tcp_input.c revision 1.204 1 /* $NetBSD: tcp_input.c,v 1.204 2004/04/27 14:46:07 matt Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * @(#)COPYRIGHT 1.1 (NRL) 17 January 1995
34 *
35 * NRL grants permission for redistribution and use in source and binary
36 * forms, with or without modification, of the software and documentation
37 * created at NRL provided that the following conditions are met:
38 *
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgements:
46 * This product includes software developed by the University of
47 * California, Berkeley and its contributors.
48 * This product includes software developed at the Information
49 * Technology Division, US Naval Research Laboratory.
50 * 4. Neither the name of the NRL nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
55 * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
57 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NRL OR
58 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
59 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
61 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
62 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
63 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
64 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65 *
66 * The views and conclusions contained in the software and documentation
67 * are those of the authors and should not be interpreted as representing
68 * official policies, either expressed or implied, of the US Naval
69 * Research Laboratory (NRL).
70 */
71
72 /*-
73 * Copyright (c) 1997, 1998, 1999, 2001 The NetBSD Foundation, Inc.
74 * All rights reserved.
75 *
76 * This code is derived from software contributed to The NetBSD Foundation
77 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
78 * Facility, NASA Ames Research Center.
79 *
80 * Redistribution and use in source and binary forms, with or without
81 * modification, are permitted provided that the following conditions
82 * are met:
83 * 1. Redistributions of source code must retain the above copyright
84 * notice, this list of conditions and the following disclaimer.
85 * 2. Redistributions in binary form must reproduce the above copyright
86 * notice, this list of conditions and the following disclaimer in the
87 * documentation and/or other materials provided with the distribution.
88 * 3. All advertising materials mentioning features or use of this software
89 * must display the following acknowledgement:
90 * This product includes software developed by the NetBSD
91 * Foundation, Inc. and its contributors.
92 * 4. Neither the name of The NetBSD Foundation nor the names of its
93 * contributors may be used to endorse or promote products derived
94 * from this software without specific prior written permission.
95 *
96 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
97 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
98 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
99 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
100 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
101 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
102 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
103 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
104 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
105 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
106 * POSSIBILITY OF SUCH DAMAGE.
107 */
108
109 /*
110 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
111 * The Regents of the University of California. All rights reserved.
112 *
113 * Redistribution and use in source and binary forms, with or without
114 * modification, are permitted provided that the following conditions
115 * are met:
116 * 1. Redistributions of source code must retain the above copyright
117 * notice, this list of conditions and the following disclaimer.
118 * 2. Redistributions in binary form must reproduce the above copyright
119 * notice, this list of conditions and the following disclaimer in the
120 * documentation and/or other materials provided with the distribution.
121 * 3. Neither the name of the University nor the names of its contributors
122 * may be used to endorse or promote products derived from this software
123 * without specific prior written permission.
124 *
125 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
126 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
127 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
128 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
129 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
130 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
131 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
132 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
133 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
134 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
135 * SUCH DAMAGE.
136 *
137 * @(#)tcp_input.c 8.12 (Berkeley) 5/24/95
138 */
139
140 /*
141 * TODO list for SYN cache stuff:
142 *
143 * Find room for a "state" field, which is needed to keep a
144 * compressed state for TIME_WAIT TCBs. It's been noted already
145 * that this is fairly important for very high-volume web and
146 * mail servers, which use a large number of short-lived
147 * connections.
148 */
149
150 #include <sys/cdefs.h>
151 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.204 2004/04/27 14:46:07 matt Exp $");
152
153 #include "opt_inet.h"
154 #include "opt_ipsec.h"
155 #include "opt_inet_csum.h"
156 #include "opt_tcp_debug.h"
157
158 #include <sys/param.h>
159 #include <sys/systm.h>
160 #include <sys/malloc.h>
161 #include <sys/mbuf.h>
162 #include <sys/protosw.h>
163 #include <sys/socket.h>
164 #include <sys/socketvar.h>
165 #include <sys/errno.h>
166 #include <sys/syslog.h>
167 #include <sys/pool.h>
168 #include <sys/domain.h>
169 #include <sys/kernel.h>
170
171 #include <net/if.h>
172 #include <net/route.h>
173 #include <net/if_types.h>
174
175 #include <netinet/in.h>
176 #include <netinet/in_systm.h>
177 #include <netinet/ip.h>
178 #include <netinet/in_pcb.h>
179 #include <netinet/in_var.h>
180 #include <netinet/ip_var.h>
181
182 #ifdef INET6
183 #ifndef INET
184 #include <netinet/in.h>
185 #endif
186 #include <netinet/ip6.h>
187 #include <netinet6/ip6_var.h>
188 #include <netinet6/in6_pcb.h>
189 #include <netinet6/ip6_var.h>
190 #include <netinet6/in6_var.h>
191 #include <netinet/icmp6.h>
192 #include <netinet6/nd6.h>
193 #endif
194
195 #ifndef INET6
196 /* always need ip6.h for IP6_EXTHDR_GET */
197 #include <netinet/ip6.h>
198 #endif
199
200 #include <netinet/tcp.h>
201 #include <netinet/tcp_fsm.h>
202 #include <netinet/tcp_seq.h>
203 #include <netinet/tcp_timer.h>
204 #include <netinet/tcp_var.h>
205 #include <netinet/tcpip.h>
206 #include <netinet/tcp_debug.h>
207
208 #include <machine/stdarg.h>
209
210 #ifdef IPSEC
211 #include <netinet6/ipsec.h>
212 #include <netkey/key.h>
213 #endif /*IPSEC*/
214 #ifdef INET6
215 #include "faith.h"
216 #if defined(NFAITH) && NFAITH > 0
217 #include <net/if_faith.h>
218 #endif
219 #endif /* IPSEC */
220
221 #ifdef FAST_IPSEC
222 #include <netipsec/ipsec.h>
223 #include <netipsec/key.h>
224 #ifdef INET6
225 #include <netipsec/ipsec6.h>
226 #endif
227 #endif /* FAST_IPSEC*/
228
229
230 int tcprexmtthresh = 3;
231 int tcp_log_refused;
232
233 static int tcp_rst_ppslim_count = 0;
234 static struct timeval tcp_rst_ppslim_last;
235 static int tcp_ackdrop_ppslim_count = 0;
236 static struct timeval tcp_ackdrop_ppslim_last;
237
238 #define TCP_PAWS_IDLE (24 * 24 * 60 * 60 * PR_SLOWHZ)
239
240 /* for modulo comparisons of timestamps */
241 #define TSTMP_LT(a,b) ((int)((a)-(b)) < 0)
242 #define TSTMP_GEQ(a,b) ((int)((a)-(b)) >= 0)
243
244 /*
245 * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
246 */
247 #ifdef INET6
248 #define ND6_HINT(tp) \
249 do { \
250 if (tp && tp->t_in6pcb && tp->t_family == AF_INET6 && \
251 tp->t_in6pcb->in6p_route.ro_rt) { \
252 nd6_nud_hint(tp->t_in6pcb->in6p_route.ro_rt, NULL, 0); \
253 } \
254 } while (/*CONSTCOND*/ 0)
255 #else
256 #define ND6_HINT(tp)
257 #endif
258
259 /*
260 * Macro to compute ACK transmission behavior. Delay the ACK unless
261 * we have already delayed an ACK (must send an ACK every two segments).
262 * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
263 * option is enabled.
264 */
265 #define TCP_SETUP_ACK(tp, th) \
266 do { \
267 if ((tp)->t_flags & TF_DELACK || \
268 (tcp_ack_on_push && (th)->th_flags & TH_PUSH)) \
269 tp->t_flags |= TF_ACKNOW; \
270 else \
271 TCP_SET_DELACK(tp); \
272 } while (/*CONSTCOND*/ 0)
273
274 /*
275 * Convert TCP protocol fields to host order for easier processing.
276 */
277 #define TCP_FIELDS_TO_HOST(th) \
278 do { \
279 NTOHL((th)->th_seq); \
280 NTOHL((th)->th_ack); \
281 NTOHS((th)->th_win); \
282 NTOHS((th)->th_urp); \
283 } while (/*CONSTCOND*/ 0)
284
285 /*
286 * ... and reverse the above.
287 */
288 #define TCP_FIELDS_TO_NET(th) \
289 do { \
290 HTONL((th)->th_seq); \
291 HTONL((th)->th_ack); \
292 HTONS((th)->th_win); \
293 HTONS((th)->th_urp); \
294 } while (/*CONSTCOND*/ 0)
295
296 #ifdef TCP_CSUM_COUNTERS
297 #include <sys/device.h>
298
299 extern struct evcnt tcp_hwcsum_ok;
300 extern struct evcnt tcp_hwcsum_bad;
301 extern struct evcnt tcp_hwcsum_data;
302 extern struct evcnt tcp_swcsum;
303
304 #define TCP_CSUM_COUNTER_INCR(ev) (ev)->ev_count++
305
306 #else
307
308 #define TCP_CSUM_COUNTER_INCR(ev) /* nothing */
309
310 #endif /* TCP_CSUM_COUNTERS */
311
312 #ifdef TCP_REASS_COUNTERS
313 #include <sys/device.h>
314
315 extern struct evcnt tcp_reass_;
316 extern struct evcnt tcp_reass_empty;
317 extern struct evcnt tcp_reass_iteration[8];
318 extern struct evcnt tcp_reass_prependfirst;
319 extern struct evcnt tcp_reass_prepend;
320 extern struct evcnt tcp_reass_insert;
321 extern struct evcnt tcp_reass_inserttail;
322 extern struct evcnt tcp_reass_append;
323 extern struct evcnt tcp_reass_appendtail;
324 extern struct evcnt tcp_reass_overlaptail;
325 extern struct evcnt tcp_reass_overlapfront;
326 extern struct evcnt tcp_reass_segdup;
327 extern struct evcnt tcp_reass_fragdup;
328
329 #define TCP_REASS_COUNTER_INCR(ev) (ev)->ev_count++
330
331 #else
332
333 #define TCP_REASS_COUNTER_INCR(ev) /* nothing */
334
335 #endif /* TCP_REASS_COUNTERS */
336
337 #ifdef INET
338 static void tcp4_log_refused __P((const struct ip *, const struct tcphdr *));
339 #endif
340 #ifdef INET6
341 static void tcp6_log_refused
342 __P((const struct ip6_hdr *, const struct tcphdr *));
343 #endif
344
345 #define TRAVERSE(x) while ((x)->m_next) (x) = (x)->m_next
346
347 int
348 tcp_reass(tp, th, m, tlen)
349 struct tcpcb *tp;
350 struct tcphdr *th;
351 struct mbuf *m;
352 int *tlen;
353 {
354 struct ipqent *p, *q, *nq, *tiqe = NULL;
355 struct socket *so = NULL;
356 int pkt_flags;
357 tcp_seq pkt_seq;
358 unsigned pkt_len;
359 u_long rcvpartdupbyte = 0;
360 u_long rcvoobyte;
361 #ifdef TCP_REASS_COUNTERS
362 u_int count = 0;
363 #endif
364
365 if (tp->t_inpcb)
366 so = tp->t_inpcb->inp_socket;
367 #ifdef INET6
368 else if (tp->t_in6pcb)
369 so = tp->t_in6pcb->in6p_socket;
370 #endif
371
372 TCP_REASS_LOCK_CHECK(tp);
373
374 /*
375 * Call with th==0 after become established to
376 * force pre-ESTABLISHED data up to user socket.
377 */
378 if (th == 0)
379 goto present;
380
381 rcvoobyte = *tlen;
382 /*
383 * Copy these to local variables because the tcpiphdr
384 * gets munged while we are collapsing mbufs.
385 */
386 pkt_seq = th->th_seq;
387 pkt_len = *tlen;
388 pkt_flags = th->th_flags;
389
390 TCP_REASS_COUNTER_INCR(&tcp_reass_);
391
392 if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
393 /*
394 * When we miss a packet, the vast majority of time we get
395 * packets that follow it in order. So optimize for that.
396 */
397 if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
398 p->ipqe_len += pkt_len;
399 p->ipqe_flags |= pkt_flags;
400 m_cat(p->ipre_mlast, m);
401 TRAVERSE(p->ipre_mlast);
402 m = NULL;
403 tiqe = p;
404 TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
405 TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
406 goto skip_replacement;
407 }
408 /*
409 * While we're here, if the pkt is completely beyond
410 * anything we have, just insert it at the tail.
411 */
412 if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
413 TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
414 goto insert_it;
415 }
416 }
417
418 q = TAILQ_FIRST(&tp->segq);
419
420 if (q != NULL) {
421 /*
422 * If this segment immediately precedes the first out-of-order
423 * block, simply slap the segment in front of it and (mostly)
424 * skip the complicated logic.
425 */
426 if (pkt_seq + pkt_len == q->ipqe_seq) {
427 q->ipqe_seq = pkt_seq;
428 q->ipqe_len += pkt_len;
429 q->ipqe_flags |= pkt_flags;
430 m_cat(m, q->ipqe_m);
431 q->ipqe_m = m;
432 q->ipre_mlast = m; /* last mbuf may have changed */
433 TRAVERSE(q->ipre_mlast);
434 tiqe = q;
435 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
436 TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
437 goto skip_replacement;
438 }
439 } else {
440 TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
441 }
442
443 /*
444 * Find a segment which begins after this one does.
445 */
446 for (p = NULL; q != NULL; q = nq) {
447 nq = TAILQ_NEXT(q, ipqe_q);
448 #ifdef TCP_REASS_COUNTERS
449 count++;
450 #endif
451 /*
452 * If the received segment is just right after this
453 * fragment, merge the two together and then check
454 * for further overlaps.
455 */
456 if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
457 #ifdef TCPREASS_DEBUG
458 printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
459 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
460 q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
461 #endif
462 pkt_len += q->ipqe_len;
463 pkt_flags |= q->ipqe_flags;
464 pkt_seq = q->ipqe_seq;
465 m_cat(q->ipre_mlast, m);
466 TRAVERSE(q->ipre_mlast);
467 m = q->ipqe_m;
468 TCP_REASS_COUNTER_INCR(&tcp_reass_append);
469 goto free_ipqe;
470 }
471 /*
472 * If the received segment is completely past this
473 * fragment, we need to go the next fragment.
474 */
475 if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
476 p = q;
477 continue;
478 }
479 /*
480 * If the fragment is past the received segment,
481 * it (or any following) can't be concatenated.
482 */
483 if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
484 TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
485 break;
486 }
487
488 /*
489 * We've received all the data in this segment before.
490 * mark it as a duplicate and return.
491 */
492 if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
493 SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
494 tcpstat.tcps_rcvduppack++;
495 tcpstat.tcps_rcvdupbyte += pkt_len;
496 m_freem(m);
497 if (tiqe != NULL)
498 pool_put(&ipqent_pool, tiqe);
499 TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
500 return (0);
501 }
502 /*
503 * Received segment completely overlaps this fragment
504 * so we drop the fragment (this keeps the temporal
505 * ordering of segments correct).
506 */
507 if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
508 SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
509 rcvpartdupbyte += q->ipqe_len;
510 m_freem(q->ipqe_m);
511 TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
512 goto free_ipqe;
513 }
514 /*
515 * RX'ed segment extends past the end of the
516 * fragment. Drop the overlapping bytes. Then
517 * merge the fragment and segment then treat as
518 * a longer received packet.
519 */
520 if (SEQ_LT(q->ipqe_seq, pkt_seq) &&
521 SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
522 int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
523 #ifdef TCPREASS_DEBUG
524 printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
525 tp, overlap,
526 pkt_seq, pkt_seq + pkt_len, pkt_len);
527 #endif
528 m_adj(m, overlap);
529 rcvpartdupbyte += overlap;
530 m_cat(q->ipre_mlast, m);
531 TRAVERSE(q->ipre_mlast);
532 m = q->ipqe_m;
533 pkt_seq = q->ipqe_seq;
534 pkt_len += q->ipqe_len - overlap;
535 rcvoobyte -= overlap;
536 TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
537 goto free_ipqe;
538 }
539 /*
540 * RX'ed segment extends past the front of the
541 * fragment. Drop the overlapping bytes on the
542 * received packet. The packet will then be
543 * contatentated with this fragment a bit later.
