if (inp && (inp->inp_socket->so_options & SO_ACCEPTCONN) == 0 &&
1028 ipsec4_in_reject(m, inp)) {
1029 ipsecstat.in_polvio++;
1030 goto drop;
1031 }
1032 #ifdef INET6
1033 else if (in6p &&
1034 (in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 &&
1035 ipsec4_in_reject_so(m, in6p->in6p_socket)) {
1036 ipsecstat.in_polvio++;
1037 goto drop;
1038 }
1039 #endif
1040 #endif /*IPSEC*/
1041 break;
1042 #endif /*INET*/
1043 #ifdef INET6
1044 case AF_INET6:
1045 {
1046 int faith;
1047
1048 #if defined(NFAITH) && NFAITH > 0
1049 faith = faithprefix(&ip6->ip6_dst);
1050 #else
1051 faith = 0;
1052 #endif
1053 in6p = in6_pcblookup_connect(&tcbtable, &ip6->ip6_src,
1054 th->th_sport, &ip6->ip6_dst, th->th_dport, faith);
1055 if (in6p == NULL) {
1056 ++tcpstat.tcps_pcbhashmiss;
1057 in6p = in6_pcblookup_bind(&tcbtable, &ip6->ip6_dst,
1058 th->th_dport, faith);
1059 }
1060 if (in6p == NULL) {
1061 ++tcpstat.tcps_noport;
1062 if (tcp_log_refused &&
1063 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1064 tcp6_log_refused(ip6, th);
1065 }
1066 TCP_FIELDS_TO_HOST(th);
1067 goto dropwithreset_ratelim;
1068 }
1069 #if defined(IPSEC) || defined(FAST_IPSEC)
1070 if ((in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 &&
1071 ipsec6_in_reject(m, in6p)) {
1072 ipsec6stat.in_polvio++;
1073 goto drop;
1074 }
1075 #endif /*IPSEC*/
1076 break;
1077 }
1078 #endif
1079 }
1080
1081 /*
1082 * If the state is CLOSED (i.e., TCB does not exist) then
1083 * all data in the incoming segment is discarded.
1084 * If the TCB exists but is in CLOSED state, it is embryonic,
1085 * but should either do a listen or a connect soon.
1086 */
1087 tp = NULL;
1088 so = NULL;
1089 if (inp) {
1090 tp = intotcpcb(inp);
1091 so = inp->inp_socket;
1092 }
1093 #ifdef INET6
1094 else if (in6p) {
1095 tp = in6totcpcb(in6p);
1096 so = in6p->in6p_socket;
1097 }
1098 #endif
1099 if (tp == 0) {
1100 TCP_FIELDS_TO_HOST(th);
1101 goto dropwithreset_ratelim;
1102 }
1103 if (tp->t_state == TCPS_CLOSED)
1104 goto drop;
1105
1106 /*
1107 * Checksum extended TCP header and data.
1108 */
1109 switch (af) {
1110 #ifdef INET
1111 case AF_INET:
1112 switch (m->m_pkthdr.csum_flags &
1113 ((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
1114 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
1115 case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
1116 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
1117 goto badcsum;
1118
1119 case M_CSUM_TCPv4|M_CSUM_DATA: {
1120 u_int32_t hw_csum = m->m_pkthdr.csum_data;
1121 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
1122 if (m->m_pkthdr.csum_flags & M_CSUM_NO_PSEUDOHDR) {
1123 hw_csum = in_cksum_phdr(ip->ip_src.s_addr,
1124 ip->ip_dst.s_addr,
1125 htons(hw_csum + tlen + off + IPPROTO_TCP));
1126 }
1127 if ((hw_csum ^ 0xffff) != 0)
1128 goto badcsum;
1129 break;
1130 }
1131
1132 case M_CSUM_TCPv4:
1133 /* Checksum was okay. */
1134 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
1135 break;
1136
1137 default:
1138 /* Must compute it ourselves. */
1139 TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
1140 if (in4_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0)
1141 goto badcsum;
1142 break;
1143 }
1144 break;
1145 #endif /* INET4 */
1146
1147 #ifdef INET6
1148 case AF_INET6:
1149 if (in6_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0)
1150 goto badcsum;
1151 break;
1152 #endif /* INET6 */
1153 }
1154
1155 TCP_FIELDS_TO_HOST(th);
1156
1157 /* Unscale the window into a 32-bit value. */
1158 if ((tiflags & TH_SYN) == 0)
1159 tiwin = th->th_win << tp->snd_scale;
1160 else
1161 tiwin = th->th_win;
1162
1163 #ifdef INET6
1164 /* save packet options if user wanted */
1165 if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
1166 if (in6p->in6p_options) {
1167 m_freem(in6p->in6p_options);
1168 in6p->in6p_options = 0;
1169 }
1170 ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
1171 }
1172 #endif
1173
1174 if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
1175 union syn_cache_sa src;
1176 union syn_cache_sa dst;
1177
1178 bzero(&src, sizeof(src));
1179 bzero(&dst, sizeof(dst));
1180 switch (af) {
1181 #ifdef INET
1182 case AF_INET:
1183 src.sin.sin_len = sizeof(struct sockaddr_in);
1184 src.sin.sin_family = AF_INET;
1185 src.sin.sin_addr = ip->ip_src;
1186 src.sin.sin_port = th->th_sport;
1187
1188 dst.sin.sin_len = sizeof(struct sockaddr_in);
1189 dst.sin.sin_family = AF_INET;
1190 dst.sin.sin_addr = ip->ip_dst;
1191 dst.sin.sin_port = th->th_dport;
1192 break;
1193 #endif
1194 #ifdef INET6
1195 case AF_INET6:
1196 src.sin6.sin6_len = sizeof(struct sockaddr_in6);
1197 src.sin6.sin6_family = AF_INET6;
1198 src.sin6.sin6_addr = ip6->ip6_src;
1199 src.sin6.sin6_port = th->th_sport;
1200
1201 dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
1202 dst.sin6.sin6_family = AF_INET6;
1203 dst.sin6.sin6_addr = ip6->ip6_dst;
1204 dst.sin6.sin6_port = th->th_dport;
1205 break;
1206 #endif /* INET6 */
1207 default:
1208 goto badsyn; /*sanity*/
1209 }
1210
1211 if (so->so_options & SO_DEBUG) {
1212 #ifdef TCP_DEBUG
1213 ostate = tp->t_state;
1214 #endif
1215
1216 tcp_saveti = NULL;
1217 if (iphlen + sizeof(struct tcphdr) > MHLEN)
1218 goto nosave;
1219
1220 if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
1221 tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
1222 if (!tcp_saveti)
1223 goto nosave;
1224 } else {
1225 MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
1226 if (!tcp_saveti)
1227 goto nosave;
1228 MCLAIM(m, &tcp_mowner);
1229 tcp_saveti->m_len = iphlen;
1230 m_copydata(m, 0, iphlen,
1231 mtod(tcp_saveti, caddr_t));
1232 }
1233
1234 if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
1235 m_freem(tcp_saveti);
1236 tcp_saveti = NULL;
1237 } else {
1238 tcp_saveti->m_len += sizeof(struct tcphdr);
1239 bcopy(th, mtod(tcp_saveti, caddr_t) + iphlen,
1240 sizeof(struct tcphdr));
1241 }
1242 nosave:;
1243 }
1244 if (so->so_options & SO_ACCEPTCONN) {
1245 if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1246 if (tiflags & TH_RST) {
1247 syn_cache_reset(&src.sa, &dst.sa, th);
1248 } else if ((tiflags & (TH_ACK|TH_SYN)) ==
1249 (TH_ACK|TH_SYN)) {
1250 /*
1251 * Received a SYN,ACK. This should
1252 * never happen while we are in
1253 * LISTEN. Send an RST.
1254 */
1255 goto badsyn;
1256 } else if (tiflags & TH_ACK) {
1257 so = syn_cache_get(&src.sa, &dst.sa,
1258 th, toff, tlen, so, m);
1259 if (so == NULL) {
1260 /*
1261 * We don't have a SYN for
1262 * this ACK; send an RST.
1263 */
1264 goto badsyn;
1265 } else if (so ==
1266 (struct socket *)(-1)) {
1267 /*
1268 * We were unable to create
1269 * the connection. If the
1270 * 3-way handshake was
1271 * completed, and RST has
1272 * been sent to the peer.
1273 * Since the mbuf might be
1274 * in use for the reply,
1275 * do not free it.
1276 */
1277 m = NULL;
1278 } else {
1279 /*
1280 * We have created a
1281 * full-blown connection.
1282 */
1283 tp = NULL;
1284 inp = NULL;
1285 #ifdef INET6
1286 in6p = NULL;
1287 #endif
1288 switch (so->so_proto->pr_domain->dom_family) {
1289 #ifdef INET
1290 case AF_INET:
1291 inp = sotoinpcb(so);
1292 tp = intotcpcb(inp);
1293 break;
1294 #endif
1295 #ifdef INET6
1296 case AF_INET6:
1297 in6p = sotoin6pcb(so);
1298 tp = in6totcpcb(in6p);
1299 break;
1300 #endif
1301 }
1302 if (tp == NULL)
1303 goto badsyn; /*XXX*/
1304 tiwin <<= tp->snd_scale;
1305 goto after_listen;
1306 }
1307 } else {
1308 /*
1309 * None of RST, SYN or ACK was set.
1310 * This is an invalid packet for a
1311 * TCB in LISTEN state. Send a RST.
1312 */
1313 goto badsyn;
1314 }
1315 } else {
1316 /*
1317 * Received a SYN.
1318 */
1319
1320 #ifdef INET6
1321 /*
1322 * If deprecated address is forbidden, we do
1323 * not accept SYN to deprecated interface
1324 * address to prevent any new inbound
1325 * connection from getting established.
1326 * When we do not accept SYN, we send a TCP
1327 * RST, with deprecated source address (instead
1328 * of dropping it). We compromise it as it is
1329 * much better for peer to send a RST, and
1330 * RST will be the final packet for the
1331 * exchange.
1332 *
1333 * If we do not forbid deprecated addresses, we
1334 * accept the SYN packet. RFC2462 does not
1335 * suggest dropping SYN in this case.
1336 * If we decipher RFC2462 5.5.4, it says like
1337 * this:
1338 * 1. use of deprecated addr with existing
1339 * communication is okay - "SHOULD continue
1340 * to be used"
1341 * 2. use of it with new communication:
1342 * (2a) "SHOULD NOT be used if alternate
1343 * address with sufficient scope is
1344 * available"
1345 * (2b) nothing mentioned otherwise.
1346 * Here we fall into (2b) case as we have no
1347 * choice in our source address selection - we
1348 * must obey the peer.
1349 *
1350 * The wording in RFC2462 is confusing, and
1351 * there are multiple description text for
1352 * deprecated address handling - worse, they
1353 * are not exactly the same. I believe 5.5.4
1354 * is the best one, so we follow 5.5.4.
1355 */
1356 if (af == AF_INET6 && !ip6_use_deprecated) {
1357 struct in6_ifaddr *ia6;
1358 if ((ia6 = in6ifa_ifpwithaddr(m->m_pkthdr.rcvif,
1359 &ip6->ip6_dst)) &&
1360 (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1361 tp = NULL;
1362 goto dropwithreset;
1363 }
1364 }
1365 #endif
1366
1367 #ifdef IPSEC
1368 switch (af) {
1369 #ifdef INET
1370 case AF_INET:
1371 if (ipsec4_in_reject_so(m, so)) {
1372 ipsecstat.in_polvio++;
1373 tp = NULL;
1374 goto dropwithreset;
1375 }
1376 break;
1377 #endif
1378 #ifdef INET6
1379 case AF_INET6:
1380 if (ipsec6_in_reject_so(m, so)) {
1381 ipsec6stat.in_polvio++;
1382 tp = NULL;
1383 goto dropwithreset;
1384 }
1385 break;
1386 #endif
1387 }
1388 #endif
1389
1390 /*
1391 * LISTEN socket received a SYN
1392 * from itself? This can't possibly
1393 * be valid; drop the packet.
1394 */
1395 if (th->th_sport == th->th_dport) {
1396 int i;
1397
1398 switch (af) {
1399 #ifdef INET
1400 case AF_INET:
1401 i = in_hosteq(ip->ip_src, ip->ip_dst);
1402 break;
1403 #endif
1404 #ifdef INET6
1405 case AF_INET6:
1406 i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
1407 break;
1408 #endif
1409 default:
1410 i = 1;
1411 }
1412 if (i) {
1413 tcpstat.tcps_badsyn++;
1414 goto drop;
1415 }
1416 }
1417
1418 /*
1419 * SYN looks ok; create compressed TCP
1420 * state for it.
