Home | History | Annotate | Line # | Download | only in netinet
tcp_input.c revision 1.20
      1 /*	$NetBSD: tcp_input.c,v 1.20 1995/11/21 01:07:39 cgd Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by the University of
     18  *	California, Berkeley and its contributors.
     19  * 4. Neither the name of the University nor the names of its contributors
     20  *    may be used to endorse or promote products derived from this software
     21  *    without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33  * SUCH DAMAGE.
     34  *
     35  *	@(#)tcp_input.c	8.5 (Berkeley) 4/10/94
     36  */
     37 
     38 #ifndef TUBA_INCLUDE
     39 #include <sys/param.h>
     40 #include <sys/systm.h>
     41 #include <sys/malloc.h>
     42 #include <sys/mbuf.h>
     43 #include <sys/protosw.h>
     44 #include <sys/socket.h>
     45 #include <sys/socketvar.h>
     46 #include <sys/errno.h>
     47 
     48 #include <net/if.h>
     49 #include <net/route.h>
     50 
     51 #include <netinet/in.h>
     52 #include <netinet/in_systm.h>
     53 #include <netinet/ip.h>
     54 #include <netinet/in_pcb.h>
     55 #include <netinet/ip_var.h>
     56 #include <netinet/tcp.h>
     57 #include <netinet/tcp_fsm.h>
     58 #include <netinet/tcp_seq.h>
     59 #include <netinet/tcp_timer.h>
     60 #include <netinet/tcp_var.h>
     61 #include <netinet/tcpip.h>
     62 #include <netinet/tcp_debug.h>
     63 
     64 int	tcprexmtthresh = 3;
     65 struct	tcpiphdr tcp_saveti;
     66 struct	inpcb *tcp_last_inpcb = 0;
     67 
     68 extern u_long sb_max;
     69 
     70 #endif /* TUBA_INCLUDE */
     71 #define TCP_PAWS_IDLE	(24 * 24 * 60 * 60 * PR_SLOWHZ)
     72 
     73 /* for modulo comparisons of timestamps */
     74 #define TSTMP_LT(a,b)	((int)((a)-(b)) < 0)
     75 #define TSTMP_GEQ(a,b)	((int)((a)-(b)) >= 0)
     76 
     77 
     78 /*
     79  * Insert segment ti into reassembly queue of tcp with
     80  * control block tp.  Return TH_FIN if reassembly now includes
     81  * a segment with FIN.  The macro form does the common case inline
     82  * (segment is the next to be received on an established connection,
     83  * and the queue is empty), avoiding linkage into and removal
     84  * from the queue and repetition of various conversions.
     85  * Set DELACK for segments received in order, but ack immediately
     86  * when segments are out of order (so fast retransmit can work).
     87  */
     88 #define	TCP_REASS(tp, ti, m, so, flags) { \
     89 	if ((ti)->ti_seq == (tp)->rcv_nxt && \
     90 	    (tp)->segq.lh_first == NULL && \
     91 	    (tp)->t_state == TCPS_ESTABLISHED) { \
     92 		if ((ti)->ti_flags & TH_PUSH) \
     93 			tp->t_flags |= TF_ACKNOW; \
     94 		else \
     95 			tp->t_flags |= TF_DELACK; \
     96 		(tp)->rcv_nxt += (ti)->ti_len; \
     97 		flags = (ti)->ti_flags & TH_FIN; \
     98 		tcpstat.tcps_rcvpack++;\
     99 		tcpstat.tcps_rcvbyte += (ti)->ti_len;\
    100 		sbappend(&(so)->so_rcv, (m)); \
    101 		sorwakeup(so); \
    102 	} else { \
    103 		(flags) = tcp_reass((tp), (ti), (m)); \
    104 		tp->t_flags |= TF_ACKNOW; \
    105 	} \
    106 }
    107 #ifndef TUBA_INCLUDE
    108 
    109 int
    110 tcp_reass(tp, ti, m)
    111 	register struct tcpcb *tp;
    112 	register struct tcpiphdr *ti;
    113 	struct mbuf *m;
    114 {
    115 	register struct ipqent *p, *q, *nq, *tiqe;
    116 	struct socket *so = tp->t_inpcb->inp_socket;
    117 	int flags;
    118 
    119 	/*
    120 	 * Call with ti==0 after become established to
    121 	 * force pre-ESTABLISHED data up to user socket.
    122 	 */
    123 	if (ti == 0)
    124 		goto present;
    125 
    126 	/*
    127 	 * Allocate a new queue entry, before we throw away any data.
    128 	 * If we can't, just drop the packet.  XXX
    129 	 */
    130 	MALLOC(tiqe, struct ipqent *, sizeof (struct ipqent), M_IPQ, M_NOWAIT);
    131 	if (tiqe == NULL) {
    132 		tcpstat.tcps_rcvmemdrop++;
    133 		m_freem(m);
    134 		return (0);
    135 	}
    136 
    137 	/*
    138 	 * Find a segment which begins after this one does.
    139 	 */
    140 	for (p = NULL, q = tp->segq.lh_first; q != NULL;
    141 	    p = q, q = q->ipqe_q.le_next)
    142 		if (SEQ_GT(q->ipqe_tcp->ti_seq, ti->ti_seq))
    143 			break;
    144 
    145 	/*
    146 	 * If there is a preceding segment, it may provide some of
    147 	 * our data already.  If so, drop the data from the incoming
    148 	 * segment.  If it provides all of our data, drop us.
    149 	 */
    150 	if (p != NULL) {
    151 		register struct tcpiphdr *phdr = p->ipqe_tcp;
    152 		register int i;
    153 
    154 		/* conversion to int (in i) handles seq wraparound */
    155 		i = phdr->ti_seq + phdr->ti_len - ti->ti_seq;
    156 		if (i > 0) {
    157 			if (i >= ti->ti_len) {
    158 				tcpstat.tcps_rcvduppack++;
    159 				tcpstat.tcps_rcvdupbyte += ti->ti_len;
    160 				m_freem(m);
    161 				FREE(tiqe, M_IPQ);
    162 				return (0);
    163 			}
    164 			m_adj(m, i);
    165 			ti->ti_len -= i;
    166 			ti->ti_seq += i;
    167 		}
    168 	}
    169 	tcpstat.tcps_rcvoopack++;
    170 	tcpstat.tcps_rcvoobyte += ti->ti_len;
    171 
    172 	/*
    173 	 * While we overlap succeeding segments trim them or,
    174 	 * if they are completely covered, dequeue them.
    175 	 */
    176 	for (; q != NULL; q = nq) {
    177 		register struct tcpiphdr *qhdr = q->ipqe_tcp;
    178 		register int i = (ti->ti_seq + ti->ti_len) - qhdr->ti_seq;
    179 
    180 		if (i <= 0)
    181 			break;
    182 		if (i < qhdr->ti_len) {
    183 			qhdr->ti_seq += i;
    184 			qhdr->ti_len -= i;
    185 			m_adj(q->ipqe_m, i);
    186 			break;
    187 		}
    188 		nq = q->ipqe_q.le_next;
    189 		m_freem(q->ipqe_m);
    190 		LIST_REMOVE(q, ipqe_q);
    191 		FREE(q, M_IPQ);
    192 	}
    193 
    194 	/* Insert the new fragment queue entry into place. */
    195 	tiqe->ipqe_m = m;
    196 	tiqe->ipqe_tcp = ti;
    197 	if (p == NULL) {
    198 		LIST_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
    199 	} else {
    200 		LIST_INSERT_AFTER(p, tiqe, ipqe_q);
    201 	}
    202 
    203 present:
    204 	/*
    205 	 * Present data to user, advancing rcv_nxt through
    206 	 * completed sequence space.
    207 	 */
    208 	if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
    209 		return (0);
    210 	q = tp->segq.lh_first;
    211 	if (q == NULL || q->ipqe_tcp->ti_seq != tp->rcv_nxt)
    212 		return (0);
    213 	if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_tcp->ti_len)
    214 		return (0);
    215 	do {
    216 		tp->rcv_nxt += q->ipqe_tcp->ti_len;
    217 		flags = q->ipqe_tcp->ti_flags & TH_FIN;
    218 
    219 		nq = q->ipqe_q.le_next;
    220 		LIST_REMOVE(q, ipqe_q);
    221 		if (so->so_state & SS_CANTRCVMORE)
    222 			m_freem(q->ipqe_m);
    223 		else
    224 			sbappend(&so->so_rcv, q->ipqe_m);
    225 		FREE(q, M_IPQ);
    226 		q = nq;
    227 	} while (q != NULL && q->ipqe_tcp->ti_seq == tp->rcv_nxt);
    228 	sorwakeup(so);
    229 	return (flags);
    230 }
    231 
    232 /*
    233  * TCP input routine, follows pages 65-76 of the
    234  * protocol specification dated September, 1981 very closely.