544 */
545 if (SEQ_GT(q->ipqe_seq, pkt_seq) &&
546 SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len)) {
547 int overlap = pkt_seq + pkt_len - q->ipqe_seq;
548 #ifdef TCPREASS_DEBUG
549 printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
550 tp, overlap,
551 pkt_seq, pkt_seq + pkt_len, pkt_len);
552 #endif
553 m_adj(m, -overlap);
554 pkt_len -= overlap;
555 rcvpartdupbyte += overlap;
556 TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
557 rcvoobyte -= overlap;
558 }
559 /*
560 * If the received segment immediates precedes this
561 * fragment then tack the fragment onto this segment
562 * and reinsert the data.
563 */
564 if (q->ipqe_seq == pkt_seq + pkt_len) {
565 #ifdef TCPREASS_DEBUG
566 printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
567 tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
568 pkt_seq, pkt_seq + pkt_len, pkt_len);
569 #endif
570 pkt_len += q->ipqe_len;
571 pkt_flags |= q->ipqe_flags;
572 m_cat(m, q->ipqe_m);
573 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
574 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
575 if (tiqe == NULL)
576 tiqe = q;
577 else
578 pool_put(&ipqent_pool, q);
579 TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
580 break;
581 }
582 /*
583 * If the fragment is before the segment, remember it.
584 * When this loop is terminated, p will contain the
585 * pointer to fragment that is right before the received
586 * segment.
587 */
588 if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
589 p = q;
590
591 continue;
592
593 /*
594 * This is a common operation. It also will allow
595 * to save doing a malloc/free in most instances.
596 */
597 free_ipqe:
598 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
599 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
600 if (tiqe == NULL)
601 tiqe = q;
602 else
603 pool_put(&ipqent_pool, q);
604 }
605
606 #ifdef TCP_REASS_COUNTERS
607 if (count > 7)
608 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
609 else if (count > 0)
610 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
611 #endif
612
613 insert_it:
614
615 /*
616 * Allocate a new queue entry since the received segment did not
617 * collapse onto any other out-of-order block; thus we are allocating
618 * a new block. If it had collapsed, tiqe would not be NULL and
619 * we would be reusing it.
620 * XXX If we can't, just drop the packet. XXX
621 */
622 if (tiqe == NULL) {
623 tiqe = pool_get(&ipqent_pool, PR_NOWAIT);
624 if (tiqe == NULL) {
625 tcpstat.tcps_rcvmemdrop++;
626 m_freem(m);
627 return (0);
628 }
629 }
630
631 /*
632 * Update the counters.
633 */
634 tcpstat.tcps_rcvoopack++;
635 tcpstat.tcps_rcvoobyte += rcvoobyte;
636 if (rcvpartdupbyte) {
637 tcpstat.tcps_rcvpartduppack++;
638 tcpstat.tcps_rcvpartdupbyte += rcvpartdupbyte;
639 }
640
641 /*
642 * Insert the new fragment queue entry into both queues.
643 */
644 tiqe->ipqe_m = m;
645 tiqe->ipre_mlast = m;
646 tiqe->ipqe_seq = pkt_seq;
647 tiqe->ipqe_len = pkt_len;
648 tiqe->ipqe_flags = pkt_flags;
649 if (p == NULL) {
650 TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
651 #ifdef TCPREASS_DEBUG
652 if (tiqe->ipqe_seq != tp->rcv_nxt)
653 printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
654 tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
655 #endif
656 } else {
657 TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
658 #ifdef TCPREASS_DEBUG
659 printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
660 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
661 p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
662 #endif
663 }
664
665 skip_replacement:
666
667 TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
668
669 present:
670 /*
671 * Present data to user, advancing rcv_nxt through
672 * completed sequence space.
673 */
674 if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
675 return (0);
676 q = TAILQ_FIRST(&tp->segq);
677 if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
678 return (0);
679 if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
680 return (0);
681
682 tp->rcv_nxt += q->ipqe_len;
683 pkt_flags = q->ipqe_flags & TH_FIN;
684 ND6_HINT(tp);
685
686 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
687 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
688 if (so->so_state & SS_CANTRCVMORE)
689 m_freem(q->ipqe_m);
690 else
691 sbappendstream(&so->so_rcv, q->ipqe_m);
692 pool_put(&ipqent_pool, q);
693 sorwakeup(so);
694 return (pkt_flags);
695 }
696
697 #ifdef INET6
698 int
699 tcp6_input(mp, offp, proto)
700 struct mbuf **mp;
701 int *offp, proto;
702 {
703 struct mbuf *m = *mp;
704
705 /*
706 * draft-itojun-ipv6-tcp-to-anycast
707 * better place to put this in?
708 */
709 if (m->m_flags & M_ANYCAST6) {
710 struct ip6_hdr *ip6;
711 if (m->m_len < sizeof(struct ip6_hdr)) {
712 if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
713 tcpstat.tcps_rcvshort++;
714 return IPPROTO_DONE;
715 }
716 }
717 ip6 = mtod(m, struct ip6_hdr *);
718 icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
719 (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
720 return IPPROTO_DONE;
721 }
722
723 tcp_input(m, *offp, proto);
724 return IPPROTO_DONE;
725 }
726 #endif
727
728 #ifdef INET
729 static void
730 tcp4_log_refused(ip, th)
731 const struct ip *ip;
732 const struct tcphdr *th;
733 {
734 char src[4*sizeof "123"];
735 char dst[4*sizeof "123"];
736
737 if (ip) {
738 strlcpy(src, inet_ntoa(ip->ip_src), sizeof(src));
739 strlcpy(dst, inet_ntoa(ip->ip_dst), sizeof(dst));
740 }
741 else {
742 strlcpy(src, "(unknown)", sizeof(src));
743 strlcpy(dst, "(unknown)", sizeof(dst));
744 }
745 log(LOG_INFO,
746 "Connection attempt to TCP %s:%d from %s:%d\n",
747 dst, ntohs(th->th_dport),
748 src, ntohs(th->th_sport));
749 }
750 #endif
751
752 #ifdef INET6
753 static void
754 tcp6_log_refused(ip6, th)
755 const struct ip6_hdr *ip6;
756 const struct tcphdr *th;
757 {
758 char src[INET6_ADDRSTRLEN];
759 char dst[INET6_ADDRSTRLEN];
760
761 if (ip6) {
762 strlcpy(src, ip6_sprintf(&ip6->ip6_src), sizeof(src));
763 strlcpy(dst, ip6_sprintf(&ip6->ip6_dst), sizeof(dst));
764 }
765 else {
766 strlcpy(src, "(unknown v6)", sizeof(src));
767 strlcpy(dst, "(unknown v6)", sizeof(dst));
768 }
769 log(LOG_INFO,
770 "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
771 dst, ntohs(th->th_dport),
772 src, ntohs(th->th_sport));
773 }
774 #endif
775
776 /*
777 * TCP input routine, follows pages 65-76 of the
778 * protocol specification dated September, 1981 very closely.
779 */
780 void
781 tcp_input(struct mbuf *m, ...)
782 {
783 struct tcphdr *th;
784 struct ip *ip;
785 struct inpcb *inp;
786 #ifdef INET6
787 struct ip6_hdr *ip6;
788 struct in6pcb *in6p;
789 #endif
790 u_int8_t *optp = NULL;
791 int optlen = 0;
792 int len, tlen, toff, hdroptlen = 0;
793 struct tcpcb *tp = 0;
794 int tiflags;
795 struct socket *so = NULL;
796 int todrop, acked, ourfinisacked, needoutput = 0;
797 #ifdef TCP_DEBUG
798 short ostate = 0;
799 #endif
800 int iss = 0;
801 u_long tiwin;
802 struct tcp_opt_info opti;
803 int off, iphlen;
804 va_list ap;
805 int af; /* af on the wire */
806 struct mbuf *tcp_saveti = NULL;
807
808 MCLAIM(m, &tcp_rx_mowner);
809 va_start(ap, m);
810 toff = va_arg(ap, int);
811 (void)va_arg(ap, int); /* ignore value, advance ap */
812 va_end(ap);
813
814 tcpstat.tcps_rcvtotal++;
815
816 bzero(&opti, sizeof(opti));
817 opti.ts_present = 0;
818 opti.maxseg = 0;
819
820 /*
821 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
822 *
823 * TCP is, by definition, unicast, so we reject all
824 * multicast outright.
825 *
826 * Note, there are additional src/dst address checks in
827 * the AF-specific code below.
828 */
829 if (m->m_flags & (M_BCAST|M_MCAST)) {
830 /* XXX stat */
831 goto drop;
832 }
833 #ifdef INET6
834 if (m->m_flags & M_ANYCAST6) {
835 /* XXX stat */
836 goto drop;
837 }
838 #endif
839
840 /*
841 * Get IP and TCP header.
842 * Note: IP leaves IP header in first mbuf.
843 */
844 ip = mtod(m, struct ip *);
845 #ifdef INET6
846 ip6 = NULL;
847 #endif
848 switch (ip->ip_v) {
849 #ifdef INET
850 case 4:
851 af = AF_INET;
852 iphlen = sizeof(struct ip);
853 ip = mtod(m, struct ip *);
854 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
855 sizeof(struct tcphdr));
856 if (th == NULL) {
857 tcpstat.tcps_rcvshort++;
858 return;
859 }
860 /* We do the checksum after PCB lookup... */
861 len = ntohs(ip->ip_len);
862 tlen = len - toff;
863 break;
864 #endif
865 #ifdef INET6
866 case 6:
867 ip = NULL;
868 iphlen = sizeof(struct ip6_hdr);
869 af = AF_INET6;
870 ip6 = mtod(m, struct ip6_hdr *);
871 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
872 sizeof(struct tcphdr));
873 if (th == NULL) {
874 tcpstat.tcps_rcvshort++;
875 return;
876 }
877
878 /* Be proactive about malicious use of IPv4 mapped address */
879 if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
880 IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
881 /* XXX stat */
882 goto drop;
883 }
884
885 /*
886 * Be proactive about unspecified IPv6 address in source.
887 * As we use all-zero to indicate unbounded/unconnected pcb,
888 * unspecified IPv6 address can be used to confuse us.
889 *
890 * Note that packets with unspecified IPv6 destination is
891 * already dropped in ip6_input.
892 */
893 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
894 /* XXX stat */
895 goto drop;
896 }
897
898 /*
899 * Make sure destination address is not multicast.
900 * Source address checked in ip6_input().
901 */
902 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
903 /* XXX stat */
904 goto drop;
905 }
906
907 /* We do the checksum after PCB lookup... */
908 len = m->m_pkthdr.len;
909 tlen = len - toff;
910 break;
911 #endif
912 default:
913 m_freem(m);
914 return;
915 }
916
917 KASSERT(TCP_HDR_ALIGNED_P(th));
918
919 /*
920 * Check that TCP offset makes sense,
921 * pull out TCP options and adjust length. XXX
922 */
923 off = th->th_off << 2;
924 if (off < sizeof (struct tcphdr) || off > tlen) {
925 tcpstat.tcps_rcvbadoff++;
926 goto drop;
927 }
928 tlen -= off;
929
930 /*
931 * tcp_input() has been modified to use tlen to mean the TCP data
932 * length throughout the function. Other functions can use
933 * m->m_pkthdr.len as the basis for calculating the TCP data length.
934 * rja
935 */
936
937 if (off > sizeof (struct tcphdr)) {
938 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
939 if (th == NULL) {
940 tcpstat.tcps_rcvshort++;
941 return;
942 }
943 /*
944 * NOTE: ip/ip6 will not be affected by m_pulldown()
945 * (as they're before toff) and we don't need to update those.
946 */
947 KASSERT(TCP_HDR_ALIGNED_P(th));
948 optlen = off - sizeof (struct tcphdr);
949 optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
950 /*
951 * Do quick retrieval of timestamp options ("options
952 * prediction?"). If timestamp is the only option and it's
953 * formatted as recommended in RFC 1323 appendix A, we
954 * quickly get the values now and not bother calling
955 * tcp_dooptions(), etc.
956 */
957 if ((optlen == TCPOLEN_TSTAMP_APPA ||
958 (optlen > TCPOLEN_TSTAMP_APPA &&
959 optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
960 *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
961 (th->th_flags & TH_SYN) == 0) {
962 opti.ts_present = 1;
963 opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
964 opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
965 optp = NULL; /* we've parsed the options */
966 }
967 }
968 tiflags = th->th_flags;
969
970 /*
971 * Locate pcb for segment.
972 */
973 findpcb:
974 inp = NULL;
975 #ifdef INET6
976 in6p = NULL;
977 #endif
978 switch (af) {
979 #ifdef INET
980 case AF_INET:
981 inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
982 ip->ip_dst, th->th_dport);
983 if (inp == 0) {
984 ++tcpstat.tcps_pcbhashmiss;
985 inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
986 }
987 #ifdef INET6
988 if (inp == 0) {
989 struct in6_addr s, d;
990
991 /* mapped addr case */
992 bzero(&s, sizeof(s));
993 s.s6_addr16[5] = htons(0xffff);
994 bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
995 bzero(&d, sizeof(d));
996 d.s6_addr16[5] = htons(0xffff);
997 bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
998 in6p = in6_pcblookup_connect(&tcbtable, &s,
999 th->th_sport, &d, th->th_dport, 0);
1000 if (in6p == 0) {
1001 ++tcpstat.tcps_pcbhashmiss;
1002 in6p = in6_pcblookup_bind(&tcbtable, &d,
1003 th->th_dport, 0);
1004 }
1005 }
1006 #endif
1007 #ifndef INET6
1008 if (inp == 0)
1009 #else
1010 if (inp == 0 && in6p == 0)
1011 #endif
1012 {
1013 ++tcpstat.tcps_noport;
1014 if (tcp_log_refused &&
1015 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1016 tcp4_log_refused(ip, th);
1017 }
1018 TCP_FIELDS_TO_HOST(th);
1019 goto dropwithreset_ratelim;
1020 }
1021 #if defined(IPSEC) || defined(FAST_IPSEC)
1022 if (inp && (inp->inp_socket->so_options & SO_ACCEPTCONN) == 0 &&
1023 ipsec4_in_reject(m, inp)) {
1024 ipsecstat.in_polvio++;
1025 goto drop;
1026 }
1027 #ifdef INET6
1028 else if (in6p &&
1029 (in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 &&
1030 ipsec4_in_reject_so(m, in6p->in6p_socket)) {
1031 ipsecstat.in_polvio++;
1032 goto drop;
1033 }
1034 #endif
1035 #endif /*IPSEC*/
1036 break;
1037 #endif /*INET*/
1038 #ifdef INET6
1039 case AF_INET6:
1040 {
1041 int faith;
1042
1043 #if defined(NFAITH) && NFAITH > 0
1044 faith = faithprefix(&ip6->ip6_dst);
1045 #else
1046 faith = 0;
1047 #endif
1048 in6p = in6_pcblookup_connect(&tcbtable, &ip6->ip6_src,
1049 th->th_sport, &ip6->ip6_dst, th->th_dport, faith);
1050 if (in6p == NULL) {
1051 ++tcpstat.tcps_pcbhashmiss;
1052 in6p = in6_pcblookup_bind(&tcbtable, &ip6->ip6_dst,
1053 th->th_dport, faith);
1054 }
1055 if (in6p == NULL) {
1056 ++tcpstat.tcps_noport;
1057 if (tcp_log_refused &&
1058 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1059 tcp6_log_refused(ip6, th);
1060 }
1061 TCP_FIELDS_TO_HOST(th);
1062 goto dropwithreset_ratelim;
1063 }
1064 #if defined(IPSEC) || defined(FAST_IPSEC)
1065 if ((in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 &&
1066 ipsec6_in_reject(m, in6p)) {
1067 ipsec6stat.in_polvio++;
1068 goto drop;
1069 }
1070 #endif /*IPSEC*/
1071 break;
1072 }
1073 #endif
1074 }
1075
1076 /*
1077 * If the state is CLOSED (i.e., TCB does not exist) then
1078 * all data in the incoming segment is discarded.
1079 * If the TCB exists but is in CLOSED state, it is embryonic,
1080 * but should either do a listen or a connect soon.
1081 */
1082 tp = NULL;
1083 so = NULL;
1084 if (inp) {
1085 tp = intotcpcb(inp);
1086 so = inp->inp_socket;
1087 }
1088 #ifdef INET6
1089 else if (in6p) {
1090 tp = in6totcpcb(in6p);
1091 so = in6p->in6p_socket;
1092 }
1093 #endif
1094 if (tp == 0) {
1095 TCP_FIELDS_TO_HOST(th);
1096 goto dropwithreset_ratelim;
1097 }
1098 if (tp->t_state == TCPS_CLOSED)
1099 goto drop;
1100
1101 /*
1102 * Checksum extended TCP header and data.