1421 */
1422 if (so->so_qlen <= so->so_qlimit &&
1423 syn_cache_add(&src.sa, &dst.sa, th, tlen,
1424 so, m, optp, optlen, &opti))
1425 m = NULL;
1426 }
1427 goto drop;
1428 }
1429 }
1430
1431 after_listen:
1432 #ifdef DIAGNOSTIC
1433 /*
1434 * Should not happen now that all embryonic connections
1435 * are handled with compressed state.
1436 */
1437 if (tp->t_state == TCPS_LISTEN)
1438 panic("tcp_input: TCPS_LISTEN");
1439 #endif
1440
1441 /*
1442 * Segment received on connection.
1443 * Reset idle time and keep-alive timer.
1444 */
1445 tp->t_rcvtime = tcp_now;
1446 if (TCPS_HAVEESTABLISHED(tp->t_state))
1447 TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1448
1449 /*
1450 * Process options.
1451 */
1452 if (optp)
1453 tcp_dooptions(tp, optp, optlen, th, &opti);
1454
1455 /*
1456 * Header prediction: check for the two common cases
1457 * of a uni-directional data xfer. If the packet has
1458 * no control flags, is in-sequence, the window didn't
1459 * change and we're not retransmitting, it's a
1460 * candidate. If the length is zero and the ack moved
1461 * forward, we're the sender side of the xfer. Just
1462 * free the data acked & wake any higher level process
1463 * that was blocked waiting for space. If the length
1464 * is non-zero and the ack didn't move, we're the
1465 * receiver side. If we're getting packets in-order
1466 * (the reassembly queue is empty), add the data to
1467 * the socket buffer and note that we need a delayed ack.
1468 */
1469 if (tp->t_state == TCPS_ESTABLISHED &&
1470 (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1471 (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
1472 th->th_seq == tp->rcv_nxt &&
1473 tiwin && tiwin == tp->snd_wnd &&
1474 tp->snd_nxt == tp->snd_max) {
1475
1476 /*
1477 * If last ACK falls within this segment's sequence numbers,
1478 * record the timestamp.
1479 */
1480 if (opti.ts_present &&
1481 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1482 SEQ_LT(tp->last_ack_sent, th->th_seq + tlen)) {
1483 tp->ts_recent_age = TCP_TIMESTAMP(tp);
1484 tp->ts_recent = opti.ts_val;
1485 }
1486
1487 if (tlen == 0) {
1488 if (SEQ_GT(th->th_ack, tp->snd_una) &&
1489 SEQ_LEQ(th->th_ack, tp->snd_max) &&
1490 tp->snd_cwnd >= tp->snd_wnd &&
1491 tp->t_dupacks < tcprexmtthresh) {
1492 /*
1493 * this is a pure ack for outstanding data.
1494 */
1495 ++tcpstat.tcps_predack;
1496 if (opti.ts_present && opti.ts_ecr)
1497 tcp_xmit_timer(tp,
1498 TCP_TIMESTAMP(tp) - opti.ts_ecr + 1);
1499 else if (tp->t_rtttime &&
1500 SEQ_GT(th->th_ack, tp->t_rtseq))
1501 tcp_xmit_timer(tp,
1502 tcp_now - tp->t_rtttime);
1503 acked = th->th_ack - tp->snd_una;
1504 tcpstat.tcps_rcvackpack++;
1505 tcpstat.tcps_rcvackbyte += acked;
1506 ND6_HINT(tp);
1507
1508 if (acked > (tp->t_lastoff - tp->t_inoff))
1509 tp->t_lastm = NULL;
1510 sbdrop(&so->so_snd, acked);
1511 tp->t_lastoff -= acked;
1512
1513 /*
1514 * We want snd_recover to track snd_una to
1515 * avoid sequence wraparound problems for
1516 * very large transfers.
1517 */
1518 tp->snd_una = tp->snd_recover = th->th_ack;
1519 m_freem(m);
1520
1521 /*
1522 * If all outstanding data are acked, stop
1523 * retransmit timer, otherwise restart timer
1524 * using current (possibly backed-off) value.
1525 * If process is waiting for space,
1526 * wakeup/selwakeup/signal. If data
1527 * are ready to send, let tcp_output
1528 * decide between more output or persist.
1529 */
1530 if (tp->snd_una == tp->snd_max)
1531 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1532 else if (TCP_TIMER_ISARMED(tp,
1533 TCPT_PERSIST) == 0)
1534 TCP_TIMER_ARM(tp, TCPT_REXMT,
1535 tp->t_rxtcur);
1536
1537 sowwakeup(so);
1538 if (so->so_snd.sb_cc)
1539 (void) tcp_output(tp);
1540 if (tcp_saveti)
1541 m_freem(tcp_saveti);
1542 return;
1543 }
1544 } else if (th->th_ack == tp->snd_una &&
1545 TAILQ_FIRST(&tp->segq) == NULL &&
1546 tlen <= sbspace(&so->so_rcv)) {
1547 /*
1548 * this is a pure, in-sequence data packet
1549 * with nothing on the reassembly queue and
1550 * we have enough buffer space to take it.
1551 */
1552 ++tcpstat.tcps_preddat;
1553 tp->rcv_nxt += tlen;
1554 tcpstat.tcps_rcvpack++;
1555 tcpstat.tcps_rcvbyte += tlen;
1556 ND6_HINT(tp);
1557 /*
1558 * Drop TCP, IP headers and TCP options then add data
1559 * to socket buffer.
1560 */
1561 if (so->so_state & SS_CANTRCVMORE)
1562 m_freem(m);
1563 else {
1564 m_adj(m, toff + off);
1565 sbappendstream(&so->so_rcv, m);
1566 }
1567 sorwakeup(so);
1568 TCP_SETUP_ACK(tp, th);
1569 if (tp->t_flags & TF_ACKNOW)
1570 (void) tcp_output(tp);
1571 if (tcp_saveti)
1572 m_freem(tcp_saveti);
1573 return;
1574 }
1575 }
1576
1577 /*
1578 * Compute mbuf offset to TCP data segment.
1579 */
1580 hdroptlen = toff + off;
1581
1582 /*
1583 * Calculate amount of space in receive window,
1584 * and then do TCP input processing.
1585 * Receive window is amount of space in rcv queue,
1586 * but not less than advertised window.
1587 */
1588 { int win;
1589
1590 win = sbspace(&so->so_rcv);
1591 if (win < 0)
1592 win = 0;
1593 tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1594 }
1595
1596 switch (tp->t_state) {
1597 case TCPS_LISTEN:
1598 /*
1599 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
1600 */
1601 if (m->m_flags & (M_BCAST|M_MCAST))
1602 goto drop;
1603 switch (af) {
1604 #ifdef INET6
1605 case AF_INET6:
1606 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
1607 goto drop;
1608 break;
1609 #endif /* INET6 */
1610 case AF_INET:
1611 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
1612 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
1613 goto drop;
1614 break;
1615 }
1616 break;
1617
1618 /*
1619 * If the state is SYN_SENT:
1620 * if seg contains an ACK, but not for our SYN, drop the input.
1621 * if seg contains a RST, then drop the connection.
1622 * if seg does not contain SYN, then drop it.
1623 * Otherwise this is an acceptable SYN segment
1624 * initialize tp->rcv_nxt and tp->irs
1625 * if seg contains ack then advance tp->snd_una
1626 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1627 * arrange for segment to be acked (eventually)
1628 * continue processing rest of data/controls, beginning with URG
1629 */
1630 case TCPS_SYN_SENT:
1631 if ((tiflags & TH_ACK) &&
1632 (SEQ_LEQ(th->th_ack, tp->iss) ||
1633 SEQ_GT(th->th_ack, tp->snd_max)))
1634 goto dropwithreset;
1635 if (tiflags & TH_RST) {
1636 if (tiflags & TH_ACK)
1637 tp = tcp_drop(tp, ECONNREFUSED);
1638 goto drop;
1639 }
1640 if ((tiflags & TH_SYN) == 0)
1641 goto drop;
1642 if (tiflags & TH_ACK) {
1643 tp->snd_una = tp->snd_recover = th->th_ack;
1644 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1645 tp->snd_nxt = tp->snd_una;
1646 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1647 }
1648 tp->irs = th->th_seq;
1649 tcp_rcvseqinit(tp);
1650 tp->t_flags |= TF_ACKNOW;
1651 tcp_mss_from_peer(tp, opti.maxseg);
1652
1653 /*
1654 * Initialize the initial congestion window. If we
1655 * had to retransmit the SYN, we must initialize cwnd
1656 * to 1 segment (i.e. the Loss Window).
1657 */
1658 if (tp->t_flags & TF_SYN_REXMT)
1659 tp->snd_cwnd = tp->t_peermss;
1660 else {
1661 int ss = tcp_init_win;
1662 #ifdef INET
1663 if (inp != NULL && in_localaddr(inp->inp_faddr))
1664 ss = tcp_init_win_local;
1665 #endif
1666 #ifdef INET6
1667 if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
1668 ss = tcp_init_win_local;
1669 #endif
1670 tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
1671 }
1672
1673 tcp_rmx_rtt(tp);
1674 if (tiflags & TH_ACK) {
1675 tcpstat.tcps_connects++;
1676 soisconnected(so);
1677 tcp_established(tp);
1678 /* Do window scaling on this connection? */
1679 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1680 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1681 tp->snd_scale = tp->requested_s_scale;
1682 tp->rcv_scale = tp->request_r_scale;
1683 }
1684 TCP_REASS_LOCK(tp);
1685 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1686 TCP_REASS_UNLOCK(tp);
1687 /*
1688 * if we didn't have to retransmit the SYN,
1689 * use its rtt as our initial srtt & rtt var.
1690 */
1691 if (tp->t_rtttime)
1692 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
1693 } else
1694 tp->t_state = TCPS_SYN_RECEIVED;
1695
1696 /*
1697 * Advance th->th_seq to correspond to first data byte.
1698 * If data, trim to stay within window,
1699 * dropping FIN if necessary.
1700 */
1701 th->th_seq++;
1702 if (tlen > tp->rcv_wnd) {
1703 todrop = tlen - tp->rcv_wnd;
1704 m_adj(m, -todrop);
1705 tlen = tp->rcv_wnd;
1706 tiflags &= ~TH_FIN;
1707 tcpstat.tcps_rcvpackafterwin++;
1708 tcpstat.tcps_rcvbyteafterwin += todrop;
1709 }
1710 tp->snd_wl1 = th->th_seq - 1;
1711 tp->rcv_up = th->th_seq;
1712 goto step6;
1713
1714 /*
1715 * If the state is SYN_RECEIVED:
1716 * If seg contains an ACK, but not for our SYN, drop the input
1717 * and generate an RST. See page 36, rfc793
1718 */
1719 case TCPS_SYN_RECEIVED:
1720 if ((tiflags & TH_ACK) &&
1721 (SEQ_LEQ(th->th_ack, tp->iss) ||
1722 SEQ_GT(th->th_ack, tp->snd_max)))
1723 goto dropwithreset;
1724 break;
1725 }
1726
1727 /*
1728 * States other than LISTEN or SYN_SENT.
1729 * First check timestamp, if present.
1730 * Then check that at least some bytes of segment are within
1731 * receive window. If segment begins before rcv_nxt,
1732 * drop leading data (and SYN); if nothing left, just ack.
1733 *
1734 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1735 * and it's less than ts_recent, drop it.
1736 */
1737 if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
1738 TSTMP_LT(opti.ts_val, tp->ts_recent)) {
1739
1740 /* Check to see if ts_recent is over 24 days old. */
1741 if ((int)(TCP_TIMESTAMP(tp) - tp->ts_recent_age) >
1742 TCP_PAWS_IDLE) {
1743 /*
1744 * Invalidate ts_recent. If this segment updates
1745 * ts_recent, the age will be reset later and ts_recent
1746 * will get a valid value. If it does not, setting
1747 * ts_recent to zero will at least satisfy the
1748 * requirement that zero be placed in the timestamp
1749 * echo reply when ts_recent isn't valid. The
1750 * age isn't reset until we get a valid ts_recent
1751 * because we don't want out-of-order segments to be
1752 * dropped when ts_recent is old.
