tcp_input.c revision 1.208 1 /* $NetBSD: tcp_input.c,v 1.208 2004/06/26 03:29:15 itojun Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * @(#)COPYRIGHT 1.1 (NRL) 17 January 1995
34 *
35 * NRL grants permission for redistribution and use in source and binary
36 * forms, with or without modification, of the software and documentation
37 * created at NRL provided that the following conditions are met:
38 *
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgements:
46 * This product includes software developed by the University of
47 * California, Berkeley and its contributors.
48 * This product includes software developed at the Information
49 * Technology Division, US Naval Research Laboratory.
50 * 4. Neither the name of the NRL nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
55 * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
57 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NRL OR
58 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
59 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
61 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
62 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
63 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
64 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65 *
66 * The views and conclusions contained in the software and documentation
67 * are those of the authors and should not be interpreted as representing
68 * official policies, either expressed or implied, of the US Naval
69 * Research Laboratory (NRL).
70 */
71
72 /*-
73 * Copyright (c) 1997, 1998, 1999, 2001 The NetBSD Foundation, Inc.
74 * All rights reserved.
75 *
76 * This code is derived from software contributed to The NetBSD Foundation
77 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
78 * Facility, NASA Ames Research Center.
79 *
80 * Redistribution and use in source and binary forms, with or without
81 * modification, are permitted provided that the following conditions
82 * are met:
83 * 1. Redistributions of source code must retain the above copyright
84 * notice, this list of conditions and the following disclaimer.
85 * 2. Redistributions in binary form must reproduce the above copyright
86 * notice, this list of conditions and the following disclaimer in the
87 * documentation and/or other materials provided with the distribution.
88 * 3. All advertising materials mentioning features or use of this software
89 * must display the following acknowledgement:
90 * This product includes software developed by the NetBSD
91 * Foundation, Inc. and its contributors.
92 * 4. Neither the name of The NetBSD Foundation nor the names of its
93 * contributors may be used to endorse or promote products derived
94 * from this software without specific prior written permission.
95 *
96 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
97 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
98 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
99 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
100 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
101 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
102 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
103 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
104 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
105 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
106 * POSSIBILITY OF SUCH DAMAGE.
107 */
108
109 /*
110 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
111 * The Regents of the University of California. All rights reserved.
112 *
113 * Redistribution and use in source and binary forms, with or without
114 * modification, are permitted provided that the following conditions
115 * are met:
116 * 1. Redistributions of source code must retain the above copyright
117 * notice, this list of conditions and the following disclaimer.
118 * 2. Redistributions in binary form must reproduce the above copyright
119 * notice, this list of conditions and the following disclaimer in the
120 * documentation and/or other materials provided with the distribution.
121 * 3. Neither the name of the University nor the names of its contributors
122 * may be used to endorse or promote products derived from this software
123 * without specific prior written permission.
124 *
125 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
126 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
127 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
128 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
129 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
130 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
131 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
132 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
133 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
134 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
135 * SUCH DAMAGE.
136 *
137 * @(#)tcp_input.c 8.12 (Berkeley) 5/24/95
138 */
139
140 /*
141 * TODO list for SYN cache stuff:
142 *
143 * Find room for a "state" field, which is needed to keep a
144 * compressed state for TIME_WAIT TCBs. It's been noted already
145 * that this is fairly important for very high-volume web and
146 * mail servers, which use a large number of short-lived
147 * connections.
148 */
149
150 #include <sys/cdefs.h>
151 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.208 2004/06/26 03:29:15 itojun Exp $");
152
153 #include "opt_inet.h"
154 #include "opt_ipsec.h"
155 #include "opt_inet_csum.h"
156 #include "opt_tcp_debug.h"
157
158 #include <sys/param.h>
159 #include <sys/systm.h>
160 #include <sys/malloc.h>
161 #include <sys/mbuf.h>
162 #include <sys/protosw.h>
163 #include <sys/socket.h>
164 #include <sys/socketvar.h>
165 #include <sys/errno.h>
166 #include <sys/syslog.h>
167 #include <sys/pool.h>
168 #include <sys/domain.h>
169 #include <sys/kernel.h>
170 #ifdef TCP_SIGNATURE
171 #include <sys/md5.h>
172 #endif
173
174 #include <net/if.h>
175 #include <net/route.h>
176 #include <net/if_types.h>
177
178 #include <netinet/in.h>
179 #include <netinet/in_systm.h>
180 #include <netinet/ip.h>
181 #include <netinet/in_pcb.h>
182 #include <netinet/in_var.h>
183 #include <netinet/ip_var.h>
184
185 #ifdef INET6
186 #ifndef INET
187 #include <netinet/in.h>
188 #endif
189 #include <netinet/ip6.h>
190 #include <netinet6/ip6_var.h>
191 #include <netinet6/in6_pcb.h>
192 #include <netinet6/ip6_var.h>
193 #include <netinet6/in6_var.h>
194 #include <netinet/icmp6.h>
195 #include <netinet6/nd6.h>
196 #endif
197
198 #ifndef INET6
199 /* always need ip6.h for IP6_EXTHDR_GET */
200 #include <netinet/ip6.h>
201 #endif
202
203 #include <netinet/tcp.h>
204 #include <netinet/tcp_fsm.h>
205 #include <netinet/tcp_seq.h>
206 #include <netinet/tcp_timer.h>
207 #include <netinet/tcp_var.h>
208 #include <netinet/tcpip.h>
209 #include <netinet/tcp_debug.h>
210
211 #include <machine/stdarg.h>
212
213 #ifdef IPSEC
214 #include <netinet6/ipsec.h>
215 #include <netkey/key.h>
216 #endif /*IPSEC*/
217 #ifdef INET6
218 #include "faith.h"
219 #if defined(NFAITH) && NFAITH > 0
220 #include <net/if_faith.h>
221 #endif
222 #endif /* IPSEC */
223
224 #ifdef FAST_IPSEC
225 #include <netipsec/ipsec.h>
226 #include <netipsec/ipsec_var.h> /* XXX ipsecstat namespace */
227 #include <netipsec/key.h>
228 #ifdef INET6
229 #include <netipsec/ipsec6.h>
230 #endif
231 #endif /* FAST_IPSEC*/
232
233 int tcprexmtthresh = 3;
234 int tcp_log_refused;
235
236 static int tcp_rst_ppslim_count = 0;
237 static struct timeval tcp_rst_ppslim_last;
238 static int tcp_ackdrop_ppslim_count = 0;
239 static struct timeval tcp_ackdrop_ppslim_last;
240
241 #define TCP_PAWS_IDLE (24 * 24 * 60 * 60 * PR_SLOWHZ)
242
243 /* for modulo comparisons of timestamps */
244 #define TSTMP_LT(a,b) ((int)((a)-(b)) < 0)
245 #define TSTMP_GEQ(a,b) ((int)((a)-(b)) >= 0)
246
247 /*
248 * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
249 */
250 #ifdef INET6
251 #define ND6_HINT(tp) \
252 do { \
253 if (tp && tp->t_in6pcb && tp->t_family == AF_INET6 && \
254 tp->t_in6pcb->in6p_route.ro_rt) { \
255 nd6_nud_hint(tp->t_in6pcb->in6p_route.ro_rt, NULL, 0); \
256 } \
257 } while (/*CONSTCOND*/ 0)
258 #else
259 #define ND6_HINT(tp)
260 #endif
261
262 /*
263 * Macro to compute ACK transmission behavior. Delay the ACK unless
264 * we have already delayed an ACK (must send an ACK every two segments).
265 * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
266 * option is enabled.
267 */
268 #define TCP_SETUP_ACK(tp, th) \
269 do { \
270 if ((tp)->t_flags & TF_DELACK || \
271 (tcp_ack_on_push && (th)->th_flags & TH_PUSH)) \
272 tp->t_flags |= TF_ACKNOW; \
273 else \
274 TCP_SET_DELACK(tp); \
275 } while (/*CONSTCOND*/ 0)
276
277 /*
278 * Convert TCP protocol fields to host order for easier processing.
279 */
280 #define TCP_FIELDS_TO_HOST(th) \
281 do { \
282 NTOHL((th)->th_seq); \
283 NTOHL((th)->th_ack); \
284 NTOHS((th)->th_win); \
285 NTOHS((th)->th_urp); \
286 } while (/*CONSTCOND*/ 0)
287
288 /*
289 * ... and reverse the above.
290 */
291 #define TCP_FIELDS_TO_NET(th) \
292 do { \
293 HTONL((th)->th_seq); \
294 HTONL((th)->th_ack); \
295 HTONS((th)->th_win); \
296 HTONS((th)->th_urp); \
297 } while (/*CONSTCOND*/ 0)
298
299 #ifdef TCP_CSUM_COUNTERS
300 #include <sys/device.h>
301
302 extern struct evcnt tcp_hwcsum_ok;
303 extern struct evcnt tcp_hwcsum_bad;
304 extern struct evcnt tcp_hwcsum_data;
305 extern struct evcnt tcp_swcsum;
306
307 #define TCP_CSUM_COUNTER_INCR(ev) (ev)->ev_count++
308
309 #else
310
311 #define TCP_CSUM_COUNTER_INCR(ev) /* nothing */
312
313 #endif /* TCP_CSUM_COUNTERS */
314
315 #ifdef TCP_REASS_COUNTERS
316 #include <sys/device.h>
317
318 extern struct evcnt tcp_reass_;
319 extern struct evcnt tcp_reass_empty;
320 extern struct evcnt tcp_reass_iteration[8];
321 extern struct evcnt tcp_reass_prependfirst;
322 extern struct evcnt tcp_reass_prepend;
323 extern struct evcnt tcp_reass_insert;
324 extern struct evcnt tcp_reass_inserttail;
325 extern struct evcnt tcp_reass_append;
326 extern struct evcnt tcp_reass_appendtail;
327 extern struct evcnt tcp_reass_overlaptail;
328 extern struct evcnt tcp_reass_overlapfront;
329 extern struct evcnt tcp_reass_segdup;
330 extern struct evcnt tcp_reass_fragdup;
331
332 #define TCP_REASS_COUNTER_INCR(ev) (ev)->ev_count++
333
334 #else
335
336 #define TCP_REASS_COUNTER_INCR(ev) /* nothing */
337
338 #endif /* TCP_REASS_COUNTERS */
339
340 #ifdef INET
341 static void tcp4_log_refused __P((const struct ip *, const struct tcphdr *));
342 #endif
343 #ifdef INET6
344 static void tcp6_log_refused
345 __P((const struct ip6_hdr *, const struct tcphdr *));
346 #endif
347
348 #define TRAVERSE(x) while ((x)->m_next) (x) = (x)->m_next
349
350 int
351 tcp_reass(tp, th, m, tlen)
352 struct tcpcb *tp;
353 struct tcphdr *th;
354 struct mbuf *m;
355 int *tlen;
356 {
357 struct ipqent *p, *q, *nq, *tiqe = NULL;
358 struct socket *so = NULL;
359 int pkt_flags;
360 tcp_seq pkt_seq;
361 unsigned pkt_len;
362 u_long rcvpartdupbyte = 0;
363 u_long rcvoobyte;
364 #ifdef TCP_REASS_COUNTERS
365 u_int count = 0;
366 #endif
367
368 if (tp->t_inpcb)
369 so = tp->t_inpcb->inp_socket;
370 #ifdef INET6
371 else if (tp->t_in6pcb)
372 so = tp->t_in6pcb->in6p_socket;
373 #endif
374
375 TCP_REASS_LOCK_CHECK(tp);
376
377 /*
378 * Call with th==0 after become established to
379 * force pre-ESTABLISHED data up to user socket.
380 */
381 if (th == 0)
382 goto present;
383
384 rcvoobyte = *tlen;
385 /*
386 * Copy these to local variables because the tcpiphdr
387 * gets munged while we are collapsing mbufs.
388 */
389 pkt_seq = th->th_seq;
390 pkt_len = *tlen;
391 pkt_flags = th->th_flags;
392
393 TCP_REASS_COUNTER_INCR(&tcp_reass_);
394
395 if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
396 /*
397 * When we miss a packet, the vast majority of time we get
398 * packets that follow it in order. So optimize for that.
399 */
400 if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
401 p->ipqe_len += pkt_len;
402 p->ipqe_flags |= pkt_flags;
403 m_cat(p->ipre_mlast, m);
404 TRAVERSE(p->ipre_mlast);
405 m = NULL;
406 tiqe = p;
407 TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
408 TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
409 goto skip_replacement;
410 }
411 /*
412 * While we're here, if the pkt is completely beyond
413 * anything we have, just insert it at the tail.
414 */
415 if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
416 TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
417 goto insert_it;
418 }
419 }
420
421 q = TAILQ_FIRST(&tp->segq);
422
423 if (q != NULL) {
424 /*
425 * If this segment immediately precedes the first out-of-order
426 * block, simply slap the segment in front of it and (mostly)
427 * skip the complicated logic.
428 */
429 if (pkt_seq + pkt_len == q->ipqe_seq) {
430 q->ipqe_seq = pkt_seq;
431 q->ipqe_len += pkt_len;
432 q->ipqe_flags |= pkt_flags;
433 m_cat(m, q->ipqe_m);
434 q->ipqe_m = m;
435 q->ipre_mlast = m; /* last mbuf may have changed */
436 TRAVERSE(q->ipre_mlast);
437 tiqe = q;
438 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
439 TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
440 goto skip_replacement;
441 }
442 } else {
443 TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
444 }
445
446 /*
447 * Find a segment which begins after this one does.
448 */
449 for (p = NULL; q != NULL; q = nq) {
450 nq = TAILQ_NEXT(q, ipqe_q);
451 #ifdef TCP_REASS_COUNTERS
452 count++;
453 #endif
454 /*
455 * If the received segment is just right after this
456 * fragment, merge the two together and then check
457 * for further overlaps.
458 */
459 if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
460 #ifdef TCPREASS_DEBUG
461 printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
462 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
463 q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
464 #endif
465 pkt_len += q->ipqe_len;
466 pkt_flags |= q->ipqe_flags;
467 pkt_seq = q->ipqe_seq;
468 m_cat(q->ipre_mlast, m);
469 TRAVERSE(q->ipre_mlast);
470 m = q->ipqe_m;
471 TCP_REASS_COUNTER_INCR(&tcp_reass_append);
472 goto free_ipqe;
473 }
474 /*
475 * If the received segment is completely past this
476 * fragment, we need to go the next fragment.
477 */
478 if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
479 p = q;
480 continue;
481 }
482 /*
483 * If the fragment is past the received segment,
484 * it (or any following) can't be concatenated.
485 */
486 if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
487 TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
488 break;
489 }
490
491 /*
492 * We've received all the data in this segment before.
493 * mark it as a duplicate and return.
494 */
495 if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
496 SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
497 tcpstat.tcps_rcvduppack++;
498 tcpstat.tcps_rcvdupbyte += pkt_len;
499 m_freem(m);
500 if (tiqe != NULL)
501 pool_put(&ipqent_pool, tiqe);
502 TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
503 return (0);
504 }
505 /*
506 * Received segment completely overlaps this fragment
507 * so we drop the fragment (this keeps the temporal
508 * ordering of segments correct).
509 */
510 if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
511 SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
512 rcvpartdupbyte += q->ipqe_len;
513 m_freem(q->ipqe_m);
514 TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
515 goto free_ipqe;
516 }
517 /*
518 * RX'ed segment extends past the end of the
519 * fragment. Drop the overlapping bytes. Then
520 * merge the fragment and segment then treat as
521 * a longer received packet.
522 */
523 if (SEQ_LT(q->ipqe_seq, pkt_seq) &&
524 SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
525 int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
526 #ifdef TCPREASS_DEBUG
527 printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
528 tp, overlap,
529 pkt_seq, pkt_seq + pkt_len, pkt_len);
530 #endif
531 m_adj(m, overlap);
532 rcvpartdupbyte += overlap;
533 m_cat(q->ipre_mlast, m);
534 TRAVERSE(q->ipre_mlast);
535 m = q->ipqe_m;
536 pkt_seq = q->ipqe_seq;
537 pkt_len += q->ipqe_len - overlap;
538 rcvoobyte -= overlap;
539 TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
540 goto free_ipqe;
541 }
542 /*
543 * RX'ed segment extends past the front of the
544 * fragment. Drop the overlapping bytes on the
545 * received packet. The packet will then be
546 * contatentated with this fragment a bit later.
547 */
548 if (SEQ_GT(q->ipqe_seq, pkt_seq) &&
549 SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len)) {
550 int overlap = pkt_seq + pkt_len - q->ipqe_seq;
551 #ifdef TCPREASS_DEBUG
552 printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
553 tp, overlap,
554 pkt_seq, pkt_seq + pkt_len, pkt_len);
555 #endif
556 m_adj(m, -overlap);
557 pkt_len -= overlap;
558 rcvpartdupbyte += overlap;
559 TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
560 rcvoobyte -= overlap;
561 }
562 /*
563 * If the received segment immediates precedes this
564 * fragment then tack the fragment onto this segment
565 * and reinsert the data.
566 */
567 if (q->ipqe_seq == pkt_seq + pkt_len) {
568 #ifdef TCPREASS_DEBUG
569 printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
570 tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
571 pkt_seq, pkt_seq + pkt_len, pkt_len);
572 #endif
573 pkt_len += q->ipqe_len;
574 pkt_flags |= q->ipqe_flags;
575 m_cat(m, q->ipqe_m);
576 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
577 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
578 if (tiqe == NULL)
579 tiqe = q;
580 else
581 pool_put(&ipqent_pool, q);
582 TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
583 break;
584 }
585 /*
586 * If the fragment is before the segment, remember it.