1103 */
1104 switch (af) {
1105 #ifdef INET
1106 case AF_INET:
1107 switch (m->m_pkthdr.csum_flags &
1108 ((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
1109 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
1110 case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
1111 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
1112 goto badcsum;
1113
1114 case M_CSUM_TCPv4|M_CSUM_DATA: {
1115 u_int32_t hw_csum = m->m_pkthdr.csum_data;
1116 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
1117 if (m->m_pkthdr.csum_flags & M_CSUM_NO_PSEUDOHDR) {
1118 hw_csum = in_cksum_phdr(ip->ip_src.s_addr,
1119 ip->ip_dst.s_addr,
1120 htons(hw_csum + tlen + off + IPPROTO_TCP));
1121 }
1122 if ((hw_csum ^ 0xffff) != 0)
1123 goto badcsum;
1124 break;
1125 }
1126
1127 case M_CSUM_TCPv4:
1128 /* Checksum was okay. */
1129 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
1130 break;
1131
1132 default:
1133 /* Must compute it ourselves. */
1134 TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
1135 if (in4_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0)
1136 goto badcsum;
1137 break;
1138 }
1139 break;
1140 #endif /* INET4 */
1141
1142 #ifdef INET6
1143 case AF_INET6:
1144 if (in6_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0)
1145 goto badcsum;
1146 break;
1147 #endif /* INET6 */
1148 }
1149
1150 TCP_FIELDS_TO_HOST(th);
1151
1152 /* Unscale the window into a 32-bit value. */
1153 if ((tiflags & TH_SYN) == 0)
1154 tiwin = th->th_win << tp->snd_scale;
1155 else
1156 tiwin = th->th_win;
1157
1158 #ifdef INET6
1159 /* save packet options if user wanted */
1160 if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
1161 if (in6p->in6p_options) {
1162 m_freem(in6p->in6p_options);
1163 in6p->in6p_options = 0;
1164 }
1165 ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
1166 }
1167 #endif
1168
1169 if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
1170 union syn_cache_sa src;
1171 union syn_cache_sa dst;
1172
1173 bzero(&src, sizeof(src));
1174 bzero(&dst, sizeof(dst));
1175 switch (af) {
1176 #ifdef INET
1177 case AF_INET:
1178 src.sin.sin_len = sizeof(struct sockaddr_in);
1179 src.sin.sin_family = AF_INET;
1180 src.sin.sin_addr = ip->ip_src;
1181 src.sin.sin_port = th->th_sport;
1182
1183 dst.sin.sin_len = sizeof(struct sockaddr_in);
1184 dst.sin.sin_family = AF_INET;
1185 dst.sin.sin_addr = ip->ip_dst;
1186 dst.sin.sin_port = th->th_dport;
1187 break;
1188 #endif
1189 #ifdef INET6
1190 case AF_INET6:
1191 src.sin6.sin6_len = sizeof(struct sockaddr_in6);
1192 src.sin6.sin6_family = AF_INET6;
1193 src.sin6.sin6_addr = ip6->ip6_src;
1194 src.sin6.sin6_port = th->th_sport;
1195
1196 dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
1197 dst.sin6.sin6_family = AF_INET6;
1198 dst.sin6.sin6_addr = ip6->ip6_dst;
1199 dst.sin6.sin6_port = th->th_dport;
1200 break;
1201 #endif /* INET6 */
1202 default:
1203 goto badsyn; /*sanity*/
1204 }
1205
1206 if (so->so_options & SO_DEBUG) {
1207 #ifdef TCP_DEBUG
1208 ostate = tp->t_state;
1209 #endif
1210
1211 tcp_saveti = NULL;
1212 if (iphlen + sizeof(struct tcphdr) > MHLEN)
1213 goto nosave;
1214
1215 if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
1216 tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
1217 if (!tcp_saveti)
1218 goto nosave;
1219 } else {
1220 MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
1221 if (!tcp_saveti)
1222 goto nosave;
1223 MCLAIM(m, &tcp_mowner);
1224 tcp_saveti->m_len = iphlen;
1225 m_copydata(m, 0, iphlen,
1226 mtod(tcp_saveti, caddr_t));
1227 }
1228
1229 if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
1230 m_freem(tcp_saveti);
1231 tcp_saveti = NULL;
1232 } else {
1233 tcp_saveti->m_len += sizeof(struct tcphdr);
1234 bcopy(th, mtod(tcp_saveti, caddr_t) + iphlen,
1235 sizeof(struct tcphdr));
1236 }
1237 nosave:;
1238 }
1239 if (so->so_options & SO_ACCEPTCONN) {
1240 if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1241 if (tiflags & TH_RST) {
1242 syn_cache_reset(&src.sa, &dst.sa, th);
1243 } else if ((tiflags & (TH_ACK|TH_SYN)) ==
1244 (TH_ACK|TH_SYN)) {
1245 /*
1246 * Received a SYN,ACK. This should
1247 * never happen while we are in
1248 * LISTEN. Send an RST.
1249 */
1250 goto badsyn;
1251 } else if (tiflags & TH_ACK) {
1252 so = syn_cache_get(&src.sa, &dst.sa,
1253 th, toff, tlen, so, m);
1254 if (so == NULL) {
1255 /*
1256 * We don't have a SYN for
1257 * this ACK; send an RST.
1258 */
1259 goto badsyn;
1260 } else if (so ==
1261 (struct socket *)(-1)) {
1262 /*
1263 * We were unable to create
1264 * the connection. If the
1265 * 3-way handshake was
1266 * completed, and RST has
1267 * been sent to the peer.
1268 * Since the mbuf might be
1269 * in use for the reply,
1270 * do not free it.
1271 */
1272 m = NULL;
1273 } else {
1274 /*
1275 * We have created a
1276 * full-blown connection.
1277 */
1278 tp = NULL;
1279 inp = NULL;
1280 #ifdef INET6
1281 in6p = NULL;
1282 #endif
1283 switch (so->so_proto->pr_domain->dom_family) {
1284 #ifdef INET
1285 case AF_INET:
1286 inp = sotoinpcb(so);
1287 tp = intotcpcb(inp);
1288 break;
1289 #endif
1290 #ifdef INET6
1291 case AF_INET6:
1292 in6p = sotoin6pcb(so);
1293 tp = in6totcpcb(in6p);
1294 break;
1295 #endif
1296 }
1297 if (tp == NULL)
1298 goto badsyn; /*XXX*/
1299 tiwin <<= tp->snd_scale;
1300 goto after_listen;
1301 }
1302 } else {
1303 /*
1304 * None of RST, SYN or ACK was set.
1305 * This is an invalid packet for a
1306 * TCB in LISTEN state. Send a RST.
1307 */
1308 goto badsyn;
1309 }
1310 } else {
1311 /*
1312 * Received a SYN.
1313 */
1314
1315 #ifdef INET6
1316 /*
1317 * If deprecated address is forbidden, we do
1318 * not accept SYN to deprecated interface
1319 * address to prevent any new inbound
1320 * connection from getting established.
1321 * When we do not accept SYN, we send a TCP
1322 * RST, with deprecated source address (instead
1323 * of dropping it). We compromise it as it is
1324 * much better for peer to send a RST, and
1325 * RST will be the final packet for the
1326 * exchange.
1327 *
1328 * If we do not forbid deprecated addresses, we
1329 * accept the SYN packet. RFC2462 does not
1330 * suggest dropping SYN in this case.
1331 * If we decipher RFC2462 5.5.4, it says like
1332 * this:
1333 * 1. use of deprecated addr with existing
1334 * communication is okay - "SHOULD continue
1335 * to be used"
1336 * 2. use of it with new communication:
1337 * (2a) "SHOULD NOT be used if alternate
1338 * address with sufficient scope is
1339 * available"
1340 * (2b) nothing mentioned otherwise.
1341 * Here we fall into (2b) case as we have no
1342 * choice in our source address selection - we
1343 * must obey the peer.
1344 *
1345 * The wording in RFC2462 is confusing, and
1346 * there are multiple description text for
1347 * deprecated address handling - worse, they
1348 * are not exactly the same. I believe 5.5.4
1349 * is the best one, so we follow 5.5.4.
1350 */
1351 if (af == AF_INET6 && !ip6_use_deprecated) {
1352 struct in6_ifaddr *ia6;
1353 if ((ia6 = in6ifa_ifpwithaddr(m->m_pkthdr.rcvif,
1354 &ip6->ip6_dst)) &&
1355 (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1356 tp = NULL;
1357 goto dropwithreset;
1358 }
1359 }
1360 #endif
1361
1362 #ifdef IPSEC
1363 switch (af) {
1364 #ifdef INET
1365 case AF_INET:
1366 if (ipsec4_in_reject_so(m, so)) {
1367 ipsecstat.in_polvio++;
1368 tp = NULL;
1369 goto dropwithreset;
1370 }
1371 break;
1372 #endif
1373 #ifdef INET6
1374 case AF_INET6:
1375 if (ipsec6_in_reject_so(m, so)) {
1376 ipsec6stat.in_polvio++;
1377 tp = NULL;
1378 goto dropwithreset;
1379 }
1380 break;
1381 #endif
1382 }
1383 #endif
1384
1385 /*
1386 * LISTEN socket received a SYN
1387 * from itself? This can't possibly
1388 * be valid; drop the packet.
1389 */
1390 if (th->th_sport == th->th_dport) {
1391 int i;
1392
1393 switch (af) {
1394 #ifdef INET
1395 case AF_INET:
1396 i = in_hosteq(ip->ip_src, ip->ip_dst);
1397 break;
1398 #endif
1399 #ifdef INET6
1400 case AF_INET6:
1401 i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
1402 break;
1403 #endif
1404 default:
1405 i = 1;
1406 }
1407 if (i) {
1408 tcpstat.tcps_badsyn++;
1409 goto drop;
1410 }
1411 }
1412
1413 /*
1414 * SYN looks ok; create compressed TCP
1415 * state for it.
1416 */
1417 if (so->so_qlen <= so->so_qlimit &&
1418 syn_cache_add(&src.sa, &dst.sa, th, tlen,
1419 so, m, optp, optlen, &opti))
1420 m = NULL;
1421 }
1422 goto drop;
1423 }
1424 }
1425
1426 after_listen:
1427 #ifdef DIAGNOSTIC
1428 /*
1429 * Should not happen now that all embryonic connections
1430 * are handled with compressed state.
1431 */
1432 if (tp->t_state == TCPS_LISTEN)
1433 panic("tcp_input: TCPS_LISTEN");
1434 #endif
1435
1436 /*
1437 * Segment received on connection.
1438 * Reset idle time and keep-alive timer.
1439 */
1440 tp->t_rcvtime = tcp_now;
1441 if (TCPS_HAVEESTABLISHED(tp->t_state))
1442 TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1443
1444 /*
1445 * Process options.
1446 */
1447 if (optp)
1448 tcp_dooptions(tp, optp, optlen, th, &opti);
1449
1450 /*
1451 * Header prediction: check for the two common cases
1452 * of a uni-directional data xfer. If the packet has
1453 * no control flags, is in-sequence, the window didn't
1454 * change and we're not retransmitting, it's a
1455 * candidate. If the length is zero and the ack moved
1456 * forward, we're the sender side of the xfer. Just
1457 * free the data acked & wake any higher level process
1458 * that was blocked waiting for space. If the length
1459 * is non-zero and the ack didn't move, we're the
1460 * receiver side. If we're getting packets in-order
1461 * (the reassembly queue is empty), add the data to
1462 * the socket buffer and note that we need a delayed ack.
1463 */
1464 if (tp->t_state == TCPS_ESTABLISHED &&
1465 (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1466 (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
1467 th->th_seq == tp->rcv_nxt &&
1468 tiwin && tiwin == tp->snd_wnd &&
1469 tp->snd_nxt == tp->snd_max) {
1470
1471 /*
1472 * If last ACK falls within this segment's sequence numbers,
1473 * record the timestamp.
1474 */
1475 if (opti.ts_present &&
1476 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1477 SEQ_LT(tp->last_ack_sent, th->th_seq + tlen)) {
1478 tp->ts_recent_age = TCP_TIMESTAMP(tp);
1479 tp->ts_recent = opti.ts_val;
1480 }
1481
1482 if (tlen == 0) {
1483 if (SEQ_GT(th->th_ack, tp->snd_una) &&
1484 SEQ_LEQ(th->th_ack, tp->snd_max) &&
1485 tp->snd_cwnd >= tp->snd_wnd &&
1486 tp->t_dupacks < tcprexmtthresh) {
1487 /*
1488 * this is a pure ack for outstanding data.
1489 */
1490 ++tcpstat.tcps_predack;
1491 if (opti.ts_present && opti.ts_ecr)
1492 tcp_xmit_timer(tp,
1493 TCP_TIMESTAMP(tp) - opti.ts_ecr + 1);
1494 else if (tp->t_rtttime &&
1495 SEQ_GT(th->th_ack, tp->t_rtseq))
1496 tcp_xmit_timer(tp,
1497 tcp_now - tp->t_rtttime);
1498 acked = th->th_ack - tp->snd_una;
1499 tcpstat.tcps_rcvackpack++;
1500 tcpstat.tcps_rcvackbyte += acked;
1501 ND6_HINT(tp);
1502
1503 if (acked > (tp->t_lastoff - tp->t_inoff))
1504 tp->t_lastm = NULL;
1505 sbdrop(&so->so_snd, acked);
1506 tp->t_lastoff -= acked;
1507
1508 /*
1509 * We want snd_recover to track snd_una to
1510 * avoid sequence wraparound problems for
1511 * very large transfers.
1512 */
1513 tp->snd_una = tp->snd_recover = th->th_ack;
1514 m_freem(m);
1515
1516 /*
1517 * If all outstanding data are acked, stop
1518 * retransmit timer, otherwise restart timer
1519 * using current (possibly backed-off) value.
1520 * If process is waiting for space,
1521 * wakeup/selwakeup/signal. If data
1522 * are ready to send, let tcp_output
1523 * decide between more output or persist.
1524 */
1525 if (tp->snd_una == tp->snd_max)
1526 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1527 else if (TCP_TIMER_ISARMED(tp,
1528 TCPT_PERSIST) == 0)
1529 TCP_TIMER_ARM(tp, TCPT_REXMT,
1530 tp->t_rxtcur);
1531
1532 sowwakeup(so);
1533 if (so->so_snd.sb_cc)
1534 (void) tcp_output(tp);
1535 if (tcp_saveti)
1536 m_freem(tcp_saveti);
1537 return;
1538 }
1539 } else if (th->th_ack == tp->snd_una &&
1540 TAILQ_FIRST(&tp->segq) == NULL &&
1541 tlen <= sbspace(&so->so_rcv)) {
1542 /*
1543 * this is a pure, in-sequence data packet
1544 * with nothing on the reassembly queue and
1545 * we have enough buffer space to take it.
1546 */
1547 ++tcpstat.tcps_preddat;
1548 tp->rcv_nxt += tlen;
1549 tcpstat.tcps_rcvpack++;
1550 tcpstat.tcps_rcvbyte += tlen;
1551 ND6_HINT(tp);
1552 /*
1553 * Drop TCP, IP headers and TCP options then add data
1554 * to socket buffer.
1555 */
1556 if (so->so_state & SS_CANTRCVMORE)
1557 m_freem(m);
1558 else {
1559 m_adj(m, toff + off);
1560 sbappendstream(&so->so_rcv, m);
1561 }
1562 sorwakeup(so);
1563 TCP_SETUP_ACK(tp, th);
1564 if (tp->t_flags & TF_ACKNOW)
1565 (void) tcp_output(tp);
1566 if (tcp_saveti)
1567 m_freem(tcp_saveti);
1568 return;
1569 }
1570 }
1571
1572 /*
1573 * Compute mbuf offset to TCP data segment.
1574 */
1575 hdroptlen = toff + off;
1576
1577 /*
1578 * Calculate amount of space in receive window,
1579 * and then do TCP input processing.
1580 * Receive window is amount of space in rcv queue,
1581 * but not less than advertised window.
1582 */
1583 { int win;
1584
1585 win = sbspace(&so->so_rcv);
1586 if (win < 0)
1587 win = 0;
1588 tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1589 }
1590
1591 switch (tp->t_state) {
1592 case TCPS_LISTEN:
1593 /*
1594 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
1595 */
1596 if (m->m_flags & (M_BCAST|M_MCAST))
1597 goto drop;
1598 switch (af) {
1599 #ifdef INET6
1600 case AF_INET6:
1601 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
1602 goto drop;
1603 break;
1604 #endif /* INET6 */
1605 case AF_INET:
1606 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
1607 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
1608 goto drop;
1609 break;
1610 }
1611 break;
1612
1613 /*
1614 * If the state is SYN_SENT:
1615 * if seg contains an ACK, but not for our SYN, drop the input.