1753 */
1754 tp->ts_recent = 0;
1755 } else {
1756 tcpstat.tcps_rcvduppack++;
1757 tcpstat.tcps_rcvdupbyte += tlen;
1758 tcpstat.tcps_pawsdrop++;
1759 goto dropafterack;
1760 }
1761 }
1762
1763 todrop = tp->rcv_nxt - th->th_seq;
1764 if (todrop > 0) {
1765 if (tiflags & TH_SYN) {
1766 tiflags &= ~TH_SYN;
1767 th->th_seq++;
1768 if (th->th_urp > 1)
1769 th->th_urp--;
1770 else {
1771 tiflags &= ~TH_URG;
1772 th->th_urp = 0;
1773 }
1774 todrop--;
1775 }
1776 if (todrop > tlen ||
1777 (todrop == tlen && (tiflags & TH_FIN) == 0)) {
1778 /*
1779 * Any valid FIN or RST must be to the left of the
1780 * window. At this point the FIN or RST must be a
1781 * duplicate or out of sequence; drop it.
1782 */
1783 if (tiflags & TH_RST)
1784 goto drop;
1785 tiflags &= ~(TH_FIN|TH_RST);
1786 /*
1787 * Send an ACK to resynchronize and drop any data.
1788 * But keep on processing for RST or ACK.
1789 */
1790 tp->t_flags |= TF_ACKNOW;
1791 todrop = tlen;
1792 tcpstat.tcps_rcvdupbyte += todrop;
1793 tcpstat.tcps_rcvduppack++;
1794 } else {
1795 tcpstat.tcps_rcvpartduppack++;
1796 tcpstat.tcps_rcvpartdupbyte += todrop;
1797 }
1798 hdroptlen += todrop; /*drop from head afterwards*/
1799 th->th_seq += todrop;
1800 tlen -= todrop;
1801 if (th->th_urp > todrop)
1802 th->th_urp -= todrop;
1803 else {
1804 tiflags &= ~TH_URG;
1805 th->th_urp = 0;
1806 }
1807 }
1808
1809 /*
1810 * If new data are received on a connection after the
1811 * user processes are gone, then RST the other end.
1812 */
1813 if ((so->so_state & SS_NOFDREF) &&
1814 tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1815 tp = tcp_close(tp);
1816 tcpstat.tcps_rcvafterclose++;
1817 goto dropwithreset;
1818 }
1819
1820 /*
1821 * If segment ends after window, drop trailing data
1822 * (and PUSH and FIN); if nothing left, just ACK.
1823 */
1824 todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
1825 if (todrop > 0) {
1826 tcpstat.tcps_rcvpackafterwin++;
1827 if (todrop >= tlen) {
1828 /*
1829 * The segment actually starts after the window.
1830 * th->th_seq + tlen - tp->rcv_nxt - tp->rcv_wnd >= tlen
1831 * th->th_seq - tp->rcv_nxt - tp->rcv_wnd >= 0
1832 * th->th_seq >= tp->rcv_nxt + tp->rcv_wnd
1833 */
1834 tcpstat.tcps_rcvbyteafterwin += tlen;
1835 /*
1836 * If a new connection request is received
1837 * while in TIME_WAIT, drop the old connection
1838 * and start over if the sequence numbers
1839 * are above the previous ones.
1840 *
1841 * NOTE: We will checksum the packet again, and
1842 * so we need to put the header fields back into
1843 * network order!
1844 * XXX This kind of sucks, but we don't expect
1845 * XXX this to happen very often, so maybe it
1846 * XXX doesn't matter so much.
1847 */
1848 if (tiflags & TH_SYN &&
1849 tp->t_state == TCPS_TIME_WAIT &&
1850 SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1851 iss = tcp_new_iss(tp, tp->snd_nxt);
1852 tp = tcp_close(tp);
1853 TCP_FIELDS_TO_NET(th);
1854 goto findpcb;
1855 }
1856 /*
1857 * If window is closed can only take segments at
1858 * window edge, and have to drop data and PUSH from
1859 * incoming segments. Continue processing, but
1860 * remember to ack. Otherwise, drop segment
1861 * and (if not RST) ack.
1862 */
1863 if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1864 tp->t_flags |= TF_ACKNOW;
1865 tcpstat.tcps_rcvwinprobe++;
1866 } else
1867 goto dropafterack;
1868 } else
1869 tcpstat.tcps_rcvbyteafterwin += todrop;
1870 m_adj(m, -todrop);
1871 tlen -= todrop;
1872 tiflags &= ~(TH_PUSH|TH_FIN);
1873 }
1874
1875 /*
1876 * If last ACK falls within this segment's sequence numbers,
1877 * and the timestamp is newer, record it.
1878 */
1879 if (opti.ts_present && TSTMP_GEQ(opti.ts_val, tp->ts_recent) &&
1880 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1881 SEQ_LT(tp->last_ack_sent, th->th_seq + tlen +
1882 ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
1883 tp->ts_recent_age = TCP_TIMESTAMP(tp);
1884 tp->ts_recent = opti.ts_val;
1885 }
1886
1887 /*
1888 * If the RST bit is set examine the state:
1889 * SYN_RECEIVED STATE:
1890 * If passive open, return to LISTEN state.
1891 * If active open, inform user that connection was refused.
1892 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
1893 * Inform user that connection was reset, and close tcb.
1894 * CLOSING, LAST_ACK, TIME_WAIT STATES
1895 * Close the tcb.
1896 */
1897 if (tiflags & TH_RST) {
1898 if (th->th_seq != tp->last_ack_sent)
1899 goto dropafterack_ratelim;
1900
1901 switch (tp->t_state) {
1902 case TCPS_SYN_RECEIVED:
1903 so->so_error = ECONNREFUSED;
1904 goto close;
1905
1906 case TCPS_ESTABLISHED:
1907 case TCPS_FIN_WAIT_1:
1908 case TCPS_FIN_WAIT_2:
1909 case TCPS_CLOSE_WAIT:
1910 so->so_error = ECONNRESET;
1911 close:
1912 tp->t_state = TCPS_CLOSED;
1913 tcpstat.tcps_drops++;
1914 tp = tcp_close(tp);
1915 goto drop;
1916
1917 case TCPS_CLOSING:
1918 case TCPS_LAST_ACK:
1919 case TCPS_TIME_WAIT:
1920 tp = tcp_close(tp);
1921 goto drop;
1922 }
1923 }
1924
1925 /*
1926 * Since we've covered the SYN-SENT and SYN-RECEIVED states above
1927 * we must be in a synchronized state. RFC791 states (under RST
1928 * generation) that any unacceptable segment (an out-of-order SYN
1929 * qualifies) received in a synchronized state must elicit only an
1930 * empty acknowledgment segment ... and the connection remains in
1931 * the same state.
1932 */
1933 if (tiflags & TH_SYN) {
1934 if (tp->rcv_nxt == th->th_seq) {
1935 tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack - 1,
1936 TH_ACK);
1937 if (tcp_saveti)
1938 m_freem(tcp_saveti);
1939 return;
1940 }
1941
1942 goto dropafterack_ratelim;
1943 }
1944
1945 /*
1946 * If the ACK bit is off we drop the segment and return.
1947 */
1948 if ((tiflags & TH_ACK) == 0) {
1949 if (tp->t_flags & TF_ACKNOW)
1950 goto dropafterack;
1951 else
1952 goto drop;
1953 }
1954
1955 /*
1956 * Ack processing.
1957 */
1958 switch (tp->t_state) {
1959
1960 /*
1961 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
1962 * ESTABLISHED state and continue processing, otherwise
1963 * send an RST.
1964 */
1965 case TCPS_SYN_RECEIVED:
1966 if (SEQ_GT(tp->snd_una, th->th_ack) ||
1967 SEQ_GT(th->th_ack, tp->snd_max))
1968 goto dropwithreset;
1969 tcpstat.tcps_connects++;
1970 soisconnected(so);
1971 tcp_established(tp);
1972 /* Do window scaling? */
1973 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1974 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1975 tp->snd_scale = tp->requested_s_scale;
1976 tp->rcv_scale = tp->request_r_scale;
1977 }
1978 TCP_REASS_LOCK(tp);
1979 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1980 TCP_REASS_UNLOCK(tp);
1981 tp->snd_wl1 = th->th_seq - 1;
1982 /* fall into ... */
1983
1984 /*
1985 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1986 * ACKs. If the ack is in the range
1987 * tp->snd_una < th->th_ack <= tp->snd_max
1988 * then advance tp->snd_una to th->th_ack and drop
1989 * data from the retransmission queue. If this ACK reflects
1990 * more up to date window information we update our window information.
1991 */
1992 case TCPS_ESTABLISHED:
1993 case TCPS_FIN_WAIT_1:
1994 case TCPS_FIN_WAIT_2:
1995 case TCPS_CLOSE_WAIT:
1996 case TCPS_CLOSING:
1997 case TCPS_LAST_ACK:
1998 case TCPS_TIME_WAIT:
1999
2000 if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2001 if (tlen == 0 && tiwin == tp->snd_wnd) {
2002 tcpstat.tcps_rcvdupack++;
2003 /*
2004 * If we have outstanding data (other than
2005 * a window probe), this is a completely
2006 * duplicate ack (ie, window info didn't
2007 * change), the ack is the biggest we've
2008 * seen and we've seen exactly our rexmt
2009 * threshhold of them, assume a packet
2010 * has been dropped and retransmit it.
2011 * Kludge snd_nxt & the congestion
2012 * window so we send only this one
2013 * packet.
2014 *
2015 * We know we're losing at the current
2016 * window size so do congestion avoidance
2017 * (set ssthresh to half the current window
2018 * and pull our congestion window back to
2019 * the new ssthresh).
2020 *
2021 * Dup acks mean that packets have left the
2022 * network (they're now cached at the receiver)
2023 * so bump cwnd by the amount in the receiver
2024 * to keep a constant cwnd packets in the
2025 * network.
2026 */
2027 if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
2028 th->th_ack != tp->snd_una)
2029 tp->t_dupacks = 0;
2030 else if (++tp->t_dupacks == tcprexmtthresh) {
2031 tcp_seq onxt = tp->snd_nxt;
2032 u_int win =
2033 min(tp->snd_wnd, tp->snd_cwnd) /
2034 2 / tp->t_segsz;
2035 if (tcp_do_newreno && SEQ_LT(th->th_ack,
2036 tp->snd_recover)) {
2037 /*
2038 * False fast retransmit after
2039 * timeout. Do not cut window.
2040 */
2041 tp->snd_cwnd += tp->t_segsz;
2042 tp->t_dupacks = 0;
2043 (void) tcp_output(tp);
2044 goto drop;
2045 }
2046
2047 if (win < 2)
2048 win = 2;
2049 tp->snd_ssthresh = win * tp->t_segsz;
2050 tp->snd_recover = tp->snd_max;
2051 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2052 tp->t_rtttime = 0;
2053 tp->snd_nxt = th->th_ack;
2054 tp->snd_cwnd = tp->t_segsz;
2055 (void) tcp_output(tp);
2056 tp->snd_cwnd = tp->snd_ssthresh +
2057 tp->t_segsz * tp->t_dupacks;
2058 if (SEQ_GT(onxt, tp->snd_nxt))
2059 tp->snd_nxt = onxt;
2060 goto drop;
2061 } else if (tp->t_dupacks > tcprexmtthresh) {
2062 tp->snd_cwnd += tp->t_segsz;
2063 (void) tcp_output(tp);
2064 goto drop;
2065 }
2066 } else if (tlen) {
2067 tp->t_dupacks = 0; /*XXX*/
2068 /* drop very old ACKs unless th_seq matches */
2069 if (th->th_seq != tp->rcv_nxt &&
2070 SEQ_LT(th->th_ack,
2071 tp->snd_una - tp->max_sndwnd)) {
2072 goto drop;
2073 }
2074 break;
2075 } else
2076 tp->t_dupacks = 0;
2077 break;
2078 }
2079 /*
2080 * If the congestion window was inflated to account
2081 * for the other side's cached packets, retract it.
2082 */
2083 if (tcp_do_newreno == 0) {
2084 if (tp->t_dupacks >= tcprexmtthresh &&
2085 tp->snd_cwnd > tp->snd_ssthresh)
2086 tp->snd_cwnd = tp->snd_ssthresh;
2087 tp->t_dupacks = 0;
2088 } else if (tp->t_dupacks >= tcprexmtthresh &&
2089 tcp_newreno(tp, th) == 0) {
2090 tp->snd_cwnd = tp->snd_ssthresh;
2091 /*
2092 * Window inflation should have left us with approx.