    235  */
    236 void
    237 tcp_input(m, iphlen)
    238 	register struct mbuf *m;
    239 	int iphlen;
    240 {
    241 	register struct tcpiphdr *ti;
    242 	register struct inpcb *inp;
    243 	caddr_t optp = NULL;
    244 	int optlen;
    245 	int len, tlen, off;
    246 	register struct tcpcb *tp = 0;
    247 	register int tiflags;
    248 	struct socket *so;
    249 	int todrop, acked, ourfinisacked, needoutput = 0;
    250 	short ostate;
    251 	struct in_addr laddr;
    252 	int dropsocket = 0;
    253 	int iss = 0;
    254 	u_long tiwin;
    255 	u_int32_t ts_val, ts_ecr;
    256 	int ts_present = 0;
    257 
    258 	tcpstat.tcps_rcvtotal++;
    259 	/*
    260 	 * Get IP and TCP header together in first mbuf.
    261 	 * Note: IP leaves IP header in first mbuf.
    262 	 */
    263 	ti = mtod(m, struct tcpiphdr *);
    264 	if (iphlen > sizeof (struct ip))
    265 		ip_stripoptions(m, (struct mbuf *)0);
    266 	if (m->m_len < sizeof (struct tcpiphdr)) {
    267 		if ((m = m_pullup(m, sizeof (struct tcpiphdr))) == 0) {
    268 			tcpstat.tcps_rcvshort++;
    269 			return;
    270 		}
    271 		ti = mtod(m, struct tcpiphdr *);
    272 	}
    273 
    274 	/*
    275 	 * Checksum extended TCP header and data.
    276 	 */
    277 	tlen = ((struct ip *)ti)->ip_len;
    278 	len = sizeof (struct ip) + tlen;
    279 	bzero(ti->ti_x1, sizeof ti->ti_x1);
    280 	ti->ti_len = (u_int16_t)tlen;
    281 	HTONS(ti->ti_len);
    282 	if (ti->ti_sum = in_cksum(m, len)) {
    283 		tcpstat.tcps_rcvbadsum++;
    284 		goto drop;
    285 	}
    286 #endif /* TUBA_INCLUDE */
    287 
    288 	/*
    289 	 * Check that TCP offset makes sense,
    290 	 * pull out TCP options and adjust length.		XXX
    291 	 */
    292 	off = ti->ti_off << 2;
    293 	if (off < sizeof (struct tcphdr) || off > tlen) {
    294 		tcpstat.tcps_rcvbadoff++;
    295 		goto drop;
    296 	}
    297 	tlen -= off;
    298 	ti->ti_len = tlen;
    299 	if (off > sizeof (struct tcphdr)) {
    300 		if (m->m_len < sizeof(struct ip) + off) {
    301 			if ((m = m_pullup(m, sizeof (struct ip) + off)) == 0) {
    302 				tcpstat.tcps_rcvshort++;
    303 				return;
    304 			}
    305 			ti = mtod(m, struct tcpiphdr *);
    306 		}
    307 		optlen = off - sizeof (struct tcphdr);
    308 		optp = mtod(m, caddr_t) + sizeof (struct tcpiphdr);
    309 		/*
    310 		 * Do quick retrieval of timestamp options ("options
    311 		 * prediction?").  If timestamp is the only option and it's
    312 		 * formatted as recommended in RFC 1323 appendix A, we
    313 		 * quickly get the values now and not bother calling
    314 		 * tcp_dooptions(), etc.
    315 		 */
    316 		if ((optlen == TCPOLEN_TSTAMP_APPA ||
    317 		     (optlen > TCPOLEN_TSTAMP_APPA &&
    318 			optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
    319 		     *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
    320 		     (ti->ti_flags & TH_SYN) == 0) {
    321 			ts_present = 1;
    322 			ts_val = ntohl(*(u_int32_t *)(optp + 4));
    323 			ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
    324 			optp = NULL;	/* we've parsed the options */
    325 		}
    326 	}
    327 	tiflags = ti->ti_flags;
    328 
    329 	/*
    330 	 * Convert TCP protocol specific fields to host format.
    331 	 */
    332 	NTOHL(ti->ti_seq);
    333 	NTOHL(ti->ti_ack);
    334 	NTOHS(ti->ti_win);
    335 	NTOHS(ti->ti_urp);
    336 
    337 	/*
    338 	 * Locate pcb for segment.
    339 	 */
    340 findpcb:
    341 	inp = tcp_last_inpcb;
    342 	if (inp == 0 ||
    343 	    inp->inp_lport != ti->ti_dport ||
    344 	    inp->inp_fport != ti->ti_sport ||
    345 	    inp->inp_faddr.s_addr != ti->ti_src.s_addr ||
    346 	    inp->inp_laddr.s_addr != ti->ti_dst.s_addr) {
    347 		++tcpstat.tcps_pcbcachemiss;
    348 		inp = in_pcblookup(&tcbtable, ti->ti_src, ti->ti_sport,
    349 		    ti->ti_dst, ti->ti_dport, INPLOOKUP_WILDCARD);
    350 		/*
    351 		 * If the state is CLOSED (i.e., TCB does not exist) then
    352 		 * all data in the incoming segment is discarded.
    353 		 * If the TCB exists but is in CLOSED state, it is embryonic,
    354 		 * but should either do a listen or a connect soon.
    355 		 */
    356 		if (inp == 0)
    357 			goto dropwithreset;
    358 		tcp_last_inpcb = inp;
    359 	}
    360 
    361 	tp = intotcpcb(inp);
    362 	if (tp == 0)
    363 		goto dropwithreset;
    364 	if (tp->t_state == TCPS_CLOSED)
    365 		goto drop;
    366 
    367 	/* Unscale the window into a 32-bit value. */
    368 	if ((tiflags & TH_SYN) == 0)
    369 		tiwin = ti->ti_win << tp->snd_scale;
    370 	else
    371 		tiwin = ti->ti_win;
    372 
    373 	so = inp->inp_socket;
    374 	if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
    375 		if (so->so_options & SO_DEBUG) {
    376 			ostate = tp->t_state;
    377 			tcp_saveti = *ti;
    378 		}
    379 		if (so->so_options & SO_ACCEPTCONN) {
    380 			so = sonewconn(so, 0);
    381 			if (so == 0)
    382 				goto drop;
    383 			/*
    384 			 * This is ugly, but ....
    385 			 *
    386 			 * Mark socket as temporary until we're
    387 			 * committed to keeping it.  The code at
    388 			 * ``drop'' and ``dropwithreset'' check the
    389 			 * flag dropsocket to see if the temporary
    390 			 * socket created here should be discarded.
    391 			 * We mark the socket as discardable until
    392 			 * we're committed to it below in TCPS_LISTEN.
    393 			 */
    394 			dropsocket++;
    395 			inp = (struct inpcb *)so->so_pcb;
    396 			inp->inp_laddr = ti->ti_dst;
    397 			inp->inp_lport = ti->ti_dport;
    398 #if BSD>=43
    399 			inp->inp_options = ip_srcroute();
    400 #endif
    401 			tp = intotcpcb(inp);
    402 			tp->t_state = TCPS_LISTEN;
    403 
    404 			/* Compute proper scaling value from buffer space
    405 			 */
    406 			while (tp->request_r_scale < TCP_MAX_WINSHIFT &&
    407 			   TCP_MAXWIN << tp->request_r_scale < so->so_rcv.sb_hiwat)
    408 				tp->request_r_scale++;
    409 		}
    410 	}
    411 
    412 	/*
    413 	 * Segment received on connection.
    414 	 * Reset idle time and keep-alive timer.
    415 	 */
    416 	tp->t_idle = 0;
    417 	tp->t_timer[TCPT_KEEP] = tcp_keepidle;
    418 
    419 	/*
    420 	 * Process options if not in LISTEN state,
    421 	 * else do it below (after getting remote address).
    422 	 */
    423 	if (optp && tp->t_state != TCPS_LISTEN)
    424 		tcp_dooptions(tp, optp, optlen, ti,
    425 			&ts_present, &ts_val, &ts_ecr);
    426 
    427 	/*
    428 	 * Header prediction: check for the two common cases
    429 	 * of a uni-directional data xfer.  If the packet has
    430 	 * no control flags, is in-sequence, the window didn't
    431 	 * change and we're not retransmitting, it's a
    432 	 * candidate.  If the length is zero and the ack moved
    433 	 * forward, we're the sender side of the xfer.  Just
    434 	 * free the data acked & wake any higher level process
    435 	 * that was blocked waiting for space.  If the length
    436 	 * is non-zero and the ack didn't move, we're the
    437 	 * receiver side.  If we're getting packets in-order
    438 	 * (the reassembly queue is empty), add the data to
    439 	 * the socket buffer and note that we need a delayed ack.