1616 * if seg contains a RST, then drop the connection.
1617 * if seg does not contain SYN, then drop it.
1618 * Otherwise this is an acceptable SYN segment
1619 * initialize tp->rcv_nxt and tp->irs
1620 * if seg contains ack then advance tp->snd_una
1621 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1622 * arrange for segment to be acked (eventually)
1623 * continue processing rest of data/controls, beginning with URG
1624 */
1625 case TCPS_SYN_SENT:
1626 if ((tiflags & TH_ACK) &&
1627 (SEQ_LEQ(th->th_ack, tp->iss) ||
1628 SEQ_GT(th->th_ack, tp->snd_max)))
1629 goto dropwithreset;
1630 if (tiflags & TH_RST) {
1631 if (tiflags & TH_ACK)
1632 tp = tcp_drop(tp, ECONNREFUSED);
1633 goto drop;
1634 }
1635 if ((tiflags & TH_SYN) == 0)
1636 goto drop;
1637 if (tiflags & TH_ACK) {
1638 tp->snd_una = tp->snd_recover = th->th_ack;
1639 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1640 tp->snd_nxt = tp->snd_una;
1641 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1642 }
1643 tp->irs = th->th_seq;
1644 tcp_rcvseqinit(tp);
1645 tp->t_flags |= TF_ACKNOW;
1646 tcp_mss_from_peer(tp, opti.maxseg);
1647
1648 /*
1649 * Initialize the initial congestion window. If we
1650 * had to retransmit the SYN, we must initialize cwnd
1651 * to 1 segment (i.e. the Loss Window).
1652 */
1653 if (tp->t_flags & TF_SYN_REXMT)
1654 tp->snd_cwnd = tp->t_peermss;
1655 else {
1656 int ss = tcp_init_win;
1657 #ifdef INET
1658 if (inp != NULL && in_localaddr(inp->inp_faddr))
1659 ss = tcp_init_win_local;
1660 #endif
1661 #ifdef INET6
1662 if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
1663 ss = tcp_init_win_local;
1664 #endif
1665 tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
1666 }
1667
1668 tcp_rmx_rtt(tp);
1669 if (tiflags & TH_ACK) {
1670 tcpstat.tcps_connects++;
1671 soisconnected(so);
1672 tcp_established(tp);
1673 /* Do window scaling on this connection? */
1674 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1675 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1676 tp->snd_scale = tp->requested_s_scale;
1677 tp->rcv_scale = tp->request_r_scale;
1678 }
1679 TCP_REASS_LOCK(tp);
1680 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1681 TCP_REASS_UNLOCK(tp);
1682 /*
1683 * if we didn't have to retransmit the SYN,
1684 * use its rtt as our initial srtt & rtt var.
1685 */
1686 if (tp->t_rtttime)
1687 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
1688 } else
1689 tp->t_state = TCPS_SYN_RECEIVED;
1690
1691 /*
1692 * Advance th->th_seq to correspond to first data byte.
1693 * If data, trim to stay within window,
1694 * dropping FIN if necessary.
1695 */
1696 th->th_seq++;
1697 if (tlen > tp->rcv_wnd) {
1698 todrop = tlen - tp->rcv_wnd;
1699 m_adj(m, -todrop);
1700 tlen = tp->rcv_wnd;
1701 tiflags &= ~TH_FIN;
1702 tcpstat.tcps_rcvpackafterwin++;
1703 tcpstat.tcps_rcvbyteafterwin += todrop;
1704 }
1705 tp->snd_wl1 = th->th_seq - 1;
1706 tp->rcv_up = th->th_seq;
1707 goto step6;
1708
1709 /*
1710 * If the state is SYN_RECEIVED:
1711 * If seg contains an ACK, but not for our SYN, drop the input
1712 * and generate an RST. See page 36, rfc793
1713 */
1714 case TCPS_SYN_RECEIVED:
1715 if ((tiflags & TH_ACK) &&
1716 (SEQ_LEQ(th->th_ack, tp->iss) ||
1717 SEQ_GT(th->th_ack, tp->snd_max)))
1718 goto dropwithreset;
1719 break;
1720 }
1721
1722 /*
1723 * States other than LISTEN or SYN_SENT.
1724 * First check timestamp, if present.
1725 * Then check that at least some bytes of segment are within
1726 * receive window. If segment begins before rcv_nxt,
1727 * drop leading data (and SYN); if nothing left, just ack.
1728 *
1729 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1730 * and it's less than ts_recent, drop it.
1731 */
1732 if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
1733 TSTMP_LT(opti.ts_val, tp->ts_recent)) {
1734
1735 /* Check to see if ts_recent is over 24 days old. */
1736 if ((int)(TCP_TIMESTAMP(tp) - tp->ts_recent_age) >
1737 TCP_PAWS_IDLE) {
1738 /*
1739 * Invalidate ts_recent. If this segment updates
1740 * ts_recent, the age will be reset later and ts_recent
1741 * will get a valid value. If it does not, setting
1742 * ts_recent to zero will at least satisfy the
1743 * requirement that zero be placed in the timestamp
1744 * echo reply when ts_recent isn't valid. The
1745 * age isn't reset until we get a valid ts_recent
1746 * because we don't want out-of-order segments to be
1747 * dropped when ts_recent is old.
1748 */
1749 tp->ts_recent = 0;
1750 } else {
1751 tcpstat.tcps_rcvduppack++;
1752 tcpstat.tcps_rcvdupbyte += tlen;
1753 tcpstat.tcps_pawsdrop++;
1754 goto dropafterack;
1755 }
1756 }
1757
1758 todrop = tp->rcv_nxt - th->th_seq;
1759 if (todrop > 0) {
1760 if (tiflags & TH_SYN) {
1761 tiflags &= ~TH_SYN;
1762 th->th_seq++;
1763 if (th->th_urp > 1)
1764 th->th_urp--;
1765 else {
1766 tiflags &= ~TH_URG;
1767 th->th_urp = 0;
1768 }
1769 todrop--;
1770 }
1771 if (todrop > tlen ||
1772 (todrop == tlen && (tiflags & TH_FIN) == 0)) {
1773 /*
1774 * Any valid FIN or RST must be to the left of the
1775 * window. At this point the FIN or RST must be a
1776 * duplicate or out of sequence; drop it.
1777 */
1778 if (tiflags & TH_RST)
1779 goto drop;
1780 tiflags &= ~(TH_FIN|TH_RST);
1781 /*
1782 * Send an ACK to resynchronize and drop any data.
1783 * But keep on processing for RST or ACK.
1784 */
1785 tp->t_flags |= TF_ACKNOW;
1786 todrop = tlen;
1787 tcpstat.tcps_rcvdupbyte += todrop;
1788 tcpstat.tcps_rcvduppack++;
1789 } else if ((tiflags & TH_RST) &&
1790 th->th_seq != tp->last_ack_sent) {
1791 /*
1792 * Test for reset before adjusting the sequence
1793 * number for overlapping data.
1794 */
1795 goto dropafterack_ratelim;
1796 } else {
1797 tcpstat.tcps_rcvpartduppack++;
1798 tcpstat.tcps_rcvpartdupbyte += todrop;
1799 }
1800 hdroptlen += todrop; /*drop from head afterwards*/
1801 th->th_seq += todrop;
1802 tlen -= todrop;
1803 if (th->th_urp > todrop)
1804 th->th_urp -= todrop;
1805 else {
1806 tiflags &= ~TH_URG;
1807 th->th_urp = 0;
1808 }
1809 }
1810
1811 /*
1812 * If new data are received on a connection after the
1813 * user processes are gone, then RST the other end.
1814 */
1815 if ((so->so_state & SS_NOFDREF) &&
1816 tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1817 tp = tcp_close(tp);
1818 tcpstat.tcps_rcvafterclose++;
1819 goto dropwithreset;
1820 }
1821
1822 /*
1823 * If segment ends after window, drop trailing data
1824 * (and PUSH and FIN); if nothing left, just ACK.
1825 */
1826 todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
1827 if (todrop > 0) {
1828 tcpstat.tcps_rcvpackafterwin++;
1829 if (todrop >= tlen) {
1830 /*
1831 * The segment actually starts after the window.
1832 * th->th_seq + tlen - tp->rcv_nxt - tp->rcv_wnd >= tlen
1833 * th->th_seq - tp->rcv_nxt - tp->rcv_wnd >= 0
1834 * th->th_seq >= tp->rcv_nxt + tp->rcv_wnd
1835 */
1836 tcpstat.tcps_rcvbyteafterwin += tlen;
1837 /*
1838 * If a new connection request is received
1839 * while in TIME_WAIT, drop the old connection
1840 * and start over if the sequence numbers
1841 * are above the previous ones.
1842 *
1843 * NOTE: We will checksum the packet again, and
1844 * so we need to put the header fields back into
1845 * network order!
1846 * XXX This kind of sucks, but we don't expect
1847 * XXX this to happen very often, so maybe it
1848 * XXX doesn't matter so much.
1849 */
1850 if (tiflags & TH_SYN &&
1851 tp->t_state == TCPS_TIME_WAIT &&
1852 SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1853 iss = tcp_new_iss(tp, tp->snd_nxt);
1854 tp = tcp_close(tp);
1855 TCP_FIELDS_TO_NET(th);
1856 goto findpcb;
1857 }
1858 /*
1859 * If window is closed can only take segments at
1860 * window edge, and have to drop data and PUSH from
1861 * incoming segments. Continue processing, but
1862 * remember to ack. Otherwise, drop segment
1863 * and (if not RST) ack.
1864 */
1865 if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1866 tp->t_flags |= TF_ACKNOW;
1867 tcpstat.tcps_rcvwinprobe++;
1868 } else
1869 goto dropafterack;
1870 } else
1871 tcpstat.tcps_rcvbyteafterwin += todrop;
1872 m_adj(m, -todrop);
1873 tlen -= todrop;
1874 tiflags &= ~(TH_PUSH|TH_FIN);
1875 }
1876
1877 /*
1878 * If last ACK falls within this segment's sequence numbers,
1879 * and the timestamp is newer, record it.
1880 */
1881 if (opti.ts_present && TSTMP_GEQ(opti.ts_val, tp->ts_recent) &&
1882 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1883 SEQ_LT(tp->last_ack_sent, th->th_seq + tlen +
1884 ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
1885 tp->ts_recent_age = TCP_TIMESTAMP(tp);
1886 tp->ts_recent = opti.ts_val;
1887 }
1888
1889 /*
1890 * If the RST bit is set examine the state:
1891 * SYN_RECEIVED STATE:
1892 * If passive open, return to LISTEN state.
1893 * If active open, inform user that connection was refused.
1894 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
1895 * Inform user that connection was reset, and close tcb.
1896 * CLOSING, LAST_ACK, TIME_WAIT STATES
1897 * Close the tcb.
1898 */
1899 if (tiflags & TH_RST) {
1900 if (th->th_seq != tp->last_ack_sent)
1901 goto dropafterack_ratelim;
1902
1903 switch (tp->t_state) {
1904 case TCPS_SYN_RECEIVED:
1905 so->so_error = ECONNREFUSED;
1906 goto close;
1907
1908 case TCPS_ESTABLISHED:
1909 case TCPS_FIN_WAIT_1:
1910 case TCPS_FIN_WAIT_2:
1911 case TCPS_CLOSE_WAIT:
1912 so->so_error = ECONNRESET;
1913 close:
1914 tp->t_state = TCPS_CLOSED;
1915 tcpstat.tcps_drops++;
1916 tp = tcp_close(tp);
1917 goto drop;
1918
1919 case TCPS_CLOSING:
1920 case TCPS_LAST_ACK:
1921 case TCPS_TIME_WAIT:
1922 tp = tcp_close(tp);
1923 goto drop;
1924 }
1925 }
1926
1927 /*
1928 * Since we've covered the SYN-SENT and SYN-RECEIVED states above
1929 * we must be in a synchronized state. RFC791 states (under RST
1930 * generation) that any unacceptable segment (an out-of-order SYN
1931 * qualifies) received in a synchronized state must elicit only an
1932 * empty acknowledgment segment ... and the connection remains in
1933 * the same state.
1934 */
1935 if (tiflags & TH_SYN) {
1936 if (tp->rcv_nxt == th->th_seq) {
1937 tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack - 1,
1938 TH_ACK);
1939 if (tcp_saveti)
1940 m_freem(tcp_saveti);
1941 return;
1942 }
1943
1944 goto dropafterack_ratelim;
1945 }
1946
1947 /*
1948 * If the ACK bit is off we drop the segment and return.
1949 */
1950 if ((tiflags & TH_ACK) == 0) {
1951 if (tp->t_flags & TF_ACKNOW)
1952 goto dropafterack;
1953 else
1954 goto drop;
1955 }
1956
1957 /*
1958 * Ack processing.
1959 */
1960 switch (tp->t_state) {
1961
1962 /*
1963 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
1964 * ESTABLISHED state and continue processing, otherwise
1965 * send an RST.
1966 */
1967 case TCPS_SYN_RECEIVED:
1968 if (SEQ_GT(tp->snd_una, th->th_ack) ||
1969 SEQ_GT(th->th_ack, tp->snd_max))
1970 goto dropwithreset;
1971 tcpstat.tcps_connects++;
1972 soisconnected(so);
1973 tcp_established(tp);
1974 /* Do window scaling? */
1975 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1976 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1977 tp->snd_scale = tp->requested_s_scale;
1978 tp->rcv_scale = tp->request_r_scale;
1979 }
1980 TCP_REASS_LOCK(tp);
1981 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1982 TCP_REASS_UNLOCK(tp);
1983 tp->snd_wl1 = th->th_seq - 1;
1984 /* fall into ... */
1985
1986 /*
1987 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1988 * ACKs. If the ack is in the range
1989 * tp->snd_una < th->th_ack <= tp->snd_max
1990 * then advance tp->snd_una to th->th_ack and drop
1991 * data from the retransmission queue. If this ACK reflects
1992 * more up to date window information we update our window information.
1993 */
1994 case TCPS_ESTABLISHED:
1995 case TCPS_FIN_WAIT_1:
1996 case TCPS_FIN_WAIT_2:
1997 case TCPS_CLOSE_WAIT:
1998 case TCPS_CLOSING:
1999 case TCPS_LAST_ACK:
2000 case TCPS_TIME_WAIT:
2001
2002 if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2003 if (tlen == 0 && tiwin == tp->snd_wnd) {
2004 tcpstat.tcps_rcvdupack++;
2005 /*
2006 * If we have outstanding data (other than
2007 * a window probe), this is a completely
2008 * duplicate ack (ie, window info didn't
2009 * change), the ack is the biggest we've
2010 * seen and we've seen exactly our rexmt
2011 * threshhold of them, assume a packet
2012 * has been dropped and retransmit it.
2013 * Kludge snd_nxt & the congestion
2014 * window so we send only this one
2015 * packet.
2016 *
2017 * We know we're losing at the current
2018 * window size so do congestion avoidance
2019 * (set ssthresh to half the current window
2020 * and pull our congestion window back to
2021 * the new ssthresh).
2022 *
2023 * Dup acks mean that packets have left the
2024 * network (they're now cached at the receiver)
2025 * so bump cwnd by the amount in the receiver
2026 * to keep a constant cwnd packets in the
2027 * network.
2028 */
2029 if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
2030 th->th_ack != tp->snd_una)
2031 tp->t_dupacks = 0;
2032 else if (++tp->t_dupacks == tcprexmtthresh) {
2033 tcp_seq onxt = tp->snd_nxt;
2034 u_int win =
2035 min(tp->snd_wnd, tp->snd_cwnd) /
2036 2 / tp->t_segsz;
2037 if (tcp_do_newreno && SEQ_LT(th->th_ack,
2038 tp->snd_recover)) {
2039 /*
2040 * False fast retransmit after
2041 * timeout. Do not cut window.