587 * When this loop is terminated, p will contain the
588 * pointer to fragment that is right before the received
589 * segment.
590 */
591 if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
592 p = q;
593
594 continue;
595
596 /*
597 * This is a common operation. It also will allow
598 * to save doing a malloc/free in most instances.
599 */
600 free_ipqe:
601 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
602 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
603 if (tiqe == NULL)
604 tiqe = q;
605 else
606 pool_put(&ipqent_pool, q);
607 }
608
609 #ifdef TCP_REASS_COUNTERS
610 if (count > 7)
611 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
612 else if (count > 0)
613 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
614 #endif
615
616 insert_it:
617
618 /*
619 * Allocate a new queue entry since the received segment did not
620 * collapse onto any other out-of-order block; thus we are allocating
621 * a new block. If it had collapsed, tiqe would not be NULL and
622 * we would be reusing it.
623 * XXX If we can't, just drop the packet. XXX
624 */
625 if (tiqe == NULL) {
626 tiqe = pool_get(&ipqent_pool, PR_NOWAIT);
627 if (tiqe == NULL) {
628 tcpstat.tcps_rcvmemdrop++;
629 m_freem(m);
630 return (0);
631 }
632 }
633
634 /*
635 * Update the counters.
636 */
637 tcpstat.tcps_rcvoopack++;
638 tcpstat.tcps_rcvoobyte += rcvoobyte;
639 if (rcvpartdupbyte) {
640 tcpstat.tcps_rcvpartduppack++;
641 tcpstat.tcps_rcvpartdupbyte += rcvpartdupbyte;
642 }
643
644 /*
645 * Insert the new fragment queue entry into both queues.
646 */
647 tiqe->ipqe_m = m;
648 tiqe->ipre_mlast = m;
649 tiqe->ipqe_seq = pkt_seq;
650 tiqe->ipqe_len = pkt_len;
651 tiqe->ipqe_flags = pkt_flags;
652 if (p == NULL) {
653 TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
654 #ifdef TCPREASS_DEBUG
655 if (tiqe->ipqe_seq != tp->rcv_nxt)
656 printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
657 tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
658 #endif
659 } else {
660 TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
661 #ifdef TCPREASS_DEBUG
662 printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
663 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
664 p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
665 #endif
666 }
667
668 skip_replacement:
669
670 TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
671
672 present:
673 /*
674 * Present data to user, advancing rcv_nxt through
675 * completed sequence space.
676 */
677 if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
678 return (0);
679 q = TAILQ_FIRST(&tp->segq);
680 if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
681 return (0);
682 if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
683 return (0);
684
685 tp->rcv_nxt += q->ipqe_len;
686 pkt_flags = q->ipqe_flags & TH_FIN;
687 ND6_HINT(tp);
688
689 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
690 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
691 if (so->so_state & SS_CANTRCVMORE)
692 m_freem(q->ipqe_m);
693 else
694 sbappendstream(&so->so_rcv, q->ipqe_m);
695 pool_put(&ipqent_pool, q);
696 sorwakeup(so);
697 return (pkt_flags);
698 }
699
700 #ifdef INET6
701 int
702 tcp6_input(mp, offp, proto)
703 struct mbuf **mp;
704 int *offp, proto;
705 {
706 struct mbuf *m = *mp;
707
708 /*
709 * draft-itojun-ipv6-tcp-to-anycast
710 * better place to put this in?
711 */
712 if (m->m_flags & M_ANYCAST6) {
713 struct ip6_hdr *ip6;
714 if (m->m_len < sizeof(struct ip6_hdr)) {
715 if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
716 tcpstat.tcps_rcvshort++;
717 return IPPROTO_DONE;
718 }
719 }
720 ip6 = mtod(m, struct ip6_hdr *);
721 icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
722 (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
723 return IPPROTO_DONE;
724 }
725
726 tcp_input(m, *offp, proto);
727 return IPPROTO_DONE;
728 }
729 #endif
730
731 #ifdef INET
732 static void
733 tcp4_log_refused(ip, th)
734 const struct ip *ip;
735 const struct tcphdr *th;
736 {
737 char src[4*sizeof "123"];
738 char dst[4*sizeof "123"];
739
740 if (ip) {
741 strlcpy(src, inet_ntoa(ip->ip_src), sizeof(src));
742 strlcpy(dst, inet_ntoa(ip->ip_dst), sizeof(dst));
743 }
744 else {
745 strlcpy(src, "(unknown)", sizeof(src));
746 strlcpy(dst, "(unknown)", sizeof(dst));
747 }
748 log(LOG_INFO,
749 "Connection attempt to TCP %s:%d from %s:%d\n",
750 dst, ntohs(th->th_dport),
751 src, ntohs(th->th_sport));
752 }
753 #endif
754
755 #ifdef INET6
756 static void
757 tcp6_log_refused(ip6, th)
758 const struct ip6_hdr *ip6;
759 const struct tcphdr *th;
760 {
761 char src[INET6_ADDRSTRLEN];
762 char dst[INET6_ADDRSTRLEN];
763
764 if (ip6) {
765 strlcpy(src, ip6_sprintf(&ip6->ip6_src), sizeof(src));
766 strlcpy(dst, ip6_sprintf(&ip6->ip6_dst), sizeof(dst));
767 }
768 else {
769 strlcpy(src, "(unknown v6)", sizeof(src));
770 strlcpy(dst, "(unknown v6)", sizeof(dst));
771 }
772 log(LOG_INFO,
773 "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
774 dst, ntohs(th->th_dport),
775 src, ntohs(th->th_sport));
776 }
777 #endif
778
779 /*
780 * TCP input routine, follows pages 65-76 of the
781 * protocol specification dated September, 1981 very closely.
782 */
783 void
784 tcp_input(struct mbuf *m, ...)
785 {
786 struct tcphdr *th;
787 struct ip *ip;
788 struct inpcb *inp;
789 #ifdef INET6
790 struct ip6_hdr *ip6;
791 struct in6pcb *in6p;
792 #endif
793 u_int8_t *optp = NULL;
794 int optlen = 0;
795 int len, tlen, toff, hdroptlen = 0;
796 struct tcpcb *tp = 0;
797 int tiflags;
798 struct socket *so = NULL;
799 int todrop, acked, ourfinisacked, needoutput = 0;
800 #ifdef TCP_DEBUG
801 short ostate = 0;
802 #endif
803 int iss = 0;
804 u_long tiwin;
805 struct tcp_opt_info opti;
806 int off, iphlen;
807 va_list ap;
808 int af; /* af on the wire */
809 struct mbuf *tcp_saveti = NULL;
810
811 MCLAIM(m, &tcp_rx_mowner);
812 va_start(ap, m);
813 toff = va_arg(ap, int);
814 (void)va_arg(ap, int); /* ignore value, advance ap */
815 va_end(ap);
816
817 tcpstat.tcps_rcvtotal++;
818
819 bzero(&opti, sizeof(opti));
820 opti.ts_present = 0;
821 opti.maxseg = 0;
822
823 /*
824 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
825 *
826 * TCP is, by definition, unicast, so we reject all
827 * multicast outright.
828 *
829 * Note, there are additional src/dst address checks in
830 * the AF-specific code below.
831 */
832 if (m->m_flags & (M_BCAST|M_MCAST)) {
833 /* XXX stat */
834 goto drop;
835 }
836 #ifdef INET6
837 if (m->m_flags & M_ANYCAST6) {
838 /* XXX stat */
839 goto drop;
840 }
841 #endif
842
843 /*
844 * Get IP and TCP header.
845 * Note: IP leaves IP header in first mbuf.
846 */
847 ip = mtod(m, struct ip *);
848 #ifdef INET6
849 ip6 = NULL;
850 #endif
851 switch (ip->ip_v) {
852 #ifdef INET
853 case 4:
854 af = AF_INET;
855 iphlen = sizeof(struct ip);
856 ip = mtod(m, struct ip *);
857 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
858 sizeof(struct tcphdr));
859 if (th == NULL) {
860 tcpstat.tcps_rcvshort++;
861 return;
862 }
863 /* We do the checksum after PCB lookup... */
864 len = ntohs(ip->ip_len);
865 tlen = len - toff;
866 break;
867 #endif
868 #ifdef INET6
869 case 6:
870 ip = NULL;
871 iphlen = sizeof(struct ip6_hdr);
872 af = AF_INET6;
873 ip6 = mtod(m, struct ip6_hdr *);
874 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
875 sizeof(struct tcphdr));
876 if (th == NULL) {
877 tcpstat.tcps_rcvshort++;
878 return;
879 }
880
881 /* Be proactive about malicious use of IPv4 mapped address */
882 if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
883 IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
884 /* XXX stat */
885 goto drop;
886 }
887
888 /*
889 * Be proactive about unspecified IPv6 address in source.
890 * As we use all-zero to indicate unbounded/unconnected pcb,
891 * unspecified IPv6 address can be used to confuse us.
892 *
893 * Note that packets with unspecified IPv6 destination is
894 * already dropped in ip6_input.
895 */
896 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
897 /* XXX stat */
898 goto drop;
899 }
900
901 /*
902 * Make sure destination address is not multicast.
903 * Source address checked in ip6_input().
904 */
905 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
906 /* XXX stat */
907 goto drop;
908 }
909
910 /* We do the checksum after PCB lookup... */
911 len = m->m_pkthdr.len;
912 tlen = len - toff;
913 break;
914 #endif
915 default:
916 m_freem(m);
917 return;
918 }
919
920 KASSERT(TCP_HDR_ALIGNED_P(th));
921
922 /*
923 * Check that TCP offset makes sense,
924 * pull out TCP options and adjust length. XXX
925 */
926 off = th->th_off << 2;
927 if (off < sizeof (struct tcphdr) || off > tlen) {
928 tcpstat.tcps_rcvbadoff++;
929 goto drop;
930 }
931 tlen -= off;
932
933 /*
934 * tcp_input() has been modified to use tlen to mean the TCP data
935 * length throughout the function. Other functions can use
936 * m->m_pkthdr.len as the basis for calculating the TCP data length.
937 * rja
938 */
939
940 if (off > sizeof (struct tcphdr)) {
941 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
942 if (th == NULL) {
943 tcpstat.tcps_rcvshort++;
944 return;
945 }
946 /*
947 * NOTE: ip/ip6 will not be affected by m_pulldown()
948 * (as they're before toff) and we don't need to update those.
949 */
950 KASSERT(TCP_HDR_ALIGNED_P(th));
951 optlen = off - sizeof (struct tcphdr);
952 optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
953 /*
954 * Do quick retrieval of timestamp options ("options
955 * prediction?"). If timestamp is the only option and it's
956 * formatted as recommended in RFC 1323 appendix A, we
957 * quickly get the values now and not bother calling
958 * tcp_dooptions(), etc.
959 */
960 if ((optlen == TCPOLEN_TSTAMP_APPA ||
961 (optlen > TCPOLEN_TSTAMP_APPA &&
962 optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
963 *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
964 (th->th_flags & TH_SYN) == 0) {
965 opti.ts_present = 1;
966 opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
967 opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
968 optp = NULL; /* we've parsed the options */
969 }
970 }
971 tiflags = th->th_flags;
972
973 /*
974 * Locate pcb for segment.
975 */
976 findpcb:
977 inp = NULL;
978 #ifdef INET6
979 in6p = NULL;
980 #endif
981 switch (af) {
982 #ifdef INET
983 case AF_INET:
984 inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
985 ip->ip_dst, th->th_dport);
986 if (inp == 0) {
987 ++tcpstat.tcps_pcbhashmiss;
988 inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
989 }
990 #ifdef INET6
991 if (inp == 0) {
992 struct in6_addr s, d;
993
994 /* mapped addr case */
995 bzero(&s, sizeof(s));
996 s.s6_addr16[5] = htons(0xffff);
997 bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
998 bzero(&d, sizeof(d));
999 d.s6_addr16[5] = htons(0xffff);
1000 bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
1001 in6p = in6_pcblookup_connect(&tcbtable, &s,
1002 th->th_sport, &d, th->th_dport, 0);
1003 if (in6p == 0) {
1004 ++tcpstat.tcps_pcbhashmiss;
1005 in6p = in6_pcblookup_bind(&tcbtable, &d,
1006 th->th_dport, 0);
1007 }
1008 }
1009 #endif
1010 #ifndef INET6
1011 if (inp == 0)
1012 #else
1013 if (inp == 0 && in6p == 0)
1014 #endif
1015 {
1016 ++tcpstat.tcps_noport;
1017 if (tcp_log_refused &&
1018 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1019 tcp4_log_refused(ip, th);
1020 }
1021 TCP_FIELDS_TO_HOST(th);
1022 goto dropwithreset_ratelim;
1023 }
1024 #if defined(IPSEC) || defined(FAST_IPSEC)
1025 if (inp && (inp->inp_socket->so_options & SO_ACCEPTCONN) == 0 &&
1026 ipsec4_in_reject(m, inp)) {
1027 ipsecstat.in_polvio++;
1028 goto drop;
1029 }
1030 #ifdef INET6
1031 else if (in6p &&
1032 (in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 &&
1033 ipsec4_in_reject_so(m, in6p->in6p_socket)) {
1034 ipsecstat.in_polvio++;
1035 goto drop;
1036 }
1037 #endif
1038 #endif /*IPSEC*/
1039 break;
1040 #endif /*INET*/
1041 #ifdef INET6
1042 case AF_INET6:
1043 {
1044 int faith;
1045
1046 #if defined(NFAITH) && NFAITH > 0
1047 faith = faithprefix(&ip6->ip6_dst);
1048 #else
1049 faith = 0;
1050 #endif
1051 in6p = in6_pcblookup_connect(&tcbtable, &ip6->ip6_src,
1052 th->th_sport, &ip6->ip6_dst, th->th_dport, faith);
1053 if (in6p == NULL) {
1054 ++tcpstat.tcps_pcbhashmiss;
1055 in6p = in6_pcblookup_bind(&tcbtable, &ip6->ip6_dst,
1056 th->th_dport, faith);
1057 }
1058 if (in6p == NULL) {
1059 ++tcpstat.tcps_noport;
1060 if (tcp_log_refused &&
1061 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1062 tcp6_log_refused(ip6, th);
1063 }
1064 TCP_FIELDS_TO_HOST(th);
1065 goto dropwithreset_ratelim;
1066 }
1067 #if defined(IPSEC) || defined(FAST_IPSEC)
1068 if ((in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 &&
1069 ipsec6_in_reject(m, in6p)) {
1070 ipsec6stat.in_polvio++;
1071 goto drop;
1072 }
1073 #endif /*IPSEC*/
1074 break;
1075 }
1076 #endif
1077 }
1078
1079 /*
1080 * If the state is CLOSED (i.e., TCB does not exist) then
1081 * all data in the incoming segment is discarded.
1082 * If the TCB exists but is in CLOSED state, it is embryonic,
1083 * but should either do a listen or a connect soon.
1084 */
1085 tp = NULL;
1086 so = NULL;
1087 if (inp) {
1088 tp = intotcpcb(inp);
1089 so = inp->inp_socket;
1090 }
1091 #ifdef INET6
1092 else if (in6p) {
1093 tp = in6totcpcb(in6p);
1094 so = in6p->in6p_socket;
1095 }
1096 #endif
1097 if (tp == 0) {
1098 TCP_FIELDS_TO_HOST(th);
1099 goto dropwithreset_ratelim;
1100 }
1101 if (tp->t_state == TCPS_CLOSED)
1102 goto drop;
1103
1104 /*
1105 * Checksum extended TCP header and data.