2093 * snd_ssthresh outstanding data. But in case we
2094 * would be inclined to send a burst, better to do
2095 * it via the slow start mechanism.
2096 */
2097 if (SEQ_SUB(tp->snd_max, th->th_ack) < tp->snd_ssthresh)
2098 tp->snd_cwnd = SEQ_SUB(tp->snd_max, th->th_ack)
2099 + tp->t_segsz;
2100 tp->t_dupacks = 0;
2101 }
2102 if (SEQ_GT(th->th_ack, tp->snd_max)) {
2103 tcpstat.tcps_rcvacktoomuch++;
2104 goto dropafterack;
2105 }
2106 acked = th->th_ack - tp->snd_una;
2107 tcpstat.tcps_rcvackpack++;
2108 tcpstat.tcps_rcvackbyte += acked;
2109
2110 /*
2111 * If we have a timestamp reply, update smoothed
2112 * round trip time. If no timestamp is present but
2113 * transmit timer is running and timed sequence
2114 * number was acked, update smoothed round trip time.
2115 * Since we now have an rtt measurement, cancel the
2116 * timer backoff (cf., Phil Karn's retransmit alg.).
2117 * Recompute the initial retransmit timer.
2118 */
2119 if (opti.ts_present && opti.ts_ecr)
2120 tcp_xmit_timer(tp, TCP_TIMESTAMP(tp) - opti.ts_ecr + 1);
2121 else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2122 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2123
2124 /*
2125 * If all outstanding data is acked, stop retransmit
2126 * timer and remember to restart (more output or persist).
2127 * If there is more data to be acked, restart retransmit
2128 * timer, using current (possibly backed-off) value.
2129 */
2130 if (th->th_ack == tp->snd_max) {
2131 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2132 needoutput = 1;
2133 } else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
2134 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
2135 /*
2136 * When new data is acked, open the congestion window.
2137 * If the window gives us less than ssthresh packets
2138 * in flight, open exponentially (segsz per packet).
2139 * Otherwise open linearly: segsz per window
2140 * (segsz^2 / cwnd per packet), plus a constant
2141 * fraction of a packet (segsz/8) to help larger windows
2142 * open quickly enough.
2143 */
2144 {
2145 u_int cw = tp->snd_cwnd;
2146 u_int incr = tp->t_segsz;
2147
2148 if (cw > tp->snd_ssthresh)
2149 incr = incr * incr / cw;
2150 if (tcp_do_newreno == 0 || SEQ_GEQ(th->th_ack, tp->snd_recover))
2151 tp->snd_cwnd = min(cw + incr,
2152 TCP_MAXWIN << tp->snd_scale);
2153 }
2154 ND6_HINT(tp);
2155 if (acked > so->so_snd.sb_cc) {
2156 tp->snd_wnd -= so->so_snd.sb_cc;
2157 sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
2158 ourfinisacked = 1;
2159 } else {
2160 if (acked > (tp->t_lastoff - tp->t_inoff))
2161 tp->t_lastm = NULL;
2162 sbdrop(&so->so_snd, acked);
2163 tp->t_lastoff -= acked;
2164 tp->snd_wnd -= acked;
2165 ourfinisacked = 0;
2166 }
2167 sowwakeup(so);
2168 /*
2169 * We want snd_recover to track snd_una to
2170 * avoid sequence wraparound problems for
2171 * very large transfers.
2172 */
2173 tp->snd_una = tp->snd_recover = th->th_ack;
2174 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2175 tp->snd_nxt = tp->snd_una;
2176
2177 switch (tp->t_state) {
2178
2179 /*
2180 * In FIN_WAIT_1 STATE in addition to the processing
2181 * for the ESTABLISHED state if our FIN is now acknowledged
2182 * then enter FIN_WAIT_2.
2183 */
2184 case TCPS_FIN_WAIT_1:
2185 if (ourfinisacked) {
2186 /*
2187 * If we can't receive any more
2188 * data, then closing user can proceed.
2189 * Starting the timer is contrary to the
2190 * specification, but if we don't get a FIN
2191 * we'll hang forever.
2192 */
2193 if (so->so_state & SS_CANTRCVMORE) {
2194 soisdisconnected(so);
2195 if (tcp_maxidle > 0)
2196 TCP_TIMER_ARM(tp, TCPT_2MSL,
2197 tcp_maxidle);
2198 }
2199 tp->t_state = TCPS_FIN_WAIT_2;
2200 }
2201 break;
2202
2203 /*
2204 * In CLOSING STATE in addition to the processing for
2205 * the ESTABLISHED state if the ACK acknowledges our FIN
2206 * then enter the TIME-WAIT state, otherwise ignore
2207 * the segment.
2208 */
2209 case TCPS_CLOSING:
2210 if (ourfinisacked) {
2211 tp->t_state = TCPS_TIME_WAIT;
2212 tcp_canceltimers(tp);
2213 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2214 soisdisconnected(so);
2215 }
2216 break;
2217
2218 /*
2219 * In LAST_ACK, we may still be waiting for data to drain
2220 * and/or to be acked, as well as for the ack of our FIN.
2221 * If our FIN is now acknowledged, delete the TCB,
2222 * enter the closed state and return.
2223 */
2224 case TCPS_LAST_ACK:
2225 if (ourfinisacked) {
2226 tp = tcp_close(tp);
2227 goto drop;
2228 }
2229 break;
2230
2231 /*
2232 * In TIME_WAIT state the only thing that should arrive
2233 * is a retransmission of the remote FIN. Acknowledge
2234 * it and restart the finack timer.
2235 */
2236 case TCPS_TIME_WAIT:
2237 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2238 goto dropafterack;
2239 }
2240 }
2241
2242 step6:
2243 /*
2244 * Update window information.
2245 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2246 */
2247 if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2248 (tp->snd_wl1 == th->th_seq && SEQ_LT(tp->snd_wl2, th->th_ack)) ||
2249 (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))) {
2250 /* keep track of pure window updates */
2251 if (tlen == 0 &&
2252 tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2253 tcpstat.tcps_rcvwinupd++;
2254 tp->snd_wnd = tiwin;
2255 tp->snd_wl1 = th->th_seq;
2256 tp->snd_wl2 = th->th_ack;
2257 if (tp->snd_wnd > tp->max_sndwnd)
2258 tp->max_sndwnd = tp->snd_wnd;
2259 needoutput = 1;
2260 }
2261
2262 /*
2263 * Process segments with URG.
2264 */
2265 if ((tiflags & TH_URG) && th->th_urp &&
2266 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2267 /*
2268 * This is a kludge, but if we receive and accept
2269 * random urgent pointers, we'll crash in
2270 * soreceive. It's hard to imagine someone
2271 * actually wanting to send this much urgent data.
2272 */
2273 if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2274 th->th_urp = 0; /* XXX */
2275 tiflags &= ~TH_URG; /* XXX */
2276 goto dodata; /* XXX */
2277 }
2278 /*
2279 * If this segment advances the known urgent pointer,
2280 * then mark the data stream. This should not happen
2281 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2282 * a FIN has been received from the remote side.
2283 * In these states we ignore the URG.
2284 *
2285 * According to RFC961 (Assigned Protocols),
2286 * the urgent pointer points to the last octet
2287 * of urgent data. We continue, however,
2288 * to consider it to indicate the first octet
2289 * of data past the urgent section as the original
2290 * spec states (in one of two places).
2291 */
2292 if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2293 tp->rcv_up = th->th_seq + th->th_urp;
2294 so->so_oobmark = so->so_rcv.sb_cc +
2295 (tp->rcv_up - tp->rcv_nxt) - 1;
2296 if (so->so_oobmark == 0)
2297 so->so_state |= SS_RCVATMARK;
2298 sohasoutofband(so);
2299 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2300 }
2301 /*
2302 * Remove out of band data so doesn't get presented to user.
2303 * This can happen independent of advancing the URG pointer,
2304 * but if two URG's are pending at once, some out-of-band
2305 * data may creep in... ick.
2306 */
2307 if (th->th_urp <= (u_int16_t) tlen
2308 #ifdef SO_OOBINLINE
2309 && (so->so_options & SO_OOBINLINE) == 0
2310 #endif
2311 )
2312 tcp_pulloutofband(so, th, m, hdroptlen);
2313 } else
2314 /*
2315 * If no out of band data is expected,
2316 * pull receive urgent pointer along
2317 * with the receive window.
2318 */
2319 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2320 tp->rcv_up = tp->rcv_nxt;
2321 dodata: /* XXX */
2322
2323 /*
2324 * Process the segment text, merging it into the TCP sequencing queue,
2325 * and arranging for acknowledgement of receipt if necessary.
2326 * This process logically involves adjusting tp->rcv_wnd as data
2327 * is presented to the user (this happens in tcp_usrreq.c,
2328 * case PRU_RCVD). If a FIN has already been received on this
2329 * connection then we just ignore the text.
2330 */
2331 if ((tlen || (tiflags & TH_FIN)) &&
2332 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2333 /*
2334 * Insert segment ti into reassembly queue of tcp with
2335 * control block tp. Return TH_FIN if reassembly now includes
2336 * a segment with FIN. The macro form does the common case
2337 * inline (segment is the next to be received on an
2338 * established connection, and the queue is empty),
2339 * avoiding linkage into and removal from the queue and
2340 * repetition of various conversions.
2341 * Set DELACK for segments received in order, but ack
2342 * immediately when segments are out of order
2343 * (so fast retransmit can work).
2344 */
2345 /* NOTE: this was TCP_REASS() macro, but used only once */
2346 TCP_REASS_LOCK(tp);
2347 if (th->th_seq == tp->rcv_nxt &&
2348 TAILQ_FIRST(&tp->segq) == NULL &&
2349 tp->t_state == TCPS_ESTABLISHED) {
2350 TCP_SETUP_ACK(tp, th);
2351 tp->rcv_nxt += tlen;
2352 tiflags = th->th_flags & TH_FIN;
2353 tcpstat.tcps_rcvpack++;
2354 tcpstat.tcps_rcvbyte += tlen;
2355 ND6_HINT(tp);
2356 if (so->so_state & SS_CANTRCVMORE)
2357 m_freem(m);
2358 else {
2359 m_adj(m, hdroptlen);
2360 sbappendstream(&(so)->so_rcv, m);
2361 }
2362 sorwakeup(so);
2363 } else {
2364 m_adj(m, hdroptlen);
2365 tiflags = tcp_reass(tp, th, m, &tlen);
2366 tp->t_flags |= TF_ACKNOW;
2367 }
2368 TCP_REASS_UNLOCK(tp);
2369
2370 /*
2371 * Note the amount of data that peer has sent into
2372 * our window, in order to estimate the sender's
2373 * buffer size.
2374 */
2375 len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2376 } else {
2377 m_freem(m);
2378 m = NULL;
2379 tiflags &= ~TH_FIN;
2380 }
2381
2382 /*
2383 * If FIN is received ACK the FIN and let the user know
2384 * that the connection is closing. Ignore a FIN received before
2385 * the connection is fully established.
2386 */
2387 if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2388 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2389 socantrcvmore(so);
2390 tp->t_flags |= TF_ACKNOW;
2391 tp->rcv_nxt++;
2392 }
2393 switch (tp->t_state) {
2394
2395 /*
2396 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2397 */
2398 case TCPS_ESTABLISHED:
2399 tp->t_state = TCPS_CLOSE_WAIT;
2400 break;
2401
2402 /*
2403 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2404 * enter the CLOSING state.
2405 */
2406 case TCPS_FIN_WAIT_1:
2407 tp->t_state = TCPS_CLOSING;
2408 break;
2409
2410 /*
2411 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2412 * starting the time-wait timer, turning off the other
2413 * standard timers.
2414 */
2415 case TCPS_FIN_WAIT_2:
2416 tp->t_state = TCPS_TIME_WAIT;
2417 tcp_canceltimers(tp);
2418 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2419 soisdisconnected(so);
2420 break;
2421
2422 /*
2423 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2424 */
2425 case TCPS_TIME_WAIT:
2426 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2427 break;
2428 }
2429 }
2430 #ifdef TCP_DEBUG
2431 if (so->so_options & SO_DEBUG)
2432 tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
2433 #endif
2434
2435 /*
2436 * Return any desired output.