2042 */
2043 tp->snd_cwnd += tp->t_segsz;
2044 tp->t_dupacks = 0;
2045 (void) tcp_output(tp);
2046 goto drop;
2047 }
2048
2049 if (win < 2)
2050 win = 2;
2051 tp->snd_ssthresh = win * tp->t_segsz;
2052 tp->snd_recover = tp->snd_max;
2053 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2054 tp->t_rtttime = 0;
2055 tp->snd_nxt = th->th_ack;
2056 tp->snd_cwnd = tp->t_segsz;
2057 (void) tcp_output(tp);
2058 tp->snd_cwnd = tp->snd_ssthresh +
2059 tp->t_segsz * tp->t_dupacks;
2060 if (SEQ_GT(onxt, tp->snd_nxt))
2061 tp->snd_nxt = onxt;
2062 goto drop;
2063 } else if (tp->t_dupacks > tcprexmtthresh) {
2064 tp->snd_cwnd += tp->t_segsz;
2065 (void) tcp_output(tp);
2066 goto drop;
2067 }
2068 } else if (tlen) {
2069 tp->t_dupacks = 0; /*XXX*/
2070 /* drop very old ACKs unless th_seq matches */
2071 if (th->th_seq != tp->rcv_nxt &&
2072 SEQ_LT(th->th_ack,
2073 tp->snd_una - tp->max_sndwnd)) {
2074 goto drop;
2075 }
2076 break;
2077 } else
2078 tp->t_dupacks = 0;
2079 break;
2080 }
2081 /*
2082 * If the congestion window was inflated to account
2083 * for the other side's cached packets, retract it.
2084 */
2085 if (tcp_do_newreno == 0) {
2086 if (tp->t_dupacks >= tcprexmtthresh &&
2087 tp->snd_cwnd > tp->snd_ssthresh)
2088 tp->snd_cwnd = tp->snd_ssthresh;
2089 tp->t_dupacks = 0;
2090 } else if (tp->t_dupacks >= tcprexmtthresh &&
2091 tcp_newreno(tp, th) == 0) {
2092 tp->snd_cwnd = tp->snd_ssthresh;
2093 /*
2094 * Window inflation should have left us with approx.
2095 * snd_ssthresh outstanding data. But in case we
2096 * would be inclined to send a burst, better to do
2097 * it via the slow start mechanism.
2098 */
2099 if (SEQ_SUB(tp->snd_max, th->th_ack) < tp->snd_ssthresh)
2100 tp->snd_cwnd = SEQ_SUB(tp->snd_max, th->th_ack)
2101 + tp->t_segsz;
2102 tp->t_dupacks = 0;
2103 }
2104 if (SEQ_GT(th->th_ack, tp->snd_max)) {
2105 tcpstat.tcps_rcvacktoomuch++;
2106 goto dropafterack;
2107 }
2108 acked = th->th_ack - tp->snd_una;
2109 tcpstat.tcps_rcvackpack++;
2110 tcpstat.tcps_rcvackbyte += acked;
2111
2112 /*
2113 * If we have a timestamp reply, update smoothed
2114 * round trip time. If no timestamp is present but
2115 * transmit timer is running and timed sequence
2116 * number was acked, update smoothed round trip time.
2117 * Since we now have an rtt measurement, cancel the
2118 * timer backoff (cf., Phil Karn's retransmit alg.).
2119 * Recompute the initial retransmit timer.
2120 */
2121 if (opti.ts_present && opti.ts_ecr)
2122 tcp_xmit_timer(tp, TCP_TIMESTAMP(tp) - opti.ts_ecr + 1);
2123 else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2124 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2125
2126 /*
2127 * If all outstanding data is acked, stop retransmit
2128 * timer and remember to restart (more output or persist).
2129 * If there is more data to be acked, restart retransmit
2130 * timer, using current (possibly backed-off) value.
2131 */
2132 if (th->th_ack == tp->snd_max) {
2133 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2134 needoutput = 1;
2135 } else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
2136 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
2137 /*
2138 * When new data is acked, open the congestion window.
2139 * If the window gives us less than ssthresh packets
2140 * in flight, open exponentially (segsz per packet).
2141 * Otherwise open linearly: segsz per window
2142 * (segsz^2 / cwnd per packet), plus a constant
2143 * fraction of a packet (segsz/8) to help larger windows
2144 * open quickly enough.
2145 */
2146 {
2147 u_int cw = tp->snd_cwnd;
2148 u_int incr = tp->t_segsz;
2149
2150 if (cw > tp->snd_ssthresh)
2151 incr = incr * incr / cw;
2152 if (tcp_do_newreno == 0 || SEQ_GEQ(th->th_ack, tp->snd_recover))
2153 tp->snd_cwnd = min(cw + incr,
2154 TCP_MAXWIN << tp->snd_scale);
2155 }
2156 ND6_HINT(tp);
2157 if (acked > so->so_snd.sb_cc) {
2158 tp->snd_wnd -= so->so_snd.sb_cc;
2159 sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
2160 ourfinisacked = 1;
2161 } else {
2162 if (acked > (tp->t_lastoff - tp->t_inoff))
2163 tp->t_lastm = NULL;
2164 sbdrop(&so->so_snd, acked);
2165 tp->t_lastoff -= acked;
2166 tp->snd_wnd -= acked;
2167 ourfinisacked = 0;
2168 }
2169 sowwakeup(so);
2170 /*
2171 * We want snd_recover to track snd_una to
2172 * avoid sequence wraparound problems for
2173 * very large transfers.
2174 */
2175 tp->snd_una = tp->snd_recover = th->th_ack;
2176 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2177 tp->snd_nxt = tp->snd_una;
2178
2179 switch (tp->t_state) {
2180
2181 /*
2182 * In FIN_WAIT_1 STATE in addition to the processing
2183 * for the ESTABLISHED state if our FIN is now acknowledged
2184 * then enter FIN_WAIT_2.
2185 */
2186 case TCPS_FIN_WAIT_1:
2187 if (ourfinisacked) {
2188 /*
2189 * If we can't receive any more
2190 * data, then closing user can proceed.
2191 * Starting the timer is contrary to the
2192 * specification, but if we don't get a FIN
2193 * we'll hang forever.
2194 */
2195 if (so->so_state & SS_CANTRCVMORE) {
2196 soisdisconnected(so);
2197 if (tcp_maxidle > 0)
2198 TCP_TIMER_ARM(tp, TCPT_2MSL,
2199 tcp_maxidle);
2200 }
2201 tp->t_state = TCPS_FIN_WAIT_2;
2202 }
2203 break;
2204
2205 /*
2206 * In CLOSING STATE in addition to the processing for
2207 * the ESTABLISHED state if the ACK acknowledges our FIN
2208 * then enter the TIME-WAIT state, otherwise ignore
2209 * the segment.
2210 */
2211 case TCPS_CLOSING:
2212 if (ourfinisacked) {
2213 tp->t_state = TCPS_TIME_WAIT;
2214 tcp_canceltimers(tp);
2215 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2216 soisdisconnected(so);
2217 }
2218 break;
2219
2220 /*
2221 * In LAST_ACK, we may still be waiting for data to drain
2222 * and/or to be acked, as well as for the ack of our FIN.
2223 * If our FIN is now acknowledged, delete the TCB,
2224 * enter the closed state and return.
2225 */
2226 case TCPS_LAST_ACK:
2227 if (ourfinisacked) {
2228 tp = tcp_close(tp);
2229 goto drop;
2230 }
2231 break;
2232
2233 /*
2234 * In TIME_WAIT state the only thing that should arrive
2235 * is a retransmission of the remote FIN. Acknowledge
2236 * it and restart the finack timer.
2237 */
2238 case TCPS_TIME_WAIT:
2239 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2240 goto dropafterack;
2241 }
2242 }
2243
2244 step6:
2245 /*
2246 * Update window information.
2247 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2248 */
2249 if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2250 (tp->snd_wl1 == th->th_seq && SEQ_LT(tp->snd_wl2, th->th_ack)) ||
2251 (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))) {
2252 /* keep track of pure window updates */
2253 if (tlen == 0 &&
2254 tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2255 tcpstat.tcps_rcvwinupd++;
2256 tp->snd_wnd = tiwin;
2257 tp->snd_wl1 = th->th_seq;
2258 tp->snd_wl2 = th->th_ack;
2259 if (tp->snd_wnd > tp->max_sndwnd)
2260 tp->max_sndwnd = tp->snd_wnd;
2261 needoutput = 1;
2262 }
2263
2264 /*
2265 * Process segments with URG.
2266 */
2267 if ((tiflags & TH_URG) && th->th_urp &&
2268 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2269 /*
2270 * This is a kludge, but if we receive and accept
2271 * random urgent pointers, we'll crash in
2272 * soreceive. It's hard to imagine someone
2273 * actually wanting to send this much urgent data.
2274 */
2275 if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2276 th->th_urp = 0; /* XXX */
2277 tiflags &= ~TH_URG; /* XXX */
2278 goto dodata; /* XXX */
2279 }
2280 /*
2281 * If this segment advances the known urgent pointer,
2282 * then mark the data stream. This should not happen
2283 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2284 * a FIN has been received from the remote side.
2285 * In these states we ignore the URG.
2286 *
2287 * According to RFC961 (Assigned Protocols),
2288 * the urgent pointer points to the last octet
2289 * of urgent data. We continue, however,
2290 * to consider it to indicate the first octet
2291 * of data past the urgent section as the original
2292 * spec states (in one of two places).
2293 */
2294 if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2295 tp->rcv_up = th->th_seq + th->th_urp;
2296 so->so_oobmark = so->so_rcv.sb_cc +
2297 (tp->rcv_up - tp->rcv_nxt) - 1;
2298 if (so->so_oobmark == 0)
2299 so->so_state |= SS_RCVATMARK;
2300 sohasoutofband(so);
2301 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2302 }
2303 /*
2304 * Remove out of band data so doesn't get presented to user.
2305 * This can happen independent of advancing the URG pointer,
2306 * but if two URG's are pending at once, some out-of-band
2307 * data may creep in... ick.
2308 */
2309 if (th->th_urp <= (u_int16_t) tlen
2310 #ifdef SO_OOBINLINE
2311 && (so->so_options & SO_OOBINLINE) == 0
2312 #endif
2313 )
2314 tcp_pulloutofband(so, th, m, hdroptlen);
2315 } else
2316 /*
2317 * If no out of band data is expected,
2318 * pull receive urgent pointer along
2319 * with the receive window.
2320 */
2321 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2322 tp->rcv_up = tp->rcv_nxt;
2323 dodata: /* XXX */
2324
2325 /*
2326 * Process the segment text, merging it into the TCP sequencing queue,
2327 * and arranging for acknowledgement of receipt if necessary.
2328 * This process logically involves adjusting tp->rcv_wnd as data
2329 * is presented to the user (this happens in tcp_usrreq.c,
2330 * case PRU_RCVD). If a FIN has already been received on this
2331 * connection then we just ignore the text.
2332 */
2333 if ((tlen || (tiflags & TH_FIN)) &&
2334 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2335 /*
2336 * Insert segment ti into reassembly queue of tcp with
2337 * control block tp. Return TH_FIN if reassembly now includes
2338 * a segment with FIN. The macro form does the common case
2339 * inline (segment is the next to be received on an
2340 * established connection, and the queue is empty),
2341 * avoiding linkage into and removal from the queue and
2342 * repetition of various conversions.
2343 * Set DELACK for segments received in order, but ack
2344 * immediately when segments are out of order
2345 * (so fast retransmit can work).
2346 */
2347 /* NOTE: this was TCP_REASS() macro, but used only once */
2348 TCP_REASS_LOCK(tp);
2349 if (th->th_seq == tp->rcv_nxt &&
2350 TAILQ_FIRST(&tp->segq) == NULL &&
2351 tp->t_state == TCPS_ESTABLISHED) {
2352 TCP_SETUP_ACK(tp, th);
2353 tp->rcv_nxt += tlen;
2354 tiflags = th->th_flags & TH_FIN;
2355 tcpstat.tcps_rcvpack++;
2356 tcpstat.tcps_rcvbyte += tlen;
2357 ND6_HINT(tp);
2358 if (so->so_state & SS_CANTRCVMORE)
2359 m_freem(m);
2360 else {
2361 m_adj(m, hdroptlen);
2362 sbappendstream(&(so)->so_rcv, m);
2363 }
2364 sorwakeup(so);
2365 } else {
2366 m_adj(m, hdroptlen);
2367 tiflags = tcp_reass(tp, th, m, &tlen);
2368 tp->t_flags |= TF_ACKNOW;
2369 }
2370 TCP_REASS_UNLOCK(tp);
2371
2372 /*
2373 * Note the amount of data that peer has sent into
2374 * our window, in order to estimate the sender's
2375 * buffer size.
2376 */
2377 len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2378 } else {
2379 m_freem(m);
2380 m = NULL;
2381 tiflags &= ~TH_FIN;
2382 }
2383
2384 /*
2385 * If FIN is received ACK the FIN and let the user know
2386 * that the connection is closing. Ignore a FIN received before
2387 * the connection is fully established.
2388 */
2389 if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2390 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2391 socantrcvmore(so);
2392 tp->t_flags |= TF_ACKNOW;
2393 tp->rcv_nxt++;
2394 }
2395 switch (tp->t_state) {
2396
2397 /*
2398 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2399 */
2400 case TCPS_ESTABLISHED:
2401 tp->t_state = TCPS_CLOSE_WAIT;
2402 break;
2403
2404 /*
2405 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2406 * enter the CLOSING state.
2407 */
2408 case TCPS_FIN_WAIT_1:
2409 tp->t_state = TCPS_CLOSING;
2410 break;
2411
2412 /*
2413 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2414 * starting the time-wait timer, turning off the other
2415 * standard timers.
2416 */
2417 case TCPS_FIN_WAIT_2:
2418 tp->t_state = TCPS_TIME_WAIT;
2419 tcp_canceltimers(tp);
2420 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2421 soisdisconnected(so);
2422 break;
2423
2424 /*
2425 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2426 */
2427 case TCPS_TIME_WAIT:
2428 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2429 break;
2430 }
2431 }
2432 #ifdef TCP_DEBUG
2433 if (so->so_options & SO_DEBUG)
2434 tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
2435 #endif
2436
2437 /*
2438 * Return any desired output.
2439 */
2440 if (needoutput || (tp->t_flags & TF_ACKNOW))
2441 (void) tcp_output(tp);
2442 if (tcp_saveti)
2443 m_freem(tcp_saveti);
2444 return;
2445
2446 badsyn:
2447 /*
2448 * Received a bad SYN. Increment counters and dropwithreset.
2449 */
2450 tcpstat.tcps_badsyn++;
2451 tp = NULL;
2452 goto dropwithreset;
2453
2454 dropafterack:
2455 /*
2456 * Generate an ACK dropping incoming segment if it occupies
2457 * sequence space, where the ACK reflects our state.
2458 */
2459 if (tiflags & TH_RST)
2460 goto drop;
2461 goto dropafterack2;
2462
2463 dropafterack_ratelim:
2464 /*
2465 * We may want to rate-limit ACKs against SYN/RST attack.
2466 */
2467 if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
2468 tcp_ackdrop_ppslim) == 0) {
2469 /* XXX stat */
2470 goto drop;
2471 }
2472 /* ...fall into dropafterack2... */
2473
2474 dropafterack2:
2475 m_freem(m);
2476 tp->t_flags |= TF_ACKNOW;
2477 (void) tcp_output(tp);
2478 if (tcp_saveti)
2479 m_freem(tcp_saveti);
2480 return;
2481
2482 dropwithreset_ratelim:
2483 /*
2484 * We may want to rate-limit RSTs in certain situations,
2485 * particularly if we are sending an RST in response to
2486 * an attempt to connect to or otherwise communicate with
2487 * a port for which we have no socket.
2488 */
2489 if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
2490 tcp_rst_ppslim) == 0) {
2491 /* XXX stat */
2492 goto drop;
2493 }
2494 /* ...fall into dropwithreset... */
2495
2496 dropwithreset:
2497 /*
2498 * Generate a RST, dropping incoming segment.
2499 * Make ACK acceptable to originator of segment.
2500 */
2501 if (tiflags & TH_RST)
2502 goto drop;
2503
2504 switch (af) {
2505 #ifdef INET6
2506 case AF_INET6:
2507 /* For following calls to tcp_respond */
2508 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
2509 goto drop;
2510 break;
2511 #endif /* INET6 */
2512 case AF_INET:
2513 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
2514 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2515 goto drop;
2516 }
2517
2518 if (tiflags & TH_ACK)
2519 (void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
2520 else {
2521 if (tiflags & TH_SYN)
2522 tlen++;
2523 (void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
2524 TH_RST|TH_ACK);
2525 }
2526 if (tcp_saveti)
2527 m_freem(tcp_saveti);
2528 return;
2529
2530 badcsum:
2531 tcpstat.tcps_rcvbadsum++;
2532 drop:
2533 /*
2534 * Drop space held by incoming segment and return.