1106 */
1107 switch (af) {
1108 #ifdef INET
1109 case AF_INET:
1110 switch (m->m_pkthdr.csum_flags &
1111 ((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
1112 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
1113 case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
1114 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
1115 goto badcsum;
1116
1117 case M_CSUM_TCPv4|M_CSUM_DATA: {
1118 u_int32_t hw_csum = m->m_pkthdr.csum_data;
1119 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
1120 if (m->m_pkthdr.csum_flags & M_CSUM_NO_PSEUDOHDR) {
1121 hw_csum = in_cksum_phdr(ip->ip_src.s_addr,
1122 ip->ip_dst.s_addr,
1123 htons(hw_csum + tlen + off + IPPROTO_TCP));
1124 }
1125 if ((hw_csum ^ 0xffff) != 0)
1126 goto badcsum;
1127 break;
1128 }
1129
1130 case M_CSUM_TCPv4:
1131 /* Checksum was okay. */
1132 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
1133 break;
1134
1135 default:
1136 /* Must compute it ourselves. */
1137 TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
1138 if (in4_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0)
1139 goto badcsum;
1140 break;
1141 }
1142 break;
1143 #endif /* INET4 */
1144
1145 #ifdef INET6
1146 case AF_INET6:
1147 if (in6_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0)
1148 goto badcsum;
1149 break;
1150 #endif /* INET6 */
1151 }
1152
1153 TCP_FIELDS_TO_HOST(th);
1154
1155 /* Unscale the window into a 32-bit value. */
1156 if ((tiflags & TH_SYN) == 0)
1157 tiwin = th->th_win << tp->snd_scale;
1158 else
1159 tiwin = th->th_win;
1160
1161 #ifdef INET6
1162 /* save packet options if user wanted */
1163 if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
1164 if (in6p->in6p_options) {
1165 m_freem(in6p->in6p_options);
1166 in6p->in6p_options = 0;
1167 }
1168 ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
1169 }
1170 #endif
1171
1172 if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
1173 union syn_cache_sa src;
1174 union syn_cache_sa dst;
1175
1176 bzero(&src, sizeof(src));
1177 bzero(&dst, sizeof(dst));
1178 switch (af) {
1179 #ifdef INET
1180 case AF_INET:
1181 src.sin.sin_len = sizeof(struct sockaddr_in);
1182 src.sin.sin_family = AF_INET;
1183 src.sin.sin_addr = ip->ip_src;
1184 src.sin.sin_port = th->th_sport;
1185
1186 dst.sin.sin_len = sizeof(struct sockaddr_in);
1187 dst.sin.sin_family = AF_INET;
1188 dst.sin.sin_addr = ip->ip_dst;
1189 dst.sin.sin_port = th->th_dport;
1190 break;
1191 #endif
1192 #ifdef INET6
1193 case AF_INET6:
1194 src.sin6.sin6_len = sizeof(struct sockaddr_in6);
1195 src.sin6.sin6_family = AF_INET6;
1196 src.sin6.sin6_addr = ip6->ip6_src;
1197 src.sin6.sin6_port = th->th_sport;
1198
1199 dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
1200 dst.sin6.sin6_family = AF_INET6;
1201 dst.sin6.sin6_addr = ip6->ip6_dst;
1202 dst.sin6.sin6_port = th->th_dport;
1203 break;
1204 #endif /* INET6 */
1205 default:
1206 goto badsyn; /*sanity*/
1207 }
1208
1209 if (so->so_options & SO_DEBUG) {
1210 #ifdef TCP_DEBUG
1211 ostate = tp->t_state;
1212 #endif
1213
1214 tcp_saveti = NULL;
1215 if (iphlen + sizeof(struct tcphdr) > MHLEN)
1216 goto nosave;
1217
1218 if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
1219 tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
1220 if (!tcp_saveti)
1221 goto nosave;
1222 } else {
1223 MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
1224 if (!tcp_saveti)
1225 goto nosave;
1226 MCLAIM(m, &tcp_mowner);
1227 tcp_saveti->m_len = iphlen;
1228 m_copydata(m, 0, iphlen,
1229 mtod(tcp_saveti, caddr_t));
1230 }
1231
1232 if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
1233 m_freem(tcp_saveti);
1234 tcp_saveti = NULL;
1235 } else {
1236 tcp_saveti->m_len += sizeof(struct tcphdr);
1237 bcopy(th, mtod(tcp_saveti, caddr_t) + iphlen,
1238 sizeof(struct tcphdr));
1239 }
1240 nosave:;
1241 }
1242 if (so->so_options & SO_ACCEPTCONN) {
1243 if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1244 if (tiflags & TH_RST) {
1245 syn_cache_reset(&src.sa, &dst.sa, th);
1246 } else if ((tiflags & (TH_ACK|TH_SYN)) ==
1247 (TH_ACK|TH_SYN)) {
1248 /*
1249 * Received a SYN,ACK. This should
1250 * never happen while we are in
1251 * LISTEN. Send an RST.
1252 */
1253 goto badsyn;
1254 } else if (tiflags & TH_ACK) {
1255 so = syn_cache_get(&src.sa, &dst.sa,
1256 th, toff, tlen, so, m);
1257 if (so == NULL) {
1258 /*
1259 * We don't have a SYN for
1260 * this ACK; send an RST.
1261 */
1262 goto badsyn;
1263 } else if (so ==
1264 (struct socket *)(-1)) {
1265 /*
1266 * We were unable to create
1267 * the connection. If the
1268 * 3-way handshake was
1269 * completed, and RST has
1270 * been sent to the peer.
1271 * Since the mbuf might be
1272 * in use for the reply,
1273 * do not free it.
1274 */
1275 m = NULL;
1276 } else {
1277 /*
1278 * We have created a
1279 * full-blown connection.
1280 */
1281 tp = NULL;
1282 inp = NULL;
1283 #ifdef INET6
1284 in6p = NULL;
1285 #endif
1286 switch (so->so_proto->pr_domain->dom_family) {
1287 #ifdef INET
1288 case AF_INET:
1289 inp = sotoinpcb(so);
1290 tp = intotcpcb(inp);
1291 break;
1292 #endif
1293 #ifdef INET6
1294 case AF_INET6:
1295 in6p = sotoin6pcb(so);
1296 tp = in6totcpcb(in6p);
1297 break;
1298 #endif
1299 }
1300 if (tp == NULL)
1301 goto badsyn; /*XXX*/
1302 tiwin <<= tp->snd_scale;
1303 goto after_listen;
1304 }
1305 } else {
1306 /*
1307 * None of RST, SYN or ACK was set.
1308 * This is an invalid packet for a
1309 * TCB in LISTEN state. Send a RST.
1310 */
1311 goto badsyn;
1312 }
1313 } else {
1314 /*
1315 * Received a SYN.
1316 */
1317
1318 #ifdef INET6
1319 /*
1320 * If deprecated address is forbidden, we do
1321 * not accept SYN to deprecated interface
1322 * address to prevent any new inbound
1323 * connection from getting established.
1324 * When we do not accept SYN, we send a TCP
1325 * RST, with deprecated source address (instead
1326 * of dropping it). We compromise it as it is
1327 * much better for peer to send a RST, and
1328 * RST will be the final packet for the
1329 * exchange.
1330 *
1331 * If we do not forbid deprecated addresses, we
1332 * accept the SYN packet. RFC2462 does not
1333 * suggest dropping SYN in this case.
1334 * If we decipher RFC2462 5.5.4, it says like
1335 * this:
1336 * 1. use of deprecated addr with existing
1337 * communication is okay - "SHOULD continue
1338 * to be used"
1339 * 2. use of it with new communication:
1340 * (2a) "SHOULD NOT be used if alternate
1341 * address with sufficient scope is
1342 * available"
1343 * (2b) nothing mentioned otherwise.
1344 * Here we fall into (2b) case as we have no
1345 * choice in our source address selection - we
1346 * must obey the peer.
1347 *
1348 * The wording in RFC2462 is confusing, and
1349 * there are multiple description text for
1350 * deprecated address handling - worse, they
1351 * are not exactly the same. I believe 5.5.4
1352 * is the best one, so we follow 5.5.4.
1353 */
1354 if (af == AF_INET6 && !ip6_use_deprecated) {
1355 struct in6_ifaddr *ia6;
1356 if ((ia6 = in6ifa_ifpwithaddr(m->m_pkthdr.rcvif,
1357 &ip6->ip6_dst)) &&
1358 (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1359 tp = NULL;
1360 goto dropwithreset;
1361 }
1362 }
1363 #endif
1364
1365 #ifdef IPSEC
1366 switch (af) {
1367 #ifdef INET
1368 case AF_INET:
1369 if (ipsec4_in_reject_so(m, so)) {
1370 ipsecstat.in_polvio++;
1371 tp = NULL;
1372 goto dropwithreset;
1373 }
1374 break;
1375 #endif
1376 #ifdef INET6
1377 case AF_INET6:
1378 if (ipsec6_in_reject_so(m, so)) {
1379 ipsec6stat.in_polvio++;
1380 tp = NULL;
1381 goto dropwithreset;
1382 }
1383 break;
1384 #endif
1385 }
1386 #endif
1387
1388 /*
1389 * LISTEN socket received a SYN
1390 * from itself? This can't possibly
1391 * be valid; drop the packet.
1392 */
1393 if (th->th_sport == th->th_dport) {
1394 int i;
1395
1396 switch (af) {
1397 #ifdef INET
1398 case AF_INET:
1399 i = in_hosteq(ip->ip_src, ip->ip_dst);
1400 break;
1401 #endif
1402 #ifdef INET6
1403 case AF_INET6:
1404 i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
1405 break;
1406 #endif
1407 default:
1408 i = 1;
1409 }
1410 if (i) {
1411 tcpstat.tcps_badsyn++;
1412 goto drop;
1413 }
1414 }
1415
1416 /*
1417 * SYN looks ok; create compressed TCP
1418 * state for it.
1419 */
1420 if (so->so_qlen <= so->so_qlimit &&
1421 syn_cache_add(&src.sa, &dst.sa, th, tlen,
1422 so, m, optp, optlen, &opti))
1423 m = NULL;
1424 }
1425 goto drop;
1426 }
1427 }
1428
1429 after_listen:
1430 #ifdef DIAGNOSTIC
1431 /*
1432 * Should not happen now that all embryonic connections
1433 * are handled with compressed state.
1434 */
1435 if (tp->t_state == TCPS_LISTEN)
1436 panic("tcp_input: TCPS_LISTEN");
1437 #endif
1438
1439 /*
1440 * Segment received on connection.
1441 * Reset idle time and keep-alive timer.
1442 */
1443 tp->t_rcvtime = tcp_now;
1444 if (TCPS_HAVEESTABLISHED(tp->t_state))
1445 TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1446
1447 /*
1448 * Process options.
1449 */
1450 #ifdef TCP_SIGNATURE
1451 if (optp || (tp->t_flags & TF_SIGNATURE))
1452 #else
1453 if (optp)
1454 #endif
1455 if (tcp_dooptions(tp, optp, optlen, th, m, toff, &opti) < 0)
1456 goto drop;
1457
1458 /*
1459 * Header prediction: check for the two common cases
1460 * of a uni-directional data xfer. If the packet has
1461 * no control flags, is in-sequence, the window didn't
1462 * change and we're not retransmitting, it's a
1463 * candidate. If the length is zero and the ack moved
1464 * forward, we're the sender side of the xfer. Just
1465 * free the data acked & wake any higher level process
1466 * that was blocked waiting for space. If the length
1467 * is non-zero and the ack didn't move, we're the
1468 * receiver side. If we're getting packets in-order
1469 * (the reassembly queue is empty), add the data to
1470 * the socket buffer and note that we need a delayed ack.
1471 */
1472 if (tp->t_state == TCPS_ESTABLISHED &&
1473 (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1474 (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
1475 th->th_seq == tp->rcv_nxt &&
1476 tiwin && tiwin == tp->snd_wnd &&
1477 tp->snd_nxt == tp->snd_max) {
1478
1479 /*
1480 * If last ACK falls within this segment's sequence numbers,
1481 * record the timestamp.
1482 */
1483 if (opti.ts_present &&
1484 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1485 SEQ_LT(tp->last_ack_sent, th->th_seq + tlen)) {
1486 tp->ts_recent_age = TCP_TIMESTAMP(tp);
1487 tp->ts_recent = opti.ts_val;
1488 }
1489
1490 if (tlen == 0) {
1491 if (SEQ_GT(th->th_ack, tp->snd_una) &&
1492 SEQ_LEQ(th->th_ack, tp->snd_max) &&
1493 tp->snd_cwnd >= tp->snd_wnd &&
1494 tp->t_dupacks < tcprexmtthresh) {
1495 /*
1496 * this is a pure ack for outstanding data.
1497 */
1498 ++tcpstat.tcps_predack;
1499 if (opti.ts_present && opti.ts_ecr)
1500 tcp_xmit_timer(tp,
1501 TCP_TIMESTAMP(tp) - opti.ts_ecr + 1);
1502 else if (tp->t_rtttime &&
1503 SEQ_GT(th->th_ack, tp->t_rtseq))
1504 tcp_xmit_timer(tp,
1505 tcp_now - tp->t_rtttime);
1506 acked = th->th_ack - tp->snd_una;
1507 tcpstat.tcps_rcvackpack++;
1508 tcpstat.tcps_rcvackbyte += acked;
1509 ND6_HINT(tp);
1510
1511 if (acked > (tp->t_lastoff - tp->t_inoff))
1512 tp->t_lastm = NULL;
1513 sbdrop(&so->so_snd, acked);
1514 tp->t_lastoff -= acked;
1515
1516 /*
1517 * We want snd_recover to track snd_una to
1518 * avoid sequence wraparound problems for
1519 * very large transfers.
1520 */
1521 tp->snd_una = tp->snd_recover = th->th_ack;
1522 m_freem(m);
1523
1524 /*
1525 * If all outstanding data are acked, stop
1526 * retransmit timer, otherwise restart timer
1527 * using current (possibly backed-off) value.
1528 * If process is waiting for space,
1529 * wakeup/selwakeup/signal. If data
1530 * are ready to send, let tcp_output
1531 * decide between more output or persist.
1532 */
1533 if (tp->snd_una == tp->snd_max)
1534 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1535 else if (TCP_TIMER_ISARMED(tp,
1536 TCPT_PERSIST) == 0)
1537 TCP_TIMER_ARM(tp, TCPT_REXMT,
1538 tp->t_rxtcur);
1539
1540 sowwakeup(so);
1541 if (so->so_snd.sb_cc)
1542 (void) tcp_output(tp);
1543 if (tcp_saveti)
1544 m_freem(tcp_saveti);
1545 return;
1546 }
1547 } else if (th->th_ack == tp->snd_una &&
1548 TAILQ_FIRST(&tp->segq) == NULL &&
1549 tlen <= sbspace(&so->so_rcv)) {
1550 /*
1551 * this is a pure, in-sequence data packet
1552 * with nothing on the reassembly queue and
1553 * we have enough buffer space to take it.
1554 */
1555 ++tcpstat.tcps_preddat;
1556 tp->rcv_nxt += tlen;
1557 tcpstat.tcps_rcvpack++;
1558 tcpstat.tcps_rcvbyte += tlen;
1559 ND6_HINT(tp);
1560 /*
1561 * Drop TCP, IP headers and TCP options then add data
1562 * to socket buffer.
1563 */
1564 if (so->so_state & SS_CANTRCVMORE)
1565 m_freem(m);
1566 else {
1567 m_adj(m, toff + off);
1568 sbappendstream(&so->so_rcv, m);
1569 }
1570 sorwakeup(so);
1571 TCP_SETUP_ACK(tp, th);
1572 if (tp->t_flags & TF_ACKNOW)
1573 (void) tcp_output(tp);
1574 if (tcp_saveti)
1575 m_freem(tcp_saveti);
1576 return;
1577 }
1578 }
1579
1580 /*
1581 * Compute mbuf offset to TCP data segment.
1582 */
1583 hdroptlen = toff + off;
1584
1585 /*
1586 * Calculate amount of space in receive window,
1587 * and then do TCP input processing.
1588 * Receive window is amount of space in rcv queue,
1589 * but not less than advertised window.
1590 */
1591 { int win;
1592
1593 win = sbspace(&so->so_rcv);
1594 if (win < 0)
1595 win = 0;
1596 tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1597 }
1598
1599 switch (tp->t_state) {
1600 case TCPS_LISTEN:
1601 /*
1602 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
1603 */
1604 if (m->m_flags & (M_BCAST|M_MCAST))
1605 goto drop;
1606 switch (af) {
1607 #ifdef INET6
1608 case AF_INET6:
1609 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
1610 goto drop;
1611 break;
1612 #endif /* INET6 */
1613 case AF_INET:
1614 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
1615 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
1616 goto drop;
1617 break;
1618 }
1619 break;
1620
1621 /*
1622 * If the state is SYN_SENT:
1623 * if seg contains an ACK, but not for our SYN, drop the input.
1624 * if seg contains a RST, then drop the connection.
1625 * if seg does not contain SYN, then drop it.
1626 * Otherwise this is an acceptable SYN segment
1627 * initialize tp->rcv_nxt and tp->irs
1628 * if seg contains ack then advance tp->snd_una
1629 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1630 * arrange for segment to be acked (eventually)
1631 * continue processing rest of data/controls, beginning with URG
1632 */
1633 case TCPS_SYN_SENT:
1634 if ((tiflags & TH_ACK) &&
1635 (SEQ_LEQ(th->th_ack, tp->iss) ||
1636 SEQ_GT(th->th_ack, tp->snd_max)))
1637 goto dropwithreset;
1638 if (tiflags & TH_RST) {
1639 if (tiflags & TH_ACK)
1640 tp = tcp_drop(tp, ECONNREFUSED);
1641 goto drop;
1642 }
1643 if ((tiflags & TH_SYN) == 0)
1644 goto drop;
1645 if (tiflags & TH_ACK) {
1646 tp->snd_una = tp->snd_recover = th->th_ack;
1647 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1648 tp->snd_nxt = tp->snd_una;
1649 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1650 }
1651 tp->irs = th->th_seq;
1652 tcp_rcvseqinit(tp);
1653 tp->t_flags |= TF_ACKNOW;
1654 tcp_mss_from_peer(tp, opti.maxseg);
1655
1656 /*
1657 * Initialize the initial congestion window. If we
1658 * had to retransmit the SYN, we must initialize cwnd
1659 * to 1 segment (i.e. the Loss Window).
1660 */
1661 if (tp->t_flags & TF_SYN_REXMT)
1662 tp->snd_cwnd = tp->t_peermss;
1663 else {
1664 int ss = tcp_init_win;
1665 #ifdef INET
1666 if (inp != NULL && in_localaddr(inp->inp_faddr))
1667 ss = tcp_init_win_local;
1668 #endif
1669 #ifdef INET6
1670 if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
1671 ss = tcp_init_win_local;
1672 #endif
1673 tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
1674 }
1675
1676 tcp_rmx_rtt(tp);
1677 if (tiflags & TH_ACK) {
1678 tcpstat.tcps_connects++;
1679 soisconnected(so);
1680 tcp_established(tp);
1681 /* Do window scaling on this connection? */
1682 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1683 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1684 tp->snd_scale = tp->requested_s_scale;
1685 tp->rcv_scale = tp->request_r_scale;
1686 }
1687 TCP_REASS_LOCK(tp);
1688 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1689 TCP_REASS_UNLOCK(tp);
1690 /*
1691 * if we didn't have to retransmit the SYN,
1692 * use its rtt as our initial srtt & rtt var.