    440 	 */
    441 	if (tp->t_state == TCPS_ESTABLISHED &&
    442 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
    443 	    (!ts_present || TSTMP_GEQ(ts_val, tp->ts_recent)) &&
    444 	    ti->ti_seq == tp->rcv_nxt &&
    445 	    tiwin && tiwin == tp->snd_wnd &&
    446 	    tp->snd_nxt == tp->snd_max) {
    447 
    448 		/*
    449 		 * If last ACK falls within this segment's sequence numbers,
    450 		 *  record the timestamp.
    451 		 */
    452 		if (ts_present && SEQ_LEQ(ti->ti_seq, tp->last_ack_sent) &&
    453 		   SEQ_LT(tp->last_ack_sent, ti->ti_seq + ti->ti_len)) {
    454 			tp->ts_recent_age = tcp_now;
    455 			tp->ts_recent = ts_val;
    456 		}
    457 
    458 		if (ti->ti_len == 0) {
    459 			if (SEQ_GT(ti->ti_ack, tp->snd_una) &&
    460 			    SEQ_LEQ(ti->ti_ack, tp->snd_max) &&
    461 			    tp->snd_cwnd >= tp->snd_wnd &&
    462 			    tp->t_dupacks < tcprexmtthresh) {
    463 				/*
    464 				 * this is a pure ack for outstanding data.
    465 				 */
    466 				++tcpstat.tcps_predack;
    467 				if (ts_present)
    468 					tcp_xmit_timer(tp, tcp_now-ts_ecr+1);
    469 				else if (tp->t_rtt &&
    470 					    SEQ_GT(ti->ti_ack, tp->t_rtseq))
    471 					tcp_xmit_timer(tp, tp->t_rtt);
    472 				acked = ti->ti_ack - tp->snd_una;
    473 				tcpstat.tcps_rcvackpack++;
    474 				tcpstat.tcps_rcvackbyte += acked;
    475 				sbdrop(&so->so_snd, acked);
    476 				tp->snd_una = ti->ti_ack;
    477 				m_freem(m);
    478 
    479 				/*
    480 				 * If all outstanding data are acked, stop
    481 				 * retransmit timer, otherwise restart timer
    482 				 * using current (possibly backed-off) value.
    483 				 * If process is waiting for space,
    484 				 * wakeup/selwakeup/signal.  If data
    485 				 * are ready to send, let tcp_output
    486 				 * decide between more output or persist.
    487 				 */
    488 				if (tp->snd_una == tp->snd_max)
    489 					tp->t_timer[TCPT_REXMT] = 0;
    490 				else if (tp->t_timer[TCPT_PERSIST] == 0)
    491 					tp->t_timer[TCPT_REXMT] = tp->t_rxtcur;
    492 
    493 				if (sb_notify(&so->so_snd))
    494 					sowwakeup(so);
    495 				if (so->so_snd.sb_cc)
    496 					(void) tcp_output(tp);
    497 				return;
    498 			}
    499 		} else if (ti->ti_ack == tp->snd_una &&
    500 		    tp->segq.lh_first == NULL &&
    501 		    ti->ti_len <= sbspace(&so->so_rcv)) {
    502 			/*
    503 			 * this is a pure, in-sequence data packet
    504 			 * with nothing on the reassembly queue and
    505 			 * we have enough buffer space to take it.
    506 			 */
    507 			++tcpstat.tcps_preddat;
    508 			tp->rcv_nxt += ti->ti_len;
    509 			tcpstat.tcps_rcvpack++;
    510 			tcpstat.tcps_rcvbyte += ti->ti_len;
    511 			/*
    512 			 * Drop TCP, IP headers and TCP options then add data
    513 			 * to socket buffer.
    514 			 */
    515 			m->m_data += sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);
    516 			m->m_len -= sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);
    517 			sbappend(&so->so_rcv, m);
    518 			sorwakeup(so);
    519 			if (ti->ti_flags & TH_PUSH)
    520 				tp->t_flags |= TF_ACKNOW;
    521 			else
    522 				tp->t_flags |= TF_DELACK;
    523 			return;
    524 		}
    525 	}
    526 
    527 	/*
    528 	 * Drop TCP, IP headers and TCP options.
    529 	 */
    530 	m->m_data += sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);
    531 	m->m_len  -= sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);
    532 
    533 	/*
    534 	 * Calculate amount of space in receive window,
    535 	 * and then do TCP input processing.
    536 	 * Receive window is amount of space in rcv queue,
    537 	 * but not less than advertised window.
    538 	 */
    539 	{ int win;
    540 
    541 	win = sbspace(&so->so_rcv);
    542 	if (win < 0)
    543 		win = 0;
    544 	tp->rcv_wnd = max(win, (int)(tp->rcv_adv - tp->rcv_nxt));
    545 	}
    546 
    547 	switch (tp->t_state) {
    548 
    549 	/*
    550 	 * If the state is LISTEN then ignore segment if it contains an RST.
    551 	 * If the segment contains an ACK then it is bad and send a RST.
    552 	 * If it does not contain a SYN then it is not interesting; drop it.
    553 	 * Don't bother responding if the destination was a broadcast.
    554 	 * Otherwise initialize tp->rcv_nxt, and tp->irs, select an initial
    555 	 * tp->iss, and send a segment:
    556 	 *     <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
    557 	 * Also initialize tp->snd_nxt to tp->iss+1 and tp->snd_una to tp->iss.
    558 	 * Fill in remote peer address fields if not previously specified.
    559 	 * Enter SYN_RECEIVED state, and process any other fields of this
    560 	 * segment in this state.
    561 	 */
    562 	case TCPS_LISTEN: {
    563 		struct mbuf *am;
    564 		register struct sockaddr_in *sin;
    565 
    566 		if (tiflags & TH_RST)
    567 			goto drop;
    568 		if (tiflags & TH_ACK)
    569 			goto dropwithreset;
    570 		if ((tiflags & TH_SYN) == 0)
    571 			goto drop;
    572 		/*
    573 		 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
    574 		 * in_broadcast() should never return true on a received
    575 		 * packet with M_BCAST not set.
    576 		 */
    577 		if (m->m_flags & (M_BCAST|M_MCAST) ||
    578 		    IN_MULTICAST(ti->ti_dst.s_addr))
    579 			goto drop;
    580 		am = m_get(M_DONTWAIT, MT_SONAME);	/* XXX */
    581 		if (am == NULL)
    582 			goto drop;
    583 		am->m_len = sizeof (struct sockaddr_in);
    584 		sin = mtod(am, struct sockaddr_in *);
    585 		sin->sin_family = AF_INET;
    586 		sin->sin_len = sizeof(*sin);
    587 		sin->sin_addr = ti->ti_src;
    588 		sin->sin_port = ti->ti_sport;
    589 		bzero((caddr_t)sin->sin_zero, sizeof(sin->sin_zero));
    590 		laddr = inp->inp_laddr;
    591 		if (inp->inp_laddr.s_addr == INADDR_ANY)
    592 			inp->inp_laddr = ti->ti_dst;
    593 		if (in_pcbconnect(inp, am)) {
    594 			inp->inp_laddr = laddr;
    595 			(void) m_free(am);
    596 			goto drop;
    597 		}
    598 		(void) m_free(am);
    599 		tp->t_template = tcp_template(tp);
    600 		if (tp->t_template == 0) {
    601 			tp = tcp_drop(tp, ENOBUFS);
    602 			dropsocket = 0;		/* socket is already gone */
    603 			goto drop;
    604 		}
    605 		if (optp)
    606 			tcp_dooptions(tp, optp, optlen, ti,
    607 				&ts_present, &ts_val, &ts_ecr);
    608 		if (iss)
    609 			tp->iss = iss;
    610 		else
    611 			tp->iss = tcp_iss;
    612 		tcp_iss += TCP_ISSINCR/2;
    613 		tp->irs = ti->ti_seq;
    614 		tcp_sendseqinit(tp);
    615 		tcp_rcvseqinit(tp);
    616 		tp->t_flags |= TF_ACKNOW;
    617 		tp->t_state = TCPS_SYN_RECEIVED;
    618 		tp->t_timer[TCPT_KEEP] = TCPTV_KEEP_INIT;
    619 		dropsocket = 0;		/* committed to socket */
    620 		tcpstat.tcps_accepts++;
    621 		goto trimthenstep6;
    622 		}
    623 
    624 	/*
    625 	 * If the state is SYN_SENT:
    626 	 *	if seg contains an ACK, but not for our SYN, drop the input.
    627 	 *	if seg contains a RST, then drop the connection.
    628 	 *	if seg does not contain SYN, then drop it.