2535 */
2536 if (tp) {
2537 if (tp->t_inpcb)
2538 so = tp->t_inpcb->inp_socket;
2539 #ifdef INET6
2540 else if (tp->t_in6pcb)
2541 so = tp->t_in6pcb->in6p_socket;
2542 #endif
2543 else
2544 so = NULL;
2545 #ifdef TCP_DEBUG
2546 if (so && (so->so_options & SO_DEBUG) != 0)
2547 tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
2548 #endif
2549 }
2550 if (tcp_saveti)
2551 m_freem(tcp_saveti);
2552 m_freem(m);
2553 return;
2554 }
2555
2556 void
2557 tcp_dooptions(tp, cp, cnt, th, oi)
2558 struct tcpcb *tp;
2559 u_char *cp;
2560 int cnt;
2561 struct tcphdr *th;
2562 struct tcp_opt_info *oi;
2563 {
2564 u_int16_t mss;
2565 int opt, optlen;
2566
2567 for (; cnt > 0; cnt -= optlen, cp += optlen) {
2568 opt = cp[0];
2569 if (opt == TCPOPT_EOL)
2570 break;
2571 if (opt == TCPOPT_NOP)
2572 optlen = 1;
2573 else {
2574 if (cnt < 2)
2575 break;
2576 optlen = cp[1];
2577 if (optlen < 2 || optlen > cnt)
2578 break;
2579 }
2580 switch (opt) {
2581
2582 default:
2583 continue;
2584
2585 case TCPOPT_MAXSEG:
2586 if (optlen != TCPOLEN_MAXSEG)
2587 continue;
2588 if (!(th->th_flags & TH_SYN))
2589 continue;
2590 bcopy(cp + 2, &mss, sizeof(mss));
2591 oi->maxseg = ntohs(mss);
2592 break;
2593
2594 case TCPOPT_WINDOW:
2595 if (optlen != TCPOLEN_WINDOW)
2596 continue;
2597 if (!(th->th_flags & TH_SYN))
2598 continue;
2599 tp->t_flags |= TF_RCVD_SCALE;
2600 tp->requested_s_scale = cp[2];
2601 if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
2602 #if 0 /*XXX*/
2603 char *p;
2604
2605 if (ip)
2606 p = ntohl(ip->ip_src);
2607 #ifdef INET6
2608 else if (ip6)
2609 p = ip6_sprintf(&ip6->ip6_src);
2610 #endif
2611 else
2612 p = "(unknown)";
2613 log(LOG_ERR, "TCP: invalid wscale %d from %s, "
2614 "assuming %d\n",
2615 tp->requested_s_scale, p,
2616 TCP_MAX_WINSHIFT);
2617 #else
2618 log(LOG_ERR, "TCP: invalid wscale %d, "
2619 "assuming %d\n",
2620 tp->requested_s_scale,
2621 TCP_MAX_WINSHIFT);
2622 #endif
2623 tp->requested_s_scale = TCP_MAX_WINSHIFT;
2624 }
2625 break;
2626
2627 case TCPOPT_TIMESTAMP:
2628 if (optlen != TCPOLEN_TIMESTAMP)
2629 continue;
2630 oi->ts_present = 1;
2631 bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
2632 NTOHL(oi->ts_val);
2633 bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
2634 NTOHL(oi->ts_ecr);
2635
2636 /*
2637 * A timestamp received in a SYN makes
2638 * it ok to send timestamp requests and replies.
2639 */
2640 if (th->th_flags & TH_SYN) {
2641 tp->t_flags |= TF_RCVD_TSTMP;
2642 tp->ts_recent = oi->ts_val;
2643 tp->ts_recent_age = TCP_TIMESTAMP(tp);
2644 }
2645 break;
2646 case TCPOPT_SACK_PERMITTED:
2647 if (optlen != TCPOLEN_SACK_PERMITTED)
2648 continue;
2649 if (!(th->th_flags & TH_SYN))
2650 continue;
2651 tp->t_flags &= ~TF_CANT_TXSACK;
2652 break;
2653
2654 case TCPOPT_SACK:
2655 if (tp->t_flags & TF_IGNR_RXSACK)
2656 continue;
2657 if (optlen % 8 != 2 || optlen < 10)
2658 continue;
2659 cp += 2;
2660 optlen -= 2;
2661 for (; optlen > 0; cp -= 8, optlen -= 8) {
2662 tcp_seq lwe, rwe;
2663 bcopy((char *)cp, (char *) &lwe, sizeof(lwe));
2664 NTOHL(lwe);
2665 bcopy((char *)cp, (char *) &rwe, sizeof(rwe));
2666 NTOHL(rwe);
2667 /* tcp_mark_sacked(tp, lwe, rwe); */
2668 }
2669 break;
2670 #ifdef TCP_SIGNATURE
2671 /*
2672 * XXX In order to reply to a host which has set the
2673 * TCP_SIGNATURE option in its initial SYN, we have to
2674 * record the fact that the option was observed here
2675 * for the syncache code to perform the correct response.
2676 */
2677 case TCPOPT_SIGNATURE:
2678 if (optlen != TCPOLEN_SIGNATURE)
2679 continue;
2680 tp->t_flags |= (TOF_SIGNATURE | TOF_SIGLEN);
2681 break;
2682 #endif
2683 }
2684 }
2685 }
2686
2687 /*
2688 * Pull out of band byte out of a segment so
2689 * it doesn't appear in the user's data queue.
2690 * It is still reflected in the segment length for
2691 * sequencing purposes.
2692 */
2693 void
2694 tcp_pulloutofband(so, th, m, off)
2695 struct socket *so;
2696 struct tcphdr *th;
2697 struct mbuf *m;
2698 int off;
2699 {
2700 int cnt = off + th->th_urp - 1;
2701
2702 while (cnt >= 0) {
2703 if (m->m_len > cnt) {
2704 char *cp = mtod(m, caddr_t) + cnt;
2705 struct tcpcb *tp = sototcpcb(so);
2706
2707 tp->t_iobc = *cp;
2708 tp->t_oobflags |= TCPOOB_HAVEDATA;
2709 bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
2710 m->m_len--;
2711 return;
2712 }
2713 cnt -= m->m_len;
2714 m = m->m_next;
2715 if (m == 0)
2716 break;
2717 }
2718 panic("tcp_pulloutofband");
2719 }
2720
2721 /*
2722 * Collect new round-trip time estimate
2723 * and update averages and current timeout.
2724 */
2725 void
2726 tcp_xmit_timer(tp, rtt)
2727 struct tcpcb *tp;
2728 uint32_t rtt;
2729 {
2730 int32_t delta;
2731
2732 tcpstat.tcps_rttupdated++;
2733 if (tp->t_srtt != 0) {
2734 /*
2735 * srtt is stored as fixed point with 3 bits after the
2736 * binary point (i.e., scaled by 8). The following magic
2737 * is equivalent to the smoothing algorithm in rfc793 with
2738 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2739 * point). Adjust rtt to origin 0.
2740 */
2741 delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
2742 if ((tp->t_srtt += delta) <= 0)
2743 tp->t_srtt = 1 << 2;
2744 /*
2745 * We accumulate a smoothed rtt variance (actually, a
2746 * smoothed mean difference), then set the retransmit
2747 * timer to smoothed rtt + 4 times the smoothed variance.
2748 * rttvar is stored as fixed point with 2 bits after the
2749 * binary point (scaled by 4). The following is
2750 * equivalent to rfc793 smoothing with an alpha of .75
2751 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces
2752 * rfc793's wired-in beta.
2753 */
2754 if (delta < 0)
2755 delta = -delta;
2756 delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
2757 if ((tp->t_rttvar += delta) <= 0)
2758 tp->t_rttvar = 1 << 2;
2759 } else {
2760 /*
2761 * No rtt measurement yet - use the unsmoothed rtt.
2762 * Set the variance to half the rtt (so our first
2763 * retransmit happens at 3*rtt).
2764 */
2765 tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
2766 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
2767 }
2768 tp->t_rtttime = 0;
2769 tp->t_rxtshift = 0;
2770
2771 /*
2772 * the retransmit should happen at rtt + 4 * rttvar.
2773 * Because of the way we do the smoothing, srtt and rttvar
2774 * will each average +1/2 tick of bias. When we compute
2775 * the retransmit timer, we want 1/2 tick of rounding and
2776 * 1 extra tick because of +-1/2 tick uncertainty in the
2777 * firing of the timer. The bias will give us exactly the
2778 * 1.5 tick we need. But, because the bias is
2779 * statistical, we have to test that we don't drop below
2780 * the minimum feasible timer (which is 2 ticks).
2781 */
2782 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
2783 max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
2784
2785 /*
2786 * We received an ack for a packet that wasn't retransmitted;
2787 * it is probably safe to discard any error indications we've
2788 * received recently. This isn't quite right, but close enough
2789 * for now (a route might have failed after we sent a segment,
2790 * and the return path might not be symmetrical).
2791 */
2792 tp->t_softerror = 0;
2793 }
2794
2795 /*
2796 * Checks for partial ack. If partial ack arrives, force the retransmission
2797 * of the next unacknowledged segment, do not clear tp->t_dupacks, and return
2798 * 1. By setting snd_nxt to th_ack, this forces retransmission timer to
2799 * be started again. If the ack advances at least to tp->snd_recover, return 0.
2800 */
2801 int
2802 tcp_newreno(tp, th)
2803 struct tcpcb *tp;
2804 struct tcphdr *th;
2805 {
2806 tcp_seq onxt = tp->snd_nxt;
2807 u_long ocwnd = tp->snd_cwnd;
2808
2809 if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2810 /*
2811 * snd_una has not yet been updated and the socket's send
2812 * buffer has not yet drained off the ACK'd data, so we
2813 * have to leave snd_una as it was to get the correct data
2814 * offset in tcp_output().
2815 */
2816 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2817 tp->t_rtttime = 0;
2818 tp->snd_nxt = th->th_ack;
2819 /*
2820 * Set snd_cwnd to one segment beyond ACK'd offset. snd_una
2821 * is not yet updated when we're called.
2822 */
2823 tp->snd_cwnd = tp->t_segsz + (th->th_ack - tp->snd_una);
2824 (void) tcp_output(tp);
2825 tp->snd_cwnd = ocwnd;
2826 if (SEQ_GT(onxt, tp->snd_nxt))
2827 tp->snd_nxt = onxt;
2828 /*
2829 * Partial window deflation. Relies on fact that tp->snd_una
2830 * not updated yet.
2831 */
2832 tp->snd_cwnd -= (th->th_ack - tp->snd_una - tp->t_segsz);
2833 return 1;
2834 }
2835 return 0;
2836 }
2837
2838
2839 /*
2840 * TCP compressed state engine. Currently used to hold compressed
2841 * state for SYN_RECEIVED.
2842 */
2843
2844 u_long syn_cache_count;
2845 u_int32_t syn_hash1, syn_hash2;
2846
2847 #define SYN_HASH(sa, sp, dp) \
2848 ((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
2849 ((u_int32_t)(sp)))^syn_hash2)))
2850 #ifndef INET6
2851 #define SYN_HASHALL(hash, src, dst) \
2852 do { \
2853 hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
2854 ((struct sockaddr_in *)(src))->sin_port, \
2855 ((struct sockaddr_in *)(dst))->sin_port); \
2856 } while (/*CONSTCOND*/ 0)
2857 #else
2858 #define SYN_HASH6(sa, sp, dp) \
2859 ((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
2860 (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
2861 & 0x7fffffff)
2862
2863 #define SYN_HASHALL(hash, src, dst) \
2864 do { \
2865 switch ((src)->sa_family) { \
2866 case AF_INET: \
2867 hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
2868 ((struct sockaddr_in *)(src))->sin_port, \
2869 ((struct sockaddr_in *)(dst))->sin_port); \
2870 break; \
2871 case AF_INET6: \
2872 hash = SYN_HASH6(&((struct sockaddr_in6 *)(src))->sin6_addr, \
2873 ((struct sockaddr_in6 *)(src))->sin6_port, \
2874 ((struct sockaddr_in6 *)(dst))->sin6_port); \
2875 break; \
2876 default: \
2877 hash = 0; \
2878 } \
2879 } while (/*CONSTCOND*/0)
2880 #endif /* INET6 */
2881
2882 #define SYN_CACHE_RM(sc) \
2883 do { \
2884 TAILQ_REMOVE(&tcp_syn_cache[(sc)->sc_bucketidx].sch_bucket, \
2885 (sc), sc_bucketq); \
2886 (sc)->sc_tp = NULL; \
2887 LIST_REMOVE((sc), sc_tpq); \
2888 tcp_syn_cache[(sc)->sc_bucketidx].sch_length--; \
2889 callout_stop(&(sc)->sc_timer); \
2890 syn_cache_count--; \
2891 } while (/*CONSTCOND*/0)
2892
2893 #define SYN_CACHE_PUT(sc) \
2894 do { \
2895 if ((sc)->sc_ipopts) \
2896 (void) m_free((sc)->sc_ipopts); \
2897 if ((sc)->sc_route4.ro_rt != NULL) \
2898 RTFREE((sc)->sc_route4.ro_rt); \
2899 if (callout_invoking(&(sc)->sc_timer)) \
2900 (sc)->sc_flags |= SCF_DEAD; \
2901 else \
2902 pool_put(&syn_cache_pool, (sc)); \
2903 } while (/*CONSTCOND*/0)
2904
2905 POOL_INIT(syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0, "synpl", NULL);
2906
2907 /*
2908 * We don't estimate RTT with SYNs, so each packet starts with the default
2909 * RTT and each timer step has a fixed timeout value.
2910 */
2911 #define SYN_CACHE_TIMER_ARM(sc) \
2912 do { \
2913 TCPT_RANGESET((sc)->sc_rxtcur, \
2914 TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN, \
2915 TCPTV_REXMTMAX); \
2916 callout_reset(&(sc)->sc_timer, \
2917 (sc)->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, (sc)); \
2918 } while (/*CONSTCOND*/0)
2919
2920 #define SYN_CACHE_TIMESTAMP(sc) (tcp_now - (sc)->sc_timebase)
2921
2922 void
2923 syn_cache_init()
2924 {
2925 int i;
2926
2927 /* Initialize the hash buckets. */
2928 for (i = 0; i < tcp_syn_cache_size; i++)
2929 TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
2930 }
2931
2932 void
2933 syn_cache_insert(sc, tp)
2934 struct syn_cache *sc;
2935 struct tcpcb *tp;
2936 {
2937 struct syn_cache_head *scp;
2938 struct syn_cache *sc2;
2939 int s;
2940
2941 /*
2942 * If there are no entries in the hash table, reinitialize
2943 * the hash secrets.
2944 */
2945 if (syn_cache_count == 0) {
2946 syn_hash1 = arc4random();
2947 syn_hash2 = arc4random();
2948 }
2949
2950 SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
2951 sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
2952 scp = &tcp_syn_cache[sc->sc_bucketidx];
2953
2954 /*
2955 * Make sure that we don't overflow the per-bucket
2956 * limit or the total cache size limit.
2957 */
2958 s = splsoftnet();
2959 if (scp->sch_length >= tcp_syn_bucket_limit) {
2960 tcpstat.tcps_sc_bucketoverflow++;
2961 /*
2962 * The bucket is full. Toss the oldest element in the
2963 * bucket. This will be the first entry in the bucket.
2964 */
2965 sc2 = TAILQ_FIRST(&scp->sch_bucket);
2966 #ifdef DIAGNOSTIC
2967 /*
2968 * This should never happen; we should always find an
2969 * entry in our bucket.
2970 */
2971 if (sc2 == NULL)
2972 panic("syn_cache_insert: bucketoverflow: impossible");
2973 #endif
2974 SYN_CACHE_RM(sc2);
2975 SYN_CACHE_PUT(sc2);
2976 } else if (syn_cache_count >= tcp_syn_cache_limit) {
2977 struct syn_cache_head *scp2, *sce;
2978
2979 tcpstat.tcps_sc_overflowed++;
2980 /*
2981 * The cache is full. Toss the oldest entry in the
2982 * first non-empty bucket we can find.
2983 *
2984 * XXX We would really like to toss the oldest
2985 * entry in the cache, but we hope that this
2986 * condition doesn't happen very often.