1693 */
1694 if (tp->t_rtttime)
1695 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
1696 } else
1697 tp->t_state = TCPS_SYN_RECEIVED;
1698
1699 /*
1700 * Advance th->th_seq to correspond to first data byte.
1701 * If data, trim to stay within window,
1702 * dropping FIN if necessary.
1703 */
1704 th->th_seq++;
1705 if (tlen > tp->rcv_wnd) {
1706 todrop = tlen - tp->rcv_wnd;
1707 m_adj(m, -todrop);
1708 tlen = tp->rcv_wnd;
1709 tiflags &= ~TH_FIN;
1710 tcpstat.tcps_rcvpackafterwin++;
1711 tcpstat.tcps_rcvbyteafterwin += todrop;
1712 }
1713 tp->snd_wl1 = th->th_seq - 1;
1714 tp->rcv_up = th->th_seq;
1715 goto step6;
1716
1717 /*
1718 * If the state is SYN_RECEIVED:
1719 * If seg contains an ACK, but not for our SYN, drop the input
1720 * and generate an RST. See page 36, rfc793
1721 */
1722 case TCPS_SYN_RECEIVED:
1723 if ((tiflags & TH_ACK) &&
1724 (SEQ_LEQ(th->th_ack, tp->iss) ||
1725 SEQ_GT(th->th_ack, tp->snd_max)))
1726 goto dropwithreset;
1727 break;
1728 }
1729
1730 /*
1731 * States other than LISTEN or SYN_SENT.
1732 * First check timestamp, if present.
1733 * Then check that at least some bytes of segment are within
1734 * receive window. If segment begins before rcv_nxt,
1735 * drop leading data (and SYN); if nothing left, just ack.
1736 *
1737 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1738 * and it's less than ts_recent, drop it.
1739 */
1740 if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
1741 TSTMP_LT(opti.ts_val, tp->ts_recent)) {
1742
1743 /* Check to see if ts_recent is over 24 days old. */
1744 if ((int)(TCP_TIMESTAMP(tp) - tp->ts_recent_age) >
1745 TCP_PAWS_IDLE) {
1746 /*
1747 * Invalidate ts_recent. If this segment updates
1748 * ts_recent, the age will be reset later and ts_recent
1749 * will get a valid value. If it does not, setting
1750 * ts_recent to zero will at least satisfy the
1751 * requirement that zero be placed in the timestamp
1752 * echo reply when ts_recent isn't valid. The
1753 * age isn't reset until we get a valid ts_recent
1754 * because we don't want out-of-order segments to be
1755 * dropped when ts_recent is old.
1756 */
1757 tp->ts_recent = 0;
1758 } else {
1759 tcpstat.tcps_rcvduppack++;
1760 tcpstat.tcps_rcvdupbyte += tlen;
1761 tcpstat.tcps_pawsdrop++;
1762 goto dropafterack;
1763 }
1764 }
1765
1766 todrop = tp->rcv_nxt - th->th_seq;
1767 if (todrop > 0) {
1768 if (tiflags & TH_SYN) {
1769 tiflags &= ~TH_SYN;
1770 th->th_seq++;
1771 if (th->th_urp > 1)
1772 th->th_urp--;
1773 else {
1774 tiflags &= ~TH_URG;
1775 th->th_urp = 0;
1776 }
1777 todrop--;
1778 }
1779 if (todrop > tlen ||
1780 (todrop == tlen && (tiflags & TH_FIN) == 0)) {
1781 /*
1782 * Any valid FIN or RST must be to the left of the
1783 * window. At this point the FIN or RST must be a
1784 * duplicate or out of sequence; drop it.
1785 */
1786 if (tiflags & TH_RST)
1787 goto drop;
1788 tiflags &= ~(TH_FIN|TH_RST);
1789 /*
1790 * Send an ACK to resynchronize and drop any data.
1791 * But keep on processing for RST or ACK.
1792 */
1793 tp->t_flags |= TF_ACKNOW;
1794 todrop = tlen;
1795 tcpstat.tcps_rcvdupbyte += todrop;
1796 tcpstat.tcps_rcvduppack++;
1797 } else if ((tiflags & TH_RST) &&
1798 th->th_seq != tp->last_ack_sent) {
1799 /*
1800 * Test for reset before adjusting the sequence
1801 * number for overlapping data.
1802 */
1803 goto dropafterack_ratelim;
1804 } else {
1805 tcpstat.tcps_rcvpartduppack++;
1806 tcpstat.tcps_rcvpartdupbyte += todrop;
1807 }
1808 hdroptlen += todrop; /*drop from head afterwards*/
1809 th->th_seq += todrop;
1810 tlen -= todrop;
1811 if (th->th_urp > todrop)
1812 th->th_urp -= todrop;
1813 else {
1814 tiflags &= ~TH_URG;
1815 th->th_urp = 0;
1816 }
1817 }
1818
1819 /*
1820 * If new data are received on a connection after the
1821 * user processes are gone, then RST the other end.
1822 */
1823 if ((so->so_state & SS_NOFDREF) &&
1824 tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1825 tp = tcp_close(tp);
1826 tcpstat.tcps_rcvafterclose++;
1827 goto dropwithreset;
1828 }
1829
1830 /*
1831 * If segment ends after window, drop trailing data
1832 * (and PUSH and FIN); if nothing left, just ACK.
1833 */
1834 todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
1835 if (todrop > 0) {
1836 tcpstat.tcps_rcvpackafterwin++;
1837 if (todrop >= tlen) {
1838 /*
1839 * The segment actually starts after the window.
1840 * th->th_seq + tlen - tp->rcv_nxt - tp->rcv_wnd >= tlen
1841 * th->th_seq - tp->rcv_nxt - tp->rcv_wnd >= 0
1842 * th->th_seq >= tp->rcv_nxt + tp->rcv_wnd
1843 */
1844 tcpstat.tcps_rcvbyteafterwin += tlen;
1845 /*
1846 * If a new connection request is received
1847 * while in TIME_WAIT, drop the old connection
1848 * and start over if the sequence numbers
1849 * are above the previous ones.
1850 *
1851 * NOTE: We will checksum the packet again, and
1852 * so we need to put the header fields back into
1853 * network order!
1854 * XXX This kind of sucks, but we don't expect
1855 * XXX this to happen very often, so maybe it
1856 * XXX doesn't matter so much.
1857 */
1858 if (tiflags & TH_SYN &&
1859 tp->t_state == TCPS_TIME_WAIT &&
1860 SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1861 iss = tcp_new_iss(tp, tp->snd_nxt);
1862 tp = tcp_close(tp);
1863 TCP_FIELDS_TO_NET(th);
1864 goto findpcb;
1865 }
1866 /*
1867 * If window is closed can only take segments at
1868 * window edge, and have to drop data and PUSH from
1869 * incoming segments. Continue processing, but
1870 * remember to ack. Otherwise, drop segment
1871 * and (if not RST) ack.
1872 */
1873 if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1874 tp->t_flags |= TF_ACKNOW;
1875 tcpstat.tcps_rcvwinprobe++;
1876 } else
1877 goto dropafterack;
1878 } else
1879 tcpstat.tcps_rcvbyteafterwin += todrop;
1880 m_adj(m, -todrop);
1881 tlen -= todrop;
1882 tiflags &= ~(TH_PUSH|TH_FIN);
1883 }
1884
1885 /*
1886 * If last ACK falls within this segment's sequence numbers,
1887 * and the timestamp is newer, record it.
1888 */
1889 if (opti.ts_present && TSTMP_GEQ(opti.ts_val, tp->ts_recent) &&
1890 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1891 SEQ_LT(tp->last_ack_sent, th->th_seq + tlen +
1892 ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
1893 tp->ts_recent_age = TCP_TIMESTAMP(tp);
1894 tp->ts_recent = opti.ts_val;
1895 }
1896
1897 /*
1898 * If the RST bit is set examine the state:
1899 * SYN_RECEIVED STATE:
1900 * If passive open, return to LISTEN state.
1901 * If active open, inform user that connection was refused.
1902 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
1903 * Inform user that connection was reset, and close tcb.
1904 * CLOSING, LAST_ACK, TIME_WAIT STATES
1905 * Close the tcb.
1906 */
1907 if (tiflags & TH_RST) {
1908 if (th->th_seq != tp->last_ack_sent)
1909 goto dropafterack_ratelim;
1910
1911 switch (tp->t_state) {
1912 case TCPS_SYN_RECEIVED:
1913 so->so_error = ECONNREFUSED;
1914 goto close;
1915
1916 case TCPS_ESTABLISHED:
1917 case TCPS_FIN_WAIT_1:
1918 case TCPS_FIN_WAIT_2:
1919 case TCPS_CLOSE_WAIT:
1920 so->so_error = ECONNRESET;
1921 close:
1922 tp->t_state = TCPS_CLOSED;
1923 tcpstat.tcps_drops++;
1924 tp = tcp_close(tp);
1925 goto drop;
1926
1927 case TCPS_CLOSING:
1928 case TCPS_LAST_ACK:
1929 case TCPS_TIME_WAIT:
1930 tp = tcp_close(tp);
1931 goto drop;
1932 }
1933 }
1934
1935 /*
1936 * Since we've covered the SYN-SENT and SYN-RECEIVED states above
1937 * we must be in a synchronized state. RFC791 states (under RST
1938 * generation) that any unacceptable segment (an out-of-order SYN
1939 * qualifies) received in a synchronized state must elicit only an
1940 * empty acknowledgment segment ... and the connection remains in
1941 * the same state.
1942 */
1943 if (tiflags & TH_SYN) {
1944 if (tp->rcv_nxt == th->th_seq) {
1945 tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack - 1,
1946 TH_ACK);
1947 if (tcp_saveti)
1948 m_freem(tcp_saveti);
1949 return;
1950 }
1951
1952 goto dropafterack_ratelim;
1953 }
1954
1955 /*
1956 * If the ACK bit is off we drop the segment and return.
1957 */
1958 if ((tiflags & TH_ACK) == 0) {
1959 if (tp->t_flags & TF_ACKNOW)
1960 goto dropafterack;
1961 else
1962 goto drop;
1963 }
1964
1965 /*
1966 * Ack processing.
1967 */
1968 switch (tp->t_state) {
1969
1970 /*
1971 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
1972 * ESTABLISHED state and continue processing, otherwise
1973 * send an RST.
1974 */
1975 case TCPS_SYN_RECEIVED:
1976 if (SEQ_GT(tp->snd_una, th->th_ack) ||
1977 SEQ_GT(th->th_ack, tp->snd_max))
1978 goto dropwithreset;
1979 tcpstat.tcps_connects++;
1980 soisconnected(so);
1981 tcp_established(tp);
1982 /* Do window scaling? */
1983 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1984 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1985 tp->snd_scale = tp->requested_s_scale;
1986 tp->rcv_scale = tp->request_r_scale;
1987 }
1988 TCP_REASS_LOCK(tp);
1989 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1990 TCP_REASS_UNLOCK(tp);
1991 tp->snd_wl1 = th->th_seq - 1;
1992 /* fall into ... */
1993
1994 /*
1995 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1996 * ACKs. If the ack is in the range
1997 * tp->snd_una < th->th_ack <= tp->snd_max
1998 * then advance tp->snd_una to th->th_ack and drop
1999 * data from the retransmission queue. If this ACK reflects
2000 * more up to date window information we update our window information.
2001 */
2002 case TCPS_ESTABLISHED:
2003 case TCPS_FIN_WAIT_1:
2004 case TCPS_FIN_WAIT_2:
2005 case TCPS_CLOSE_WAIT:
2006 case TCPS_CLOSING:
2007 case TCPS_LAST_ACK:
2008 case TCPS_TIME_WAIT:
2009
2010 if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2011 if (tlen == 0 && tiwin == tp->snd_wnd) {
2012 tcpstat.tcps_rcvdupack++;
2013 /*
2014 * If we have outstanding data (other than
2015 * a window probe), this is a completely
2016 * duplicate ack (ie, window info didn't
2017 * change), the ack is the biggest we've
2018 * seen and we've seen exactly our rexmt
2019 * threshhold of them, assume a packet
2020 * has been dropped and retransmit it.
2021 * Kludge snd_nxt & the congestion
2022 * window so we send only this one
2023 * packet.
2024 *
2025 * We know we're losing at the current
2026 * window size so do congestion avoidance
2027 * (set ssthresh to half the current window
2028 * and pull our congestion window back to
2029 * the new ssthresh).
2030 *
2031 * Dup acks mean that packets have left the
2032 * network (they're now cached at the receiver)
2033 * so bump cwnd by the amount in the receiver
2034 * to keep a constant cwnd packets in the
2035 * network.
2036 */
2037 if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
2038 th->th_ack != tp->snd_una)
2039 tp->t_dupacks = 0;
2040 else if (++tp->t_dupacks == tcprexmtthresh) {
2041 tcp_seq onxt = tp->snd_nxt;
2042 u_int win =
2043 min(tp->snd_wnd, tp->snd_cwnd) /
2044 2 / tp->t_segsz;
2045 if (tcp_do_newreno && SEQ_LT(th->th_ack,
2046 tp->snd_recover)) {
2047 /*
2048 * False fast retransmit after
2049 * timeout. Do not cut window.
2050 */
2051 tp->snd_cwnd += tp->t_segsz;
2052 tp->t_dupacks = 0;
2053 (void) tcp_output(tp);
2054 goto drop;
2055 }
2056
2057 if (win < 2)
2058 win = 2;
2059 tp->snd_ssthresh = win * tp->t_segsz;
2060 tp->snd_recover = tp->snd_max;
2061 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2062 tp->t_rtttime = 0;
2063 tp->snd_nxt = th->th_ack;
2064 tp->snd_cwnd = tp->t_segsz;
2065 (void) tcp_output(tp);
2066 tp->snd_cwnd = tp->snd_ssthresh +
2067 tp->t_segsz * tp->t_dupacks;
2068 if (SEQ_GT(onxt, tp->snd_nxt))
2069 tp->snd_nxt = onxt;
2070 goto drop;
2071 } else if (tp->t_dupacks > tcprexmtthresh) {
2072 tp->snd_cwnd += tp->t_segsz;
2073 (void) tcp_output(tp);
2074 goto drop;
2075 }
2076 } else if (tlen) {
2077 tp->t_dupacks = 0; /*XXX*/
2078 /* drop very old ACKs unless th_seq matches */
2079 if (th->th_seq != tp->rcv_nxt &&
2080 SEQ_LT(th->th_ack,
2081 tp->snd_una - tp->max_sndwnd)) {
2082 goto drop;
2083 }
2084 break;
2085 } else
2086 tp->t_dupacks = 0;
2087 break;
2088 }
2089 /*
2090 * If the congestion window was inflated to account
2091 * for the other side's cached packets, retract it.
2092 */
2093 if (tcp_do_newreno == 0) {
2094 if (tp->t_dupacks >= tcprexmtthresh &&
2095 tp->snd_cwnd > tp->snd_ssthresh)
2096 tp->snd_cwnd = tp->snd_ssthresh;
2097 tp->t_dupacks = 0;
2098 } else if (tp->t_dupacks >= tcprexmtthresh &&
2099 tcp_newreno(tp, th) == 0) {
2100 tp->snd_cwnd = tp->snd_ssthresh;
2101 /*
2102 * Window inflation should have left us with approx.
2103 * snd_ssthresh outstanding data. But in case we
2104 * would be inclined to send a burst, better to do
2105 * it via the slow start mechanism.
2106 */
2107 if (SEQ_SUB(tp->snd_max, th->th_ack) < tp->snd_ssthresh)
2108 tp->snd_cwnd = SEQ_SUB(tp->snd_max, th->th_ack)
2109 + tp->t_segsz;
2110 tp->t_dupacks = 0;
2111 }
2112 if (SEQ_GT(th->th_ack, tp->snd_max)) {
2113 tcpstat.tcps_rcvacktoomuch++;
2114 goto dropafterack;
2115 }
2116 acked = th->th_ack - tp->snd_una;
2117 tcpstat.tcps_rcvackpack++;
2118 tcpstat.tcps_rcvackbyte += acked;
2119
2120 /*
2121 * If we have a timestamp reply, update smoothed
2122 * round trip time. If no timestamp is present but
2123 * transmit timer is running and timed sequence
2124 * number was acked, update smoothed round trip time.
2125 * Since we now have an rtt measurement, cancel the
2126 * timer backoff (cf., Phil Karn's retransmit alg.).
2127 * Recompute the initial retransmit timer.
2128 */
2129 if (opti.ts_present && opti.ts_ecr)
2130 tcp_xmit_timer(tp, TCP_TIMESTAMP(tp) - opti.ts_ecr + 1);
2131 else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2132 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2133
2134 /*
2135 * If all outstanding data is acked, stop retransmit
2136 * timer and remember to restart (more output or persist).
2137 * If there is more data to be acked, restart retransmit
2138 * timer, using current (possibly backed-off) value.
2139 */
2140 if (th->th_ack == tp->snd_max) {
2141 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2142 needoutput = 1;
2143 } else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
2144 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
2145 /*
2146 * When new data is acked, open the congestion window.