    629 	 * Otherwise this is an acceptable SYN segment
    630 	 *	initialize tp->rcv_nxt and tp->irs
    631 	 *	if seg contains ack then advance tp->snd_una
    632 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
    633 	 *	arrange for segment to be acked (eventually)
    634 	 *	continue processing rest of data/controls, beginning with URG
    635 	 */
    636 	case TCPS_SYN_SENT:
    637 		if ((tiflags & TH_ACK) &&
    638 		    (SEQ_LEQ(ti->ti_ack, tp->iss) ||
    639 		     SEQ_GT(ti->ti_ack, tp->snd_max)))
    640 			goto dropwithreset;
    641 		if (tiflags & TH_RST) {
    642 			if (tiflags & TH_ACK)
    643 				tp = tcp_drop(tp, ECONNREFUSED);
    644 			goto drop;
    645 		}
    646 		if ((tiflags & TH_SYN) == 0)
    647 			goto drop;
    648 		if (tiflags & TH_ACK) {
    649 			tp->snd_una = ti->ti_ack;
    650 			if (SEQ_LT(tp->snd_nxt, tp->snd_una))
    651 				tp->snd_nxt = tp->snd_una;
    652 		}
    653 		tp->t_timer[TCPT_REXMT] = 0;
    654 		tp->irs = ti->ti_seq;
    655 		tcp_rcvseqinit(tp);
    656 		tp->t_flags |= TF_ACKNOW;
    657 		if (tiflags & TH_ACK && SEQ_GT(tp->snd_una, tp->iss)) {
    658 			tcpstat.tcps_connects++;
    659 			soisconnected(so);
    660 			tp->t_state = TCPS_ESTABLISHED;
    661 			/* Do window scaling on this connection? */
    662 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
    663 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
    664 				tp->snd_scale = tp->requested_s_scale;
    665 				tp->rcv_scale = tp->request_r_scale;
    666 			}
    667 			(void) tcp_reass(tp, (struct tcpiphdr *)0,
    668 				(struct mbuf *)0);
    669 			/*
    670 			 * if we didn't have to retransmit the SYN,
    671 			 * use its rtt as our initial srtt & rtt var.
    672 			 */
    673 			if (tp->t_rtt)
    674 				tcp_xmit_timer(tp, tp->t_rtt);
    675 		} else
    676 			tp->t_state = TCPS_SYN_RECEIVED;
    677 
    678 trimthenstep6:
    679 		/*
    680 		 * Advance ti->ti_seq to correspond to first data byte.
    681 		 * If data, trim to stay within window,
    682 		 * dropping FIN if necessary.
    683 		 */
    684 		ti->ti_seq++;
    685 		if (ti->ti_len > tp->rcv_wnd) {
    686 			todrop = ti->ti_len - tp->rcv_wnd;
    687 			m_adj(m, -todrop);
    688 			ti->ti_len = tp->rcv_wnd;
    689 			tiflags &= ~TH_FIN;
    690 			tcpstat.tcps_rcvpackafterwin++;
    691 			tcpstat.tcps_rcvbyteafterwin += todrop;
    692 		}
    693 		tp->snd_wl1 = ti->ti_seq - 1;
    694 		tp->rcv_up = ti->ti_seq;
    695 		goto step6;
    696 	}
    697 
    698 	/*
    699 	 * States other than LISTEN or SYN_SENT.
    700 	 * First check timestamp, if present.
    701 	 * Then check that at least some bytes of segment are within
    702 	 * receive window.  If segment begins before rcv_nxt,
    703 	 * drop leading data (and SYN); if nothing left, just ack.
    704 	 *
    705 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
    706 	 * and it's less than ts_recent, drop it.
    707 	 */
    708 	if (ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
    709 	    TSTMP_LT(ts_val, tp->ts_recent)) {
    710 
    711 		/* Check to see if ts_recent is over 24 days old.  */
    712 		if ((int)(tcp_now - tp->ts_recent_age) > TCP_PAWS_IDLE) {
    713 			/*
    714 			 * Invalidate ts_recent.  If this segment updates
    715 			 * ts_recent, the age will be reset later and ts_recent
    716 			 * will get a valid value.  If it does not, setting
    717 			 * ts_recent to zero will at least satisfy the
    718 			 * requirement that zero be placed in the timestamp
    719 			 * echo reply when ts_recent isn't valid.  The
    720 			 * age isn't reset until we get a valid ts_recent
    721 			 * because we don't want out-of-order segments to be
    722 			 * dropped when ts_recent is old.
    723 			 */
    724 			tp->ts_recent = 0;
    725 		} else {
    726 			tcpstat.tcps_rcvduppack++;
    727 			tcpstat.tcps_rcvdupbyte += ti->ti_len;
    728 			tcpstat.tcps_pawsdrop++;
    729 			goto dropafterack;
    730 		}
    731 	}
    732 
    733 	todrop = tp->rcv_nxt - ti->ti_seq;
    734 	if (todrop > 0) {
    735 		if (tiflags & TH_SYN) {
    736 			tiflags &= ~TH_SYN;
    737 			ti->ti_seq++;
    738 			if (ti->ti_urp > 1)
    739 				ti->ti_urp--;
    740 			else
    741 				tiflags &= ~TH_URG;
    742 			todrop--;
    743 		}
    744 		if (todrop >= ti->ti_len) {
    745 			/*
    746 			 * Any valid FIN must be to the left of the
    747 			 * window.  At this point, FIN must be a
    748 			 * duplicate or out-of-sequence, so drop it.
    749 			 */
    750 			tiflags &= ~TH_FIN;
    751 			/*
    752 			 * Send ACK to resynchronize, and drop any data,
    753 			 * but keep on processing for RST or ACK.
    754 			 */
    755 			tp->t_flags |= TF_ACKNOW;
    756 			tcpstat.tcps_rcvdupbyte += todrop = ti->ti_len;
    757 			tcpstat.tcps_rcvduppack++;
    758 		} else {
    759 			tcpstat.tcps_rcvpartduppack++;
    760 			tcpstat.tcps_rcvpartdupbyte += todrop;
    761 		}
    762 		m_adj(m, todrop);
    763 		ti->ti_seq += todrop;
    764 		ti->ti_len -= todrop;
    765 		if (ti->ti_urp > todrop)
    766 			ti->ti_urp -= todrop;
    767 		else {
    768 			tiflags &= ~TH_URG;
    769 			ti->ti_urp = 0;
    770 		}
    771 	}
    772 
    773 	/*
    774 	 * If new data are received on a connection after the
    775 	 * user processes are gone, then RST the other end.
    776 	 */
    777 	if ((so->so_state & SS_NOFDREF) &&
    778 	    tp->t_state > TCPS_CLOSE_WAIT && ti->ti_len) {
    779 		tp = tcp_close(tp);
    780 		tcpstat.tcps_rcvafterclose++;
    781 		goto dropwithreset;
    782 	}
    783 
    784 	/*
    785 	 * If segment ends after window, drop trailing data
    786 	 * (and PUSH and FIN); if nothing left, just ACK.
    787 	 */
    788 	todrop = (ti->ti_seq+ti->ti_len) - (tp->rcv_nxt+tp->rcv_wnd);
    789 	if (todrop > 0) {
    790 		tcpstat.tcps_rcvpackafterwin++;
    791 		if (todrop >= ti->ti_len) {
    792 			tcpstat.tcps_rcvbyteafterwin += ti->ti_len;
    793 			/*
    794 			 * If a new connection request is received
    795 			 * while in TIME_WAIT, drop the old connection
    796 			 * and start over if the sequence numbers
    797 			 * are above the previous ones.
    798 			 */
    799 			if (tiflags & TH_SYN &&
    800 			    tp->t_state == TCPS_TIME_WAIT &&
    801 			    SEQ_GT(ti->ti_seq, tp->rcv_nxt)) {
    802 				iss = tp->rcv_nxt + TCP_ISSINCR;
    803 				tp = tcp_close(tp);
    804 				goto findpcb;
    805 			}
    806 			/*
    807 			 * If window is closed can only take segments at
    808 			 * window edge, and have to drop data and PUSH from
    809 			 * incoming segments.  Continue processing, but
    810 			 * remember to ack.  Otherwise, drop segment
    811 			 * and ack.
    812 			 */
    813 			if (tp->rcv_wnd == 0 && ti->ti_seq == tp->rcv_nxt) {
    814 				tp->t_flags |= TF_ACKNOW;
    815 				tcpstat.tcps_rcvwinprobe++;
    816 			} else
    817 				goto dropafterack;
    818 		} else
    819 			tcpstat.tcps_rcvbyteafterwin += todrop;
    820 		m_adj(m, -todrop);
    821 		ti->ti_len -= todrop;
    822 		tiflags &= ~(TH_PUSH|TH_FIN);
    823 	}
    824 
    825 	/*
    826 	 * If last ACK falls within this segment's sequence numbers,
    827 	 * record its timestamp.