2987 */
2988 scp2 = scp;
2989 if (TAILQ_EMPTY(&scp2->sch_bucket)) {
2990 sce = &tcp_syn_cache[tcp_syn_cache_size];
2991 for (++scp2; scp2 != scp; scp2++) {
2992 if (scp2 >= sce)
2993 scp2 = &tcp_syn_cache[0];
2994 if (! TAILQ_EMPTY(&scp2->sch_bucket))
2995 break;
2996 }
2997 #ifdef DIAGNOSTIC
2998 /*
2999 * This should never happen; we should always find a
3000 * non-empty bucket.
3001 */
3002 if (scp2 == scp)
3003 panic("syn_cache_insert: cacheoverflow: "
3004 "impossible");
3005 #endif
3006 }
3007 sc2 = TAILQ_FIRST(&scp2->sch_bucket);
3008 SYN_CACHE_RM(sc2);
3009 SYN_CACHE_PUT(sc2);
3010 }
3011
3012 /*
3013 * Initialize the entry's timer.
3014 */
3015 sc->sc_rxttot = 0;
3016 sc->sc_rxtshift = 0;
3017 SYN_CACHE_TIMER_ARM(sc);
3018
3019 /* Link it from tcpcb entry */
3020 LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
3021
3022 /* Put it into the bucket. */
3023 TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
3024 scp->sch_length++;
3025 syn_cache_count++;
3026
3027 tcpstat.tcps_sc_added++;
3028 splx(s);
3029 }
3030
3031 /*
3032 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
3033 * If we have retransmitted an entry the maximum number of times, expire
3034 * that entry.
3035 */
3036 void
3037 syn_cache_timer(void *arg)
3038 {
3039 struct syn_cache *sc = arg;
3040 int s;
3041
3042 s = splsoftnet();
3043 callout_ack(&sc->sc_timer);
3044
3045 if (__predict_false(sc->sc_flags & SCF_DEAD)) {
3046 tcpstat.tcps_sc_delayed_free++;
3047 pool_put(&syn_cache_pool, sc);
3048 splx(s);
3049 return;
3050 }
3051
3052 if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
3053 /* Drop it -- too many retransmissions. */
3054 goto dropit;
3055 }
3056
3057 /*
3058 * Compute the total amount of time this entry has
3059 * been on a queue. If this entry has been on longer
3060 * than the keep alive timer would allow, expire it.
3061 */
3062 sc->sc_rxttot += sc->sc_rxtcur;
3063 if (sc->sc_rxttot >= TCPTV_KEEP_INIT)
3064 goto dropit;
3065
3066 tcpstat.tcps_sc_retransmitted++;
3067 (void) syn_cache_respond(sc, NULL);
3068
3069 /* Advance the timer back-off. */
3070 sc->sc_rxtshift++;
3071 SYN_CACHE_TIMER_ARM(sc);
3072
3073 splx(s);
3074 return;
3075
3076 dropit:
3077 tcpstat.tcps_sc_timed_out++;
3078 SYN_CACHE_RM(sc);
3079 SYN_CACHE_PUT(sc);
3080 splx(s);
3081 }
3082
3083 /*
3084 * Remove syn cache created by the specified tcb entry,
3085 * because this does not make sense to keep them
3086 * (if there's no tcb entry, syn cache entry will never be used)
3087 */
3088 void
3089 syn_cache_cleanup(tp)
3090 struct tcpcb *tp;
3091 {
3092 struct syn_cache *sc, *nsc;
3093 int s;
3094
3095 s = splsoftnet();
3096
3097 for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
3098 nsc = LIST_NEXT(sc, sc_tpq);
3099
3100 #ifdef DIAGNOSTIC
3101 if (sc->sc_tp != tp)
3102 panic("invalid sc_tp in syn_cache_cleanup");
3103 #endif
3104 SYN_CACHE_RM(sc);
3105 SYN_CACHE_PUT(sc);
3106 }
3107 /* just for safety */
3108 LIST_INIT(&tp->t_sc);
3109
3110 splx(s);
3111 }
3112
3113 /*
3114 * Find an entry in the syn cache.
3115 */
3116 struct syn_cache *
3117 syn_cache_lookup(src, dst, headp)
3118 struct sockaddr *src;
3119 struct sockaddr *dst;
3120 struct syn_cache_head **headp;
3121 {
3122 struct syn_cache *sc;
3123 struct syn_cache_head *scp;
3124 u_int32_t hash;
3125 int s;
3126
3127 SYN_HASHALL(hash, src, dst);
3128
3129 scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
3130 *headp = scp;
3131 s = splsoftnet();
3132 for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
3133 sc = TAILQ_NEXT(sc, sc_bucketq)) {
3134 if (sc->sc_hash != hash)
3135 continue;
3136 if (!bcmp(&sc->sc_src, src, src->sa_len) &&
3137 !bcmp(&sc->sc_dst, dst, dst->sa_len)) {
3138 splx(s);
3139 return (sc);
3140 }
3141 }
3142 splx(s);
3143 return (NULL);
3144 }
3145
3146 /*
3147 * This function gets called when we receive an ACK for a
3148 * socket in the LISTEN state. We look up the connection
3149 * in the syn cache, and if its there, we pull it out of
3150 * the cache and turn it into a full-blown connection in
3151 * the SYN-RECEIVED state.
3152 *
3153 * The return values may not be immediately obvious, and their effects
3154 * can be subtle, so here they are:
3155 *
3156 * NULL SYN was not found in cache; caller should drop the
3157 * packet and send an RST.
3158 *
3159 * -1 We were unable to create the new connection, and are
3160 * aborting it. An ACK,RST is being sent to the peer
3161 * (unless we got screwey sequence numbners; see below),
3162 * because the 3-way handshake has been completed. Caller
3163 * should not free the mbuf, since we may be using it. If
3164 * we are not, we will free it.
3165 *
3166 * Otherwise, the return value is a pointer to the new socket
3167 * associated with the connection.
3168 */
3169 struct socket *
3170 syn_cache_get(src, dst, th, hlen, tlen, so, m)
3171 struct sockaddr *src;
3172 struct sockaddr *dst;
3173 struct tcphdr *th;
3174 unsigned int hlen, tlen;
3175 struct socket *so;
3176 struct mbuf *m;
3177 {
3178 struct syn_cache *sc;
3179 struct syn_cache_head *scp;
3180 struct inpcb *inp = NULL;
3181 #ifdef INET6
3182 struct in6pcb *in6p = NULL;
3183 #endif
3184 struct tcpcb *tp = 0;
3185 struct mbuf *am;
3186 int s;
3187 struct socket *oso;
3188
3189 s = splsoftnet();
3190 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3191 splx(s);
3192 return (NULL);
3193 }
3194
3195 /*
3196 * Verify the sequence and ack numbers. Try getting the correct
3197 * response again.
3198 */
3199 if ((th->th_ack != sc->sc_iss + 1) ||
3200 SEQ_LEQ(th->th_seq, sc->sc_irs) ||
3201 SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
3202 (void) syn_cache_respond(sc, m);
3203 splx(s);
3204 return ((struct socket *)(-1));
3205 }
3206
3207 /* Remove this cache entry */
3208 SYN_CACHE_RM(sc);
3209 splx(s);
3210
3211 /*
3212 * Ok, create the full blown connection, and set things up
3213 * as they would have been set up if we had created the
3214 * connection when the SYN arrived. If we can't create
3215 * the connection, abort it.
3216 */
3217 /*
3218 * inp still has the OLD in_pcb stuff, set the
3219 * v6-related flags on the new guy, too. This is
3220 * done particularly for the case where an AF_INET6
3221 * socket is bound only to a port, and a v4 connection
3222 * comes in on that port.
3223 * we also copy the flowinfo from the original pcb
3224 * to the new one.
3225 */
3226 oso = so;
3227 so = sonewconn(so, SS_ISCONNECTED);
3228 if (so == NULL)
3229 goto resetandabort;
3230
3231 switch (so->so_proto->pr_domain->dom_family) {
3232 #ifdef INET
3233 case AF_INET:
3234 inp = sotoinpcb(so);
3235 break;
3236 #endif
3237 #ifdef INET6
3238 case AF_INET6:
3239 in6p = sotoin6pcb(so);
3240 break;
3241 #endif
3242 }
3243 switch (src->sa_family) {
3244 #ifdef INET
3245 case AF_INET:
3246 if (inp) {
3247 inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
3248 inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
3249 inp->inp_options = ip_srcroute();
3250 in_pcbstate(inp, INP_BOUND);
3251 if (inp->inp_options == NULL) {
3252 inp->inp_options = sc->sc_ipopts;
3253 sc->sc_ipopts = NULL;
3254 }
3255 }
3256 #ifdef INET6
3257 else if (in6p) {
3258 /* IPv4 packet to AF_INET6 socket */
3259 bzero(&in6p->in6p_laddr, sizeof(in6p->in6p_laddr));
3260 in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
3261 bcopy(&((struct sockaddr_in *)dst)->sin_addr,
3262 &in6p->in6p_laddr.s6_addr32[3],
3263 sizeof(((struct sockaddr_in *)dst)->sin_addr));
3264 in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
3265 in6totcpcb(in6p)->t_family = AF_INET;
3266 if (sotoin6pcb(oso)->in6p_flags & IN6P_IPV6_V6ONLY)
3267 in6p->in6p_flags |= IN6P_IPV6_V6ONLY;
3268 else
3269 in6p->in6p_flags &= ~IN6P_IPV6_V6ONLY;
3270 in6_pcbstate(in6p, IN6P_BOUND);
3271 }
3272 #endif
3273 break;
3274 #endif
3275 #ifdef INET6
3276 case AF_INET6:
3277 if (in6p) {
3278 in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
3279 in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
3280 in6_pcbstate(in6p, IN6P_BOUND);
3281 }
3282 break;
3283 #endif
3284 }
3285 #ifdef INET6
3286 if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
3287 struct in6pcb *oin6p = sotoin6pcb(oso);
3288 /* inherit socket options from the listening socket */
3289 in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
3290 if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
3291 m_freem(in6p->in6p_options);
3292 in6p->in6p_options = 0;
3293 }
3294 ip6_savecontrol(in6p, &in6p->in6p_options,
3295 mtod(m, struct ip6_hdr *), m);
3296 }
3297 #endif
3298
3299 #if defined(IPSEC) || defined(FAST_IPSEC)
3300 /*
3301 * we make a copy of policy, instead of sharing the policy,
3302 * for better behavior in terms of SA lookup and dead SA removal.
3303 */
3304 if (inp) {
3305 /* copy old policy into new socket's */
3306 if (ipsec_copy_pcbpolicy(sotoinpcb(oso)->inp_sp, inp->inp_sp))
3307 printf("tcp_input: could not copy policy\n");
3308 }
3309 #ifdef INET6
3310 else if (in6p) {
3311 /* copy old policy into new socket's */
3312 if (ipsec_copy_pcbpolicy(sotoin6pcb(oso)->in6p_sp,
3313 in6p->in6p_sp))
3314 printf("tcp_input: could not copy policy\n");
3315 }
3316 #endif
3317 #endif
3318
3319 /*
3320 * Give the new socket our cached route reference.
3321 */
3322 if (inp)
3323 inp->inp_route = sc->sc_route4; /* struct assignment */
3324 #ifdef INET6
3325 else
3326 in6p->in6p_route = sc->sc_route6;
3327 #endif
3328 sc->sc_route4.ro_rt = NULL;
3329
3330 am = m_get(M_DONTWAIT, MT_SONAME); /* XXX */
3331 if (am == NULL)
3332 goto resetandabort;
3333 MCLAIM(am, &tcp_mowner);
3334 am->m_len = src->sa_len;
3335 bcopy(src, mtod(am, caddr_t), src->sa_len);
3336 if (inp) {
3337 if (in_pcbconnect(inp, am)) {
3338 (void) m_free(am);
3339 goto resetandabort;
3340 }
3341 }
3342 #ifdef INET6
3343 else if (in6p) {
3344 if (src->sa_family == AF_INET) {
3345 /* IPv4 packet to AF_INET6 socket */
3346 struct sockaddr_in6 *sin6;
3347 sin6 = mtod(am, struct sockaddr_in6 *);
3348 am->m_len = sizeof(*sin6);
3349 bzero(sin6, sizeof(*sin6));
3350 sin6->sin6_family = AF_INET6;
3351 sin6->sin6_len = sizeof(*sin6);
3352 sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port;
3353 sin6->sin6_addr.s6_addr16[5] = htons(0xffff);
3354 bcopy(&((struct sockaddr_in *)src)->sin_addr,
3355 &sin6->sin6_addr.s6_addr32[3],
3356 sizeof(sin6->sin6_addr.s6_addr32[3]));
3357 }
3358 if (in6_pcbconnect(in6p, am)) {
3359 (void) m_free(am);
3360 goto resetandabort;
3361 }
3362 }
3363 #endif
3364 else {
3365 (void) m_free(am);
3366 goto resetandabort;
3367 }
3368 (void) m_free(am);
3369
3370 if (inp)
3371 tp = intotcpcb(inp);
3372 #ifdef INET6
3373 else if (in6p)
3374 tp = in6totcpcb(in6p);
3375 #endif
3376 else
3377 tp = NULL;
3378 tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
3379 if (sc->sc_request_r_scale != 15) {
3380 tp->requested_s_scale = sc->sc_requested_s_scale;
3381 tp->request_r_scale = sc->sc_request_r_scale;
3382 tp->snd_scale = sc->sc_requested_s_scale;
3383 tp->rcv_scale = sc->sc_request_r_scale;
3384 tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
3385 }
3386 if (sc->sc_flags & SCF_TIMESTAMP)
3387 tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
3388 tp->ts_timebase = sc->sc_timebase;
3389
3390 tp->t_template = tcp_template(tp);
3391 if (tp->t_template == 0) {
3392 tp = tcp_drop(tp, ENOBUFS); /* destroys socket */
3393 so = NULL;
3394 m_freem(m);
3395 goto abort;
3396 }
3397
3398 tp->iss = sc->sc_iss;
3399 tp->irs = sc->sc_irs;
3400 tcp_sendseqinit(tp);
3401 tcp_rcvseqinit(tp);
3402 tp->t_state = TCPS_SYN_RECEIVED;
3403 TCP_TIMER_ARM(tp, TCPT_KEEP, TCPTV_KEEP_INIT);
3404 tcpstat.tcps_accepts++;
3405
3406 #ifdef TCP_SIGNATURE
3407 if (sc->sc_flags & SCF_SIGNATURE)
3408 tp->t_flags |= TF_SIGNATURE;
3409 #endif
3410
3411 /* Initialize tp->t_ourmss before we deal with the peer's! */
3412 tp->t_ourmss = sc->sc_ourmaxseg;
3413 tcp_mss_from_peer(tp, sc->sc_peermaxseg);
3414
3415 /*
3416 * Initialize the initial congestion window. If we
3417 * had to retransmit the SYN,ACK, we must initialize cwnd
3418 * to 1 segment (i.e. the Loss Window).
3419 */
3420 if (sc->sc_rxtshift)
3421 tp->snd_cwnd = tp->t_peermss;
3422 else {
3423 int ss = tcp_init_win;
3424 #ifdef INET
3425 if (inp != NULL && in_localaddr(inp->inp_faddr))
3426 ss = tcp_init_win_local;
3427 #endif
3428 #ifdef INET6
3429 if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
3430 ss = tcp_init_win_local;
3431 #endif
3432 tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
3433 }
3434
3435 tcp_rmx_rtt(tp);
3436 tp->snd_wl1 = sc->sc_irs;
3437 tp->rcv_up = sc->sc_irs + 1;
3438
3439 /*
3440 * This is what whould have happened in tcp_output() when
3441 * the SYN,ACK was sent.
3442 */
3443 tp->snd_up = tp->snd_una;
3444 tp->snd_max = tp->snd_nxt = tp->iss+1;
3445 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
3446 if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
3447 tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
3448 tp->last_ack_sent = tp->rcv_nxt;
3449
3450 tcpstat.tcps_sc_completed++;
3451 SYN_CACHE_PUT(sc);
3452 return (so);
3453
3454 resetandabort:
3455 (void)tcp_respond(NULL, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
3456 abort:
3457 if (so != NULL)
3458 (void) soabort(so);
3459 SYN_CACHE_PUT(sc);
3460 tcpstat.tcps_sc_aborted++;
3461 return ((struct socket *)(-1));
3462 }
3463
3464 /*
3465 * This function is called when we get a RST for a
3466 * non-existent connection, so that we can see if the
3467 * connection is in the syn cache. If it is, zap it.