2147 * If the window gives us less than ssthresh packets
2148 * in flight, open exponentially (segsz per packet).
2149 * Otherwise open linearly: segsz per window
2150 * (segsz^2 / cwnd per packet), plus a constant
2151 * fraction of a packet (segsz/8) to help larger windows
2152 * open quickly enough.
2153 */
2154 {
2155 u_int cw = tp->snd_cwnd;
2156 u_int incr = tp->t_segsz;
2157
2158 if (cw > tp->snd_ssthresh)
2159 incr = incr * incr / cw;
2160 if (tcp_do_newreno == 0 || SEQ_GEQ(th->th_ack, tp->snd_recover))
2161 tp->snd_cwnd = min(cw + incr,
2162 TCP_MAXWIN << tp->snd_scale);
2163 }
2164 ND6_HINT(tp);
2165 if (acked > so->so_snd.sb_cc) {
2166 tp->snd_wnd -= so->so_snd.sb_cc;
2167 sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
2168 ourfinisacked = 1;
2169 } else {
2170 if (acked > (tp->t_lastoff - tp->t_inoff))
2171 tp->t_lastm = NULL;
2172 sbdrop(&so->so_snd, acked);
2173 tp->t_lastoff -= acked;
2174 tp->snd_wnd -= acked;
2175 ourfinisacked = 0;
2176 }
2177 sowwakeup(so);
2178 /*
2179 * We want snd_recover to track snd_una to
2180 * avoid sequence wraparound problems for
2181 * very large transfers.
2182 */
2183 tp->snd_una = tp->snd_recover = th->th_ack;
2184 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2185 tp->snd_nxt = tp->snd_una;
2186
2187 switch (tp->t_state) {
2188
2189 /*
2190 * In FIN_WAIT_1 STATE in addition to the processing
2191 * for the ESTABLISHED state if our FIN is now acknowledged
2192 * then enter FIN_WAIT_2.
2193 */
2194 case TCPS_FIN_WAIT_1:
2195 if (ourfinisacked) {
2196 /*
2197 * If we can't receive any more
2198 * data, then closing user can proceed.
2199 * Starting the timer is contrary to the
2200 * specification, but if we don't get a FIN
2201 * we'll hang forever.
2202 */
2203 if (so->so_state & SS_CANTRCVMORE) {
2204 soisdisconnected(so);
2205 if (tcp_maxidle > 0)
2206 TCP_TIMER_ARM(tp, TCPT_2MSL,
2207 tcp_maxidle);
2208 }
2209 tp->t_state = TCPS_FIN_WAIT_2;
2210 }
2211 break;
2212
2213 /*
2214 * In CLOSING STATE in addition to the processing for
2215 * the ESTABLISHED state if the ACK acknowledges our FIN
2216 * then enter the TIME-WAIT state, otherwise ignore
2217 * the segment.
2218 */
2219 case TCPS_CLOSING:
2220 if (ourfinisacked) {
2221 tp->t_state = TCPS_TIME_WAIT;
2222 tcp_canceltimers(tp);
2223 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2224 soisdisconnected(so);
2225 }
2226 break;
2227
2228 /*
2229 * In LAST_ACK, we may still be waiting for data to drain
2230 * and/or to be acked, as well as for the ack of our FIN.
2231 * If our FIN is now acknowledged, delete the TCB,
2232 * enter the closed state and return.
2233 */
2234 case TCPS_LAST_ACK:
2235 if (ourfinisacked) {
2236 tp = tcp_close(tp);
2237 goto drop;
2238 }
2239 break;
2240
2241 /*
2242 * In TIME_WAIT state the only thing that should arrive
2243 * is a retransmission of the remote FIN. Acknowledge
2244 * it and restart the finack timer.
2245 */
2246 case TCPS_TIME_WAIT:
2247 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2248 goto dropafterack;
2249 }
2250 }
2251
2252 step6:
2253 /*
2254 * Update window information.
2255 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2256 */
2257 if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2258 (tp->snd_wl1 == th->th_seq && SEQ_LT(tp->snd_wl2, th->th_ack)) ||
2259 (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))) {
2260 /* keep track of pure window updates */
2261 if (tlen == 0 &&
2262 tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2263 tcpstat.tcps_rcvwinupd++;
2264 tp->snd_wnd = tiwin;
2265 tp->snd_wl1 = th->th_seq;
2266 tp->snd_wl2 = th->th_ack;
2267 if (tp->snd_wnd > tp->max_sndwnd)
2268 tp->max_sndwnd = tp->snd_wnd;
2269 needoutput = 1;
2270 }
2271
2272 /*
2273 * Process segments with URG.
2274 */
2275 if ((tiflags & TH_URG) && th->th_urp &&
2276 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2277 /*
2278 * This is a kludge, but if we receive and accept
2279 * random urgent pointers, we'll crash in
2280 * soreceive. It's hard to imagine someone
2281 * actually wanting to send this much urgent data.
2282 */
2283 if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2284 th->th_urp = 0; /* XXX */
2285 tiflags &= ~TH_URG; /* XXX */
2286 goto dodata; /* XXX */
2287 }
2288 /*
2289 * If this segment advances the known urgent pointer,
2290 * then mark the data stream. This should not happen
2291 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2292 * a FIN has been received from the remote side.
2293 * In these states we ignore the URG.
2294 *
2295 * According to RFC961 (Assigned Protocols),
2296 * the urgent pointer points to the last octet
2297 * of urgent data. We continue, however,
2298 * to consider it to indicate the first octet
2299 * of data past the urgent section as the original
2300 * spec states (in one of two places).
2301 */
2302 if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2303 tp->rcv_up = th->th_seq + th->th_urp;
2304 so->so_oobmark = so->so_rcv.sb_cc +
2305 (tp->rcv_up - tp->rcv_nxt) - 1;
2306 if (so->so_oobmark == 0)
2307 so->so_state |= SS_RCVATMARK;
2308 sohasoutofband(so);
2309 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2310 }
2311 /*
2312 * Remove out of band data so doesn't get presented to user.
2313 * This can happen independent of advancing the URG pointer,
2314 * but if two URG's are pending at once, some out-of-band
2315 * data may creep in... ick.
2316 */
2317 if (th->th_urp <= (u_int16_t) tlen
2318 #ifdef SO_OOBINLINE
2319 && (so->so_options & SO_OOBINLINE) == 0
2320 #endif
2321 )
2322 tcp_pulloutofband(so, th, m, hdroptlen);
2323 } else
2324 /*
2325 * If no out of band data is expected,
2326 * pull receive urgent pointer along
2327 * with the receive window.
2328 */
2329 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2330 tp->rcv_up = tp->rcv_nxt;
2331 dodata: /* XXX */
2332
2333 /*
2334 * Process the segment text, merging it into the TCP sequencing queue,
2335 * and arranging for acknowledgement of receipt if necessary.
2336 * This process logically involves adjusting tp->rcv_wnd as data
2337 * is presented to the user (this happens in tcp_usrreq.c,
2338 * case PRU_RCVD). If a FIN has already been received on this
2339 * connection then we just ignore the text.
2340 */
2341 if ((tlen || (tiflags & TH_FIN)) &&
2342 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2343 /*
2344 * Insert segment ti into reassembly queue of tcp with
2345 * control block tp. Return TH_FIN if reassembly now includes
2346 * a segment with FIN. The macro form does the common case
2347 * inline (segment is the next to be received on an
2348 * established connection, and the queue is empty),
2349 * avoiding linkage into and removal from the queue and
2350 * repetition of various conversions.
2351 * Set DELACK for segments received in order, but ack
2352 * immediately when segments are out of order
2353 * (so fast retransmit can work).
2354 */
2355 /* NOTE: this was TCP_REASS() macro, but used only once */
2356 TCP_REASS_LOCK(tp);
2357 if (th->th_seq == tp->rcv_nxt &&
2358 TAILQ_FIRST(&tp->segq) == NULL &&
2359 tp->t_state == TCPS_ESTABLISHED) {
2360 TCP_SETUP_ACK(tp, th);
2361 tp->rcv_nxt += tlen;
2362 tiflags = th->th_flags & TH_FIN;
2363 tcpstat.tcps_rcvpack++;
2364 tcpstat.tcps_rcvbyte += tlen;
2365 ND6_HINT(tp);
2366 if (so->so_state & SS_CANTRCVMORE)
2367 m_freem(m);
2368 else {
2369 m_adj(m, hdroptlen);
2370 sbappendstream(&(so)->so_rcv, m);
2371 }
2372 sorwakeup(so);
2373 } else {
2374 m_adj(m, hdroptlen);
2375 tiflags = tcp_reass(tp, th, m, &tlen);
2376 tp->t_flags |= TF_ACKNOW;
2377 }
2378 TCP_REASS_UNLOCK(tp);
2379
2380 /*
2381 * Note the amount of data that peer has sent into
2382 * our window, in order to estimate the sender's
2383 * buffer size.
2384 */
2385 len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2386 } else {
2387 m_freem(m);
2388 m = NULL;
2389 tiflags &= ~TH_FIN;
2390 }
2391
2392 /*
2393 * If FIN is received ACK the FIN and let the user know
2394 * that the connection is closing. Ignore a FIN received before
2395 * the connection is fully established.
2396 */
2397 if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2398 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2399 socantrcvmore(so);
2400 tp->t_flags |= TF_ACKNOW;
2401 tp->rcv_nxt++;
2402 }
2403 switch (tp->t_state) {
2404
2405 /*
2406 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2407 */
2408 case TCPS_ESTABLISHED:
2409 tp->t_state = TCPS_CLOSE_WAIT;
2410 break;
2411
2412 /*
2413 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2414 * enter the CLOSING state.
2415 */
2416 case TCPS_FIN_WAIT_1:
2417 tp->t_state = TCPS_CLOSING;
2418 break;
2419
2420 /*
2421 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2422 * starting the time-wait timer, turning off the other
2423 * standard timers.
2424 */
2425 case TCPS_FIN_WAIT_2:
2426 tp->t_state = TCPS_TIME_WAIT;
2427 tcp_canceltimers(tp);
2428 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2429 soisdisconnected(so);
2430 break;
2431
2432 /*
2433 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2434 */
2435 case TCPS_TIME_WAIT:
2436 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2437 break;
2438 }
2439 }
2440 #ifdef TCP_DEBUG
2441 if (so->so_options & SO_DEBUG)
2442 tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
2443 #endif
2444
2445 /*
2446 * Return any desired output.
2447 */
2448 if (needoutput || (tp->t_flags & TF_ACKNOW))
2449 (void) tcp_output(tp);
2450 if (tcp_saveti)
2451 m_freem(tcp_saveti);
2452 return;
2453
2454 badsyn:
2455 /*
2456 * Received a bad SYN. Increment counters and dropwithreset.
2457 */
2458 tcpstat.tcps_badsyn++;
2459 tp = NULL;
2460 goto dropwithreset;
2461
2462 dropafterack:
2463 /*
2464 * Generate an ACK dropping incoming segment if it occupies
2465 * sequence space, where the ACK reflects our state.
2466 */
2467 if (tiflags & TH_RST)
2468 goto drop;
2469 goto dropafterack2;
2470
2471 dropafterack_ratelim:
2472 /*
2473 * We may want to rate-limit ACKs against SYN/RST attack.
2474 */
2475 if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
2476 tcp_ackdrop_ppslim) == 0) {
2477 /* XXX stat */
2478 goto drop;
2479 }
2480 /* ...fall into dropafterack2... */
2481
2482 dropafterack2:
2483 m_freem(m);
2484 tp->t_flags |= TF_ACKNOW;
2485 (void) tcp_output(tp);
2486 if (tcp_saveti)
2487 m_freem(tcp_saveti);
2488 return;
2489
2490 dropwithreset_ratelim:
2491 /*
2492 * We may want to rate-limit RSTs in certain situations,
2493 * particularly if we are sending an RST in response to
2494 * an attempt to connect to or otherwise communicate with
2495 * a port for which we have no socket.
2496 */
2497 if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
2498 tcp_rst_ppslim) == 0) {
2499 /* XXX stat */
2500 goto drop;
2501 }
2502 /* ...fall into dropwithreset... */
2503
2504 dropwithreset:
2505 /*
2506 * Generate a RST, dropping incoming segment.
2507 * Make ACK acceptable to originator of segment.
2508 */
2509 if (tiflags & TH_RST)
2510 goto drop;
2511
2512 switch (af) {
2513 #ifdef INET6
2514 case AF_INET6:
2515 /* For following calls to tcp_respond */
2516 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
2517 goto drop;
2518 break;
2519 #endif /* INET6 */
2520 case AF_INET:
2521 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
2522 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2523 goto drop;
2524 }
2525
2526 if (tiflags & TH_ACK)
2527 (void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
2528 else {
2529 if (tiflags & TH_SYN)
2530 tlen++;
2531 (void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
2532 TH_RST|TH_ACK);
2533 }
2534 if (tcp_saveti)
2535 m_freem(tcp_saveti);
2536 return;
2537
2538 badcsum:
2539 tcpstat.tcps_rcvbadsum++;
2540 drop:
2541 /*
2542 * Drop space held by incoming segment and return.
2543 */
2544 if (tp) {
2545 if (tp->t_inpcb)
2546 so = tp->t_inpcb->inp_socket;
2547 #ifdef INET6
2548 else if (tp->t_in6pcb)
2549 so = tp->t_in6pcb->in6p_socket;
2550 #endif
2551 else
2552 so = NULL;
2553 #ifdef TCP_DEBUG
2554 if (so && (so->so_options & SO_DEBUG) != 0)
2555 tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
2556 #endif
2557 }
2558 if (tcp_saveti)
2559 m_freem(tcp_saveti);
2560 m_freem(m);
2561 return;
2562 }
2563
2564 #ifdef TCP_SIGNATURE
2565 int
2566 tcp_signature_apply(void *fstate, caddr_t data, u_int len)
2567 {
2568
2569 MD5Update(fstate, (u_char *)data, len);
2570 return (0);
2571 }
2572
2573 struct secasvar *
2574 tcp_signature_getsav(struct mbuf *m, struct tcphdr *th)
2575 {
2576 struct secasvar *sav;
2577 #ifdef FAST_IPSEC
2578 union sockaddr_union dst;
2579 #endif
2580 struct ip *ip;
2581 struct ip6_hdr *ip6;
2582
2583 ip = mtod(m, struct ip *);
2584 switch (ip->ip_v) {
2585 case 4:
2586 ip = mtod(m, struct ip *);
2587 ip6 = NULL;
2588 break;
2589 case 6:
2590 ip = NULL;
2591 ip6 = mtod(m, struct ip6_hdr *);
2592 break;
2593 default:
2594 return (NULL);
2595 }
2596
2597 #ifdef FAST_IPSEC
2598 /* Extract the destination from the IP header in the mbuf. */
2599 bzero(&dst, sizeof(union sockaddr_union));
2600 dst.sa.sa_len = sizeof(struct sockaddr_in);
2601 dst.sa.sa_family = AF_INET;
2602 dst.sin.sin_addr = ip->ip_dst;
2603
2604 /*
2605 * Look up an SADB entry which matches the address of the peer.