    828 	 */
    829 	if (ts_present && SEQ_LEQ(ti->ti_seq, tp->last_ack_sent) &&
    830 	    SEQ_LT(tp->last_ack_sent, ti->ti_seq + ti->ti_len +
    831 		   ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
    832 		tp->ts_recent_age = tcp_now;
    833 		tp->ts_recent = ts_val;
    834 	}
    835 
    836 	/*
    837 	 * If the RST bit is set examine the state:
    838 	 *    SYN_RECEIVED STATE:
    839 	 *	If passive open, return to LISTEN state.
    840 	 *	If active open, inform user that connection was refused.
    841 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
    842 	 *	Inform user that connection was reset, and close tcb.
    843 	 *    CLOSING, LAST_ACK, TIME_WAIT STATES
    844 	 *	Close the tcb.
    845 	 */
    846 	if (tiflags&TH_RST) switch (tp->t_state) {
    847 
    848 	case TCPS_SYN_RECEIVED:
    849 		so->so_error = ECONNREFUSED;
    850 		goto close;
    851 
    852 	case TCPS_ESTABLISHED:
    853 	case TCPS_FIN_WAIT_1:
    854 	case TCPS_FIN_WAIT_2:
    855 	case TCPS_CLOSE_WAIT:
    856 		so->so_error = ECONNRESET;
    857 	close:
    858 		tp->t_state = TCPS_CLOSED;
    859 		tcpstat.tcps_drops++;
    860 		tp = tcp_close(tp);
    861 		goto drop;
    862 
    863 	case TCPS_CLOSING:
    864 	case TCPS_LAST_ACK:
    865 	case TCPS_TIME_WAIT:
    866 		tp = tcp_close(tp);
    867 		goto drop;
    868 	}
    869 
    870 	/*
    871 	 * If a SYN is in the window, then this is an
    872 	 * error and we send an RST and drop the connection.
    873 	 */
    874 	if (tiflags & TH_SYN) {
    875 		tp = tcp_drop(tp, ECONNRESET);
    876 		goto dropwithreset;
    877 	}
    878 
    879 	/*
    880 	 * If the ACK bit is off we drop the segment and return.
    881 	 */
    882 	if ((tiflags & TH_ACK) == 0)
    883 		goto drop;
    884 
    885 	/*
    886 	 * Ack processing.
    887 	 */
    888 	switch (tp->t_state) {
    889 
    890 	/*
    891 	 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
    892 	 * ESTABLISHED state and continue processing, otherwise
    893 	 * send an RST.
    894 	 */
    895 	case TCPS_SYN_RECEIVED:
    896 		if (SEQ_GT(tp->snd_una, ti->ti_ack) ||
    897 		    SEQ_GT(ti->ti_ack, tp->snd_max))
    898 			goto dropwithreset;
    899 		tcpstat.tcps_connects++;
    900 		soisconnected(so);
    901 		tp->t_state = TCPS_ESTABLISHED;
    902 		/* Do window scaling? */
    903 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
    904 			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
    905 			tp->snd_scale = tp->requested_s_scale;
    906 			tp->rcv_scale = tp->request_r_scale;
    907 		}
    908 		(void) tcp_reass(tp, (struct tcpiphdr *)0, (struct mbuf *)0);
    909 		tp->snd_wl1 = ti->ti_seq - 1;
    910 		/* fall into ... */
    911 
    912 	/*
    913 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
    914 	 * ACKs.  If the ack is in the range
    915 	 *	tp->snd_una < ti->ti_ack <= tp->snd_max
    916 	 * then advance tp->snd_una to ti->ti_ack and drop
    917 	 * data from the retransmission queue.  If this ACK reflects
    918 	 * more up to date window information we update our window information.
    919 	 */
    920 	case TCPS_ESTABLISHED:
    921 	case TCPS_FIN_WAIT_1:
    922 	case TCPS_FIN_WAIT_2:
    923 	case TCPS_CLOSE_WAIT:
    924 	case TCPS_CLOSING:
    925 	case TCPS_LAST_ACK:
    926 	case TCPS_TIME_WAIT:
    927 
    928 		if (SEQ_LEQ(ti->ti_ack, tp->snd_una)) {
    929 			if (ti->ti_len == 0 && tiwin == tp->snd_wnd) {
    930 				tcpstat.tcps_rcvdupack++;
    931 				/*
    932 				 * If we have outstanding data (other than
    933 				 * a window probe), this is a completely
    934 				 * duplicate ack (ie, window info didn't
    935 				 * change), the ack is the biggest we've
    936 				 * seen and we've seen exactly our rexmt
    937 				 * threshhold of them, assume a packet
    938 				 * has been dropped and retransmit it.
    939 				 * Kludge snd_nxt & the congestion
    940 				 * window so we send only this one
    941 				 * packet.
    942 				 *
    943 				 * We know we're losing at the current
    944 				 * window size so do congestion avoidance
    945 				 * (set ssthresh to half the current window
    946 				 * and pull our congestion window back to
    947 				 * the new ssthresh).
    948 				 *
    949 				 * Dup acks mean that packets have left the
    950 				 * network (they're now cached at the receiver)
    951 				 * so bump cwnd by the amount in the receiver
    952 				 * to keep a constant cwnd packets in the
    953 				 * network.
    954 				 */
    955 				if (tp->t_timer[TCPT_REXMT] == 0 ||
    956 				    ti->ti_ack != tp->snd_una)
    957 					tp->t_dupacks = 0;
    958 				else if (++tp->t_dupacks == tcprexmtthresh) {
    959 					tcp_seq onxt = tp->snd_nxt;
    960 					u_int win =
    961 					    min(tp->snd_wnd, tp->snd_cwnd) / 2 /
    962 						tp->t_maxseg;
    963 
    964 					if (win < 2)
    965 						win = 2;
    966 					tp->snd_ssthresh = win * tp->t_maxseg;
    967 					tp->t_timer[TCPT_REXMT] = 0;
    968 					tp->t_rtt = 0;
    969 					tp->snd_nxt = ti->ti_ack;
    970 					tp->snd_cwnd = tp->t_maxseg;
    971 					(void) tcp_output(tp);
    972 					tp->snd_cwnd = tp->snd_ssthresh +
    973 					       tp->t_maxseg * tp->t_dupacks;
    974 					if (SEQ_GT(onxt, tp->snd_nxt))
    975 						tp->snd_nxt = onxt;
    976 					goto drop;
    977 				} else if (tp->t_dupacks > tcprexmtthresh) {
    978 					tp->snd_cwnd += tp->t_maxseg;
    979 					(void) tcp_output(tp);
    980 					goto drop;
    981 				}
    982 			} else
    983 				tp->t_dupacks = 0;
    984 			break;
    985 		}
    986 		/*
    987 		 * If the congestion window was inflated to account
    988 		 * for the other side's cached packets, retract it.
    989 		 */
    990 		if (tp->t_dupacks >= tcprexmtthresh &&
    991 		    tp->snd_cwnd > tp->snd_ssthresh)
    992 			tp->snd_cwnd = tp->snd_ssthresh;
    993 		tp->t_dupacks = 0;
    994 		if (SEQ_GT(ti->ti_ack, tp->snd_max)) {
    995 			tcpstat.tcps_rcvacktoomuch++;
    996 			goto dropafterack;
    997 		}
    998 		acked = ti->ti_ack - tp->snd_una;
    999 		tcpstat.tcps_rcvackpack++;
   1000 		tcpstat.tcps_rcvackbyte += acked;
   1001 
   1002 		/*
   1003 		 * If we have a timestamp reply, update smoothed
   1004 		 * round trip time.  If no timestamp is present but
   1005 		 * transmit timer is running and timed sequence
   1006 		 * number was acked, update smoothed round trip time.
   1007 		 * Since we now have an rtt measurement, cancel the
   1008 		 * timer backoff (cf., Phil Karn's retransmit alg.).
   1009 		 * Recompute the initial retransmit timer.
   1010 		 */
   1011 		if (ts_present)
   1012 			tcp_xmit_timer(tp, tcp_now-ts_ecr+1);
   1013 		else if (tp->t_rtt && SEQ_GT(ti->ti_ack, tp->t_rtseq))
   1014 			tcp_xmit_timer(tp,tp->t_rtt);
   1015 
   1016 		/*
   1017 		 * If all outstanding data is acked, stop retransmit
   1018 		 * timer and remember to restart (more output or persist).
   1019 		 * If there is more data to be acked, restart retransmit
   1020 		 * timer, using current (possibly backed-off) value.
   1021 		 */
   1022 		if (ti->ti_ack == tp->snd_max) {
   1023 			tp->t_timer[TCPT_REXMT] = 0;
   1024 			needoutput = 1;
   1025 		} else if (tp->t_timer[TCPT_PERSIST] == 0)
   1026 			tp->t_timer[TCPT_REXMT] = tp->t_rxtcur;
   1027 		/*
   1028 		 * When new data is acked, open the congestion window.
   1029 		 * If the window gives us less than ssthresh packets
   1030 		 * in flight, open exponentially (maxseg per packet).