2437 */
2438 if (needoutput || (tp->t_flags & TF_ACKNOW))
2439 (void) tcp_output(tp);
2440 if (tcp_saveti)
2441 m_freem(tcp_saveti);
2442 return;
2443
2444 badsyn:
2445 /*
2446 * Received a bad SYN. Increment counters and dropwithreset.
2447 */
2448 tcpstat.tcps_badsyn++;
2449 tp = NULL;
2450 goto dropwithreset;
2451
2452 dropafterack:
2453 /*
2454 * Generate an ACK dropping incoming segment if it occupies
2455 * sequence space, where the ACK reflects our state.
2456 */
2457 if (tiflags & TH_RST)
2458 goto drop;
2459 goto dropafterack2;
2460
2461 dropafterack_ratelim:
2462 /*
2463 * We may want to rate-limit ACKs against SYN/RST attack.
2464 */
2465 if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
2466 tcp_ackdrop_ppslim) == 0) {
2467 /* XXX stat */
2468 goto drop;
2469 }
2470 /* ...fall into dropafterack2... */
2471
2472 dropafterack2:
2473 m_freem(m);
2474 tp->t_flags |= TF_ACKNOW;
2475 (void) tcp_output(tp);
2476 if (tcp_saveti)
2477 m_freem(tcp_saveti);
2478 return;
2479
2480 dropwithreset_ratelim:
2481 /*
2482 * We may want to rate-limit RSTs in certain situations,
2483 * particularly if we are sending an RST in response to
2484 * an attempt to connect to or otherwise communicate with
2485 * a port for which we have no socket.
2486 */
2487 if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
2488 tcp_rst_ppslim) == 0) {
2489 /* XXX stat */
2490 goto drop;
2491 }
2492 /* ...fall into dropwithreset... */
2493
2494 dropwithreset:
2495 /*
2496 * Generate a RST, dropping incoming segment.
2497 * Make ACK acceptable to originator of segment.
2498 */
2499 if (tiflags & TH_RST)
2500 goto drop;
2501
2502 switch (af) {
2503 #ifdef INET6
2504 case AF_INET6:
2505 /* For following calls to tcp_respond */
2506 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
2507 goto drop;
2508 break;
2509 #endif /* INET6 */
2510 case AF_INET:
2511 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
2512 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2513 goto drop;
2514 }
2515
2516 if (tiflags & TH_ACK)
2517 (void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
2518 else {
2519 if (tiflags & TH_SYN)
2520 tlen++;
2521 (void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
2522 TH_RST|TH_ACK);
2523 }
2524 if (tcp_saveti)
2525 m_freem(tcp_saveti);
2526 return;
2527
2528 badcsum:
2529 tcpstat.tcps_rcvbadsum++;
2530 drop:
2531 /*
2532 * Drop space held by incoming segment and return.
2533 */
2534 if (tp) {
2535 if (tp->t_inpcb)
2536 so = tp->t_inpcb->inp_socket;
2537 #ifdef INET6
2538 else if (tp->t_in6pcb)
2539 so = tp->t_in6pcb->in6p_socket;
2540 #endif
2541 else
2542 so = NULL;
2543 #ifdef TCP_DEBUG
2544 if (so && (so->so_options & SO_DEBUG) != 0)
2545 tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
2546 #endif
2547 }
2548 if (tcp_saveti)
2549 m_freem(tcp_saveti);
2550 m_freem(m);
2551 return;
2552 }
2553
2554 void
2555 tcp_dooptions(tp, cp, cnt, th, oi)
2556 struct tcpcb *tp;
2557 u_char *cp;
2558 int cnt;
2559 struct tcphdr *th;
2560 struct tcp_opt_info *oi;
2561 {
2562 u_int16_t mss;
2563 int opt, optlen;
2564
2565 for (; cnt > 0; cnt -= optlen, cp += optlen) {
2566 opt = cp[0];
2567 if (opt == TCPOPT_EOL)
2568 break;
2569 if (opt == TCPOPT_NOP)
2570 optlen = 1;
2571 else {
2572 if (cnt < 2)
2573 break;
2574 optlen = cp[1];
2575 if (optlen < 2 || optlen > cnt)
2576 break;
2577 }
2578 switch (opt) {
2579
2580 default:
2581 continue;
2582
2583 case TCPOPT_MAXSEG:
2584 if (optlen != TCPOLEN_MAXSEG)
2585 continue;
2586 if (!(th->th_flags & TH_SYN))
2587 continue;
2588 bcopy(cp + 2, &mss, sizeof(mss));
2589 oi->maxseg = ntohs(mss);
2590 break;
2591
2592 case TCPOPT_WINDOW:
2593 if (optlen != TCPOLEN_WINDOW)
2594 continue;
2595 if (!(th->th_flags & TH_SYN))
2596 continue;
2597 tp->t_flags |= TF_RCVD_SCALE;
2598 tp->requested_s_scale = cp[2];
2599 if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
2600 #if 0 /*XXX*/
2601 char *p;
2602
2603 if (ip)
2604 p = ntohl(ip->ip_src);
2605 #ifdef INET6
2606 else if (ip6)
2607 p = ip6_sprintf(&ip6->ip6_src);
2608 #endif
2609 else
2610 p = "(unknown)";
2611 log(LOG_ERR, "TCP: invalid wscale %d from %s, "
2612 "assuming %d\n",
2613 tp->requested_s_scale, p,
2614 TCP_MAX_WINSHIFT);
2615 #else
2616 log(LOG_ERR, "TCP: invalid wscale %d, "
2617 "assuming %d\n",
2618 tp->requested_s_scale,
2619 TCP_MAX_WINSHIFT);
2620 #endif
2621 tp->requested_s_scale = TCP_MAX_WINSHIFT;
2622 }
2623 break;
2624
2625 case TCPOPT_TIMESTAMP:
2626 if (optlen != TCPOLEN_TIMESTAMP)
2627 continue;
2628 oi->ts_present = 1;
2629 bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
2630 NTOHL(oi->ts_val);
2631 bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
2632 NTOHL(oi->ts_ecr);
2633
2634 /*
2635 * A timestamp received in a SYN makes
2636 * it ok to send timestamp requests and replies.
2637 */
2638 if (th->th_flags & TH_SYN) {
2639 tp->t_flags |= TF_RCVD_TSTMP;
2640 tp->ts_recent = oi->ts_val;
2641 tp->ts_recent_age = TCP_TIMESTAMP(tp);
2642 }
2643 break;
2644 case TCPOPT_SACK_PERMITTED:
2645 if (optlen != TCPOLEN_SACK_PERMITTED)
2646 continue;
2647 if (!(th->th_flags & TH_SYN))
2648 continue;
2649 tp->t_flags &= ~TF_CANT_TXSACK;
2650 break;
2651
2652 case TCPOPT_SACK:
2653 if (tp->t_flags & TF_IGNR_RXSACK)
2654 continue;
2655 if (optlen % 8 != 2 || optlen < 10)
2656 continue;
2657 cp += 2;
2658 optlen -= 2;
2659 for (; optlen > 0; cp -= 8, optlen -= 8) {
2660 tcp_seq lwe, rwe;
2661 bcopy((char *)cp, (char *) &lwe, sizeof(lwe));
2662 NTOHL(lwe);
2663 bcopy((char *)cp, (char *) &rwe, sizeof(rwe));
2664 NTOHL(rwe);
2665 /* tcp_mark_sacked(tp, lwe, rwe); */
2666 }
2667 break;
2668 }
2669 }
2670 }
2671
2672 /*
2673 * Pull out of band byte out of a segment so
2674 * it doesn't appear in the user's data queue.
2675 * It is still reflected in the segment length for
2676 * sequencing purposes.
2677 */
2678 void
2679 tcp_pulloutofband(so, th, m, off)
2680 struct socket *so;
2681 struct tcphdr *th;
2682 struct mbuf *m;
2683 int off;
2684 {
2685 int cnt = off + th->th_urp - 1;
2686
2687 while (cnt >= 0) {
2688 if (m->m_len > cnt) {
2689 char *cp = mtod(m, caddr_t) + cnt;
2690 struct tcpcb *tp = sototcpcb(so);
2691
2692 tp->t_iobc = *cp;
2693 tp->t_oobflags |= TCPOOB_HAVEDATA;
2694 bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
2695 m->m_len--;
2696 return;
2697 }
2698 cnt -= m->m_len;
2699 m = m->m_next;
2700 if (m == 0)
2701 break;
2702 }
2703 panic("tcp_pulloutofband");
2704 }
2705
2706 /*
2707 * Collect new round-trip time estimate
2708 * and update averages and current timeout.
2709 */
2710 void
2711 tcp_xmit_timer(tp, rtt)
2712 struct tcpcb *tp;
2713 uint32_t rtt;
2714 {
2715 int32_t delta;
2716
2717 tcpstat.tcps_rttupdated++;
2718 if (tp->t_srtt != 0) {
2719 /*
2720 * srtt is stored as fixed point with 3 bits after the
2721 * binary point (i.e., scaled by 8). The following magic
2722 * is equivalent to the smoothing algorithm in rfc793 with
2723 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2724 * point). Adjust rtt to origin 0.
2725 */
2726 delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
2727 if ((tp->t_srtt += delta) <= 0)
2728 tp->t_srtt = 1 << 2;
2729 /*
2730 * We accumulate a smoothed rtt variance (actually, a
2731 * smoothed mean difference), then set the retransmit
2732 * timer to smoothed rtt + 4 times the smoothed variance.
2733 * rttvar is stored as fixed point with 2 bits after the
2734 * binary point (scaled by 4). The following is
2735 * equivalent to rfc793 smoothing with an alpha of .75
2736 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces
2737 * rfc793's wired-in beta.
2738 */
2739 if (delta < 0)
2740 delta = -delta;
2741 delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
2742 if ((tp->t_rttvar += delta) <= 0)
2743 tp->t_rttvar = 1 << 2;
2744 } else {
2745 /*
2746 * No rtt measurement yet - use the unsmoothed rtt.
2747 * Set the variance to half the rtt (so our first
2748 * retransmit happens at 3*rtt).
2749 */
2750 tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
2751 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
2752 }
2753 tp->t_rtttime = 0;
2754 tp->t_rxtshift = 0;
2755
2756 /*
2757 * the retransmit should happen at rtt + 4 * rttvar.
2758 * Because of the way we do the smoothing, srtt and rttvar
2759 * will each average +1/2 tick of bias. When we compute
2760 * the retransmit timer, we want 1/2 tick of rounding and
2761 * 1 extra tick because of +-1/2 tick uncertainty in the
2762 * firing of the timer. The bias will give us exactly the
2763 * 1.5 tick we need. But, because the bias is
2764 * statistical, we have to test that we don't drop below
2765 * the minimum feasible timer (which is 2 ticks).
2766 */
2767 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
2768 max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
2769
2770 /*
2771 * We received an ack for a packet that wasn't retransmitted;
2772 * it is probably safe to discard any error indications we've
2773 * received recently. This isn't quite right, but close enough
2774 * for now (a route might have failed after we sent a segment,
2775 * and the return path might not be symmetrical).
2776 */
2777 tp->t_softerror = 0;
2778 }
2779
2780 /*
2781 * Checks for partial ack. If partial ack arrives, force the retransmission
2782 * of the next unacknowledged segment, do not clear tp->t_dupacks, and return
2783 * 1. By setting snd_nxt to th_ack, this forces retransmission timer to
2784 * be started again. If the ack advances at least to tp->snd_recover, return 0.
2785 */
2786 int
2787 tcp_newreno(tp, th)
2788 struct tcpcb *tp;
2789 struct tcphdr *th;
2790 {
2791 tcp_seq onxt = tp->snd_nxt;
2792 u_long ocwnd = tp->snd_cwnd;
2793
2794 if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2795 /*
2796 * snd_una has not yet been updated and the socket's send
2797 * buffer has not yet drained off the ACK'd data, so we
2798 * have to leave snd_una as it was to get the correct data
2799 * offset in tcp_output().
2800 */
2801 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2802 tp->t_rtttime = 0;
2803 tp->snd_nxt = th->th_ack;
2804 /*
2805 * Set snd_cwnd to one segment beyond ACK'd offset. snd_una
2806 * is not yet updated when we're called.
2807 */
2808 tp->snd_cwnd = tp->t_segsz + (th->th_ack - tp->snd_una);
2809 (void) tcp_output(tp);
2810 tp->snd_cwnd = ocwnd;
2811 if (SEQ_GT(onxt, tp->snd_nxt))
2812 tp->snd_nxt = onxt;
2813 /*
2814 * Partial window deflation. Relies on fact that tp->snd_una
2815 * not updated yet.