3468 */
3469
3470 void
3471 syn_cache_reset(src, dst, th)
3472 struct sockaddr *src;
3473 struct sockaddr *dst;
3474 struct tcphdr *th;
3475 {
3476 struct syn_cache *sc;
3477 struct syn_cache_head *scp;
3478 int s = splsoftnet();
3479
3480 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3481 splx(s);
3482 return;
3483 }
3484 if (SEQ_LT(th->th_seq, sc->sc_irs) ||
3485 SEQ_GT(th->th_seq, sc->sc_irs+1)) {
3486 splx(s);
3487 return;
3488 }
3489 SYN_CACHE_RM(sc);
3490 splx(s);
3491 tcpstat.tcps_sc_reset++;
3492 SYN_CACHE_PUT(sc);
3493 }
3494
3495 void
3496 syn_cache_unreach(src, dst, th)
3497 struct sockaddr *src;
3498 struct sockaddr *dst;
3499 struct tcphdr *th;
3500 {
3501 struct syn_cache *sc;
3502 struct syn_cache_head *scp;
3503 int s;
3504
3505 s = splsoftnet();
3506 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3507 splx(s);
3508 return;
3509 }
3510 /* If the sequence number != sc_iss, then it's a bogus ICMP msg */
3511 if (ntohl (th->th_seq) != sc->sc_iss) {
3512 splx(s);
3513 return;
3514 }
3515
3516 /*
3517 * If we've retransmitted 3 times and this is our second error,
3518 * we remove the entry. Otherwise, we allow it to continue on.
3519 * This prevents us from incorrectly nuking an entry during a
3520 * spurious network outage.
3521 *
3522 * See tcp_notify().
3523 */
3524 if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
3525 sc->sc_flags |= SCF_UNREACH;
3526 splx(s);
3527 return;
3528 }
3529
3530 SYN_CACHE_RM(sc);
3531 splx(s);
3532 tcpstat.tcps_sc_unreach++;
3533 SYN_CACHE_PUT(sc);
3534 }
3535
3536 /*
3537 * Given a LISTEN socket and an inbound SYN request, add
3538 * this to the syn cache, and send back a segment:
3539 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
3540 * to the source.
3541 *
3542 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
3543 * Doing so would require that we hold onto the data and deliver it
3544 * to the application. However, if we are the target of a SYN-flood
3545 * DoS attack, an attacker could send data which would eventually
3546 * consume all available buffer space if it were ACKed. By not ACKing
3547 * the data, we avoid this DoS scenario.
3548 */
3549
3550 int
3551 syn_cache_add(src, dst, th, hlen, so, m, optp, optlen, oi)
3552 struct sockaddr *src;
3553 struct sockaddr *dst;
3554 struct tcphdr *th;
3555 unsigned int hlen;
3556 struct socket *so;
3557 struct mbuf *m;
3558 u_char *optp;
3559 int optlen;
3560 struct tcp_opt_info *oi;
3561 {
3562 struct tcpcb tb, *tp;
3563 long win;
3564 struct syn_cache *sc;
3565 struct syn_cache_head *scp;
3566 struct mbuf *ipopts;
3567
3568 tp = sototcpcb(so);
3569
3570 /*
3571 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
3572 *
3573 * Note this check is performed in tcp_input() very early on.
3574 */
3575
3576 /*
3577 * Initialize some local state.
3578 */
3579 win = sbspace(&so->so_rcv);
3580 if (win > TCP_MAXWIN)
3581 win = TCP_MAXWIN;
3582
3583 switch (src->sa_family) {
3584 #ifdef INET
3585 case AF_INET:
3586 /*
3587 * Remember the IP options, if any.
3588 */
3589 ipopts = ip_srcroute();
3590 break;
3591 #endif
3592 default:
3593 ipopts = NULL;
3594 }
3595
3596 if (optp) {
3597 tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
3598 tcp_dooptions(&tb, optp, optlen, th, oi);
3599 } else
3600 tb.t_flags = 0;
3601
3602 /*
3603 * See if we already have an entry for this connection.
3604 * If we do, resend the SYN,ACK. We do not count this
3605 * as a retransmission (XXX though maybe we should).
3606 */
3607 if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
3608 tcpstat.tcps_sc_dupesyn++;
3609 if (ipopts) {
3610 /*
3611 * If we were remembering a previous source route,
3612 * forget it and use the new one we've been given.
3613 */
3614 if (sc->sc_ipopts)
3615 (void) m_free(sc->sc_ipopts);
3616 sc->sc_ipopts = ipopts;
3617 }
3618 sc->sc_timestamp = tb.ts_recent;
3619 if (syn_cache_respond(sc, m) == 0) {
3620 tcpstat.tcps_sndacks++;
3621 tcpstat.tcps_sndtotal++;
3622 }
3623 return (1);
3624 }
3625
3626 sc = pool_get(&syn_cache_pool, PR_NOWAIT);
3627 if (sc == NULL) {
3628 if (ipopts)
3629 (void) m_free(ipopts);
3630 return (0);
3631 }
3632
3633 /*
3634 * Fill in the cache, and put the necessary IP and TCP
3635 * options into the reply.
3636 */
3637 bzero(sc, sizeof(struct syn_cache));
3638 callout_init(&sc->sc_timer);
3639 bcopy(src, &sc->sc_src, src->sa_len);
3640 bcopy(dst, &sc->sc_dst, dst->sa_len);
3641 sc->sc_flags = 0;
3642 sc->sc_ipopts = ipopts;
3643 sc->sc_irs = th->th_seq;
3644 switch (src->sa_family) {
3645 #ifdef INET
3646 case AF_INET:
3647 {
3648 struct sockaddr_in *srcin = (void *) src;
3649 struct sockaddr_in *dstin = (void *) dst;
3650
3651 sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
3652 &srcin->sin_addr, dstin->sin_port,
3653 srcin->sin_port, sizeof(dstin->sin_addr), 0);
3654 break;
3655 }
3656 #endif /* INET */
3657 #ifdef INET6
3658 case AF_INET6:
3659 {
3660 struct sockaddr_in6 *srcin6 = (void *) src;
3661 struct sockaddr_in6 *dstin6 = (void *) dst;
3662
3663 sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
3664 &srcin6->sin6_addr, dstin6->sin6_port,
3665 srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
3666 break;
3667 }
3668 #endif /* INET6 */
3669 }
3670 sc->sc_peermaxseg = oi->maxseg;
3671 sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
3672 m->m_pkthdr.rcvif : NULL,
3673 sc->sc_src.sa.sa_family);
3674 sc->sc_win = win;
3675 sc->sc_timebase = tcp_now; /* see tcp_newtcpcb() */
3676 sc->sc_timestamp = tb.ts_recent;
3677 if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
3678 (TF_REQ_TSTMP|TF_RCVD_TSTMP))
3679 sc->sc_flags |= SCF_TIMESTAMP;
3680 if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
3681 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
3682 sc->sc_requested_s_scale = tb.requested_s_scale;
3683 sc->sc_request_r_scale = 0;
3684 while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
3685 TCP_MAXWIN << sc->sc_request_r_scale <
3686 so->so_rcv.sb_hiwat)
3687 sc->sc_request_r_scale++;
3688 } else {
3689 sc->sc_requested_s_scale = 15;
3690 sc->sc_request_r_scale = 15;
3691 }
3692 #ifdef TCP_SIGNATURE
3693 /*
3694 * If listening socket requested TCP digests, and received SYN
3695 * contains the option, flag this in the syncache so that
3696 * syncache_respond() will do the right thing with the SYN+ACK.
3697 * XXX Currently we always record the option by default and will
3698 * attempt to use it in syncache_respond().
3699 */
3700 if (tb.t_flags & TOF_SIGNATURE)
3701 sc->sc_flags = SCF_SIGNATURE;
3702 #endif
3703 sc->sc_tp = tp;
3704 if (syn_cache_respond(sc, m) == 0) {
3705 syn_cache_insert(sc, tp);
3706 tcpstat.tcps_sndacks++;
3707 tcpstat.tcps_sndtotal++;
3708 } else {
3709 SYN_CACHE_PUT(sc);
3710 tcpstat.tcps_sc_dropped++;
3711 }
3712 return (1);
3713 }
3714
3715 int
3716 syn_cache_respond(sc, m)
3717 struct syn_cache *sc;
3718 struct mbuf *m;
3719 {
3720 struct route *ro;
3721 u_int8_t *optp;
3722 int optlen, error;
3723 u_int16_t tlen;
3724 struct ip *ip = NULL;
3725 #ifdef INET6
3726 struct ip6_hdr *ip6 = NULL;
3727 #endif
3728 struct tcpcb *tp;
3729 struct tcphdr *th;
3730 u_int hlen;
3731 struct socket *so;
3732
3733 switch (sc->sc_src.sa.sa_family) {
3734 case AF_INET:
3735 hlen = sizeof(struct ip);
3736 ro = &sc->sc_route4;
3737 break;
3738 #ifdef INET6
3739 case AF_INET6:
3740 hlen = sizeof(struct ip6_hdr);
3741 ro = (struct route *)&sc->sc_route6;
3742 break;
3743 #endif
3744 default:
3745 if (m)
3746 m_freem(m);
3747 return (EAFNOSUPPORT);
3748 }
3749
3750 /* Compute the size of the TCP options. */
3751 optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
3752 ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
3753
3754 #ifdef TCP_SIGNATURE
3755 optlen += ((sc->sc_flags & SCF_SIGNATURE) ?
3756 (TCPOLEN_SIGNATURE + 2) : 0);
3757 #endif
3758
3759 tlen = hlen + sizeof(struct tcphdr) + optlen;
3760
3761 /*
3762 * Create the IP+TCP header from scratch.
3763 */
3764 if (m)
3765 m_freem(m);
3766 #ifdef DIAGNOSTIC
3767 if (max_linkhdr + tlen > MCLBYTES)
3768 return (ENOBUFS);
3769 #endif
3770 MGETHDR(m, M_DONTWAIT, MT_DATA);
3771 if (m && tlen > MHLEN) {
3772 MCLGET(m, M_DONTWAIT);
3773 if ((m->m_flags & M_EXT) == 0) {
3774 m_freem(m);
3775 m = NULL;
3776 }
3777 }
3778 if (m == NULL)
3779 return (ENOBUFS);
3780 MCLAIM(m, &tcp_tx_mowner);
3781
3782 /* Fixup the mbuf. */
3783 m->m_data += max_linkhdr;
3784 m->m_len = m->m_pkthdr.len = tlen;
3785 if (sc->sc_tp) {
3786 tp = sc->sc_tp;
3787 if (tp->t_inpcb)
3788 so = tp->t_inpcb->inp_socket;
3789 #ifdef INET6
3790 else if (tp->t_in6pcb)
3791 so = tp->t_in6pcb->in6p_socket;
3792 #endif
3793 else
3794 so = NULL;
3795 } else
3796 so = NULL;
3797 m->m_pkthdr.rcvif = NULL;
3798 memset(mtod(m, u_char *), 0, tlen);
3799
3800 switch (sc->sc_src.sa.sa_family) {
3801 case AF_INET:
3802 ip = mtod(m, struct ip *);
3803 ip->ip_dst = sc->sc_src.sin.sin_addr;
3804 ip->ip_src = sc->sc_dst.sin.sin_addr;
3805 ip->ip_p = IPPROTO_TCP;
3806 th = (struct tcphdr *)(ip + 1);
3807 th->th_dport = sc->sc_src.sin.sin_port;
3808 th->th_sport = sc->sc_dst.sin.sin_port;
3809 break;
3810 #ifdef INET6
3811 case AF_INET6:
3812 ip6 = mtod(m, struct ip6_hdr *);
3813 ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
3814 ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
3815 ip6->ip6_nxt = IPPROTO_TCP;
3816 /* ip6_plen will be updated in ip6_output() */
3817 th = (struct tcphdr *)(ip6 + 1);
3818 th->th_dport = sc->sc_src.sin6.sin6_port;
3819 th->th_sport = sc->sc_dst.sin6.sin6_port;
3820 break;
3821 #endif
3822 default:
3823 th = NULL;
3824 }
3825
3826 th->th_seq = htonl(sc->sc_iss);
3827 th->th_ack = htonl(sc->sc_irs + 1);
3828 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
3829 th->th_flags = TH_SYN|TH_ACK;
3830 th->th_win = htons(sc->sc_win);
3831 /* th_sum already 0 */
3832 /* th_urp already 0 */
3833
3834 /* Tack on the TCP options. */
3835 optp = (u_int8_t *)(th + 1);
3836 *optp++ = TCPOPT_MAXSEG;
3837 *optp++ = 4;
3838 *optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
3839 *optp++ = sc->sc_ourmaxseg & 0xff;
3840
3841 if (sc->sc_request_r_scale != 15) {
3842 *((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
3843 TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
3844 sc->sc_request_r_scale);
3845 optp += 4;
3846 }
3847
3848 if (sc->sc_flags & SCF_TIMESTAMP) {
3849 u_int32_t *lp = (u_int32_t *)(optp);
3850 /* Form timestamp option as shown in appendix A of RFC 1323. */
3851 *lp++ = htonl(TCPOPT_TSTAMP_HDR);
3852 *lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
3853 *lp = htonl(sc->sc_timestamp);
3854 optp += TCPOLEN_TSTAMP_APPA;
3855 }
3856
3857 #ifdef TCP_SIGNATURE
3858 /*
3859 * Handle TCP-MD5 passive opener response.
3860 */
3861 if (sc->sc_flags & SCF_SIGNATURE) {
3862 u_int8_t *bp = optp;
3863 int i;
3864
3865 *bp++ = TCPOPT_SIGNATURE;
3866 *bp++ = TCPOLEN_SIGNATURE;
3867 for (i = 0; i < TCP_SIGLEN; i++)
3868 *bp++ = 0;
3869 tcp_signature_compute(m, th, -1, 0, optlen,
3870 optp + 2, IPSEC_DIR_OUTBOUND);
3871 *bp++ = TCPOPT_NOP;
3872 *bp++ = TCPOPT_EOL;
3873 optp += TCPOLEN_SIGNATURE + 2;
3874 }
3875 #endif /* TCP_SIGNATURE */
3876
3877 /* Compute the packet's checksum. */
3878 switch (sc->sc_src.sa.sa_family) {
3879 case AF_INET:
3880 ip->ip_len = htons(tlen - hlen);
3881 th->th_sum = 0;
3882 th->th_sum = in_cksum(m, tlen);
3883 break;
3884 #ifdef INET6
3885 case AF_INET6:
3886 ip6->ip6_plen = htons(tlen - hlen);
3887 th->th_sum = 0;
3888 th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
3889 break;
3890 #endif
3891 }
3892
3893 /*
3894 * Fill in some straggling IP bits. Note the stack expects
3895 * ip_len to be in host order, for convenience.
3896 */
3897 switch (sc->sc_src.sa.sa_family) {
3898 #ifdef INET
3899 case AF_INET:
3900 ip->ip_len = htons(tlen);
3901 ip->ip_ttl = ip_defttl;
3902 /* XXX tos? */
3903 break;
3904 #endif
3905 #ifdef INET6
3906 case AF_INET6:
3907 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
3908 ip6->ip6_vfc |= IPV6_VERSION;
3909 ip6->ip6_plen = htons(tlen - hlen);
3910 /* ip6_hlim will be initialized afterwards */
3911 /* XXX flowlabel? */
3912 break;
3913 #endif
3914 }
3915
3916 /* XXX use IPsec policy on listening socket, on SYN ACK */
3917 tp = sc->sc_tp;
3918
3919 switch (sc->sc_src.sa.sa_family) {
3920 #ifdef INET
3921 case AF_INET:
3922 error = ip_output(m, sc->sc_ipopts, ro,
3923 (ip_mtudisc ? IP_MTUDISC : 0),
3924 (struct ip_moptions *)NULL, so);
3925 break;
3926 #endif
3927 #ifdef INET6
3928 case AF_INET6:
3929 ip6->ip6_hlim = in6_selecthlim(NULL,
3930 ro->ro_rt ? ro->ro_rt->rt_ifp : NULL);
3931
3932 error = ip6_output(m, NULL /*XXX*/, (struct route_in6 *)ro, 0,
3933 (struct ip6_moptions *)0, so, NULL);
3934 break;
3935 #endif
3936 default:
3937 error = EAFNOSUPPORT;
3938 break;
3939 }
3940 return (error);
3941 }
3942