   1031 		 * Otherwise open linearly: maxseg per window
   1032 		 * (maxseg^2 / cwnd per packet), plus a constant
   1033 		 * fraction of a packet (maxseg/8) to help larger windows
   1034 		 * open quickly enough.
   1035 		 */
   1036 		{
   1037 		register u_int cw = tp->snd_cwnd;
   1038 		register u_int incr = tp->t_maxseg;
   1039 
   1040 		if (cw > tp->snd_ssthresh)
   1041 			incr = incr * incr / cw;
   1042 		tp->snd_cwnd = min(cw + incr, TCP_MAXWIN<<tp->snd_scale);
   1043 		}
   1044 		if (acked > so->so_snd.sb_cc) {
   1045 			tp->snd_wnd -= so->so_snd.sb_cc;
   1046 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
   1047 			ourfinisacked = 1;
   1048 		} else {
   1049 			sbdrop(&so->so_snd, acked);
   1050 			tp->snd_wnd -= acked;
   1051 			ourfinisacked = 0;
   1052 		}
   1053 		if (sb_notify(&so->so_snd))
   1054 			sowwakeup(so);
   1055 		tp->snd_una = ti->ti_ack;
   1056 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
   1057 			tp->snd_nxt = tp->snd_una;
   1058 
   1059 		switch (tp->t_state) {
   1060 
   1061 		/*
   1062 		 * In FIN_WAIT_1 STATE in addition to the processing
   1063 		 * for the ESTABLISHED state if our FIN is now acknowledged
   1064 		 * then enter FIN_WAIT_2.
   1065 		 */
   1066 		case TCPS_FIN_WAIT_1:
   1067 			if (ourfinisacked) {
   1068 				/*
   1069 				 * If we can't receive any more
   1070 				 * data, then closing user can proceed.
   1071 				 * Starting the timer is contrary to the
   1072 				 * specification, but if we don't get a FIN
   1073 				 * we'll hang forever.
   1074 				 */
   1075 				if (so->so_state & SS_CANTRCVMORE) {
   1076 					soisdisconnected(so);
   1077 					tp->t_timer[TCPT_2MSL] = tcp_maxidle;
   1078 				}
   1079 				tp->t_state = TCPS_FIN_WAIT_2;
   1080 			}
   1081 			break;
   1082 
   1083 	 	/*
   1084 		 * In CLOSING STATE in addition to the processing for
   1085 		 * the ESTABLISHED state if the ACK acknowledges our FIN
   1086 		 * then enter the TIME-WAIT state, otherwise ignore
   1087 		 * the segment.
   1088 		 */
   1089 		case TCPS_CLOSING:
   1090 			if (ourfinisacked) {
   1091 				tp->t_state = TCPS_TIME_WAIT;
   1092 				tcp_canceltimers(tp);
   1093 				tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
   1094 				soisdisconnected(so);
   1095 			}
   1096 			break;
   1097 
   1098 		/*
   1099 		 * In LAST_ACK, we may still be waiting for data to drain
   1100 		 * and/or to be acked, as well as for the ack of our FIN.
   1101 		 * If our FIN is now acknowledged, delete the TCB,
   1102 		 * enter the closed state and return.
   1103 		 */
   1104 		case TCPS_LAST_ACK:
   1105 			if (ourfinisacked) {
   1106 				tp = tcp_close(tp);
   1107 				goto drop;
   1108 			}
   1109 			break;
   1110 
   1111 		/*
   1112 		 * In TIME_WAIT state the only thing that should arrive
   1113 		 * is a retransmission of the remote FIN.  Acknowledge
   1114 		 * it and restart the finack timer.
   1115 		 */
   1116 		case TCPS_TIME_WAIT:
   1117 			tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
   1118 			goto dropafterack;
   1119 		}
   1120 	}
   1121 
   1122 step6:
   1123 	/*
   1124 	 * Update window information.
   1125 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
   1126 	 */
   1127 	if ((tiflags & TH_ACK) &&
   1128 	    (SEQ_LT(tp->snd_wl1, ti->ti_seq) || tp->snd_wl1 == ti->ti_seq &&
   1129 	    (SEQ_LT(tp->snd_wl2, ti->ti_ack) ||
   1130 	     tp->snd_wl2 == ti->ti_ack && tiwin > tp->snd_wnd))) {
   1131 		/* keep track of pure window updates */
   1132 		if (ti->ti_len == 0 &&
   1133 		    tp->snd_wl2 == ti->ti_ack && tiwin > tp->snd_wnd)
   1134 			tcpstat.tcps_rcvwinupd++;
   1135 		tp->snd_wnd = tiwin;
   1136 		tp->snd_wl1 = ti->ti_seq;
   1137 		tp->snd_wl2 = ti->ti_ack;
   1138 		if (tp->snd_wnd > tp->max_sndwnd)
   1139 			tp->max_sndwnd = tp->snd_wnd;
   1140 		needoutput = 1;
   1141 	}
   1142 
   1143 	/*
   1144 	 * Process segments with URG.
   1145 	 */
   1146 	if ((tiflags & TH_URG) && ti->ti_urp &&
   1147 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   1148 		/*
   1149 		 * This is a kludge, but if we receive and accept
   1150 		 * random urgent pointers, we'll crash in
   1151 		 * soreceive.  It's hard to imagine someone
   1152 		 * actually wanting to send this much urgent data.
   1153 		 */
   1154 		if (ti->ti_urp + so->so_rcv.sb_cc > sb_max) {
   1155 			ti->ti_urp = 0;			/* XXX */
   1156 			tiflags &= ~TH_URG;		/* XXX */
   1157 			goto dodata;			/* XXX */
   1158 		}
   1159 		/*
   1160 		 * If this segment advances the known urgent pointer,
   1161 		 * then mark the data stream.  This should not happen
   1162 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
   1163 		 * a FIN has been received from the remote side.
   1164 		 * In these states we ignore the URG.
   1165 		 *
   1166 		 * According to RFC961 (Assigned Protocols),
   1167 		 * the urgent pointer points to the last octet
   1168 		 * of urgent data.  We continue, however,
   1169 		 * to consider it to indicate the first octet
   1170 		 * of data past the urgent section as the original
   1171 		 * spec states (in one of two places).
   1172 		 */
   1173 		if (SEQ_GT(ti->ti_seq+ti->ti_urp, tp->rcv_up)) {
   1174 			tp->rcv_up = ti->ti_seq + ti->ti_urp;
   1175 			so->so_oobmark = so->so_rcv.sb_cc +
   1176 			    (tp->rcv_up - tp->rcv_nxt) - 1;
   1177 			if (so->so_oobmark == 0)
   1178 				so->so_state |= SS_RCVATMARK;
   1179 			sohasoutofband(so);
   1180 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
   1181 		}
   1182 		/*
   1183 		 * Remove out of band data so doesn't get presented to user.
   1184 		 * This can happen independent of advancing the URG pointer,
   1185 		 * but if two URG's are pending at once, some out-of-band
   1186 		 * data may creep in... ick.
   1187 		 */
   1188 		if (ti->ti_urp <= ti->ti_len
   1189 #ifdef SO_OOBINLINE
   1190 		     && (so->so_options & SO_OOBINLINE) == 0
   1191 #endif
   1192 		     )
   1193 			tcp_pulloutofband(so, ti, m);
   1194 	} else
   1195 		/*
   1196 		 * If no out of band data is expected,
   1197 		 * pull receive urgent pointer along
   1198 		 * with the receive window.
   1199 		 */
   1200 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
   1201 			tp->rcv_up = tp->rcv_nxt;
   1202 dodata:							/* XXX */
   1203 
   1204 	/*
   1205 	 * Process the segment text, merging it into the TCP sequencing queue,
   1206 	 * and arranging for acknowledgment of receipt if necessary.
   1207 	 * This process logically involves adjusting tp->rcv_wnd as data
   1208 	 * is presented to the user (this happens in tcp_usrreq.c,
   1209 	 * case PRU_RCVD).  If a FIN has already been received on this
   1210 	 * connection then we just ignore the text.
   1211 	 */
   1212 	if ((ti->ti_len || (tiflags&TH_FIN)) &&
   1213 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   1214 		TCP_REASS(tp, ti, m, so, tiflags);
   1215 		/*
   1216 		 * Note the amount of data that peer has sent into
   1217 		 * our window, in order to estimate the sender's
   1218 		 * buffer size.
   1219 		 */
   1220 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
   1221 	} else {
   1222 		m_freem(m);
   1223 		tiflags &= ~TH_FIN;
   1224 	}
   1225 
   1226 	/*
   1227 	 * If FIN is received ACK the FIN and let the user know
   1228 	 * that the connection is closing.
   1229 	 */
   1230 	if (tiflags & TH_FIN) {
   1231 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   1232 			socantrcvmore(so);
   1233 			tp->t_flags |= TF_ACKNOW;
   1234 			tp->rcv_nxt++;
   1235 		}
   1236 		switch (tp->t_state) {
   1237 
   1238 	 	/*
   1239 		 * In SYN_RECEIVED and ESTABLISHED STATES
   1240 		 * enter the CLOSE_WAIT state.