2816 */
2817 tp->snd_cwnd -= (th->th_ack - tp->snd_una - tp->t_segsz);
2818 return 1;
2819 }
2820 return 0;
2821 }
2822
2823
2824 /*
2825 * TCP compressed state engine. Currently used to hold compressed
2826 * state for SYN_RECEIVED.
2827 */
2828
2829 u_long syn_cache_count;
2830 u_int32_t syn_hash1, syn_hash2;
2831
2832 #define SYN_HASH(sa, sp, dp) \
2833 ((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
2834 ((u_int32_t)(sp)))^syn_hash2)))
2835 #ifndef INET6
2836 #define SYN_HASHALL(hash, src, dst) \
2837 do { \
2838 hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
2839 ((struct sockaddr_in *)(src))->sin_port, \
2840 ((struct sockaddr_in *)(dst))->sin_port); \
2841 } while (/*CONSTCOND*/ 0)
2842 #else
2843 #define SYN_HASH6(sa, sp, dp) \
2844 ((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
2845 (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
2846 & 0x7fffffff)
2847
2848 #define SYN_HASHALL(hash, src, dst) \
2849 do { \
2850 switch ((src)->sa_family) { \
2851 case AF_INET: \
2852 hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
2853 ((struct sockaddr_in *)(src))->sin_port, \
2854 ((struct sockaddr_in *)(dst))->sin_port); \
2855 break; \
2856 case AF_INET6: \
2857 hash = SYN_HASH6(&((struct sockaddr_in6 *)(src))->sin6_addr, \
2858 ((struct sockaddr_in6 *)(src))->sin6_port, \
2859 ((struct sockaddr_in6 *)(dst))->sin6_port); \
2860 break; \
2861 default: \
2862 hash = 0; \
2863 } \
2864 } while (/*CONSTCOND*/0)
2865 #endif /* INET6 */
2866
2867 #define SYN_CACHE_RM(sc) \
2868 do { \
2869 TAILQ_REMOVE(&tcp_syn_cache[(sc)->sc_bucketidx].sch_bucket, \
2870 (sc), sc_bucketq); \
2871 (sc)->sc_tp = NULL; \
2872 LIST_REMOVE((sc), sc_tpq); \
2873 tcp_syn_cache[(sc)->sc_bucketidx].sch_length--; \
2874 callout_stop(&(sc)->sc_timer); \
2875 syn_cache_count--; \
2876 } while (/*CONSTCOND*/0)
2877
2878 #define SYN_CACHE_PUT(sc) \
2879 do { \
2880 if ((sc)->sc_ipopts) \
2881 (void) m_free((sc)->sc_ipopts); \
2882 if ((sc)->sc_route4.ro_rt != NULL) \
2883 RTFREE((sc)->sc_route4.ro_rt); \
2884 if (callout_invoking(&(sc)->sc_timer)) \
2885 (sc)->sc_flags |= SCF_DEAD; \
2886 else \
2887 pool_put(&syn_cache_pool, (sc)); \
2888 } while (/*CONSTCOND*/0)
2889
2890 struct pool syn_cache_pool;
2891
2892 /*
2893 * We don't estimate RTT with SYNs, so each packet starts with the default
2894 * RTT and each timer step has a fixed timeout value.
2895 */
2896 #define SYN_CACHE_TIMER_ARM(sc) \
2897 do { \
2898 TCPT_RANGESET((sc)->sc_rxtcur, \
2899 TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN, \
2900 TCPTV_REXMTMAX); \
2901 callout_reset(&(sc)->sc_timer, \
2902 (sc)->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, (sc)); \
2903 } while (/*CONSTCOND*/0)
2904
2905 #define SYN_CACHE_TIMESTAMP(sc) (tcp_now - (sc)->sc_timebase)
2906
2907 void
2908 syn_cache_init()
2909 {
2910 int i;
2911
2912 /* Initialize the hash buckets. */
2913 for (i = 0; i < tcp_syn_cache_size; i++)
2914 TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
2915
2916 /* Initialize the syn cache pool. */
2917 pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
2918 "synpl", NULL);
2919 }
2920
2921 void
2922 syn_cache_insert(sc, tp)
2923 struct syn_cache *sc;
2924 struct tcpcb *tp;
2925 {
2926 struct syn_cache_head *scp;
2927 struct syn_cache *sc2;
2928 int s;
2929
2930 /*
2931 * If there are no entries in the hash table, reinitialize
2932 * the hash secrets.
2933 */
2934 if (syn_cache_count == 0) {
2935 syn_hash1 = arc4random();
2936 syn_hash2 = arc4random();
2937 }
2938
2939 SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
2940 sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
2941 scp = &tcp_syn_cache[sc->sc_bucketidx];
2942
2943 /*
2944 * Make sure that we don't overflow the per-bucket
2945 * limit or the total cache size limit.
2946 */
2947 s = splsoftnet();
2948 if (scp->sch_length >= tcp_syn_bucket_limit) {
2949 tcpstat.tcps_sc_bucketoverflow++;
2950 /*
2951 * The bucket is full. Toss the oldest element in the
2952 * bucket. This will be the first entry in the bucket.
2953 */
2954 sc2 = TAILQ_FIRST(&scp->sch_bucket);
2955 #ifdef DIAGNOSTIC
2956 /*
2957 * This should never happen; we should always find an
2958 * entry in our bucket.
2959 */
2960 if (sc2 == NULL)
2961 panic("syn_cache_insert: bucketoverflow: impossible");
2962 #endif
2963 SYN_CACHE_RM(sc2);
2964 SYN_CACHE_PUT(sc2);
2965 } else if (syn_cache_count >= tcp_syn_cache_limit) {
2966 struct syn_cache_head *scp2, *sce;
2967
2968 tcpstat.tcps_sc_overflowed++;
2969 /*
2970 * The cache is full. Toss the oldest entry in the
2971 * first non-empty bucket we can find.
2972 *
2973 * XXX We would really like to toss the oldest
2974 * entry in the cache, but we hope that this
2975 * condition doesn't happen very often.
2976 */
2977 scp2 = scp;
2978 if (TAILQ_EMPTY(&scp2->sch_bucket)) {
2979 sce = &tcp_syn_cache[tcp_syn_cache_size];
2980 for (++scp2; scp2 != scp; scp2++) {
2981 if (scp2 >= sce)
2982 scp2 = &tcp_syn_cache[0];
2983 if (! TAILQ_EMPTY(&scp2->sch_bucket))
2984 break;
2985 }
2986 #ifdef DIAGNOSTIC
2987 /*
2988 * This should never happen; we should always find a
2989 * non-empty bucket.
2990 */
2991 if (scp2 == scp)
2992 panic("syn_cache_insert: cacheoverflow: "
2993 "impossible");
2994 #endif
2995 }
2996 sc2 = TAILQ_FIRST(&scp2->sch_bucket);
2997 SYN_CACHE_RM(sc2);
2998 SYN_CACHE_PUT(sc2);
2999 }
3000
3001 /*
3002 * Initialize the entry's timer.
3003 */
3004 sc->sc_rxttot = 0;
3005 sc->sc_rxtshift = 0;
3006 SYN_CACHE_TIMER_ARM(sc);
3007
3008 /* Link it from tcpcb entry */
3009 LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
3010
3011 /* Put it into the bucket. */
3012 TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
3013 scp->sch_length++;
3014 syn_cache_count++;
3015
3016 tcpstat.tcps_sc_added++;
3017 splx(s);
3018 }
3019
3020 /*
3021 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
3022 * If we have retransmitted an entry the maximum number of times, expire
3023 * that entry.
3024 */
3025 void
3026 syn_cache_timer(void *arg)
3027 {
3028 struct syn_cache *sc = arg;
3029 int s;
3030
3031 s = splsoftnet();
3032 callout_ack(&sc->sc_timer);
3033
3034 if (__predict_false(sc->sc_flags & SCF_DEAD)) {
3035 tcpstat.tcps_sc_delayed_free++;
3036 pool_put(&syn_cache_pool, sc);
3037 splx(s);
3038 return;
3039 }
3040
3041 if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
3042 /* Drop it -- too many retransmissions. */
3043 goto dropit;
3044 }
3045
3046 /*
3047 * Compute the total amount of time this entry has
3048 * been on a queue. If this entry has been on longer
3049 * than the keep alive timer would allow, expire it.
3050 */
3051 sc->sc_rxttot += sc->sc_rxtcur;
3052 if (sc->sc_rxttot >= TCPTV_KEEP_INIT)
3053 goto dropit;
3054
3055 tcpstat.tcps_sc_retransmitted++;
3056 (void) syn_cache_respond(sc, NULL);
3057
3058 /* Advance the timer back-off. */
3059 sc->sc_rxtshift++;
3060 SYN_CACHE_TIMER_ARM(sc);
3061
3062 splx(s);
3063 return;
3064
3065 dropit:
3066 tcpstat.tcps_sc_timed_out++;
3067 SYN_CACHE_RM(sc);
3068 SYN_CACHE_PUT(sc);
3069 splx(s);
3070 }
3071
3072 /*
3073 * Remove syn cache created by the specified tcb entry,
3074 * because this does not make sense to keep them
3075 * (if there's no tcb entry, syn cache entry will never be used)
3076 */
3077 void
3078 syn_cache_cleanup(tp)
3079 struct tcpcb *tp;
3080 {
3081 struct syn_cache *sc, *nsc;
3082 int s;
3083
3084 s = splsoftnet();
3085
3086 for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
3087 nsc = LIST_NEXT(sc, sc_tpq);
3088
3089 #ifdef DIAGNOSTIC
3090 if (sc->sc_tp != tp)
3091 panic("invalid sc_tp in syn_cache_cleanup");
3092 #endif
3093 SYN_CACHE_RM(sc);
3094 SYN_CACHE_PUT(sc);
3095 }
3096 /* just for safety */
3097 LIST_INIT(&tp->t_sc);
3098
3099 splx(s);
3100 }
3101
3102 /*
3103 * Find an entry in the syn cache.
3104 */
3105 struct syn_cache *
3106 syn_cache_lookup(src, dst, headp)
3107 struct sockaddr *src;
3108 struct sockaddr *dst;
3109 struct syn_cache_head **headp;
3110 {
3111 struct syn_cache *sc;
3112 struct syn_cache_head *scp;
3113 u_int32_t hash;
3114 int s;
3115
3116 SYN_HASHALL(hash, src, dst);
3117
3118 scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
3119 *headp = scp;
3120 s = splsoftnet();
3121 for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
3122 sc = TAILQ_NEXT(sc, sc_bucketq)) {
3123 if (sc->sc_hash != hash)
3124 continue;
3125 if (!bcmp(&sc->sc_src, src, src->sa_len) &&
3126 !bcmp(&sc->sc_dst, dst, dst->sa_len)) {
3127 splx(s);
3128 return (sc);
3129 }
3130 }
3131 splx(s);
3132 return (NULL);
3133 }
3134
3135 /*
3136 * This function gets called when we receive an ACK for a
3137 * socket in the LISTEN state. We look up the connection
3138 * in the syn cache, and if its there, we pull it out of
3139 * the cache and turn it into a full-blown connection in
3140 * the SYN-RECEIVED state.
3141 *
3142 * The return values may not be immediately obvious, and their effects
3143 * can be subtle, so here they are:
3144 *
3145 * NULL SYN was not found in cache; caller should drop the
3146 * packet and send an RST.
3147 *
3148 * -1 We were unable to create the new connection, and are
3149 * aborting it. An ACK,RST is being sent to the peer
3150 * (unless we got screwey sequence numbners; see below),
3151 * because the 3-way handshake has been completed. Caller
3152 * should not free the mbuf, since we may be using it. If
3153 * we are not, we will free it.
3154 *
3155 * Otherwise, the return value is a pointer to the new socket
3156 * associated with the connection.
3157 */
3158 struct socket *
3159 syn_cache_get(src, dst, th, hlen, tlen, so, m)
3160 struct sockaddr *src;
3161 struct sockaddr *dst;
3162 struct tcphdr *th;
3163 unsigned int hlen, tlen;
3164 struct socket *so;
3165 struct mbuf *m;
3166 {
3167 struct syn_cache *sc;
3168 struct syn_cache_head *scp;
3169 struct inpcb *inp = NULL;
3170 #ifdef INET6
3171 struct in6pcb *in6p = NULL;
3172 #endif
3173 struct tcpcb *tp = 0;
3174 struct mbuf *am;
3175 int s;
3176 struct socket *oso;
3177
3178 s = splsoftnet();
3179 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3180 splx(s);
3181 return (NULL);
3182 }
3183
3184 /*
3185 * Verify the sequence and ack numbers. Try getting the correct
3186 * response again.