2606 */
2607 sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
2608 #else
2609 if (ip)
2610 sav = key_allocsa(AF_INET, (caddr_t)&ip->ip_src,
2611 (caddr_t)&ip->ip_dst, IPPROTO_TCP,
2612 htonl(TCP_SIG_SPI));
2613 else
2614 sav = key_allocsa(AF_INET6, (caddr_t)&ip6->ip6_src,
2615 (caddr_t)&ip6->ip6_dst, IPPROTO_TCP,
2616 htonl(TCP_SIG_SPI));
2617 #endif
2618
2619 return (sav); /* freesav must be performed by caller */
2620 }
2621
2622 int
2623 tcp_signature(struct mbuf *m, struct tcphdr *th, int thoff,
2624 struct secasvar *sav, char *sig)
2625 {
2626 MD5_CTX ctx;
2627 struct ip *ip;
2628 struct ipovly *ipovly;
2629 struct ip6_hdr *ip6;
2630 struct ippseudo ippseudo;
2631 struct ip6_hdr_pseudo ip6pseudo;
2632 struct tcphdr th0;
2633 int l, tcphdrlen;
2634
2635 if (sav == NULL)
2636 return (-1);
2637
2638 tcphdrlen = th->th_off * 4;
2639
2640 switch (mtod(m, struct ip *)->ip_v) {
2641 case 4:
2642 ip = mtod(m, struct ip *);
2643 ip6 = NULL;
2644 break;
2645 case 6:
2646 ip = NULL;
2647 ip6 = mtod(m, struct ip6_hdr *);
2648 break;
2649 default:
2650 return (-1);
2651 }
2652
2653 MD5Init(&ctx);
2654
2655 if (ip) {
2656 memset(&ippseudo, 0, sizeof(ippseudo));
2657 ipovly = (struct ipovly *)ip;
2658 ippseudo.ippseudo_src = ipovly->ih_src;
2659 ippseudo.ippseudo_dst = ipovly->ih_dst;
2660 ippseudo.ippseudo_pad = 0;
2661 ippseudo.ippseudo_p = IPPROTO_TCP;
2662 ippseudo.ippseudo_len = htons(m->m_pkthdr.len - thoff);
2663 MD5Update(&ctx, (char *)&ippseudo, sizeof(ippseudo));
2664 } else {
2665 memset(&ip6pseudo, 0, sizeof(ip6pseudo));
2666 ip6pseudo.ip6ph_src = ip6->ip6_src;
2667 in6_clearscope(&ip6pseudo.ip6ph_src);
2668 ip6pseudo.ip6ph_dst = ip6->ip6_dst;
2669 in6_clearscope(&ip6pseudo.ip6ph_dst);
2670 ip6pseudo.ip6ph_len = htons(m->m_pkthdr.len - thoff);
2671 ip6pseudo.ip6ph_nxt = IPPROTO_TCP;
2672 MD5Update(&ctx, (char *)&ip6pseudo, sizeof(ip6pseudo));
2673 }
2674
2675 th0 = *th;
2676 th0.th_sum = 0;
2677 MD5Update(&ctx, (char *)&th0, sizeof(th0));
2678
2679 l = m->m_pkthdr.len - thoff - tcphdrlen;
2680 if (l > 0)
2681 m_apply(m, thoff + tcphdrlen,
2682 m->m_pkthdr.len - thoff - tcphdrlen,
2683 tcp_signature_apply, &ctx);
2684
2685 MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2686 MD5Final(sig, &ctx);
2687
2688 return (0);
2689 }
2690 #endif
2691
2692 int
2693 tcp_dooptions(tp, cp, cnt, th, m, toff, oi)
2694 struct tcpcb *tp;
2695 u_char *cp;
2696 int cnt;
2697 struct tcphdr *th;
2698 struct mbuf *m;
2699 int toff;
2700 struct tcp_opt_info *oi;
2701 {
2702 u_int16_t mss;
2703 int opt, optlen = 0;
2704 #ifdef TCP_SIGNATURE
2705 caddr_t sigp = NULL;
2706 char sigbuf[TCP_SIGLEN];
2707 struct secasvar *sav = NULL;
2708 #endif
2709
2710 for (; cp && cnt > 0; cnt -= optlen, cp += optlen) {
2711 opt = cp[0];
2712 if (opt == TCPOPT_EOL)
2713 break;
2714 if (opt == TCPOPT_NOP)
2715 optlen = 1;
2716 else {
2717 if (cnt < 2)
2718 break;
2719 optlen = cp[1];
2720 if (optlen < 2 || optlen > cnt)
2721 break;
2722 }
2723 switch (opt) {
2724
2725 default:
2726 continue;
2727
2728 case TCPOPT_MAXSEG:
2729 if (optlen != TCPOLEN_MAXSEG)
2730 continue;
2731 if (!(th->th_flags & TH_SYN))
2732 continue;
2733 bcopy(cp + 2, &mss, sizeof(mss));
2734 oi->maxseg = ntohs(mss);
2735 break;
2736
2737 case TCPOPT_WINDOW:
2738 if (optlen != TCPOLEN_WINDOW)
2739 continue;
2740 if (!(th->th_flags & TH_SYN))
2741 continue;
2742 tp->t_flags |= TF_RCVD_SCALE;
2743 tp->requested_s_scale = cp[2];
2744 if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
2745 #if 0 /*XXX*/
2746 char *p;
2747
2748 if (ip)
2749 p = ntohl(ip->ip_src);
2750 #ifdef INET6
2751 else if (ip6)
2752 p = ip6_sprintf(&ip6->ip6_src);
2753 #endif
2754 else
2755 p = "(unknown)";
2756 log(LOG_ERR, "TCP: invalid wscale %d from %s, "
2757 "assuming %d\n",
2758 tp->requested_s_scale, p,
2759 TCP_MAX_WINSHIFT);
2760 #else
2761 log(LOG_ERR, "TCP: invalid wscale %d, "
2762 "assuming %d\n",
2763 tp->requested_s_scale,
2764 TCP_MAX_WINSHIFT);
2765 #endif
2766 tp->requested_s_scale = TCP_MAX_WINSHIFT;
2767 }
2768 break;
2769
2770 case TCPOPT_TIMESTAMP:
2771 if (optlen != TCPOLEN_TIMESTAMP)
2772 continue;
2773 oi->ts_present = 1;
2774 bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
2775 NTOHL(oi->ts_val);
2776 bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
2777 NTOHL(oi->ts_ecr);
2778
2779 /*
2780 * A timestamp received in a SYN makes
2781 * it ok to send timestamp requests and replies.
2782 */
2783 if (th->th_flags & TH_SYN) {
2784 tp->t_flags |= TF_RCVD_TSTMP;
2785 tp->ts_recent = oi->ts_val;
2786 tp->ts_recent_age = TCP_TIMESTAMP(tp);
2787 }
2788 break;
2789 case TCPOPT_SACK_PERMITTED:
2790 if (optlen != TCPOLEN_SACK_PERMITTED)
2791 continue;
2792 if (!(th->th_flags & TH_SYN))
2793 continue;
2794 tp->t_flags &= ~TF_CANT_TXSACK;
2795 break;
2796
2797 case TCPOPT_SACK:
2798 if (tp->t_flags & TF_IGNR_RXSACK)
2799 continue;
2800 if (optlen % 8 != 2 || optlen < 10)
2801 continue;
2802 cp += 2;
2803 optlen -= 2;
2804 for (; optlen > 0; cp -= 8, optlen -= 8) {
2805 tcp_seq lwe, rwe;
2806 bcopy((char *)cp, (char *) &lwe, sizeof(lwe));
2807 NTOHL(lwe);
2808 bcopy((char *)cp, (char *) &rwe, sizeof(rwe));
2809 NTOHL(rwe);
2810 /* tcp_mark_sacked(tp, lwe, rwe); */
2811 }
2812 break;
2813 #ifdef TCP_SIGNATURE
2814 case TCPOPT_SIGNATURE:
2815 if (optlen != TCPOLEN_SIGNATURE)
2816 continue;
2817 if (sigp && bcmp(sigp, cp + 2, TCP_SIGLEN))
2818 return (-1);
2819
2820 sigp = sigbuf;
2821 memcpy(sigbuf, cp + 2, TCP_SIGLEN);
2822 memset(cp + 2, 0, TCP_SIGLEN);
2823 tp->t_flags |= TF_SIGNATURE;
2824 break;
2825 #endif
2826 }
2827 }
2828
2829 #ifdef TCP_SIGNATURE
2830 if (tp->t_flags & TF_SIGNATURE) {
2831
2832 sav = tcp_signature_getsav(m, th);
2833
2834 if (sav == NULL && tp->t_state == TCPS_LISTEN)
2835 return (-1);
2836 }
2837
2838 if ((sigp ? TF_SIGNATURE : 0) ^ (tp->t_flags & TF_SIGNATURE)) {
2839 if (sav == NULL)
2840 return (-1);
2841 #ifdef FAST_IPSEC
2842 KEY_FREESAV(&sav);
2843 #else
2844 key_freesav(sav);
2845 #endif
2846 return (-1);
2847 }
2848
2849 if (sigp) {
2850 char sig[TCP_SIGLEN];
2851
2852 TCP_FIELDS_TO_NET(th);
2853 if (tcp_signature(m, th, toff, sav, sig) < 0) {
2854 TCP_FIELDS_TO_HOST(th);
2855 if (sav == NULL)
2856 return (-1);
2857 #ifdef FAST_IPSEC
2858 KEY_FREESAV(&sav);
2859 #else
2860 key_freesav(sav);
2861 #endif
2862 return (-1);
2863 }
2864 TCP_FIELDS_TO_HOST(th);
2865
2866 if (bcmp(sig, sigp, TCP_SIGLEN)) {
2867 tcpstat.tcps_badsig++;
2868 if (sav == NULL)
2869 return (-1);
2870 #ifdef FAST_IPSEC
2871 KEY_FREESAV(&sav);
2872 #else
2873 key_freesav(sav);
2874 #endif
2875 return (-1);
2876 } else
2877 tcpstat.tcps_goodsig++;
2878
2879 key_sa_recordxfer(sav, m);
2880 #ifdef FAST_IPSEC
2881 KEY_FREESAV(&sav);
2882 #else
2883 key_freesav(sav);
2884 #endif
2885 }
2886 #endif
2887
2888 return (0);
2889 }
2890
2891 /*
2892 * Pull out of band byte out of a segment so
2893 * it doesn't appear in the user's data queue.
2894 * It is still reflected in the segment length for
2895 * sequencing purposes.
2896 */
2897 void
2898 tcp_pulloutofband(so, th, m, off)
2899 struct socket *so;
2900 struct tcphdr *th;
2901 struct mbuf *m;
2902 int off;
2903 {
2904 int cnt = off + th->th_urp - 1;
2905
2906 while (cnt >= 0) {
2907 if (m->m_len > cnt) {
2908 char *cp = mtod(m, caddr_t) + cnt;
2909 struct tcpcb *tp = sototcpcb(so);
2910
2911 tp->t_iobc = *cp;
2912 tp->t_oobflags |= TCPOOB_HAVEDATA;
2913 bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
2914 m->m_len--;
2915 return;
2916 }
2917 cnt -= m->m_len;
2918 m = m->m_next;
2919 if (m == 0)
2920 break;
2921 }
2922 panic("tcp_pulloutofband");
2923 }
2924
2925 /*
2926 * Collect new round-trip time estimate
2927 * and update averages and current timeout.
2928 */
2929 void
2930 tcp_xmit_timer(tp, rtt)
2931 struct tcpcb *tp;
2932 uint32_t rtt;
2933 {
2934 int32_t delta;
2935
2936 tcpstat.tcps_rttupdated++;
2937 if (tp->t_srtt != 0) {
2938 /*
2939 * srtt is stored as fixed point with 3 bits after the
2940 * binary point (i.e., scaled by 8). The following magic
2941 * is equivalent to the smoothing algorithm in rfc793 with
2942 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2943 * point). Adjust rtt to origin 0.
2944 */
2945 delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
2946 if ((tp->t_srtt += delta) <= 0)
2947 tp->t_srtt = 1 << 2;
2948 /*
2949 * We accumulate a smoothed rtt variance (actually, a
2950 * smoothed mean difference), then set the retransmit
2951 * timer to smoothed rtt + 4 times the smoothed variance.
2952 * rttvar is stored as fixed point with 2 bits after the
2953 * binary point (scaled by 4). The following is
2954 * equivalent to rfc793 smoothing with an alpha of .75
2955 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces
2956 * rfc793's wired-in beta.
2957 */
2958 if (delta < 0)
2959 delta = -delta;
2960 delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
2961 if ((tp->t_rttvar += delta) <= 0)
2962 tp->t_rttvar = 1 << 2;
2963 } else {
2964 /*
2965 * No rtt measurement yet - use the unsmoothed rtt.
2966 * Set the variance to half the rtt (so our first
2967 * retransmit happens at 3*rtt).
2968 */
2969 tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
2970 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
2971 }
2972 tp->t_rtttime = 0;
2973 tp->t_rxtshift = 0;
2974
2975 /*
2976 * the retransmit should happen at rtt + 4 * rttvar.
2977 * Because of the way we do the smoothing, srtt and rttvar
2978 * will each average +1/2 tick of bias. When we compute
2979 * the retransmit timer, we want 1/2 tick of rounding and
2980 * 1 extra tick because of +-1/2 tick uncertainty in the
2981 * firing of the timer. The bias will give us exactly the
2982 * 1.5 tick we need. But, because the bias is
2983 * statistical, we have to test that we don't drop below
2984 * the minimum feasible timer (which is 2 ticks).
2985 */
2986 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
2987 max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
2988
2989 /*
2990 * We received an ack for a packet that wasn't retransmitted;
2991 * it is probably safe to discard any error indications we've
2992 * received recently. This isn't quite right, but close enough
2993 * for now (a route might have failed after we sent a segment,
2994 * and the return path might not be symmetrical).
2995 */
2996 tp->t_softerror = 0;
2997 }
2998
2999 /*
3000 * Checks for partial ack. If partial ack arrives, force the retransmission
3001 * of the next unacknowledged segment, do not clear tp->t_dupacks, and return
3002 * 1. By setting snd_nxt to th_ack, this forces retransmission timer to
3003 * be started again. If the ack advances at least to tp->snd_recover, return 0.
3004 */
3005 int
3006 tcp_newreno(tp, th)
3007 struct tcpcb *tp;
3008 struct tcphdr *th;
3009 {
3010 tcp_seq onxt = tp->snd_nxt;
3011 u_long ocwnd = tp->snd_cwnd;
3012
3013 if (SEQ_LT(th->th_ack, tp->snd_recover)) {
3014 /*
3015 * snd_una has not yet been updated and the socket's send
3016 * buffer has not yet drained off the ACK'd data, so we
3017 * have to leave snd_una as it was to get the correct data
3018 * offset in tcp_output().
3019 */
3020 TCP_TIMER_DISARM(tp, TCPT_REXMT);
3021 tp->t_rtttime = 0;
3022 tp->snd_nxt = th->th_ack;
3023 /*
3024 * Set snd_cwnd to one segment beyond ACK'd offset. snd_una
3025 * is not yet updated when we're called.
3026 */
3027 tp->snd_cwnd = tp->t_segsz + (th->th_ack - tp->snd_una);
3028 (void) tcp_output(tp);
3029 tp->snd_cwnd = ocwnd;
3030 if (SEQ_GT(onxt, tp->snd_nxt))
3031 tp->snd_nxt = onxt;
3032 /*
3033 * Partial window deflation. Relies on fact that tp->snd_una
3034 * not updated yet.
3035 */
3036 tp->snd_cwnd -= (th->th_ack - tp->snd_una - tp->t_segsz);
3037 return 1;
3038 }
3039 return 0;
3040 }
3041
3042
3043 /*
3044 * TCP compressed state engine. Currently used to hold compressed
3045 * state for SYN_RECEIVED.
3046 */
3047
3048 u_long syn_cache_count;
3049 u_int32_t syn_hash1, syn_hash2;
3050
3051 #define SYN_HASH(sa, sp, dp) \
3052 ((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
3053 ((u_int32_t)(sp)))^syn_hash2)))
3054 #ifndef INET6
3055 #define SYN_HASHALL(hash, src, dst) \
3056 do { \
3057 hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
3058 ((struct sockaddr_in *)(src))->sin_port, \
3059 ((struct sockaddr_in *)(dst))->sin_port); \
3060 } while (/*CONSTCOND*/ 0)
3061 #else
3062 #define SYN_HASH6(sa, sp, dp) \
3063 ((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
3064 (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
3065 & 0x7fffffff)
3066
3067 #define SYN_HASHALL(hash, src, dst) \
3068 do { \
3069 switch ((src)->sa_family) { \
3070 case AF_INET: \
3071 hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
3072 ((struct sockaddr_in *)(src))->sin_port, \
3073 ((struct sockaddr_in *)(dst))->sin_port); \
3074 break; \
3075 case AF_INET6: \
3076 hash = SYN_HASH6(&((struct sockaddr_in6 *)(src))->sin6_addr, \
3077 ((struct sockaddr_in6 *)(src))->sin6_port, \
3078 ((struct sockaddr_in6 *)(dst))->sin6_port); \
3079 break; \
3080 default: \
3081 hash = 0; \
3082 } \
3083 } while (/*CONSTCOND*/0)
3084 #endif /* INET6 */
3085
3086 #define SYN_CACHE_RM(sc) \
3087 do { \
3088 TAILQ_REMOVE(&tcp_syn_cache[(sc)->sc_bucketidx].sch_bucket, \
3089 (sc), sc_bucketq); \
3090 (sc)->sc_tp = NULL; \
3091 LIST_REMOVE((sc), sc_tpq); \
3092 tcp_syn_cache[(sc)->sc_bucketidx].sch_length--; \
3093 callout_stop(&(sc)->sc_timer); \
3094 syn_cache_count--; \
3095 } while (/*CONSTCOND*/0)
3096
3097 #define SYN_CACHE_PUT(sc) \
3098 do { \
3099 if ((sc)->sc_ipopts) \
3100 (void) m_free((sc)->sc_ipopts); \
3101 if ((sc)->sc_route4.ro_rt != NULL) \
3102 RTFREE((sc)->sc_route4.ro_rt); \
3103 if (callout_invoking(&(sc)->sc_timer)) \
3104 (sc)->sc_flags |= SCF_DEAD; \
3105 else \
3106 pool_put(&syn_cache_pool, (sc)); \
3107 } while (/*CONSTCOND*/0)
3108
3109 POOL_INIT(syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0, "synpl", NULL);
3110
3111 /*
3112 * We don't estimate RTT with SYNs, so each packet starts with the default
3113 * RTT and each timer step has a fixed timeout value.
3114 */
3115 #define SYN_CACHE_TIMER_ARM(sc) \
3116 do { \
3117 TCPT_RANGESET((sc)->sc_rxtcur, \
3118 TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN, \
3119 TCPTV_REXMTMAX); \
3120 callout_reset(&(sc)->sc_timer, \
3121 (sc)->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, (sc)); \
3122 } while (/*CONSTCOND*/0)
3123
3124 #define SYN_CACHE_TIMESTAMP(sc) (tcp_now - (sc)->sc_timebase)
3125
3126 void
3127 syn_cache_init()
3128 {
3129 int i;
3130
3131 /* Initialize the hash buckets. */
3132 for (i = 0; i < tcp_syn_cache_size; i++)
3133 TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
3134 }
3135
3136 void
3137 syn_cache_insert(sc, tp)
3138 struct syn_cache *sc;
3139 struct tcpcb *tp;
3140 {
3141 struct syn_cache_head *scp;
3142 struct syn_cache *sc2;
3143 int s;
3144
3145 /*
3146 * If there are no entries in the hash table, reinitialize
3147 * the hash secrets.