   1241 		 */
   1242 		case TCPS_SYN_RECEIVED:
   1243 		case TCPS_ESTABLISHED:
   1244 			tp->t_state = TCPS_CLOSE_WAIT;
   1245 			break;
   1246 
   1247 	 	/*
   1248 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
   1249 		 * enter the CLOSING state.
   1250 		 */
   1251 		case TCPS_FIN_WAIT_1:
   1252 			tp->t_state = TCPS_CLOSING;
   1253 			break;
   1254 
   1255 	 	/*
   1256 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
   1257 		 * starting the time-wait timer, turning off the other
   1258 		 * standard timers.
   1259 		 */
   1260 		case TCPS_FIN_WAIT_2:
   1261 			tp->t_state = TCPS_TIME_WAIT;
   1262 			tcp_canceltimers(tp);
   1263 			tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
   1264 			soisdisconnected(so);
   1265 			break;
   1266 
   1267 		/*
   1268 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
   1269 		 */
   1270 		case TCPS_TIME_WAIT:
   1271 			tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
   1272 			break;
   1273 		}
   1274 	}
   1275 	if (so->so_options & SO_DEBUG)
   1276 		tcp_trace(TA_INPUT, ostate, tp, &tcp_saveti, 0);
   1277 
   1278 	/*
   1279 	 * Return any desired output.
   1280 	 */
   1281 	if (needoutput || (tp->t_flags & TF_ACKNOW))
   1282 		(void) tcp_output(tp);
   1283 	return;
   1284 
   1285 dropafterack:
   1286 	/*
   1287 	 * Generate an ACK dropping incoming segment if it occupies
   1288 	 * sequence space, where the ACK reflects our state.
   1289 	 */
   1290 	if (tiflags & TH_RST)
   1291 		goto drop;
   1292 	m_freem(m);
   1293 	tp->t_flags |= TF_ACKNOW;
   1294 	(void) tcp_output(tp);
   1295 	return;
   1296 
   1297 dropwithreset:
   1298 	/*
   1299 	 * Generate a RST, dropping incoming segment.
   1300 	 * Make ACK acceptable to originator of segment.
   1301 	 * Don't bother to respond if destination was broadcast/multicast.
   1302 	 */
   1303 	if ((tiflags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST) ||
   1304 	    IN_MULTICAST(ti->ti_dst.s_addr))
   1305 		goto drop;
   1306 	if (tiflags & TH_ACK)
   1307 		tcp_respond(tp, ti, m, (tcp_seq)0, ti->ti_ack, TH_RST);
   1308 	else {
   1309 		if (tiflags & TH_SYN)
   1310 			ti->ti_len++;
   1311 		tcp_respond(tp, ti, m, ti->ti_seq+ti->ti_len, (tcp_seq)0,
   1312 		    TH_RST|TH_ACK);
   1313 	}
   1314 	/* destroy temporarily created socket */
   1315 	if (dropsocket)
   1316 		(void) soabort(so);
   1317 	return;
   1318 
   1319 drop:
   1320 	/*
   1321 	 * Drop space held by incoming segment and return.
   1322 	 */
   1323 	if (tp && (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
   1324 		tcp_trace(TA_DROP, ostate, tp, &tcp_saveti, 0);
   1325 	m_freem(m);
   1326 	/* destroy temporarily created socket */
   1327 	if (dropsocket)
   1328 		(void) soabort(so);
   1329 	return;
   1330 #ifndef TUBA_INCLUDE
   1331 }
   1332 
   1333 void
   1334 tcp_dooptions(tp, cp, cnt, ti, ts_present, ts_val, ts_ecr)
   1335 	struct tcpcb *tp;
   1336 	u_char *cp;
   1337 	int cnt;
   1338 	struct tcpiphdr *ti;
   1339 	int *ts_present;
   1340 	u_int32_t *ts_val, *ts_ecr;
   1341 {
   1342 	u_int16_t mss;
   1343 	int opt, optlen;
   1344 
   1345 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
   1346 		opt = cp[0];
   1347 		if (opt == TCPOPT_EOL)
   1348 			break;
   1349 		if (opt == TCPOPT_NOP)
   1350 			optlen = 1;
   1351 		else {
   1352 			optlen = cp[1];
   1353 			if (optlen <= 0)
   1354 				break;
   1355 		}
   1356 		switch (opt) {
   1357 
   1358 		default:
   1359 			continue;
   1360 
   1361 		case TCPOPT_MAXSEG:
   1362 			if (optlen != TCPOLEN_MAXSEG)
   1363 				continue;
   1364 			if (!(ti->ti_flags & TH_SYN))
   1365 				continue;
   1366 			bcopy((char *) cp + 2, (char *) &mss, sizeof(mss));
   1367 			NTOHS(mss);
   1368 			(void) tcp_mss(tp, mss);	/* sets t_maxseg */
   1369 			break;
   1370 
   1371 		case TCPOPT_WINDOW:
   1372 			if (optlen != TCPOLEN_WINDOW)
   1373 				continue;
   1374 			if (!(ti->ti_flags & TH_SYN))
   1375 				continue;
   1376 			tp->t_flags |= TF_RCVD_SCALE;
   1377 			tp->requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT);
   1378 			break;
   1379 
   1380 		case TCPOPT_TIMESTAMP:
   1381 			if (optlen != TCPOLEN_TIMESTAMP)
   1382 				continue;
   1383 			*ts_present = 1;
   1384 			bcopy((char *)cp + 2, (char *) ts_val, sizeof(*ts_val));
   1385 			NTOHL(*ts_val);
   1386 			bcopy((char *)cp + 6, (char *) ts_ecr, sizeof(*ts_ecr));
   1387 			NTOHL(*ts_ecr);
   1388 
   1389 			/*
   1390 			 * A timestamp received in a SYN makes
   1391 			 * it ok to send timestamp requests and replies.
   1392 			 */
   1393 			if (ti->ti_flags & TH_SYN) {
   1394 				tp->t_flags |= TF_RCVD_TSTMP;
   1395 				tp->ts_recent = *ts_val;
   1396 				tp->ts_recent_age = tcp_now;
   1397 			}
   1398 			break;
   1399 		}
   1400 	}
   1401 }
   1402 
   1403 /*
   1404  * Pull out of band byte out of a segment so
   1405  * it doesn't appear in the user's data queue.
   1406  * It is still reflected in the segment length for
   1407  * sequencing purposes.
   1408  */
   1409 void
   1410 tcp_pulloutofband(so, ti, m)
   1411 	struct socket *so;
   1412 	struct tcpiphdr *ti;
   1413 	register struct mbuf *m;
   1414 {
   1415 	int cnt = ti->ti_urp - 1;
   1416 
   1417 	while (cnt >= 0) {
   1418 		if (m->m_len > cnt) {
   1419 			char *cp = mtod(m, caddr_t) + cnt;
   1420 			struct tcpcb *tp = sototcpcb(so);
   1421 
   1422 			tp->t_iobc = *cp;
   1423 			tp->t_oobflags |= TCPOOB_HAVEDATA;
   1424 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
   1425 			m->m_len--;
   1426 			return;
   1427 		}
   1428 		cnt -= m->m_len;
   1429 		m = m->m_next;
   1430 		if (m == 0)
   1431 			break;
   1432 	}
   1433 	panic("tcp_pulloutofband");
   1434 }
   1435 
   1436 /*
   1437  * Collect new round-trip time estimate
   1438  * and update averages and current timeout.
   1439  */
   1440 void
   1441 tcp_xmit_timer(tp, rtt)
   1442 	register struct tcpcb *tp;
   1443 	short rtt;
   1444 {
   1445 	register short delta;
   1446 
   1447 	tcpstat.tcps_rttupdated++;
   1448 	--rtt;
   1449 	if (tp->t_srtt != 0) {
   1450 		/*
   1451 		 * srtt is stored as fixed point with 3 bits after the
   1452 		 * binary point (i.e., scaled by 8).  The following magic
   1453 		 * is equivalent to the smoothing algorithm in rfc793 with
   1454 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
   1455 		 * point).  Adjust rtt to origin 0.
   1456 		 */
   1457 		delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
   1458 		if ((tp->t_srtt += delta) <= 0)
   1459 			tp->t_srtt = 1;
   1460 		/*
   1461 		 * We accumulate a smoothed rtt variance (actually, a
   1462 		 * smoothed mean difference), then set the retransmit
   1463 		 * timer to smoothed rtt + 4 times the smoothed variance.
   1464 		 * rttvar is stored as fixed point with 2 bits after the
   1465 		 * binary point (scaled by 4).  The following is
   1466 		 * equivalent to rfc793 smoothing with an alpha of .75
   1467 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
   1468 		 * rfc793's wired-in beta.