3187 */
3188 if ((th->th_ack != sc->sc_iss + 1) ||
3189 SEQ_LEQ(th->th_seq, sc->sc_irs) ||
3190 SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
3191 (void) syn_cache_respond(sc, m);
3192 splx(s);
3193 return ((struct socket *)(-1));
3194 }
3195
3196 /* Remove this cache entry */
3197 SYN_CACHE_RM(sc);
3198 splx(s);
3199
3200 /*
3201 * Ok, create the full blown connection, and set things up
3202 * as they would have been set up if we had created the
3203 * connection when the SYN arrived. If we can't create
3204 * the connection, abort it.
3205 */
3206 /*
3207 * inp still has the OLD in_pcb stuff, set the
3208 * v6-related flags on the new guy, too. This is
3209 * done particularly for the case where an AF_INET6
3210 * socket is bound only to a port, and a v4 connection
3211 * comes in on that port.
3212 * we also copy the flowinfo from the original pcb
3213 * to the new one.
3214 */
3215 oso = so;
3216 so = sonewconn(so, SS_ISCONNECTED);
3217 if (so == NULL)
3218 goto resetandabort;
3219
3220 switch (so->so_proto->pr_domain->dom_family) {
3221 #ifdef INET
3222 case AF_INET:
3223 inp = sotoinpcb(so);
3224 break;
3225 #endif
3226 #ifdef INET6
3227 case AF_INET6:
3228 in6p = sotoin6pcb(so);
3229 break;
3230 #endif
3231 }
3232 switch (src->sa_family) {
3233 #ifdef INET
3234 case AF_INET:
3235 if (inp) {
3236 inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
3237 inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
3238 inp->inp_options = ip_srcroute();
3239 in_pcbstate(inp, INP_BOUND);
3240 if (inp->inp_options == NULL) {
3241 inp->inp_options = sc->sc_ipopts;
3242 sc->sc_ipopts = NULL;
3243 }
3244 }
3245 #ifdef INET6
3246 else if (in6p) {
3247 /* IPv4 packet to AF_INET6 socket */
3248 bzero(&in6p->in6p_laddr, sizeof(in6p->in6p_laddr));
3249 in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
3250 bcopy(&((struct sockaddr_in *)dst)->sin_addr,
3251 &in6p->in6p_laddr.s6_addr32[3],
3252 sizeof(((struct sockaddr_in *)dst)->sin_addr));
3253 in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
3254 in6totcpcb(in6p)->t_family = AF_INET;
3255 if (sotoin6pcb(oso)->in6p_flags & IN6P_IPV6_V6ONLY)
3256 in6p->in6p_flags |= IN6P_IPV6_V6ONLY;
3257 else
3258 in6p->in6p_flags &= ~IN6P_IPV6_V6ONLY;
3259 in6_pcbstate(in6p, IN6P_BOUND);
3260 }
3261 #endif
3262 break;
3263 #endif
3264 #ifdef INET6
3265 case AF_INET6:
3266 if (in6p) {
3267 in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
3268 in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
3269 in6_pcbstate(in6p, IN6P_BOUND);
3270 }
3271 break;
3272 #endif
3273 }
3274 #ifdef INET6
3275 if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
3276 struct in6pcb *oin6p = sotoin6pcb(oso);
3277 /* inherit socket options from the listening socket */
3278 in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
3279 if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
3280 m_freem(in6p->in6p_options);
3281 in6p->in6p_options = 0;
3282 }
3283 ip6_savecontrol(in6p, &in6p->in6p_options,
3284 mtod(m, struct ip6_hdr *), m);
3285 }
3286 #endif
3287
3288 #if defined(IPSEC) || defined(FAST_IPSEC)
3289 /*
3290 * we make a copy of policy, instead of sharing the policy,
3291 * for better behavior in terms of SA lookup and dead SA removal.
3292 */
3293 if (inp) {
3294 /* copy old policy into new socket's */
3295 if (ipsec_copy_pcbpolicy(sotoinpcb(oso)->inp_sp, inp->inp_sp))
3296 printf("tcp_input: could not copy policy\n");
3297 }
3298 #ifdef INET6
3299 else if (in6p) {
3300 /* copy old policy into new socket's */
3301 if (ipsec_copy_pcbpolicy(sotoin6pcb(oso)->in6p_sp,
3302 in6p->in6p_sp))
3303 printf("tcp_input: could not copy policy\n");
3304 }
3305 #endif
3306 #endif
3307
3308 /*
3309 * Give the new socket our cached route reference.
3310 */
3311 if (inp)
3312 inp->inp_route = sc->sc_route4; /* struct assignment */
3313 #ifdef INET6
3314 else
3315 in6p->in6p_route = sc->sc_route6;
3316 #endif
3317 sc->sc_route4.ro_rt = NULL;
3318
3319 am = m_get(M_DONTWAIT, MT_SONAME); /* XXX */
3320 if (am == NULL)
3321 goto resetandabort;
3322 MCLAIM(am, &tcp_mowner);
3323 am->m_len = src->sa_len;
3324 bcopy(src, mtod(am, caddr_t), src->sa_len);
3325 if (inp) {
3326 if (in_pcbconnect(inp, am)) {
3327 (void) m_free(am);
3328 goto resetandabort;
3329 }
3330 }
3331 #ifdef INET6
3332 else if (in6p) {
3333 if (src->sa_family == AF_INET) {
3334 /* IPv4 packet to AF_INET6 socket */
3335 struct sockaddr_in6 *sin6;
3336 sin6 = mtod(am, struct sockaddr_in6 *);
3337 am->m_len = sizeof(*sin6);
3338 bzero(sin6, sizeof(*sin6));
3339 sin6->sin6_family = AF_INET6;
3340 sin6->sin6_len = sizeof(*sin6);
3341 sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port;
3342 sin6->sin6_addr.s6_addr16[5] = htons(0xffff);
3343 bcopy(&((struct sockaddr_in *)src)->sin_addr,
3344 &sin6->sin6_addr.s6_addr32[3],
3345 sizeof(sin6->sin6_addr.s6_addr32[3]));
3346 }
3347 if (in6_pcbconnect(in6p, am)) {
3348 (void) m_free(am);
3349 goto resetandabort;
3350 }
3351 }
3352 #endif
3353 else {
3354 (void) m_free(am);
3355 goto resetandabort;
3356 }
3357 (void) m_free(am);
3358
3359 if (inp)
3360 tp = intotcpcb(inp);
3361 #ifdef INET6
3362 else if (in6p)
3363 tp = in6totcpcb(in6p);
3364 #endif
3365 else
3366 tp = NULL;
3367 tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
3368 if (sc->sc_request_r_scale != 15) {
3369 tp->requested_s_scale = sc->sc_requested_s_scale;
3370 tp->request_r_scale = sc->sc_request_r_scale;
3371 tp->snd_scale = sc->sc_requested_s_scale;
3372 tp->rcv_scale = sc->sc_request_r_scale;
3373 tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
3374 }
3375 if (sc->sc_flags & SCF_TIMESTAMP)
3376 tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
3377 tp->ts_timebase = sc->sc_timebase;
3378
3379 tp->t_template = tcp_template(tp);
3380 if (tp->t_template == 0) {
3381 tp = tcp_drop(tp, ENOBUFS); /* destroys socket */
3382 so = NULL;
3383 m_freem(m);
3384 goto abort;
3385 }
3386
3387 tp->iss = sc->sc_iss;
3388 tp->irs = sc->sc_irs;
3389 tcp_sendseqinit(tp);
3390 tcp_rcvseqinit(tp);
3391 tp->t_state = TCPS_SYN_RECEIVED;
3392 TCP_TIMER_ARM(tp, TCPT_KEEP, TCPTV_KEEP_INIT);
3393 tcpstat.tcps_accepts++;
3394
3395 /* Initialize tp->t_ourmss before we deal with the peer's! */
3396 tp->t_ourmss = sc->sc_ourmaxseg;
3397 tcp_mss_from_peer(tp, sc->sc_peermaxseg);
3398
3399 /*
3400 * Initialize the initial congestion window. If we
3401 * had to retransmit the SYN,ACK, we must initialize cwnd
3402 * to 1 segment (i.e. the Loss Window).
3403 */
3404 if (sc->sc_rxtshift)
3405 tp->snd_cwnd = tp->t_peermss;
3406 else {
3407 int ss = tcp_init_win;
3408 #ifdef INET
3409 if (inp != NULL && in_localaddr(inp->inp_faddr))
3410 ss = tcp_init_win_local;
3411 #endif
3412 #ifdef INET6
3413 if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
3414 ss = tcp_init_win_local;
3415 #endif
3416 tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
3417 }
3418
3419 tcp_rmx_rtt(tp);
3420 tp->snd_wl1 = sc->sc_irs;
3421 tp->rcv_up = sc->sc_irs + 1;
3422
3423 /*
3424 * This is what whould have happened in tcp_output() when
3425 * the SYN,ACK was sent.
3426 */
3427 tp->snd_up = tp->snd_una;
3428 tp->snd_max = tp->snd_nxt = tp->iss+1;
3429 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
3430 if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
3431 tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
3432 tp->last_ack_sent = tp->rcv_nxt;
3433
3434 tcpstat.tcps_sc_completed++;
3435 SYN_CACHE_PUT(sc);
3436 return (so);
3437
3438 resetandabort:
3439 (void)tcp_respond(NULL, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
3440 abort:
3441 if (so != NULL)
3442 (void) soabort(so);
3443 SYN_CACHE_PUT(sc);
3444 tcpstat.tcps_sc_aborted++;
3445 return ((struct socket *)(-1));
3446 }
3447
3448 /*
3449 * This function is called when we get a RST for a
3450 * non-existent connection, so that we can see if the
3451 * connection is in the syn cache. If it is, zap it.
3452 */
3453
3454 void
3455 syn_cache_reset(src, dst, th)
3456 struct sockaddr *src;
3457 struct sockaddr *dst;
3458 struct tcphdr *th;
3459 {
3460 struct syn_cache *sc;
3461 struct syn_cache_head *scp;
3462 int s = splsoftnet();
3463
3464 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3465 splx(s);
3466 return;
3467 }
3468 if (SEQ_LT(th->th_seq, sc->sc_irs) ||
3469 SEQ_GT(th->th_seq, sc->sc_irs+1)) {
3470 splx(s);
3471 return;
3472 }
3473 SYN_CACHE_RM(sc);
3474 splx(s);
3475 tcpstat.tcps_sc_reset++;
3476 SYN_CACHE_PUT(sc);
3477 }
3478
3479 void
3480 syn_cache_unreach(src, dst, th)
3481 struct sockaddr *src;
3482 struct sockaddr *dst;
3483 struct tcphdr *th;
3484 {
3485 struct syn_cache *sc;
3486 struct syn_cache_head *scp;
3487 int s;
3488
3489 s = splsoftnet();
3490 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3491 splx(s);
3492 return;
3493 }
3494 /* If the sequence number != sc_iss, then it's a bogus ICMP msg */
3495 if (ntohl (th->th_seq) != sc->sc_iss) {
3496 splx(s);
3497 return;
3498 }
3499
3500 /*
3501 * If we've retransmitted 3 times and this is our second error,
3502 * we remove the entry. Otherwise, we allow it to continue on.
3503 * This prevents us from incorrectly nuking an entry during a
3504 * spurious network outage.
3505 *
3506 * See tcp_notify().
3507 */
3508 if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
3509 sc->sc_flags |= SCF_UNREACH;
3510 splx(s);
3511 return;
3512 }
3513
3514 SYN_CACHE_RM(sc);
3515 splx(s);
3516 tcpstat.tcps_sc_unreach++;
3517 SYN_CACHE_PUT(sc);
3518 }
3519
3520 /*
3521 * Given a LISTEN socket and an inbound SYN request, add
3522 * this to the syn cache, and send back a segment:
3523 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
3524 * to the source.
3525 *
3526 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
3527 * Doing so would require that we hold onto the data and deliver it
3528 * to the application. However, if we are the target of a SYN-flood
3529 * DoS attack, an attacker could send data which would eventually
3530 * consume all available buffer space if it were ACKed. By not ACKing
3531 * the data, we avoid this DoS scenario.