3148 */
3149 if (syn_cache_count == 0) {
3150 syn_hash1 = arc4random();
3151 syn_hash2 = arc4random();
3152 }
3153
3154 SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
3155 sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
3156 scp = &tcp_syn_cache[sc->sc_bucketidx];
3157
3158 /*
3159 * Make sure that we don't overflow the per-bucket
3160 * limit or the total cache size limit.
3161 */
3162 s = splsoftnet();
3163 if (scp->sch_length >= tcp_syn_bucket_limit) {
3164 tcpstat.tcps_sc_bucketoverflow++;
3165 /*
3166 * The bucket is full. Toss the oldest element in the
3167 * bucket. This will be the first entry in the bucket.
3168 */
3169 sc2 = TAILQ_FIRST(&scp->sch_bucket);
3170 #ifdef DIAGNOSTIC
3171 /*
3172 * This should never happen; we should always find an
3173 * entry in our bucket.
3174 */
3175 if (sc2 == NULL)
3176 panic("syn_cache_insert: bucketoverflow: impossible");
3177 #endif
3178 SYN_CACHE_RM(sc2);
3179 SYN_CACHE_PUT(sc2);
3180 } else if (syn_cache_count >= tcp_syn_cache_limit) {
3181 struct syn_cache_head *scp2, *sce;
3182
3183 tcpstat.tcps_sc_overflowed++;
3184 /*
3185 * The cache is full. Toss the oldest entry in the
3186 * first non-empty bucket we can find.
3187 *
3188 * XXX We would really like to toss the oldest
3189 * entry in the cache, but we hope that this
3190 * condition doesn't happen very often.
3191 */
3192 scp2 = scp;
3193 if (TAILQ_EMPTY(&scp2->sch_bucket)) {
3194 sce = &tcp_syn_cache[tcp_syn_cache_size];
3195 for (++scp2; scp2 != scp; scp2++) {
3196 if (scp2 >= sce)
3197 scp2 = &tcp_syn_cache[0];
3198 if (! TAILQ_EMPTY(&scp2->sch_bucket))
3199 break;
3200 }
3201 #ifdef DIAGNOSTIC
3202 /*
3203 * This should never happen; we should always find a
3204 * non-empty bucket.
3205 */
3206 if (scp2 == scp)
3207 panic("syn_cache_insert: cacheoverflow: "
3208 "impossible");
3209 #endif
3210 }
3211 sc2 = TAILQ_FIRST(&scp2->sch_bucket);
3212 SYN_CACHE_RM(sc2);
3213 SYN_CACHE_PUT(sc2);
3214 }
3215
3216 /*
3217 * Initialize the entry's timer.
3218 */
3219 sc->sc_rxttot = 0;
3220 sc->sc_rxtshift = 0;
3221 SYN_CACHE_TIMER_ARM(sc);
3222
3223 /* Link it from tcpcb entry */
3224 LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
3225
3226 /* Put it into the bucket. */
3227 TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
3228 scp->sch_length++;
3229 syn_cache_count++;
3230
3231 tcpstat.tcps_sc_added++;
3232 splx(s);
3233 }
3234
3235 /*
3236 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
3237 * If we have retransmitted an entry the maximum number of times, expire
3238 * that entry.
3239 */
3240 void
3241 syn_cache_timer(void *arg)
3242 {
3243 struct syn_cache *sc = arg;
3244 int s;
3245
3246 s = splsoftnet();
3247 callout_ack(&sc->sc_timer);
3248
3249 if (__predict_false(sc->sc_flags & SCF_DEAD)) {
3250 tcpstat.tcps_sc_delayed_free++;
3251 pool_put(&syn_cache_pool, sc);
3252 splx(s);
3253 return;
3254 }
3255
3256 if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
3257 /* Drop it -- too many retransmissions. */
3258 goto dropit;
3259 }
3260
3261 /*
3262 * Compute the total amount of time this entry has
3263 * been on a queue. If this entry has been on longer
3264 * than the keep alive timer would allow, expire it.
3265 */
3266 sc->sc_rxttot += sc->sc_rxtcur;
3267 if (sc->sc_rxttot >= TCPTV_KEEP_INIT)
3268 goto dropit;
3269
3270 tcpstat.tcps_sc_retransmitted++;
3271 (void) syn_cache_respond(sc, NULL);
3272
3273 /* Advance the timer back-off. */
3274 sc->sc_rxtshift++;
3275 SYN_CACHE_TIMER_ARM(sc);
3276
3277 splx(s);
3278 return;
3279
3280 dropit:
3281 tcpstat.tcps_sc_timed_out++;
3282 SYN_CACHE_RM(sc);
3283 SYN_CACHE_PUT(sc);
3284 splx(s);
3285 }
3286
3287 /*
3288 * Remove syn cache created by the specified tcb entry,
3289 * because this does not make sense to keep them
3290 * (if there's no tcb entry, syn cache entry will never be used)
3291 */
3292 void
3293 syn_cache_cleanup(tp)
3294 struct tcpcb *tp;
3295 {
3296 struct syn_cache *sc, *nsc;
3297 int s;
3298
3299 s = splsoftnet();
3300
3301 for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
3302 nsc = LIST_NEXT(sc, sc_tpq);
3303
3304 #ifdef DIAGNOSTIC
3305 if (sc->sc_tp != tp)
3306 panic("invalid sc_tp in syn_cache_cleanup");
3307 #endif
3308 SYN_CACHE_RM(sc);
3309 SYN_CACHE_PUT(sc);
3310 }
3311 /* just for safety */
3312 LIST_INIT(&tp->t_sc);
3313
3314 splx(s);
3315 }
3316
3317 /*
3318 * Find an entry in the syn cache.
3319 */
3320 struct syn_cache *
3321 syn_cache_lookup(src, dst, headp)
3322 struct sockaddr *src;
3323 struct sockaddr *dst;
3324 struct syn_cache_head **headp;
3325 {
3326 struct syn_cache *sc;
3327 struct syn_cache_head *scp;
3328 u_int32_t hash;
3329 int s;
3330
3331 SYN_HASHALL(hash, src, dst);
3332
3333 scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
3334 *headp = scp;
3335 s = splsoftnet();
3336 for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
3337 sc = TAILQ_NEXT(sc, sc_bucketq)) {
3338 if (sc->sc_hash != hash)
3339 continue;
3340 if (!bcmp(&sc->sc_src, src, src->sa_len) &&
3341 !bcmp(&sc->sc_dst, dst, dst->sa_len)) {
3342 splx(s);
3343 return (sc);
3344 }
3345 }
3346 splx(s);
3347 return (NULL);
3348 }
3349
3350 /*
3351 * This function gets called when we receive an ACK for a
3352 * socket in the LISTEN state. We look up the connection
3353 * in the syn cache, and if its there, we pull it out of
3354 * the cache and turn it into a full-blown connection in
3355 * the SYN-RECEIVED state.
3356 *
3357 * The return values may not be immediately obvious, and their effects
3358 * can be subtle, so here they are:
3359 *
3360 * NULL SYN was not found in cache; caller should drop the
3361 * packet and send an RST.
3362 *
3363 * -1 We were unable to create the new connection, and are
3364 * aborting it. An ACK,RST is being sent to the peer
3365 * (unless we got screwey sequence numbners; see below),
3366 * because the 3-way handshake has been completed. Caller
3367 * should not free the mbuf, since we may be using it. If
3368 * we are not, we will free it.
3369 *
3370 * Otherwise, the return value is a pointer to the new socket
3371 * associated with the connection.
3372 */
3373 struct socket *
3374 syn_cache_get(src, dst, th, hlen, tlen, so, m)
3375 struct sockaddr *src;
3376 struct sockaddr *dst;
3377 struct tcphdr *th;
3378 unsigned int hlen, tlen;
3379 struct socket *so;
3380 struct mbuf *m;
3381 {
3382 struct syn_cache *sc;
3383 struct syn_cache_head *scp;
3384 struct inpcb *inp = NULL;
3385 #ifdef INET6
3386 struct in6pcb *in6p = NULL;
3387 #endif
3388 struct tcpcb *tp = 0;
3389 struct mbuf *am;
3390 int s;
3391 struct socket *oso;
3392
3393 s = splsoftnet();
3394 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3395 splx(s);
3396 return (NULL);
3397 }
3398
3399 /*
3400 * Verify the sequence and ack numbers. Try getting the correct
3401 * response again.
3402 */
3403 if ((th->th_ack != sc->sc_iss + 1) ||
3404 SEQ_LEQ(th->th_seq, sc->sc_irs) ||
3405 SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
3406 (void) syn_cache_respond(sc, m);
3407 splx(s);
3408 return ((struct socket *)(-1));
3409 }
3410
3411 /* Remove this cache entry */
3412 SYN_CACHE_RM(sc);
3413 splx(s);
3414
3415 /*
3416 * Ok, create the full blown connection, and set things up
3417 * as they would have been set up if we had created the
3418 * connection when the SYN arrived. If we can't create
3419 * the connection, abort it.
3420 */
3421 /*
3422 * inp still has the OLD in_pcb stuff, set the
3423 * v6-related flags on the new guy, too. This is
3424 * done particularly for the case where an AF_INET6
3425 * socket is bound only to a port, and a v4 connection
3426 * comes in on that port.
3427 * we also copy the flowinfo from the original pcb
3428 * to the new one.
3429 */
3430 oso = so;
3431 so = sonewconn(so, SS_ISCONNECTED);
3432 if (so == NULL)
3433 goto resetandabort;
3434
3435 switch (so->so_proto->pr_domain->dom_family) {
3436 #ifdef INET
3437 case AF_INET:
3438 inp = sotoinpcb(so);
3439 break;
3440 #endif
3441 #ifdef INET6
3442 case AF_INET6:
3443 in6p = sotoin6pcb(so);
3444 break;
3445 #endif
3446 }
3447 switch (src->sa_family) {
3448 #ifdef INET
3449 case AF_INET:
3450 if (inp) {
3451 inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
3452 inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
3453 inp->inp_options = ip_srcroute();
3454 in_pcbstate(inp, INP_BOUND);
3455 if (inp->inp_options == NULL) {
3456 inp->inp_options = sc->sc_ipopts;
3457 sc->sc_ipopts = NULL;
3458 }
3459 }
3460 #ifdef INET6
3461 else if (in6p) {
3462 /* IPv4 packet to AF_INET6 socket */
3463 bzero(&in6p->in6p_laddr, sizeof(in6p->in6p_laddr));
3464 in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
3465 bcopy(&((struct sockaddr_in *)dst)->sin_addr,
3466 &in6p->in6p_laddr.s6_addr32[3],
3467 sizeof(((struct sockaddr_in *)dst)->sin_addr));
3468 in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
3469 in6totcpcb(in6p)->t_family = AF_INET;
3470 if (sotoin6pcb(oso)->in6p_flags & IN6P_IPV6_V6ONLY)
3471 in6p->in6p_flags |= IN6P_IPV6_V6ONLY;
3472 else
3473 in6p->in6p_flags &= ~IN6P_IPV6_V6ONLY;
3474 in6_pcbstate(in6p, IN6P_BOUND);
3475 }
3476 #endif
3477 break;
3478 #endif
3479 #ifdef INET6
3480 case AF_INET6:
3481 if (in6p) {
3482 in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
3483 in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
3484 in6_pcbstate(in6p, IN6P_BOUND);
3485 }
3486 break;
3487 #endif
3488 }
3489 #ifdef INET6
3490 if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
3491 struct in6pcb *oin6p = sotoin6pcb(oso);
3492 /* inherit socket options from the listening socket */
3493 in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
3494 if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
3495 m_freem(in6p->in6p_options);
3496 in6p->in6p_options = 0;
3497 }
3498 ip6_savecontrol(in6p, &in6p->in6p_options,
3499 mtod(m, struct ip6_hdr *), m);
3500 }
3501 #endif
3502
3503 #if defined(IPSEC) || defined(FAST_IPSEC)
3504 /*
3505 * we make a copy of policy, instead of sharing the policy,
3506 * for better behavior in terms of SA lookup and dead SA removal.
3507 */
3508 if (inp) {
3509 /* copy old policy into new socket's */
3510 if (ipsec_copy_pcbpolicy(sotoinpcb(oso)->inp_sp, inp->inp_sp))
3511 printf("tcp_input: could not copy policy\n");
3512 }
3513 #ifdef INET6
3514 else if (in6p) {
3515 /* copy old policy into new socket's */
3516 if (ipsec_copy_pcbpolicy(sotoin6pcb(oso)->in6p_sp,
3517 in6p->in6p_sp))
3518 printf("tcp_input: could not copy policy\n");
3519 }
3520 #endif
3521 #endif
3522
3523 /*
3524 * Give the new socket our cached route reference.
3525 */
3526 if (inp)
3527 inp->inp_route = sc->sc_route4; /* struct assignment */
3528 #ifdef INET6
3529 else
3530 in6p->in6p_route = sc->sc_route6;
3531 #endif
3532 sc->sc_route4.ro_rt = NULL;
3533
3534 am = m_get(M_DONTWAIT, MT_SONAME); /* XXX */
3535 if (am == NULL)
3536 goto resetandabort;
3537 MCLAIM(am, &tcp_mowner);
3538 am->m_len = src->sa_len;
3539 bcopy(src, mtod(am, caddr_t), src->sa_len);
3540 if (inp) {
3541 if (in_pcbconnect(inp, am)) {
3542 (void) m_free(am);
3543 goto resetandabort;
3544 }
3545 }
3546 #ifdef INET6
3547 else if (in6p) {
3548 if (src->sa_family == AF_INET) {
3549 /* IPv4 packet to AF_INET6 socket */
3550 struct sockaddr_in6 *sin6;
3551 sin6 = mtod(am, struct sockaddr_in6 *);
3552 am->m_len = sizeof(*sin6);
3553 bzero(sin6, sizeof(*sin6));
3554 sin6->sin6_family = AF_INET6;
3555 sin6->sin6_len = sizeof(*sin6);
3556 sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port;
3557 sin6->sin6_addr.s6_addr16[5] = htons(0xffff);
3558 bcopy(&((struct sockaddr_in *)src)->sin_addr,
3559 &sin6->sin6_addr.s6_addr32[3],
3560 sizeof(sin6->sin6_addr.s6_addr32[3]));
3561 }
3562 if (in6_pcbconnect(in6p, am)) {
3563 (void) m_free(am);
3564 goto resetandabort;
3565 }
3566 }
3567 #endif
3568 else {
3569 (void) m_free(am);
3570 goto resetandabort;
3571 }
3572 (void) m_free(am);
3573
3574 if (inp)
3575 tp = intotcpcb(inp);
3576 #ifdef INET6
3577 else if (in6p)
3578 tp = in6totcpcb(in6p);
3579 #endif
3580 else
3581 tp = NULL;
3582 tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
3583 if (sc->sc_request_r_scale != 15) {
3584 tp->requested_s_scale = sc->sc_requested_s_scale;
3585 tp->request_r_scale = sc->sc_request_r_scale;
3586 tp->snd_scale = sc->sc_requested_s_scale;
3587 tp->rcv_scale = sc->sc_request_r_scale;
3588 tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
3589 }
3590 if (sc->sc_flags & SCF_TIMESTAMP)
3591 tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
3592 tp->ts_timebase = sc->sc_timebase;
3593
3594 tp->t_template = tcp_template(tp);
3595 if (tp->t_template == 0) {
3596 tp = tcp_drop(tp, ENOBUFS); /* destroys socket */
3597 so = NULL;
3598 m_freem(m);
3599 goto abort;
3600 }
3601
3602 tp->iss = sc->sc_iss;
3603 tp->irs = sc->sc_irs;
3604 tcp_sendseqinit(tp);
3605 tcp_rcvseqinit(tp);
3606 tp->t_state = TCPS_SYN_RECEIVED;
3607 TCP_TIMER_ARM(tp, TCPT_KEEP, TCPTV_KEEP_INIT);
3608 tcpstat.tcps_accepts++;
3609
3610 #ifdef TCP_SIGNATURE
3611 if (sc->sc_flags & SCF_SIGNATURE)
3612 tp->t_flags |= TF_SIGNATURE;
3613 #endif
3614
3615 /* Initialize tp->t_ourmss before we deal with the peer's! */
3616 tp->t_ourmss = sc->sc_ourmaxseg;
3617 tcp_mss_from_peer(tp, sc->sc_peermaxseg);
3618
3619 /*
3620 * Initialize the initial congestion window. If we
3621 * had to retransmit the SYN,ACK, we must initialize cwnd
3622 * to 1 segment (i.e. the Loss Window).
3623 */
3624 if (sc->sc_rxtshift)
3625 tp->snd_cwnd = tp->t_peermss;
3626 else {
3627 int ss = tcp_init_win;
3628 #ifdef INET
3629 if (inp != NULL && in_localaddr(inp->inp_faddr))
3630 ss = tcp_init_win_local;
3631 #endif
3632 #ifdef INET6
3633 if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
3634 ss = tcp_init_win_local;
3635 #endif
3636 tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
3637 }
3638
3639 tcp_rmx_rtt(tp);
3640 tp->snd_wl1 = sc->sc_irs;
3641 tp->rcv_up = sc->sc_irs + 1;
3642
3643 /*
3644 * This is what whould have happened in tcp_output() when
3645 * the SYN,ACK was sent.