   1469 		 */
   1470 		if (delta < 0)
   1471 			delta = -delta;
   1472 		delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
   1473 		if ((tp->t_rttvar += delta) <= 0)
   1474 			tp->t_rttvar = 1;
   1475 	} else {
   1476 		/*
   1477 		 * No rtt measurement yet - use the unsmoothed rtt.
   1478 		 * Set the variance to half the rtt (so our first
   1479 		 * retransmit happens at 3*rtt).
   1480 		 */
   1481 		tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
   1482 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
   1483 	}
   1484 	tp->t_rtt = 0;
   1485 	tp->t_rxtshift = 0;
   1486 
   1487 	/*
   1488 	 * the retransmit should happen at rtt + 4 * rttvar.
   1489 	 * Because of the way we do the smoothing, srtt and rttvar
   1490 	 * will each average +1/2 tick of bias.  When we compute
   1491 	 * the retransmit timer, we want 1/2 tick of rounding and
   1492 	 * 1 extra tick because of +-1/2 tick uncertainty in the
   1493 	 * firing of the timer.  The bias will give us exactly the
   1494 	 * 1.5 tick we need.  But, because the bias is
   1495 	 * statistical, we have to test that we don't drop below
   1496 	 * the minimum feasible timer (which is 2 ticks).
   1497 	 */
   1498 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
   1499 	    rtt + 2, TCPTV_REXMTMAX);
   1500 
   1501 	/*
   1502 	 * We received an ack for a packet that wasn't retransmitted;
   1503 	 * it is probably safe to discard any error indications we've
   1504 	 * received recently.  This isn't quite right, but close enough
   1505 	 * for now (a route might have failed after we sent a segment,
   1506 	 * and the return path might not be symmetrical).
   1507 	 */
   1508 	tp->t_softerror = 0;
   1509 }
   1510 
   1511 /*
   1512  * Determine a reasonable value for maxseg size.
   1513  * If the route is known, check route for mtu.
   1514  * If none, use an mss that can be handled on the outgoing
   1515  * interface without forcing IP to fragment; if bigger than
   1516  * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
   1517  * to utilize large mbufs.  If no route is found, route has no mtu,
   1518  * or the destination isn't local, use a default, hopefully conservative
   1519  * size (usually 512 or the default IP max size, but no more than the mtu
   1520  * of the interface), as we can't discover anything about intervening
   1521  * gateways or networks.  We also initialize the congestion/slow start
   1522  * window to be a single segment if the destination isn't local.
   1523  * While looking at the routing entry, we also initialize other path-dependent
   1524  * parameters from pre-set or cached values in the routing entry.
   1525  */
   1526 int
   1527 tcp_mss(tp, offer)
   1528 	register struct tcpcb *tp;
   1529 	u_int offer;
   1530 {
   1531 	struct route *ro;
   1532 	register struct rtentry *rt;
   1533 	struct ifnet *ifp;
   1534 	register int rtt, mss;
   1535 	u_long bufsize;
   1536 	struct inpcb *inp;
   1537 	struct socket *so;
   1538 	extern int tcp_mssdflt;
   1539 
   1540 	inp = tp->t_inpcb;
   1541 	ro = &inp->inp_route;
   1542 
   1543 	if ((rt = ro->ro_rt) == (struct rtentry *)0) {
   1544 		/* No route yet, so try to acquire one */
   1545 		if (inp->inp_faddr.s_addr != INADDR_ANY) {
   1546 			ro->ro_dst.sa_family = AF_INET;
   1547 			ro->ro_dst.sa_len = sizeof(ro->ro_dst);
   1548 			satosin(&ro->ro_dst)->sin_addr = inp->inp_faddr;
   1549 			rtalloc(ro);
   1550 		}
   1551 		if ((rt = ro->ro_rt) == (struct rtentry *)0)
   1552 			return (tcp_mssdflt);
   1553 	}
   1554 	ifp = rt->rt_ifp;
   1555 	so = inp->inp_socket;
   1556 
   1557 #ifdef RTV_MTU	/* if route characteristics exist ... */
   1558 	/*
   1559 	 * While we're here, check if there's an initial rtt
   1560 	 * or rttvar.  Convert from the route-table units
   1561 	 * to scaled multiples of the slow timeout timer.
   1562 	 */
   1563 	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
   1564 		/*
   1565 		 * XXX the lock bit for MTU indicates that the value
   1566 		 * is also a minimum value; this is subject to time.
   1567 		 */
   1568 		if (rt->rt_rmx.rmx_locks & RTV_RTT)
   1569 			tp->t_rttmin = rtt / (RTM_RTTUNIT / PR_SLOWHZ);
   1570 		tp->t_srtt = rtt / (RTM_RTTUNIT / (PR_SLOWHZ * TCP_RTT_SCALE));
   1571 		if (rt->rt_rmx.rmx_rttvar)
   1572 			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
   1573 			    (RTM_RTTUNIT / (PR_SLOWHZ * TCP_RTTVAR_SCALE));
   1574 		else
   1575 			/* default variation is +- 1 rtt */
   1576 			tp->t_rttvar =
   1577 			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
   1578 		TCPT_RANGESET(tp->t_rxtcur,
   1579 		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
   1580 		    tp->t_rttmin, TCPTV_REXMTMAX);
   1581 	}
   1582 	/*
   1583 	 * if there's an mtu associated with the route, use it
   1584 	 */
   1585 	if (rt->rt_rmx.rmx_mtu)
   1586 		mss = rt->rt_rmx.rmx_mtu - sizeof(struct tcpiphdr);
   1587 	else
   1588 #endif /* RTV_MTU */
   1589 	{
   1590 		mss = ifp->if_mtu - sizeof(struct tcpiphdr);
   1591 #if	(MCLBYTES & (MCLBYTES - 1)) == 0
   1592 		if (mss > MCLBYTES)
   1593 			mss &= ~(MCLBYTES-1);
   1594 #else
   1595 		if (mss > MCLBYTES)
   1596 			mss = mss / MCLBYTES * MCLBYTES;
   1597 #endif
   1598 		if (!in_localaddr(inp->inp_faddr))
   1599 			mss = min(mss, tcp_mssdflt);
   1600 	}
   1601 	/*
   1602 	 * The current mss, t_maxseg, is initialized to the default value.
   1603 	 * If we compute a smaller value, reduce the current mss.
   1604 	 * If we compute a larger value, return it for use in sending
   1605 	 * a max seg size option, but don't store it for use
   1606 	 * unless we received an offer at least that large from peer.
   1607 	 * However, do not accept offers under 32 bytes.
   1608 	 */
   1609 	if (offer)
   1610 		mss = min(mss, offer);
   1611 	mss = max(mss, 32);		/* sanity */
   1612 	if (mss < tp->t_maxseg || offer != 0) {
   1613 		/*
   1614 		 * If there's a pipesize, change the socket buffer
   1615 		 * to that size.  Make the socket buffers an integral
   1616 		 * number of mss units; if the mss is larger than
   1617 		 * the socket buffer, decrease the mss.
   1618 		 */
   1619 #ifdef RTV_SPIPE
   1620 		if ((bufsize = rt->rt_rmx.rmx_sendpipe) == 0)
   1621 #endif
   1622 			bufsize = so->so_snd.sb_hiwat;
   1623 		if (bufsize < mss)
   1624 			mss = bufsize;
   1625 		else {
   1626 			bufsize = roundup(bufsize, mss);
   1627 			if (bufsize > sb_max)
   1628 				bufsize = sb_max;
   1629 			(void)sbreserve(&so->so_snd, bufsize);
   1630 		}
   1631 		tp->t_maxseg = mss;
   1632 
   1633 #ifdef RTV_RPIPE
   1634 		if ((bufsize = rt->rt_rmx.rmx_recvpipe) == 0)
   1635 #endif
   1636 			bufsize = so->so_rcv.sb_hiwat;
   1637 		if (bufsize > mss) {
   1638 			bufsize = roundup(bufsize, mss);
   1639 			if (bufsize > sb_max)
   1640 				bufsize = sb_max;
   1641 			(void)sbreserve(&so->so_rcv, bufsize);
   1642 		}
   1643 	}
   1644 	tp->snd_cwnd = mss;
   1645 
   1646 #ifdef RTV_SSTHRESH
   1647 	if (rt->rt_rmx.rmx_ssthresh) {
   1648 		/*
   1649 		 * There's some sort of gateway or interface
   1650 		 * buffer limit on the path.  Use this to set
   1651 		 * the slow start threshhold, but set the
   1652 		 * threshold to no less than 2*mss.
   1653 		 */
   1654 		tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
   1655 	}
   1656 #endif /* RTV_MTU */
   1657 	return (mss);
   1658 }
   1659 #endif /* TUBA_INCLUDE */
   1660