3532 */
3533
3534 int
3535 syn_cache_add(src, dst, th, hlen, so, m, optp, optlen, oi)
3536 struct sockaddr *src;
3537 struct sockaddr *dst;
3538 struct tcphdr *th;
3539 unsigned int hlen;
3540 struct socket *so;
3541 struct mbuf *m;
3542 u_char *optp;
3543 int optlen;
3544 struct tcp_opt_info *oi;
3545 {
3546 struct tcpcb tb, *tp;
3547 long win;
3548 struct syn_cache *sc;
3549 struct syn_cache_head *scp;
3550 struct mbuf *ipopts;
3551
3552 tp = sototcpcb(so);
3553
3554 /*
3555 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
3556 *
3557 * Note this check is performed in tcp_input() very early on.
3558 */
3559
3560 /*
3561 * Initialize some local state.
3562 */
3563 win = sbspace(&so->so_rcv);
3564 if (win > TCP_MAXWIN)
3565 win = TCP_MAXWIN;
3566
3567 switch (src->sa_family) {
3568 #ifdef INET
3569 case AF_INET:
3570 /*
3571 * Remember the IP options, if any.
3572 */
3573 ipopts = ip_srcroute();
3574 break;
3575 #endif
3576 default:
3577 ipopts = NULL;
3578 }
3579
3580 if (optp) {
3581 tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
3582 tcp_dooptions(&tb, optp, optlen, th, oi);
3583 } else
3584 tb.t_flags = 0;
3585
3586 /*
3587 * See if we already have an entry for this connection.
3588 * If we do, resend the SYN,ACK. We do not count this
3589 * as a retransmission (XXX though maybe we should).
3590 */
3591 if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
3592 tcpstat.tcps_sc_dupesyn++;
3593 if (ipopts) {
3594 /*
3595 * If we were remembering a previous source route,
3596 * forget it and use the new one we've been given.
3597 */
3598 if (sc->sc_ipopts)
3599 (void) m_free(sc->sc_ipopts);
3600 sc->sc_ipopts = ipopts;
3601 }
3602 sc->sc_timestamp = tb.ts_recent;
3603 if (syn_cache_respond(sc, m) == 0) {
3604 tcpstat.tcps_sndacks++;
3605 tcpstat.tcps_sndtotal++;
3606 }
3607 return (1);
3608 }
3609
3610 sc = pool_get(&syn_cache_pool, PR_NOWAIT);
3611 if (sc == NULL) {
3612 if (ipopts)
3613 (void) m_free(ipopts);
3614 return (0);
3615 }
3616
3617 /*
3618 * Fill in the cache, and put the necessary IP and TCP
3619 * options into the reply.
3620 */
3621 bzero(sc, sizeof(struct syn_cache));
3622 callout_init(&sc->sc_timer);
3623 bcopy(src, &sc->sc_src, src->sa_len);
3624 bcopy(dst, &sc->sc_dst, dst->sa_len);
3625 sc->sc_flags = 0;
3626 sc->sc_ipopts = ipopts;
3627 sc->sc_irs = th->th_seq;
3628 switch (src->sa_family) {
3629 #ifdef INET
3630 case AF_INET:
3631 {
3632 struct sockaddr_in *srcin = (void *) src;
3633 struct sockaddr_in *dstin = (void *) dst;
3634
3635 sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
3636 &srcin->sin_addr, dstin->sin_port,
3637 srcin->sin_port, sizeof(dstin->sin_addr), 0);
3638 break;
3639 }
3640 #endif /* INET */
3641 #ifdef INET6
3642 case AF_INET6:
3643 {
3644 struct sockaddr_in6 *srcin6 = (void *) src;
3645 struct sockaddr_in6 *dstin6 = (void *) dst;
3646
3647 sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
3648 &srcin6->sin6_addr, dstin6->sin6_port,
3649 srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
3650 break;
3651 }
3652 #endif /* INET6 */
3653 }
3654 sc->sc_peermaxseg = oi->maxseg;
3655 sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
3656 m->m_pkthdr.rcvif : NULL,
3657 sc->sc_src.sa.sa_family);
3658 sc->sc_win = win;
3659 sc->sc_timebase = tcp_now; /* see tcp_newtcpcb() */
3660 sc->sc_timestamp = tb.ts_recent;
3661 if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
3662 (TF_REQ_TSTMP|TF_RCVD_TSTMP))
3663 sc->sc_flags |= SCF_TIMESTAMP;
3664 if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
3665 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
3666 sc->sc_requested_s_scale = tb.requested_s_scale;
3667 sc->sc_request_r_scale = 0;
3668 while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
3669 TCP_MAXWIN << sc->sc_request_r_scale <
3670 so->so_rcv.sb_hiwat)
3671 sc->sc_request_r_scale++;
3672 } else {
3673 sc->sc_requested_s_scale = 15;
3674 sc->sc_request_r_scale = 15;
3675 }
3676 sc->sc_tp = tp;
3677 if (syn_cache_respond(sc, m) == 0) {
3678 syn_cache_insert(sc, tp);
3679 tcpstat.tcps_sndacks++;
3680 tcpstat.tcps_sndtotal++;
3681 } else {
3682 SYN_CACHE_PUT(sc);
3683 tcpstat.tcps_sc_dropped++;
3684 }
3685 return (1);
3686 }
3687
3688 int
3689 syn_cache_respond(sc, m)
3690 struct syn_cache *sc;
3691 struct mbuf *m;
3692 {
3693 struct route *ro;
3694 u_int8_t *optp;
3695 int optlen, error;
3696 u_int16_t tlen;
3697 struct ip *ip = NULL;
3698 #ifdef INET6
3699 struct ip6_hdr *ip6 = NULL;
3700 #endif
3701 struct tcpcb *tp;
3702 struct tcphdr *th;
3703 u_int hlen;
3704 struct socket *so;
3705
3706 switch (sc->sc_src.sa.sa_family) {
3707 case AF_INET:
3708 hlen = sizeof(struct ip);
3709 ro = &sc->sc_route4;
3710 break;
3711 #ifdef INET6
3712 case AF_INET6:
3713 hlen = sizeof(struct ip6_hdr);
3714 ro = (struct route *)&sc->sc_route6;
3715 break;
3716 #endif
3717 default:
3718 if (m)
3719 m_freem(m);
3720 return (EAFNOSUPPORT);
3721 }
3722
3723 /* Compute the size of the TCP options. */
3724 optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
3725 ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
3726
3727 tlen = hlen + sizeof(struct tcphdr) + optlen;
3728
3729 /*
3730 * Create the IP+TCP header from scratch.
3731 */
3732 if (m)
3733 m_freem(m);
3734 #ifdef DIAGNOSTIC
3735 if (max_linkhdr + tlen > MCLBYTES)
3736 return (ENOBUFS);
3737 #endif
3738 MGETHDR(m, M_DONTWAIT, MT_DATA);
3739 if (m && tlen > MHLEN) {
3740 MCLGET(m, M_DONTWAIT);
3741 if ((m->m_flags & M_EXT) == 0) {
3742 m_freem(m);
3743 m = NULL;
3744 }
3745 }
3746 if (m == NULL)
3747 return (ENOBUFS);
3748 MCLAIM(m, &tcp_tx_mowner);
3749
3750 /* Fixup the mbuf. */
3751 m->m_data += max_linkhdr;
3752 m->m_len = m->m_pkthdr.len = tlen;
3753 if (sc->sc_tp) {
3754 tp = sc->sc_tp;
3755 if (tp->t_inpcb)
3756 so = tp->t_inpcb->inp_socket;
3757 #ifdef INET6
3758 else if (tp->t_in6pcb)
3759 so = tp->t_in6pcb->in6p_socket;
3760 #endif
3761 else
3762 so = NULL;
3763 } else
3764 so = NULL;
3765 m->m_pkthdr.rcvif = NULL;
3766 memset(mtod(m, u_char *), 0, tlen);
3767
3768 switch (sc->sc_src.sa.sa_family) {
3769 case AF_INET:
3770 ip = mtod(m, struct ip *);
3771 ip->ip_dst = sc->sc_src.sin.sin_addr;
3772 ip->ip_src = sc->sc_dst.sin.sin_addr;
3773 ip->ip_p = IPPROTO_TCP;
3774 th = (struct tcphdr *)(ip + 1);
3775 th->th_dport = sc->sc_src.sin.sin_port;
3776 th->th_sport = sc->sc_dst.sin.sin_port;
3777 break;
3778 #ifdef INET6
3779 case AF_INET6:
3780 ip6 = mtod(m, struct ip6_hdr *);
3781 ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
3782 ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
3783 ip6->ip6_nxt = IPPROTO_TCP;
3784 /* ip6_plen will be updated in ip6_output() */
3785 th = (struct tcphdr *)(ip6 + 1);
3786 th->th_dport = sc->sc_src.sin6.sin6_port;
3787 th->th_sport = sc->sc_dst.sin6.sin6_port;
3788 break;
3789 #endif
3790 default:
3791 th = NULL;
3792 }
3793
3794 th->th_seq = htonl(sc->sc_iss);
3795 th->th_ack = htonl(sc->sc_irs + 1);
3796 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
3797 th->th_flags = TH_SYN|TH_ACK;
3798 th->th_win = htons(sc->sc_win);
3799 /* th_sum already 0 */
3800 /* th_urp already 0 */
3801
3802 /* Tack on the TCP options. */
3803 optp = (u_int8_t *)(th + 1);
3804 *optp++ = TCPOPT_MAXSEG;
3805 *optp++ = 4;
3806 *optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
3807 *optp++ = sc->sc_ourmaxseg & 0xff;
3808
3809 if (sc->sc_request_r_scale != 15) {
3810 *((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
3811 TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
3812 sc->sc_request_r_scale);
3813 optp += 4;
3814 }
3815
3816 if (sc->sc_flags & SCF_TIMESTAMP) {
3817 u_int32_t *lp = (u_int32_t *)(optp);
3818 /* Form timestamp option as shown in appendix A of RFC 1323. */
3819 *lp++ = htonl(TCPOPT_TSTAMP_HDR);
3820 *lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
3821 *lp = htonl(sc->sc_timestamp);
3822 optp += TCPOLEN_TSTAMP_APPA;
3823 }
3824
3825 /* Compute the packet's checksum. */
3826 switch (sc->sc_src.sa.sa_family) {
3827 case AF_INET:
3828 ip->ip_len = htons(tlen - hlen);
3829 th->th_sum = 0;
3830 th->th_sum = in_cksum(m, tlen);
3831 break;
3832 #ifdef INET6
3833 case AF_INET6:
3834 ip6->ip6_plen = htons(tlen - hlen);
3835 th->th_sum = 0;
3836 th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
3837 break;
3838 #endif
3839 }
3840
3841 /*
3842 * Fill in some straggling IP bits. Note the stack expects
3843 * ip_len to be in host order, for convenience.
3844 */
3845 switch (sc->sc_src.sa.sa_family) {
3846 #ifdef INET
3847 case AF_INET:
3848 ip->ip_len = htons(tlen);
3849 ip->ip_ttl = ip_defttl;
3850 /* XXX tos? */
3851 break;
3852 #endif
3853 #ifdef INET6
3854 case AF_INET6:
3855 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
3856 ip6->ip6_vfc |= IPV6_VERSION;
3857 ip6->ip6_plen = htons(tlen - hlen);
3858 /* ip6_hlim will be initialized afterwards */
3859 /* XXX flowlabel? */
3860 break;
3861 #endif
3862 }
3863
3864 /* XXX use IPsec policy on listening socket, on SYN ACK */
3865 tp = sc->sc_tp;
3866
3867 switch (sc->sc_src.sa.sa_family) {
3868 #ifdef INET
3869 case AF_INET:
3870 error = ip_output(m, sc->sc_ipopts, ro,
3871 (ip_mtudisc ? IP_MTUDISC : 0),
3872 (struct ip_moptions *)NULL, so);
3873 break;
3874 #endif
3875 #ifdef INET6
3876 case AF_INET6:
3877 ip6->ip6_hlim = in6_selecthlim(NULL,
3878 ro->ro_rt ? ro->ro_rt->rt_ifp : NULL);
3879
3880 error = ip6_output(m, NULL /*XXX*/, (struct route_in6 *)ro, 0,
3881 (struct ip6_moptions *)0, so, NULL);
3882 break;
3883 #endif
3884 default:
3885 error = EAFNOSUPPORT;
3886 break;
3887 }
3888 return (error);
3889 }
3890