3646 */
3647 tp->snd_up = tp->snd_una;
3648 tp->snd_max = tp->snd_nxt = tp->iss+1;
3649 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
3650 if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
3651 tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
3652 tp->last_ack_sent = tp->rcv_nxt;
3653
3654 tcpstat.tcps_sc_completed++;
3655 SYN_CACHE_PUT(sc);
3656 return (so);
3657
3658 resetandabort:
3659 (void)tcp_respond(NULL, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
3660 abort:
3661 if (so != NULL)
3662 (void) soabort(so);
3663 SYN_CACHE_PUT(sc);
3664 tcpstat.tcps_sc_aborted++;
3665 return ((struct socket *)(-1));
3666 }
3667
3668 /*
3669 * This function is called when we get a RST for a
3670 * non-existent connection, so that we can see if the
3671 * connection is in the syn cache. If it is, zap it.
3672 */
3673
3674 void
3675 syn_cache_reset(src, dst, th)
3676 struct sockaddr *src;
3677 struct sockaddr *dst;
3678 struct tcphdr *th;
3679 {
3680 struct syn_cache *sc;
3681 struct syn_cache_head *scp;
3682 int s = splsoftnet();
3683
3684 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3685 splx(s);
3686 return;
3687 }
3688 if (SEQ_LT(th->th_seq, sc->sc_irs) ||
3689 SEQ_GT(th->th_seq, sc->sc_irs+1)) {
3690 splx(s);
3691 return;
3692 }
3693 SYN_CACHE_RM(sc);
3694 splx(s);
3695 tcpstat.tcps_sc_reset++;
3696 SYN_CACHE_PUT(sc);
3697 }
3698
3699 void
3700 syn_cache_unreach(src, dst, th)
3701 struct sockaddr *src;
3702 struct sockaddr *dst;
3703 struct tcphdr *th;
3704 {
3705 struct syn_cache *sc;
3706 struct syn_cache_head *scp;
3707 int s;
3708
3709 s = splsoftnet();
3710 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3711 splx(s);
3712 return;
3713 }
3714 /* If the sequence number != sc_iss, then it's a bogus ICMP msg */
3715 if (ntohl (th->th_seq) != sc->sc_iss) {
3716 splx(s);
3717 return;
3718 }
3719
3720 /*
3721 * If we've retransmitted 3 times and this is our second error,
3722 * we remove the entry. Otherwise, we allow it to continue on.
3723 * This prevents us from incorrectly nuking an entry during a
3724 * spurious network outage.
3725 *
3726 * See tcp_notify().
3727 */
3728 if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
3729 sc->sc_flags |= SCF_UNREACH;
3730 splx(s);
3731 return;
3732 }
3733
3734 SYN_CACHE_RM(sc);
3735 splx(s);
3736 tcpstat.tcps_sc_unreach++;
3737 SYN_CACHE_PUT(sc);
3738 }
3739
3740 /*
3741 * Given a LISTEN socket and an inbound SYN request, add
3742 * this to the syn cache, and send back a segment:
3743 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
3744 * to the source.
3745 *
3746 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
3747 * Doing so would require that we hold onto the data and deliver it
3748 * to the application. However, if we are the target of a SYN-flood
3749 * DoS attack, an attacker could send data which would eventually
3750 * consume all available buffer space if it were ACKed. By not ACKing
3751 * the data, we avoid this DoS scenario.
3752 */
3753
3754 int
3755 syn_cache_add(src, dst, th, hlen, so, m, optp, optlen, oi)
3756 struct sockaddr *src;
3757 struct sockaddr *dst;
3758 struct tcphdr *th;
3759 unsigned int hlen;
3760 struct socket *so;
3761 struct mbuf *m;
3762 u_char *optp;
3763 int optlen;
3764 struct tcp_opt_info *oi;
3765 {
3766 struct tcpcb tb, *tp;
3767 long win;
3768 struct syn_cache *sc;
3769 struct syn_cache_head *scp;
3770 struct mbuf *ipopts;
3771 struct tcp_opt_info opti;
3772
3773 tp = sototcpcb(so);
3774
3775 bzero(&opti, sizeof(opti));
3776
3777 /*
3778 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
3779 *
3780 * Note this check is performed in tcp_input() very early on.
3781 */
3782
3783 /*
3784 * Initialize some local state.
3785 */
3786 win = sbspace(&so->so_rcv);
3787 if (win > TCP_MAXWIN)
3788 win = TCP_MAXWIN;
3789
3790 switch (src->sa_family) {
3791 #ifdef INET
3792 case AF_INET:
3793 /*
3794 * Remember the IP options, if any.
3795 */
3796 ipopts = ip_srcroute();
3797 break;
3798 #endif
3799 default:
3800 ipopts = NULL;
3801 }
3802
3803 #ifdef TCP_SIGNATURE
3804 if (optp || (tp->t_flags & TF_SIGNATURE))
3805 #else
3806 if (optp)
3807 #endif
3808 {
3809 tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
3810 #ifdef TCP_SIGNATURE
3811 tb.t_flags |= (tp->t_flags & TF_SIGNATURE);
3812 #endif
3813 if (tcp_dooptions(&tb, optp, optlen, th, m, m->m_pkthdr.len -
3814 sizeof(struct tcphdr) - optlen - hlen, oi) < 0)
3815 return (0);
3816 } else
3817 tb.t_flags = 0;
3818
3819 /*
3820 * See if we already have an entry for this connection.
3821 * If we do, resend the SYN,ACK. We do not count this
3822 * as a retransmission (XXX though maybe we should).
3823 */
3824 if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
3825 tcpstat.tcps_sc_dupesyn++;
3826 if (ipopts) {
3827 /*
3828 * If we were remembering a previous source route,
3829 * forget it and use the new one we've been given.
3830 */
3831 if (sc->sc_ipopts)
3832 (void) m_free(sc->sc_ipopts);
3833 sc->sc_ipopts = ipopts;
3834 }
3835 sc->sc_timestamp = tb.ts_recent;
3836 if (syn_cache_respond(sc, m) == 0) {
3837 tcpstat.tcps_sndacks++;
3838 tcpstat.tcps_sndtotal++;
3839 }
3840 return (1);
3841 }
3842
3843 sc = pool_get(&syn_cache_pool, PR_NOWAIT);
3844 if (sc == NULL) {
3845 if (ipopts)
3846 (void) m_free(ipopts);
3847 return (0);
3848 }
3849
3850 /*
3851 * Fill in the cache, and put the necessary IP and TCP
3852 * options into the reply.
3853 */
3854 bzero(sc, sizeof(struct syn_cache));
3855 callout_init(&sc->sc_timer);
3856 bcopy(src, &sc->sc_src, src->sa_len);
3857 bcopy(dst, &sc->sc_dst, dst->sa_len);
3858 sc->sc_flags = 0;
3859 sc->sc_ipopts = ipopts;
3860 sc->sc_irs = th->th_seq;
3861 switch (src->sa_family) {
3862 #ifdef INET
3863 case AF_INET:
3864 {
3865 struct sockaddr_in *srcin = (void *) src;
3866 struct sockaddr_in *dstin = (void *) dst;
3867
3868 sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
3869 &srcin->sin_addr, dstin->sin_port,
3870 srcin->sin_port, sizeof(dstin->sin_addr), 0);
3871 break;
3872 }
3873 #endif /* INET */
3874 #ifdef INET6
3875 case AF_INET6:
3876 {
3877 struct sockaddr_in6 *srcin6 = (void *) src;
3878 struct sockaddr_in6 *dstin6 = (void *) dst;
3879
3880 sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
3881 &srcin6->sin6_addr, dstin6->sin6_port,
3882 srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
3883 break;
3884 }
3885 #endif /* INET6 */
3886 }
3887 sc->sc_peermaxseg = oi->maxseg;
3888 sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
3889 m->m_pkthdr.rcvif : NULL,
3890 sc->sc_src.sa.sa_family);
3891 sc->sc_win = win;
3892 sc->sc_timebase = tcp_now; /* see tcp_newtcpcb() */
3893 sc->sc_timestamp = tb.ts_recent;
3894 if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
3895 (TF_REQ_TSTMP|TF_RCVD_TSTMP))
3896 sc->sc_flags |= SCF_TIMESTAMP;
3897 if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
3898 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
3899 sc->sc_requested_s_scale = tb.requested_s_scale;
3900 sc->sc_request_r_scale = 0;
3901 while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
3902 TCP_MAXWIN << sc->sc_request_r_scale <
3903 so->so_rcv.sb_hiwat)
3904 sc->sc_request_r_scale++;
3905 } else {
3906 sc->sc_requested_s_scale = 15;
3907 sc->sc_request_r_scale = 15;
3908 }
3909 #ifdef TCP_SIGNATURE
3910 if (tb.t_flags & TF_SIGNATURE)
3911 sc->sc_flags |= SCF_SIGNATURE;
3912 #endif
3913 sc->sc_tp = tp;
3914 if (syn_cache_respond(sc, m) == 0) {
3915 syn_cache_insert(sc, tp);
3916 tcpstat.tcps_sndacks++;
3917 tcpstat.tcps_sndtotal++;
3918 } else {
3919 SYN_CACHE_PUT(sc);
3920 tcpstat.tcps_sc_dropped++;
3921 }
3922 return (1);
3923 }
3924
3925 int
3926 syn_cache_respond(sc, m)
3927 struct syn_cache *sc;
3928 struct mbuf *m;
3929 {
3930 struct route *ro;
3931 u_int8_t *optp;
3932 int optlen, error;
3933 u_int16_t tlen;
3934 struct ip *ip = NULL;
3935 #ifdef INET6
3936 struct ip6_hdr *ip6 = NULL;
3937 #endif
3938 struct tcpcb *tp;
3939 struct tcphdr *th;
3940 u_int hlen;
3941 struct socket *so;
3942
3943 switch (sc->sc_src.sa.sa_family) {
3944 case AF_INET:
3945 hlen = sizeof(struct ip);
3946 ro = &sc->sc_route4;
3947 break;
3948 #ifdef INET6
3949 case AF_INET6:
3950 hlen = sizeof(struct ip6_hdr);
3951 ro = (struct route *)&sc->sc_route6;
3952 break;
3953 #endif
3954 default:
3955 if (m)
3956 m_freem(m);
3957 return (EAFNOSUPPORT);
3958 }
3959
3960 /* Compute the size of the TCP options. */
3961 optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
3962 #ifdef TCP_SIGNATURE
3963 ((sc->sc_flags & SCF_SIGNATURE) ? (TCPOLEN_SIGNATURE + 2) : 0) +
3964 #endif
3965 ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
3966
3967 tlen = hlen + sizeof(struct tcphdr) + optlen;
3968
3969 /*
3970 * Create the IP+TCP header from scratch.
3971 */
3972 if (m)
3973 m_freem(m);
3974 #ifdef DIAGNOSTIC
3975 if (max_linkhdr + tlen > MCLBYTES)
3976 return (ENOBUFS);
3977 #endif
3978 MGETHDR(m, M_DONTWAIT, MT_DATA);
3979 if (m && tlen > MHLEN) {
3980 MCLGET(m, M_DONTWAIT);
3981 if ((m->m_flags & M_EXT) == 0) {
3982 m_freem(m);
3983 m = NULL;
3984 }
3985 }
3986 if (m == NULL)
3987 return (ENOBUFS);
3988 MCLAIM(m, &tcp_tx_mowner);
3989
3990 /* Fixup the mbuf. */
3991 m->m_data += max_linkhdr;
3992 m->m_len = m->m_pkthdr.len = tlen;
3993 if (sc->sc_tp) {
3994 tp = sc->sc_tp;
3995 if (tp->t_inpcb)
3996 so = tp->t_inpcb->inp_socket;
3997 #ifdef INET6
3998 else if (tp->t_in6pcb)
3999 so = tp->t_in6pcb->in6p_socket;
4000 #endif
4001 else
4002 so = NULL;
4003 } else
4004 so = NULL;
4005 m->m_pkthdr.rcvif = NULL;
4006 memset(mtod(m, u_char *), 0, tlen);
4007
4008 switch (sc->sc_src.sa.sa_family) {
4009 case AF_INET:
4010 ip = mtod(m, struct ip *);
4011 ip->ip_v = 4;
4012 ip->ip_dst = sc->sc_src.sin.sin_addr;
4013 ip->ip_src = sc->sc_dst.sin.sin_addr;
4014 ip->ip_p = IPPROTO_TCP;
4015 th = (struct tcphdr *)(ip + 1);
4016 th->th_dport = sc->sc_src.sin.sin_port;
4017 th->th_sport = sc->sc_dst.sin.sin_port;
4018 break;
4019 #ifdef INET6
4020 case AF_INET6:
4021 ip6 = mtod(m, struct ip6_hdr *);
4022 ip6->ip6_vfc = IPV6_VERSION;
4023 ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
4024 ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
4025 ip6->ip6_nxt = IPPROTO_TCP;
4026 /* ip6_plen will be updated in ip6_output() */
4027 th = (struct tcphdr *)(ip6 + 1);
4028 th->th_dport = sc->sc_src.sin6.sin6_port;
4029 th->th_sport = sc->sc_dst.sin6.sin6_port;
4030 break;
4031 #endif
4032 default:
4033 th = NULL;
4034 }
4035
4036 th->th_seq = htonl(sc->sc_iss);
4037 th->th_ack = htonl(sc->sc_irs + 1);
4038 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
4039 th->th_flags = TH_SYN|TH_ACK;
4040 th->th_win = htons(sc->sc_win);
4041 /* th_sum already 0 */
4042 /* th_urp already 0 */
4043
4044 /* Tack on the TCP options. */
4045 optp = (u_int8_t *)(th + 1);
4046 *optp++ = TCPOPT_MAXSEG;
4047 *optp++ = 4;
4048 *optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
4049 *optp++ = sc->sc_ourmaxseg & 0xff;
4050
4051 if (sc->sc_request_r_scale != 15) {
4052 *((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
4053 TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
4054 sc->sc_request_r_scale);
4055 optp += 4;
4056 }
4057
4058 if (sc->sc_flags & SCF_TIMESTAMP) {
4059 u_int32_t *lp = (u_int32_t *)(optp);
4060 /* Form timestamp option as shown in appendix A of RFC 1323. */
4061 *lp++ = htonl(TCPOPT_TSTAMP_HDR);
4062 *lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
4063 *lp = htonl(sc->sc_timestamp);
4064 optp += TCPOLEN_TSTAMP_APPA;
4065 }
4066
4067 #ifdef TCP_SIGNATURE
4068 if (sc->sc_flags & SCF_SIGNATURE) {
4069 struct secasvar *sav;
4070 u_int8_t *sigp;
4071
4072 sav = tcp_signature_getsav(m, th);
4073
4074 if (sav == NULL) {
4075 if (m)
4076 m_freem(m);
4077 return (EPERM);
4078 }
4079
4080 *optp++ = TCPOPT_SIGNATURE;
4081 *optp++ = TCPOLEN_SIGNATURE;
4082 sigp = optp;
4083 bzero(optp, TCP_SIGLEN);
4084 optp += TCP_SIGLEN;
4085 *optp++ = TCPOPT_NOP;
4086 *optp++ = TCPOPT_EOL;
4087
4088 (void)tcp_signature(m, th, hlen, sav, sigp);
4089
4090 key_sa_recordxfer(sav, m);
4091 #ifdef FAST_IPSEC
4092 KEY_FREESAV(&sav);
4093 #else
4094 key_freesav(sav);
4095 #endif
4096 }
4097 #endif
4098
4099 /* Compute the packet's checksum. */
4100 switch (sc->sc_src.sa.sa_family) {
4101 case AF_INET:
4102 ip->ip_len = htons(tlen - hlen);
4103 th->th_sum = 0;
4104 th->th_sum = in4_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4105 break;
4106 #ifdef INET6
4107 case AF_INET6:
4108 ip6->ip6_plen = htons(tlen - hlen);
4109 th->th_sum = 0;
4110 th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4111 break;
4112 #endif
4113 }
4114
4115 /*
4116 * Fill in some straggling IP bits. Note the stack expects
4117 * ip_len to be in host order, for convenience.
4118 */
4119 switch (sc->sc_src.sa.sa_family) {
4120 #ifdef INET
4121 case AF_INET:
4122 ip->ip_len = htons(tlen);
4123 ip->ip_ttl = ip_defttl;
4124 /* XXX tos? */
4125 break;
4126 #endif
4127 #ifdef INET6
4128 case AF_INET6:
4129 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
4130 ip6->ip6_vfc |= IPV6_VERSION;
4131 ip6->ip6_plen = htons(tlen - hlen);
4132 /* ip6_hlim will be initialized afterwards */
4133 /* XXX flowlabel? */
4134 break;
4135 #endif
4136 }
4137
4138 /* XXX use IPsec policy on listening socket, on SYN ACK */
4139 tp = sc->sc_tp;
4140
4141 switch (sc->sc_src.sa.sa_family) {
4142 #ifdef INET
4143 case AF_INET:
4144 error = ip_output(m, sc->sc_ipopts, ro,
4145 (ip_mtudisc ? IP_MTUDISC : 0),
4146 (struct ip_moptions *)NULL, so);
4147 break;
4148 #endif
4149 #ifdef INET6
4150 case AF_INET6:
4151 ip6->ip6_hlim = in6_selecthlim(NULL,
4152 ro->ro_rt ? ro->ro_rt->rt_ifp : NULL);
4153
4154 error = ip6_output(m, NULL /*XXX*/, (struct route_in6 *)ro, 0,
4155 (struct ip6_moptions *)0, so, NULL);
4156 break;
4157 #endif
4158 default:
4159 error = EAFNOSUPPORT;
4160 break;
4161 }
4162 return (error);
4163 }
4164